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Abstract: We consider classical as well as weak solutions to the three dimensional
Vlasov–Poisson system. Without assuming finiteness of kinetic energy, we prove global
existence of classical solutions by assuming the initial datum is smooth enough and has
a compact velocity-spatial support, which will be specified in Theorem 1.1. We also
establish some propagation results for low moments of weak solutions.

1. Introduction

In this paper, we consider the three-dimensional Vlasov–Poisson system:

∂t f + v · ∇x f + E · ∇v f = 0, f (0, x, v) = f0(x, v), (1.1)

U (t, x) = −γ

∫
R3

ρ(t, y)

|x − y|dy, ρ(t, x) =
∫
R3

f (t, x, v)dv, (1.2)

E(t, x) = −∇xU (t, x). (1.3)

In this system, the unknown f (t, x, v) ≥ 0 denotes microscopic density of particles
at time t ≥ 0 and position x ∈ R

3, moving with velocity v ∈ R
3, evolving in a self-

consistent potential U (t, x). This potential is Coulomb potential or Newton potential
created by macroscopic density ρ(t, x), which is described by γ = −1 and γ = 1
respectively. E is the force field corresponding to the potential U . Since we will always
consider ρ(t, x) ∈ L1 ∩ L5/3(R3

x ), Eq. (1.2) can be written equivalently

�xU (t, x) = 4πγρ(t, x), lim|x |→∞ U (t, x) = 0.

Global existence for the Vlasov–Poisson system in two space dimensions was estab-
lished in [20,36]. The three dimensional case is more delicate, the existence of weak
solutions is well known according to Arsenev [1], Illner and Neunzert [13] and Horst
and Hunze [12]. Classical solutions were also studied extensively, Batt [3] gave a global
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existence result for spherically symmetric data and established an important continua-
tion criterion: a local solution can be extended as long as its velocity support is under
control. Then Bardos and Degond [2] proved global existence for small initial data.
Almost simultaneously, Pfaffelmoser [28] and Lions and Perthame [17] independently
established the global existence of classical solutions with general initial data. In [28],
careful analysis of characteristic flows and an appropriate decomposition of phase space
were used to control velocity support, which can obtain the global existence by the above
continuation criterion. In [17], they were devoted to propagating the velocity moments
of order higher than three, since by using it one can get the boundedness of velocity
support in any finite time. We refer to [4,6,7,9,21–23,29,32] for further improvements
and developments in both methods.

For the global existence of classical solutions, the above two celebrated methods
focus on velocity support or velocity moments, and both need the boundedness of kinetic
energy.However, we try to give an existence result without an assumption of finite kinetic
energy. To this end, we first fix some notations used in the present paper. We shall denote
by C1

0(R
n) the function class of continuous differentiable functions f (y) defined on Rn

such that lim
y→∞ f (y) = 0. The symbol C1

c (Rn) is the usual test function space of all

continuous differentiable functions with compact support. Then, we can describe one of
our main results in this paper as follows.

Theorem 1.1. Let the initial datum 0 ≤ f0 ∈ C1
0 ∩L1(R3×R

3). If there exists a positive
constant α such that

sup{|x − αv| : (x, v) ∈ supp f0} < ∞,

then there exists a unique global classical solution f to (1.1)–(1.3), and for any T > 0

sup
t∈[0,T ]

{|x − (t + α)v| : (x, v) ∈ supp f (t)} < ∞.

Some weak existence results concerning infinite kinetic energy can be found in [15,
37].Moreover,we refer to [5,8,19] for theVlasov–Poisson systemwith point charges and
[24,33,34] for the Vlasov–Poisson system with steady spatial asymptotic. A complete
discussion of the literature concerning the Vlasov–Poisson system can be found in [10,
30] and the references therein.

This paper is arranged as follows: in Sect. 2, we give a new conservation law re-
lated to velocity-spatial moments of order two, and deduce a-priori estimates on the
whole time for solutions to the Vlasov–Poisson system. Section 3 is devoted to show-
ing a local existence of classical solutions and a continuation criterion: a local solu-
tion can be extended as long as its velocity-spatial support is under control. In Sect.
4, we prove the main existence result. In Sect. 5, the propagation of low moments is
considered.

Wewill denote byC a generic constant that changes from line to line and independent
of T . If a constant depends on T , we will give an interpretation. C0, C1, . . . denote fixed
positive constants. For 1 ≤ p ≤ ∞, ‖ · ‖p denotes either the norm of L p(R3

x × R
3
v) or

the norm of L p(R3
x ), if the context makes it clear.
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2. Conservation Laws, A-Priori Estimates and Moments Lemma

Definition 2.1. Let f (t, x, v) ≥ 0 be a solution to (1.1)–(1.3) and α > 0. We define for
any k > 0:

Hk(t) :=
∫∫

R3×R3
|x − (t + α)v|k f (t, x, v)dvdx,

Mk(t) :=
∫∫

R3×R3
|v − x

t + α
|k f (t, x, v)dvdx .

