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Abstract: We give explicit C1-open conditions that ensure that a diffeomorphism pos-
sesses a nonhyperbolic ergodic measure with positive entropy. Actually, our criterion
provides the existence of a partially hyperbolic compact set with one-dimensional cen-
ter and positive topological entropy on which the center Lyapunov exponent vanishes
uniformly.

The conditions of the criterion are met on a C1-dense and open subset of the set
of diffeomorphisms having a robust cycle. As a corollary, there exists a C1-open and
dense subset of the set of non-Anosov robustly transitive diffeomorphisms consisting of
systems with nonhyperbolic ergodic measures with positive entropy.

The criterion is based on a notion of a blender defined dynamically in terms of strict
invariance of a family of discs.

1. Introduction

1.1. General context. Since the end of the sixties it is well known that there exist
dynamical systems (diffeomorphisms and flows) that are Cr -robustly nonhyperbolic:
every perturbation of the system fails to be hyperbolic (see for instance [N]). Never-
theless, hyperbolic-like techniques and concepts which are essentially weakened forms
of hyperbolicity are still among the main tools for studying dynamical systems, even
beyond uniform hyperbolicity.

Nonuniform hyperbolicity is an ergodic-theoretical version of hyperbolicity and has
its origin in Oseledets’ theorem about the existence of Lyapunov exponents. An invariant
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ergodic probability measure is called hyperbolic if all its Lyapunov exponents are differ-
ent from zero, and nonhyperbolic otherwise. For C1+α-systems, Pesin’s theory recovers
essential parts of hyperbolicity for generic points of hyperbolic measures, see [Pe]. One
speaks of nonuniform hyperbolicity when studying systems endowed with some refer-
ence measure. For instance, in the conservative setting, a natural question is to know
in what generality the volume is a hyperbolic measure. (For instance, see [SW,BB]
for perturbative methods for removing zero Lyapunov exponents in the conservative
setting.)

Another point of view, which is the one adopted in this paper, consists in looking
at all ergodic invariant measures carried by the system. A diffeomorphism is called
completely nonuniformly hyperbolic if all its ergodic invariant measures are hyperbolic.
Let us observe that there are examples of nonhyperbolic systems that are completely
nonuniformly hyperbolic and even have Lyapunov exponents far away from zero: see
[BBS,CLR,LOR]. However, all of these examples are very fragile. Therefore one can
naively ask whether every diffeomorphism can be approximated by completely nonuni-
formly hyperbolic ones, thus reclaiming in a weaker sense Smale’s dream of denseness
of hyperbolicity. Unfortunately, the answer to this question is negative, as was shown
by Kleptsyn and Nalsky [KN].

Another question, in the opposite direction, is the following: Can every diffeomor-
phism be approximated either by uniformly hyperbolic ones or by diffeomorphisms with
nonhyperbolic ergodic measures? The answer is positive: it was shown by Mañé [M2]
that every C1-robustly nonhyperbolic diffeomorphism can be C1-approximated by dif-
feomorphisms that have nonhyperbolic periodic points1 and in particular nonhyperbolic
ergodic invariant measures. In particular, the existence of zero Lyapunov exponents is
C1-dense in the complement of the closure of the set of hyperbolic diffeomorphisms.
However, this dense subset is too “thin” (actually meager), since periodic orbits of Cr -
generic diffeomorphisms (for any r ≥ 1) are hyperbolic, by Kupka–Smale’s theorem,
[Ku,Sm]. Now if we consider not only measures supported on periodic orbits but arbi-
trary ergodic probability measures, we expect to have a much “thicker” dense set.

In order to bemore precise, let us introduce some notation. Given a compact manifold
M without boundary, define the following two disjoint Cr -open sets:

• Hr (M) is the set of hyperbolic Cr -diffeomorphisms, that is, those satisfying
Axiom A with no cycles or, equivalently, with a hyperbolic chain recurrent set.

• Zr (M) is the Cr -interior of the set of Cr -diffeomorphisms with a nonhyperbolic
ergodic measure.

We pose the following question:

Question 1 (Hyperbolicity vs. robust zero exponents). Given r ≥ 1, is the (open) set
Hr (M) ∪ Zr (M) dense in Diffr (M)?

A positive answer to this question would mean that the existence of nonhyperbolic
ergodic measures basically characterizes nonhyperbolic Cr -dynamics.

Let us remark that the first setHr (M) is always nonempty, and the second setZr (M)

is also nonempty provided dim M ≥ 3, as it is proved in the aforementioned paper [KN]
(for r = 1 and therefore for any r ≥ 1) as a continuation of the results from [GIKN].

In this paper, still assuming dim M ≥ 3, we prove that the open set Z1(M) is not
only nonempty but actually very large, thus providing evidence that Question 1 should

1 Note that such a property of diffeomorphisms does not extend to vector fields, since there exist robustly
nonhyperbolic Lorenz-like attractors whose periodic orbits are all robustly hyperbolic, see [GW].
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have a positive answer. An answer in complete generality, even for r = 1, seems to be a
hard problem. Before stating our results let us observe that Question 1 is motivated and
closely related to the following conjecture of Palis [P] about topological characterizations
of nonhyperbolicity:

Conjecture 1 (Hyperbolicity vs. cycles). Every diffeomorphism f ∈ Diffr (M), r ≥ 1,
can be Cr -approximated by diffeomorphisms that are either hyperbolic or display homo-
clinic bifurcations (homoclinic tangencies or heterodimensional cycles).

This conjecture is true for C1-diffeomorphisms of surfaces, see [PS]. See also [CP]
for important progress in higher dimensions.

Note that the homoclinic bifurcations in this conjecture are associated to periodic
points. By Kupka–Smale’s genericity theorem, most systems (i.e., generic ones) do not
display homoclinic bifurcations. Bearing this fact in mind, a stronger version of the
conjecture above was proposed in [BD2] and [B, Conjecture 7]. In order to state it, let
us recall that two transitive hyperbolic basic sets � and � of a diffeomorphism f have
a robust (heterodimensional) cycle if:

• � and � have different u-indices (i.e., their unstable bundles have different dimen-
sions) and

• There is a C1-neighborhood U of f so that for every g ∈ U one has

W s(�g) ∩ W u(�g) �= ∅ and W u(�g) ∩ W s(�g) �= ∅,

where �g and �g are the hyperbolic continuations of � and � for g.

Observe that robust cycles can only occur in dimension 3 or larger. Let us denote by
RC1(M) the C1-open subset of Diff1(M) of diffeomorphisms with robust cycles. We
can now state the following:

Conjecture 2 (Hyperbolicity vs. robust cycles). The union of the disjoint open sets
H1(M) and RC1(M) is dense in Diff1(M). In other words, every diffeomorphism in
Diff1(M) can be C1-approximated by diffeomorphisms that are either hyperbolic or
have robust cycles.2

A consequence of the results in [DG] is thatC1-generic diffeomorphisms with robust
cycles have ergodic nonhyperbolic measures. Note that by Kupka–Smale’s theorem the
nonhyperbolic measures in [DG] cannot be supported on periodic orbits. In the partially
hyperbolic setting with one-dimensional central direction, [BDG] improves the results
in [DG] by showing that these nonhyperbolic measures can be chosen with full support
in the appropriate homoclinic class.

In this paper we strengthen theC1-generic conclusion of the result of [DG] and prove
that C1-robust cycles yield C1-robust existence of nonhyperbolic ergodic measures. We
also will see that these measures can be chosen with positive entropy.

Theorem 1. Let M be a compact manifold without boundary and of dimension d ≥ 3.
Then the subset ofDiff1(M) consisting of diffeomorphismswith a nonhyperbolic ergodic
measure with positive entropy contains an open and dense subset of the C1-open set
RC1(M) of diffeomorphisms with robust cycles.

2 This conjecture involves robust cycles but does not involve homoclinic tangencies. The rationale behind
this is the fact that most heterodimensional cycles can be made robust by small perturbations: see [BDK].
In contrast, the only known examples of C1-robust homoclinic tangencies occur in dimension at least 3 and
are associated to C1-robust cycles: see [BD3]. Furthermore, C1-surface diffeomorphisms do not have robust
homoclinic tangencies: see [Mo].
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In the notations above,Theorem1 implies thatZ1(M)∩RC1(M) is dense inRC1(M).
Therefore, if Conjecture 2 is true, then Question 1 has a positive answer when r = 1.

Theorem 2 below is a more general (and technical) version of Theorem 1. The proof
of that theorem is based on Theorem 5, which gives an explicit robust criterion for zero
center Lyapunov exponents, which in turn relies on Theorem 4, which is an abstract
ergodic-theoretical criterion for the existence of zero Birkhoff averages. The strategy
used in this paper for the construction of nonhyperbolic measures is very different from
the previous methods, which are reviewed in Sect. 1.5.

Let us present some consequences of Theorem 1. A diffeomorphism is called C1-
robustly transitive if every C1-diffeomorphism nearby is transitive, that is, has a dense
orbit. In dimension two, C1-robustly transitive diffeomorphisms are Anosov diffeomor-
phisms of the torus T

2 (see [M2]), but there are non-Anosov robustly transitive diffeo-
morphisms on manifolds of dimension three or more (see [S,M1,BD1]). Combining the
results in [H,BC,BD2], one obtains that there is aC1-open and dense subset of the set of
nonhyperbolic robustly transitive diffeomorphisms consisting of diffeomorphisms with
robust cycles. In other words,H1(M) ∪ RC1(M) contains an open and dense subset of
the set of C1-robustly transitive diffeomorphisms. Thus the following is a corollary of
Theorem 1.

Corollary 1. The union of the set of Anosov diffeomorphisms and the setZ1(M) is open
and dense in the set of C1-robustly transitive diffeomorphisms.

There are several mutatis mutandis versions of this corollary for robustly transitive
sets and homoclinic or chain recurrence classes robustly containing saddles of different
indices. One of these is the following. A diffeomorphism f is called C1-tame if each
of its chain recurrence classes is C1-robustly isolated. In this case, the number of chain
recurrence classes is finite and constant in a C1-neighborhood of f . The following
corollary asserts that Question 1 with r = 1 has a positive answer if restricted to tame
diffeomorphisms.

Corollary 2. There is a C1-open and dense subset of the set of C1-tame diffeomorphisms
consisting of diffeomorphisms whose chain recurrence classes are either hyperbolic or
support a nonhyperbolic ergodic measure with positive entropy.

1.2. Sharper results. A finite sequence of points (xi )ni=0 is an ε-pseudo-orbit of a dif-
feomorphism f : M → M if dist( f (xi ), xi+1) < ε for all i = 0, . . . , n− 1. A point x is
chain recurrent for f if for every ε > 0 there is an ε-pseudo-orbit (xi )ni=0 starting and
ending at x (i.e., with x = x0 = xn). The chain recurrent set is composed by all chain
recurrent points of f and is denoted byR( f ). This set splits into pairwise disjoint chain
recurrence classes: the class C(x, f ) of x ∈ R( f ) is the set of points y such that for
every ε > 0 there are ε-pseudo-orbits joining x to y and y to x .

Given an f -invariant set � and a continuous Df -invariant line field E = (Ex )x∈�

over �, the Lyapunov exponent of a point x along the direction E is defined as

χE (x) := lim|n|→∞
log ‖Df nx (v)‖

n
, v ∈ Ex�{0},

where ‖·‖ stands for the Riemannian norm, whenever this limit exists.
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Theorem 2. Let M be a compact manifold without boundary and of dimension d ≥ 3.
LetU ⊂ Diff1(M) be an open set of diffeomorphisms such that for every f ∈ U there are
hyperbolic periodic points p f and q f , depending continuously on f , in the same chain
recurrence class C(p f , f ) and having respective u-indices i p > iq . Then there exists a
C1-open and dense subset V of U with the following properties. For any f ∈ V and any
integer i with iq < i ≤ i p there exists a compact f -invariant set K f,i ⊂ C(p f , f ) with
a partially hyperbolic splitting

TK f,i M = Euu ⊕ Ec ⊕ E ss

such that:

• Euu is uniformly expanding and has dimension i − 1 > 0, Ec has dimension 1, and
E ss is uniformly contracting and has dimension d − i > 0;

• The Lyapunov exponent along the Ec direction of any point in K f,i is zero;
• The topological entropy of the restriction of f to K f,i is positive.

Additionally, the Lyapunov exponent along the central direction Ec is uniformly
zero, in the sense that the limits that by definition are the Lyapunov exponent exist
everywhere on K f,i and are uniform. Although this uniformity follows abstractly from
the facts that K f,i is compact and Ec is one-dimensional, we will obtain it directly from
the construction.

Let us now see how Theorem 2 implies Theorem 1. Given a pair of hyperbolic sets
forming a robust cycle, their union is contained in the same chain recurrence class and
contains hyperbolic periodic points of different indices, permitting us to apply Theo-
rem 2. This allows us to conclude that diffeomorphisms f in an open and dense subset
of RC1(M) possess compact invariant partially hyperbolic sets K f with positive topo-
logical entropy and with uniformly zero Lyapunov exponents along the center direction.
By the variational principle for entropy (see e.g. [W]), each such K f supports an ergodic
measure of positive metric entropy, and so we obtain the statement of Theorem 1.

In the converse direction, if U is an open set of diffeomorphisms satisfying the
hypotheses of Theorem 2, that is, such that every f ∈ U has a chain recurrence class
with periodic points p f , q f of respective u-indices i p > iq then by results of [BC,
ABCDW,BD2,BDK] there exists an open and dense subsetW of U such that if f ∈ W
then the chain recurrence class C(p f , f ) contains periodic points of every intermediate
u-index.Moreover, any two of these periodic points having consecutive u-indices belong
to a pair of hyperbolic basic sets forming a robust cycle.3

So if in Theorem 2we replace the hypothesis “p f and q f are in the same chain recur-
rence class for every f ∈ U” by the stronger hypothesis “p f and q f have consecutive
indices and are related by a robust cycle for every f ∈ U”, we obtain a result that is
not much weaker than its ancestor: the two theorems are equivalent modulo a nowhere
dense closed subset of Diff1(M). To prove Theorem 2, we will actually work with these
robust cycles associated to periodic points of consecutive indices.

Given an ergodic measure μ, by Oseledets’ Theorem we can define its Lyapunov
exponents χ1(μ) ≥ χ2(μ) ≥ · · · ≥ χd(μ), where d = dim M . While we will not recall

3 According to [BC], for C1-generic diffeomorphisms f in U the homoclinic class and the chain recurrent
class of p f coincide, and the same occurs for q f . Therefore the homoclinic classes H(p f ) and H(q f ) of p f
and q f coincide. Now [BCDG, Corollary 2.4] claims that for every generic f for which H(p f ) and H(q f )
coincide, the class H(p f ) contains hyperbolic sets Ki of u-index i for every iq ≤ i ≤ iq so that Ki and Ki+1,
iq ≤ i < i p , have a robust cycle.
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here the full statement of that theorem, let us remark that for μ-a.e. point x it is possible
to choose linearly independent vectors v1, …, vd in TxM such that

lim
n→±∞

log ‖Df nx (vi )‖
n

= χi (μ) for each i .

So Theorem 2 also has the following corollary:

Corollary 3. Under the hypotheses of Theorem 2, there exists a C1-open and dense sub-
set V ⊂ U such that every diffeomorphism f ∈ V has ergodic measures μi p , . . . , μiq−1
such that each μi has positive entropy and its i-th Lyapunov exponent χi (μi ) is zero.

As a matter of fact, our methods permit us to obtain not only a central Lyapunov
exponent equal to zero, but a whole interval of central Lyapunov exponents. If p is
a periodic point then we denote by χi (p) the i-th Lyapunov exponent of the ergodic
measure supported on the orbit of p.

Theorem 3. Let M be a compact manifold without boundary and of dimension d ≥ 3.
Let U ⊂ Diff1(M) be an open set of diffeomorphisms such that for every f ∈ U there
are hyperbolic periodic points p f and q f , depending continuously on f , in the same
chain recurrence class C(p f , f ) and having respective u-indices i and i − 1.

