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Abstract: The 2d Discrete Gaussian model gives each height function η : Z2 → Z

a probability proportional to exp(−βH(η)), where β is the inverse-temperature and
H(η) = ∑

x∼y(ηx − ηy)
2 sums over nearest-neighbor bonds. We consider the model at

large fixed β, where it is flat unlike its continuous analog (the Discrete Gaussian Free
Field). We first establish that the maximum height in an L × L box with 0 boundary
conditions concentrates on two integers M, M +1 with M ∼ √

(1/2πβ) log L log log L .
The key is a large deviation estimate for the height at the origin in Z

2, dominated
by “harmonic pinnacles”, integer approximations of a harmonic variational problem.
Second, in this model conditioned on η ≥ 0 (a floor), the average height rises, and in
fact the height of almost all sites concentrates on levels H, H+1where H ∼ M/

√
2. This

in particular pins down the asymptotics, and corrects the order, in results of Bricmont et
al. (J. Stat. Phys. 42(5–6):743–798, 1986), where it was argued that the maximum and
the height of the surface above a floor are both of order

√
log L . Finally, our methods

extend to other classical surface models (e.g., restricted SOS), featuring connections to
p-harmonic analysis and alternating sign matrices.

1. Introduction

The Discrete Gaussian (DG) model on � ⊂ Z
2 is a distribution over height functions η

on Z2 with � � x �→ ηx ∈ Zwhereas ηx = 0 for all x /∈ � (zero boundary conditions).
The probability of η is penalized exponentially in the squared gradients of η, namely,

π�(η) = 1

Zβ,�

exp
[

− β H(η)
]

for H(η) =
∑

x∼y

(ηx − ηy)
2 , (1.1)

where β > 0 is the inverse-temperature, the sum
∑

x∼y is over nearest-neighbor bonds

in Z2 (each bond x ∼ y counted once) andZβ,� is a normalizer (the partition function).
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When it exists, as is the case for large enough β, the limit as L → ∞ of π�L for
�L = {1, . . . , L}2 will be denoted by π and it will be referred to as the infinite volume
Gibbs state with zero boundary conditions.1

The DG model, dubbed so by Chui and Weeks in 1976 (cf. [10,27]), belongs to a
family of random surface models introduced as far back as the 1950s to model the shape
of crystals and the interfaces in 3-dimensional Ising ferromagnets. It is the dual of the
Villain XY model [25] and is also related by a duality transformation to the Coulomb
gas model, hence its vital role in understanding theKosterlitz–Thouless phase-transition
that is anticipated in this family of models (see, e.g., [1,24] and the references therein).

The following basic features of the DG on �L (and related models) were rigorously
studied in breakthrough papers from the 1980s [1,4–6,13–15].

Question 1.1. What are the height fluctuations at the origin (or some given site), e.g.,
what is E[η20] and does it diverge with L? What is the maximum height XL = maxx ηx?

Question 1.2. How are these affected by conditioning that η ≥ 0 (a floor constraint2)?

Comparing the answers to these questions as the inverse-temperature β varies reveals
the roughening transition that the DG surface undergoes3 at a critical βr, suggested
by numerical experiments to be about 0.665: The surface transitions from being rigid
(localized) at low temperatures (the height at any given site x is bounded in probability)
to rough (delocalized) at high temperatures (that height typically diverges); see [1,26].
In the latter regime, the DG model is believed to be qualitatively similar to its analogue
where the height functions are real-valued—in which case the parameter β scales out
from (1.1) and the model reduces to the Discrete Gaussian Free Field (DGFF).

Indeed, surface rigidity at large enough β is known, as a Peierls argument [4,16] then
shows that E[η20] = O(1). That the surface is rough for small enough β was established
in the celebrated work of Fröhlich and Spencer [13,14], whence E[η20] � log L (as is
the case for the DGFF). The lower bound on the fluctuations (the main difficulty) was
proved via an ingenious analysis of the Coulomb gas model, from which the results for
the DG (and related models) followed using the aforementioned duality.

In their beautiful paper [6] from 1986, Bricmont, El-Mellouki and Fröhlich provided
a detailed examination of the behavior at low temperatures (the regime we focus on).
They showed that for large β, conditioning on η ≥ 0 induces an entropic repulsion
phenomenon: though in the rigid regime β > βr, the surface rises and the expected
average height E

[ 1
|�|

∑
x ηx

∣
∣ η ≥ 0

]
diverges as L → ∞. As Abraham wrote in [1,

p59],

“The origin of this apparently paradoxical result is that ‘spikes’ grow down-
wards from the surface; if any spike touches the surface, such a configuration
does not contribute to the entropy. This drives the surface away ‘to infinity’.”

More precisely, it was stated in [6] (Thm. 4.1, Thm. 3.2 and their proofs; cf. [1]) that

E

[
1

|�|
∑

x ηx
∣
∣ η ≥ 0

]
�
√

β−1 log L and E[XL ] �
√

β−1 log L, (1.2)

1 We restrict our attention to Gibbs states obtained with boundary conditions that are not tilted.
2 This appears in situations where the surface lies above a physical barrier, e.g., modeling the discrete

interface between +/− in 3-dimensional Ising with boundary conditions + on one face and − elsewhere.
3 This transition occurs only in dimension d = 2: the surface is rough for d = 1 and rigid for d ≥ 3 [5].
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where XL is the maximum of the DG surface. That is, the average height rises until it
becomes comparable with the maximum of the standard (unconstrained) DG surface.
(Analogous bounds were obtained for the related Absolute-Value Solid-On-Solid model,
in which |ηx −ηy | replaces |ηx −ηy |2 in (1.1), whence these bounds turn into β−1 log L .)

To gain some intuition for this result, first consider the maximum: raising a given
site to height h via a single spike incurs a cost of exp(−cβh2) (since its neighbors are
typically at height O(1) in the rigid regime), explaining one side of the bound onE[XL ].
The typical value of the maximum is also an upper bound on the average height when
conditioning on η ≥ 0 (at that surface height the floor at 0 is no longer noticeable); the
matching lower bound was quite more involved, using Pirogov–Sinaï theory (see [22]).

It is worthwhile to note that for the DGFF (associated to the high temperature DG), it
was shown by Bolthausen, Deuschel and Giacomin [2] that the maximum concentrates
on 2

√
2/π log L , whereas conditioning on η ≥ 0 raises the height of most sites4 to

concentrate on the same 2
√
2/π log L (cf. [3] for analogous entropic repulsion results

for the DGFF in dimensions d ≥ 3). That is, the surface rises to the asymptotic level of
the unconstrained maximum/minimum (at which point the floor becomes irrelevant). In
view of (1.2), it is natural to ask if this is also the case for the low temperature DG.

Specifically, one can ask for asymptotic bounds refining those of [6] (Eq. (1.2) above),
as well as for tight concentration estimates. Significant progress in this direction was
recently obtained [7–9] for the related Absolute-Value Solid-On-Solid (SOS) model.
There it was shown, amid detailed results on the ensemble of level lines and its scaling
limit, that the maximum concentrates on 1

2β log L while the typical height above a floor
is asymptotically a half of that. Supporting many of those arguments was the fact that, in
the SOS model, the contribution of the h-level lines to the probability of a configuration
η is only a function of the (h − 1)-level and (h + 1)-level lines (enabling an iterative
analysis of the surface, one level line at a time). This is unfortunately absent in the DG
model due to the quadratic terms |ηx − ηy |2, calling for additional ideas.

1.1. Maximum in a box and large deviations in infinite volume. Our first main result is
a 2-point concentration estimate for the maximum of the DG model on a box. (In what
follows, we write f ∼ g to denote that limL→∞ f/g = 1.)

Theorem 1. Fix β > 0 large enough and let XL be the maximum of the DG model on
an L × L box in Z2 at inverse-temperature β. Then there exists some M = M(L) with

M ∼ √
(1/2πβ) log L log log L (1.3)

such that XL ∈ {M, M + 1} with probability going to 1 as L → ∞.

The error probability in the above statement can be taken to be exp[−(log L)1/2−o(1)]
and the integer M(L) such that the maximum XL belongs to {M, M + 1} w.h.p. (and
moreover XL = M w.h.p. for most L’s) is explicitly given as

M = M(L) = max{m ∈ N : π(η0 ≥ m) ≥ L−2 log5 L}. (1.4)

Remark 1.3. For every L except for a subset of logarithmic density 0 of the integers,5

the maximum XL concentrates on a single integer M = M(L) with high probability.

4 This result of [2] applies to sites at distance at least δL from the boundary for some positive δ > 0.
5 The logarithmic density of S ⊂ N, if it exists, is given by limn→∞

∑
k∈S, k≤n 1/(k log n).
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Fig. 1. The low temperature Discrete Gaussian surface conditioned on positive and negative large deviations
(magnified on the right)

Interestingly, upon comparing the estimate (1.3) with the previous bounds (Eq. (1.2)) we
see that they disagree on the order of the maximum by a factor of

√
log log L (similarly

missing also from the result of [6] on the average height above afloor; see ourTheorem2).
This is due to the typical type of large deviations (LD) in the surface: instead of forming
spikes of height h, it is preferable (by a log h factor) for theDGmodel to create “harmonic
pinnacles,” integer approximations of a harmonic variational problem (see Fig. 1), as
seen in the next LD result on π , the infinite-volume DG measure:

π(η0 ≥ h) = exp

[

− (2πβ + o(1))
h2

log h

]

as h → ∞. (1.5)

This estimate (see Theorem 3.1 in Sect. 3) will be the main ingredient in proving The-
orem 1. Comparing (1.3) to (1.5) we see that XL behaves as if the surface consisted of
i.i.d. variables with law π(η0 ∈ ·).

For an explanation of how the extra log h factor arises in Eq. (1.5), see Sect. 1.4
below. It is worthwhile to note a separate consequence of this extra factor vs. the results
in [6]:

Remark 1.4. The convergence of free energyψ� = logZβ,� on a slab� = [−�, �]×Z
2

to ψ∞, the free energy of the infinite-volume DG, satisfies

exp(−c1�
2/ log �) ≤ |ψ� − ψ∞| ≤ exp(−c2�

2/ log �)

for constants c1(β) > c2(β) > 0 (in contrast with the convergence rate of exp(−c�2)
that was stated in [6, Theorem 3.2]; see also [1, p 67] for a discussion on that result).

1.2. Entropic repulsion in the presence of a floor. We now address Question 1.2 re-
garding the conditioning on η ≥ 0 (a floor at 0). Here the analysis is considerably
delicate, and not only do we show a 2-point concentration for the typical height about
H ∼ √

(4πβ)−1 log L log log L (recall that the lower bound of order
√
log L due to [6],

which was correct albeit not sharp, relied on the highly nontrivial Pirogov-Sinaï theory),
but furthermore we describe the shape of the surface in terms of its level lines.

Deferring formal definitions to Sect. 4, the h-level lines are the closed loops that
separate {x : ηx ≥ h} and {x : ηx < h}, and a loop is macroscopic if it is of length
at least log2 L . The DG trivially exhibits local fluctuations (e.g., see Eq. (1.5)), which
we can filter out in our study of the surface shape by restricting our attention to the
macroscopic loops.6

6 The cutoff for macroscopic loops may be set to C log L for a large C(β) without affecting the proofs.
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Beyond those local fluctuations (occurring at an εβ -fraction of the sites for εβ fixed),
we show that the DG surface is typically a plateau at an asymptotic height (1/

√
2)M :

Theorem 2. Fix β > 0 sufficiently large, and consider the Discrete Gaussian model on
an L × L box in Z

2 at inverse-temperature β with a floor at 0. Then there exists some
H = H(L) with H ∼ √

(1/4πβ) log L log log L such that w.h.p.

#{v : ηv ∈ {H, H + 1}} ≥ (1 − εβ)L2, (1.6)

where εβ can be made arbitrarily small as β increases. Furthermore, w.h.p.,

(i) at each height 1 ≤ h ≤ H − 1 there is one macroscopic loop with area (1 −
o(1))L2;

(ii) at height H there is one macroscopic loop with area at least (1 − εβ)L2;
(iii) there is no macroscopic loop at height H + 2 nor any macroscopic negative loop.

In a sense, this plateau behaves as a raised version of the unconstrained surface, e.g.,
the probability that ηx ≥ H + h will be approximately π(η0 ≥ h) and similarly for
ηx ≤ H − h (until capped at the floor). The integer H is explicitly given by

H = H(L) = max {h ∈ N : π(η0 ≥ h) ≥ 5β/L} . (1.7)

Remark 1.5. For every L except for a subset of logarithmic density 0 of the integers,
almost all sites are at level H , namely #{v : ηv = H} ≥ (1− εβ)L2 w.h.p. Furthermore,
for all the non-exceptional values of L we have that the macroscopic loop at height H
has area (1 − o(1))L2, and there is no macroscopic loop at height H + 1.

By combining Theorem 2 (and the comment following it) with Theorem 1 we get that
conditioning on η ≥ 0 tends to increase the maximum XL by a factor of 1+1/

√
2+o(1).

Theorem 3. Fix β > 0 large enough and let X∗
L be the maximum of the DG on an L× L

box at inverse-temperature β with a floor at 0. Let M∗ ≡ M∗(L) = M(L) + H(L),
where M(L), H(L) are given in Theorems 1 and 2. In particular

M∗ ∼ 1 +
√
2

2
√

πβ

√
log L log log L. (1.8)

Then w.h.p X∗
L ∈ {M∗, M∗ + 1, M∗ + 2}.

1.3. Generalizations to random surfaces with |∇η|p-Hamiltonians. Our arguments ex-
tend to the family of random surfacemodels inwhich theHamiltonianH(η) in (1.1) is re-
placed by

∑
x∼y |ηx −ηy |p for any p ∈ (1,∞]. The case p = ∞, i.e., ηx −ηy ∈ {0,±1}

for all x ∼ y, is the restricted SOS (RSOS) model which features rigid interface in high
dimensions at β = 0 [21].

Let M = M(L) and H = H(L) be defined by (1.4) and (1.7) respectively.

Theorem 4. Fix β > 0 large enough and p ∈ (1,+∞]. Let XL be the maximum of the
|∇η|p-model onan L×L box inZ2 at inverse-temperatureβ, let X∗

L be the corresponding
quantity with floor at zero and set M∗ = M +H. Then w.h.p. XL ∈ {M, M +1}, whereas
with a floor X∗

L ∈ {M∗, M∗ + 1, M∗ + 2} and #
{
v : ηv ∈ {H, H + 1}} ≥ (1 − εβ)L2.
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Fig. 2. Large deviations of the height at the origin: from left to right, SOS (spike), DG (harmonic pinnacle)
and RSOS (pyramid)

Model Large deviation M H Ref.
− logπ(η0 ≥ h)

p = 1 (SOS) 4βh + εβ
1
2β log L � 1

4β log L� [7,8]

1 < p < 2 (cpβ + o(1))h p
(
2+o(1)
cpβ

log L
) 1

p
(
1+o(1)

2

) 1
p M Sect. 5.1

p = 2 (DG) (2πβ + o(1)) h2
log h

√
1+o(1)
2πβ

log L log log L 1+o(1)√
2

M Sects. 3 and 4

2 < p < ∞ � βh2 �
√

1
β log L � M Sect. 5.2

p = ∞ (RSOS)
(
4β + 2 log 27

16 + εβ

)
h2 (1 ± εβ)

√
2
c∞ log L

(1±εβ )√
2

M Sect. 5.3

As the theorem proves, while the values of M and H — the centers of the maximum
and the height of the plateau conditioned on η ≥ 0, respectively—vary with p (cf. table
below), the qualitative behavior of a 2-point concentration for the two corresponding
variables is universal.