The kinetic energy and potential energy of this system at time t are respectively defined
by

Ek(t) := 1

2

∫∫
R3×R3

|v|2 f (t, x, v)dvdx

and

Ep(t) := − γ

8π

∫
R3

|E(t, x)|2dx = −γ

2

∫∫
R3×R3

ρ(t, x)ρ(t, y)

|x − y| dydx .

The characteristic flow corresponding to the Vlasov equation (1.1) with a suitable
field E(t, x) [such as E ∈ C(R+; C1

b(R3))] is defined by

{
d X (s,t,x,v)

ds = V (s, t, x, v), X (t, t, x, v) = x,
dV (s,t,x,v)

ds = E(s, X (s, t, x, v)), V (t, t, x, v) = v.

For the sake of simplicity, we often use the shorthand

(X (s), V (s)) = (X (s, t, x, v), V (s, t, x, v)).

Following from

d

ds
[(s + α)V (s) − X (s)] = (s + α)E(s, X (s)),

we obtain that for any s, t ≥ 0

V (s) − X (s)

s + α
= t + α

s + α

(
v − x

t + α

)
+

1

s + α

∫ s

t
(τ + α)E(τ, X (τ ))dτ,

and then
∣∣∣∣V (s) − X (s)

s + α

∣∣∣∣ ≤
∣∣∣v − x

t + α

∣∣∣ +
∫ s

t
|E(s, X (s))|ds, ∀0 ≤ t < s < ∞. (2.1)

Firstly, we recall some interpolation inequalities.



854 Z. Chen, X. Zhang

Lemma 2.1. Let g := g(x, v) ∈ L∞
+ (R3 × R

3), and k ≥ l > −3, α > 0. Then for any
t ≥ 0 there exists a constant C depending only on k, l and ‖g‖∞ such that

∫
R3

|x − (t + α)v|l gdv ≤ C(t + α)
3(l−k)
3+k

(∫
R3

|x − (t + α)v|k gdv

) 3+l
3+k

(2.2)

and

∥∥∥∥
∫
R3

|x − (t + α)v|l gdv

∥∥∥∥ 3+k
3+l

≤ C(t + α)
3(l−k)
3+k

(∫∫
R3×R3

|x − (t + α)v|k gdvdx

) 3+l
3+k

.

(2.3)
In particular,

∥∥∥∥
∫
R3

gdv

∥∥∥∥
k+3
3

≤ C(t + α)−
3k

k+3

(∫∫
R3×R3

|x − (t + α)v|k gdvdx

) 3
k+3

. (2.4)

Proof. For any R > 0, we have that

∫
R3

|x − (t + α)v|l gdv

=
∫

|x−(t+α)v|≤R
|x − (t + α)v|l gdv +

∫
|x−(t+α)v|>R

|x − (t + α)v|l gdv

≤ ‖g‖∞
∫

|x−(t+α)v|≤R
|x − (t + α)v|ldv + Rl−k

∫
R3

|x − (t + α)v|k gdv

≤ C(t + α)−3Rl+3‖g‖∞ + Rl−k
∫
R3

|x − (t + α)v|k gdv.

Letting R = (t + α)
3

3+k ‖g‖− 1
3+k∞

(∫
R3 |x − (t + α)v|k gdv

) 1
k+3 , we get (2.2). �

Remark 2.2. (1) If α = 0, the above estimates also hold for t > 0.
(2) Divide both sides of (2.2) by αl , and then let α → +∞, we can get that

∫
R3

|v|l gdv ≤ C

(∫
R3

|v|k gdv

) 3+l
3+k

, (2.5)

which yields that

∥∥∥∥
∫
R3

|v|l gdv

∥∥∥∥ 3+k
3+l

≤ C

(∫∫
R3×R3

|v|k gdvdx

) 3+l
3+k

. (2.6)

It is well known that when f0 ∈ C1
c (R3 ×R

3), there exists a unique global classical
solution to the system (1.1)–(1.3). For such solution, we will give a new conservation
law, which is slightly different from the one obtained in [14,25]. However, using this
conservation law we can obtain some better a-priori estimates.
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Theorem 2.2. Let 0 ≤ f0 ∈ C1
c (R3 × R

3) and f ∈ C1(R+ × R
3 × R

3) be the unique
classical solution to the three dimensional Vlasov–Poisson system (1.1)–(1.3), then for
any t ≥ 0

‖ f (t)‖p = ‖ f0‖p, ∀1 ≤ p ≤ ∞. (2.7)

Moreover, for any α > 0 and t ≥ 0 we have the following conservation law:

d

dt

(
1

2

∫∫
R3×R3

|x − (t + α)v|2 f (t, x, v)dvdx + (t + α)2Ep(t)

)
= (t + α)Ep(t)

(2.8)
and

d

dt

(
t + α

2

∫∫
R3×R3

∣∣∣v − x

t + α

∣∣∣2 f (t, x, v)dvdx + (t + α)Ep(t)

)

= −1

2

∫∫
R3×R3

∣∣∣v − x

t + α

∣∣∣2 f (t, x, v)dvdx . (2.9)