Then there exists a C1-open and dense subset V of U such that for every f ∈ V and
every χ ∈ (

χi (q f ), χi (p f )
)
, there exists a compact f -invariant set K f,χ ⊂ C(p f , f )

with a partially hyperbolic splitting

TK f,χ M = Euu ⊕ Ec ⊕ E ss

such that:

• Euu is uniformly expanding and has dimension i − 1 > 0, Ec has dimension 1, and
E ss is uniformly contracting and has dimension d − i > 0;

• The Lyapunov exponent along the Ec direction of any point in K f,χ equals χ ;
• the topological entropy of the restriction of f to K f,χ is positive.

In particular, the i-th Lyapunov exponent of any measure supported on K f,χ equals χ

and there is an ergodic measure supported on K f,χ with positive entropy.

The proof of this theorem has two parts. The construction of the sets K f,χ for χ

bounded away from zero follows from the arguments in [ABCDW] using Markov parti-
tions and has a hyperbolic flavor. The new andmore difficult part here is the construction
of the sets K f,χ for χ close to zero.

1.3. An abstract criterion for the existence of zero averages. Along the proof of Theo-
rem 2, we develop some non-perturbative criteria for the existence of zero center Lya-
punov exponents, or more generally, zero limit Birkhoff averages. This first criterion
holds on a purely topological setting, and relies in the following concept (see Fig. 1):

Definition 1.1 (Flip-flop family). Let (X, d) be a metric space, f : X → X be a contin-
uous map, K be a compact subset of X , and ϕ : K → R be a continuous function.

A flip-flop family is a family F of compact subsets of K with uniformly bounded
diameters that splits as F = F+ ∪ F− into two disjoint families satisfying the following
properties:
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Fig. 1. Flip-flop family

(FF1) There is a constant α > 0 such that for all members D+ ∈ F+, D− ∈ F− and all
points x+ ∈ D+, x− ∈ D− we have

ϕ(x−) < −α < 0 < α < ϕ(x+).

(FF2) For every D ∈ F there are compact subsets C+, C− of D such that f (C+) ∈ F+

and f (C−) ∈ F−.
(FF3) There is a constant λ > 1 such that if E is contained in a member of F and f (E)

is a member of F then

d( f (x), f (y)) ≥ λ d(x, y) for every x , y ∈ E .

The motivation for the definition above is the following result:

Theorem 4 (Abstract criterion for zero limit Birkhoff averages). Consider a continuous
map f : X → X on a metric space X having a flip-flop family F associated to a
continuous function ϕ : K → R defined on a compact subset K of X.

Then there exists a compact forward invariant subset 	 ⊂ K such that the Birkhoff
averages of ϕ converge to zero uniformly on 	. Moreover, the restriction of f to 	 has
positive topological entropy.

In particular, there exist ergodic f -invariant measures μ of positive entropy such
that

∫
ϕ dμ = 0.

Let us emphasize that the function ϕ is only continuous. If ϕ were assumed to bemore
regular (say, Hölder) then the corresponding theorem would be considerably simpler to
prove (seeRemark 2.5 in this regard), but it would not be sufficient to obtainC1-openness
in Theorems 1 and 2 above or Theorem 5 below.

1.4. A criterion for the existence of nonhyperbolicmeasures. Comingback to diffeomor-
phisms, let us explain our next result, which gives explicit C1-open sufficient conditions
for the existence of partially hyperbolic sets with zero center exponents.

We assume the existence of a dynamical blender. This basically means a partially
hyperbolic set together with a family of embedded discs tangent to a strong unstable
cone such that the image of any perturbation of a disc in the family contains a disc in
the family. See Sect. 3 for the precise definition. Dynamical blenders are a more flexible
version of previous notions of blenders, see Sect. 1.6.

In addition, we assume that there exists a saddle that forms together with the dynam-
ical blender a certain split flip-flop configuration. Roughly this means that the dynamics
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associated to the blender and the saddle is partially hyperbolic with one-dimensional
center; see Definition 4.7 for the precise definition.

We prove the following:

Theorem 5 (Criterion for zero center Lyapunov exponents). Let M be a compact man-
ifold without boundary and of dimension d ≥ 3. Assume that f ∈ Diff1(M) has a
periodic saddle q and a dynamical blender 
 in a split flip-flop configuration. Let i − 1
be the u-index of q.

Then there exists a compact f -invariant set K contained in the chain recurrence
class C(q, f ) and admitting a partially hyperbolic splitting

TK M = Euu ⊕ Ec ⊕ E ss

such that:

• Euu is uniformly expanding and has dimension i − 1 > 0, Ec has dimension 1, and
E ss is uniformly contracting and has dimension d − i > 0;

• The Lyapunov exponent along the Ec direction of any point in K is zero;
• The topological entropy of the restriction of f to K is positive.

We will deduce Theorem 5 from Theorem 4: starting from split flip-flop configura-
tions, we will construct flip-flop families F composed of discs contained in the strong
unstable manifolds of a partially hyperbolic set with one dimensional center bundle; the
function ϕ will be essentially the logarithm of the center Jacobian.

To prove Theorem 2, we basically show that in the presence of a robust cycle the
hypothesis of Theorem 5 are satisfied after a suitable C1-perturbation.

1.5. Discussion on the methods. The literature contains a number of results on the
existence of nonhyperbolic measures. Let us briefly compare these results with those of
the present paper.

The paper [GIKN] dealswith certain partially hyperbolic skew-products. It constructs
nonhyperbolic ergodic measures with nondiscrete support as limits of sequences of
measures supported on periodic orbits. Each periodic orbit in the sequence shadows
the previous one for a large proportion of time — this is the key property to obtain
ergodicity. Each periodic orbit has a proportionally small tail far from the previous orbits,
which is chosen in order to make the center Lyapunov exponent smaller. Thatmethod of
periodic approximations was also used in subsequent papers [KN,DG,BDG,BBD] to
find nonhyperbolic measures for partially hyperbolic dynamics. In [BBD], the method
was extended to higher center dimension (in the skew-product setting) so to yieldmultiple
zero exponents. On the other hand, the nonhyperbolic ergodic measures constructed by
the method of periodic approximations are highly “repetitive” and are likely to have zero
entropy.

The strategy developed in this paper is completely different from the periodic approx-
imations one. Using a recursive construction we find a point x whose central expansion
is controlled at all time scales. Then its omega-limit set ω(x) is an invariant compact set
which is completely nonhyperbolic, meaning that every invariant measure supported on
this set is nonhyperbolic. Moreover, the orbit of x can be chosen “noisy” enough so that
the restriction of f to ω(x) has positive topological entropy.

The strategy of recursive control at all time scales does not need much regularity: the
diffeomorphism f in Theorem 5 is only C1, and the function ϕ in Theorem 4 is only
continuous. Under stronger regularity assumptions it is possible to use a simpler strategy
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and obtain sharper conclusions: assuming that ϕ is Hölder, for example, it is possible
to obtain a set 	 in Theorem 4 over which the Birkhoff sums are uniformly bounded
(see Remark 2.5). Actually that simpler strategy already appears in the proof of another
result from the paper [BBD], which constructs completely nonhyperbolic compact sets
with positive topological entropy in the context of skew-products.

With the method of periodic approximations, it is relatively easy to obtain nonhyper-
bolic measures with “large” or sometimes full support. On the other hand, the supports of
the nonhyperbolic measures constructed in this paper are completely nonhyperbolic and
therefore should be relatively “small”. Nevertheless, it seems reasonable to conjecture
that our methods could be sharpened (by dropping uniformity) so to yield nonhyperbolic
measures with bigger support.

Another natural question concerns the abundance of ergodic measures that have a
zero Lyapunov exponent with multiplicity as high as possible.

1.6. Dynamical blenders. The paper [BD1] introduced a dynamical mechanism called
blender, which provides the existence of a hyperbolic setwhose stable set behaves as if its
dimensionwere greater than the dimension of its stable bundle: the stable set intersects all
elements of an open family of embedded discs of low dimension. Important applications
of blenders are the construction of C1robust cycles, see [BD2], and C1-robust transitive
sets, see [BD1]. Afterwards, the paper [BD3] introduced a variation of this concept
called blender-horseshoe to obtain robust tangencies.

These definitions of blender require quite specific mechanisms and are not flexible
enough for the purposes of this paper. So we introduce here a new concept, what we call
dynamical blender, which only requires an invariance property of a family of disks, see
Definition 3.11. This property can be checked more easily and also has the clear advan-
tage of being intrinsically robust. Also, it easily implies the aforementioned property of
the stable set (though we do not use this property directly).

1.7. Organization of the paper. In Sect. 2 we prove the abstract zero averages criterion
(Theorem 4). This is done by finding special points whose orbits have controlled (i.e.,
small) Birkhoff averages at every time scale, and are noisy enough so to produce positive
entropy.

In Sect. 3, we introduce dynamical blenders and establish some properties for later
use. Then in Sect. 4 we introduce split flip-flop configurations, show how they permit us
to find flip-flop families associated to a certain function ϕ related to the central Jacobian,
and complete the proof of Theorem 5.

In Sect. 5 we prove Theorem 2: Starting from a robust cycle associated to saddles of
consecutive indices,we show thatwith an additional perturbation aflip-flop configuration
appears, and therefore the theorem follows from the previous results.

Finally, in Sect. 6 we explain how to obtain Theorem 3.

2. Flip-flop Families and Birkhoff Averages: Proof of Theorem 4

The aim of this section is to prove Theorem 4, the zero averages result for flip-flop
families. In fact, we will prove a slightly finer version of this result (Theorem 2.1).

In all of this section, let (X, d) be a metric space, f : X → X be a continuous map,
K be a compact subset of X , ϕ : K → R be a continuous function, and F = F+ ∪ F−
be a flip-flop family as in Definition 1.1.
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Let us fix some notation: Denote
⋃

F := ⋃
D∈F D and analogously for

⋃
F+,

⋃
F−.

The Birkhoff sums of ϕ will be denoted as

ϕn(x) :=
n−1∑

i=0

ϕ( f i (x)) if n ∈ N, x ∈
n−1⋂

i=0

f −i (K ).

2.1. Control of Birkhoff averages at all scales. We begin with some definitions that will
be central to our constructions.

Definition 2.1 (Control). Given β > 0, t ∈ N
∗, and T ∈ N

∗ ∪ {∞}, we say that a point
x ∈ K is (β, t, T )-controlled if f i (x) ∈ K for 0 ≤ i < T and there exists a subset
P ⊂ N of control times such that

• 0 ∈ P ,
• T ∈ P if T < ∞, and P is infinite if T = ∞, and
• If k < 
 are two consecutive control times in P then


 − k ≤ t and
1


 − k

∣∣∣ϕ
−k( f
k(x))

∣∣∣ ≤ β.

Thepoint x is controlled at all scales (with respect toϕ) if there existmonotone sequences
(ti )i of natural numbers and (βi )i of positive numbers, ti → ∞ and βi → 0+, such that
x is (βi , ti , T )-controlled for every i .

One can easily prove the following:

Lemma 2.2. If x ∈ K is controlled at all scales then every point y ∈ ω(x) satisfies

lim
n→∞

1

n
ϕn(y) = 0.

Moreover, the limit is uniform over the ω-limit set ω(x).

Although we will not need it, let us remark that the converse holds: if the Birkhoff
averages converge uniformly to zero over an f -invariant set 	, then every point in 	 is
controlled at all scales.

In this section, we will prove the following result:

Theorem 2.1. If F is a flip-flop family associated to the map f and the function ϕ then
every member D ∈ F contains a point x that is controlled at all scales with respect
to ϕ and such that the restriction of f to the ω-limit set ω(x) has positive topological
entropy.

Note that Theorem4 is a direct consequence of Theorem2.1 togetherwith Lemma 2.2
and the variational principle for entropy.

The idea of the proof of Theorem 2.1 is roughly as follows: For any member D
of F, it is possible to find points x ∈ D that have a large number of iterates n1 in
the positive region

⋃
F+, and then a large number of iterates n2 in the negative region⋃

F− in such a way that the Birkhoff average ϕn1+n2(x)/(n1 + n2) is positive and small,
but not exceedingly small. So we obtain some control at the first time scale: see Fig. 2.
Analogously we can obtain small (but not exceedingly small) negative Birkhoff averages
at this same scale.We then pass to a second time scale wheremuch smaller (say, positive)
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n

ϕn(x)

Fig. 2. Control of Birkhoff averages at the first time scale

n

ϕn(x)

Fig. 3. Control of Birkhoff averages at the second time scale

Birkhoff averages are obtained by concatenating several controlled segments of the first
scale, the initial ones being of positive type, and the later ones being of negative type: see
Fig. 3. The construction then proceeds recursively in order to control longer and longer
time scales. Moreover, we can incorporate some periodic noise in the construction and
obtain positive entropy.

The sketch above is imprecise in many ways. We need to make sense of what con-
catenation and noise mean. Since the desired point x is not known a priori, at each time
scale we need to control simultaneously not only a single point but many of them. Thus
some “uncertainty clouds” appear; they are shown in gray in Figs. 2 and 3. Uncertainty
increases with time due to the expanding character of the dynamics imposed by con-
dition (FF3). Nevertheless it does not have a big effect on Birkhoff averages over long
time scales.

We now proceed with precise proofs. We need a few preparatory lemmas and defin-
itions before proving Theorem 2.1.

2.2. Segments and concatenations. Recall that F is a fixed flip-flop family with respect
to a dynamics f : X → X and a function ϕ : K → R.

Definition 2.3 (Segments). Let T ∈ N
∗. A F-segment of length T is a sequence D =

{Di }0≤i≤T such that f (Di ) = Di+1, each Di is contained in a member of F, and DT is
a member of F. The sets D0 and DT are respectively called the entrance and the exit of
F.

Lemma 2.4 (Birkhoff averages over long segments have small distortion). Let F be a
flip-flop family. For every η > 0 there exists N = N (η) ∈ N such that if D = {Di }0≤i≤T
is a segment of length T ≥ N then for every pair of points x, y in the entrance D0 we
have

1

T
|ϕT (x) − ϕT (y)| < η.
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Proof. Let β1 := supK |ϕ|. Given η > 0, let � > 0 be such that

|ϕ(z) − ϕ(w)| < η/2, for every z, w ∈ K with d(z, w) < �.

Let d0 be an upper bound for the diameters of the members of F, and let λ > 1 be the
expansivity constant given by condition (FF3). Take n0 ∈ N such that λ−n0d0 < �. Fix
an integer N > n0 such that

β1 n0
N

<
η

4
.

Now suppose that D = {Di }0≤i≤T is a segment of length T ≥ N , and that x and y are
points in the entrance D0. By condition (FF3) in definition of flip-flop family, for each
i = 0, . . . , T − 1 we have

d0 ≥ d( f T x, f T y) ≥ λT−i d( f i x, f i y).

In particular, if i < T − n0 then d( f i x, f i y) < �. Therefore we estimate:

|ϕT (x) − ϕT (y)| ≤
T−n0−1∑

i=0

|ϕ( f i x) − ϕ( f i y)|
︸ ︷︷ ︸

≤η/2

+
T−1∑

i=T−n0

|ϕ( f i x) − ϕ( f i y)|
︸ ︷︷ ︸

≤2β1

< Tη,

which proves the lemma. ��
Remark 2.5. Notice that in Lemma 2.4 we are comparing Birkhoff averages, and not
Birkhoff sums. If the function ϕ were not only continuous but, say, Hölder, then by
the classical (and easy) bounded distortion argument, a much stronger result would
hold: there would exist an uniform (not depending on the length T ) upper bound for
|ϕT (x) − ϕT (y)|. With such estimates the proof of Theorem 2.1 would be considerably
easier. Actually, as mentioned in Sect. 1.5, one could strengthen the conclusion and
obtain a set 	 where the Birkhoff sums are uniformly bounded.

Definition 2.6 ((β, t)-controlled segments). Given β > 0 and t ≤ T ∈ N
∗, a F-segment

D = {Di }0≤i≤T is said to be (β, t)-controlled if there exists a set of control times
P ⊂ {0, . . . , T } such that
• 0, T ∈ P and
• If k < 
 are two consecutive control times in P then


 − k ≤ t and
1


 − k

∣
∣∣ϕ
−k( f

k(x))
∣
∣∣ ≤ β for all x ∈ D0.