The next table summarizes our results for general p (see Fig. 2 for the LD comparison
of p = 1, 2,∞).

Remark 1.6. The proof of Theorem 4 for general values of p ∈ (1,+∞] does not require
any additional ideas or techniques w.r.t. the special case of the DG model (p = 2). All
that is needed is the analog of Theorem 3.1, namely a control of the one point and two
points large deviation problems for the infinite-volumemeasureπ . These, in turn, reduce
to variational problems with connections to p-harmonic analysis (for 1 < p < 2) and
Alternating Sign Matrices (ASMs) (for p = ∞, see Fig. 3).

1.4. Ideas from the proofs for the DG. The following heuristics demonstrates the extra
log h factor in the LD result onπ . Suppose first that the height functions were real-valued
on the region Br—the discrete ball of radius r in Z

2 centered at the origin—for some
large integer r . Denoting these by ϕ : Br �→ R, the LD problem is to find

Ir (h) := inf{D(ϕ) : ϕ�Bc
r

= 0, ϕ0 = h} where D(ϕ) =
∑

x∼y

(ϕx − ϕy)
2 ; (1.9)

its minimizer φ is well-known to be the solution of the Dirichlet problem on Br\{0},
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⎛
⎜⎜⎝
0 1 0 0
0 0 1 0
1 −1 0 1
0 1 0 0

⎞
⎟⎟⎠

Fig. 3. Correspondence between the RSOS optimal-energy surfaces, edge-disjoint walks, and (via the six-
vertex model) ASMs

(�φ)�Br \{0} = 0, φ�Bc
r

= 0, φ0 = h,

in which � denotes the discrete Laplacian �φx = 1
4

∑
y∼x (φy − φx ). Therefore, φ

has the explicit representation φx = hPx (τ0 < τ∂Br ), where τ0 and τ∂Br are the hitting
times of the origin and of ∂Br , respectively, for the simple random walk started at x . In
particular, by well-known estimates on the Green’s function (see [18, Prop. 1.6.7]),

φx =
(

1 − log |x | + O(1)

log r

)

h for all x with 1 < |x | < r .

Now let us return to the setting of integer values η : Br → Z, and for the moment
suppose that the real-valued solution φ can be rounded without any loss in the cost
function.However, ifwewant to useφ as a proxy to the integer-valued solution analogous
to (1.9), then it must be truncated to 0 once it drops below 1. Taking |x | = r − 1 (near
∂Br ) and solving φx � 1 using the last display gives r ∼ h/ log h.

Two observations at this point complete the heuristic explanation of (1.5):

(i) the real-valued solution for r � h
log h is Ir (h) ∼ 2πβ h2

log h (our final LD estimate);

(ii) the volume of Br is O(h2/ log2 h), and so the rounding cost (even when charging
2β per bond in Br ) is negligible in comparison with the main term Ir (h).

The essence of proving Theorem 1 is to rigorously establish that the solution to the
integer-valued variational problem is indeed of this form, e.g., that is supported on a ball
of radius O(h/ log h), etc. To that end, we write this solution as φ + σ and bound the
effect of the residue σ using the harmonic properties of the real-valued solution φ.

One of the main keys for proving Theorem 2 is a building block (Proposition 4.5)
that allows us to say that, if h and � are two integers satisfying a specific condition in
terms of the LD rate function for the DG, then a square of side-length � with boundary
conditions h − 1 will contain, with very high probability, an h-level line loop filling
almost its entire area. Namely, the condition that h, � must satisfy is that

4β + 2 ≤ π (η0 ≥ h) � ≤ 4β + 4,

where this relation embodies the entropic repulsion tradeoff between increasing the
height (the large deviation term) and increasing the area (the side-length, governing the
area via an isoperimetric inequality, whence the factor 4 that appears here).
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Our strategy is then to iteratively “grow the surface”, assuming inductively that the
(h − 1)-level line fills almost the entire square and establishing the next level for each
h = 1, . . . , H . In order to raise the surface height from h − 1 to h, we consider a small
enough � × � tile for which the above condition would hold, and apply the above result
to overlapping tilings of the L × L square �L using such tiles; these lead to a single
loop that fills all but a margin of at most � from the boundary of �L .

That the loops at levels 1, . . . , H − 1 have area (1− o(1))L2 is explained by the fact
that the prescribed �× � tile used to establish levels h = 1, . . . , H −1 satisfy � = o(L),
and so it asymptotically fills �L . At the final level H this may no longer be the case,
and indeed there should be values of L where the H -level line will indeed erode linearly
away from the corners, forming a Wulff shape as in the case of the SOS model [8].

1.5. Open problems. The universality of the family of random surface models for p ∈
[1,∞], as discussed above, suggests that the DG should possess many of the features
of the SOS surface. Following the recent understanding in [8], it is plausible that, for
the values of L where the H -level line asymptotically fills the square, it would feature
L1/3+o(1) fluctuations from the boundary of the box; for the exceptional values of L , the
scaling-limit of the H -level line should be the result of a tiling of a properly rescaled
Wulff-shape, whence it would overlap with the boundary near the center-sides while
featuring rounded corners; one would expect L1/3+o(1) fluctuations of the H -level lines
along the straight parts of this limit, and L1/2+o(1) fluctuations along the corners.

1.6. Organization. We decided to follow the route to first discuss in full details the
Gaussian case p = 2 and postpone to Sect. 5 the generalization of Theorem 3.1 (which
in turn implies Theorem 4, cf. Remark 1.6) to the family of |∇η|p-models. After a short
section with the standard notions of contours, monotonicity and FKG inequality, in Sect.
3 we study the maximum of the DG on a box through the related LD question in infinite-
volume, proving Theorem 1. The shape of the DG above a floor, as well as the entropic
repulsion effect on the maximum, is analyzed in Sect. 4, where we prove Theorems 2
and 3.

2. Notation, Monotonicity and Geometric Contours

In this section we collect a minimum of notation and basic techniques. In order to
facilitate the interested reader we have followed the notation of [8] where the SOS
model was analyzed in great detail.

2.1. Notation. We call a bond (resp. dual bond) any straight line segment joining two
neighboring sites in Z

2 (resp. of Z2∗
, the dual lattice of Z2). Here Z

2 and Z
2∗ ≡

Z
2 + (1/2, 1/2) are thought of as embedded in R

2. For any finite � ⊂ Z
2, we denote

by B� ⊂ Z
2 the set of bonds of the form e = xy with x ∈ � and y ∈ � ∪ ∂�, where

∂� is the external boundary of �, i.e. the set of y ∈ �c such that xy is a bond for some
x ∈ �. A box in Z

2 of side length L ∈ N is usually denoted by �L and the location of
its center will be understood from the context. A height configuration τ : �c �→ Z is
called a boundary condition. We define �τ

� as the set of height functions η : Z2 �→ Z

such that η(x) = τ(x) for all x /∈ �. The DG Gibbs measure on �τ
� with boundary
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condition τ is denoted by πτ
� and the average of f : �τ

� �→ R w.r.t. πτ
� by πτ

λ ( f ) if
it exists. When the boundary condition is constant equal to n ∈ N we simply write πn

�
and we will omit the superscript in the special case of zero boundary conditions n = 0.

2.2. Monotonicity. We recall that the DG model satisfies the so called FKG inequal-
ity [12] with respect to the natural partial order defined by η ≤ η′ ⇔ η(x) ≤ η′(x) for
every x . That is, if f and g are two increasing (w.r.t. the above partial order) functions,
then πτ

�( f g) ≥ πτ
�( f )πτ

�(g) for any region� and any boundary condition τ , whereEτ
�

denotes expectation w.r.t. Pτ
�. To prove the FKG inequality one can establish directly

the validity of the FKG lattice condition

πτ
�(η ∨ η′)πτ

�(η ∧ η′) ≥ πτ
�(η)πτ

�(η′). (2.1)

A simple consequence of the FKG inequality is that, for any increasing and bounded
function f , the mapping τ �→ πτ

�( f ) is also increasing.

2.3. Geometric contours, h-contours etc. We use the following notion of contours.

Definition 2.1. Two sites x, y in Z
2 are said to be separated by a dual bond e if their

distance (in R
2) from e is 1

2 . A pair of orthogonal dual bonds which meet in a site
x∗ ∈ Z

2∗
is said to be a linked pair of bonds if both are on the same side of the forty-five

degrees line (w.r.t. to the horizontal axis) across x∗. A geometric contour (for short a
contour in the sequel) is a sequence e0, . . . , en of dual bonds such that:

(1) ei �= e j for i �= j , except for i = 0 and j = n where e0 = en .
(2) for every i , ei and ei+1 have a common vertex in Z2∗

.
(3) if ei , ei+1, e j , e j+1 all have a common vertex x∗ ∈ Z

2∗
, then ei , ei+1 and e j , e j+1 are

linked pairs of bonds.

We denote the length of a contour γ , i.e., the number of distinct bonds in γ , by |γ |, its
interior (the sites inZ2 it surrounds) by Vγ and its interior area (the number of such sites)
by A(γ ). Moreover we let ∂γ be the set of sites in Z

2 such that either their distance (in
R
2) from γ is 1

2 , or their distance from the set of vertices in Z
2∗

where two non-linked
bonds of γ meet equals 1/

√
2. Finally we let ∂+γ = ∂γ ∩ Vγ and ∂−

γ = ∂γ \∂+γ .
Definition 2.2 (h-contour; Cγ,h). Given a contour γ we say that γ is an h-contour (or
an h-level line) for the configuration η, denoting this event by Cγ,h , if

η�∂+γ
≥ h, η�∂−

γ
≤ h − 1.

We call γ a contour if it is an h-contour for some h in η. For the DG model on �L a
contour will be called macroscopic iff it is longer than (log L)2, and we let Mh denote
the event that there exists a macroscopic h-contour.

We will further letM∗ = ∪hMh denote the event there is any macroscopic contour.

Definition 2.3 (Negative h-contour; C−
γ,h). We say that a closed contour γ is a negative

h-contour, denoting this event by C−
γ,h , if

η�∂−
γ

≤ h − 1, η�∂+γ
≥ h,



682 E. Lubetzky, F. Martinelli, A. Sly

Fig. 4. Example of a DG configuration in the 7 × 7 box �3 with zero boundary conditions: white sites have
height 0, shaded sites have height 1 and darker sites have height 2. Notice that according to Definition 2.1
there are three 1-contours and two 2-contours

i.e., the external boundary γ is at least h whereas its internal boundary is at most h − 1.
As before, for the DG model on �L we call γ macroscopic iff it is longer than (log L)2,
and M−

h = denotes the event that there exists a macroscopic negative h-contour.

To illustrate the above definitions with a simple example, consider the elementary
contour given by the square of side 1 surrounding a site x ∈ Z

2. In this case, γ is an h-
contour iff η(x) ≥ h and η(y) ≤ h−1 for all y ∈ {x±e1, x±e2, x +e1+e2, x−e1−e2}.
We observe that a geometric contour γ could be at the same time a h-contour and a h′-
contour with h �= h′. More generally two geometric contours γ, γ ′ could be contours
for the same surface with different height parameters even if γ ∩ γ ′ �= ∅, but then the
interior of one of them must be contained in the interior of the other; see Fig. 4 for an
example.

Lemma 2.4 (Peierls bound). For any γ inside the box �L and any h ∈ Z

π�L (C
±
γ,h) ≤ exp(−β|γ |).

Proof. Fix γ and h and consider the bijection T +
γ : ��L �→ ��L which lowers by one

the heights inside Vγ . Clearly H(T +
γ η) ≤ H(η) − |γ |. Hence

∑

η∈C +
γ,h

π�L (η) ≤ e−β|γ | ∑

η∈C +
γ,h

π�L (T
+
γ η) ≤ e−β|γ |.

Similarly one proceeds for the event C−
γ,h by increasing the heights inside Vγ . ��

In Section 4.1 we will have to prove a Peierls estimate for the probability of having
a h-contour in the presence of a wall, i.e., for the conditional measure π�L (· | η��L

≥
0). That will require a more accurate analysis because of the entropic repulsion effect
produced by the wall.

3. Large Deviations and Proof of Theorem 1

Our main result in this section is the following LD estimate. Throughout this section, we
let ∂Br denote the external boundary of Br (i.e., x /∈ Br with x ∼ y for some y ∈ Br ).
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Theorem 3.1. Fix β large enough and let �(h) := Ih/ log h(h) with Ir (h) as in (1.9).
There exist constants c0, c1, c2 such that, for any integer h ≥ 2 and z ∈ Z

2, z �= 0:

e−c0βh/ log h ≤ π(η0 = h)

π(η0 = h − 1)
≤ e−c1βh/ log h, (3.1)

π(η0 = h) = exp
[
−β�(h) + O

(
h2/ log2 h

)]
, (3.2)

π(ηz = h | η0 = h) ≤ e−c2h2/(log h)2 . (3.3)

Remark 3.2. We emphasize that the sharp large deviation asymptotic for π(η0 = h)

given in (3.2) will be used in the proof of Theorems 1 and 2 only to determine the
precise asymptotic of the quantities M(L) and H(L) around which the maximum and
the typical height of the surface with a floor concentrate. If one is interested only in
the existence of M, H with the prescribed concentration property, as it is the case for
Theorem 4, then the less precise large deviations bounds (3.1) and (3.3) are enough.

As we will next see, Eq. (3.2) above translates into

π(η0 = h) = exp

[

−2πβ
h2

log h
+ O

(
h2

log2 h

)]

(3.4)

by substituting the value of �(h) as given by the following simple lemma.

Lemma 3.3. Set κ = γ + 3
2 log 2 where γ is Euler’s constant. For any r > 0

Ir (h) = 2πh2

log r + κ + O(1/r)
.

In particular, Ir (h) ∼ 2πh2/ log h for any choice of r � h/ log h.

Proof. Let St denote simple random walk in Z
2 and τx = min{t : St = x}, as well as

τA = min{t : St ∈ A}. As mentioned above, it is well-known (see, e.g., [23]) that the
minimizer of (1.9) is the function φ given by φx = hPx (τ0 < τ∂Br ).

By the Strong Markov Property, the Green function GBr (x, y) = ∑τ∂Br −1
k=0 Px (Sk =

y) satisfies GBr (x, 0) = Px (τ0 < τ∂Br )GBr (0, 0), hence

φx = hGBr (x, 0)/GBr (0, 0).

Since φ vanishes on ∂Br , it is easy to verify (see, e.g., [19, Lemma 9.10.1]) that

Ir (r) = D(φ) = −4
∑

x∈Br
φx (�φ)x = −4h(�φ)0,

where the last equality used (�φ)�Br \{0} = 0 and φ0 = h. Next, �GBr (x, 0) = −δ0(x)
since x �→ GBr (x, 0) solves the inhomogeneous Dirichlet problem on Br with zero
boundary conditions and the constraint�ϕ = −δ0 (see [18, Theorem 1.4.6]); combined,

D(φ) = 4h2/GBr (0, 0).

The proof is now concluded by the fact (see [18, Theorem 1.6.6]) that

GBr (0, 0) = 2

π
(log r + κ + O(1/r)) .

��
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Remark 3.4. The same line of arguments in the above proof yields the following estimate
on φx , which will be useful in our proof. Let a(x) = limn→∞(Gn(0) − Gn(x)) denote
the potential kernel, where Gn(x) is the Green’s function. It is known (see, e.g., [18,
Section 1.6]) that

a(x) = 2

π

(

log |x | + γ +
3

2
log 2

)

+ O
(
1/|x |2

)
,

where γ is Euler’s constant, and that a(St ) is a martingale. Thus, by Optional Stopping,

Px (τ∂ < τ0) = log |x | + κ + O
(
1/|x |2)

log r + κ + O(1/r)
, (3.5)

where the O(1/r) in the denominator (vs. the O(1/r2) error in estimating the potential
kernel) is due to the fact that at time τ∂ we can only assert that r ≤ |St | < r + 1 in Z

2

(translating into an O(1/r) additive error through the series expansion of log r ).

