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Abstract: In the present article we discuss the classification of quantum groups whose
quasi-classical limit is a given simple complex Lie algebra g. This problem is reduced
to the classification of all Lie bialgebra structures on g(K), where K = C((�)). The
associated classical double is of the form g(K) ⊗K A, where A is one of the following:
K[ε], where ε2 = 0, K ⊕ K or K[ j], where j2 = �. The first case is related to quasi-
Frobenius Lie algebras. In the second and third cases we introduce a theory of Belavin–
Drinfeld cohomology associated to any non-skewsymmetric r -matrix on the Belavin–
Drinfeld list (Belavin and Drinfeld in Soviet Sci Rev Sect C: Math Phys Rev 4:93–
165, 1984). We prove a one-to-one correspondence between gauge equivalence classes
of Lie bialgebra structures on g(K) and cohomology classes (in case II) and twisted
cohomology classes (in case III) associated to any non-skewsymmetric r -matrix.

1. Introduction

Let k be a field of characteristic 0. According to [4], a quantized universal enveloping
algebra (or a quantum group) is a topologically free topological Hopf algebra H over the
formal power series ring k[[�]] such that H/�H is isomorphic to the universal enveloping
algebra of a Lie algebra g over k.

The quasi-classical limit of a quantum group is a Lie bialgebra. By definition, a Lie
bialgebra is a Lie algebra g together with a cobracket δ which is compatible with the Lie
bracket. Given a quantum group H , with comultiplication Δ, the quasi-classical limit
of H is the Lie bialgebra g of primitive elements of H/�H and the cobracket is the
restriction of the map (Δ − Δ21)/� (mod �) to g.

The operation of taking the semiclassical limit is a functor SC : QUE → LBA
between categories of quantum groups and Lie bialgebras over k. The quantization
problem raised by Drinfeld aims at finding a quantization functor, i.e., a functor Q :
LBA → QUE such that SC ◦Q is isomorphic to the identity. Moreover, a quantization
functor is required to be universal, in the sense of props.
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The existence of universal quantization functors was proved by Etingof and Kazhdan
[5,6]. They used Drinfeld’s theory of associators to construct quantization functors for
any field k of characteristic zero. Drinfeld introduced the notion of associators in relation
to the theory of quasi-triangular quasi-Hopf algebras and showed that associators exist
over any field k of characteristic zero. Etingof and Kazhdan proved that for any fixed
associator over k one can construct a universal quantization functor. More precisely, let
(g, δ) be a Lie bialgebra over k. Then it is possible to define a Lie bialgebra g� over
k[[�]] as (g⊗k k[[�]], �δ). According to Theorem 2.1 of [6] there exists an equivalence
̂Q between the category LBA0(k[[�]]) of topologically free Lie bialgebras over k[[�]]
with δ = 0 (mod �) and the category H A0(k[[�]]) of topologically free Hopf algebras
cocommutative modulo �. Moreover, for any (g, δ) over k, we have ̂Q(g�) = U�(g).

The aim of the present article is the classification of quantum groups whose quasi-
classical limit is a given simple complex Lie algebra g. Due to the equivalence between
H A0(C[[�]]) and LBA0(C[[�]]), this problem is equivalent to the classification of Lie
bialgebra structures on g ⊗C C[[�]]. For simplicity, denote O := C[[�]], K := C((�)),
g(O) := g ⊗C O and g(K) := g ⊗C K.

On the other hand, in order to classify cobrackets on g(O) it is sufficient to classify
cobrackets on g(K). Indeed, if δ0 is a Lie bialgebra structure on g(O), then it can be
naturally extended to g(K). Conversely, given a Lie bialgebra structure δ on g(K), we
can restrict �

nδ to g(O) for a sufficiently large n since g is finite dimensional.

From now on let G be a connected split algebraic group with a reductive Lie algebra
whose semisimple part is g. We will consider the adjoint action Ad of G on g. We
consider the equivalence classes of Lie bialgebra structures on g(K) with respect to
the following equivalence: two bialgebra structures δ1, δ2 are equivalent if there exists
an element a ∈ K

∗ and X ∈ G(K) such that δ1 = a(AdX ⊗ AdX )δ2; here ((AdX ⊗
AdX )δ)(l) = (AdX ⊗AdX )(δ(Ad−1

X l)). We will also use the term “gauge equivalence”
or “G-equivalence” if there exists X ∈ G(K) such that δ1 = (AdX ⊗ AdX )δ2.

From the general theory of Lie bialgebras it is known that for each Lie bialgebra
structure δ on a fixed Lie algebra L one can construct the corresponding classical double
D(L , δ), which is the vector space L⊕L∗ togetherwith a bracket which is induced by the
bracket and the cobracket of L , and a non-degenerate invariant bilinear form, see [3]. We
consider L = g(K) and prove Proposition 1, which states that there exists an associative,
unital, commutative algebra A, of dimension 2 overK, such that D(g(K), δ) ∼= g(K)⊗K

A. In Proposition 2 we show that there are three possibilities for A: A = K[ε], where
ε2 = 0, A = K ⊕ K or A = K[ j], where j2 = �.

Due to the correspondence between Lie bialgebras and Manin triples, to any Lie
bialgebra structure δ on L one can associate a certain Lagrangian subalgebra W of
D(L , δ)which is complementary to L . Conversely, any suchW produces a Lie cobracket
on L . The main problem is to obtain a classification of all such subalgebras W for the
three choices of A as above. We investigate separately each choice of A.

For A = K[ε], where ε2 = 0, it turns out that the classification problem is related to
that of quasi-Frobenius Lie subalgebras over K.

In the case of A = K ⊕ K, we introduce Belavin–Drinfeld cohomologies. Namely,
for any non-skewsymmetric constant r -matrix rBD on the Belavin–Drinfeld list [1], we
define a cohomology set H1

BD(rBD). This cohomology set will depend on a gauge group
G acting “naturally” on g. We will see that the choice of G is important. Therefore, we
will use the notation H1

BD(G, rBD). One should notice that in all the caseswith exception
for GL(n), the Lie algebra of G will be g.
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Weprove that there exists a one-to-one correspondencebetween anyBelavin–Drinfeld
cohomologies and gauge equivalence classes of Lie bialgebra structures on g(K). Then
we restrict our discussion tog = sl(n) and show that all cohomologies H1

BD(GL(n), rBD)

are trivial.
We also discuss the case of the orthogonal algebras g = o(n), where it turns out that

the cohomologies associated to the Drinfeld–Jimbo r -matrix are also trivial. We also
give an example where the cohomology corresponding to a certain non-skewsymmetric
constant r -matrix for o(2n) is non-trivial.

We finally proceed with the classification of Lie bialgebras whose classical double
is isomorphic to g(K[ j]) with j2 = �. We restrict ourselves to g = sl(n) and show
that in this case a cohomology theory can be introduced too. Our result states that there
exists a one-to-one correspondence between Belavin–Drinfeld twisted cohomologies
and gauge equivalence classes of Lie bialgebra structures on g(K). We prove that the
twisted cohomology corresponding to the Drinfeld–Jimbo r -matrix and a certain class
of r -matrices (called generalized Cremmer–Gervais) is trivial.

In the last section of the article we compute Belavin–Drinfeld cohomology in certain
cases for g = sl(n) and G = SL(n). In particular, we show that H1

BD(SL(n), rBD) is
non-trivial for certain rBD . Finally, we formulate a conjecture stating that the Belavin–
Drinfeld cohomology associated to the Drinfeld–Jimbo r -matrix is trivial for any simple
complex Lie algebra g. We also define the quantum Belavin–Drinfeld cohomology and
formulate a second conjecture about the existence of a natural correspondence between
classical and quantum cohomologies.

2. Lie Bialgebra Structures on g(K)

Let g be a simple complex finite-dimensional Lie algebra. Consider the Lie algebras
g(O) = g ⊗C O and g(K) = g ⊗C K.

We have seen that the classification of quantum groups with quasi-classical limit g
is equivalent to the classification of all Lie bialgebra structures on g(O). Moreover, as
explained in the introduction, in order to classify Lie bialgebra structures on g(O), it is
enough to classify them on g(K).

Let us assume that δ is a Lie bialgebra structure on g(K). This cobracket endows
the dual of g(K) with a Lie bracket. Then one can construct the corresponding classical
double D(g(K), δ). As a vector space, D(g(K), δ) = g(K)⊕g(K)∗. As aLie algebra, it is
endowedwith abracketwhich is inducedby thebracket and cobracket ofg(K).Moreover,
the canonical symmetric non-degenerate bilinear form on this space is invariant.

Similarly to Lemma 2.1 in [8], one can prove that D(g(K), δ) is a direct sum of
regular adjoint g-modules. Combining this result with Proposition 2.2 in [2], we obtain

Proposition 1. There exists an associative, unital, commutative algebra A of dimension
2 over K, such that D(g(K), δ) ∼= g(K) ⊗K A.

Remark 1. The symmetric invariant non-degenerate bilinear form Q on g(K) ⊗K A is
given in the following way. For arbitrary elements f1, f2 ∈ g(K) and a, b ∈ A we have
Q( f1 ⊗ a, f2 ⊗ b) = K ( f1, f2) · t (ab), where K denotes the Killing form on g(K) and
t : A −→ K is a trace function.

Let us investigate the algebra A. Since A is unital and of dimension 2 over K, one
can choose a basis {e, 1}, where 1 denotes the unit. Moreover, there exist p and q in K

such that e2 + pe + q = 0. Let Δ = p2 − 4q ∈ K. We distinguish the following cases:
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(i) Assume Δ = 0. Let ε := e +
p

2
. Then ε2 = 0 and A = Kε ⊕ K = K[ε].

(ii) Assume Δ 	= 0 and has even order as an element of K. This implies that Δ =
�
2m(a0 + a1� + a2�2 + · · · ), where m is an integer, ai are complex coefficients

and a0 	= 0.
One can easily check that the equation x2 = a0 + a1� + a2�2 + · · · has two
solutions ±x = x0 + x1� + x2�2 + · · · in O.

Then e = − p

2
± �

mx

2
, which implies that e ∈ K and A = K ⊕ K.

(iii) Assume Δ 	= 0 and has odd order as an element of K. We have Δ = �
2m+1(a0 +

a1�+ a2�2 + · · · ), where m is an integer, ai are complex coefficients and a0 	= 0.
Again the equation x2 = a0 + a1� + a2�2 + · · · has two solutions ±x = x0 +
x1� + x2�2 + . . . in O. Since a0 	= 0, we have x0 	= 0 and thus x is invertible
in O. Let j = �

−m(2e + p)x−1. Then e2 + pe + q = 0 is equivalent to j2 = �.
On the other hand, A = Ke ⊕ K and 2e = �

mx j − p imply that A = K j ⊕ K.
Therefore, we obtain that A = K[ j] where j2 = �.