That is, every point in the entrance D0 is (β, t, T )-controlled and moreover we can take
an uniform set of control times.

Definition 2.7 (Concatenations). Consider F-segments D = {Di }0≤i≤T and E =
{E j }0≤ j≤L of lengths T and L such that the exit of the first contains the entrance
of the second, that is, DT ⊃ E0. Then the concatenation of D and E is F-segment
D ∗ E = {Fk}0≤k≤T+L of length T + L defined by

Fk :=
{

( f T−k |Dk)
−1(E0) if 0 ≤ k < T,

Ek−T if T ≤ k ≤ T + L .
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The concatenation of F-segments is an associative operation on F-segments. This
allows us to define multiple concatenations.

The proof of the next lemma is straightforward and thus omitted.

Lemma 2.8 (Concatenation preserves control). Consider β > 0 and integers t > 0,
T > t , and L > t . Assume that D = {Di }0≤i≤T and E = {E j }0≤ j≤L are (β, t)-
controlled F-segments with P and Q as respective sets of control times. Suppose that
DT ⊃ E0. Then the concatenation D ∗ E is (β, t)-controlled with P ∪ (T +Q) as a set
of control times.

2.3. Patterns.

Definition 2.9 (Pattern of an orbit). Given a point x in
⋃

F, a sequence of signs s =
(sn) ∈ {+,−}N, and T ∈ N

∗ ∪ {∞}, we say that x follows the τ -pattern s up to time T if

0 ≤ n < T
n ≡ 0 (mod τ)

}
⇒ f n+1(x) ∈ ⋃

Fsn .

Consider aF-segmentD = {Di }0≤i≤T of length T . Note that if a point D0 follows the
τ -pattern s ∈ {+,−}N up to time T then every point in D0 follows the same τ -pattern.
If in addition τ divides T then we say that the F-segment D of length T follows the
τ -pattern s.

Let σ : {+,−}N → {+,−}N denote the one-sided shift to the left. The proof of the
next lemma is straightforward.

Lemma 2.10 (Concatenation and patterns). Let τ ∈ N
∗ and s ∈ {+,−}N. Suppose D

and E are F-segments of respective lengths T and L such that:

• D follows the τ -pattern s,
• E follows the τ -pattern σ T/τ (s), and
• E0 ⊂ DT .

Then the concatenation D ∗ E follows the τ -pattern s.

The purpose of the next lemma is to allow us to introduce periodic “noise” in the
patterns followed by our orbits, while still allowing us to control Birkhoff averages:

Lemma 2.11. Fix α1 with 0 < α1 < α, where α is as in condition (FF1). Then there
exists an integer τ = τ(α1) > 1 with the following properties. Given any member D of
F, there exist four F-segments D+,+, D−,+, D+,−, D−,− such that:

(a) The entrances D+,+, D−,+, D+,−, D−,− of the segments are contained in D;
(b) The segments have length τ ;
(c) The segments follow the respective 1-patterns:

(+,+, . . . ,+), (−,+,+, . . . ,+), (+,−,−, . . . ,−), (−,−, . . . ,−) ;
(d) For all x ∈ D+,+ ∪ D−,+ and y ∈ D+,− ∪ D−,−, we have

1

τ
ϕτ (x) ≥ α1 > 0 and

1

τ
ϕτ (y) ≤ −α1 < 0.
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Proof. Note that α ≤ β1 := supK |ϕ|. Choose an integer τ > 1 such that

α1 <
−β1 + α(τ − 1)

τ
.

Take D ∈ F. Fix s1, s2 ∈ {+,−}. By condition (FF2) in the definition of flip-flop family,
the image f (D) contains a member D1 of Fs1 . By induction, assume that a member Di
of F (where 0 < i < τ ) has already been defined. Again by definition of flip-flop family,
the image f (Di ) contains an element Di+1 of Fs2 . Continuing in this way we eventually
define a member Dτ of Fs2 . Let Ds1,s2 be the segment of length τ that has Dτ as exit.
Then this segment has the required properties. ��

2.4. Constructing controlled sets. Fix sequences (βk) and (αk) of positive numbers
converging to zero of the form

β1 > α1 > β2 > α2 > · · ·
and such that β1 := supK |ϕ| and α1 is less that the constant α given by condition (FF1).
Let τ = τ(α1) be given by Lemma 2.11.

The core of the proof of Theorem 2.1 is the following lemma.

Lemma 2.12. There exists a sequence of integers t0 < t1 < t2 < · · · , where t0 = 1,
t1 = τ and each element of the sequence is a multiple of its predecessor, such that the
following properties hold:

For every integer k ≥ 1, every member D of F, and every pattern s ∈ {+,−}N, there
exist numbers T+, T− ∈ N

∗ and F-segments D+ and D− of respective lengths T+ and T−
such that:

(a) The entrances of D+ and D− are contained in D;
(b) The lengths T± are multiples of τ and satisfy tk−1 < T± ≤ tk;
(c) The segments D+ and D− are (βi , ti )-controlled for i = 1, 2, . . . , k − 1;
(d) For all x in the entrance of D+ and all y in the entrance of D−, we have

αk ≤ 1

T+
ϕT+(x) ≤ βk, (2.1)

−βk ≤ 1

T−
ϕT−(y) ≤ −αk; (2.2)

in particular, the segment D± is also (βk, tk)-controlled with P± = {0, T±} as a set
of control times;

(e) The segments D+ and D− follow the τ -pattern s.

Proof. The sequence (tk) is constructed by induction. Since t1 = τ , the conclusion of
the lemma for k = 1 follows from Lemma 2.11, taking T± = τ .

Let k ≥ 2 and assume that t1 < t2 < · · · < tk−1 are already defined and that the
conclusions of the lemma aremet up to this point. Fix an element D ofF.Wewill explain
how to construct the announced segment D+. The construction of D− is analogous and
hence omitted.

The segment will be obtained as a concatenation of m + 
 F-segments D+
i , i =

1, . . . ,m, and D−
m+ j , j = 1, . . . , 
, which are taken with the following properties:
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(I1) For each i ∈ {1, . . . ,m}, D+
i is a F-segment given by the induction hypothesis

associated to k − 1, so its length T +
i ≤ tk−1 is a multiple of τ and all points in the

entrance of the segment satisfies the inequality (2.1) with k − 1 in the place of k.
(I2) For each j ∈ {1, . . . , 
}, D−

m+ j is a F-segment given by the induction hypothesis

associated to k − 1, so its length T−
m+ j ≤ tk−1 is a multiple of τ and all points in the

entrance of the segment satisfies the inequality (2.2) with k − 1 in the place of k.
(I3) The following concatenation conditions hold:

1. D contains the entrance of D+
1;

2. For each i ∈ {1, . . . ,m − 1}, the exit of D+
i contains the entrance of D+

i+1;
3. The exit of D+

m contains the entrance of D−
m+1;

4. For each j ∈ {1, . . . , 
 − 1}, the exit of D−
m+ j contains the entrance of D−

m+ j+1;

(I4) Each segment D±
i follows the τ -pattern σ Si−1/τ (s), where S0 := 0 and

Si :=
i∑

j=1

T±
j , the j-th sign ± being + if j ≤ m and − otherwise.

It follows from the induction hypothesis on k that for every m > 0 and 
 > 0 there are
families of F-segments satisfying properties (I1)–(I4) above; just reason by induction
on m and 
.

Given m and 
 and families D+
i , i = 1, . . .m, and D−

m+ j , j = 1, . . . 
 as above,
consider their concatenation

D = D+
1 ∗ · · · ∗ D+

m ∗ D−
m+1 ∗ · · · ∗ D−

m+
.

Note that for every choice ofm and 
 and of the families D+
i and D−

m+ j , the concatenated
F-segment D satisfies conditions (a), (b) (taking tk = (m + 
)tk−1, say), (c), and (e)
in Lemma 2.12. The difficult part is to show that we can also obtain item (d) with an
uniform bound on m + 
. This involves careful choices of these numbers and of the
families.

Before going into the details of this construction let us give a heuristic explanation.
The average ofϕ along the firstm segments is betweenαk−1 andβk−1, in particular larger
than the desired average (between αk and βk). The average along the next 
 segments is
negative, between −βk−1 and −αk−1, and so the total average decreases. The idea is to
stop when this average is between αk and βk . We implement this idea in precise terms
in the next paragraphs.

2.4.1. Control of the distortion of the Birkhoff averages The first issue to be dealt with
is that the Birkhoff averages depend on the point in the entrance of the concatenated
segment D. Lemma 2.4 provides the solution.

Choose a number η with

0 < η <
βk − αk

3

and let N = N (η) be given by Lemma 2.4. Then, for all integers m > N and j > 0,
the variation of the Birkhoff averages of ϕ over the points in the entrance of a segment
obtained by concatenation of m + j segments is less than η.

Suppose we find 
 such that the concatenation of the m + 
 segments has a point
in its entrance whose Birkhoff average ϕSm+


/Sm+
 hits the interval [αk + η, βk − η],
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which we call the target. In that case, it follows from the definition of η that the Birkhoff
averages of ϕ at all points in the entrance of the segment belong to the interval (αk, βk),
as desired.

2.4.2. Hitting the target Note that as the Birkhoff sums corresponding to the segments
D−
m+ j are less than−T−

m+ j αk−1 < −αk−1, if 
 is large enough then the Birkhoff average
ϕSm+


/Sm+
 will be less than αk . We do not want that these averages go from above βk
to below αk without hitting the target [αk + η, βk − η].

To deal with this issue, consider a segment D−
m+ j and recall that by property (I2)

the length of the segment is T−
m+ j ≤ tk−1 and the Birkhoff sums ϕT−

m+i
of points in the

entrance of this segment belong to the interval [−T−
m+ j βk−1,−T−

m+ j αk−1].
An average ϕSm+ j /Sm+ j belongs to the target interval [αk + η, βk − η] if, and only if,

the Birkhoff sum ϕSm+ j belongs to interval [Sm+ j (αk +η), Sm+ j (βk −η)], whose length
is Sm+ j (βk − αk − 2η). This is the size of gap that we want to be large enough so that
it cannot be jumped over in just one step.

By the definition of η we have

βk − αk − 2η ≥ βk − αk

3
,

while a crude lower bound for Sm+ j is m, so the gap is larger than

m (βk − αk)

3
.

On the other hand, any step |ϕSm+ j − ϕSm+ j+1 | is at most T−
m+ jβk−1 ≤ tk−1βk−1. Thus

choosing

m >
3 tk−1 βk−1

βk − αk
,

the averages ϕSm+ j /Sm+ j cannot go from a value bigger than βk to a value less than αk
without hitting the target. We now choose and fix such a number m that additionally
satisfies m > max(N (η), tk−1), so that the previous reasoning applies. It follows that
there exists an integer 
 > 0 such that the target is hit and so the desired (2.1) estimate
holds for all points in the entrance of the segment D = D+

1 ∗· · ·∗D+
m ∗D−

m+1 ∗· · ·∗D−
m+
.

We take the least such number 
.

2.4.3. Upper bound for the hitting time The final step is to bound 
 (independently of
D etc) and thus be able to define tk . Fix an integer


0 >
m tk−1 βk−1

αk−1
.

We claim that for any point in the entrance of the concatenated segment D+
1 ∗ · · · ∗ D+

m ∗
D−
m+1 ∗ · · · ∗D−

m+
0
, its Birkhoff sum ϕSm+
0

is negative. Indeed, this follows by breaking
the sum into two parts, the first being at most Smβk ≤ mtk−1βk−1, and the second being
at most (Sm+
0 − Sm)(−αk−1) ≤ −
0αk−1.

It follows that 
 < 
0 and therefore tk := (m + 
0)tk−1 is an upper bound for the
length Sm+
 of the segment D. Notice that tk does not depend on the member D nor the
pattern s.

This completes the inductive construction, and so Lemma 2.12 is proved. ��
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2.5. End of the proof. In this subsection we use the previous lemmas to prove Theo-
rem 2.1. For simplicity we break the proof into two parts: in the first part we show that
every D ∈ F contains a point x that is controlled at all scales, and in the second part we
explain how to find such a point with the additional property that f |ω(x) has positive
entropy.

2.5.1. Finding a point that is controlled at all scales Fix any member D of the flip-flop
family F. By Lemma 2.12, we can find a monotone sequence (βi ) of positive numbers
converging to zero, a monotone sequence (ti ) of positive integers converging to infinity,
and a sequence of F-segments (D+

k ) such that:

• The entrance of D+
k is contained in D;

• The length T +
k of the segment D+

k goes to infinity with k;
• Every point in the entrance of D+

k is (βi , ti , T +
k )-controlled, for every i with 1 ≤ i ≤

k.

Choose a point xk in the entrance of D+
k . Let x ∈ D be any accumulation point of the

sequence (xk). Since xk ∈ ⋂T +
k

i=0 f −i (K ) and T +
k → ∞, we conclude that the orbit of x

does not leave K . We will show that x is (βi , ti ,∞)-controlled for every i .
Suppose x is the limit of a subsequence (xk j ). Let i be fixed. By construction, for

every sufficiently large j , the point xk j is (βi , ti , T +
k j

)-controlled. Let P j ⊂ {0, . . . , T +
k j

}
be the corresponding set of control times. The n-th element of P j is bounded by nti , so
that there are finitely many possibilities for this value. By a standard diagonal argument,
there exists a (strictly increasing) subsequence { j
}
∈N and an infinite set P ⊂ N such
that the first 
 elements of P j
 and P coincide.

By continuity, the average of ϕ along the orbit of x between two successive times
in P is the limit as 
 → ∞ of the averages of ϕ along the orbit of xk


between the
same times. This implies that all these averages belong to [−βi , βi ], proving that x is
(βi , ti ,∞)-controlled with set of control times P .

We have proved the existence of a point x ∈ D that is controlled at all scales, thus
proving Theorem 2.1 up to the part of positive entropy,

2.5.2. Positive entropy Let s = (s0, s1, . . . ) be a point in the symbolic space {+,−}N
whose orbit under the shift σ is dense.

By construction, the lengths T +
k of the F-segments D+

k considered above are all
multiples of a fixed integer τ . Moreover, by property (e) in Lemma 2.12, we can choose

each segment D+
k following the τ -pattern

(
s0, s1, . . . , sT +

k

)
.

Let α > 0 be the constant given by condition (FF1), and define two disjoint compact
subsets of K :

K + := {x ∈ K ; ϕ(x) ≥ α} and K− := {x ∈ K ; ϕ(x) ≤ −α}.

By definition, every member of F is contained either in K + or in K−. As a consequence,
every point in the orbit of x belongs either to K + or to K−. Thus

ω(x) ⊂
⋂

n∈N
f −n(K + ∪ K−).
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Define a map �τ : ω(x) → {+,−}N by

�τ(y) := (πi (y))i∈N where πi (y) =
{
+ if f τ i (y) ∈ K +,

− if f τ i (y) ∈ K−.

In other words, �τ(y) is the itinerary of y under iterations of f τ with respect to the
partition {ω(x) ∩ K +, ω(x) ∩ K−} of the set ω(x). The map �τ is continuous and
satisfies �τ ◦ f τ = σ τ ◦ �τ .

Let us show that �τ is also onto. It is sufficient to show that its image intersects
every cylinder in {−,+}N. Consider a finite word ε = (ε0, . . . , εn) over the alphabet
{+,−}. As the pattern s = (si )i∈N has a dense orbit under the shift, there is a sequence
ki → +∞ so that (ski , . . . , ski+n) = ε. Let y be any accumulation point of the sequence
( f τki (x))i , so that in particular y ∈ ω(x). Then (π0(y), . . . , πn(y)) = ε. This shows
that the image of �τ intersects the cylinder corresponding to ε, and we conclude that
�τ is onto.

Hence we have proved that the restriction of f τ to ω(x) is topologically semiconju-
gate to the one-sided full-shift on 2 symbols, and in particular has topological entropy
htop( f τ |ω(x)) ≥ log 2. In particular, htop( f |ω(x)) ≥ τ−1 log 2 is positive, aswewanted
to show.

The proof of Theorem 2.1 is complete. As explained before, Theorem 4 follows.