Proof. Note that the characteristic flow is measure preserving and f (s, X (s), V (s)) =
f (t, x, v), so (2.7) is deduced immediately. Now, we devote to proving (2.8). Using
(1.1)–(1.3) and Green’s formula we can obtain

d

dt

(
1

2

∫∫
R3×R3

|x − (t + α)v|2 f (t, x, v)dvdx

)

= 1

2

∫∫
R3×R3

|x − (t + α)v|2∂t f dvdx −
∫∫

R3×R3
(x − (t + α)v) · v f dvdx

= 1

2

∫∫
R3×R3

|x − (t + α)v|2( − divx (v f ) − divv(E f )
)
dvdx

−
∫∫

R3×R3
(x − (t + α)v) · v f dvdx

=
∫∫

R3×R3
(x − (t + α)v) · v f dvdx − (t + α)

∫∫
R3×R3

(x − (t + α)v) · E f dvdx

−
∫∫

R3×R3
(x − (t + α)v) · v f dvdx

= −(t + α)

∫
R3

x · Eρdx + (t + α)2
∫
R3

E · jdx,

where j = ∫
R3 v f dv. Note that ∂tρ + divx j = 0, so using Green’s formula again we

have

d

dt

(
1

2

∫∫
R3×R3

|x − (t + α)v|2 f (t, x, v)dvdx

)

= γ (t + α)

∫
R3

(∫
R3

x − y

|x − y|3 ρ(t, y)dy

)
· xρ(t, x)dx + (t + α)2

∫
R3

Udivx jdx

= γ
t + α

2

∫∫
R3×R3

ρ(t, x)ρ(t, y)

|x − y| dxdy − (t + α)2
∫∫

R3×R3
(−γ )

ρ(t, y)

|x − y|∂tρ(t, x)dydx

= −(t + α)Ep(t) − (t + α)2
d

dt
Ep(t).
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On the other hand,

d

dt

(
(t + α)2Ep(t)

)
= 2(t + α)Ep(t) + (t + α)2

d

dt
Ep(t).

So, by denoting H(t) = 1
2

∫∫
R3×R3 |x − (t + α)v|2 f (t, x, v)dvdx + (t + α)2Ep(t) we

have

d H(t)

dt
= (t + α)Ep(t).

Then(
H(t)

t + α

)′
= − H(t)

(t + α)2
+

H ′(t)
t + α

= −1

2

∫∫
R3×R3

∣∣∣v − x

t + α

∣∣∣2 f (t, x, v)dvdx .

�
Following from the above conservation law and asymptotic method, we can establish

some a-priori estimates even for much weaker initial datum. For such initial datum, we
can only get a distributional solution with rough regularity, this kind of solution will be
called weak solution in this paper.

Corollary 2.3. Let 0 ≤ f0 ∈ L∞(R3×R
3) and

∫∫
R3×R3(1+|x −α v|2) f0(x, v)dvdx <

∞ for some α > 0, then there exists a nonnegative weak solution f to the Vlasov–Poisson
system (1.1)–(1.3) such that

‖ f (t)‖∞ ≤ ‖ f0‖∞, ‖ f (t)‖1 ≤ ‖ f0‖1, ∀t ≥ 0. (2.10)

Furthermore, for all t ≥ 0 there exists a constant C depending only on ‖ f0‖1, ‖ f0‖∞,
M2(0) and α such that

M2(t), |Ep(t)|, ‖ρ(t)‖ 5
3

≤ C. (2.11)

Furthermore if γ = −1, we have for all t ≥ 0

M2(t), Ep(t) ≤ C(t + α)−1, ‖ρ(t)‖ 5
3

≤ C(t + α)−
3
5 . (2.12)

Proof. From the proof of Theorem3.2 in [25] and (2.7), we can easily get aweak solution
f with (2.10) by taking the limit of approximate solutions corresponding to regularized
initial data. Now we devote ourselves to showing (2.11) and (2.12). Actually, we only
need to establish these results for the corresponding approximate sequences, and then
take the limits. For simplicity, we skip the last step.

For γ = 1, the Hardy-Littlewood-Sobolev inequality (Theorem 4.3 in [16] with
λ = 1, n = 3, p = r = 6/5) and the Hölder inequality give that

|Ep(t)| ≤ C‖ρ(t)‖26/5 ≤ C‖ρ(t)‖5/65/3,

since ‖ρ(t)‖1 is uniformly bounded. Then using (2.4) with k = 2 we have

|Ep(t)| ≤ C‖ρ(t)‖5/65/3 ≤ C
[
(t + α)−

6
5 H2(t)

3
5

]5/6 ≤ C(t + α)−1H2(t)
1/2. (2.13)

Combining (2.8) with (2.13), we can obtain

1

2
H2(0) ≥ 1

2
H2(t) + (t + α)2Ep(t) ≥ 1

2
H2(t) − C(t + α)H2(t)

1/2,
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since Ep(s) ≤ 0 for s ≥ 0. So

H2(t) ≤ C(t + α)2 + 2H2(0),

and then by (2.13) we obtain for all t ≥ 0

|Ep(t)| ≤ C, ‖ρ(t)‖ 5
3

≤ C.