We can summarize the above facts:

Proposition 2. Let δ be an arbitrary Lie bialgebra structure on g(K). Then D(g(K), δ)

is isomorphic to g(K) ⊗K A, where A = K[ε] and ε2 = 0, A = K ⊕ K or A = K[ j]
and j2 = �.

On the other hand, it is well-known, see for instance [4], that there is a one-to-one
correspondence between Lie bialgebra structures on a Lie algebra L and Manin triples
(D(L), L ,W ), where D(L) = L ⊕ W is equipped with a bilinear symmetric invariant
non-degenerate form Q such that both L and W are Lagrangian subalgebras of D(L)

with respect to Q. For L = g(K), this fact implies the following

Proposition 3. There exists a one-to-one correspondence between Lie bialgebra struc-
tures on g(K) for which the classical double is g(K)⊗K A and Lagrangian subalgebras
W of g(K) ⊗K A transversal to g(K).

Corollary 1. (i) There exists a one-to-one correspondence between Lie bialgebra struc-
tures on g(K) for which the classical double is g(K[ε]), ε2 = 0, and Lagrangian
subalgebras W of g(K[ε]) that are transversal to g(K).

(ii) There exists a one-to-one correspondence between Lie bialgebra structures on g(K)

for which the classical double is g(K) ⊕ g(K) and Lagrangian subalgebras W of
g(K) ⊕ g(K) that are transversal to g(K), embedded diagonally into g(K) ⊕ g(K).

(iii) There exists a one-to-one correspondence between Lie bialgebra structures on g(K)

for which the classical double is g(K[ j]), where j2 = �, and Lagrangian subalge-
bras W of g(K[ j]) that are transversal to g(K).

3. Lie Bialgebra Structures in Case I

Here we study the Lie bialgebra structures δ on g(K) for which the corresponding
Drinfeld double is isomorphic to g(K[ε]), ε2 = 0. Our problem is to find all subalgebras
W of g(K[ε]) satisfying the following conditions:

(i) W ⊕ g(K) = g(K[ε]).
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(ii) W = W⊥ with respect to the non-degenerate symmetric bilinear form Q on
g(K[ε]) given by

Q( f1 + ε f2, g1 + εg2) = K ( f1, g2) + K ( f2, g1).

Proposition 4. Any subalgebra W of g(K[ε]) satisfying conditions (i) and (ii) from
above is uniquely defined by a subalgebra L of g(K) together with a non-degenerate
2-cocycle B on L.

Proof. The proof is similar to that of Theorem 3.2 and Corollary 3.3 in [10].

Remark 2. We recall that a Lie algebra is called quasi-Frobenius if there exists a non-
degenerate 2-cocycle on it. It is called Frobenius if the corresponding 2-cocycle is a
coboundary. Thus we see that the classification problem for the Lagrangian subalgebras
we are interested in includes the classification of Frobenius subalgebras of g(K). This
question is quite complicated, as it is known from studying Frobenius subalgebras of g.
However, for g = sl(2) there is only one Frobenius subalgebra up to conjugation, the
standard parabolic one.

4. Lie Bialgebra Structures in Case II and Belavin-Drinfeld Cohomologies

Our task now is to classify Lie bialgebra structures on g(K) for which the associated
classical double is isomorphic to g(K) ⊕ g(K).

Lemma 1. Any Lie bialgebra structure δ on g(K) for which the associated classical
double is isomorphic to g(K) ⊕ g(K) is a coboundary δ = dr given by an r-matrix
satisfying r + r21 = f Ω , where f ∈ K and CYB(r) = 0.

Without loss of generality wemay suppose that f = 1. The corresponding r -matrices
in the case of an algebraically closed field have been classified up to the Ad(G)-
equivalence in [1]; the classification is given in terms of admissible triples. (Recall
that G stands for a connected split algebraic group with a reductive Lie algebra whose
semisimple part is g.)

Let us fix aCartan subalgebra h of g and the associated root system. Fix a set of simple
roots Γ . We choose a system of generators eα , e−α , hα such that K (eα, e−α) = 1, for
any positive root α. Denote by Ω0 the Cartan part of Ω . Suppose also that H ⊂ G is a
maximal torus with Lie algebra h.

Let us recall from [1,4] that any non-skewsymmetric r -matrix depends on certain
discrete and continuous parameters. The discrete one is an admissible triple (Γ1, Γ2, τ ),
i.e., an isometry τ : Γ1 −→ Γ2 where Γ1, Γ2 ⊂ Γ are such that for any α ∈ Γ1 there
exists k ∈ N satisfying τ k(α) /∈ Γ1. The continuous parameter is a tensor r0 ∈ h ⊗ h
satisfying r0 + r210 = Ω0 and (τ (α) ⊗ 1 + 1 ⊗ α)(r0) = 0 for any α ∈ Γ1. Then the
associated r -matrix is given by the formula

rBD = r0 +
∑

α>0

eα ⊗ e−α −
∑

α∈(SpanΓ1)+

∑

k∈N

e−α ∧ eτ k (α).

Now, let us consider an r -matrix corresponding to a Lie bialgebra structure on g(K).
Up to Ad(G(K))-equivalence, we have the Belavin–Drinfeld classification. We may
assume that our r -matrix is of the form rX = (AdX ⊗ AdX )(rBD), where X ∈ G(K)
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and rBD satisfies the equations r + r21 = Ω and CYB(r) = 0. The corresponding
bialgebra structure is δ(a) = [rX , a ⊗ 1 + 1 ⊗ a] for any a ∈ g(K).

Let us take an arbitraryσ ∈ Gal(K/K). Thenwehave (σ⊗σ)(δ(a)) = [σ(rX ), a⊗1+
1⊗a] and (σ ⊗σ)(δ(a)) = δ(a), which implies that σ(rX ) = rX +λΩ , for some λ ∈ K.
Let us show that λ = 0. Indeed, Ω = σ(Ω) = σ(rX ) + σ(r21X ) = rX + r21X + 2λΩ . Thus
λ = 0 and σ(rX ) = rX . Consequently, we get (AdX−1σ(X) ⊗ AdX−1σ(X))(σ (rBD)) =
rBD .

Definition 1. Let r be an r -matrix. The centralizer C(G, r)of r is the set of all X ∈ G(K)

satisfying (AdX ⊗ AdX )(r) = r .

Theorem 1. For any simple Lie algebra g and for any Belavin-Drinfeld matrix rBD we
have

C(G, rBD) ⊂ H,

where H is a maximal torus of G.

Proof. (1) Let us consider the map Φ : g ⊗ g → g ⊗ g∗ = End(g) induced by the
natural pairing between g and g∗ given by the Killing form, i.e.

Φ(a ⊗ b)(u) = K (a, u)b.

Let X ∈ C(G, rBD). We have

(AdXa ⊗ AdXb)(u) = K (AdXa, u)AdXb = AdX (K (a,AdXu)b).

Thus, X ∈ C(G, rBD) iff AdXΦ(r) = Φ(r)AdX .
(2) The fact that AdX commutes withΦ(r) implies that it commutes with semisimple

and nilpotent parts of Φ(r). Our next aim is to compute them. The operator Φ(eα ⊗ eβ)

maps e−α to eβ and the rest of the Chevalley basis to zero. Hence, when α + β 	= 0 the
operatorΦ(eα ⊗eβ) is nilpotent. Thus the operator A = Φ(

∑

eτ k (α) ∧e−α) is nilpotent.
For anypositive rootα,wehaveΦ(rDJ )eα = 0,Φ(rDJ )e−α = e−α andΦ(rDJ )h±α =

1
2h±α . So when α and β have opposite signs,Φ(rDJ ) commutes withΦ(eα ⊗eβ). There-
fore,Φ(rDJ ) commuteswith A. Clearly, A(h) = 0.Hence, both A andΦ(rDJ ) commute
with Φ(s), where s = r − rDJ − ∑

eτ k (α) ∧ e−α ∈ h⊗2.
So we have the decomposition ofΦ(rBD) into the sum of three commuting operators:

Φ(rBD) = Φ(rDJ ) + Φ(s) + A. If Φ(s) = Φ(s)d + Φ(s)n is the Jordan decomposition
of Φ(s) then D = Φ(rDJ ) + Φ(s)d is semisimple, N = A + Φ(s)n is nilpotent, and D
and N commute. Thus, we have obtained the Jordan decomposition Φ(rBD) = D + N .
Note that we have Deα = 0, De−α = e−α and Dhα ∈ h. It remains to show that the
centralizer of D lies in H .

(3) The zero eigenspace V0 of the operator D contains all positive root vectors and
no negative root vectors. AdX commutes with D and hence must preserve V0. But it also
must preserve its normalizer, which is the Borel subalgebra b+. Similarly, considering
V1 instead of V0, we obtain that AdX preserves b−. Therefore, AdX preserves h. So,
X ∈ NG(h), the normalizer of the Cartan subalgebra. Consequently, AdX induces an
element of the Weyl group W . It is well-known that W acts transitively and without
fixed points on the set of the Borel subalgebras containing h. But AdX preserves b+.
Therefore, AdX induces the unit of W and thus, X ∈ H .

For any root α we denote by eα the corresponding character of the torus H .
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Theorem 2. If (Γ1, Γ2, τ ) is an admissible triple corresponding to a Belavin-Drinfeld
r-matrix rBD then X ∈ C(G, rBD) iff for any root α ∈ Γ1\Γ2 and for any k ∈ N we
have eα(X) = eτ k (α)(X), i.e., eα(X) is constant on the strings of τ .

Proof. Vectors eα ⊗ e−α, hα ⊗ hβ and eγ ∧ eδ for γ + δ 	= 0 form a set of linearly
independent eigenvectors of AdX . Hence, X ∈ C(G, rBD) if and only if AdX preserves
e−γ ∧ eτ k (γ ) for γ ∈ Γ1. But this is equivalent to eα(X) = eτ k (α)(X) for any root
α ∈ Γ1\Γ2 and for any k ∈ N.

Theorem 3. Let rBD be an r-matrix on the Belavin–Drinfeld list for g(K). Suppose that

(AdX−1σ(X) ⊗ AdX−1σ(X))(σ (rBD)) = rBD.

Then σ(rBD) = rBD and X−1σ(X) ∈ C(G, rBD).

Proof. Consider r = rBD which corresponds to an admissible triple (Γ1, Γ2, τ ) and
r0 ∈ h⊗h.DenoteY := X−1σ(X) and s := r−r0. Then (AdY⊗AdY )(s+σ(r0)) = s+r0.

Following [7] p. 43–47, let Φ(r) : g −→ g be defined as in Theorem 1. Let

gλ
r =

⋃

n>0

Ker(Φ(r) − λ)n .