3. Blenders

In this section we introduce the notion of a dynamical blender. This definition involves
three main ingredients: a space of discs (Sect. 3.1), invariant families of discs (Sect. 3.2),
and invariant cone fields (Sect. 3.3). Thereafter with these ingredients on hand we will
define dynamical blenders in Sect. 3.4.

3.1. The space of discs. Let M be a compact Riemannian manifold of dimension d. For
each i ∈ {1, . . . , d − 1} we denote by Di (M) the set of i-dimensional (closed) discs
C1-embedded in M . We endow the spaceDi (M)with the followingC1-topology: given
a disc D ∈ Di (M) that is the image of an embedding ϕ : D

i → M (here D
i is the closed

unit disc in R
i ) a basis of neighborhoods of it consists of the sets {ψ(Di ) : ψ ∈ V},

where V runs over the neighborhoods of ϕ in the space of embeddings. Alternatively,
we can use the sets of the form { f (D) : f ∈ W}, whereW runs over the neighborhoods
of the identity in Diff1(M).

We now show that the topological spaceDi (M) can be metrized with a distance that
behaves nicely with respect to the composition of diffeomorphisms.

Proposition 3.1. There is a distance δ(·, ·) inducing the C1-topology in Di (M) that
satisfies the following property. For every ε > 0 and K > 0 there exists η > 0 such that
for every pair of diffeomorphisms f, g ∈ Diff1(M) whose derivatives and their inverses
are bounded by K it holds

dC1( f, g) < η �⇒ δ( f (D), g(D)) < ε

for every disc D ∈ Di (M).

The rest of this subsection is dedicated to the proof of this proposition.
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3.1.1. The distance δ For each j ∈ {1, . . . , d − 1} let G j (M) → M be the fiber bundle
over M whose fiber over a point x ∈ M is the j th-Grassmannian manifold of the tangent
space TxM . In other words, a point P ∈ G j (M) whose projection in M is the point x
is a subspace of dimension j of the vector space TxM . Recall that G j (M) is a compact
manifold naturally endowed with a metric associated to the metric on M .

Given a disc D ∈ Di (M), we use the following notations:

• T D ⊂ Gi (M) denotes the compact subset T D := {(x, Tx D)}x∈D ;
• T ∂D ⊂ Gi−1(M) denotes the compact subset T ∂D := {(x, Tx∂D)}x∈∂D .

The distance δ is defined as follows, given a pair of discs D1, D2 ∈ Di (M) we let

δ(D1, D2) := dHaus(T D1, T D2) + dHaus(T ∂D1, T ∂D2),

where dHaus denotes the Hausdorff distance between compact subsets of a metric space.

Remark 3.2.

(a) δ defines a distance in Di (M).
(b) The distance δ is continuous with respect to the C1-topology, that is, the map

(D1, D2) �→ δ(D1, D2) is continuous inDi (M)2. This follows noting that the maps
D �→ T D and D �→ T ∂D are both continuous from Di (M) (endowed with the
C1-topology) to the spaces Gi (M) and Gi−1(M), respectively, (endowed with the
Hausdorff topologies).

We now see that the distance δ satisfies the “continuity” property in Proposition 3.1.

Lemma 3.3. For every ε > 0 and K > 0 there exists η > 0 such that for every pair of
diffeomorphisms f, g ∈ Diff1(M) whose derivatives and their inverses are bounded by
K it holds

dC1( f, g) < η �⇒ δ( f (D), g(D)) < ε

for every disc D ∈ Di (M).

Proof. It is enough to note that given any K and ε > 0 there is η > 0 such that given
any f, g ∈ Diff1(M) whose derivatives and their inverses of are bounded by K and are
η-close one has that for every j ∈ {1, . . . , d − 1} and every point (x, P) ∈ G j (M) it
holds

d(Df (x)(P), Dg(x)(P)) < ε.

��

3.1.2. The distance δ defines the C1-topology. To conclude the proof of Proposition 3.1
we are left to prove the following:

Lemma 3.4. Given any disk D0 ∈ Di (M) and any C1-neighborhood U of D0 there is
ε > 0 such that if δ(D1, D0) < ε then D1 ∈ U .
Proof. Choose a smooth embedding D

i × D
d−i → M such that D0 is contained in the

(interior of) image of the graph 
 of a map from D
i to D

d−i . For ε > 0 small enough
every disc D1 with δ(D1, D0) < ε is contained in D

i × D
d−i and is transverse to the

fibers {x} × D
d−i . We will prove the following:
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Lemma 3.5. With the notation above, for every ε > 0 small enough, the projection of
D1 in the graph 
 is a diffeomorphism of D1 into a disc contained in 
 whose boundary
is C1-close to ∂D0.

Let us observe that this lemma implies Lemma 3.4. For that just note that the disc
D1 is the image by a diffeomorphisms C1-close to the identity of a disc in 
 which is
C1-close to D0, this implies the proposition. We are left to prove Lemma 3.5. ��
Proof of Lemma 3.5. Consider a small tubular neighborhood � ⊂ D

i × D
d−i of ∂D0

whose projection � → ∂D0 commutes with the projection on 
.
As, by hypothesis, T ∂D1 is δ-close to T ∂D0 the boundary ∂D1 is contained in the

tubular neighborhood � and is transverse to the fibers of �. As a consequence, the
projection π from ∂D1 to ∂D0 along the fibers of � is a C1-covering map.

Claim 3.6. The projection π : ∂D1 → ∂D0 is a C1-diffeomorphism.

Proof. If i > 2 then ∂D0 is simply connected and then the projection is a diffeomor-
phisms. Hence the unique case where the claim is not trivial is when i = 2. Thus assume
i = 2 and that the projection is a covering with k sheets. We need to see that k = 1.

Consider the projection of ∂D1 in D
2 along the vertical fibers {x} × D

d−2. On the
one hand, this projection is a closed immersed curved of D

2 whose index is precisely k,
where the index is the number of turns made by the tangent direction of the curve when
one goes around the curve. On the other hand, the index of the boundary of an immersed
disc of D

2 is 1. Thus k = 1, ending the proof of the claim. ��
Using the claim we get that the projection of ∂D1 in 
 is an embedded i − 1 sphere

that bounds an i-disc D̃ in 
. The disc D1 is a graph of a map defined on 
 close to the
identity. This implies that D1 is in a small neighborhood of D0, ending the proof the
lemma. ��

The proof of Proposition 3.1 is now complete.

3.2. Strictly invariant families of discs and robustness. In this section we introduce
strictly invariant families of discs and see that this property persists after small pertur-
bations of the diffeomorphisms.

Given a family of discs D ⊂ Di (M) and η > 0 we denote by Vδ
η(D) the open

η-neighborhood of D with respect to the distance δ, that is,

Vδ
η(D) := {D ∈ Di (M) : δ(D,D) < η}.

Definition 3.7 (Strictly f -invariant families of discs). Let f be a diffeomorphism. A
family of discs D ⊂ Di (M) is strictly f -invariant if there is ε > 0 such that for every
disc D0 ∈ Vδ

ε (D) there is a disc D1 ∈ Dwith D1 ⊂ f (D). The number ε is the strength
of the strict invariance.

To be strictly invariant is a C1-robust property of a family of discs:

Lemma 3.8. Let f be a diffeomorphism and D ⊂ Di (M) a strictly f -invariant family
of discs of strength ε > 0. Then for every 0 < μ < ε there exists η > 0 such that the
familyDμ = Vδ

μ(D) is strictly g-invariant with strength ε − μ for every g ∈ Diff1(M)

which is η-C1-close to f .
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Proof. Let η (associated to μ) be given by Lemma 3.3, then for every diffeomorphism
g which is η-C1-close to f and every disc in D ∈ Di (M) it holds δ( f (D), g(D)) < μ.

Take any disc D ∈ Vδ
ε−μ(Dμ) and note that D ∈ Vδ

ε (D). As the family D is strictly
f -invariant with strength ε, the set f (D) contains a disc in D1 ∈ D. Consider the disc
D0 = f −1(D1) ⊂ D. Now, by the choice of η, δ(g(D0), f (D0)) = δ(g(D0), D1) < μ.
Thus g(D0) ∈ Dμ and hence g(D) contains a disc of Dμ, concluding the proof of the
lemma. ��

3.3. Strictly invariant cone fields. A subset C of a vector space E is a cone of index i if
there are a splitting E = E1 ⊕ E2 with dim E1 = i and a norm ‖·‖ on E such that

C = {v1 + v2 : vi ∈ Ei , ‖v2‖ ≤ ‖v1‖}.
A cone C ′ is strictly contained in the cone C above if there exists α > 1 such that

C ′ ⊂ Cα = {v1 + v2 : vi ∈ Ei , ‖v2‖ ≤ α−1‖v1‖} ⊂ C.

A cone field of index i defined on a subset V of a compact manifold M is a continuous
assignment x �→ C(x) ⊂ TxM of a cone of index i for each x ∈ V . Given f ∈ Diff1(M),
we say that this cone field is strictly D f -invariant if Df (x)(C(x)) is strictly contained
in C( f (x)) for every x ∈ V ∩ f −1(V ).

Lemma 3.9. Let f be a diffeomorphism and C a strictly D f -invariant cone field defined
on a compact set V ⊂ M. Then there is a C1-neighborhood U of f so that C is strictly
Dg-invariant for every g ∈ U .
Proof. It suffices to note that, since V is compact, the set g−1(V ) ∩ V depends upper
semi-continuously on g, that is, for g C0-close to f , that set is contained in a small
neighborhood of V ∩ f −1(V ). ��

3.4. Geometric and dynamically defined blenders. We next introduce the notion of a
dynamical blender and state some of its properties which are pertinent in our context. As
a motivation let us first recall the definition of a geometric blender as defined in [BDV,
Definitions 6.9 and 6.11].

Definition 3.10 (Geometric blender). Let f be a diffeomorphism and � a compact f -
invariant set. We say that � is a geometric cu-blender of uu-index i if it is (uniformly)
hyperbolic with u-index strictly larger than i and there exist

• An open family D ⊂ Di (M) of discs and
• A C1-neighborhood U of f

such that D ∩ Ws(�g) �= ∅ for every g ∈ U and every D ∈ D, here �g is the
continuation of � for g.

The family D is called the superposition region and the C1-neighborhood U is the
validity domain of the blender.

The definition of a geometric blender is well suited for the study of the generation
of robust cycles [BD2]. A geometric blender is also an important mechanism to obtain
robust transitivity [BD1]. Indeed, these constructions were the main motivations for its
definition. However, the fact that robustness forms part of its definition makes difficult
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in general to check if a given hyperbolic set is a geometric blender, restraining further
applications. On the other hand, all known mechanisms producing geometric blenders
involve the dynamical property of the existence of a strictly invariant family of discs.4

This motivates the following definition:

Definition 3.11 (Dynamical blender). Let f be a diffeomorphism. A compact f -
invariant set � is a dynamically defined cu-blender (or simply dynamical blender) of
uu-index i if the following holds:

(a) There is an open neighborhood U of � such that � is the maximal invariant set of
f in the closure of U ,

� =
⋂

n∈Z
f n(U );

(b) The set � is (uniformly) hyperbolic with u-index strictly larger than i ;
(c) The set � is transitive (thus it is a hyperbolic basic set);
(d) There is a strictly Df -invariant cone field Cuu of index i defined on U ; and
(e) There is a strictly f -invariant family of discsD ⊂ Di (M) with strength ε > 0 such

that every disc in Vδ
ε (D) is contained in U and tangent to Cuu.

We say that U is the domain of the blender, Cuu is its strong unstable cone field, and
D is its strictly invariant family of discs with strength ε. To emphasize the role of these
objects in the definition of a geometrical blender we write (�,U, Cuu,D). To emphasize
the strength ε of the family of discs we write (�,U, Cuu,D, ε).

Remark 3.12. In the definition of dynamical blender above, one does not require that the
discs in the strictly invariant family D intersect the stable manifold Ws[�) (which is
the main property of the usual blenders): this property is indeed a consequence of the
invariance, as proved in Lemma 3.14 below.

Remark 3.13. Note that the hyperbolic splitting of a dynamical blender� as above can be
refined in order to get a partially hyperbolic splitting of the form T�M = Euu⊕Ec⊕E ss,
where Euu has dimension i and Ec has positive dimension and is expanding. Actually,
all dynamical blenders we consider in this paper have one-dimensional central (unstable)
bundle Ec.

We have that dynamical blenders are geometric ones and are robust:

Lemma 3.14 (Blenders are robust). Assume that (�,U, Cuu,D, ε) is a dynamical
blender of a diffeomorphism f . LetDε/2 = Vδ

ε/2(D) and for g C1-close to f let �g be

the hyperbolic continuation of � for g. Then there is a C1-neighborhood U of f such
that for every diffeomorphism g ∈ U the following holds:

• The 4-tuple (�g,U, Cuu,Dε/2) is a dynamical blender,
• The hyperbolic set �g is a geometric blender with superposition region Dε/2 =

Vδ
ε/2(D) and validity domain U .

By analogy with the terminology for geometric blenders, the neighborhood U is
called a validity domain of the dynamical blender.

4 Besides the references above, see for instance the criterion of the recurrent compact set given by [ACW,
Proposition 7.3], which is based on the previous works [MS,MY].
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Proof of Lemma 3.14. We choose a small neighborhood U of f such that for every g
in U the hyperbolic continuation �g of � is well defined and equal to the maximal
g-invariant set in U . By shrinking U if necessary, we can also assume that the cone
field Cuu is still strictly Dg-invariant (Lemma 3.9) and that the familyDε/2 = Vδ

ε/2(D)

is still strictly g-invariant with strength ε/2 (Lemma 3.8). Summarizing, the 4-tuple
(�g,U, Cuu,Dε/2, ε/2) is a dynamical blender.

To prove the second part of the lemma, first note that by definition Dε/2 is an open
family of discs. Take any g ∈ U and consider any disc D0 ∈ Dε/2. By the strict g-
invariance of this family (first part of the lemma) we have that g(D0) contains a disc
D1 ∈ Dε/2. Arguing inductively we construct a sequence of discs (Dn)n∈N in Dε/2 so
that Dn+1 ⊂ g(Dn).

By construction, the set
⋂

g−n(Dn) is nonempty as it is the intersection of a decreas-
ing sequence of nonempty compact sets. Moreover, the forward orbit of any point x in
such an intersection is contained in U . Hence, as �g is the maximal invariant set in U ,
x ∈ Ws(�g). This shows that every disc in the family Dε/2 intersects Ws(�g). This
proves that�g is a geometrical blender with validity domain U and superposition region
Dε/2. ��
Scholium 3.15. If (�,U, Cuu,D) is a dynamical blender then there exists a disc D∞ ∈
Di (M) contained in the local strong unstable manifold of a point of � that is C1-
accumulated by discs inD.

Caveat 3.16. In the definition of a dynamical blender, there are two properties that we
require only for convenience in this paper and that may be removed if necessary for
further uses:

(a) Transitivity of the hyperbolic set � We will use this condition in Proposition 4.5 to
show that a flip-flop configuration contains a robust cycle.

(b) The set� is maximal invariant inU and contained inU If this hypothesis is removed
then Lemma 3.14 must be slightly modified as follows: For every g C1-close to f
the blender for g is the maximal invariant set of g in U instead of the continuation
of � for g.

3.5. Dynamical blenders and towers. In many situations, as in this paper, it is more
natural and convenient to construct dynamical blenders for some induced maps instead
of blenders for the given diffeomorphism. In this subsection, we show that a dynamical
blender for an induced map of a diffeomorphism f leads to a dynamical blender of the
initial f and see how these blenders are naturally and appropriately related.

3.5.1. Induced maps Let f be a diffeomorphism of a compact manifold M ,U,U1, . . . ,

Uk ⊂ M be nonempty open sets, and n1, . . . , nk be positive integers such that:

• The sets Ui are pairwise disjoint and are contained in U ;
• f j (Ui ) ∩U = ∅ for all 0 < j < ni ; and
• f ni (Ui ) ⊂ U .