Throughout the proof of Theorem3.1, set R = �h/ log h�. As outlined in Sect. 1.4,we
will show that the large deviation problem for the DG measure π is well-approximated
by the real-valued variational problem (1.9) on a ball whose radius is of this order.

3.1. Proof of Theorem 3.1, Eq. (3.1). We begin by proving the lower bound on the ratio
π(η0 = h)/π(η0 = h−1). In what follows, in order to give a sense to partition functions
and Hamiltonians, we will consider the domain BL , the ball of radius L (to be taken large
enough, e.g., L � R) with zero boundary conditions rather than Z

2. Our bounds will
be uniform in L , giving the desired estimates on π in the limit L → ∞. For simplicity
(as L plays no real role) we use the abbreviated form π rather than πBL .

Fix c > 0 and consider the event A in which ηx ≥ λh for all four neighbors of the
origin, where λh := h − 1 − cR/8. For any η ∈ A such that η0 = h − 1 we define
η′
x = ηx + δ0,x so that η′

0 = h and

H(η′) − H(η) = 4 + 2
∑

x : x∼0

(h − 1 − ηx ) ≤ 4 + cR.

Hence, by the FKG inequality,

π(η0 = h)

π(η0 = h − 1)
≥ e−cβR−4βπ(A | η0 = h−1) ≥ e−cβR−4βπ(ηa ≥ λh | η0 = h−1)4,

where a = (1, 0) (say). The sought lower bound would thus follow from showing that

π(ηa ≤ λh | η0 = h − 1) ≤ 1/2 (3.6)

if the constant c entering in the definition of λh is chosen to be large enough.
Given η such that η0 = h−1, define the new variables σ = {σx }x∈BL via the bijection

ηx = φx + σx ,

where φ is the optimizer of the variational problem (1.9) for the ball BR with height
h − 1 at the origin. Notice that σ0 = 0 and that σx = ηx outside the ball BR . Moreover,
using the fact that φ is harmonic inside BR\{0},

H(η) = H(φ) +H(σ ) − 8
∑

x∈∂BR

σx �φx . (3.7)
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Thus, the distribution μ of the variables {σx }x∈BL\{0} can be written as

μ(σ) ∝ exp

[

− β

(

H(σ ) − 8
∑

x∈∂BR

σx �φx

)]

with zero boundary conditions, while insisting that within BR the variables σ must take
values which, after adding φ, become integers. Recalling that φx = hPx (τ0 < τ∂BR )

as well as (3.5), we can now take c sufficiently large so that h − 1 − cR/8 − φa ≤
−(cR/16 + 1). With this choice, we get

π(ηa ≤ λh | η0 = h − 1) ≤ μ
(
σa ≤ −(cR/16 + 1)

)
.

Note that the event {σa ≤ −(cR/16 + 1)} is decreasing (in {σx }x∈BL ) while the function

F(σ ) := exp

(

8β
∑

x∈∂BR

σx �φx

)

is increasing since �φx ≥ 0 for any x ∈ ∂BR . Thus we can apply FKG and get that

μ
(
σa ≤ −(cR/16 + 1)

)
≤ μ̃

(
σa ≤ −(cR/16 + 1)

)
,

where μ̃(σ ) ∝ exp(−βH(σ )) in BL\{0} with zero boundary conditions. To bound the
latter probability from above, we make a final change of variables: for any z ∈ R, put
z = z̄ + {z}, where z̄ ∈ Z and {z} ∈ [−1/2, 1/2). As φx +σx ∈ Z, clearly {σx } = −{φx };
thus, we can write the Hamiltonian of σ̄ = {σ̄x } as

H̄(σ̄ ) := H(σ̄ ) +H({φ}) − 2
∑

x∼y

∇x,y{φ}∇x,y σ̄ , (3.8)

where ∇x,y f = fx − fy . As usual, the constant term H({φ}) does not play any role,
and so the law μ̄ of the variables σ̄ satisfies

μ̄(σ̄ ) ∝ exp

[

− βH(σ̄ ) + 2β
∑

x∼y

∇x,y{φ}∇x,y σ̄

]

.

Altogether, as {σ : σa ≤ −(cR/16 + 1)} ⊂ {σ : σ̄a ≤ −cR/16}, the inequality (3.6)
will follow from showing that

μ̄ (σ̄a ≤ −cR/16) ≤ 1/2. (3.9)

To this end, we compare μ̄ to a slight modification of the measure of the original DG.
Let ν be the Gibbs measure of the non-homogeneous DG model on BL\{0} with zero
boundary condition, in which the coupling constant for bonds inside BR and on its
interface is equal to 1/2 while it is equal to 1 for the bonds outside BR . In other words,
ν(σ̄ ) ∝ exp[−β Ĥ(σ̄ )] in BL\{0} with zero boundary conditions, where

Ĥ(σ̄ ) =
∑

x∼y
{x,y}∩BR=∅

(∇x,y σ̄ )2 +
1

2

∑

x∼y
{x,y}∩BR �=∅

(∇x,y σ̄ )2. (3.10)
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Claim 3.5. There exists some absolute constant D > 0 such that the relative density
dμ̄/dν satisfies μ̄(σ̄ )/ν(σ̄ ) ≤ eDβR2

provided that β is large enough.

Before proving the claim, we observe that, for all β large enough, there exists ε(β) with
limβ→∞ ε(β) = 0 such that, for any pair of nearest neighbors x, y ∈ BR ,

Eν

[
(∇x,y σ̄ )2

]
≤ ε(β), (3.11)

whereEν denotes expectation w.r.t. ν. To see this, consider the Gibbs measure νBL (σ̄ ) ∝
exp[−β Ĥ(σ̄ )] in BL (including the origin) with zero boundary conditions. Claim 3.6
and Remark 3.7 below prove that νBL (σ̄0 = 0) = 1 − ε(β) as well as that

EνBL

[
(∇x,y σ̄ )2

]
≤ EνBL

[σ̄ 2
x ] + EνBL

[σ̄ 2
y ] ≤ ε(β),

so Eν[(∇x,y σ̄ )2] ≤ EνBL
[(∇x,y σ̄ )2]/νBL (σ̄0 = 0) (recall ν = νBL (· | σ̄0 = 0))

gives (3.11).

Proof of Claim 3.5. Letting Zμ̄,Zν denote the partition functions of μ̄ and ν resp.,

μ̄(σ̄ )

ν(σ̄ )
= Zν

Zμ̄

exp

[

−β

( ∑

x∼y
{x,y}∩BR �=∅

1
2 (∇x,y σ̄ )2 − 2∇x,y{φ}∇x,y σ̄

)]

≤ Zν

Zμ̄

ecβR2

for an absolute c > 0, where the inequality followed from the fact that for any a, b we
have 1

2a
2 −2ab ≥ −2b2, and so (using b ∈ [−1/2, 1/2)), the above exponent is at most

exp[ 12βE(BR)], in which E(BR) � R2 is the number of bonds incident to the ball BR .
The ratio Zμ̄/Zν can be bounded from below using Jensen’s inequality by

Zμ̄

Zν

= Eν

[

exp

[

−β

( ∑

x∼y
{x,y}∩BR �=∅

1
2 (∇x,y σ̄ )2 − 2∇x,y{φ}∇x,y σ̄

)]]

≥ exp

[

− β

( ∑

x∼y
{x,y}⊂BR

1
2 Eν

[
(∇x,y σ̄ )2

]
− 2∇x,y{φ}Eν

[∇x,y σ̄
]
)]

,

which in turn is at least e−c′βR2
for some absolute constant c′ > 0 thanks to (3.11). This

completes the proof. ��
Thanks to the above claim, the sought inequality (3.9) follows from the fact that

ν(σ̄a ≤ −cR/16) ≤ e−α(c)R2
for some α(c) with limc→∞ α(c) = ∞,

again using (3.11). This establishes the lower bound on π(η0 = h)/π(η0 = h − 1).
It remains to prove the upper bound in (3.1). We start with a naïve Peierls argument

that gives a weaker bound of ε(β) (vs. the targeted exp(−c1βh/ log h) from (3.1)).

Claim 3.6. For any finite connected subset V , any z ∈ V and any h ≥ 0,

πV (ηz > h) ≤ ε(β)πV (ηz = h) where ε(β) → 0 as β → ∞.

In particular, πV (ηz ≥ h) ≤ 2e−c(β)h with limβ→∞ c(β) = ∞, and by symmetry an
analogous result holds for πV (ηz ≤ h) with h ≤ 0.
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Proof. Fix V as above and fix z ∈ V . If ηz ≥ h for h ≥ 1 then (by the zero boundary)
η contains an h-contour (recall the definition of a j-contour from above, i.e., separating
x ∼ y with ηx < j along its exterior boundary from ηy ≥ j along its interior boundary)
surrounding z. If a fixed circuit γ is an h-contour of η, then the bijection taking η �→ η−1
in the interior of γ decreases theHamiltonian by at least |γ | (as (b−a)2 ≥ 1+(b−a−1)2

for any b ≥ 1 and a ≤ 0). This γ must intersect the x-axis at distance at most |γ |/2
from z, from which there are at most 4|γ | choices for its path, so

πV (ηz = h) ≤
∑

�≥4

�
(
4e−β

)�
πV (ηz = h − 1) ≤ e−βπV (ηz = h − 1),

where the last inequality holds for large enough β, and the desired result follows. ��
Remark 3.7. The above simple argument extends immediately to a modified DG model
with Hamiltonian H(η) = ∑

x∼y Jx,y(ηx − ηy)
2, provided that the coupling constants

(Jx,y) are non negative and uniformly bounded away from zero, e.g., minx,y Jx,y ≥ 1/2.
That is the case of the Hamiltonian in (3.10) associated to the Gibbs measure ν.

To boost this upper bound to its required form, we need the following result.

Lemma 3.8. If β is large enough then, for any h ≥ 1, r ≥ 1 and connected subset V ,

πV (η0 = h) ≤ e− 3
4βrπV (η0 = h − 1) + (1 + ε(β))eε(β)rπBr (η0 = h), (3.12)

where ε(β) → 0 as β → ∞.

Proof. For any η with η0 ≥ 1 let �1 = �1(η) be the outermost 1-contour around the
origin in η. By the same Peierls argument that was used in the proof of Claim 3.6,

πV (η0 = h, |�1| ≥ r) ≤
∑

�≥r

�
(
4e−β

)�
πV (η0 = h − 1) ≤ e− 3

4βrπ(η0 = h − 1)

if β is suitably large. On the other hand, the event |�1| ≤ r implies that in Br there exists
a connected subset � containing the origin with |∂�| ≤ r and η�∂� ≤ 0. Thus,

πV (η0 ≥ h, |�1| ≤ r) ≤ max
0∈�⊂Br|∂�|≤r

πV
(
η0 ≥ h | η�∂� ≤ 0

) ≤ max
0∈�⊂Br|∂�|≤r

π�(η0 ≥ h),

(3.13)
where we used monotonicity to replace the condition {η�∂� ≤ 0} by {η�∂� = 0}.

Finally, observe that for any r ≥ 1 and any sets V2 ⊃ V1 � 0,

πV2(η0 ≥ h) ≥ e−ε(β)|∂V1\∂V2|πV1(η0 ≥ h), (3.14)

since, again by monotonicity (now allowing us to replace {η�∂V1 ≥ 0} by {η�∂V1 = 0}),
πV2(η0 ≥ h) ≥ πV2(η0 ≥ h, η�∂V1\∂V2 ≥ 0) ≥ πV1(η0 ≥ h) πV2(η�∂V1\∂V2 ≥ 0)

≥ πV1(η0 ≥ h)
∏

x∈∂V1\∂V2
πV2(ηx ≥ 0) ≥ e−ε(β)|∂V1\∂V2| πV1(η0 ≥ h),

where the inequality between the lines is by FKG, and the last transition used that
πV2(ηx �= 0) < ε(β) thanks to Claim 3.6. In particular, the right-hand side of (3.13) is
at most eε(β)rπBr (η0 ≥ h), and a final application of Claim 3.6 concludes the proof. ��
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Corollary 3.9. There exists some ε(β) with limβ→∞ ε(β) = 0 such that, for any r ≥ 1,

π(η0 = h) ≥ (1 − ε(β))e−ε(β)rπBr (η0 = h),

whereas for any r ≥ 2c0R with c0 from (3.1),

π(η0 = h) ≤ (1 + ε(β))eε(β)rπBr (η0 = h).

Proof. Letting V1 = Br and V2 = B� in (3.14) gives

π(η0 ≥ h) = lim
�→∞ πB�

(η0 ≥ h) ≥ e−ε(β)rπBr (η0 ≥ h),

and Claim 3.6 extends this lower bound to π(η0 = 0) via an extra (1 − ε(β))-factor.
For the upper bound we appeal to Lemma 3.8, and examine the two terms featured

on the right-hand side of (3.12). We will retain the second term, eε(β)rπBr (η0 = h),
as our main term in the upper bound, while the first term, using our lower bound on
π(η0 = h)/π(η0 = h − 1) from (3.1), is

e− 3
4βrπ(η0 = h − 1) ≤ e− 3

4βr+c0βRπ(η0 = h) ≤ e−βr/4π(η0 = h)

for any r ≥ 2c0R. The latter is at most ε(β)π(η0 = h), which concludes the proof. ��
Lemma 3.10. With Ir (h) as in (1.9), there is a constant c′ > 0 so that, for any r ≥ 1,

exp
(
−β Ir (h) − c′r2

)
≤ πBr (η0 = h) ≤ exp

(
−β Ir (h) + c′r2

)
.

Proof. As before, we let φ be the optimizer of the variational problem (1.9) in Br and
let σx = ηx − φx . The representation of the Hamiltonian in (3.7) shows that

H(η) = H(φ) +H(σ ) − 8
∑

x∈∂BR

σx �φx = Ir (h) +H(σ ),

where the sum vanished since η�Bc
r

= φ�Bc
r

= 0 (and in particular σ �∂Br = 0). Hence,

πBr (η0 = h) = e−β Ir (h) 1

ZBr

∑

σ : σ0=0

e−βH(σ ).

Since 1 ≤ ZBr ≤ edr
2
for some constant d > 0 (e.g., one can replace the sum over the

configuration η inZBr by a sumover its gradients (∇x,yη)x∼y where all the compatibility

constraints of the gradients are ignored, so ZBr ≤ [∑a∈Z e−βa2 ]|Br |), it will suffice to
show that the sum above is bounded between e−d ′r2 and ed

′r2 for some other d ′ > 0.
Writing σx = σ̄x − {φx } with σ̄x ∈ Z and {φx } ∈ [−1/2, 1/2), for the lower bound

we simply take σ with σ̄x = 0 (i.e., σx = −{φx }) for all x , whence of course σ0 = 0
and

e−βH(σ ) = e−β
∑

x∼y(∇x,y{φ})2 ≥ e−β|E(Br )|,

where E(Br ) denotes the number of bonds incident to Br .
For the upper bound, we infer from (3.8) that

H(σ ) = H(σ̄ ) +H({φ}) − 2
∑

x∼y

∇x,y{φ}∇x,y σ̄ ≥ 1
2H(σ̄ ) − H({φ})
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using 1
2a

2 − 2ab ≥ −2b2 for any a, b ∈ R. Thus,

∑

σ :σ0=0

e−βH(σ ) ≤ eβ|E(Br )| ∑

σ : σ0=0

e− 1
2βH(σ̄ ) ≤ eβ|E(Br )|+d ′r2

again using the above mentioned fact that Zβ/2,Br ≤ ed
′r2 for some fixed d ′ > 0. ��

Let r = δR for a fixed (small) δ > 0. Recalling Ir (h) = (2π +O(1/r))h2/(log r +κ)

from Lemma 3.3, we get that Ir (h) ≥ IR(h) + C(δ)R2 with limδ→0 C(δ) = ∞, since

Ir (h) = (
2π + O( 1

R )
) h2

log R − log( 1
δ
) + κ

= IR(h) + O(h) + (2π + o(1)) log( 1
δ
)R2.