Then

g = g0r ⊕ g′
r ⊕ g1r , g′

r =
⊕

λ	=0,1

gλ
r .

In our case, n− ⊆ g0s+r0 ⊆ b−, n+ ⊆ g1s+r0 ⊆ b+, g′
s+r0 ⊆ h, g0s+r0 + g′

s+r0 = b− and
g1s+r0 + g′

s+r0 = b+. Similarly for s + σ(r0).
On the other hand, it can be easily checked that

Φ(AdY ⊗ AdY )(r) = AdY ◦ Φ(r) ◦ Ad−1
Y .

Hence, AdY (gis+σ(r0)
) = gis+r0 , i = 0, 1 and AdY (g′

s+σ(r0)
) = g′

s+r0 . Therefore,

AdY (b±) = b± and AdY ∈ H(K) since G is connected.
Let us analyse the equality (AdY ⊗AdY )(s +σ(r0)) = s + r0. It follows that (AdY ⊗

AdY )(s) + σ(r0) = s + r0. Taking into account that r0, σ (r0) ∈ h⊗2 and

(AdY ⊗ AdY )(s) =
∑

α>0

eα ⊗ e−α +
∑

β∈(ZΓ1)+

∑

n>0

kβ,neβ ∧ e−τ n(β),

for some integers kβ,n , we deduce that σ(r0) = r0. Thus, σ(r) = r and AdY ∈ C(G, r).

Henceforth we will assume that rBD is defined over K, i.e., r0 ∈ g(K) ⊗ g(K).
In conclusion, rX = (AdX ⊗ AdX )(rBD) induces a Lie bialgebra structure on g(K)

if and only if X ∈ G(K) satisfies the condition X−1σ(X) ∈ C(G, rBD), for any σ ∈
Gal(K/K).

Definition 2. Let rBD be a non-skewsymmetric r -matrix on the Belavin–Drinfeld list
and C(G, rBD) its centralizer. We say that X ∈ G(K) is a Belavin–Drinfeld cocycle
associated to rBD if X−1σ(X) ∈ C(G, rBD) for any σ ∈ Gal(K/K).
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We denote the set of Belavin–Drinfeld cocycles associated to rBD by Z(G, rBD).
This set is non-empty, since it always contains the identity.

Definition 3. Two cocycles X1 and X2 in Z(G, rBD) are called equivalent (X1 ∼ X2)
if there exists Q ∈ G(K) and C ∈ C(G, rBD) such that X1 = QX2C .

Definition 4. Let H1
BD(G, rBD) denote the set of equivalence classes of cocycles in

Z(G, rBD). We call this set the Belavin–Drinfeld cohomology associated to the r -matrix
rBD . The Belavin–Drinfeld cohomology is said to be trivial if all cocycles are equivalent
to the identity, and non-trivial otherwise.

We make the following remarks:

Remark 3. Assume that X ∈ Z(G, rBD). Then for any σ ∈ Gal(K/K), σ(X) = XC ,
for some C ∈ C(G, rBD). We get (Adσ(X) ⊗ Adσ(X))(rBD) = (AdX ⊗ AdX )(rBD).

Consequently, (AdX ⊗ AdX )(rBD) induces a Lie bialgebra structure on g(K).

Remark 4. Assume that X1 and X2 in Z(G, rBD) are equivalent. Then X1 = QX2C , for
some Q ∈ G(K) and C ∈ C(G, rBD). This implies that (AdX1 ⊗ AdX1)(rBD) =
(AdQX2 ⊗ AdQX2)(rBD). In other words the r -matrices (AdX1 ⊗ AdX1)(rBD) and
(AdX2 ⊗ AdX2)(rBD) are gauge equivalent over K via an element Q ∈ G(K).

The above remarks imply the following result.

Proposition 5. Let rBD be a non-skewsymmetric r-matrix over K. There exists a one-
to-one correspondence between H1

BD(G, rBD) and gauge equivalence classes of Lie
bialgebra structures on g(K) with classical double g(K) ⊕ g(K) and K-isomorphic to
drBD.

5. Belavin-Drinfeld Cohomologies for sl(n)

Our next goal is to compute H1
BD(GL(n), rBD). Let us first restrict ourselves to the case

of g = sl(n) and the cohomology associated to the Drinfeld–Jimbo r -matrix rDJ . In
this section we assume that G = GL(n).

Lemma 2. Let X ∈ GL(n, K). Assume that for any σ ∈ Gal(K/K), X−1σ(X) ∈
diag(n, K). Then there exist Q ∈ GL(n, K) and D ∈ diag(n, K) such that X = QD.

Proof. Let σ ∈ Gal(K/K) and σ(X) = XDσ , where Dσ = diag(d1, . . . , dn). Here the
elements di depend on σ . Then σ(xi j ) = xi j d j , for any i , j .

On the other hand, in each column of X there exists a nonzero element. Let us denote
these elements by xi11, . . . , xinn . For j = 1, σ(xi1) = xi1d1 and σ(xi11) = xi11d1.
These relations imply that σ(xi1/xi11) = xi1/xi11 for any σ ∈ Gal(K/K) and thus
xi1/xi11 ∈ K, for any i .

Similarly, xi2/xi22 ∈ K, . . . , xin/xinn ∈ K, for any i . Let Q = (ki j ) be the matrix
whose elements are ki j = xi j/xi j j , for any i and j .

Thus X = QD, where Q ∈ GL(n, K) and D = diag(xi11, . . . , xinn).

Proposition 6. For g = sl(n), the Belavin–Drinfeld cohomology H1
BD(GL(n), rDJ )

associated to rDJ and to the group GL(n) is trivial.
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Proof. It easily follows from the proof of Theorem 1 that the centralizer of rDJ is
C(GL(n), rDJ ) = diag(n, K). Let us show that any cocycle is equivalent to the identity.
Indeed, let X = (xi j ) be a cocycle in Z(GL(n), rDJ ), i.e., X−1σ(X) ∈ C(GL(n), rDJ ),
for any σ ∈ Gal(K/K).

It follows that X−1σ(X) ∈ diag(n, K). According to Lemma 2, there exists Q ∈
GL(n, K) and D ∈ diag(n, K) such that X = QD. This proves that X is equivalent to
the identity.

It turns out that the above result is true not only for rDJ . Given an arbitrary r -matrix
rBD on the Belavin–Drinfeld list, the corresponding cohomology is also trivial. First
we will take a closer look at the centralizer C(GL(n), rBD) of an r -matrix rBD . Due to
Theorem 1, the following result holds.

Lemma 3. Let rBD be an arbitrary r-matrix on the Belavin–Drinfeld list. Then

C(GL(n), rBD) ⊆ diag(n, K).

For sl(n) we are now able to give the exact description of C(GL(n), rBD).

Lemma 4. C(GL(n), rBD) consists of all diagonal matrices T = diag(t1, . . . , tn) such
that ti = si si+1 . . . sn, where si ∈ K satisfy the condition: si = s j if αi ∈ Γ1 and
τ(αi ) = α j .

Proof. Let us assume that rBD is associated to an admissible triple (Γ1, Γ2, τ ), where
Γ1, Γ2 ⊂ {α1, . . . , αn−1}. Let T ∈ C(GL(n), rBD). According to Lemma 3, T ∈
diag(n, K), thereforeweputT = diag(t1, . . . , tn).Nowwenote thatT ∈ C(GL(n), rBD)

if and only if (AdT ⊗AdT )(eτ k (α)∧e−α) = eτ k (α)∧e−α for any α ∈ Γ1 and any positive
integer k.

For simplicity, let us take an arbitrary αi ∈ Γ1 and suppose that τ(αi ) = α j . Then
we get ti t

−1
i+1 = t j t

−1
j+1. Denote s j := t j t

−1
j+1 for each j ≤ n − 1 and sn = tn . Then

t j = s j s j+1 . . . sn and si = s j .

Theorem 4. For g = sl(n), the Belavin–Drinfeld cohomology H1
BD(GL(n), rBD) as-

sociated to any rBD is trivial. Any Lie bialgebra structure on g(K) is of the form
δ(a) = [r, a ⊗ 1 + 1 ⊗ a], where r is an r-matrix which is GL(n, K)–equivalent to
a non-skewsymmetric r-matrix on the Belavin–Drinfeld list.

Proof. Let X be a cocycle associated to rBD which is a fixed r -matrix on the Belavin–
Drinfeld list. Thus X−1σ(X) belongs to the centralizer of the rBD . On the other hand,
according to Lemma 3, C(GL(n), rBD) ⊆ diag(n, K).

Then we obtain that for any σ ∈ Gal(K/K), X−1σ(X) is diagonal. By Lemma 2,
we have a decomposition X = QD, where Q ∈ GL(n, K) and D ∈ diag(n, K). Since
σ(Q) = Q, we have X−1σ(X) = (QD)−1σ(QD) = D−1Q−1Qσ(D) = D−1σ(D).
Recall that X−1σ(X) ∈ C(GL(n), rBD). It follows that D−1σ(D) ∈ C(GL(n), rBD).

LetD = diag(d1, . . . , dn). Thendiag(d
−1
1 σ(d1), . . . , d−1

n σ(dn)) ∈ C(GL(n), rBD).
Denote ti = d−1

i σ(di ) and T = diag(t1, . . . , tn). According to Lemma 4, T ∈
C(GL(n), rBD) if and only if ti t

−1
i+1 = t j t

−1
j+1. Equivalently, σ(d−1

i di+1d jd
−1
j+1)

= d−1
i di+1d jd

−1
j+1. It follows that d

−1
i di+1d jd

−1
j+1 ∈ K. Let si := did

−1
i+1 for any i and

sn = dn . Then we get s j s
−1
i ∈ K.
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Let us fix a root αi0 ∈ Γ1\Γ2 and let τ j (αi0) = α j . Then s j s
−1
i0

∈ K, for any j .

Denote k j := s j s
−1
i0

.

On the other hand, d j = s j s j+1 . . . sn−1sn = k j k j+1 . . . kns
n− j+1
i0

. Let

K := diag(k1k2 . . . kn, k2 . . . kn, . . . , kn),

C := diag(sni0 , s
n−1
i0

, . . . , si0).

Note that D = KC and K ∈ GL(n, K). Moreover, according to Lemma 4, C ∈
C(GL(n), rBD).

Summing up, we have obtained that if X is any cocycle associated to rBD , then
X = QD = QKC , with QK ∈ GL(n, K), C ∈ C(GL(n), rBD). This ends the proof.