Themap F : ⋃k
1Ui → U defined by F(x) := f ni (x) if x ∈ Ui is called an inducedmap

of f . We say thatU1, . . . ,Uk are the domains of F and that n1, . . . , nk are the associated
return times. For such an inducedmapwe use the notation F = [ f,U, (Ui )

k
i=1, (ni )

k
i=1].
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A safety domain of the induced map F = [ f,U, (Ui )
k
i=1, (ni )

k
i=1] is a set of the form

V =
k⋃

i=1

( ni−1⋃

j=0

Vi, j
)
,

where the sets Vi, j are open and satisfy the following conditions:

• The sets V i, j , i ∈ {1, . . . k} and j ∈ {0, . . . , ni − 1}, are pairwise disjoint;
• Ui ⊂ Vi,0 ⊂ U for every i ∈ {1, . . . k};
• f (V i, j ) ⊂ Vi, j+1 for every i ∈ {1, . . . k} and j ∈ {0, . . . , ni − 2}; and
• f (V i,ni−1) ⊂ U for every i ∈ {1, . . . k}.
Lemma 3.17 (Existence of safety domains). Let F = [ f,U, (Ui )

k
i=1, (ni )

k
i=1] be an

induced map. Then for every family of neighborhoods Ũi of Ui , i = 1, . . . , k, there is a
safety domain

V =
k⋃

i=1

( ni−1⋃

j=0

Vi, j
)

such that V i, j ⊂ f j (Ũi ) for every i ∈ {1, . . . , k} and j ∈ {0, . . . , ni − 1}.
Proof. By definition, the compact setUi is contained in the open setU and the compact
sets f j (Ui ), j ∈ {1, . . . , ni −1}, are pairwise disjoint and disjoint fromU . Hence there
is a decreasing basis of open neighborhoods V n

i of Ui having the same properties and

such that V
n+1
i is contained in V n

i . Now, for any k the union of the family of opens

Vi, j = f j (V k+ j
i ) is a safety domain. Moreover, if k is large enough then V i, j ⊂ f j (Ũi )

as announced. ��
3.5.2. Induced map and strictly invariant cone fields Consider an induced map F =
[ f,U, (Ui )

k
i=1, (ni )

k
i=1]. We say that a cone field C defined on U is strictly invariant for

F if for every i ∈ {1, . . . , k} and every x ∈ Ui the cone Df ni (C(x)) = DF(C(x)) is
strictly contained in the cone C( f ni (x)) = C(F(x)).

Lemma 3.18 (Induced extended cone field). Let F = [ f,U, (Ui )
k
i=1, (ni )

k
i=1] be an

induced map and C a cone field defined on U that is strictly invariant under F. Then

there is a safety domain V = ⋃k
i=1

( ⋃ni−1
j=0 Vi, j

)
of F and a cone field C̃ defined on V

such that
• C̃ coincides with C in U and
• The cone field C̃ is strictly D f -invariant.

Proof. Fix N > maxi∈{1,...k} ni . By compactness and uniform continuity, one may find
a sequence of cone fields C j , j ∈ {0, . . . , N }, defined on U such that the cones of C are
strictly contained in cones of C0, the cones of C j are strictly contained in cones of C j+1
for every j ∈ {0, . . . , N − 1}, and the cones of Df ni (CN (x)) are strictly contained in
cones of C(F(x)) for every i ∈ {1, . . . , k} and every x ∈ Ui . Again by compactness,
the cone Df ni (CN (x)) is strictly contained in C(F(x)) for x in a small neighborhood on
Ui .

Using Lemma 3.17 we can choose a sufficiently small safety neighborhood V of F
with elements Vi, j and define the cone field C̃ as Df j (C j ) on the set V i, j . By construction
the cone field C̃ is strictly Df -invariant. ��
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3.5.3. Induced maps and dynamical blenders We now state a proposition that relates
the dynamical blender of an induced map of a diffeomorphism (see the definition below)
and the dynamical blenders of the initial dynamics. We begin with a remark about
families of invariant discs. For the following statements, recall that Vδ

ε (·) denotes the
open ε-neighborhood for the distance δ in the space of discs in Sect. 3.1.1.

Remark 3.19. Let D,D1, . . . ,Dk ⊂ Di (M) be families of i-dimensional discs and
n1, . . . , nk positive integers such that

D = D1 ∪ · · · ∪ Dk

and there is ε > 0 such that for every i ∈ {1, . . . k} the image f ni (D) of any disc
D ∈ Vδ

ε (Di ) contains a disc in D. Then the family of discs

k⋃

i=1

Di ∪
k⋃

i=1

( ni−1⋃

j=1

f j (Vδ
jε
ni

(Di )
))

is strictly f -invariant.

Proposition 3.20 (Induced blenders induce blenders). Consider an induced map F =
[ f,U, (Ui )

k
i=1, (ni )

k
i=1] such that:

• The maximal invariant set

�F =
⋂

n∈Z
Fn

(⋃k

i=1
Ui

)
⊂

k⋃

i=1

Ui

is hyperbolic (for F) with u-index strictly larger than i .
• There is a cone field Cuu of index i defined on U that is strictly invariant under F.
• There are familiesD,D1, . . . ,Dk ⊂ Di (M) of i-dimensional discs and ε > 0 such

that:
(a) The families Vδ

ε (D),Vδ
ε (D1), . . . ,Vδ

ε (Dk) are contained in U,U1, . . . ,Uk,
respectively, and are tangent to the cone field Cuu;

(b) Given any disc D ∈ D there are i ∈ {1, . . . , k} and a disc D0 ∈ Di such that
D0 ⊂ D;

(c) For every i ∈ {1, . . . , k} and every D ∈ Vδ
ε (Di ), the set f ni (D) contains a disc

D0 ∈ D.

Then there is a safety domain V of F such that the maximal invariant set � f of f in V
hyperbolic and the 4-tuple (� f , V, C̃uu, D̃) is a dynamical blender, where

• C̃uu is a strictly D f -invariant cone field defined over V that extends Cuu and
• D̃ is a strictly f -invariant family of discs contained in V such that {D ∈ D̃; D ⊂

U } = ⋃k
i=1Di .

With the notation above, we say that (�F ,U1 ∪ · · · ∪ Uk, Cuu,D1 ∪ · · · ∪ Dk) is
dynamical blender of the induced map F .

Proof. Using Lemma 3.18 we find a safety domain V = ⋃k
i=1

( ⋃ni−1
j=0 Vi, j

)
of F and

extend the cone field Cuu to a strictly Df -invariant. cone field C̃uu defined on V̄ . By
assumption, for every disc D ∈ Vδ

ε (Di ) the set f ni (D) contains a disc D0 ∈ D. As Vi,0
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is a neighborhood of Ui , the discs in Vδ
ε (Di ) are contained Vi,0. Thus, by definition of

the safety neighborhood, the discs in f j (Di ) are contained in Vi, j and are tangent to the
cone field C̃uu (note that the cone field is strictly invariant). According to Remark 3.19,

k⋃

i=1

Di ∪
k⋃

i=1

( ni−1⋃

j=1

f j (Vδ
jε
ni

(Di )
))

is a strictly f -invariant family of discs contained in V and tangent to Cuu that coincides
with

⋃k
i=1Di in U . This concludes the proof of the proposition. ��

4. From Flip-flop Configurations to Flip-flop Families: Proof of Theorem 5

We next introduce flip-flop configurations and prove that they are robust and generate
robust cycles.

4.1. Flip-flop configurations.

Definition 4.1 (Flip-flop configuration). Let (
, V, Cuu,D) be a dynamical blender of
uu-index i of a diffeomorphism f . Suppose q is a periodic point of u-index i . We say
that (
, V, Cuu,D) and q form a flip-flop configuration if there exist:

• A disc �u contained in the unstable manifold W u(q);
• A compact submanifold with boundary �s ⊂ V ∩ W s(q)

such that:

(FFC0) The disc �u belongs to the interior of the familyD;
(FFC1) f −n(�u) ∩ V = ∅ for all n > 0;
(FFC2) There is N > 0 such that f n(�s) ∩ V = ∅ for all n > N . Moreover, if x ∈ �s

and j > 0 are such that f j (x) /∈ V then f i (x) /∈ V for every i ≥ j ;
(FFC3) TyW s(q) ∩ Cuu(y) = {0} for every y ∈ �s;
(FFC4) There exists a compact set K contained in the relative interior of �s and ε > 0

such that every element D ofD intersects the set K at a point x whose distance
to ∂D is larger than ε.

The sets �u and �s are the unstable and stable connecting sets of the flip-flop
configuration, respectively. The compact set K is an ε-safe stable connecting set.

4.1.1. Flip-flop configurations are robust The aim of this section is the following propo-
sition.

Proposition 4.2. Consider a dynamical blender (
, V, Cuu,D) and a saddle q of a
diffeomorphism f in a flip-flop configuration. Consider a validity domain U of the
blender such that the hyperbolic continuations 
g of 
 and qg of q are defined for
every g ∈ U . Then there exists a neighborhood V of f contained in U such that the
dynamical blender (
g, V, Cuu,D) and the saddle qg are in a flip-flop configuration for
every g ∈ V .
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f

f

f

q

Δu

Δs

Fig. 4. Flip-flop configuration

Proof. Let �s and �u be the stable and unstable connecting set of the configuration and
consider an ε-safe stable connecting set K (ε > 0 will be fixed below).

Note that compact parts of the unstable manifoldW u(qg, g) depend continuously on
the diffeomorphism g. Thus condition (4.1) for f implies that a local unstable manifold
W u

loc(qg, g) of any g C1-close enough to f contains a disc �u
g arbitrarily C1-close to

�u
f = �u (these discs depend continuously on f ). Therefore the discs �u

g are in the
interior of D, obtaining the robustness of condition (4.1). Furthermore, the negative
iterates of �u

g by g remain close to the ones of �u by f , hence they are disjoint from V ,
proving (4.1).

Let N > 0 as in (4.1) for f . In the same way as above, for every g close enough to
f , we can choose a continuation �s

g of �s that is simultaneously contained in a local
stable manifold of qg and in V and whose positive iterates g j (�s

g) are disjoint from ∂V

and from V for every j > N . Since the set
⋃N

0 g j (�s
g) is compact and disjoint of the

compact set ∂V we have that for every g close enough to f the points of g j (�s
g) cannot

return to V after a first exit. In this way we get (4.1).
Note that condition (4.1) is robust and therefore �s

g transverse to the cone field Cuu.
For g close to f consider a continuation Kg of the safety set K contained in �s

g . We
prove property (4.1) with ε replaced by ε/2: the set Kg intersects every disc D ∈ D at a
point whose distance to ∂D is larger than ε/2. That is precisely the content of the next
lemma.

Lemma 4.3. Let C be a cone field of index i and K0 a sub-manifold of dimension n − i
with boundary that is transverse to C. Consider ε > 0 and K a compact subset contained
the interior of K0. Then there is a C1-neighborhood W of K0 such that any disc D of
radius ε tangent to C centered at some point x ∈ K intersects every sub-manifold inW .

Sketch of proof. It is enough to prove the lemma for some small ε > 0. Note that after
shrinking ε, if necessary, we can assume that the distance from K to ∂K0 is larger than
ε > 0. We can also assume that the distance between K0 and the boundary of any disc
of radius ε centered at some point of K and tangent to C is larger than some μ > 0.

Fix any disc D of radius ε as in the statement of the lemma. Note that every sub-
manifold that is sufficiently C1-close to K0 and is transverse to C admits an isotopy to
K0 by sub-manifolds Kt ∈ W . Thus, for small t , the intersection Kt ∩ D is just a point
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xt that depends continuously on t . The unique way of this point “vanishing” is to cross
either the boundary of D or the boundary of Kt . We now see that these two possibilities
are forbidden.

To discard the first possibility note that the choices of ε and μ above imply that if the
neighborhood W of K0 is small enough then xt �∈ ∂D.

To eliminate the second possibility note that the choice of ε > 0 implies that ifW is
small enough then the distance between K to ∂Kt is larger than μ/2 for every Kt and
thus xt �∈ ∂Kt . This concludes the proof of the lemma. ��

The proof of the robustness of flip-flop configurations is now complete. ��
The following presentation of flip-flop configurations will be very useful for us.

Proposition 4.4. Consider a dynamical blender (
, V, Cuu,D) of uu-index i of a dif-
feomorphism f . Suppose that there are a periodic point q of f of u-index i , a disc �u

contained in the unstable manifold W u(q), and a compact sub-manifold with boundary
�s ⊂ V ∩ W s(q) satisfying conditions FFC1, FFC2, FFC3, FFC4, and

(FFC0’) �u belongs to the familyD.

Then there is η > 0 such that (V, 
, Cuu,Vδ
η(D)) is a dynamical blender in a flip-flop

configuration with q such that �u and �s are its unstable and stable connecting sets.

Proof. First, by Lemma 3.14, (
, V, Cuu,Vδ
η(D)) is a dynamical blender of f for every

η > 0 sufficiently small. We now see that this blender and q are in a flip-flop configu-
ration.

To check that property FFC0 holds just note that condition FFC0p implies that �u is
a disc in the interior of Vδ

η(D).
Note that conditions FFC1, FFC2 and FFC3 remain unchanged and thus there is

nothing to prove.
Finally, the fact that property FFC4 still holds for the new blender is a direct conse-

quence of Lemma 4.3. ��

4.1.2. Flip-flop configurations generate robust cycles

Proposition 4.5. Consider a dynamical blender (
, V, Cuu,D) and a saddle q of a
diffeomorphism f in a flip-flop configuration. Then 
 and q form a robust cycle and
thus 
 is contained in the chain recurrence class of q.

Proof. Wefirst see that f has a cycle associated to
 and q. Wewill see that the invariant
manifolds of q and � meet cyclically. As 
 is transitive then q and 
 form a cycle.

Consider the connecting sets �s and �u and the ε-safety stable set of this configura-
tion. Note that �u ⊂ W u(q) belongs to the interior of D and thus it intersects W s(
).
Hence W u(q) ∩ W s(
) �= ∅.

To see that W s(q) ∩ W u(
) �= ∅ note that by Scholium 3.15 there is a sequence of
discs Dn ∈ D converging to a disc D contained in the unstable manifold of some point
in 
. Every disc Dn contains a point in the compact set K ⊂ �s . Thus �s ∩ D �= ∅

and hence W s(q) ∩ W u(
) �= ∅.
The robustness of the cycle now follows from the robustness of the flip-flop config-

uration (see Proposition 4.2). ��
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4.2. Partially hyperbolic neighborhoods for flip-flop configurations. The next lemma is
a standard consequence of transversality properties. Recall first Remark 3.13 that claims
that a dynamical blender (
, V, Cuu,D) has a partially hyperbolic splitting T
M =
Euu ⊕ Ec ⊕ E ss, where Euu and Ec are expanding bundles and Euu is contained in Cuu.

Lemma 4.6 (Flip-flop configurations and partial hyperbolicity). Consider a diffeomor-
phism f having a periodic point q and a dynamical blender (
, V, Cuu,D) in a flip-flop
configuration with connecting sets �u ⊂ W u(q) and �s ⊂ W s(q).

Consider the closed set

O(q) ∪ V ∪
⋃

k≥0

f k(�s) ∪
⋃

k≤0

f k(�u)

and for every small compact neighborhood U of it the maximal invariant set �(U ) of f
in U. If the neighborhood U is sufficiently small then the set �(U ) contains the blender

 and has a partially hyperbolic splitting of the form

T�(U )M = Ẽuu ⊕ Ẽcs,

where Ẽuu is uniformly expanding and extends the sub-bundle Euu defined over 
 and
Ẽcs is a dominated bundle that extends the bundle Ec ⊕ E ss defined over 
.

Moreover, there is a strictly D f -invariant cone field over U that extends the cone
field Cuu of the bundle defined V and whose vectors are uniformly expanded by D f .

For notational simplicity, we also denote the extension of the cone field in the lemma
by Cuu. The set U in the lemma is called a partially hyperbolic neighborhood of the
flip-flop configuration.