For γ = −1, it follows from (2.9) that

H(t)

t + α
≤ H(0)

α
,

which implies that

H(t) ≤ (
t

α
+ 1)H(0).

Remember that (2.13), we have the boundedness of Ep(0) and then H(0). As a conse-
quence,

M2(t) ≤ C(t + α)−1, Ep(t) ≤ C(t + α)−1.

Combining the above inequality with (2.4), we obtain

‖ρ(t)‖ 5
3

≤ C(t + α)−
3
5 .

�
Remark 2.3. (1) The identity (2.8) holds also for α = 0, which was discovered inde-

pendently by Perthame [25] and Illner and Rein [14]. In their papers, by using (2.8)
and (2.9) with α = 0 they proved some time decay estimates for the repulsive
Vlasov–Poisson system. However, Corollary 2.3 gives some a-priori estimates for
both repulsive and attractive cases. It is worth noting that all these estimates are not
singular when t → 0+.

(2) Dividing both sides of (2.8) by α2 and integrating on t , and then letting α → +∞,
we can obtain that the total energy is conserved, if proper assumptions of the initial
datum are given. So roughly speaking, (2.8) also contains

d

dt

(
1

2

∫∫
R3×R3

|v|2 f (t, x, v)dvdx + Ep(t)

)
= 0.

(3) For the free transport equation
{

∂t f + v · ∇x f = 0,
f (0, x, v) = f0(x, v),

(2.14)

we have

d

dt

(
1

2

∫∫
R3×R3

|x − (t + α)v|2 f (t, x, v)dvdx

)
= 0.
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Similar to [25], we have the following a-priori estimate:
∫∫

R3×R3
|v − u(t, x)|2 f (t, x, v)dvdx

≤ 1

(t + α)2

∫∫
R3×R3

|x − αv|2 f0(x, v)dvdx, ∀t ≥ 0,

where the bulk velocity u(t, x) is defined by u(t, x) =
∫
R3 v f (t,x,v)dv

ρ(t,x)
.

As we know, a moments lemma is an important tool in kinetic equations, which
can improve the obvious integrability derived from conservation laws. The classical
one comes from Perthame [26], and is named “velocity moments lemma”, that is, the
solution of transport equation has three order velocity moments locally in space under
the assumption of finite kinetic energy. Inspired by the methods in [26,27] and some
new conservation laws like (2.8), we are able to give a new moments lemma, that is,

Theorem 2.4. Let α ≥ 0, β > 0, k ≥ 1and T > 0. If 0 ≤ f ∈ C1([0, T ]; C1
c (R3×R

3))

is a classical solution to the following Vlasov equation

∂t f (t, x, v) + v · ∇x f (t, x, v) + F(t, x) · ∇v f (t, x, v) = 0.

Assume that (t + α)
3+2k
3+k F(t, x) ∈ L1([0, T ]; Lk+3(R3)) and sup

t∈[0,T ]
Hk(t) < ∞, then

∫ T

0

∫∫
R3×R3

|x − (t + α)v|k+1
(1 + |x |β)

1+ 1
β

f dxdvdt

≤ (3T + 2α) sup
t∈[0,T ]

Hk(t) + C(k, ‖ f ‖L∞)

∫ T

0
(t + α)

3+2k
3+k ‖F(t)‖k+3dt · sup

t∈[0,T ]
Hk(t)

2+k
3+k .

Proof. Denote the C1 function φ as

φ(t, x, v) = x · z

(1 + |x |β)
1
β

|z|δ,

where z = x − (t + α)v and 0 ≤ δ ≤ k − 1. Multiplying the Vlasov equation by φ and
integrating
∫∫

R3×R3
φ∂t f dvdx +

∫∫
R3×R3

φdivx (v f )dvdx +
∫∫

R3×R3
φdivv(F f )dvdx = 0.

Then integrating by parts over R3 × R
3 we obtain

∫∫
R3×R3

φ∂t f dvdx = d

dt

∫∫
R3×R3

φ f dvdx −
∫∫

R3×R3
∂tφ f dvdx

= d

dt

∫∫
R3×R3

φ f dvdx +
1

t + α

∫∫
R3×R3

|x |2 − x · z

(1 + |x |β)
1
β

|z|δ f dvdx

+
∫∫

R3×R3

x · z

(1 + |x |β)
1
β

δv · z

|z|2−δ
f dvdx
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and

∫∫
R3×R3

φdivx (v f )dvdx = −
∫∫

R3×R3
∇xφ · v f dvdx

= 1

t + α

∫∫
R3×R3

|z|2 − |x |2
(1 + |x |β)

1
β

|z|δ f dvdx −
∫∫

R3×R3

x · z

(1 + |x |β)
1
β

δv · z

|z|2−δ
f dvdx

+
1

t + α

∫∫
R3×R3

|x |2(x · z) − (x · z)2

(1 + |x |β)
1+ 1

β

|x |β−2|z|δ f dvdx .