6. Belavin-Drinfeld Cohomologies for Orthogonal Algebras

The next step in our investigation of Belavin–Drinfeld cohomologies is for orthogonal
algebras o(m). We begin with the case of the Drinfeld–Jimbo r -matrix. In what follows,
we will use the following split form of the orthogonal algebra o(n, C) and o(n, K):

o(n) = {A ∈ gl(n) : AT S + SA = 0},
where S is the matrix with 1 on the second diagonal and zero elsewhere. The group

SO(n) = {X ∈ SL(n) : XT SX = S}
acts naturally on o(n). It follows from Theorem 1 that C(SO(n), rDJ ) coincides with
the maximal torus of SO(n). Our main result about Belavin-Drinfeld cohomologies for
orthogonal algebras is the following:

Theorem 5. Let g = o(m) and rDJ be theDrinfeld–Jimbo r-matrix. Then H1
BD(SO(m),

rDJ ) is trivial.

Proof. (i) Assume m = 2n and fix the bilinear form

B(x, y) =
m

∑

i=1

xi ym+1−i

on K
m
.

Let X ∈ SO(m, K)be a cocycle associated to rDJ . Thus X−1σ(X) ∈ C(SO(m), rDJ ).
Recall that C(SO(m), rDJ ) = diag(m, K) ∩ SO(m, K). Therefore X−1σ(X) ∈ diag
(m, K). By Lemma 2, one has the decomposition X = QD, where Q ∈ GL(m, K)

and D ∈ diag(m, K). Let us write D = diag(d1, . . . , d2n) and denote by qi the
columns of Q. Then X = QD is equivalent to QT SQ = D−1SD−1, which in turn
implies that B(qi , qi ′)didi ′ = δ2n+1−i ′

i . We get B(qi , qi ′) = 0 if i + i ′ 	= 2n + 1 and
B(qi , q2n+1−i )did2n+1−i = 1. Let ki := B(qi , q2n+1−i ). Since Q ∈ GL(2n, K), we
have ki ∈ K. Because k−1

i = did2n+1−i , it follows that D = Q1D1, where

Q1 = diag(k−1
1 , . . . , k−1

n , 1 . . . , 1),

D1 = diag(d1k1, . . . , dnkn, dn+1, . . . , d2n).
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We note that X = (QQ1)D1, D1 ∈ SO(2n) and hence, D1 ∈ C(SO(2n), rDJ ).
Then, clearly, we have QQ1 ∈ SO(2n, K), which proves that X is equivalent to the
identity.

(ii) Now consider m = 2n + 1. By Lemma 2, we may write again X = QD, where
Q ∈ GL(m, K) and D ∈ diag(m, K).

Let ki := B(qi , q2n+2−i ) ∈ K. Repeating the computations as in (i), we obtain
k−1
i = did2n+2−i . If i = n + 1, d2n+1 = k−1

n+1 ∈ K. This implies that either dn+1 ∈ K or
dn+1 ∈ jK, where j2 = �.

Actually we can prove that the second case is impossible.
Let us denote R = Q−1 and its rows by r1, . . . , r2n+1. Then the relation XT SX = S

is equivalent to RSRT = DSD, which in turn gives the following: B(ri , ri ′) = 0, for
all i 	= i ′, B(ri , ri ) = did2n+2−i for all i .

Let us take an arbitrary orthogonal basis v1, . . . , v2n+1 in K
2n+1 and denote B(vi , vi )

= Ai .
The matrix V with rows vi satisfies V SV T = diag(A1, . . . , A2n+1). This relation im-

plies that A1 . . . A2n+1 = (−1)n det(V )2 = ((
√−1)n det(V ))2. Therefore A1 . . . A2n+1

= l2 is a square of some l ∈ K.
On the other hand, if M is the change of basis matrix from ri to vi , then

MT diag(A1, . . . , A2n+1)M = diag(d1d2n+1, . . . , d
2
n+1, . . . , d2n+1d1).

By taking the determinant on both sides, we obtain

det(M)2A1 . . . A2n+1 = (d1d2n+1)
2 . . . (dndn+2)

2d2n+1

which implies that d2n+1 is a square in K, and consequently, dn+1 ∈ K.
Let us show that X is equivalent to the trivial cocycle. Consider

Q1 = diag(k−1
1 , . . . , k−1

n , dn+1, 1, . . . , 1),

D1 = diag(d1k1, . . . , dnkn, 1, dn+2, . . . , d2n+1).

We have D = Q1D1 and D1 ∈ SO(2n + 1, K). Thus X = (QQ1)D1, QQ1 ∈
SO(2n + 1, K), D1 ∈ C(SO(2n + 1), rDJ ), i.e., X is equivalent to the trivial cocycle,
which completes the proof of triviality of H1

BD(SO(m), rDJ ).

Regarding Belavin–Drinfeld cohomology H1
BD(SO(2n), rBD) for an arbitrary rBD ,

we can give an example where this set is non-trivial. Let us denote the simple roots of
o(2n) by αi = εi − εi+1, for i < n, αn = εn−1 + εn , where {εi } is an orthonormal basis
of h∗. Let Γ1 = {αn−1}, Γ2 = {αn} and τ(αn−1) = αn . Denote by rBD the r -matrix
corresponding to the triple (Γ1, Γ2, τ ) and s, where s ∈ h∧ h satisfies ((αn−1 − αn)) ⊗
1)(2s) = ((αn−1 + αn)) ⊗ 1)Ω0.

Lemma 5. The centralizer C(SO(2n), rBD) consists of all diagonal matrices of the
form

T = diag(t1, . . . , tn−1,±1,±1, t−1
n−1, . . . , t

−1
1 ),

for arbitrary nonzero t1, . . . , tn−1 ∈ K.
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Proof. We already have the inclusion C(SO(2n), rBD) ⊆ diag(2n, K)∩O(2n, K). Let
T ∈ C(SO(2n), rBD), where T = diag(t1, . . . , tn, t−1

n , . . . , t−1
1 ). Since T commutes

with r0 and rDJ , T ∈ C(SO(2n), rBD) if and only if (AdT ⊗ AdT )(eαn ∧ eαn−1) =
eαn ∧ eαn−1 . One can check that (AdT ⊗AdT )(eαn ∧ eαn−1) = t−2

n eαn ∧ eαn−1 . Therefore
we get t−2

n = 1 and the conclusion follows.

Proposition 7. Let g = o(2n), and rBD be the r-matrix corresponding to the triple
(Γ1, Γ2, τ ) and some s ∈ h ∧ h, where Γ1 = {αn−1}, Γ2 = {αn} and τ(αn−1) = αn,
and ((αn−1 − αn)) ⊗ 1)(2s) = ((αn−1 + αn)) ⊗ 1)Ω0. Then H1

BD(SO(2n), rBD) is
non-trivial.

Proof. Assume that X−1σ(X) ∈ C(SO(2n), rBD) for all σ ∈ Gal(K/K). By the above
lemma, X−1σ(X) = diag(t1, . . . , tn−1,±1,±1, t−1

n−1, . . . , t
−1
1 ).

On the other hand, since X−1σ(X) is diagonal, it follows from Theorem 5 that there
exist Q ∈ SO(2n, K) and a diagonal matrix D ∈ SO(2n, K) such that X = QD.
Let us write D = diag(s1, . . . , sn, s−1

n , . . . , s−1
1 ). Since Q ∈ O(2n, K), for any σ ∈

Gal(K/K), σ(Q) = Q. We obtain X−1σ(X) = D−1Q−1Qσ(D) = D−1σ(D), which
is equivalent to the following: s−1

i σ(si ) = ti for all i ≤ n − 1, and s−1
n σ(sn) = ±1.

Assume first that there exists σ such that σ(sn) = −sn . Then sn ∈ jK. One can
check that X is equivalent to X0 = diag(1, . . . , 1, j, j−1, 1, . . . , 1), which is a non-
trivial cocycle.

If σ(sn) = sn for all σ ∈ Gal(K/K), then sn ∈ K. In this case,

D = diag(s1, . . . , sn−1, 1, 1, s
−1
n−1, . . . , s

−1
1 ) · diag(1, . . . , 1, sn, s−1

n , 1, . . . , 1),

where the first matrix is in C(SO(2n), rBD) and the second in SO(2n, K). This proves
that X is equivalent to the identity cocycle.

7. Lie Bialgebra Structures in Case III and Twisted Belavin-Drinfeld
Cohomologies

Throughout this section we restrict our discussion to g = sl(n) and consider GL(n)

as the gauge group. Here we analyse Lie bialgebra structures on g(K) for which the
corresponding Drinfeld double is isomorphic to g(K[ j]), where j2 = �. Our aim is to
find all subalgebras W of g(K[ j]) satisfying the following conditions:

(i) W ⊕ g(K) = g(K[ j]).
(ii) W = W⊥ with respect to the non-degenerate symmetric bilinear form Q given

by
Q( f1 + j f2, g1 + jg2) = K ( f1, g2) + K ( f2, g1).

We begin with the following remark. The field K[ j] is endowed with a conjugation.
For any element a = f1 + j f2, its conjugate is a := f1 − j f2. By the norm of an element
a ∈ K[ j] we will understand the element aa ∈ K.

If A = A1 + j B1 and B = A2 + j B2 are twomatrices in sl(n, K[ j]), then Q(A, B) =
Tr(A1B2 + B1A2), i. e., the coefficient of j in Tr(AB).

Lemma 6. Let L be the subalgebra of sl(n, K[ j]) which consists of all matrices Z =
(zi j ) satisfying zi j = zn+1−i,n+1− j . Then L and sl(n, K) are isomorphic via conjugation
in sl(n, K[ j]).
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Proof. Assume that Z = (zi j ) satisfies zi j = zn+1−i,n+1− j . Then Z = SZ S, where S is
the matrix with 1 on the second diagonal and zero elsewhere.

Choose a matrix X ∈ GL(n, K[ j]) such that X = XS. Then X ZX−1

= XSZSX−1 = X ZX−1, which implies X ZX−1 ∈ sl(n, K). Conversely, if A ∈
sl(n, K), then Z = X−1AX satisfies the condition Z = SZ S.

From now on we will identify sl(n, K) with L . Let us find a complementary subal-
gebra to L in sl(n, K[ j]). Let us denote by H the Cartan subalgebra of L . If we identify
the Cartan subalgebra of sl(n, K[ j]) with K

2(n−1), then H is a Lagrangian subspace of
K

2(n−1). Choose a Lagrangian subspace H0 of K
2(n−1) such that H0 has trivial intersec-

tion with H. Let N+ be the algebra of upper triangular matrices of sl(n, K[ j]) with zero
diagonal. Consider W0 = H0 ⊕ N+. We immediately obtain the following

Lemma 7. The subalgebra W0 as above satisfies conditions (i) and (ii), where sl(n, K)

is identified with L as in Lemma 6.