Thus, by Lemma 3.10,

πBr (η0 = h) ≤ e−R2
πBR (η0 = h)

provided δ is chosen to be small enough. Now, for β large enough, by Claim 3.6 we get

πBR (η0 = h) ≤ πBR (η0 = h − 1) ≤ cecRπ(η0 = h − 1),

with the last inequality using the first part of Corollary 3.9. Combining these with (3.12),

π(η0 = h)

π(η0 = h − 1)
≤ e− 3

4βr + e−(δ−2−o(1))r2 = (1 + o(1))e− 3
4βr ,

which concludes the proof of the required upper bound in (3.1). ��

3.2. Proof of Theorem 3.1, Eq. (3.2). Let r = �2c0R�. Corollary 3.9 shows that π(η0 =
h) = πBr (η0 = h) exp(O(R)) while Lemma 3.10 and the fact Ir (h) � R2 log R (by
Lemma 3.3) yield that πBr (η0 = h) = exp(−IR(h) + O(R2)), as required. ��

3.3. Proof of Theorem 3.1, Eq. (3.3). Fix z ∈ Z
2 and let

X := max
x∼z

ηx , Y := min
x∼z

ηx .

Given 0 < δ ≤ 1, define the events F = {X ≤ h} and E = {Y ≥ h − δ
√
h/ log h}.

Since π(Fc) ≤ 4π(η0 ≥ h + 1) by a union bound, we can infer from (3.1) that

π(Fc | η0 = h) ≤ 4π(η0 ≥ h + 1)

π(η0 = h)
≤ O

(
e−c1βh/ log h

)
.

Therefore, it will suffice to establish a similar upper bound on π(ηz = h | η0 = h, F).
Conditioning over the values of the neighbors of z and then using monotonicity yields

π(ηz = h | η0 = h, Ec, F) ≤ e−c′βh/ log h .

Finally, we will bound π(E | η0 = h, F) from above as follows. On one hand we have

π (ηz ≥ h + 1 | η0 = h, E, F) ≥ e−4βδ2h/ log h,
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while on the other hand

π (ηz ≥ h + 1 | η0 = h, E, F) ≤ π(ηz ≥ h + 1 | η0 = h)

π (E | η0 = h, F)
≤ (1 + o(1))e−c1βh/ log h

π (E | η0 = h, F)
,

where the last inequality used π(ηz ≥ h + 1 | η0 = h) ≤ π(ηz ≥ h + 1)/π(η0 = h)

together with the upper bound in (3.1) (via translation invariance in Z
2). Altogether,

π (E | η0 = h, F) ≤ (1 + o(1))e−β(c1−4δ2)h/ log h,

and the proof is completed by choosing δ2 < c1/4. ��

3.4. Proof of Theorem 1. We will show that

M = M(L) = max
{
m ∈ N : π(η0 ≥ m) ≥ L−2 log5 L

}
(3.15)

satisfies the statement of the theorem.
For the lower bound, let us partition �L into disjoint boxes of side-length �log2 L�

(w.l.o.g. we assumewe can do so), and denote by S the set of sites that are at their centers
(whence |S| ∼ L2/ log4 L). Let E be the event that ηy = 0 for all y on the boundary
of these |S| boxes. For each x ∈ S, as its distance to the boundary of its box is of order
log2 L , we claim that one can couple π�(ηx ∈ ·) and π�(ηx ∈ · | E) with probability
1 − O(L−5). This coupling is given, e.g., via finding a maximal circuit of sites around
the origin in the small box, where the heights of the configurations sampled by these
two measures are both zero (thereafter using the identity coupling of the two measures
in the region enclosed by the circuit). We will now argue that such a circuit exists except
with probability exp(−c log2 L).

We first observe that, since the height gradients are at least exponentially suppressed,
there exists with probability 1 − exp(−c log2 L) a circuit C of bonds in the small box
with the properties that: (i) C encircles the origin, (ii) its distance from the boundary
is at most �log2 L�/4 and (iii) the discrete height gradients along C are zero for both
configurations. Indeed, if such a circuit does not exists then it is possible to find a *-path
of bonds of length at least �log2 L�/4 along which one configurations has at least half of
the gradients different from zero. The probability of such an event is O(exp(−c log2 L))

since, for any set of bonds B ∈ B�, π�(ηx �= ηy ∀x ∼ y in B) ≤ exp(−(β|B|/2)
for β large enough (cf. [7, Lemma A.2]). By construction, along the end-points of the
bonds in C both height configurations are constant. If for one configuration the constant
is different from zero then, for that configuration and because of the zero boundary
conditions, we would have a Peierls contour of length at least 2�log2 L�, again an event
of probability O(exp(−c log2 L)).

Altogether,

π�

(⋂

x∈S
{ηx < M}

)

= π�

(⋂

x∈S
{ηx < M} | E

)

+ O(L−3) =
∏

x∈S
π�(ηx < M | E) + o(1),

where we used that, conditionally on E , the events {ηx < M}x∈S are independent.
Similarly, π�(ηx ∈ · | E) and π(η0 ∈ ·) can be coupled with probability 1 − O(L−5),
so
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∏

x∈S
π� (ηx < M | E) =

(
π(η0 < M) + O

(
L−5

) )|S|

=
(
1 − π(η0 ≥ M) + O

(
L−5

) )|S|

≤
[

1 − log5 L

L2 + O
(
L−5

) ]|S|
≤ L−1+o(1) = o(1)

(the inequality between the lines used (3.15)). This completes the lower bound.
The upper bound on XL will follow from a first moment argument. Thanks to (3.1),

π(η0 ≥ M + 2) ≤ π(η0 ≥ M + 1)e−c1β(M+1)/ logM) ≤ L−2e−(log L)1/2−o(1)
.

We wish to transfer such a bound to π�L (ηx ≥ M + 2), x ∈ �L , but we need to
distinguish between sites in the bulk and sites close to the boundary.

If x ∈ �L is at distance at least log L from the boundary, then the decay-of-correlation
results of [4] readily imply that for some c(β) that diverges as β grows,

∣
∣π�L (ηx ≥ M + 2) − π(ηx ≥ M + 2)

∣
∣ ≤ exp (−c(β) log L) . (3.16)

Otherwise, let V = �L ∪ Blog L(x) and use (3.14) (with V1 = �L and V2 = V ) to get

π�L (ηx ≥ M + 2) ≤ Lε(β)πV (ηx ≥ M + 2) ≤ L−2+ε(β)e−(log L)1/2−o(1)
,

where in the last inequality we used the fact that x has distance from the boundary of V
at least log L , again appealing to (3.16). In conclusion,

π�L (XL ≥ M + 2) ≤
∑

x∈�L

π�L (ηx ≥ M + 2) = o(1),

as needed. ��

Remark 3.11. In the proof of Theorem 1 we didn’t use (3.2), that is, the precise asymp-
totics of π(η0 = h) as h → ∞, but rather the weaker statements (3.1) and (3.3). This
will be important for the extension of the result to |∇η|p-models, p ∈ (2,∞], for which
the sharp asymptotic behavior of π(η0 = h) is not known.

4. Entropic Repulsion: Proofs of Theorems 2 and 3

Throughout this section, for any j ∈ N,� j
� = π

j
�(· | η ≥ 0)will denote theDGmeasure

with a floor at height zero and constant boundary conditions at height j . Occasionally
we will use εβ to denote a positive real function of β with limβ→∞ εβ = 0.
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4.1. Tools for level line analysis in theDGmodelwith andwithout a floor. The following
proposition adapts [8, Proposition 2.7] to the DG model. Recall the notation of Section
2.3 and in particular that Cγ,h (C−

γ,h) denotes the event that a given closed contour γ is
a h-contour (a negative h-contour).

Proposition 4.1. Fix j ≥ 0 and consider the DGmodel in a finite connected subset� of
Z
2 with floor at height 0 and boundary conditions at height j ≥ 0. Then, for any closed

contour γ of length |γ | and area A(γ ),

�
j

�

(
Cγ,h

) ≤ exp
[
−β|γ | + π(η0 ≥ h)A(γ ) + e−(

πβ
2 +o(1))h2/ log h |γ | log |γ |

]
, (4.1)

�
j

�

(
C−

γ,h

)
≤ exp

[−β|γ |] . (4.2)

Proof. The estimate for Cγ,h will be an immediate consequence of a Peierls-argument
combined with FKG. Consider the map Tγ which decreases the value of η by 1 in the
interior of γ , that is, (Tγ η)(x) = ηx − 1 if x ∈ Vγ and elsewhere (Tγ η)(x) = ηx .
This map is well defined — and moreover, injective — for any η such that η�Vγ

> 0.

By definition, for any η ∈ Cγ,h such that η�Vγ
> 0 we have �

j
�(Tγ η) ≥ eβ|γ |� j

�(η).
Hence,

∑

η∈Cγ,h
η�Vγ

>0

�
j

�(η) ≤ e−β|γ | ∑

η∈Cγ,h
η�Vγ

≥0

�
j

�(Tγ η) ≤ e−β|γ |.

We will now use monotonicity to get (4.1). Let V in
γ := Vγ \∂+γ and write η±

γ for η�∂±
γ
.

The DLR property implies that

�
j

�(η ∈ Cγ,h, η�Vγ
> 0)

=
π

j
�

(

χ{η−
γ ≤h−1} χ{η��\Vγ

≥0} χ{η+γ ≥h} π
η+γ

V in
γ

(η�V in
γ

> 0)

)

π j (η� ≥ 0)

Bymonotonicity we can lower the boundary conditions η+γ in π
η+γ

V in
γ

(η�V in
γ

> 0) to exactly

h and use the FKG inequality to get that

π
η+γ

V in
γ

(η�V in
γ

> 0) ≥ πh
V in

γ
(η�V in

γ
> 0) = πV in

γ
(η�V in

γ
> −h)

≥
∏

x∈V in
γ

(
1 − πV in

γ
(ηx ≤ −h)

)
=

∏

x∈V in
γ

(
1 − πV in

γ
(ηx ≥ h)

)
.

In conclusion

�
j

�(η ∈ Cγ,h, η�Vγ
> 0) ≥ �

j
�(Cγ,h)

∏

x∈V in
γ

(
1 − πV in

γ
(ηx ≥ h)

)
.

It remains to treat the last expression in the right-hand side above. In Sect. 3 we have
seen thatmaxx∈V in

γ
π0
V in

γ
(ηx ≥ h) ≤ exp[−(πβ/2+o(1))h2/ log h], where the o(1)-term
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goes to 0 as h → ∞. The exponential decay of correlations in the low-temperature DG
model (cf. [4]) then yields that, for instance,

π0
V in

γ
(ηx ≥ h) ≤

{
e−(πβ/2+o(1))h2/ log h if dist(x, γ ) ≤ log |γ |
π (η0 ≥ h) + A(γ )−2 otherwise

provided that β is large enough. Therefore,

∏

x∈V in
γ

(
1 − πV in

γ
(ηx ≥ h)

)
≥ exp

[
− (1 − o(1))e−(

πβ
2 +o(1))h2/ log h |γ | log |γ |

]

× exp
[−π (η0 ≥ h) A(γ )

]
,

implying the required estimate.
The estimate for C−

γ,h is simpler: here the map Tγ which increases the heights in the
interior of γ by 1 reduces the Hamiltonian by at least β|γ |, yet no longer jeopardizes
the floor constraint (hence the absent area term in (4.2) compared to (4.1)). ��

The following straightforward lemma, adapting a part of [8, Lemma 4.2] to the DG
model, will reduce the height histogram of the surface (modulo the obvious local thermal
fluctuations in an εβ -fraction of the sites) to the collection of macroscopic contours.
Recall that Mh denotes the event that there exists a macroscopic h-contour.

Lemma 4.2. Consider the DG model on �L and let h ≥ log log L. Then

��L

( ∑

γ :η∈Cγ,h

A(γ ) ≥ εβL
2 , Mc

h

)

= O(e− log2 L) (4.3)

for some εβ > 0 with limβ→∞ εβ = 0.

Proof. Recall from Proposition 4.1 that for any given γ of length k ≤ log2 L ,

��L (Cγ,h) ≤ exp

[

−βk + π(η0 ≥ h)k2 + e−(
πβ
2 +o(1)) h2

log h k log k

]

= exp [−(β − o(1))k] ,

since logπ(η0 ≥ h) = −(log log L)2−o(1) compared to log k = O(log log L) (and
similarly we have exp(−ch2/ log h)k log k = o(k) for the third term in the exponent);
for large enough L we can therefore use the upper exp(−βk/2) for this event.

Let Nk be the number of h-contours whose length is precisely k ≤ log2 L . There are
at most L24k possible such contours, and so for any integer a ≥ e2L2(4e−β/2)k ,

��L (Nk ≥ a) ≤
∑

r≥a

(
L24k

r

)

e− β
2 kr ≤ e− 3

4 a,

with the last inequality following from the fact that, for any two integers 1 ≤ a ≤ n and
0 < p < 1 such that a ≥ e2np,

∑

r≥a

(
n

r

)

pr ≤ (np)a

a!
∑

k≥0

(np)k

k! = (np)a

a! enp ≤
(
enp

a

)a

enp ≤ e− 3
4 a,
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using (k + a)! ≥ k!a! in the first inequality, Stirling’s approximation in the second one,

and a ≥ e2np in the last one (replacing the first factor by e−a ≤ e−np− 3
4 a). Selecting

ak = e2L2
(
4e− β

2

)k
+ 2 log2 L ,

we now find that

��L (Nk ≥ ak) ≤ e− 3
2 log2 L ,

and a union bound implies that Nk ≤ ak for all k ≤ log2 L except with probability
exp(−( 32 − o(1)) log2 L). On this event, and barring macroscopic h-contours, we have

∑

γ :η∈Cγ,h

A(γ ) ≤
log2 L∑

k=1

akk
2 ≤ εβL

2,

where εβ decreases as O(e−β/2) for large β. This completes the proof. ��
We conclude this subsection by introducing — and thereafter studying — an event

which will be instrumental in estimating the probability that the entire surface rises
above a certain height in the presence of a floor:

P �=h
r =

{
∃P = (x0, . . . , xk) : |xk − x0| ≥ r , |xi+1 − xi | = 1 , ηxi �= h ∀i

}
. (4.4)

That is, P �=h
r is the event that there exists some path of vertices P so that its endpoints

have distance at least r in Z2 and all along it the configuration differs from h.

Lemma 4.3. Let P �= j
r be the event defined in (4.4). If r = log2 L and j ≥ a log log L

for some fixed a > 0 then

�
j

�L

(
P �= j
r , Mc∗

)
= O(e− log2 L),

where M∗ is the event that there exists some macroscopic contour.