On the other hand, we have from (2.3) and ‖ f (t)‖∞ ≤ ‖ f0‖∞ that

∫∫
R3×R3

φdivv(F f )dvdx = −
∫∫

R3×R3
∇vφ · F f dvdx

= (t + α)

⎡
⎣

∫∫
R3×R3

x · F

(1 + |x |β)
1
β

|z|δ f dvdx +
∫∫

R3×R3

δx · z

(1 + |x |β)
1
β

z · F

|z| |z|δ−1 f dvdx

⎤
⎦

≥ −(1 + δ)(t + α)

∫
R3

|F |
(∫

R3
|z|δ f dv

)
dx

≥ −(1 + δ)(t + α)‖F(t)‖ k+3
k−δ

∥∥∥∥
∫
R3

|z|δ f (t)dv

∥∥∥∥ k+3
δ+3

≥ −C(1 + δ)(t + α)
3+3δ−2k

3+k ‖F(t)‖ k+3
k−δ

(∫∫
R3×R3

|z|k f (t)dvdx

) δ+3
k+3

.

Adding the above equations we have

0 =
∫∫

R3×R3
φ∂t f dvdx +

∫∫
R3×R3

φdivx (v f )dvdx +
∫∫

R3×R3
φdivv(F f )dvdx

≥ d

dt

∫∫
R3×R3

φ f dvdx +
1

t + α

∫∫
R3×R3

|z|2 − (x · z)

(1 + |x |β)
1
β

|z|δ f dvdx

+
1

t + α

∫∫
R3×R3

|x |2(x · z) − (x · z)2

(1 + |x |β)
1+ 1

β

|x |β−2|z|δ f dvdx

−C(1 + δ)(t + α)
3+3δ−2k

3+k ‖F(t)‖ k+3
k−δ

(∫∫
R3×R3

|z|k f dvdx

) δ+3
k+3

≥ d

dt

∫∫
R3×R3

φ f dvdx +
1

t + α

∫∫
R3×R3

|z|2 − (x · z)

(1 + |x |β)
1+ 1

β

|z|δ f dvdx

−C(1 + δ)(t + α)
3+3δ−2k

3+k ‖F(t)‖ k+3
k−δ

(∫∫
R3×R3

|z|k f dvdx

) δ+3
k+3

.
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Multiplying t + α on both sides of the above inequality, we obtain

∫∫
R3×R3

|z|2+δ

(1 + |x |β)
1+ 1

β

f dvdx

≤
∫∫

R3×R3

x · z

(1 + |x |β)
1+ 1

β

|z|δ f dvdx − (t + α)
d

dt

∫∫
R3×R3

φ f dvdx

+C(1 + δ)(t + α)
6+3δ−k
3+k ‖F(t)‖ k+3

k−δ

(∫∫
R3×R3

|z|k f dvdx

) δ+3
k+3

≤ 2
∫∫

R3×R3
φ f dvdx − d

dt

(
(t + α)

∫∫
R3×R3

φ f dvdx

)

+C(1 + δ)(t + α)
6+3δ−k
3+k ‖F(t)‖ k+3

k−δ

(∫∫
R3×R3

|z|k f dvdx

) δ+3
k+3

. (2.15)

As a consequence, by choosing δ = k − 1 we have

∫ T

0

∫∫
R3×R3

|z|k+1
(1 + |x |β)

1+ 1
β

f dvdxdt

≤ −(T + α)

∫∫
R3×R3

φ(T, x, v) f (T, x, v)dvdx + α

∫∫
R3×R3

φ(0, x, v) f (0, x, v)dvdx

+2
∫ T

0

∫∫
R3×R3

φ f dvdxdt + Ck
∫ T

0
(t + α)

3+2k
3+k ‖F(t)‖k+3

(∫∫
R3×R3

|z|k f dvdx

) k+2
k+3

dt

≤ (3T + 2α) sup
t∈[0,T ]

Hk(t) + Ck
∫ T

0
(t + α)

3+2k
3+k ‖F(t)‖k+3dt · sup

t∈[0,T ]
Hk(t)

2+k
3+k ,

which yields our conclusion. �

Remark 2.4. (1) For the Vlasov–Poisson system (1.1)–(1.3), if 0 ≤ f0 ∈ L1 ∩ L∞ and
H2(0) < ∞ with α > 0, the solution f stated in Corollary 2.3 satisfies

∫ T

0

∫∫
R3×R3

|x − (t + α)v| 83
(1 + |x |β)

1+ 1
β

f dvdxdt ≤ C(T, α, ‖ f0‖L1∩L∞ , H2(0)), (2.16)

where β, T > 0. Actually, from Corollary 2.3 we obtain that for any t ∈ [0, T ],
‖ f (t)‖∞ ≤ ‖ f0‖∞, ‖ f (t)‖1 ≤ ‖ f0‖1, H2(t) ≤ C and ‖E(t)‖ 15

4
≤ C‖ρ(t)‖ 5

3
≤

C by the Hardy-Littlewood-Sobolev inequality (Theorem 4.53 in [11] with a =
3/2, q = 15/4, p = 5/3). Then choosing k = 2, δ = 2

3 in (2.15) and integrating
on [0, T ], we obtain that (2.16) holds for the approximate solutions and then for f
by taking the limits.