Proposition 8. Any Lie bialgebra structure on sl(n, K) for which the classical double
is isomorphic to sl(n, K[ j]) is given by an r-matrix which satisfies CY B(r) = 0 and
r + r21 = jΩ .

Proof. LetW0 be as in the above lemma. By choosing two dual bases inW0 and sl(n, K)

respectively, one can construct the corresponding r -matrix r0 over K. It is easily seen
that r0 satisfies the system CY B(r0) = 0 and r0 + r210 = jΩ .

Let us suppose that W is another subalgebra of sl(n, K[ j]) satisfying conditions (i)
and (ii). Then the corresponding r -matrix over K is obtained by choosing dual bases in
W and sl(n, K) respectively. We have r + r21 = aΩ for some a ∈ K[ j]. On the other
hand, the classical double of the Lie bialgebras corresponding to r and r0 is the same.
This implies that r and r0 are classical twists of each other and therefore a = j .

On the other hand, over K, all r -matrices are gauge equivalent to the ones on the
Belavin–Drinfeld list. It follows that there exists a non-skewsymmetric r -matrix rBD

and X ∈ GL(n, K) such that r = j (AdX ⊗ AdX )(rBD).
Denote by σ0 an arbitrary lift of the conjugation on K[ j] to Gal(K/K). We recall,

see [9], that Gal(K/K) is generated by Gal(K/K[ j]) and σ0.
Consider an arbitrary σ ∈ Gal(K/K). Since δ is a cobracket on sl(n, K), (σ ⊗

σ)(δ(a)) = δ(a) and (σ ⊗ σ)(δ(a)) = [σ(r), a ⊗ 1 + 1 ⊗ a].
Let us assume that σ ∈ Gal(K/K[ j]). Exactly as in Sect. 4, it follows that σ(r) = r

and if r = (AdX ⊗ AdX )( jrBD) with X ∈ GL(n, K), then σ(X) = XD(σ ).
By the same arguments as in the proof of Lemma 2, the following result is established.

Lemma 8. Let X ∈ GL(n, K). Assume that for any σ ∈ Gal(K/K[ j]), X−1σ(X) ∈
diag(n, K). Then there exists P ∈ GL(n, K[ j]) and D ∈ diag(n, K) such that X = PD.

Now let us consider the action of σ0 ∈ Gal(K[ j]/K). Our identities imply that
σ0(r) = r +αΩ , for some α ∈ K. Let us show that α = − j . Indeed, since r +r21 = jΩ ,
we also have σ0(r)+ σ0(r21) = − jΩ . Combining these relations with σ0(r) = r +αΩ ,
we get α = − j and therefore σ0(r) = r − jΩ = −r21.

Recall now that r = j (AdX ⊗AdX )(rBD). It follows that X ∈ GL(n, K)must satisfy
the identity (AdX−1σ0(X) ⊗ AdX−1σ0(X))(σ0(rBD)) = r21BD . Using the same arguments
as in the proof of Theorem 3 in Sect. 4, we obtain
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Proposition 9. Any Lie bialgebra structure on sl(n, K) for which the classical double
is sl(n, K[ j]) is given by an r-matrix r = j (AdX ⊗ AdX )(rBD), where rBD is a non-
skewsymmetric r-matrix on the Belavin–Drinfeld list and X ∈ GL(n, K) satisfies

(AdX−1σ0(X) ⊗ AdX−1σ0(X))(rBD) = r21BD

and, for σ ∈ Gal(K/K[ j]),
(AdX−1σ(X) ⊗ AdX−1σ(X))(rBD) = rBD.

From now on we assume that rBD is defined over K (i.e. its Cartan part r0 is defined
over K).

Definition 5. Let rBD be a non-skewsymmetric r -matrix on the Belavin–Drinfeld list.
Wecall X ∈ G(K) aBelavin–Drinfeld twisted cocycle associated to rBD if (AdX−1σ0(X)⊗
AdX−1σ0(X))(rBD) = r21BD and for anyσ ∈ Gal(K/K[ j]), (AdX−1σ(X)⊗AdX−1σ(X))(rBD)

= rBD .

The set of Belavin–Drinfeld twisted cocycles associated to rBD will be denoted by
Z(G, rBD).

Now let us restrict ourselves to the case rBD = rDJ . In order to continue our inves-
tigation, let us prove the following

Lemma 9. Let S be the matrix with 1 on the second diagonal and zero elsewhere. Then

r21DJ = (AdS ⊗ AdS)rDJ .

Proof. We recall that rDJ is given by the following formula:

rDJ =
∑

α>0

eα ⊗ e−α +
1

2
Ω0

where Ω0 is the Cartan part of Ω .
First note that (AdS ⊗ AdS)(ei j ⊗ e ji ) = en+1−i,n+1− j ⊗ en+1− j,n+1−i , which is

a term in r21DJ , if i > j (here ei j is a matrix with 1 on the (i, j) position and zero
elsewhere). On the other hand, since Ω0 is the Cartan part of the invariant element
Ω , we get (AdS ⊗ AdS)Ω0 = Ω0. This could also be proved by using the following:
Ω0 = n

∑n
i=1 eii ⊗ eii − I ⊗ I , where I denotes the identity matrix of GL(n, K). Then

the identity r21DJ = (AdS ⊗ AdS)rDJ holds.

Definition 6. Denotem = n/2 if n is even, andm = (n+1)/2 if n is odd. By J we denote
the matrix with elements akk = 1 for k ≤ m, akk = − j for k ≥ m + 1, ak,n−k+1 = 1 for
k ≤ m, ak,n−k+1 = j for k ≥ m + 1, and other elements vanish.

Lemma 10. Z(GL(n), rDJ ) is non-empty.

Proof. Indeed, σ0(J ) = J S, J ∈ GL(n, K[ j]).
Corollary 2. Let X be a Belavin–Drinfeld twisted cocycle associated to rDJ . Then X =
PD, where P ∈ GL(n, K[ j]) and D ∈ diag(n, K). Moreover, σ0(P) = PSD1, where
D1 ∈ diag(n, K[ j]).
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Proof. Since X is a twisted cocycle, for anyσ ∈ Gal(K/K[ j]), X−1σ(X) ∈ C(GL(n), rDJ ).
Recall that C(GL(n), rDJ ) = diag(n, K). By Lemma 8, we have X = PD, where
P ∈ GL(n, K[ j]) and D ∈ diag(n, K). Lemma 9 implies that S−1X−1σ0(X) =: D2 ∈
diag(n, K). Since X = PD, S−1D−1P−1σ0(P)σ0(D) = D2. Hence P−1σ0(P) =
DSD0σ0(D−1).

Let D1 := S−1DSD2σ0(D−1) ∈ diag(n, K). Then σ0(P) = PSD1 and D1 ∈
diag(n, K[ j]).
Definition 7. Let X1 and X2 be two Belavin–Drinfeld twisted cocycles associated to
rBD .We say that they are equivalent if there existQ ∈ GL(n, K) andD ∈ C(GL(n), rBD)

such that X1 = QX2D.

Remark 5. Assume that X is a twisted cocycle associated to rDJ . By Corollary 2, X =
PD and is equivalent to the twisted cocycle P ∈ GL(n, K[ j]).
Definition 8. Let H

1
BD(GL(n), rBD) denote the set of equivalence classes of twisted

cocycles associated to rBD . We call this set the Belavin–Drinfeld twisted cohomology
associated to the r -matrix rBD .

Remark 6. If X1 and X2 are equivalent, then the corresponding r -matrices r1 = j (AdX1⊗
AdX1)(rDJ ) and r2 = j (AdX2 ⊗AdX2)(rDJ ) are gauge equivalent via Q ∈ GL(n, K).

Proposition 10. There is a one-to-one correspondence between H
1
BD(GL(n), rBD) and

gauge equivalence classes of Lie bialgebra structures on sl(n, K) with classical double
sl(n, K[ j]) and K-isomorphic to drBD.

Proposition 11. For g = sl(n), the Belavin–Drinfeld twisted cohomology

H
1
BD(GL(n), rDJ ) is non-empty and consists of one element.

Proof. Let X be a twisted cocycle associated to rDJ . By Remark 5, X is equivalent to
a twisted cocycle P ∈ GL(n, K[ j]), associated to rDJ . We may therefore assume from
the beginning that X ∈ GL(n, K[ j]) and it remains to prove that all such cocycles are
equivalent.

We will prove that X and J are equivalent, i.e., X = QJD′, for some Q ∈ GL(n, K)

and D′ ∈ diag(n, K[ j]). The proof will be done by induction.
For n = 2, we have J =

(

1 1
j − j

)

and let X =
(

a b
c d

)

∈ GL(2, K[ j]) satisfy

X = XSD with D = diag(d1, d2) ∈ GL(2, K[ j]). This equation is equivalent to the
system a = bd1, b = ad2, c = dd1, d = cd2. Assume that cd 	= 0. Let a/c =
a′ + b′ j . Then b/d = a′ − b′ j . One can immediately check that X = QJD′, where

Q =
(

a′ b′
1 0

)

∈ GL(2, K), D′ = diag(c, d) ∈ diag(2, K[ j]).

For n = 3, consider J =
⎛

⎝

1 0 1
0 1 0
j 0 − j

⎞

⎠ and let X = (ai j ) ∈ GL(3, K[ j]) satisfy

X = XSD, with D = diag(d1, d2, d3) ∈ GL(3, K[ j]). This equation is equivalent
to the system a11 = d1a13, a21 = d1a23, a31 = d1a33, a12 = d2a12, a22 = d2a22,
a32 = d2a32, a13 = d3a11, a23 = d3a21, a33 = d3a31. Assume that a21a22a23 	= 0.

Let a11/a21 = b11 + b13 j and a31/a21 = b31 + b33 j . Then a13/a23 = b11 − b13 j
and a33/a23 = b31 − b33 j . On the other hand, let b12 := a12/a22 and b32 := a32/a22.



16 B. Kadets, E. Karolinsky, I. Pop, A. Stolin

Note that b12 ∈ K, b32 ∈ K. One can immediately check that X = QJD′, where

Q =
⎛

⎝

b11 b12 b13
1 1 0
b31 b32 b33

⎞

⎠ ∈ GL(3, K), D′ = diag(a21, a22, a23) ∈ diag(3, K[ j]).

For n > 3, we proceed by induction. Let us denote J ∈ GL(n, K[ j]), which was
defined above, by Jn .We are going to prove that if X ∈ GL(n, K[ j]) satisfies X = XSD,
then using elementary row operations with entries in K and multiplying columns by
proper elements in K[ j] we can transform X to Jn .