Proof. Let � = {γi } be a collection of contours with pairwise disjoint interiors {Vγi }
and lengths at most log2 L each. By Proposition 4.1, for each i we have

�
j

�L

(
Cγi , j+1 , Mc∗

) ≤ e−(β−o(1))|γi | and �
j

�L

(
C−

γi , j−1 , Mc∗
)

≤ e−β|γi |, (4.5)

where the first inequality used A(γi ) ≤ |γi |2/16 ≤ |γi | log2 L combinedwith the bounds

that the two termsπ(η0 ≥ j+1) log2 L and exp
[−(

πβ
2 +o(1)) ( j+1)2

log( j+1)

]
log log L are both

exp
(− (log log L)2−o(1)

)
thanks to our assumption on j and Theorem 3.1 (Eq. (3.2)).

As these are the only two types of contours we will need throughout this proof,
we will simply call a ( j + 1)-contour a plus-contour and a negative ( j − 1)-contour a
minus-contour, and denote the corresponding events by C +

γ and C−
γ , for brevity.

Strengthening (4.5), we claim that for any partition of � into � = �+ ∪ �−,

�
j

�L

( ⋂

γ∈�+

C +
γi

,
⋂

γ∈�−
C−

γi
, Mc∗

)

≤ e−(β−o(1))
∑

i |γi |. (4.6)
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Indeed, the maps Tγ from the proof of Proposition 4.1 can be applied simultaneously
for all {γi }, as their interiors are pairwise disjoint. It is important to note that a dual
edge e cannot belong to two distinct plus-contours γ ′ �= γ ′′ ∈ �+ nor to two distinct
minus-contours γ ′ �= γ ′′ ∈ �−, since that would make them either share a common
interior vertex or violate the definitions of positive/negative h-contours. If e belongs to
a unique γ ∈ � then its contribution to the Hamiltonian will decrease by at least β

following the map T , whereas if it belongs to γ ′ ∈ �+ as well as to γ ′′ ∈ �− (in this
case necessarily e = (x, y) such that ηx = j + 1 and ηy = j − 1) then the change is 4β,
and either way we see that the Hamiltonian decreases by β

∑
i |γi | (here it would have

sufficed to have a contribution of 2β, rather than 4β, from the latter case). As before,
the map must be valid for every γ ∈ �+ — where we should have η�Vγ

≥ 0 — again
resulting in the terms involving A(γ ) and |γ | log |γ |, which as stated above translate to
a 1 + O(L−c) factor, thus substantiating (4.6).

We will apply the above inequality for � that is a subset of external-most contours:
Thanks to the boundary conditions, every x ∈ �L for which ηx �= j is surrounded either
by an external-most plus-contour or by an external-most minus-contour. By definition,
any two such contours have disjoint interiors.

Consider now some path of vertices P = (x1, . . . , xm) as a candidate for fulfilling
the event P �= j

r . By the discussion above, every xi ∈ P must belong to Vγi for some
external-most contour γi such that Cγi , j+1 ∪C−

γi , j−1 holds. Beginning with x1, examine
the contour γ1 and consider the last i such that xi ∈ Vγ1 , i.e., the last time that an edge
xi xi+1 of P intersects an edge of γ1, call that dual edge e1. The key observation is that
e1 must belong to some external-most contour γ2 — with an opposite sign compared to
γ1 — as otherwise there will be a vertex of P (namely, xi+1) that is not encircled by any
external-most plus/minus contour.

Overall, the eventP �= j
r implies that there exists a chain of contours {γ1, . . . , γk}with

pairwise disjoint interiors and alternating signs, such that γi , γi+1 share a common edge
for every i and there are two points a ∈ Vγ1 and b ∈ Vγk whose distance is at least r
(note that these contours need not contain all P). This implies

∑ |γi | ≥ r , we can now
appeal to (4.6) and obtain that

�
j

�L

(
P �= j
r , Mc∗

)
≤ 2L2

∑

k≥1

∑′
γ1,...,γk

e−(β−o(1))
∑ |γi |,

where the L2-term is for the starting point of γ1, the factor 2 is for whether γ1 is a
plus/minus-contour, and

∑′ runs over contours γ1, . . . , γk with alternating signs and
pairwise disjoint interiors, where each γi , γi+1 share a common edge and

∑ |γi | ≥ r .
For a given choice of lengths l1, . . . , lk for these, there are at most 3l1 choices for γ1
(as we rooted it and chose its sign), and thereafter there are at most li−13li for γi (it is
rooted at an edge of its predecessor and its sign is dictated to be the opposite of γi−1).
Altogether, the above probability is at most

�
j

�L

(
P �= j
r , Mc∗

)
≤ 2L2

∑

k≥1

∑

l1,...,lk∑
li≥r

3
∑

li
(∏

li
)
e−(β−o(1))

∑
li

≤ 2L2
∑

k≥1

(∑

l

l
(
3e− 1

2 (β−o(1))
)l
)k

e− 1
2 (β−o(1))r ≤ 2L2e−2r

for large enough β, and recalling that r ≥ log2 L now completes the proof. ��
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4.2. An upper bound on the probability that the DG surface is non-negative.

Proposition 4.4. Consider the DG model on some region V ⊃ �L and define the event
P = P �=h

log2 L
following the notation in Eq. (4.4) for log log L ≤ h ≤ log L. Then

πh
V

(
η ≥ 0 , Pc) ≤ exp

[
− (1 − o(1))π(η0 ≥ h + 1)L2

]
. (4.7)

Proof. Set

� = �log3 L�, �+ = � + 4�log2 L�,
and partition �L into a grid of boxes Q+

i , each of side-length �+ (we assume here
implicitly that L/�+ ∈ N), and let Qi ⊂ Q+

i be the box of side-length � centered in Q+
i

(i.e., at distance 2�log2 L� from ∂Q+
i ).

Let Ci denote the external-most *-connected circuit of sites7

η�Ci
= h, dist(Ci , ∂Q

+
i ) ≤ log2 L . (4.8)

We claim that, under the assumption Pc, necessarily such a circuit Ci ⊂ Q+
i exists.

Indeed, if this were not the case then there would be a chain C ′ crossing the frame of
width log2 L from ∂Q+

i where the heights all differ from h, contradicting Pc.
Condition onCi for each i , thereby de-correlating themarginals of η on their interiors

Vi := VCi , while noting that, crucially, this conditioning does not reveal any information
on ηVi beyond the fact that η�Ci

= h. It now easily follows that

πh
V

(
η ≥ 0 , Pc) ≤

∏

i

sup
Vi

πh
Vi (η ≥ 0) ≤

∏

i

sup
Vi

πh
Vi

(
η�Qi

≥ 0
)
,

where the supremum runs over all possible chains Ci in the aforementioned frame as
given in (4.8). To estimate the probabilities in the right-hand side we appeal to Bonfer-
onni’s inequalities, whence

πh
Vi

(
η�Qi

≥ 0
) ≤ 1 −

∑

x∈Qi

πh
Vi (ηx < 0) +

1

2

∑

x,y∈Qi , x �=y

πh
Vi (ηx < 0, ηy < 0)

≤ 1 −
∑

x∈Qi

πh(ηx < 0) +
1

2

∑

x,y∈Qi , x �=y

πh(ηx < 0, ηy < 0) + O
(
|Qi |2e− log2 L

)
,

where the last inequality used the decay of correlation in the DG model (see, e.g., [4])
to replace the measure πVi by π thanks to the distance of log2 L between Qi and ∂Vi .
The summation over unordered pairs x, y ∈ Qi can be bounded from above by

∑

x,y∈Qi , x �=y
dist(x,y)≤log2 L

πh(ηx < 0, ηy < 0) +

( ∑

x∈Qi

πh(ηx < 0)

)2

+ O
(
|Qi |2e− log2 L

)
,

7 Two vertices x, y ∈ Z
2 are *-neighbors if their Euclidean distance is at most

√
2.
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again by the decay of correlation. Moreover,
∑

x,y∈Qi , x �=y
dist(x,y)≤log2 L

πh(ηx < 0, ηy < 0) ≤
∑

x∈Qi

πh(η0 < 0)
∑

y∈Qi
dist(x,y)≤log2 L

πh (ηy < 0 | ηx < 0
)

= o

( ∑

x∈Qi

πh(η0 < 0)

)

,

using (3.3) and that exp[−h2−o(1)] = o(log−4 L) since h ≥ log log L . In conclusion, as
|Qi |e− log2 L & πh(η0 < 0) for h ≤ log L , we obtain that

πh
Vi

(
η�Qi

≥ 0
) ≤ e−(1−o(1)) |Qi | πh(η0<0) = e−(1−o(1)) |Qi | π(η0≥h+1).

The product over (L/�+)2 = (1+o(1))L2/�2 squares Qi (recalling that |Qi | = �2) now
shows that πh

Vi
(η ≥ 0, Pc) is at most exp[−(1 − o(1))π(η0 ≥ h + 1)L2], as required.

��

4.3. Two-point concentration for the surface height.

Proposition 4.5. Fix ε > 0. If β is large enough and �, h are two integers satisfying

4β + 2

π(η0 ≥ h)
≤ � ≤ 4β + 4

π(η0 ≥ h)
(4.9)

then the following holds. For any circuit of sites C such that |C | ≤ (4 + e−β)� and
V = VC satisfies �� ⊂ V ⊂ ��̄ for �̄ = �� + log2 ��, with probability 1 − O(e− log2 �)

the configuration η ∼ � h−1
V admits an h-contour γ that encapsulates a square�(1−ε)�.

The proof we will use a straightforward isoperimetric estimate which appeared, e.g.,
in [8, Lemma 2.2]); we include its short proof for completeness.

Lemma 4.6. For every ε > 0 there exists some δ > 0 so that the following holds.
Let {γi } be a collection of closed contours with areas A(γ1) ≥ A(γ2) ≥ . . ., and

suppose
∑

i

|γi | ≤ (1 + δ)4L and
∑

i

A(γi ) ≥ (1 − δ)L2.

Then the interior of γ1 contains a square of area at least (1 − ε)L2.

Proof. Observe that
∑√

ai ≥ (
∑

ai )/(max j
√
a j ) holds for any a1, . . . , an ∈ R+,

which together with the Z2 isoperimetric bound A(γ ) ≤ |γ |2/16 yields

(1 + δ)4L ≥
∑

i

|γi | ≥ 4
∑

i

√
A(γi ) ≥ 4

∑
A(γi )√
A(γ1)

≥ 4(1 − δ)L2

√
A(γ1)

.

Rearranged, A(γ1) ≥ ( 1−δ
1+δ

)2L2. The result now follows using [11, Section 2.4, Theorem
on stability of theWulff shape] with the special surface tension F(θ) = | cos θ |+ | sin θ |.
For such an F in fact, the corresponding Wulff functional computed for the contour γ1
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coincides with its length, while the Wulff shape of unitary area is the unit square with
Wulff functional equal to 4. The above mentioned theorem in [11] then says that the
Hausdorff distance between the contour γ1 rescaled by

√
A(γ1) and a suitable translation

of the unit square is at most

8|F(θ)|∞
√|γ1|2 − 16A(γ1)√

A(γ1)
= O(

√
δ).

��
Proof of Proposition 4.5. Set δ = 2/β and let B be the event under consideration, i.e.,
that there exists an h-contour γ such that Vγ ⊃ �(1−ε)�. Further let I be the set of all
contours γ that satisfy

either |γ | > (4 + 30δ)� or

{ |γ | > log2 �

A(γ ) < (1 − 30δ)�2
.

By Lemma 4.6, the combination of |γ | ≤ (4+30δ)� and A(γ ) ≥ (1−30δ)�2 implies B
provided that β is large enough (and hence δ is small enough). Thus, if Bc occurs then
either there is no macroscopic h-contour γ , or some γ ∈ I is such an h-contour, so

� h−1
V (Bc) ≤ � h−1

V

(⋃
γ∈ICγ,h

)
+ � h−1

V

(Mc
h

)
. (4.10)

For the first term in (4.10), we use Proposition 4.1. If (4 + 30δ)� < |γ | < 10� then

� h−1
V (Cγ,h) ≤ exp

[
−β(4 + 30δ)� + π(η0 ≥ h)�̄2 + e−(

πβ
2 +o(1))h2/ log h� log �

]

≤ exp

[

−
(

50 − O
( log2 �

�

)
− e−(

πβ
2 +o(1)) h2

log h log �

)

�

]

= e−(50−o(1))�,

where the second inequality used the upper bound on π(η0 ≥ h) from our hypothesis,
while the last inequality used the fact that exp(−h−2+o(1)) < (log �)−10 for large � (with
room to spare). A union bound over the O(�2310�) possible such γ , yields an overall
estimate of exp(−2�) for

⋃{Cγ,h : (4 + 3δ)� < |γ | < 10�} with room to spare.
Whenever |γ | > 10� we can break the factor exp(−β|γ |) into two equal parts,

utilizing one as above and the other to help with the enumeration over the contours γ ;
namely,

� h−1
V (Cγ,h)≤exp

[
−
(
β/2−e−(

πβ
2 +o(1))h2/ log h log �

)
|γ |

]
e−(β−4)� ≤ e−(β/2−o(1))|γ |,

and so
∑

k≥10�
∑

|γ |≥k � h−1
V (Cγ,h) = O(exp(−�)), when β is large.

Finally, if |γ | > log2 � and A(γ ) < (1 − 3δ)�2 we write A(γ ) <
√
1 − 3δ �̄|γ |/4,

yielding

� h−1
V (Cγ,h) ≤ exp

[

−β

(

1 − π(η0 ≥ h)
√
1 − 3δ �̄

4β
+ e−(

πβ
2 +o(1))h2/ log h log �

)

|γ |
]

≤ exp
[
−β

(
1 − (1 + δ/2)

√
1 − 3δ + o(1)

)
|γ |

]
= e−β

(
δ−O(δ2)

)|γ |,
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with the second inequality again stemming from our upper bound on π(η0 ≥ h). This is
equal to exp[−(2−εβ)|γ |]where εβ = O(1/β) and so, for largeβ, this easily outweighs
the enumeration over the contour γ including its starting position (since |γ | > log2 �).

Altogether we have shown that � h−1
V (

⋃
γ∈I Cγ,h) < O(e− log2 �) and can now turn

our attention to the second term in (4.10). Given our boundary conditions at height h−1,
if there are no macroscopic h-contours and yet there are macroscopic contours for some
h′ �= h then there necessarily must exist some macroscopic negative contour. This, in
turn, has probability O(exp(− log2 �)) for large enough β thanks to (4.2); thus,

� h−1
V

(Mc
h

) = � h−1
��

(Mc∗
)
+� h−1

V (M∗\Mh) ≤ � h−1
V

(Mc∗
)
+O

(
e− log2 �

)
. (4.11)

To estimate � h−1
V (Mc∗) we consider whether the event P = P �=h−1

log2 L
from (4.4) (a path

along which η �= h − 1 connecting points at distance at least log2 L in �L ) occurs or
not, abbreviating it here by P . By Lemma 4.3, � h−1

V

(Mc∗ , P) = O(e− log2 �), so

� h−1
V

(Mc∗
) ≤ � h−1

V

(Pc) + O
(
e− log2 �

)
. (4.12)

It remains to assess the probability ofPc, to which end we will leverage Proposition 4.4.