(2) Except establishing the a-priori estimate (2.16) for the Vlasov–Poisson system
(1.1)–(1.3), Theorem 2.4 will not be used in the rest part of this paper. However,
like other velocity moments lemmas, it may have potential applications in some
nonlinear kinetic models.
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3. Local Existence and Continuation Criterion

Before showing the local existence of classical solutions to the system (1.1)–(1.3), we
give some known estimates of self-consistent field E(t, x), which are slightly changed
versions of those in [3,10,30] (see e.g. (4.22) (4.23) in [10]). So, we omit their proofs.

Lemma 3.1. Let ρ(x) ∈ L1 ∩ L∞(R3) and let E(x) = ∫
R3

x−y
|x−y|3 ρ(y)dy, then for any

x ∈ R
3 and R > 0,

|E(x)| ≤ 2π R sup
y∈BR(x)

ρ(y) + R−2‖ρ‖1. (3.1)

In particular, set π R‖ρ‖∞ = R−2‖ρ‖1, we have

‖E‖∞ ≤ c0‖ρ‖1/31 ‖ρ‖2/3∞ . (3.2)

If assume further that ρ is Lipschitz, then for any x ∈ R
3 and 0 < d1 ≤ d2 < ∞

|∂xi E(x)| ≤ C[d−3/p
2 ‖ρ‖p + d1Lip(ρ) + (1 + ln(d2/d1)) sup

y∈Bd2 (x)

ρ(y)], (3.3)

where 1 ≤ p < ∞. In particular, by choosing d2 = 1 and d1 = 1
1+Lip(ρ)

we have

‖∂xi E‖∞ ≤ C[(1 + ‖ρ‖∞)(1 + ln(1 + Lip(ρ))) + ‖ρ‖p]. (3.4)

Next, we will need the remarkable uniqueness result established by Leoper [18].

Lemma 3.2 [18]. Let f0(x, v) be a bounded positive measure. For any T > 0, there
exists at most one weak solution to the Vlasov–Poisson system (1.1)–(1.3) such that

ρ(t, x) ∈ L∞([0, T ] × R
3).

Now we can establish the local existence to the Vlasov–Poisson system without
the assumption of finite kinetic energy, as well as a new continuation criterion: a local
solution can be extended as long as its velocity-spatial support is under control.

Theorem 3.3. Let0 ≤ f0 ∈ C1
0∩L1(R3×R

3)and sup{|x−αv| : (x, v) ∈ supp f0} < ∞
for a fixed α > 0. Then on some time interval [0, T ) there exists a unique classical
solution f to the system (1.1)–(1.3). If T > 0 is chosen maximal and if

sup{|x − (t + α)v| : (x, v) ∈ supp f (t), t ∈ [0, T )} < ∞,

then the solution is global, i.e., T = ∞.

Proof. Let δ0 be a positive constant and L(t), R(t) be positive and continuous functions,
which will be fixed later. Define

X = {g ∈ Cb([0, δ0] × R
3 × R

3) : ‖g(t)‖1 = ‖ f0‖1, ‖g(t)‖∞ ≤ ‖ f0‖∞, t ∈ [0, δ0],
g ≥ 0, ‖Lipx g(t)‖L∞(R3

v)
≤ L(t) and g(t, x, v) = 0 if |v − x

t + α
| ≥ R(t)},

which is a closed and bounded convex subset ofCb([0, δ0]×R
3×R

3). Similarly, denote
that

Eg(t, x) = γ

∫
R3

x − y

|x − y|3 ρg(t, y)dy, ρg(t, x) =
∫
R3

g(t, x, v)dv.
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For any g ∈ X , we know that ρg(t, x) ∈ Cb([0, δ0] × R
3) is Lipschitz on x , so from

the theory of Poisson equation Eg(t, x) is C([0, δ0]; C1(R3)). Furthermore, using (3.2)
and (3.4) with p = 1 we can get Eg(t, x) ∈ C([0, δ0]; C1

b(R3)). Now the characteristic
flow is well defined, that is{

Ẋ(s, t, x, v) = V (s, t, x, v), X (t, t, x, v) = x,

V̇ (s, t, x, v) = Eg(s, X (s, t, x, v)), V (t, t, x, v) = v.
(3.5)

We consider an operator T : g �→ f with domain X as follows:

f (t, x, v) = f0(X (0, t, x, v), V (0, t, x, v)).

From the definition of characteristic flow, we have

∂t f (t, x, v) + v · ∇x f (t, x, v) + Eg(t, x) · ∇v f (t, x, v) = 0. (3.6)

Step 1. We show that the operator T maps X into itself. Remembering the assumption
of f0, we define R0 = sup{|v − x

α
| : (x, v) ∈ supp f0}, and then

f0 = 0, |v − x

α
| ≥ R0.