We will need the following operations on a matrix

M = (mpq) ∈ Mat(n) :
1. un(M) = (mpq) ∈ Mat(n − 2), p, q = 2, 3, . . . , n − 1;
2. gn(M) = (mpq) ∈ Mat(n+2),wherempq are already defined for p, q = 1, 2, . . . n,

m00 = mn+1,n+1 = 1 and the rest m0,a = ma,0 = mn+1,a = ma,n+1 = 0.

It is clear that un(X) satisfies the twisted cocycle condition. However, its determinant
might vanish. To avoid this complication, we note that columns 2, 3, . . . , n − 1 of X
are linearly independent. Applying elementary row operations (in fact, they are permu-
tations) we obtain a new cocycle X1, which is equivalent to X and such that un(X1) is
a cocycle in GL(n − 2, K[ j]). Then, by induction, there exist Qn−2 ∈ GL(n − 2, K)

and a diagonal matrix Dn−2 such that

Qn−2 · un(X1) · Dn−2 = Jn−2

Let us consider Xn = gn−2(Qn−2)·X1 ·gn−2(Dn−2). Clearly, Xn is a twisted cocycle
equivalent to X and un(Xn) = Jn−2.

Applying elementary row operations with entries in K and multiplying by a proper
diagonal matrix, we can obtain a new cocycle Yn = (ypg) equivalent to X with the
following properties:

1. un(Yn) = Jn−2;
2. y12 = y13 = · · · = y1,n−1 = 0 and yn2 = yn3 = · · · = yn,n−1 = 0;
3. y11 = y1n = 1, here we use the fact that if ypq = 0, then yp,n+1−q = 0.

It follows from the cocycle condition Yn = Yn ·S ·diag(h1, . . . , hn) that h1 = hn = 1
and hence, yn1 = ynn .

Now, we can use the first row to achieve yn1 = −ynn = j and after that, we use
the first and the last rows to get yk1 = 0, k = 2, . . . , n − 1. Then the elements ykn ,
k = 2, . . . , n − 1 will vanish automatically. Thus, X is equivalent to Jn .

Example 1. For g = sl(2), the Belavin–Drinfeld list of non-skewsymmetric constant
r -matrices consists of only one class, rDJ = e ⊗ f + 1

4h ⊗ h, where e = e12, f = e21
and h = e11 − e22. We can easily determine the corresponding class of gauge equivalent
Lie bialgebra structures on sl(2, K)with classical double sl(2, K[ j]) and K-isomorphic
to drDJ . Indeed, we have seen that the corresponding Lie bialgebra structure equals
δ = dr , where the r -matrix is r = j (AdX ⊗ AdX )rDJ and X is a twisted cocycle. On
the other hand, according to the above result, any such X is equivalent to

J =
(

1 1
j − j

)

.
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Therefore a class representative is δ0 = dr0, where r0 = j (AdJ ⊗ AdJ )rDJ . A
straightforward computation gives

r0 = jΩ

2
+
1

4
h ∧ e +

�

4
f ∧ h.

We conclude that any Lie bialgebra structure on sl(2, K) with classical double
sl(2, K[ j]) is gauge equivalent to the one given by a · dr0, a ∈ K.

Remark 7. In the case g = sl(2), it follows that the Drinfeld–Jimbo r -matrix multiplied
by a ∈ K along with ar0, r0 = jΩ

2 + 1
4h ∧ e + �

4 f ∧ h, provides all GL(n) non-
equivalent Lie bialgebra structures on sl(2, K) of types II and III and, consequently, two
families of non-isomorphic Hopf algebra structures on U (sl(2, C))[[�]]. Moreover, in
some sense these two structures exhaust all Hopf algebra structures onU (sl(2, C))[[�]]
with a non-trivial Drinfeld associator (see also conjectures below).

Remark 8. The next stepwould be to compute the Belavin–Drinfeld twisted cohomology
corresponding to an arbitrary r -matrix rBD . Unlike untwisted cohomology, it might
happen that even Z(G, rBD) is empty as we will see in the next section.

8. Twisted Cohomologies for sl(n) of Cremmer-Gervais Type

In this section thegaugegroupG is alwaysGL(n).Wehave seen thatH
1
BD(GL(n), rDJ ),

where rDJ is the Drinfeld–Jimbo r -matrix, consists of one element.Wewill now turn our
attention to other non-skewsymmetric r -matrices and analyse the corresponding twisted
cohomology set. Let us consider an arbitrary admissible triple (Γ1, Γ2, τ ), and a tensor
r0 ∈ h ⊗ h satisfying r0 + r210 = Ω0 and (τ (α) ⊗ 1 + 1 ⊗ α)(r0) = 0 for any α ∈ Γ1.
We recall that the associated r -matrix is given by the following formula

r = r0 +
∑

α>0

eα ⊗ e−α +
∑

α∈(SpanΓ1)+

∑

k∈N

eα ∧ e−τ k (α).

Assume now that there exists X ∈ Z(GL(n), r). Then r and r21 are gauge equivalent
since (AdX−1σ0(X) ⊗ AdX−1σ0(X))(r) = r21.

Let S ∈ GL(n, K) be the matrix with 1 on the second diagonal and 0 elsewhere. Let
us denote by s the automorphism of the Dynkin diagram given by s(αi ) = αn−i for all
i = 1, . . . , n − 1. Clearly, AdS(eα) = e−s(α) and AdS(e−τ k (α)) = esτ k (α). Thus

(AdS ⊗ AdS)(r) = (AdS ⊗ AdS)(r0) +
∑

α>0

e−s(α) ⊗ es(α)

+
∑

α∈(SpanΓ1)+

∑

k∈N

e−s(α) ∧ esτ k (α).

On the other hand, since r and r21 are gauge equivalent, (AdS ⊗ AdS)(r) and r21

must be gauge equivalent as well. The following condition has to be fulfilled for all k:
s(α) = τ k(β) if β = sτ k(α). We get sτ = τ−1s, s(Γ1) = Γ2 (and s(Γ2) = Γ1). In
conclusion we have obtained

Proposition 12. Let r be a non-skewsymmetric r-matrix associated to an admissible
triple (Γ1, Γ2, τ ). If Z(GL(n), r) is non-empty, then s(Γ1) = Γ2 and sτ = τ−1s.
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The following two results will prove to be quite useful for the investigation of the
twisted cohomologies for arbitrary non-skewsymmetric r -matrices.

Lemma 11. Assume X ∈ Z(GL(n), r). Then there exists a twisted cocycle Y
∈ GL(n, K[ j]), associated to r , and equivalent to X.

Proof. We have X ∈ GL(n, K) and for any σ ∈ Gal(K/K[ j]), X−1σ(X) ∈ C(GL(n),

r). On the other hand, the Belavin–Drinfeld cohomology for sl(n) associated to r is triv-
ial. This implies that X is equivalent to the identity, where in the equivalence relation we
considerK[ j] instead ofK. So there existsY ∈ GL(n, K[ j]) andC ∈ C(GL(n), r) such
that X = YC . Since (AdX−1σ0(X)⊗AdX−1σ0(X))(r) = r21, (AdY−1σ0(Y )⊗AdY−1σ0(Y ))(r)
= r21. Thus Y is also a twisted cocycle associated to r .

Recall that J ∈ GL(n, K[ j]) denotes the matrix with entries akk = 1 for k ≤ m,
akk = − j for k ≥ m + 1, ak,n+1−k = 1 for k ≤ m, ak,n+1−k = j for k ≥ m + 1, where
m = [ n+12 ]; other entries vanish.

Lemma 12. Let r be a non-skewsymmetric r-matrix associated to an admissible triple
(Γ1, Γ2, τ ) satisfying s(Γ1) = Γ2 and sτ = τ−1s. If X ∈ Z(GL(n), r), then there exist
R ∈ GL(n, K) and D ∈ diag(n, K) such that X = RJ D.

Proof. According toLemma11, X = YC ,whereY ∈ GL(n, K[ j]) andC ∈ C(GL(n), r).
Since (AdY−1σ0(Y ) ⊗ AdY−1σ0(Y ))(r) = r21 and (AdS ⊗ AdS)(r) = r21, it follows
that S−1Y−1σ0(Y ) ∈ C(GL(n), r). On the other hand, by Lemma 3, C(GL(n), r) ⊂
diag(n, K). We get S−1Y−1σ0(Y ) ∈ diag(n, K). Now Proposition 11 implies that Y =
RJ D0, where R ∈ GL(n, K) and D0 ∈ diag(n, K). Consequently, X = RJ D0C =
RJ D with D = D0C ∈ diag(n, K).

We will now look for admissible triples which satisfy condition sτ = τ−1s. Let us
consider theCremmer–Gervais triple:Γ1 = {α1, α2, . . . , αn−2},Γ2 = {α2, α3, . . . , αn−1}
and τ(αi ) = αi+1. Clearly, sτ = τ−1s. Denote by rCG the Cremmer–Gervais r -matrix
corresponding to the above triple and whose Cartan part is given by the following ex-
pression:

r0 = 1

2

n
∑

i=1

eii ⊗ eii +
∑

1≤i<k≤n

n + 2(i − k)

2n
eii ⊗ ekk .

We intend to describe H
1
BD(GL(n), rCG). Let us first analyse the case g = sl(3).

The centralizer C(GL(n), rCG) consists of diagonal matrices diag(a, b, c) such that
b2 = ac. Consider

J =
⎛

⎝

1 0 1
0 1 0
j 0 − j

⎞

⎠ .

Lemma 13. Let X ∈ GL(3, K[ j]). Then X = XSC, where C ∈ C(GL(n), rCG) if and
only if X = RJdiag(p, q, r), with R ∈ GL(3, K) and prq−2 = k ∈ K.
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Proof. According to Lemma 12, there exist R ∈ GL(3, K) and D = diag(p, q, r),
p, q, r ∈ K[ j] such that X = RJ D. We get X = RJ SD = RJ DD−1SD =
XSdiag(pr−1, qq−1, r p−1). Let C = diag(pr−1, qq−1, r p−1). Then
C ∈ C(GL(n), rCG) if and only if pr(pr)−1 = (qq−1)2, which is equivalent to
prq−2 = prq−2, i.e., prq−2 ∈ K.

Proposition 13. H
1
BD(GL(3), rCG) consists of one element, namely J can be chosen

as a representative.

Proof. Let X ∈ Z(GL(3), rCG). According to the preceding lemma, X = RJdiag
(p, q, r), with R ∈ GL(3, K) and prq−2 = k ∈ K. We distinguish the following cases:

Case 1 Let k = l−2, where l ∈ K. Then we have a particular solution to the equation
prq−2 = l−2, namely p0 = r0 = 1, q0 = l. By setting p = p0 p1, q = q0q1, r = r0r1,
we see that diag(p1, q1, r1) ∈ C(GL(n), rCG) and diag(p0, q0, r0) = diag(1, l, 1),
which commutes with J . It follows that X = RJdiag(1, l, 1) · diag(p1, q1, r1), or,
equivalently, X = R1 Jdiag(p1, q1, r1), where R1 := R · diag(1, l, 1). Consequently, X
is equivalent to J .