Proof of Lemma 4.6. Since the blender 
 is, by definition, the maximal invariant set of
f in the set V , it is contained in�(U ). The existence of the partially hyperbolic splitting
over�(U ) is a standard consequence of the transversality between�s and the cone field
Cuu defined on V , and the fact that the disc �u is tangent to the strong unstable cone
field Cuu of 
. ��

If in Lemma 4.6 we can write Ẽcs = Ẽc ⊕ Ẽ ss, where Ẽc is one-dimensional and
expanding and Ẽ ss is contracting, then the flip-flop configuration is called split. More
precisely:

Definition 4.7 (Split flip-flop configuration). Consider a flip-flop configuration of a
dynamical blender (
, V, Cuu,D) and a saddle q. This configuration is split if it has
a partially hyperbolic neighborhoodU such that T�(U )M = Ẽuu ⊕ Ẽc ⊕ Ẽ ss is a domi-
nated splitting where Ẽc is one-dimensional and uniformly expanding, Ẽuu is uniformly
expanding, Ẽ ss is uniformly contracting, and Ẽuu ⊕ Ẽc and Ẽ ss extend the unstable and
stable hyperbolic bundles of 
, respectively.

The neighborhood U is called a strict partially hyperbolic neighborhood of the split
flip-flop configuration.

Remark 4.8 (Robustness of split flip-flop configurations). It follows fromProposition 4.2
and the persistence of partially hyperbolic splittings that to have a split flip-flop config-
uration is a robust property.
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4.3. Proof of Theorem 5. The aim of this section is to prove the criterion for zero center
Lyapunov exponents in Theorem 5. Basically, we show that split flip-flop configurations
“embody” flip-flop families associated to the logarithm of the central Jacobian. Thus
Theorem 5 follows from the abstract criterion in Theorem 4. Actually, the split condition
is only used to define the central Jacobian and the bulk of the work consists in proving
the following:

Proposition 4.9 (Flip-flop families associated to flip-flop configurations). Consider a
diffeomorphism f having a periodic point q and a dynamical blender 
 in a flip-flop
configuration. Let U be a partially hyperbolic neighborhood of this flip-flop configura-
tion, �(U ) the maximal invariant set of f in U, and Cuu the associated strong unstable
cone field in U.

Suppose ϕ : U → R is a continuous function that is positive on the blender 
 and
negative on the periodic orbit O(q) of q.

Then there exist an integer N ≥ 1 and a flip-flop family F with respect to f N and the
function

ϕN :=
N−1∑

j=0

ϕ ◦ f j defined on the set
N−1⋂

j=0

f − j (U ).

Moreover, given any δ > 0, we can choose the flip-flop family F = F+ ∪ F− such
that

⋃
F+ (resp.

⋃
F−) is contained in the δ-neighborhood of 
 (resp. O(q)).

We postpone the proof of Proposition 4.9 to Sect. 4.4. We now derive Theorem 5
from this proposition.

Proof of Theorem 5. Suppose q is a saddle of u-index i−1 and
 is a dynamical blender
of u-index i in a split flip-flop configuration. Let U be a strict partially hyperbolic
neighborhood of this split configuration and Ẽuu ⊕ Ẽc⊕ Ẽ ss the corresponding partially
hyperbolic splitting defined over the maximal invariant subset �(U ) of f in U . This
implies that dim Ẽuu = i − 1 and dim Ẽc = 1.

Since 
 ⊂ �(U ) is a hyperbolic set whose unstable bundle Eu is the restriction of
Ẽuu ⊕ Ẽc, we can take an adapted metric such that the vectors in Eu are uniformly
expanded by Df (with respect to such a metric). In particular, the center Jacobian map
J c := ‖Df |Ec‖, which is well defined on �(U ), is uniformly bigger than 1 on 
. Since
the saddle q has u-index i − 1, after a new change of metric that does not affect the
previous one, we can assume that J c < 1 on the orbit O(q). Applying Tietze extension
theorem, we continuously extend the function log J c on �(U ) to a function ϕ defined
on the set U .

Fix δ > 0 small enough such that ϕ is defined and positive (resp., negative) on
the δ-neighborhood of 
 (resp., of O(q)). Applying Proposition 4.9 to the map ϕ,
we obtain a flip-flop family F associated to a power f N of f and the corresponding
Birkhoff sum ϕN . Applying Theorem 4 we obtain an f N -invariant compact set ϒ ⊂
U ∩ f −1(U )∩ · · ·∩ f −N+1(U ) such that htop

(
f N |ϒ

)
> 0 and the Birkhoff averages of

ϕN with respect to f N converge to zero uniformly onϒ . Then the Birkhoff averages of ϕ
with respect to f also converge to zero uniformly on the set 	 := ⋃N−1

j=0 f j (ϒ), which
is contained in the maximal invariant set �(U ). This means that the Lyapunov exponent
of f along the Ec direction vanishes on 	. Moreover, htop ( f |	) is also positive.

To conclude the proof of Theorem 5 it remains to see that we can choose the set 	

contained in the chain recurrent class C(q, f ) of q. First note that we can assume that 	
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consists of chain recurrent points. To see that 	 ⊂ C(q, f ) fix any point x ∈ 	. If the
number δ > 0 in Proposition 4.9 is small enough then the orbit of x has infinitely many
iterates close to q (otherwise the ϕ-average would be positive). Hence, as δ is small, the
strong unstable manifold of x intersects the stable manifold of q. Similarly, the orbit of x
also has infinitely many iterates close to 
 (otherwise the ϕ-average would be negative).
Hence, if δ > 0 is small enough, the strong stable manifold of x intersects the unstable
manifold of a point in 
.

By Proposition 4.5, the saddle q and the blender 
 form a robust cycle, therefore
they are in the same chain recurrence class. Properties W uu(x) ∩ W s(q) �= ∅ and
W ss(x)∩W u(
) �= ∅ immediately imply that x belongs to such a class. We have shown
	 ⊂ C(q, f ), ending the proof of Theorem 5. ��

4.4. Proof of Proposition 4.9. We divide the proof of Proposition 4.9 into several lem-
mas. Consider a diffeomorphism f with a dynamical blender (
, V, Cuu,D
) and a
saddle q in a flip-flop configuration with unstable and stable connecting sets �u and
�s. Consider also a partially hyperbolic neighborhoodU of this configuration endowed
with the extended cone field, that for notational simplicity we denote by Cuu. Let u be
the u-index of q, by definition the number u is also the uu-index of 
 and the index of
the cone field Cuu.

Let us fix some ingredients of our construction. We take a Riemannian metric and
a constant μ > 1 such that for every x ∈ U ∩ f −1(U ) the vectors in Cuu(x)�{0̄} are
expanded by a ratio at least μ by Df .

Remark 4.10 (Choice of δ). Let δ > 0 be small enough such that the closed δ-
neighborhood of 
 (resp. {O(q)}) is contained in U and the function ϕ is bigger than
some constant α
 > 0 (resp. less than some constant −αq < 0) in such a neighborhood.
Reducing δ, if necessary, we can assume that the local manifoldW s

δ ( f
i (q)) is contained

in U and tangent to Cuu.
In the next lemmas we will introduce auxiliary families of discs that will be used to

define the sets of the flip-flop family. The first step is to define a family Dq of discs in
the δ-neighborhood of the orbit O(q). In this way, we have two preliminary families
of discs, the discs D
 in the blender and the discs Dq . The second step is to define
“transitions” between these two families.

Lemma 4.11 (The family Dq ). There is a family Dq ⊂ D ∈ Du(M) of C1-embedded
discs of dimension u containing the discs W u

δ/4( f
i (q)) in its interior and consisting of

discs D ∈ Dq that satisfy the following properties:

(a) D ⊂ U;
(b) D is tangent to Cuu;
(c) diam D < δ;
(d) D transversely intersects W s

δ ( f
i (q)) for some i;

(e) ‖Df (v)‖ ≥ μ‖v‖ for every vector v tangent to D;
(f) f (D) contains a disc in Dq .

The existence of the family Dq follows easily from the strict Df -invariance of the
cone field Cuu, the uniform expansion of the vectors in Cuu by Df , and the fact that the
discs of Dq transversely intersect the local stable manifold of O(q).

We now study the transitions between the families Dq and D
 . The first step is the
following preliminary result:
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Lemma 4.12. Let K ⊂ Du(M) be a family of C1-embedded compact discs of dimension
u that are contained in U and tangent to Cuu. Assume that there is ε > 0 such that every
disc D ∈ K contains a point x ∈ W s

δ ( f
i (q)), for some i , whose distance to the boundary

of D is larger than ε.
Then there exists n0 = n0(K) ≥ 0 such that for every disc D ∈ K and every n ≥ n0

the set f n(D) contains a disc D1 ∈ Dq such that f −i (D1) ⊂ U for every i ∈ {0, . . . , n}.
Moreover, if K = Dq then we can take n0 = 0.

Proof. In the case K = Dq , the assertion of the lemma with n0 = 0 follows arguing
recursively from property (4.11) in the definition of the family Dq .

Next consider an arbitrary family K satisfying the hypotheses of the lemma. Recall
that the neighborhood U contains all the discs of the family Dq and also contains the
discs W s

δ ( f
i (q)).

Consider the family of discs of radius ε centered at some point in W s
δ ( f

i (q)) and
contained in some disc of K. As these discs are tangent to the cone field Cuu, they
are Lipschitz graphs over the local unstable manifold of f i (q), where the Lipschitz
constant depends only on Cuu. Using the Lambda Lemma we find an uniform n0 =
n0(K) ≥ 0 such that the image f n0(D) of any disc D ∈ K contains a disc D0 close
enough to W u

δ/4( f
i+n0(q)) such that D0 ∈ Dq and, moreover, f −i (D0) ⊂ U for every

i ∈ {0, . . . , n0}.
Applying the first case K = Dq to the disc D0 we conclude that, for every n ≥ n0,

the image f n−n0(D0) contains a disc D1 ∈ Dq such that f −i (D1) ⊂ U for every
i ∈ {0, . . . , n − n0}. Thus the disc D1 satisfies the required properties. ��

We now study the transition from the family Dq to the family D
 .

Lemma 4.13 (Going fromDq toD
). There is Nq > 0 such that for every disc D ∈ Dq

and every n ≥ Nq, the image f n(D) contains a disc D1 ∈ D
 such that f −i (D1) ⊂ U
for every i ∈ {0, . . . , n}.
Proof. The first step is the following claim.

Claim. There is Nq such that for every D0 ∈ Dq there is m ∈ {1, . . . , Nq} such that
the set f m(D0) contains a disc D1 ∈ D
 with f −i (D1) ⊂ U for every i ∈ {0, . . . ,m}.
Proof. Fix n0 such that the connecting disc �u is contained in f n0(W u

δ/4(q)). There is
a neighborhood V ofW u

δ/4(q) contained inDq consisting of discs whose image f n0(D)

contains a disc D1 ε-close to �u in the C1-distance for some small ε. By definition of
a flip-flop configuration, �u belongs to the interior of the family D
 , thus if ε > 0 is
small enough the same holds for the disc D1. Moreover, since the negative iterates of
�u are contained in U , by shrinking ε if necessary, we get that f −i (D1) ⊂ U for all
i = 0, 1, . . . , n0.

Applying the Lambda Lemma to the discs in Dq and by the definition of Dq , we
obtain n1 > 0 such that for every disc D0 ∈ Dq there is a sequence D0,i ∈ Dq ,
i = 0, . . . , n1, such that D0,0 = D0, D0,i+1 ⊂ f (D0,i ), and D0,n1 ∈ V .

By construction to prove the claim it is enough to take Nq = n0 + n1. ��
Take Nq as in the claim. Consider D0 ∈ Dq and n ≥ Nq . Associated to D0 consider

m ≤ Nq and the disc D1 ⊂ f m(D0) given by the claim. By the strict f -invariance of the
familyD
 , there is a sequence Di ⊂ f (Di−1), i = 2, . . . , n+1−m, such that Di ∈ D
 .
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By construction, Dn−m+1 is contained inD
 and the negative iterates f − j (Dn−m+1) for
j ∈ {0, . . . , n − m} are contained in Dn−m− j+1 ∈ D
 , hence contained in U . Further
negative iterates f − j (Dn−m+1), j ∈ {n−m, . . . , n} are contained in the negative iterates
f −( j−(n−m))(D1). By the claim and the choice of m and D1, these backwards iterates
of D1 are contained in U . This ends the proof of the lemma. ��

In the next lemma we study the transition from the familyD
 to the family Dq .

Lemma 4.14. (Going fromD
 toDq ). There is N
 > 0 such that for every disc D ∈ D


and every n ≥ N
 , the set f n(D) contains a disc D1 ∈ Dq such that f −i (D1) ⊂ U for
every i ∈ {0, . . . , n}.
Proof. Recall that the stable connecting set �s of the flip-flop configuration given by
(4.1) is contained inW s(q), there exists n1 > 0 such that f n1(�s) ⊂ W s

δ/2(q).Moreover,
since �s is compact and by definition of a partially hyperbolic neighborhood of the
configuration one has

⋃
j≥0 f j (�s) ⊂ U , there is a neighborhood B of �s such that

⋃n1
j=0 f j (B) ⊂ U .
Recall also that there are ε > 0 and an ε-safe stable connecting set of the configu-

ration, that is a compact subset K contained in the interior of �s such that every disc
D ∈ D
 contains a disc Dε of radius ε centered at some point of K . By shrinking ε if
necessary, we can assume that the discs Dε are contained in B.

Consider the family

K := { f n1(Dε) : D ∈ D
}.
This family satisfies the hypotheses of Lemma 4.12. Thus let n0 = n0(K) as in this
lemma and define N
 := n1 + n0. We claim that this number satisfies the conclusions
of the lemma.

Let n ≥ N
 and take any disc D ∈ D
 and consider E := f n1(Dε) ∈ K. By
Lemma 4.12, the image f n−n1(E) contains a disc E1 ∈ Dq such that f −i (E1) ⊂ U
for all i ∈ {0, 1, . . . , n − n1}. Since f − j (E) ⊂ U for all i ∈ {0, 1, . . . , n1}, the disc
D1 := E1 satisfies all the required properties. The proof of the lemma is now complete.

��
Let us summarize our constructions up to this point. We have defined two families

of discs Dq and D
 such that one can go from each family to the other in times Nq
or N
 (according to the case and in the sense of Lemmas 4.13 and 4.14), and from
each family to itself in time 1 [Property (4.11) of Dq and strict f -invariance property
ofD
]. Moreover, during these transitions the orbits of these discs remain in a partially
hyperbolic neighborhood U of the flip-flop configuration.

Recall now that our goal is to construct a flip-flop family associated to a Birkhoff
sum of the function ϕ. This function is bounded away from zero in the discs ofDq , but
this is not necessarily true for the discs of D
 . Thus we need to shrink the discs of the
family D
 while keeping the transition properties between the families above. This is
the reason why we introduce the new family Dm


 below. Let us now go to the details of
this construction.

Recall the choice of δ in Remark 4.10 and that ϕ > α
 > 0 in the δ-neighborhood
of the blender 
. Since the blender 
 is the maximal invariant set of f in V , there is an
integer m ≥ 0 such that the set

⋂m
i=−m f i (V ) is contained in the δ-neighborhood of 
,

thus in a region where ϕ > α
 > 0.
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Definition 4.15 (The familyDm

 ). LetD

m

 be the family of discs D+ such that there exist

E−m , E−m+1, …, Em ∈ D
 satisfying the following conditions:

• Ei ⊂ f (Ei−1) for each i ∈ {−m + 1,−m + 2, . . . ,m};
• Em = f m(D+).

In particular, f i (D+) ⊂ Ei for each i ∈ {−m,−m + 1, . . . ,m}.
Remark 4.16. Every disc D ∈ Dm


 is contained in the δ-neighborhood of 
, thus ϕ(x) >

α
 for all x ∈ D.

Using recursively the strict f -invariance of the family D
 , we get that the image
f m(D) of any disc D ∈ D
 contains a disc of Dm


 . In particular, the family Dm

 is

nonempty.
Let C := sup |ϕ| and recall that αq , α
 > 0 (see Remark 4.10). Fix an integer

N ≥ max(Nq , N
) + m

such that the number

α := min
{
(N − Nq − m)αq − (Nq + m)C, (N − N
 − m)α
 − (N
 + m)C

}
> 0.

In the next two lemmas we obtain transitions between the familiesDq andDm

 : from

each family it is possible to go to the other family and to itself. In what follows, we
denote by D− the discs in Dq and by D+ the ones in Dm


 .