By the definition of X , we have

‖ρg(t)‖L∞ ≤ 4π

3
‖ f0‖∞ R(t)3, (3.7)

which is deduced from∣∣∣v ∈ R
3 such that |v − x

t + α
| ≤ R(t)

∣∣∣ = 4π

3
R(t)3.

We point out that the main new ingredient when adapting the methods in [2,3] is the fact
that (3.7) holds not only for the velocity-compactly supported densities but also for the
densities stated in this theorem. Combining (3.7) with (3.2), we can get

‖Eg(t)‖∞ ≤ c0‖ρg(t)‖1/31 ‖ρg(t)‖2/3∞ ≤ C0R2(t), (3.8)

where C0 = c0
( 4π

3

)2/3 ‖ f0‖1/31 ‖ f0‖2/3∞ . Now we choose δ = 1
C0R0

and

R(t) = R0 + C0

∫ t

0
R2(s)ds,

which means that

R(t) = R0

1 − C0R0t
, 0 ≤ t < δ.

For 0 ≤ s ≤ t < δ and (x, v) ∈ supp f0, by (2.1) and (3.8) we know that

|V (s, 0, x, v) − X (s, 0, x, v)

s + α
| ≤ |v − x

α
| +

∫ s

0
‖Eg(τ )‖∞dτ

≤ R0 + C0

∫ s

0
R2(τ )dτ

≤ R0 + C0

∫ t

0
R2(τ )dτ = R(t).
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Note that f (t, X (t, 0, x, v), V (t, 0, x, v)) = f0(x, v), we obtain that

f (t, x, v) = 0 if |v − x

t + α
| ≥ R(t).

By choosing 0 < δ0 < δ, we immediately know that for any t ∈ [0, δ0], R(t) ≤ C and
then ‖Eg(t)‖ ≤ C for the constants C only dependent on ‖ f0‖1, ‖ f0‖∞, R0 and δ0.

Then we choose a positive and continuous function L(t) on [0, δ0] such that

‖Lipx f (t)‖L∞(R3
v)

≤ L(t) if ‖Lipx g(t)‖L∞(R3
v)

≤ L(t).

Following from (3.5) we have
{

∂x Ẋ(s, t, x, v) = ∂x V (s, t, x, v), ∂x X (t, t, x, v) = id,

∂x V̇ (s, t, x, v) = ∂X Eg(s, X (s))∂x X (s, t, x, v), ∂x V (t, t, x, v) = 0

and {
∂v Ẋ(s, t, x, v) = ∂vV (s, t, x, v), ∂v X (t, t, x, v) = 0,
∂v V̇ (s, t, x, v) = ∂X Eg(s, X (s))∂v X (s, t, x, v), ∂vV (t, t, x, v) = id.

Notice that (X (s), V (s)) = (X (s, t, x, v), V (s, t, x, v)), so we have

|∂x,v X (s)| + |∂x,vV (s)| ≤ 1 +
∫ t

s
(1 + ‖∂x Eg(τ )‖∞)(|∂x,v X (τ )| + |∂x,vV (τ )|)dτ.

Gronwall’s inequality gives that

|∂x,v X (s)| + |∂x,vV (s)| ≤ exp

{∫ t

0
(1 + ‖∂x Eg(τ )‖∞)dτ

}
. (3.9)

Note that

Lipx f (t, ·, v) ≤ sup
x,v

|∂x ( f0(X (0, t, x, v), V (0, t, x, v)))|
≤ C(‖∂x X (0, t)‖∞ + ‖∂x V (0, t)‖∞)

≤ C exp

{∫ t

0
(1 + ‖∂x Eg(τ )‖∞)dτ

}

and then

ln(1 + ‖Lipx f (t)‖L∞(R3
v)

) ≤ C
∫ t

0
(1 + ‖∂x Eg(τ )‖∞)dτ + C.

By (3.4) in Lemma 3.3 and the uniformly boundedness of ‖ρg(t)‖∞ on [0, δ0], we have
‖∂x Eg(t)‖∞ ≤ C[1 + ln(1 + Lipxρg(t))] ≤ C[1 + ln(1 + ‖Lipx g(t)‖L∞(R3

v)
)], (3.10)

then

ln(1 + ‖Lipx f (t)‖L∞(R3
v)

) ≤ C

(
1 +

∫ t

0
ln(1 + ‖Lipx g(s)‖L∞(R3

v)
)ds

)
.

So there exists a positive and continuous function L(t) on [0, δ0] such that ‖Lipx
f (t)‖L∞(R3

v)
≤ L(t) if ‖Lipx g(t)‖L∞(R3

v)
≤ L(t). Thus, the operator T maps X into

itself.
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Step 2. Next, we will show that