Case 2 Suppose k is not a square of an element of K. In this case, without loss of
generality, we can set l = j and k = �. We want to prove that J ·diag(1, j, 1) = R′ JC ′,
for some R′ ∈ GL(3, K) and someC ′ = diag(x, y, z)with xy−2z = 1. Equivalently, J ·
diag(x−1, j y−1, z−1)J−1 = R′. Since R′ = R′, we get Jdiag(x−1,− j y−1, z−1)J

−1 =
Jdiag(x−1, j y−1, z−1)J−1. Thus diag(x−1,− j y−1, z−1) = diag(x−1, j y−1, z−1). We
obtained that x = z and y = k j , with k ∈ K. Hence, we have to find x and k so that
xx = k2�. Clearly, it is sufficient to find α ∈ K[ j]with norm � (recall that the norm of an
element a ∈ K[ j] is the element aa ∈ K). The latter is trivial becausewe can for instance
choose α = √−1 j . Thus the existence of R′ ∈ GL(3, K) and C ′ = diag(x, y, z) is
proved and therefore we conclude that X is equivalent to J .

The above result can be generalized to sl(n),n > 3.Let us first note that the centralizer
C(GL(n), rCG) consists of diagonal matrices diag(p1, p2, . . . , pn) such that pi+1 =
pi2 p

1−i
1 for all i . Let m = [ n+12 ].

Lemma 14. Let X ∈ GL(n, K[ j]). Then X = XSC, where C ∈ C(GL(n), rCG) if
and only if X = RJdiag(d1, . . . , dn), with R ∈ GL(n, K), d1, . . . , dn ∈ K[ j] and
dn−i+1 = dir i−2q−1 for i ≤ m, where r, q are such that rn−3 = qq.

Proof. According to Lemma 12, there exist R ∈ GL(n, K), D = diag(d1, . . . , dn), di ∈
K[ j] such that X = RJ D. We get X = RJ SD = RJ DD−1SD = XS(SD−1SD). On
the other hand, SD−1SD = diag(d1d−1

n , d2d
−1
n−1, . . . , dnd

−1
1 ). Denote pi = did

−1
n+1−i .

Obviously, pn+1−i = (pi )−1. But diag(p1, p2, . . . , pn) belongs to C(GL(n), rCG) if
and only if pi+1 = pi2 p

1−i
1 for all i . It follows that pn−i

2 p1+i−n
1 = (p2)−i+1(p1)i−2 must

be fulfilled for all i . For i = 1 we get pn−1
2 = pn−1

1 p1−1 (note that if this identity holds
then the other identities also hold for all i). This identity is also equivalent to pn−3

1 =
pn−2
2 p2. Set p1 = qr , p2 = q. Then rn−3 = qq . We obtain dn−i+1 = dir i−2q−1, for

all i ≤ m. Let us note that if n = 2m − 1, we have dm(dm)−1 = rm−2q−1. Since the
norm of rm−2q−1 is 1, this condition is self-consistent.

Remark 9. It follows from the above lemma that X = RJ , where R ∈ GL(n, K), is a
twisted cocycle associated to rCG . All such cocycles are equivalent to J .
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Proposition 14. H
1
BD(GL(n), rCG) consists of one element, namely J can be chosen

as a representative.

Proof. Let X ∈ Z(GL(n), rCG). According to the previous lemma, X = RJdiag
(d1, . . . , dn), where dn−i+1 = dir i−2q−1 for i ≤ m, and rn−3 = qq . We are looking for
Q ∈ GL(n, K) and C ∈ C(GL(n), rCG) such that X = QJC . We get RJ D = QJC .
By taking the conjugate, we obtain RJ SD = QJ SC , which implies SD−1SD =
SC−1SC . Let C = diag(c1, . . . , cn) with ci+1 = ci2c

1−i
1 for all i . Therefore ci must

fulfill the system did
−1
n+1−i = ci c

−1
n+1−i . Equivalently,

c2i−1cn−i−1
1

c1i−2cn−i
2

= q
ri−2 must hold for all

i . Substituting c1 = xy, c2 = y, we immediately obtain xx = r and xn−3yy−1 = q. The
first equation clearly has a solution inK[ j]. Since q/xn−3 has norm 1, Hilbert’s Theorem
90 implies that there exists a solution y ∈ K[ j] to the equation y/y = q/xn−3. Thus we
find a solution to the systemwhich in turn provides uswith amatrixC ∈ C(GL(n), rCG)

that satisfies SD−1SD = SC−1SC . Finally we note that if we let Q = XC−1 J−1, then
Q ∈ GL(n, K) because of the way C was chosen.

The Cremmer–Gervais case can be further generalized. We call a triple (Γ1, Γ2, τ )

generalized Cremmer–Gervais if Γ1 = {α1, . . . , αk}. Without loss of generality, such a
triple has one of the forms:

Type 1: Γ1 = {α1, . . . , αk}, Γ2 = {αn−k, . . . , αn−1} and τ(αi ) = αn−k+i−1.
Type 2: Γ1 = {α1, . . . , αk}, Γ2 = {αn−k, . . . , αn−1} and τ(αi ) = αn−i .
Let us recall that a necessary condition for Z(SL(n), r) to be non-empty is that the

corresponding admissible triple satisfies s(Γ1) = Γ2 and sτ = τ−1s, where s is given
by s(αi ) = αn−i for all i = 1, . . . , n − 1. If the triple is generalized Cremmer–Gervais
then this condition is satisfied.

Theorem 6. Let r be a non-skewsymmetric r-matrix corresponding to a generalized

Cremmer–Gervais triple (Γ1, Γ2, τ ). Then H
1
BD(GL(n), r) consists of one element, the

class of J .

Proof. First let us describe the centralizer C(GL(n), r).
For type 1, i.e. Γ1 = {α1, . . . , αk}, Γ2 = {αn−k, . . . , αn−1} and τ(αi ) = αn−k+i−1,

the centralizerC(GL(n), r) consists of matrices diag(p1, . . . , pn) such that pi−1 p
−1
i =

pn−k+i−1 p
−1
n−k+i for all i ≤ k.

For type 2, i.e. Γ1 = {α1, . . . , αk}, Γ2 = {αn−k, . . . , αn−1} and τ(αi ) = αn−i , the
corresponding C(GL(n), r) consists of matrices diag(p1, . . . , pn) such that pi p

−1
i+1 =

pn−i p
−1
n−i+1 for all i ≤ k. We note that k ≤ [ n−1

2 ], since otherwise τ has fixed points.
Let us assume that X ∈ Z(GL(n), r) for a triple (Γ1, Γ2, τ ) of the first type. Then

X = RJ D, where R ∈ GL(n, K) and D = diag(d1, . . . , dn) is such that SD−1SD ∈
C(GL(n), r). Let pi = did

−1
n+1−i . Then pn+1−i = pi−1. On the other hand, since

diag(p1, . . . , pn) ∈ C(L(n), r), we have pi−1 p
−1
i = pn−k+i−1 p

−1
n−k+i for all i ≤ k.

This further implies pi p
−1
n−k+i = pk−i+1 p

−1
n+1−i for all i ≤ k. Thus we get pi pk−i+1 =

pk−i+1 pi , which is equivalent to pi/pk−i+1 ∈ K. Equivalently, di dn+1−i
dk−i+1dn−k+i

∈ K for
i ≤ k.

Let us prove that X is equivalent to J . For this, it is enough to determine C ∈
C(GL(n), r) which satisfies SD−1SD = SC−1SC . Let C = diag(c1, . . . , cn). The
preceding condition is equivalent to the system ci c

−1
n+1−i = did

−1
n+1−i , where i ≤ n.
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On the other hand, since C ∈ C(GL(n), r), we have ci−1c
−1
i = cn−k+i−1c

−1
n−k+i for

i ≤ k. It follows that ci cn−k+1 = c1cn−k+i and ck−i+1cn−k+1 = c1cn−i+1. Consequently,

ci cn−i+1 = ck−i+1cn−k+i . Furthermore, ck−i+1ck−i+1
ci ci

= dk−i+1dn+1−i

dn−k+i di
=: λi . We note that

λi ∈ K since di dn+1−i
dk−i+1dn−k+i

∈ K, for i ≤ k. Thus we have obtained that the norm ck−i+1/ci
should be λi . Now, if c1, . . . , c[ k2 ] are fixed, then we can determine c[ k2 ]+1, . . . , ck since
we can solve equations of the type xx = λi . The remaining unknowns cn−i+1 are
determined by the relation ck−i+1cn−k+1 = c1cn−i+1. Thus we have proved the existence
of C ∈ C(GL(n), r) and in conclusion X and J are equivalent.

Now let us consider X ∈ Z(SL(n), r), where the triple (Γ1, Γ2, τ ) is of the second
type. Again we have a decomposition X = RJ D, where R ∈ GL(n, K) and D =
diag(d1, . . . , dn) is such that SD−1SD ∈ C(GL(n), r). Let pi = did

−1
n+1−i . Since

diag(p1, . . . , pn) ∈ C(GL(n), r), we have pi p
−1
i+1 = pn−i p

−1
n−i+1 for all i ≤ k. Since

pn+1−i = pi−1, we easily get pi/pi+1 ∈ K, or equivalently, di dn−i
di+1dn−i+1

∈ K for i ≤ k.
Let us show that X is equivalent to J . As in the preceding case, the problem is reduced

to solving the following system: ci c
−1
n+1−i = did

−1
n+1−i , for i ≤ n. On the other hand,

since C ∈ C(GL(n), r), ci c
−1
i+1 = cn−i c

−1
n−i+1 for all i ≤ k. We immediately get that the

norm of ci/cn−i is λi := di di+1
dn−i dn+1−i

, which belongs toK since di dn−i
di+1dn−i+1

∈ K for i ≤ k. If

we fix ci and solve equations xx = λi , we can determine cn−i . The remaining unknowns
ck+1, . . . , cn−k can be arbitrarily chosen satisfying the condition ci c

−1
n+1−i = did

−1
n+1−i .

Thus C exists and therefore the twisted cohomology set consists of the class of J .

9. Other Gauge Groups and Conjectures

9.1. Computation of H1
BD(SL(n), rBD). The group SL(n) is a subgroup of GL(n)

consisting of matrices with determinant one. Let H be the subgroup of diagonal matrices
in SL(n). Simple roots are given by the formula eαi = did

−1
i+1, where diag(d1, . . . , dn) ∈

H . We will first prove the cohomology triviality for the Drinfeld-Jimbo r -matrix.