Lemma 4.17 (Transitions of discs ofDq ). Every disc D− ∈ Dq contains subdiscs D
−− ,

D−
+ such that:

(Tq1) f N (D−−) ∈ Dq and f i (D−−) ⊂ U for every i ∈ {0, 1, . . . , N − 1}. Moreover,

ϕN (x) < −Nαq ≤ −α, for every x ∈ D−− .

(Tq2) f N (D−
+ ) ∈ Dm


 and f i (D−
+ ) ⊂ U for every i ∈ {0, 1, . . . , N − 1}. Moreover,

ϕN (x) < −(N − Nq − m)αq + (Nq + m)C ≤ −α, for every x ∈ D−
+ .

Proof. Take any disc D− of the family Dq . Applying recursively property (4.11) of
the family Dq we find a sequence of discs (Di )i≥0 in Dq such that D0 = D− and
Di+1 ⊂ f (Di ) for each i . Let

D−− := f −N (DN ).

By construction and the definitions ofDq and αq , the disc D
−− satisfies the properties in

(4.17).
To prove the second part of the lemma, recall that by Lemma 4.13, the set

f Nq (DN−Nq−m) contains a disc F ∈ D
 such that f − j (F) ⊂ U for every j ∈
{0, . . . , Nq}. Applying recursively the strict f -invariance of the family D
 , we get a
sequence of discs (Fi )i≥0 in D
 such that F0 = F and Fi+1 ⊂ f (Fi ) for each i . Let

D−
+ := f −N−m(F2m).

Notice that f N (D−
+ ) = f −m(F2m) belongs to the family Dm


 . Indeed the associated
sequence of discs E−m , …, Em in Definition 4.15 is given by Ei = Fm+i . The inclusion
properties and the upper bound for the sum ϕN in (4.17) follow straightforwardly by
construction. The proof of the lemma is now complete. ��
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Lemma 4.18 (Transitions of discs ofD
). Every disc D+ ∈ Dm

 contains subdiscs D+

+ ,
D+− such that:

(TG1) f N (D+
+) ∈ Dm


 and f i (D+
+) ⊂ U for every i ∈ {0, 1, . . . , N − 1}. Moreover,

ϕN (x) > Nα
 ≥ α, for every x ∈ D+
+ .

(TG2) f N (D+−) ∈ Dq and f i (D+−) ⊂ U for every i ∈ {0, 1, . . . , N − 1}. Moreover,

ϕN (x) > (N − N
 − m)α
 − (N
 + m)C ≥ α, for every x ∈ D+−.

Proof. Given a disc D+ in the familyDm

 , let E−m , E−m+1,…, Em be the discs associated

to D+ in D
 given by Definition 4.15 with Em = f m(D+). Applying recursively the
f -invariance property of family D
 , we find new discs Em+1, Em+2, · · · ∈ D
 such
that Ei ⊂ f (Ei−1) for each i > m. Notice that by construction the disc f −m(E j ) is a
member of Dm


 for every j ≥ m.
Let

D+
+ := f −N−m(EN+m).

Note that

D+
+ ⊂ f −N−m( f N (Em)) = f −m(Em) = D+

and that

f N (D+
+) = f −m(EN+m) ∈ Dm




as required. To see that the sets f i (D+
+) are contained inU for all i ∈ {0, 1, . . . , N } note

that f i (D+
+) is contained in f −m(Em+i ) ∈ Dm


 thus contained in U . By Remark 4.16
this implies that ϕ( f i (x)) > α
 for every x ∈ D+

+ and therefore ϕN (x) > Nα
 for
every x ∈ D+

+. This ends the proof of (4.18).
As EN−N
 ∈ D
 , Lemma 4.14 implies that the disc f N
 (EN−N
 ) contains a disc

F ∈ Dq such that f − j (F) ⊂ U for every j ∈ {0, . . . , N
}. Let

D+− := f −N (F).

Notice that D+− ⊂ f −N+N
 (EN−N
 ) ⊂ D+ (since Em = f m(D+) and N − N
 ≥ m).
It is clear that f i (D+−) ⊂ U for every i ∈ {0, 1, . . . , N }. This completes the proof of
the inclusion properties.

To get the estimate for theBirkhoff sumnote that for each i ∈ {0, 1, . . . , N−N
−m},
the set f i (D+−) is contained in f −m(Em+i ) ∈ Dm


 and in particular, by Remark 4.16,
in the part of U where ϕ > α
 . So the lower bound for the Birkhoff sum ϕN on D+−
follows. The proof of (4.18) is now complete. ��
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4.4.1. End of the proof of Proposition 4.9 Let N and α be as above. The flip-flop family
F = F+ ∪ F− is defined as follows:

• F+ is the family of unions {D+
+ ∪ D+−}D+∈Dm



, where D+

+ and D+− are associated to
D+ ∈ Dm


 and given by Lemma 4.18;
• F− is the family of unions {D−

+ ∪ D−−}D−∈Dq , where D−
+ and D−− are associated to

D− ∈ Dq and given by Lemma 4.17.

Lemmas 4.18 and 4.17 provide properties (FF1) and (FF2) of a flip-flop family with
respect to f N and the function ϕN . Property (FF3) follows from the fact that the discs
in F are tangent to Cuu.

Finally, the construction implies that the discs of F+ are contained in the δ-
neighborhood of 
 and the discs of F− are contained in the δ-neighborhood of O(q).
The proof of the proposition is now complete. ��

5. From Robust Cycles to Split Flip-flop Configurations via Spawners

In this sectionwe see how robust cycles generate flip-flop configurations. This generation
is done throughout a special class of partially hyperbolic sets called spawners that we
will introduce in the next subsection. The advantage of spawners for us is that they spawn
split flip-flop configurations. The organization of this section is the following:

Robust cycles
5.2�⇒ Spawners

5.3�⇒ Split flip-flop configurations.

The corresponding steps are done in Sects. 5.1 and 5.2.

5.1. From robust cycles to spawners. Given a natural number i , an i -box is a product of
i non-degenerate compact intervals.

Definition 5.1 (Spawner). Let f ∈ Diff1(M) and u and s be positive integers with
u + 1 + s = d = dim M . Suppose C ⊂ M is an embedded d-dimensional cube. For
notational simplicity, let us identify C with [−1, 1]d . Suppose there are disjoint subsets
L1, L2, L3 ⊂ C of the form

Li = I ui × [−1, 1] × [−1, 1]s,
where each I ui ⊂ (−1, 1)u is a u-box, and positive integers n1, n2, n3 such that:

• f j (Li ) ∩ C = ∅ for 0 < j < ni and f ni (Li ) ⊂ C ;
• f ni (Li ) = [−1, 1]u × [−1, 1] × I si , where I si is an s-box;
• The restriction of f ni to Li is of the form

f ni (xu, x, xs) = (Au
i (x

u), x, As
i (x

s)),

where Au
i is an expanding affine map of R

u and As
i is a contracting affine map of R

s .

Let � be the maximal invariant set of f in the set

Q123 :=
⋃

i=1,2,3

( ni−1⋃

k=0

f k(Li )
)
. (5.1)

The set � is called a spawner of u-index u, the set C is its reference cube, and the sets
L1, L2 and L3 are its legs. The numbers n1, n2, n3 are the first return times of the legs.
(See the first part of Fig. 5 in Sect. 5.3.1).
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Note that each set f ni (Li ) intersects the legs L1, L2, L3 in aMarkovian way and that
the set� is partially hyperbolic with a splitting of the form T�M = Euu⊕Ec⊕E ss with
bundles of respective dimensions u, 1, and s, where Euu is uniformly expanding and E ss

is uniformly contracting. In the cube C these three bundles are of the form R
u × {0}s+1,

{0}u × R × {0}s , and {0}u+1 × R
s , respectively. Note that the strong stable manifold

W ss(�) and the strong unstable manifold W uu(�) of � are well defined.
The spawners that we consider are generated by means of the following result:

Proposition 5.2 (From robust cycles to spawners). Consider a diffeomorphism f with
a pair of hyperbolic basic sets � f and � f of respective u-indices i and i − 1 forming
a robust cycle. Then there exists a diffeomorphism g arbitrarily C1-close to f having a
spawner � of u-index i − 1 such that

W u(�g) � W ss(�) �= ∅ and W s(�g) � W uu(�) �= ∅, (5.2)

i.e. there exist points of transverse intersection between these manifolds.

This proposition follows from a sequence of previous results and indeed is a refor-
mulation of results in [BD2]. For completeness, let us briefly explain the steps involved
in this construction.

Proof (Sketch of the proof of Proposition 5.2). First, the existence of a robust cycle
implies that there is a C1-neighborhood V of f such that for every g ∈ V there are
saddles pg ∈ �g and qg ∈ �g depending continuously on g such that their chain
recurrence classes are equal and non trivial.

By [BC]C1-generically the chain recurrence class of a hyperbolic periodic point is its
homoclinic class. This fact allows us to get an open and dense subset of the neighborhood
V of f consisting of diffeomorphisms g such that homoclinic classes of pg and qg are
both non trivial. Next, after a new perturbation, if necessary, we can replace these saddles
by a pair of saddles homoclinically related to them whose eigenvalues are all real and
have multiplicity 1 and different moduli (i.e., the linear map Df π (a), π the period of a,
satisfies such a property). For this standard property see for instance [ABCDW]. Using
the terminology in [BD2,BD3] we say that these new periodic points have real center
eigenvalues. As these new saddles are homoclinically related to the initial ones, they are
still in the same chain recurrence class and contained in a pair of hyperbolic sets with a
robust cycle. For simplicity, we continue to denote these new saddles by pg and qg .

In the above setting, [BD2, Theorem 2.3] claims that by an arbitrarily small C1-
perturbation one can get a saddle-node or a flip periodic point with a strong homoclinic
intersection (called strong connection): the strong stable and strong unstablemanifolds of
the saddle-node/flip point meet quasi-transversely, meaning that the sum of the tangent
spaces at the intersection point is dim M − 1. Furthermore, [BD3, Proposition 5.9]
asserts that the strong stable (resp. unstable) manifold of such nonhyperbolic periodic
point intersects transversely the unstablemanifold of pg (resp. the stablemanifold of qg).
With the terminology in [BD3], this nonhyperbolic periodic point is strong intermediate.
As pg and qg are robustly in the same chain recurrence class, the strong intermediate
point r also belongs to this class.

Finally, [BD2, Theorem 2.4] shows that these strong homoclinic intersections and
intermediate points yield geometric blenders and robust cycles. To get such a property
in [BD2, pp. 501, 502] it is shown that an arbitrarily small C1-perturbation of a strong
connection associated to a saddle nodegenerates a dynamical configuration that is exactly
what we call here a spawner. A key point is that this spawner is by construction strong
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intermediate with relation to pg and qg , thus it is contained in the chain recurrence class
of pg . The case of flip periodic points is solved using [BD2, Remark 4.5] that asserts that
the strong connection associated to a flip periodic point generates a strong connection
associated to a saddle node satisfying the strong intermediate properties. This concludes
our sketch of proof. ��

5.2. From spawners to split flip-flop configurations: proof of Theorem 2. Recall the
definitions of the sets Li and the numbers ni , and define the sets

Q12 :=
⋃

i=1,2

ni−1⋃

k=0

f k(Li ) and Q3 :=
ni−1⋃

k=0

f k(L3). (5.3)

Proposition 5.3 (From spawners to split flip-flop configurations). Suppose f has a
spawner � of u-index u. Then every neighborhood V of f contains a nonempty open
set U ⊂ V such that every g ∈ U has

• A dynamical blender 
g of uu-index u whose domain is contained in Q12,
• A unique hyperbolic periodic orbit O(rg) of u-index u contained in Q3,

that form a split flip-flop configuration.
Moreover, this split flip-flop configuration has a strict partially hyperbolic neighbor-

hood U contained in the domain of the spawner.

We postpone the proof of this proposition to the next subsection and prove now
Theorem 2.

5.2.1. Proof of Theorem 2 Let U ⊂ Diff1(M) be an open set of diffeomorphisms such
that every f ∈ U has a pair of hyperbolic periodic points p f and q f that depend con-
tinuously on f , have respective u-indices i p > iq , and are in the same chain recurrence
class C(q f , f ).

In the introduction we recalled that there is a C1-dense open subset U0 of U such that
for every f ∈ U0 and every number iq ≤ i ≤ i p there is a family of hyperbolic transitive
sets �i, f of u-index i depending continuously on f , contained in C(q f , f ), and such
that for every i < i p the sets �i, f and �i+1, f form a robust cycle. Thus, without loss
of generality, we can assume that iq = i , i p = i + 1, and that p f and q f belong to
hyperbolic transitive sets �i+1, f and �i, f , respectively, forming a robust cycle.

By Proposition 5.2 there is a C1-dense subset D ⊂ U such that every f ∈ D has a
spawner of u-index i such that the strong unstable (resp. stable) manifold of any point of
the spawner intersects transversally the stable manifold of�i, f (resp. unstable manifold
of �i+1, f ).

By Proposition 5.3, given any diffeomorphism f ∈ D (with a spawner) there is an
arbitrarily smallC1-perturbation g of it f with dynamical blender
g of uu-index i and a
saddle rg of u-index i forming a split flip flop configuration. Moreover, this split flip-flop
configuration has a strict partially hyperbolic neighborhood U contained in the domain
of the spawner. Recall that to have a split flip-flop configuration is a robust property, see
Remark 4.8, thus such diffeomorphisms g form a dense open subset U1 of U0 hence of
U .

This implies, in particular, that the maximal invariant set in U is contained in the
chain recurrence class C(qg, g). Theorem 5 now implies that the maximal g-invariant
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L3

L2

L1

fn1 (L1) fn2 (L2) fn3 (L3)

us-projection uc-projection

Fig. 5. The maps f and fλ

set in U contains a partially hyperbolic set Kg ⊂ C(qg, f ) with a partially hyperbolic
splitting of the form

TK M = Euu ⊕ Ec ⊕ E ss,

where Euu is uniformly expanding and has dimension i−1 > 0, Ec has dimension 1, and
E ss is uniformly contracting, such that the Lyapunov exponent of any point of Kg along
Ec is zero. Moreover, the topological entropy of the restriction of g to Kg is positive.
This concludes the proof Theorem 2. ��

5.3. Proof of Proposition 5.3. The aim of the rest of the section is the proof of Propo-
sition 5.3.

5.3.1. A family of perturbations of a spawner and their induced maps We now assume
that f has a spawner with reference cube C , legs L1, L2, L3 and first return times to C
n1, n2, n3, respectively. By definition, the restriction of f ni to Li is of the form

f ni (xu, x, xs) = (Au
i (x

u), x, As
i (x

s)).

For every i ∈ {1, 2, 3} and k ∈ {1, . . . , ni − 1}, we fix coordinates in f k(Li ) such
that the expression of the restriction f k |Li in these coordinates is the identity map,
f k(xu, x, xs) = (xu, x, xs).

For λ > 1, define one-dimensional maps

gλ,1(x) := λx + (−1 + λ)/2; gλ,2(x) := λx + (1 − λ)/2; gλ,3(x) := λ−1x .

Note that the maps gλ,1, gλ,2, gλ,3 have fixed points −1/2, 1/2, 0, respectively.
Consider a neighborhood V of f . For λ > 1 sufficiently close to 1 define a diffeo-

morphism fλ as follows,

fλ(x
u, x, xs) =

{
f (xu, x, xs), if (xu, x, xs) ∈ ⋃3

i=1

(⋃ni−2
k=1 f k(Li )

)
,

(Au
i (x

u), gλ,i (x), As
i (x

s)), if (xu, x, xs) ∈ f ni−1(Li ), i ∈ {1, 2, 3}.
We take λ > 1 sufficiently close to 1 such that fλ ∈ V . See Fig. 5.
Remark 5.4. The map fλ has a periodic point q = (qu, 0, qs) (independent of λ) in
L3, of period n3 and u-index u. The local invariant manifolds of q are W s

loc(q) =
{qu} × [−1, 1]s+1 and W u

loc(q) = [−1, 1]u × {(0, qs)}.
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5.3.2. Dynamical blenders for induced maps We fix a small open neighborhood U of
C such that, for λ > 1 sufficiently close to 1, f j

λ (Li ) is disjoint from U for every
0 < j < ni , and f niλ (Li ) is contained in U . Define the map Fλ by

Fλ : L1 ∪ L2 → U, Fλ(x) := f niλ (x), if x ∈ Li , i = 1, 2.