Put Z j
V for the partition function restricted to configurations on V with boundary con-

ditions j (we omit this superscript when j = 0 and there is no ambiguity) and a floor at
0, and similarly for Z j

V (in the absence of a floor), whence

� h−1
V

(Pc) = Zh−1
V πh−1

V (η ≥ 0 , Pc)

Zh−1
V

= ZV

Zh−1
V

πh−1
V

(
η ≥ 0 , Pc) ,

where Zh−1
V = Z0

V due to translation invariance. Observe that if V� = V \∂V (the

subset of V excluding the sites adjacent to its boundary) then Zh−1
V ≥ e−β|∂V |Zh

V�
by

restricting our summation to configurations with value h along ∂V . Thus,

Zh−1
V ≥ e−β|∂V | Zh

V�
πh
V�

(η ≥ 0) ≥ e−β|∂V | ZV�

∏

x∈V�

πV� (ηx ≥ h + 1)

≥ exp

[

−β|∂V | − π(η0 ≥ h + 1)|V�|2 − e−(
πβ
2 +o(1)) h2

log h � log �

]

ZV� ,

where the second inequality is by FKG and the � log � error term arises due to points
close to ∂V� where the approximation of πV� via the infinite-volume measure π fails
(exactly as in the proof of Proposition 4.1). In our situation h ≥ log log � for large � (our
hypothesis (4.9), in view of Theorem 3.1, in fact shows that h = (log �)1/2+o(1)), making
the pre-factor of � log � in the above exponent be less than, say, (log �)−10. Moreover,
|V�| = �2 + O(� log2 �) (being sandwiched between ��\∂�� and ��̄\∂��̄) whereas
π(η0 ≥ h + 1) = �−1+o(1), and from the last two estimates we now get that

� h−1
V

(Pc) ≤ ZV

ZV�

exp
[
β|∂V | + π(η0 ≥ h + 1)�2 + o(�)

]
πh−1
V

(
η ≥ 0 , Pc) .

The last term is handled by Proposition 4.4, according to which this probability is
at most exp

[−(1 − o(1))π(η0 ≥ h)�2
]
. Finally, it is well-known (see, e.g., [4]) that

ZV ≤ ZV� exp(εβ |∂V |) since the cluster-expansion of these partition functions agrees
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everywhere except on clusters incident to ∂V ,whose contribution to the partition function
is exp(εβ) provided β is large (this can alternatively be seen by forcing the configuration
of η ∼ πV to be 0 along ∂V at a cost of exp(−εβ |∂V |)). Altogether,
� h−1

V

(Pc) ≤ exp
[

− (
(1 − o(1))π(η0 ≥ h) − π(η0 ≥ h + 1)

)
�2 +

(
β + εβ

) |∂V | + o(�)
]

≤ exp
[

− (1 − o(1))π(η0 ≥ h)�2 + (4β + ε′
β)�

]
,

where for the inequality in the second line we used π(η0 ≥ h + 1) & π(η0 ≥ h) and
|∂V | ≤ (4 + e−β)�. The lower bound on π(η0 ≥ h) now implies that

� h−1
V

(Mc∗
) ≤ exp

[
−
(
2 − ε′

β − o(1)
)

�
]
,

and revisiting (4.10)–(4.12) we conclude that � h−1
V (Bc) = O(e− log2 �), as required.

��
Lemma 4.7. Let V be a region containing the square ��, fix β large enough and set
�̄ = �� + log2 ��. Let Q� denote the event that η ∼ πV admits a circuit of sites C with

η�C = 0, �� ⊂ VC ⊂ ��̄, |C | ≤ (
1 + e−β

)
4�.

Then πV (Q�) = 1 − O(e− log2 �).

Proof. As already used above, the probability that a given γ is an external-most contour
(positive or negative) in η ∼ πVϕ is at most exp(−β|γ |). Hence, the probability that
�� is surrounded by a positive or negative external-most contour γ (which must then
satisfy |γ | ≥ 4� as well as intersect the x-axis of the bottom face of �� at distance at
most |γ |/2 to its right, for instance) is at most

2
∑

|γ |≥4�

|γ |
2
3|γ |e−β|γ | = O

(
e−�

)

for large enough β (here the first factor of 2 accounted for the sign of γ ).
Similarly, setting δ = e−β , the probability that ∂�� is incident to any collection of

external-most contours (positive or negative) of total length at least δ� is at most

∑

k≥1

2k
∑

γ1,...,γk∑ |γi |≥δ�

e−β
∑

γi ≤ e− β
2 δ�

∑

k≥1

(
4�

k

)(

2
∑

r≥4

(
3e− β

2

)r
)k

,

where the restriction r ≥ 4 comes from the minimal length of a closed contour γi . For
large β the inner summation over r is at most ce−2β and the entire summation over k is
at most exp

[
c′e−2β�

]
, translating the above estimate into exp

[− (β
2 δ − c′e−2β

)
�
]
. By

our choice of δ = e−β we see that the pre-factor of � is positive for large enough β.
The fact that η ≡ 0 outside of its external-most contours implies that one can form

C by following ∂�� while detouring around the external-most contours it intersects, so
that |C | ≤ 4� + e−β� with probability 1 − O(exp(c�)) for some c(β) > 0. Moreover,
for C defined in this way to step beyond the box ��̄ we must find an external-most
contour incident to ∂�� whose length is at least log2 �, an event whose probability is
O(�e−β log2 �) under πVϕ . This concludes the proof. ��
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4.4. Proof of Theorem 2. Set H = H(L) as in (1.7) to be the maximum integer such
that π(η0 ≥ H) ≥ 5β/L . Observe that by (3.1)–(3.2) we have

π(η0 ≥ H − 1) ≥ exp[(log L)1/2−o(1)]
L

, π(η0 ≥ H + 2) ≤ exp[−(log L)1/2−o(1)]
L

.

Next, define

� =
⌊

4β + 3

π(η0 ≥ H − 1)

⌋ (
= L−1+o(1)

)
,

and note that � and h = H − 1 satisfy the relation (4.9) for large enough L (the lower
bound holds provided π(η0 ≥ h) is small enough, our case here as H → ∞ with L).
We will sequentially show a high probability for the eventR j ( j = 0, . . . , H −1) given
by

R j = {∃ a circuit of sites C : η�C ≥ j, VC ⊃ �L− j�
}
.

Of course, ��L (R0) = 1, and therefore it will hence suffice to show that

��L (Rc
j , R j−1) = O

(
e− log2 �

)
for any j = 1, . . . , H − 1 (4.13)

in order to deduce ∩ j<HR j via a union-bound over the (log L)1/2+o(1) possible j’s.
To prove (4.13), expose all the external-most circuits C0 in �L where η�C0

≥ j − 1.
The event R j−1 says that the area of (precisely) one of these circuits of sites will be at
least [L − �( j − 1)]2 = (1− o(1))L2. Crucially, on this event, our only information on
the configuration in the interior of this circuit C0 is that η�∂VC0

≥ j − 1.
Next, consider some square �� ⊂ VC0 . We wish to find a circuit of sites S tightly

encapsulating�� such that η�S ≥ j−1. To this end, bymonotonicity we can remove the
floor, and further set the boundary conditions on VC0 to be exactly j −1. An application

of Lemma 4.7 now finds that with probability 1 − O(e− log2 �) the event Q� holds, i.e.,
there exists such an S (in fact, one satisfying η�S = j − 1) for which

|S| ≤ (1 + e−β)4�, �� ⊂ VS ⊂ ��+log2 �. (4.14)

Back in the setting of ��L and a given ��, condition on the external-most such circuit
S within the bigger box ��+log2 � satisfying (4.14), guaranteed to exist with probability

1 − O(e− log2 �). (As before, this reveals no information on the interior of VS .)
Our next goal is to find a large circuit of sites C1 in VS such that η�C1

≥ j and
VC1 ⊃ �(1−ε)� for some small ε > 0. For this purpose, again by monotonicity, we
may drop the floor to height j − (H − 1) (thus translating the distribution on VS to
� h−1

VS
for h = H −1). The aforementioned properties of S now justify an application of

Proposition 4.5, which shows that the sought C1 exists with probability 1−O(e− log2 �).
Recalling that � = L−1+o(1), the aforementioned probabilities of O(e− log2 �) support

a union bound over all possible locations for the box �� ⊂ �L . Clearly, for each pair of
such boxes with a side-length overlap of �/2, the two respective circuits must intersect,
and altogether we obtain the following: If VC0 ⊃ �r for some r , then there is a single
circuit along which η ≥ j whose interior contains �r−� (the outer frame of width �/2
in �r was waved in this argument). By the definition of the event R j we can take r to
be L − ( j − 1)�, and (4.13) now follows.
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So far we have shown that with probability 1− e−c log2 � the eventRH−1 occurs, i.e.,
there is a single circuit C encapsulating an area of (1− o(1))L2 such that η�C ≥ H − 1.
To get from level H−1 to level H we apply a similar strategy, except now the designated
�we choose will satisfy (4.9) w.r.t. h = H . Recalling that Lπ(η0 ≥ H) ≥ 5β, starting at
� = L and repeatedly decreasing � by 1modifies the right-hand side that was initially 5β
by L−1+o(1) in each step, and so certainly it is feasible to find such an �, which will range
from about 4

5 L (when π(η0 ≥ H) is close to 5β/L) to about L/e−cH/ log H = L1−o(1).
The conclusion is now that there exists a single circuit C such that η�C ≥ H and
VC ≥ (1− ε)L2, where ε can be made arbitrarily small provided that β is large enough.
We have thus proved that w.h.p. the configuration η ∼ ��L contains an (H−1)-contour
of area (1 − o(1))L2 and an H -contour of area at least (1 − ε)L2.

As for level H +2, by definition π(η0 ≥ H +1) < 5β/L , and it follows fromEq. (3.1)
in Theorem 3.1 that

π(η0 ≥ H + 2) = o(1/L).

Further note that H ≥ √
log L for large enough L , whereas log |γ | = O(log L), and so

the last term in (4.1) is o(|γ |). The fact that A(γ ) ≤ |γ |L/4 then implies that

��L (γ ) ≤ e−(β−o(1))|γ |,

and summing over all macroscopic contours γ rules out the eventMH+2 except with the
usual probability of O(e− log2 �). Similarly, within the aforementioned H -contour there
are no macroscopic negative contours, as again each such potential γ has a probability
of e−β|γ |. The proof is therefore completed by Lemma 4.2. ��

4.5. Proof of Theorem 3. Recall that X∗
L denotes the maximum height with floor at

zero and that M∗(L) = M(L) + H(L), where M ≡ M(L) and H ≡ H(L) appear
in Theorems 1 and 2. The proof of Theorem 2 shows that, w.h.p. w.r.t. the conditional
Gibbs measure ��L = π�L (· | η ≥ 0), for large enough β there exists a circuit C of
sites encircling an area greater than, e.g., 9

10 L
2 such that the heights there are at least

H . By conditioning on the external most one of such circuits and by using monotonicity
to decrease the height along the circuit to H and to remove the floor (and thereafter
translating all heights by H in the interior),

��L (X
∗
L < M∗) ≤ o(1) + max

V
πV (max

x∈V ηx < M) = o(1),

where the maximum is taken over all connected set V ⊂ �L such that |V | ≥ 9
10 L

2, and
the last inequality follows from the proof of Theorem 1 (valid uniformly in V ).

Next wewrite��L (X
∗
L > M∗+2) ≤ ∑

x∈�L
��L (ηx ≥ M∗+3) andwe bound each

term separately. Given x ∈ �L , there exists a positive constant κ independent of β such
that, with ��L -probability greater than 1 − O(1/L3) there exists a *-circuit Cx around
x such that dist(x, Cx ) ≤ κ log L , |Cx | ≤ 10κ log L and ηy ≤ H + 1 for all y ∈ Cx .
Indeed, the opposite event would imply the existence of a chain of sites (containing x) of
length greater than κ log L where the height is at least H + 2 which, in turn, implies the
existence of an (H + 2)-contour of length at least κ log L . The probability of the latter
satisfies the required bound for κ large enough because of Proposition 4.1 and the choice
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of H . By conditioning on the external most of such circuits and using monotonicity to
raise the height along the circuit to height H + 1, we finally get

��L (ηx ≥ M∗ + 3) ≤ 1/L3 + max
V

� H+1
V (ηx ≥ M∗ + 3),

where the maximum is over all connected sets V � x with cardinality O(log2 L) if
dist(x, ∂�) ≤ κ log L and over all connected sets V � x with cardinality O(log2 L) and
such that dist(x, ∂V ) ≥ κ

2 log L if dist(x, ∂�) ≥ κ log L . Finally we bound

� H+1
V (ηx ≥ M∗ + 3) ≤ πV (ηx ≥ M + 2)

πH+1
V (ηy ≥ 0 ∀y ∈ V )

≤ πV (ηx ≥ M + 2)
∏

y∈V πH+1
V (ηy ≥ 0)

= πV (ηx ≥ M + 2)
∏

y∈V (1 − πV (ηy ≥ H + 2))
,

where in the last inequality we used the FKG inequality. We now appeal to the same
steps used in the second part of the proof of Theorem 1 to obtain that πV (ηy ≥ H + 2)
is at most Lε(β)π(η0 ≥ H +2) for every y ∈ V , so that the denominator above becomes
1 − o(1) as L → ∞. By the exact same argument, applied this time for the numerator,
we find that

∑
x∈V πV (ηx ≥ M + 2) = o(1), concluding the proof. ��

5. Extension of Theorem 3.1 to |∇η| p-Models for p ∈ (1, +∞]

In this section we extend our main large deviation result Theorem 3.1 to |∇η|p-models
for all values of 1 < p ≤ ∞, including the restricted Solid-on-Solid model (p = ∞).
As explained before (cf. Remark 1.6), once this extension is available then the proof of
Theorem 4 follows exactly as for the Discrete Gaussian case p = 2.

In the sequel M = M(L) and H = H(L) will denote the two integers (cf. (1.4) and
(1.7) respectively) around which the maximum without a floor and the typical height
with a floor concentrate.

5.1. Between SOS and the Discrete Gaussian (1 < p < 2). We begin with the case of
1 < p < 2 in which large deviations of the surface are formed by thin spikes which are
of a constant width for most of their height but unlike the case of p = 1 have a growing
width at their base.

Theorem 5.1. Fix 1 < p < 2 and β = β(p) > 0 large enough. There exists cp > 0
such that, for η given by the |∇η|p-model in Z2 at inverse-temperature β and any z �= 0,

π (η0 ≥ h) = exp
(−(cpβ + o(1))h p) , (5.1)

π(η0 = h)

π(η0 = h − 1)
≤ e−cβh p−1

, (5.2)

π(ηz = h | η0 = h) ≤ e−cβh p−1
. (5.3)

An immediate consequence of the large deviation result is the following.

Corollary 5.2. As L → ∞ we have

M(L) ∼
(
2 + o(1)

cpβ
log L

)1/p

, H(L) ∼
(
1 + o(1)

cpβ
log L

)1/p



704 E. Lubetzky, F. Martinelli, A. Sly

Proof of Theorem 5.1. We begin by proving the single site large deviation (5.1). We first
need an auxiliary technical lemma.

Lemma 5.3. Suppose that η0 ≥ 1 and let �1 be the outermost 1-contour encircling the
origin. Then there exists a constant C > 0 such that,

π(|�1| > Chp−1 | η0 ≥ h) ≤ e−βh p−1
.

Proof Using a standard Peierls-type argument — a straightforward adaptation of the
proof of [4] — we have

π(η0 ≥ h) ≤ C exp(−4βh). (5.4)

We begin by controlling the size of |�1|, Suppose that η0 = h and ηx ≤ −h for some
x ∼ 0. Then there must exist nested negative (−i)-contours γi (η) for 1 ≤ i ≤ h which
each contain x but not 0. Consider the map

(
T{γi (η)}σ

)
y = σy +

h∑

i=1

1{y∈Vγi }.

Applying T{γi (η)} to η, the Hamiltonian decreases by at least one at every point along
each γi , and also by at least h p along the bond from 0 to x , so

π(T{γi (η)}η) ≥ π(η)eβ(h p−h+
∑h

i=1 |γi |).