Lemma 15. The Belavin-Drinfeld cohomology H1
BD(SL(n), rDJ ) is trivial.

Proof. Let X ∈ Z1(SL(n), rDJ ). We have X = QD, where Q ∈ GL(n, K), D ∈
H(K). Then D−1σ(D) ∈ H(K) for any σ in the absolute Galois group of K. Thus
det D = k ∈ K. Let D′ = diag(1, 1, . . . , k). Then X = (QD′)I (D′−1D) is the desired
decomposition, which provides an equivalence between X and I .

Given an r -matrix on the Belavin–Drinfeld list, let τ : Γ1 → Γ2 be the corresponding
admissible triple for sl(n). Let αi1 , . . . , αik be a string for τ , τ(αi p ) = αi p+1 . If τ(αi p )

is not defined, then anyway we define the corresponding string, which consists of one
element {αi p } only. Moreover, for any Belavin-Drinfeld triple we will also consider a
string {αn} with weight n. For any string S = {αi1 , . . . , αik } of τ , we define the weight
of S by wS = ∑

p i p. Let t1, . . . , tn be the ends of the strings with weights w1, . . . , wn .
We note that some indices in w1, . . . , wn are missing unless Γ1 is an empty set and
wn = n is always present. Let N = GCD(w1, . . . , wn).

Theorem 7. The number of elements of H1
BD(SL(n), r) is N . Each cohomology class

contains a diagonal matrix D = A1A2, where A2 ∈ C(GL(n), r) and A1 ∈ diag(n, K).
Two such diagonal matrices D1 = A1A2 and D2 = B1B2 are contained in the same
class of H1

BD(SL(n), r) if and only if det(A1) = det(B1) in K
∗/(K∗)N .
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Proof. Let X ∈ SL(n, K) be a representative of a cohomology class of H1
BD(SL(n), r).

Thenwe can find Q ∈ SL(n, K) and a diagonal matrix D such that X = QD. Therefore,
det(D) = 1 and X ∼ D. Using the fact that H1

BD(GL(n), r) is trivial we can find a
decomposition D = A1A2 such that A1 is diagonal and has K-entries while A2 ∈
C(GL(n), r).

Let two diagonal matrices D1 = A1A2 and D2 = B1B2 be equivalent. Then we have

A1B
−1
1 C1 = A−1

2 B2C2, C1 ∈ diag(n, K), C2 ∈ C(SL(n), r).

We see that A1B
−1
1 C1 = A−1

2 B2C2 = K ∈ C(GL(n), r) ∩ GL(n, K). Then
A1K−1 = B1C

−1
1 , D1 = (A1K−1)(A2K ). Since det(C1) = det(C2) = 1, it follows

that the class of D1 uniquely defines det(A1) in K
∗ modulo the subgroup generated by

determinants of elements of C(GL(n), r) ∩ GL(n, K).
Let K = diag(k1, . . . , kn) ∈ C(GL(n), r) ∩ GL(n, K). Then it is easy to check

that det(K ) = sw1
t1 sw2

t2 . . . swn
tn (where sp = kp/kp+1, sn = kn) is the N th power of an

element of K.
Conversely, let D = diag(d1, . . . , dn) ∈ Z(SL(n), r) and D = A1A2 as above. It

is sufficient to show that if det(A1) = uN for some u ∈ K
∗, then D ∼ I . There are

integers mi such that
∑

miwi = N . Set again sp = dp/dp+1, sn = dn and choose a
string. If tp is the end of the string, set si = sp = ump along the string. Solving the
corresponding system for {di }, we find d1, d2, . . . , dn ∈ K (each di will be a power of
u), such that the corresponding diagonal matrix C = diag(d1, . . . , dn) has determinant
uN and by construction C ∈ C(r,GL(n)) ∩GL(n, K). Then D = (A1C−1)(CA2) and
D ∼ I .

9.2. Computation of H
1
BD(SL(n), rCG). In this section we will compute Belavin-

Drinfeld twisted cohomology for the Cremmer-Gervais r -matrix when the gauge group
is SL(n). The definition of this cohomology is exactly the same as in the GL(n) case.

Lemma 16. Any element of Z(SL(n), rCG) is equivalent to an element of the form
αhm J , where α ∈ K, hm = diag(�m, 1, 1, . . . , 1).

Proof. By Proposition 14, an arbitrary cocycle can be written as RJC , where R ∈
GL(n, K),C ∈ C(GL(n), rCG).WecanwriteC = xC1,where x ∈ K,C ∈ C(SL(n), rCG).
Also we have R = yhm R1, where y ∈ K, R1 ∈ C(SL(n), rCG). Therefore RJC =
R1αhm JC1 ∼ αhm J .

Lemma 17. If α1hm1 J is equivalent to α2hm2 J then m2 ≡ m1 (mod n/2) if n is even
and m2 ≡ m1 (mod n) if n is odd.

Proof. The conditionα1hm1 J ∼ α2hm2 J is equivalent toα2hm2 J = Rα1hm1 JC , where
R ∈ SL(n, K), C ∈ C(SL(n), rCG). This in turn is equivalent to h−1

m1
Rhm2 = JC1 J−1,

where C1 = α1α
−1
2 C ∈ C(GL(n), rCG). Since hm, R, J are defined over K[ j], we

see that C1 is defined over K [ j]. Let C1 = diag(c1, . . . , cn) (recall that all elements of
C(SL(n), rCG) are diagonal). Applying conjugation we get JC1 J−1 = h−1

m1
Rhm2 =

h−1
m1 Rhm2 = J SC1SJ−1. Thus SC1S = C1, i.e., ci = cn+1−i . From the structure of the

centralizer we have ci/ci+1 = cn+1−(i+1)/cn+1−i so ci/ci+1 = ci+1/ci . It follows that
the norms of all diagonal elements are equal to γ ∈ K. If n is odd then considering the
central element we get that the norms of all diagonal elements are in fact equal to γ 2, for
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some γ ∈ K. Finally we have �
m2−m1 = det(h−1

m1
Rhm2) = det(JC1 J−1) = γ k , where

k = n/2 for even n and k = n for odd n. The result follows.

Theorem 8. H
1
BD(SL(n), rCG) consists of k elements where k = n/2 for even n and

k = n for odd n.

Proof. Note that if X ∈ SL(n) commutes with all elements of the centralizer then the
condition A ∼ B implies AX ∼ BX . Indeed, from A = RBC we get AX = RBCX =
RBXC . Note that the matrices hm commute with the centralizer. Therefore, to prove the
theoremwe need to show that αhk J ∼ β J , for some scalars α, β (the scalars are defined
uniquely in such a way that the cocycles are elements of SL(n)). We will consider the
cases of odd and even n separately.

Let n be even. We need to find R ∈ SL(n, K) and C ∈ C(SL(n), rCG) such that
αhk J = βRJC . Let us denote C1 = βα−1C ∈ C(GL(n), rCG). Then the equation
becomes hk J = RJC1. Take C1 = diag( j,− j, j, . . . ,− j). Then R = hk JC

−1
1 J−1.

det R = 1, R = hk J S(−C1)SJ−1 = hk JC1 J−1 = R. Therefore R ∈ SL(n, K) and
we are done.

Now assume n is odd. Again we need to find R ∈ SL(n, K) andC ∈ C(SL(n), rCG)

such that αhk J = βRJC . Let C1 = βα−1C ∈ C(GL(n), rCG). Then we get hk J =
RJC1. TakeC1 = �. Then R = hk JC

−1
1 J−1, det R = 1. Finally R = hk J SC

−1
1 SJ−1 =

R.

9.3. Belavin–Drinfeld cohomology conjecture.

Conjecture 1. Let g be a simple Lie algebra and rDJ the Drinfeld–Jimbo r-matrix. For
any connected split algebraic group G which has g as its Lie algebra, H1

BD(G, rDJ ) is
trivial.

9.4. Quantization conjecture. Let L be a finite dimensional Lie algebra over C and δ a
Lie bialgebra structure on L(K) such that δ = 0 (mod �).

Let (U�(L),Δ�) be the corresponding quantum group, in other words the dequanti-
zation functor ̂Q sends (U�(L),Δ�) to (L(K), δ). LetG be a connected algebraic group
with the Lie algebra L . We assume that G acts on L by the adjoint action. Consider
G(K). Let us define the centralizer C(K, δ).

Definition 9. The centralizer C(K, δ) consists of all X ∈ G(K) such that for any l ∈ L

(AdX ⊗ AdX )δ(Ad−1
X (l)) = δ(l).

Definition 10. We say that X ∈ G(K) is a Belavin–Drinfeld cocycle associated to δ if
for any σ ∈ Gal(K/K) there exists C ∈ C(K, δ) such that σ(X) = XC .

Two cocycles X1 and X2, associated to δ, are equivalent if X1 = QX2C , where
Q ∈ G(K) and C ∈ C(K, δ).

The set of equivalence classes will be denoted by H1
BD(G, δ).

Now let us define quantum Belavin–Drinfeld cohomology. The quantum group
(U�(L),Δ�) is defined over O = C[[�]]. We extend the Hopf structures of U�(L)

to U�(L , K) = U�(L) ⊗O K and U�(L , K) = U�(L) ⊗K K. By abuse of notation, Δ�

denotes all three comultiplications.
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Definition 11. Let P be an invertible element of U�(L , K). We say that it belongs to
C(U�(L),Δ�) if

(P ⊗ P)Δ�(P−1aP)(P−1 ⊗ P−1) = Δ�(a)

for all a ∈ U�(L).

Denote

FP := (P ⊗ P)Δ�(P−1) ∈ U�(L , K)⊗2.

Definition 12. P is called a quantumBelavin–Drinfeld cocycle if for any σ ∈ Gal(K/K)

there exists C ∈ C(U�(L),Δ�) such that σ(P) = PC .
Two quantum cocycles P1 and P2 are equivalent if P2 = QP1C , where Q is an

invertible element of U�(L , K) and C ∈ C(U�(L),Δ�).

Remark 10. On U�(L) consider the comultiplications Δ�,P1(a) = FP1Δ�(a)F−1
P1

and

Δ�,P2(a) = FP2Δ�(a)F−1
P2

. Clearly, Δ�,P2(a) = (Q ⊗ Q)Δ�,P1(Q
−1aQ) · (Q−1 ⊗

Q−1). Since Q ∈ U�(L(K)), it is natural to call Δ�,P1 and Δ�,P2 K–equivalent comul-
tiplications on U�(L(K)).

The set of equivalence classes of quantum Belavin–Drinfeld cocycles associated to
Δ� will be denoted by H1

q−BD(Δ�).

Conjecture 2. There is a natural correspondence between H1
BD(G, δ) and H1

q−BD(Δ�).
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