In this way we get an induced map Fλ = [ fλ,U, (Li )
2
i=1, (ni )

2
i=1] (or for short simply

Fλ) of fλ. The next step is to get a dynamical blender for this induced map (see Propo-
sition 5.5). For that we need to introduce some ingredients as domains, cone fields, and
families of discs.

Let 
λ be the maximal invariant set of Fλ in L1 ∪ L2. Note that this set is hyperbolic
and contained in the interior of L1 ∪ L2. For every 0 < α < 1 consider the cone field

Cuuα := {(vu, vc, vs); ‖(vu, vs)‖ ≤ α‖vu‖}.
As the maps As

i are affine contractions, the maps Au
i are affine expansions, and λ is close

to 1, any cone field Cuuα is strictly DFλ-invariant. We fix constants 0 < α0 < α1 < 1
8
√
u

such that DF(Cuuα1
) is strictly contained in Cuuα0

.
Recall that I si = As

i ([−1, 1]s) and I ui = (Au
i )

−1([−1, 1]u), for i = 1, 2, 3. We fix
compact discs Ju, Ju0 ⊂ (−1, 1)u whose interiors contain I u1 ∪ I u2 ∪ I u3 and such that
Ju is contained in the interior of Ju0 . Similarly, we fix compact discs J s, J s0 ⊂ (−1, 1)s

whose interiors contain I s1 ∪ I s2 ∪ I s3 and such that J s is contained in the interior of J s0 .
We consider the following set of graphs ofC1-maps with Lipschitz constant less than

α0:

• D is the set of graphs of C1-maps Ju → [− 1
4 ,

1
4 ] × J s ;

• D1 is the set of graphs of C1-maps (Au
1)

−1(J u0 ) → [− 1
4 ,

1
8 ] × J s ;

• D2 is the set of graphs of C1-maps (Au
2)

−1(J u0 ) → [− 1
8 ,

1
4 ] × J s .

Finally, choose open discs Uu and Us such that

Ju0 ⊂ Uu ⊂ Uu ⊂ (−1, 1)u and J s0 ⊂ Us ⊂ Us ⊂ (−1, 1)s

and consider the sets

U1 := (Au
1)

−1(Uu) × g−1
λ,1

((
− 3

4
,
3

4

))
×Us ⊂ L1,

U2 := (Au
2)

−1(Uu) × g−1
λ,2

((
− 3

4
,
3

4

))
×Us ⊂ L2.

As Ui ⊂ Li , i = 1, 2, the iterates f j
λ (Ui ), j ∈ {1, . . . , ni − 1}, are disjoint from U and

f niλ (Ui ) ⊂ U . Thus the induced map Fλ of fλ can be extended to U1 ∪U2.

Proposition 5.5 (Dynamical blenders for Fλ). Let 
λ be the maximal invariant set of
Fλ in L1 ∪ L2. Then (
λ,U1 ∪U2, Cuuα ,D1 ∪ D2) is a dynamical blender of Fλ.

Proof. The main step of the proof is the following lemma.

Lemma 5.6. Consider λ > 1 close enough to 1 and the induced map Fλ =
[ fλ,U, (Li )

2
i=1, (ni )

2
i=1]. Then the cone field Cuuα1

and the families of discs D,D1,D2
satisfies the hypotheses of Proposition 3.20.
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Proof. The invariance of the cone field was obtained above. It remains to check that the
families of discs satisfy items (a), (b), and (c) in Proposition 3.20.

For item (a), just note that there are neighborhoods of the familiesD,D1,D2 formed
by discs contained in U and tangent to Cuuα1

.
To prove item (b), note that a disc D ∈ D is a graph over Ju ⊃ I u1 ∪ I u2 . We see that

either the restriction of this graph to I u1 belongs to D1 or the restriction to I u2 is in D2.
Suppose, by contradiction, that the first case does not hold. This means that the center
coordinate of some point is larger than 1

8 . As the graph is α0-Lipschitz with α0 < 1
8
√
u

and the diameter of Ju is strictly less than 2
√
u one gets that the central coordinates of

this graph are larger than − 1
8 . Thus the central part is contained in [− 1

8 ,
1
4 ] and thus the

restriction to I u2 belongs toD2.
It remains to check item (c), which is an immediate consequence of the following

claim:

Claim 5.7. Fix λ > 1 close to 1. Then there is ε = ε(λ) > 0 such that for every disc
D ∈ Vδ

ε (Di ), i = 1, 2, the set Fλ(D) contains a disc in D.

Proof. We prove the claim for the family D1; the proof for the family D2 is identical
and hence omitted.

We first prove the claim for discs in D1 (next we extend the proof for discs in a
neighborhood). Recall that Fλ = (Au

1, gλ,1, As
1) and that a disc D inD1 is the graph of

map ϕ = (ϕc, ϕs) : (Au
1)

−1(Ju0 ) → [− 1
4 ,

1
8 ] × J s . Recalling the definition of gλ,1 we

get that Fλ(D) is the graph over Ju0 of a map ϕ∗ given by

xu �→
(
gλ,1

(
ϕc(Au

1)
−1(xu)

)
, As

1

(
ϕs(Au

1)
−1(xu)

))
.

Thus

ϕ∗ : Ju0 →
[
−1

4
+

λ − 1

2
,
1

4
− 6 − 3λ

8

]
× As

1(J
s).

As λ > 1 is close to 1 and J s ⊂ (−1, 1)s , we get that
[
−1

4
+

λ − 1

2
,
1

4
− 6 − 3λ

8

]
× As

1(J
s) ⊂ int

([
−1

4
,
1

4

]
× I s1

)
⊂ int

([
−1

4
,
1

4

]
× J s

)
.

Furthermore, the disc D is tangent to the cone field Cuuα0
which is strictly DFλ-invariant.

Thus the disc Fλ(D) is the graph over Ju0 of the map ϕ∗ whose Lipschitz constant is
strictly less than α0. Therefore the graph of the restriction of ϕ∗ to Ju is a disc inD and
contained in Fλ(D). This completes the proof for discs inD1.

To extend the result to a small neighborhood of D1 note that there is ε > 0 such
that any disc D̃ ∈ Vδ

ε (D1) is a graph of a map ϕ whose definition domain contains
(Au

1)
−1(Ju), with Lipschitz constant α1, and image in g−1

λ,1([− 1
4 ,

1
4 ]) × J s0 . The image

by Fλ of D̃ contains a graph over Ju of a C1-map with Lipschitz constant α0 whose
image is contained in [− 1

4 ,
1
4 ]× J s, thus Fλ(D̃) contains a disc inD. This ends the proof

of the claim for the family D1. ��
The proof of Lemma 5.6 is now complete. ��

We are now ready to finish the proof of the proposition. By construction, the maximal
invariant set 
Fλ of Fλ in L1 ∪ L2 is transitive, hyperbolic, and contained in the interior
U1 ∪U2. Note that the discs of the familyDi are contained in the interior of the setsUi ,
i = 1, 2, and satisfies the Fλ-invariance properties. The cone field Cuuα1

is also invariant.
The proof is now complete. ��
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5.3.3. Dynamical blenders for fλ By Proposition 3.20, every neighborhood of the clo-
sure of

⋃
i=1,2

⋃ni−1
j=0 f j

λ (Ui ) contains a safety neighborhood V which is the domain of
a dynamical blender �λ of fλ whose strictly invariant family of discs Dλ is such that
the discs D ∈ Dλ contained in U are precisely D1 ∪ D2. We can in particular assume
that V is contained in Q1,2.

Corollary 5.8 (Dynamical blender for fλ). The diffeomorphism fλ has a dynamical
blender (�λ, V, Cuuα1

,Dλ) such that the discs ofDλ contained in U belong to the family
D1 ∪ D2 and V is contained in Q1,2.

5.3.4. Generation of split flip-flop configurations Recall the definition of the saddle q
of u-index u of fλ, see Remark 5.4.

Proposition 5.9. For every λ > 1 close enough to 1, the saddle q and the dynamical
blender (
λ, V, Cuuα1

,Dλ) satisfy conditions FFC0’, FFC1, FFC2, FFC3, and FFC4.

In view of Proposition 4.4 we get the following corollary of Proposition 5.9 that ends
the proof of Proposition 5.3.

Corollary 5.10. For every sufficiently small η > 0, the saddle q and the dynamical
blender (
λ, V, Cuuα1

,Vδ
η(Dλ)) are in a split flip-flop configuration.

Let us observe that the property of the configurationbeing split follows from thepartial
hyperbolicity (with one dimensional center direction) of the initial diffeomorphism f .

Proof of Proposition 5.9. To define the connecting sets �u and �s of the flip-flop con-
figuration recall the definitions of the local invariant manifolds W s

loc(q) and W u
loc(q) in

Remark 5.4. Let �u := (Au
1)

−1(Ju0 ) × {(0, qs)}. This set is a disc contained in W u
loc(q)

that belongs toD1 and whose negative iterates are contained in Q3. Hence it is disjoint
from V (as V is contained in Q1,2). This proves properties (4.4) and (4.1).

Consider F−1
λ (W s

loc(q)). Note that there are points xu1 ∈ (Au
1)

−1(Ju0 ) and xu1 ∈
(Au

2)
−1(Ju0 ) such that F−1

λ (W s
loc(q)) = �1 ∪ �2 where

�1 := {xu1 } × g−1
λ,1([−1, 1]) × [−1, 1]s and �2 := {xu2 } × g−1

λ,2([−1, 1]) × [−1, 1]s .
Consider the intersections �̃1 := �1 ∩ U1 and �̃2 := �2 ∪ U2 (recall that U1 ∩ U2

is the domain of the dynamical blender of Fλ, see Proposition 5.5). By definition of a
dynamical blender (existence of a safe stable connecting set) there are a compact set K
contained in the interior of �̃1∪�̃2 and ε > 0 so that K intersects any disc D ∈ D1∪D2
at point a distance larger that ε from the boundary ∂D. Recall the definitions of the return
times n1, n2 and consider the set

�̃s :=
⋃

i=1,2

( ni−1⋃

j=0

f j
λ (�̃i )

)
.

The set �̃s is a manifold with boundary and corners contained in the interior of the safety
neighborhood V , transverse to Cuu, and intersects any disc of the strictly fλ-invariant
family Dλ at distance uniformly bounded away from 0 from its boundary.

Furthermore, f iλ(�̃s) is disjoint form V for every i > n1 + n2 and any point of �̃s

that exits from V does not return to V . In other words, as a set �̃s satisfies conditions
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FFC2, FFC3, and FFC4. We need to remove the corners of �̃s. For that it is enough to
consider a sufficiently large submanifold with boundary �s ⊂ �̃s, in this way we get
a stable connecting set �s satisfying conditions FFC2, FFC3, and FFC4. This ends the
proof of the proposition. ��

6. An Interval of Lyapunov Exponents: Proof of Theorem 3

In this section we prove Theorem 3. Consider an open set U ⊂ Diff1(M) of diffeo-
morphisms with periodic points p f , q f (depending continuously on f ) with u-indices
i and i − 1, respectively, which are in the same chain recurrence class. We will prove
the existence of a C1-open and dense subset V of U consisting of diffeomorphisms f
such that for every χ ∈ (χi (q f ), χi (p f )) there is a partially hyperbolic compact set
K f,χ ⊂ C(p f , f ), with 1-dimensional center direction and positive entropy such that
the center Lyapunov exponent of any point in K f,χ is χ .

The proof of this result is different for χ close to zero and for large |χ |. The case of
χ close to zero is the more interesting one, and requires split flip-flop families. The case
when χ is away from zero follows from simpler and essentially hyperbolic arguments.

6.1. An interval of small Lyapunov exponents. The constructions in Sect. 5 give an open
and dense subset U0 of U such that every f ∈ U0 has a saddle r of u-index i − 1 and
a dynamical blender 
 of u-index i which are in a split flip-flop configuration. The
following conditions hold:
• The saddle r and the blender 
 are contained in a partially hyperbolic set with

(i − 1)-dimensional strong unstable bundle and one-dimensional center. This set is
contained in the chain recurrence class of p f .

• There is α f > 0 such that the logarithm of the center Jacobian is less than −α f
on the orbit of r and larger than α f on the blender. Moreover, since the flip-flop
configuration is robust (Proposition 4.2), the constant α f > 0 can be chosen locally
constant with f .
Recall that in the proof of Theorem 5 (see Sect. 4) we consider a continuous extension

ϕ of the logarithm of the central Jacobian and apply Proposition 4.9 to get a flip-flop
family with respect to a power f N and the corresponding N -th Birkhoff sum ϕN of ϕ.
Thereafter using Theorem 4 we obtain a compact set K f with positive entropy whose
i-th exponent is zero.

Now for any given χ ∈ [−α f , α f ], we apply Proposition 4.9 to the function ϕ + χ

instead, thus obtaining a flip-flop family with respect to a Birkhoff sum of this function.
So Theorem 4 provides a compact set K f,χ with positive entropy whose i-th exponent
is χ . This completes the proof of the part the theorem about Lyapunov exponents close
to zero.

6.2. Intervals of large Lyapunov exponents. We now fix f as above and the constant
α f = α. The proof below follows exactly as the one of [ABCDW, Theorem 1], thus we
just explain the main steps.

By hypotheses, the saddles p f and q f are involved in a robust cycle. Recalling
the sketch of the proof of Proposition 5.2 in Sect. 5.1, after an arbitrarily small C1-
perturbation we can assume that the homoclinic classes of these saddles are both non-
trivial and, after replacing p f and q f by some point of the class, that the eigenvalues
corresponding to p f and q f are all positive and different.



794 J. Bochi, C. Bonatti, L. J. Díaz

The occurrence of a robust cycle implies that after a new arbitrarily small C1-
perturbation we can obtain a heterodimensional cycle associated to pg and qg . The
unfolding of this cycle generates a saddle p̄g homoclinically related to pg (thus of
u-index i) and such that χi ( p̄g) is close to 0, in particular, χi ( p̄g) ∈ (0, α

2 ). This con-
struction implies that χi ( p̄g) > χi+1( p̄g). Note that this configuration is robust.

Since the initial cycle associated to p f and q f is robust and g is close to f , the
saddles pg and qg also belong to hyperbolic sets involved in a robust cycle. Arguing as
above, a perturbation generates a new heterodimensional cycle that yields a saddle q̄h
homoclinically related to qh (thus of u-index i − 1) with χi (q̄h) ∈ (−α

2 , 0). Moreover,
we have that χi (q̄g) > χi+1(q̄g).

As ph and p̄h are homoclinically related, there is a hyperbolic basic set�h containing
ph and p̄h . Since χi (ph) > χi+1(ph) and χi ( p̄h) > χi+1( p̄h). Taking care that the inter-
section of the parts of the invariant manifolds of ph and p̄h involved in the construction
of the set �h to be in general position, we can assume that the unstable bundle Eu of �h
has a dominated splitting Eu = Euu ⊕ Ecu, where Ecu is one-dimensional. This implies
that the logarithm of the center Jacobian is well defined and continuous along the strong
unstable manifold of �h .

A standard argument involving Markov partitions implies that, for every χ ∈
(χi ( p̄h), χi (ph)) there is an invariant compact set Kh,χ contained in �h having positive
entropy and such that the i-th Lyapunov exponent of every point in Kh,χ is χ . Here the
use of Markov partitions substitutes the flip-flop-like arguments.

Fixed now χ ∈ (χi (qh), χi (q̄h)), the same construction as above with qh and q̄h
provides invariant compact subset Kh,χ of the chain recurrence class of qh with positive
entropy that consists of points whose i-th Lyapunov exponent is χ .

Since by construction
(
χi (qh), χi (q̄h)

) ∪ [ − α, α
] ∪ (

χ( p̄h), χi (ph)
) = (

χi (qh), χi (ph)
)
,

we get the announced family of compact sets Kh,χ , χ ∈ (
χi (qh), χi (ph)

)
. This ends the

proof of Theorem 3.
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