Therefore,

P (ηx ≤ −h | η0 = h) ≤
∑

{γi }�=∅
P (η0 = h) e−β(h p−h+

∑h
i=1 |γi |) ≤ P (η0 = h) e−β(h p−h).

Next, let T ′ denote the map
(
Tγ η

)
y = ηy − 1{y∈Vγ } + 1{y=0},

applied when η0 = h and γ = �1. This map forces down the outermost 1-contour and
then raises the origin by 1 (overall leaving the origin at h, unchanged). Then for η with
η0 = h and minx∼0 ηx ≥ −h,

π(T�1(η)) ≥ π(η)e−β|�1|+4βp(2h)p−1
,

and hence for large enough C(β, p) we have that

π(|�1| > Chp−1 | η0 ≥ h) ≤ π(min
x∼0

ηx ≤ −h | η0 = h) +
∑

γ :|γ |≥Chp−1

e−β|γ |+4βp(2h)p−1

≤ e−βh p−1
, (5.5)

as required. ��
Nowwe defineφ∗ : Z2 → R to be the uniqueminimizer of E(φ) = ∑

x∼y |φx−φy |p
subject to φ0 = 1 and lim|x |→∞ φx = 0 (see, e.g., [23, pp. 176–178]). The next lemma
finishes the proof of the single site large deviation (5.1).
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Lemma 5.4. For any ε > 0 and large enough h,

e−β(E(φ∗)+ε)h p ≤ π(η0 = h) ≤ e−β(E(φ∗)−ε)h p
.

Proof. Fix R = Chp−1 so that Eq. (5.5) holds. As in the proof of Corollary 3.9 we have
that π(ηBR = 0) ≥ e−R2

. For large enough R we can find a finitely supported φ f such
that the support of φ f is contained in BR−1 and E(φ f ) − E(φ∗) ≤ ε/2. Then

π(η0 = h) ≥ π
(
ηBR = �φ f h�) = π(ηBR = 0)e−βE(�η f h�) ≥ e−β(E(φ∗)+ε)h p

.

For the upper bound, by Eq. (5.5) we use the fact that we can lower bound the energy
by h pE(φ∗). We also know that given η0 ≥ h w.h.p. there exists a circuit of radius at
most R around the origin on which η is non-positive. Hence, by monotonicity,

π(η0 ≥ h) ≤ max�⊂BR π� (η0 ≥ h)

π (|�1| ≤ R | η0 ≥ h)
≤ 2 max

�⊂BR
π�

(
max
x∈�

ηx ≥ h2
)

+ 2e−βh p E(φ∗)(2h2 + 1)|�|

≤ e−β(E(φ∗)−ε)h p
,

where we used Eq. (5.4) to bound the probability that it exceeds h2, that h pE(φ∗) is a
lower bound on the energy and the fact that |�| = O(h2(p−1)). ��

Next we prove the ratio large deviation bound (5.2). It is easy to see that for all
x �= 0 the value of φ∗

x must be strictly less than the maximum of its neighbours. Let
κ = 1 − maxx∼0 φ∗

x > 0. By the uniqueness of φ∗, for some δ > 0 we have

sup
φ:φ0=1

maxx∼0 φx>1−κ/2

E(φ) ≥ E(φ∗) + δ,

where the supremum is over all finitely supported φ. Similarly to Lemma 5.4

π

(

η0 ≥ h , max
x∼0

ηx ≥ (1 − κ/2)h

)

≤ π (|�1| ≥ R | η0 ≥ h) π(η0 ≥ h)

+ 2 max
�⊂BR

π�

(
max ηx ∈ � ≥ h2

)

+ 2e−βh p(E(φ∗)+δ)(2h2 + 1)|�|

≤ e−βh p−1
π(η0 ≥ h).

Hence, by considering the map T (η)(x) = ηx − 1{x=0} we have that, whenever η0 = h
and maxx∼0 ηx < (1 − κ/2)h],

π(Tη) ≥ eβp(κ/2h p)p−1
π(η),

and so

π(η0 ≥ h) ≤ π

(

η0 ≥ h , max
x∼0

ηx ≥ (1 − κ/2)h

)

+ e−βp(κ/2h p)p−1
π(η0 ≥ h − 1)

≤ e−cβh p−1
π(η0 ≥ h − 1),

thus establishing (5.2).
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We conclude the proof of the theorem by establishing the two sites large deviation
bound (5.3).

The proof is similar to the proof of Eq. (3.3) in Theorem 3.1 where we give more
detailed explanations. Fix z ∈ Z

2, z �= 0, and let

X := max
x∼z

ηx , Y (η) := min
x∼z

ηx .

Given 0 < δ ≤ 1, define the events F = {X ≤ h} and E = {Y ≥ h − δh
p−1
p }. Similarly

to before and using (5.3) we get that π(Fc | η0 = h) ≤ O
(
e−c1βh p−1

)
. Therefore, it

will suffice to establish a similar upper bound on π(ηz = h | η0 = h, F). Conditioning
over the values of the neighbors of z and then using monotonicity yields

π(ηz = h | η0 = h, Ec, F) ≤ e−c′δ ph p−1
.

Finally, we will bound π(E | η0 = h, F) from above as follows. On one hand we have

π (ηz ≥ h + 1 | η0 = h, E, F) ≥ e−4c2βδ ph p−1
,

while

π (ηz ≥ h + 1 | η0 = h, E, F) ≤ π(ηz ≥ h + 1 | η0 = h)

π (E | η0 = h, F)
≤ (1 + o(1))e−c1βh p−1

π (E | η0 = h, F)
,

where the first inequality uses FKG and that F is a decreasing event. Combining the last
two displays gives

π (E | η0 = h, F) ≤ (1 + o(1))e−β(c1−4c2δ p)h p−1
,

and the proof is completed by choosing c2δ p < c1/4. ��

5.2. Between the Discrete Gaussian and Restricted SOS (2 < p < ∞).

Theorem 5.5. Fix 2 < p < ∞ and β(p) > 0 large enough. There exist c1, c2, c3, c4 >

0 so that, for η given by the |∇η|p-model in Z2 at inverse-temperature β and any z �= 0,

e−c1βh2 ≤ π(η0 = h) ≤ e−c2βh2 . (5.6)

π(η0 = h)

π(η0 = h − 1)
≤ e−c3βh, (5.7)

π(ηz = h | η0 = h) ≤ e−c4βh . (5.8)

Using the definition of the integers M, H we immediately get

Corollary 5.6. As L → ∞,

M(L) �
√

1

β
log L, H(L) �

√
1

β
log L.

Proof of Theorem 5.5. Let γ1, . . . , γh be a collection of nested contours containing the
origin and let �e denote the number of γi that the dual edge e is contained in. Let
E({γi }) = ∑

e �
p
e .
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Claim 5.7. For all p > 2, there exists c(p) > 0 such that for all collections of nested
clusters γ1, . . . , γh containing the origin,

E({γi }) ≥ ch2. (5.9)

Moreover, for all c′ there exists ε(c′, p) > 0 such that if γh/2 ⊂ Bεh then E({γi })
≥ c′h2.
Proof. Let rk be themaximal distance of γh(1−2−k) from the origin. As E({γi }) ≥ ∑ |γi |
it follows that

E({γi }) ≥ 1

2
hr1, (5.10)

so we may assume that r1 = O(h). Let k∗ be the k which maximizes r2−p
k 2−kp. Then

rk+1
rk

≥ 2
−p
p−2 . Since r1 = O(h) it follows that

r2−p
1 2−p > 2−�log2 h�p ≥ r2−p

�log2 h�2
−�log2 h�p

and hence k∗ < �log2 h�.
Note that for all (1 − 2−k)h ≤ i ≤ h the edges in γi lie inside Brk and for all

(1− 2−k)h ≤ i ≤ (1− 2−k−1)h the contour lengths satisfy |γi | ≥ rk+1. Hence we have
that

E({γi }) ≥
∑

e∈Brk
�

p
e ≥ max

k

⎛

⎝

∑(1−2−k−1)h
i=(1−2−k )h

|γi |
|Brk |

⎞

⎠

p

|Brk |

≥ max
k

(
rk+12−k−1h

4r2k

)p

4r2k = 8−ph pr2−p
k 22−kp

(
rk+1
rk

)p

≥ 8−p22−
p(p+1)
p−2 h pr2−p

k∗ 2−k∗ p ≥ 16−p22−
p(p+1)
p−2 h pr2−p

1 ,

where the second inequality is by Jensen’s Inequality. Combined with Eq. (5.10) we
have

E({γi }) ≥ max

{
1

2
hr1, 16

−p22−
p(p+1)
p−2 h pr2−p

1

}

.

Taking the infimum of the left hand side over r1 completes the result. ��
We now prove (5.6) and (5.7). Similarly to the proof of Corollary 3.9 we have that

π(η�Bh = 0) ≥ e−h2 . Then, writing f (x) = (h − |x |1) ∨ 0,

π(η�Bh = f (x)) = π(η�Bh = 0)e−β
∑h

j=1(8 j+4) ≥ e−βc1h2 .

For the upper bound let, for a family of contours γ1, . . . , γh ,

T{γi }(η)(y) = ηy −
h∑

i=1

I (y ∈ Vγi ).

If η0 = h then, π(T{�i }η) ≥ eβE({�i })π(η). Hence by Claim 5.7,

π(η0 = h) ≤
∑

γ1,...,γh

e−βE({γi }) ≤ e−β
2 ch

2 ∑

γ1,...,γh

e−β
2
∑

i |γi | ≤ e−βc2h2 . (5.11)
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Similarly, by the second part of the claim, for some ε > 0

π(η0 = h, |�1| ≤ εh) ≤
∑

γ1,...,γh

e−βE({γi }) ≤ e−2βc1h2 ≤ e−βc1h2π(η0 = h).

Letting Sγ (η)(y) = ηy − I (y ∈ Vγ ) we have that when η0 ≥ 1, that π(S�1η) ≥
eβ|�1|π(η). It follows that

π(η0 = h) ≤ 2π(η0 = h, |�1| > εh) ≤ 2π(η0 = h − 1)
∑

γ :|γ |>εh

e−β|γ |

≤ e−β
2 εh

π(η0 = h − 1),

which completes the proof of (5.6) and (5.7).
We are left with the proof of the two sites large deviation (5.8). The proof is similar

to the proof of Eq. (3.3) in Theorem 3.1 where we give more detailed explanations. Fix
z ∈ Z

2, z �= 0, and let

X := max
x∼z

ηx , Y (η) := min
x∼z

ηx .

Given 0 < δ ≤ 1, define the events F = {X ≤ h} and E = {Y ≥ h − δh
1
p }. Using

(5.7) it will suffice to establish a similar upper bound on π(ηz = h | η0 = h, F).
Conditioning over the values of the neighbors of z and then using monotonicity yields

π(ηz = h | η0 = h, Ec, F) ≤ e−c′δ ph .

Finally, we will bound π(E | η0 = h, F) from above as follows. On the one hand we
have

π (ηz ≥ h + 1 | η0 = h, E, F) ≥ e−4c2βδ ph,

while

π (ηz ≥ h + 1 | η0 = h, E, F) ≤ π(ηz ≥ h + 1 | η0 = h)

π (E | η0 = h, F)
≤ (1 + o(1))e−c1βh

π (E | η0 = h, F)
,

Combining the last two displays gives

π (E | η0 = h, F) ≤ (1 + o(1))e−β(c1−4c2δ p)h,

and the proof is completed by choosing c2δ p < c1/4. ��

5.3. Restricted SOS (p = ∞). Our final result in this section is for the RSOS model,
where we recall that any admissible η satisfies |ηx − ηy | ∈ {0,±1} for all x ∼ y.

Theorem 5.8. Fix β > 0 large enough. There exists C, c1, c2 > 0 such that for η given
by the restricted-SOS model in Z2 at inverse-temperature β and any z �= 0,

e
−4

(
β+2 log 27

16 +Ce−β
)
h2 ≤ π(η0 = h) ≤ e

−4
(
β+2 log 27

16−Ce−β
)
h2

, (5.12)

π(η0 = h)

π(η0 = h − 1)
≤ e−c1βh, (5.13)

π(ηz = h | η0 = h) ≤ e−c2βh . (5.14)
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Using the definition of the integers M, H we immediately get

Corollary 5.9. As L → ∞,

M(L) ∼ (1 + O(e−cβ))

√
2

4(β + 2 log 27
16 )

log L, H(L) ∼ 1 + o(1)√
2

M(L).

Proof of Theorem 5.8. For the single site large deviation (5.12) we first need to control
the contribution to the partition function of nested contours around the origin. ��

5.3.1. The partition function of nested circuits and the six-vertex model. Let N0 be the
set of collections of h nested self-avoiding circuits {C1, . . . , Ch} on the dual lattice Z2∗

,
ordered from the outermost one to the innermost one, which do not overlap and encircle
the origin. We then define the associated partition function by

ϒ =
∑

{C1,...,Ch}∈N0

e−β
∑h

i=1 |Ci |.

Each contour must cross each of the positive and negative axes at least once. Let ai +1/2
and bi + 1/2 denote the minimal crossing points of Ci of the positive x and y axes
respectively and let a = (a1, . . . , ah), b = (b1, . . . , bh). Note that the a1 > a2 >

· · · > ah and similarly b1 > · · · > bh . By definition, for each i = 1, . . . , h Ci connects
(ai + 1/2, 1/2) to (1/2, bi + 1/2) without crossing the positive x-axis to the left of ai or
the positive y-axis below bi . Therefore

ϒ ≤ e−4βh
(∑

a,b

ϒ̂a,b

)4

, (5.15)

where

ϒ̂a,b :=
∑

γ1,...,γh

e−β
∑h

i=1 |γi |

and the sum is over collections of h dual paths which do not cross or share common
edges and such that γi connects (1/2, bi + 1/2) to (ai + 1/2, 1/2) without crossing the
positive x-axis to the left of ai or the positive y-axis below bi (cf. Figure 5). The factor
e−4βh comes from the edges of C1, . . . , Ch crossing the axes at the points ai + 1/2 or
bi + 1/2, i = 1, . . . , h.

In order to estimate ϒ̂a,b we associate to each path γi a down-right path ψ(γi ), i.e. a
path satisfying the same constraints as γi and which in addition only makes steps down
or right from (1/2, bi + 1/2) to (ai + 1/2, 1/2) (cf. Figure 5). For this purpose, for each
0 ≤ x < ai we define

mx (γi ) := min{k ≥ 0 : ((x + 1/2, k + 1/2), (x + 3/2, k + 1/2)) ∈ γi },
m∗

x (γi ) := min{mx ′(γi ) : 1 ≤ x ′ ≤ x}.
Then ψ(γi ) is defined as the path from (1/2, bi + 1/2) to (ai + 1/2, 1/2) consisting of

• the horizontal edges ((x + 1/2,m∗
x (γi ) + 1/2), (x + 3/2,m∗

x (γi ) + 1/2)) for 0 ≤ x ≤
ai − 1, and
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a1a2a3a4

b1

b2

b3

b4

γ1

γ2

γ3

γ4

a1a2a3a4

b1

b2

b3

b4

ψ(γ1)

ψ(γ2)

ψ(γ3)

ψ(γ4)

u1u2u3u4

u1

u2

u3

u4

χ1(ψ(γ1))

χ2(ψ(γ2))

χ3(ψ(γ3))

χ4(ψ(γ4))

Fig. 5. The upper left frame displays the paths γi contributing to the partition function ϒ̂a,b . These are

transformed into the down-right pathsψ(γi )with partition function ϒ̃a,b in the upper right frame. The bottom
frame denotes χi (γi ) where the endpoints are shifted to ui

• the vertical edges in thedirect paths from (x+1/2,m∗
x−1(γi )+1/2)) to (x+1/2,m∗

x (γi )+
1/2)) where m∗−1(γi ) = bi .

Claim 5.10. There exists anabsolute constantC > 0 such that, for all large enoughβ, all
integers a, b and all down-right paths γ ∗ from u = (1/2, b+1/2) to v = (a +1/2, 1/2),

∑

γ :ψ(γ )=γ ∗
e−β|γ | ≤ e−(β−Ce−β )(a+b).

where the sum is over all paths connecting u to v which do not cross the positive x-axis
to the left of a or the positive y-axis below b.

Proof. Let Wz,z′ := ∑
γ e−β|γ | where the sum is over all paths (not necessarily down-

right) from z = (z1, z2) to z′ = (z′1, z′2). By standard estimates (see, e.g., [11]) this can
be bounded by

Wz,z′ ≤ e−(β−5e−β)min{|z1−z′1|,|z2−z′2|}. (5.16)

Given a down-right path γ ∗ as in the claim, let 0 = x0 < x1 < x2 < · · · < xs < a denote
the points where m∗

x (γ
∗) < m∗

x−1(γ
∗) (i.e., where the height of the path decreases).



Harmonic Pinnacles in the Discrete Gaussian Model 711

Let now γ be any path connecting u to v which do not cross the positive x-axis to
the left of a or the positive y-axis below b such that ψ(γ ) = γ ∗. We claim that each
path γ must pass through each vertex z j := (x j + 1/2,m∗

x j (γ
∗) + 1/2)) in order of j .

By construction the edges e j = (z j , z j + (1, 0)) must all be present in the path γ since
these represent new record low horizontal edges for the path moving from left to right.
To see that they appear in order take 0 ≤ j < j ′ < s. Suppose that in the direction from
u to v the path first reaches the edge e j ′ before e j . The path from u to e j ′ must then by
definition pass above e j . It must then continue onto e j . However, it is then geometrically
impossible to reach v without passing below e j ′ , crossing itself or crossing the positive
x-axis to the left of a or the positive y-axis below b. This gives a contradiction and thus
it must cross the e j in order.

We, therefore, may split the path into segments γ j from z j to z j+1. Defining z′j :=
(x j+1 + 1/2,m∗

x j (γ
∗) + 1/2) we have that γ j must pass through or above z′j , that is that

for some � j ≥ 0, z′j + � j (0, 1) ∈ γ j . If this were not the case there would have to be a
horizontal edge ((x j+1 − 1/2, r), (x j+1 + 1/2, r)) for some r < m∗

x j (γ
∗) + 1/2 and so

m∗
x j+1−1(γ

∗) < m∗
x j (γ

∗) which contradicts the definition of x j+1. For concreteness we

take � j to correspond to the first vertex on or above z′j on γ j .
Summing over the possible segments γ j which satisfy the aforementioned conditions

we have that
∑

γ j

e−β|γ | ≤
∑

� j

Wz j ,z′j+� j (0,1)Wz′j+� j (0,1),z j+1

≤
∑

� j

e
−(β−5e−β)(x j+1−x j+m∗

x j
(γ ∗)−m∗

x j+1
(γ ∗)+� j )

≤
(

1

1 − e−(β−5e−β)

)

e
−(β−5e−β)(x j+1−x j+m∗

x j
(γ ∗)−m∗

x j+1
(γ ∗))

≤ e
−(β−7e−β)(x j+1−x j+m∗

x j
(γ ∗)−m∗

x j+1
(γ ∗))

.

Combining the segments γ j we have that

∑

γ :ψ(γ )=γ ∗
e−β|γ | ≤

∏

j

e
−(β−7e−β)(x j+1−x j+m∗

x j
(γ ∗)−m∗

x j+1
(γ ∗)) = e−(β−7e−β)(a+b),

which completes the proof. ��
Let

ϒ̃a,b =
∑

γ1,...,γh

e−β
∑h

i=1 |γi | =
∑

γ1,...,γh

e−β
∑h

i=1(ai+bi ),

with the sum now over collections of down-right dual paths which do not cross or share
common edges such that γi connects (1/2, bi + 1/2) to (ai + 1/2, 1/2). By Claim 5.10
we have that

ϒ̂a,b ≤ eCe−β
∑h

i=1(ai+bi ) ϒ̃a,b. (5.17)

Let u = (h − 1, h − 2, . . . , 0), the minimal possible value of a or b.
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Claim 5.11. For all a or b we have

ϒ̃a,b ≤ ϒ̃u,u eCe−βh2−∑i (ai+bi−2(h−i)).

Proof. For down-right paths γ1, . . . , γh it is convenient to think of them as the graph of
a function; we will write γi (s) to denote the maximum height of the path along the line
x = s + 1/2. Our conditions on the {γi }hi=1 in the definition of ϒ̃ implies that γi (x) is
strictly decreasing in i . Define the new down-right path χi (γi ) by

χi (γi )(x) =
{
min{γi (x), h − i + 1/2} x ≤ ai
0 x > ai .

The paths χ1(γ1), . . . , χh(γh) still do not cross or share a common edge. We will count
the number of down-right paths γi from (1/2, bi + 1/2) to (ai + 1/2, 1/2) which are
mapped to a given γ̃ . This is the number of paths from (1/2, bi +1/2) to (x, h− i +1/2)
where x = min{x ′ : γ ∗(x ′) ≤ h − i + 1/2} ∧ (h − i + 1/2) times the number of paths
from (h − i + 1/2, γ ∗(h − i) ∧ (h − i + 1/2)) to (a + 1/2, 1/2). In particular

#{γi : χi (γi ) = γ̃ } ≤
(

bi
h − i

)(
ai

h − i

)

.

Now if s ≤ t then by maximizing over s,

e−(β−1)s
(
s + t

s

)

≤ (2e−(β−1)t)s

s! ≤ (2e−(β−1)t)2e
−(β−1)t

(2e−(β−1)t)! ≤ eCe−β t

for some absolute constant C . If s > t then

e−(β−1)s
(
s + t

s

)

≤ e−(β−1)s22s ≤ 1.

Together this gives us that

#{γi : χi (γi ) = γ̃ }e−β(ai+bi−2(h−i)) ≤ e2Ce−β(h−i)−(ai+bi−2(h−i)).

Finally by considering the mapping (γ1, . . . , γh) �→ (χ1(γ1), . . . , χh(γh)) we have that

ϒ̃a,b ≤ ϒ̃u,u

h∏

i=1

e2Ce−β(h−i)−(ai+bi−2(h−i)) ≤ ϒ̃u,ue
Ce−βh2−∑i (ai+bi−2(i−1)),

as required. ��
We now combine the above claims to establish the following result

Lemma 5.12. There exists an absolute constant C > 0 such that the partition function
for h nested non-overlapping contours around the origin satisfies

ϒ ≤ eCe−βh2ϒ̃4
u,u .
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Fig. 6. The six-vertex model with domain-wall boundary conditions

Proof. If we combine (5.15), (5.17) and Claim 5.11 we have that

ϒ ≤ e−4βh
(∑

a,b

eCe−β
∑h

i=1(ai+bi )ϒ̃a,b

)4

≤ e−4βh
(∑

a,b

eC
′e−βh2e− 1

2

∑
i (ai−(h−i))− 1

2

∑h
i=1(bi−(h−i)))ϒ̃u,u

)4

≤ e4C
′e−βh2+O(βh)

(
1

1 + e−1/2

)8h

ϒ̃4
u,u ≤ e4C

′e−βh2+O(βh)ϒ̃4
u,u .

��
Theasymptotics of ϒ̃u,u ash ↑ ∞will follow fromabijectionbetween configurations

of non-overlapping down-right paths and the six-vertexmodel (togetherwith the bijection
between the latter andASMs),whichwas pointed out to us byDavidB.Wilson andwhich
represents a special case of the isomorphism between the terrace-ledge-kink model and
the six-vertex model (see, e.g., [1, pp. 43–45 and in particular Figs. 13–14]).

Proposition 5.13. We have that asymptotically

ϒ̃u,ue
−β

∑h
i=1(h−i) =

(
3
√
3

4

)(1+o(1))h2

as h → ∞.

Proof. Consider a set of edge-disjoint non-crossing SE/NE paths counted by ϒ̃u,u be-
tween {(−i,−i) � (i,−i) : i = 1, . . . , h} (as was illustrated in Figure 3 in the intro-
duction), and observe that there are only six possible constellations of existing/missing
edges incident to an internal vertex: Indeed, as shown in Figure 6, since paths cannot
overlap, upon directing the edges towards SE/NE the in-degree of every internal vertex
must equal its out-degree; thus, such a vertex can have either in-degree 0 (no incident
edges appear), or in-degree 1 (whence there are 4 possibilities: 2 choices for an incoming
edge and 2 for an outgoing one), or in-degree 2 (all incident edges appear).

The requirement that the paths are to connect (−i,−i) � (i,−i) for all i can then
be embedded in boundary conditions along the h × h diamond, in the form of always
having the 2h edges incident to the boundary points along the upper two faces (i.e.,
{(−i,−i) : i ∈ [h]} ∪ {(i,−i) : i ∈ [h]}) and forbidding the 2h edges incident to
the remaining boundary points (the lower two faces of the diamond), as in Figure 6.
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This is precisely the six-vertex model with domain-wall boundary conditions, in precise
correspondence with the required set of paths.

In the special case of the domain-wall boundary condition, there is a well known
correspondence between the six-vertex model and ASMs: one can follow the SE lines
of the diamond starting from the second edge (the first is always present as part of the
boundary conditions), and construct a {0,±1}-matrix as follows: associating the rows
with the SE lines, one reads the row from left to right by processing the line towards SE,
registering 1 if we move from a present edge to a missing one, a −1 if we move from a
missing edge to a present one, and 0 otherwise. The boundary conditions guarantee that
each row would sum to 1 (as it begins with a present edge and ends with a missing one).
The same conclusion applies to the {0,±1}-matrix that one reads from the configuration
by following its SW lines (reading the columns from top to bottom). Finally, by definition
of the six-vertex model, these two methods produce the same matrix, which is thereby
an ASM.

The proof is concluded by the formula for the exact number of ASMs of order n,

proved by Zeilberger [28] (see also [17]), being
∏n−1

i=0
(3i+1)!
(n+i)! = ( 3

√
3

4 )(1+o(1))n
2
. ��

5.3.2. Proof of (5.12) and (5.13). If η0 = h then there exist nested contours �1, . . . , �h
surrounding the origin. By the same Peierls argument as in Eq. (5.11),

π(η0 = h) ≤
∑

{γ1,...,γh}∈N0

e−β|γi | = ϒ.

By Lemma 5.12 and Proposition 5.13 we therefore have that

π(η0 = h) ≤ e
−4

(
β+2 log 27

16−Ce−β
)
h2

.

Now let Q = {(x, y) : |x | ∨ |y| ≤ h + 1}. Then

π(ηQ = 0) ≥ e−Ce−βh2 .

Let γ1, . . . , γh be a nested collection of non-intersecting contours with the minimum
possible lengths, i.e., |γi | = 8(h − i) + 4. The number of such collections is exactly

(ϒ̃u,ue−β
∑h

i=1(h−i))4. Let ξγ (z) = #{i : z ∈ Vγi } which is constructed to have its
contours as γi . Then

π(ηQ = ξQ) = π(ηQ = 0)e−∑h
i=1 |γi | ≥ e−4βh2−Ce−βh2 .

By our bound in Proposition 5.13 on the number of such contours, we deduce that

π(η0 = h) ≥ e
−4

(
β+2 log 27

16 +Ce−β
)
h2

,

as required. The same argument used to analyze the ratio large deviation for 2 < p < +∞
prove (5.13).
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5.3.3. Proof of (5.14). Fix z = (x, y) �= 0 and let θ = π(ηz ≥ h | η0 ≥ h). We split the
proof into two cases. First suppose that max(|x |, |y|) ≤ εh where ε is a small constant
to be fixed later on. By the FKG inequality and by symmetry

π(η(2x,0) ≥ h | η0 ≥ h) ≥ π(η(2x,0) ≥ h | η0 ≥ h, ηz ≥ h)π(ηz ≥ h | η0 ≥ h) ≥ θ2.

(5.18)
We define W = {−2x, 0, 2x}2 and U = {(x ′, y′) ∈ Z

2 : max{|x ′|, |y′|} = 2x}. Then,
since each element ofW is 2x offset from another element ofW , by applying Eq. (5.18),
the symmetry of the model and the FKG inequality we have that

π(min
w∈W ηw ≥ h | η0 ≥ h) ≥ θ16.

Since the step size of the restricted SOS surface is atmost one, on the eventminw∈W ηw ≥
h we have minw∈∂U ηw ≥ h − x and so

π( min
w∈∂U

ηw ≥ h − x) ≥ θ16π(η0 ≥ h).

Next we observe that, since every gradient along an edge can be −1, 0 or 1, the total
contribution of a single edge to the partition function is at most 1 + 2e−β . As the total
number of interior edges in U is at most 32x2, the partition function of the model on
the interior of U is at most ((1 + 2e−β)32x

2
under any boundary conditions (we neglect

the fact that not all gradients correspond to configurations, only those that are curl free).
Moreover, the energy of a pyramid with base U and height 2x is bounded from above
by 32x2. Thus, using again the FKG inequality we get

π(η0 ≥ h + x | min
w∈∂U

ηw ≥ h − x) ≥ π(η0 ≥ h + x | ηU ≡ h − x) ≥ e−32βx2

(1 + 2e−β)32x
2 .

Combining the above estimates we get that

π(η0 ≥ h + x) ≥ θ16
e−32βx2

(1 + 2e2−β)32x
2 π(η0 ≥ h).

However, using (5.13) we have that

π(η0 ≥ h + x) ≤ e−cβxhπ(η0 ≥ h),

and by combining these while using that |x | ≤ εh it follows that for ε small enough and
some c′ > 0,

θ ≤ e−c′h .

Now suppose that max(|x |, |y|) > εh. Let Az1,z2 denote the event that there is a chain
of vertices at height at least h/2 surrounding both z1 and z2. Then

π(ηz ≥ h | η0 ≥ h) ≤ π(A0,z, ηz ≥ h | η0 ≥ h) + π(ηz ≥ h | η0 ≥ h, Ac
0,z).

Now,Ac
0,z implies that the outermost chain of vertices at least h/2 surrounding the origin

does not include z. Hence,

π(ηz ≥ h | η0 ≥ h, Ac
0,z) ≤ sup

γ
π(ηz ≥ h | ηγ = h/2) ≤ ce−βh,
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where the supremum is over all chains of vertices γ surrounding z and the second

inequality follows by a basic Peierls estimate. So either θ ≤ 2e− ε
100 h (in which case we

are done) or π(A0,z, ηz ≥ h | η0 ≥ h) ≥ e− ε
100 h which we assume. Using FKG, (5.12)

and translation invariance,

π(ηz ≥ h, A0,z,Az,2z, . . . ,A( 10
ε

−1)z, 10
ε
z)

≥ π(ηz ≥ h, A0,z, η2z ≥ h, Az,2z, . . . , η 10
ε
z ≥ h, A( 10

ε
−1)z, 10

ε
z | η0 ≥ h)π(η0 ≥ h)

≥
10/ε∏

j=1

π(A( j−1)z, j z, η j z ≥ h | η( j−1)z ≥ h) π(η0 ≥ h)

≥ e−h/10π(η0 ≥ h) ≥ e−β(4+εβ)h2 .

However, another Peierls argument shows that the event {A0,z,Az,2z, . . . ,A( 10
ε

−1)z, 10
ε
z}

has probability less that e−(5β−log 3)h2 , which yields a contradiction.
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