T : X �→ { f ∈ C([0, δ0]; C1
0(R

3 × R
3)) ∩ C1([0, δ0]; C1

b(R3 × R
3)) : ∀t ∈ [0, δ0],

‖ f (t)‖1 = ‖ f0‖1, ‖ f (t)‖∞ ≤ ‖ f0‖∞, ‖∂x,v f (t)‖∞ ≤ C1, and

f (t, x, v) = 0 if |v − x

t + α
| ≥ R(t)} (3.11)

for the constant C1 depending only on ‖ f0‖1, ‖ f0‖∞, ‖∂x,v f0‖∞, R0 and δ0.
For any f ∈ T X , there exists g ∈ X such that f = T g. Firstly, we point out

that f belongs to C1([0, δ0]; C1
b(R3 × R

3)) and all the estimates in (3.11) hold. Note
that Eg(t, x) ∈ C([0, δ0]; C1

b(R3)), we have X, V ∈ C1([0, δ0] × [0, δ0] × R
3 × R

3),
which means that f ∈ C1([0, δ0] × R

3 × R
3). Remember that ‖Lipx f (t)‖L∞(R3

v)
≤

L(t) for any t ∈ [0, δ0] and T X ⊂ X , we only need to show that ∂v f (t, x, v) has a
uniform bound. From (3.9) and (3.10) we get that ∂x,v X, ∂x,vV are uniformly bounded
on [0, δ0]×[0, δ0]×R

3×R
3, and the bound is only dependent on ‖ f0‖1, ‖ f0‖∞, R0, δ0.

So there exists a positive constantC1 only dependent on ‖ f0‖1, ‖ f0‖∞, ‖∂v f0‖∞, R0, δ0
such that

|∂v f (t, x, v)| = |∂v( f0(X (0, t, x, v), V (0, t, x, v)))|
≤ |∂x f0||∂v X (0, t, x, v)| + |∂v f0||∂v X (0, t, x, v)| ≤ C1.

Then, we prove that f ∈ C([0, δ0]; C0(R
3 ×R

3)). Note that sup{|x − αv| : (x, v) ∈
supp f0} < ∞, we have

lim√
|x |2+|v|2→∞

f0(x, v) = 0 ⇐⇒ lim|v|→∞ f0(x, v) = 0.

For any f ∈ T X , we know f (t, x, v) = f0(X (0, t, x, v), V (0, t, x, v)) and |V (0)| ≥
|v|−|V (0)−v| ≥ |v|−C for any t ∈ [0, δ0]. Sowe can deduce that lim|v|→∞ f (t, x, v) = 0.

Using sup{|x − (t + α)v| : (x, v) ∈ supp f (t), t ∈ [0, δ0]} < ∞, we can easily obtain
that f (t, x, v) ∈ C([0, δ0]; C0(R

3 × R
3)). Moreover, for any ε > 0 there exists R > 0

independent of f such that

| f (t, x, v)| < ε, if (t, x, v) ∈ [0, δ0] × (BR × BR)c. (3.12)

Step 3. We prove that T X is relatively compact and the operator T is continuous. Firstly,
we show the relative compactness of T X . For any f ∈ T X and any ε > 0we can choose
R > 0 such that

| f (t, x, v)| ≤ 1

6
ε, if (t, x, v) ∈ [0, δ0] × (BR × BR)c

by (3.12). For (t, x, v) ∈ [0, δ0]×BR×BR , by (3.6) and theboundedness of‖∂x,v f (t)‖∞,
we have

|∂t f (t, x, v)| ≤ |v · ∇x f (t, x, v)| + |Eg(t, x) · ∇v f (t, x, v)| ≤ C(R + 1).

Thus, T X is equicontinuous in [0, δ0] × BR × BR and then T X is relatively compact.
Now we show that T is continuous. Let T g̃ = f̃ , the characteristic flow correspond-

ing to the field Eg̃ is defined by
{ ˙̃X (s, t, x, v) = Ṽ (s, t, x, v), X̃(t, t, x, v) = x,

˙̃V (s, t, x, v) = Eg̃(s, X̃(s, t, x, v)), Ṽ (t, t, x, v) = v.
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Then, for any 0 ≤ s < t ≤ δ0

|X̃(s) − X (s)| + |Ṽ (s) − V (s)|
≤

∫ t

s
|Ṽ (τ ) − V (τ )|dτ +

∫ t

s
|Eg̃(τ, X̃(τ )) − Eg(τ, X (τ ))|dτ

≤
∫ t

s
|Ṽ (τ ) − V (τ )|dτ + C

∫ t

s
|X̃(τ ) − X (τ )|dτ +

∫ t

s
‖E(g̃−g)(τ )‖∞dτ

≤ C
∫ t

s
(|X̃(τ ) − X (τ )| + |Ṽ (τ ) − V (τ )|)dτ + C

∫ t

s
‖(g̃ − g)(τ )‖2/3∞ dτ,

which implies that for any 0 ≤ s < t ≤ δ0

|X̃(s) − X (s)| + |Ṽ (s) − V (s)| ≤ CeCt
∫ t

0
‖(g̃ − g)(τ )‖2/3∞ dτ.

So, for any t ∈ [0, δ0]

| f̃ (t, x, v) − f (t, x, v)|
= | f0(X̃(0, t, x, v), Ṽ (0, t, x, v)) − f0(X (0, t, x, v), V (0, t, x, v))|
≤ C(|X̃(0, t, x, v) − X (0, t, x, v)| + |Ṽ (0, t, x, v) − V (0, t, x, v)|)
≤ C

∫ t

0
‖(g̃ − g)(τ )‖2/3∞ dτ ≤ C sup

t∈[0,δ0]
‖g̃(t) − g(t)‖2/3∞ ,

which gives the continuity of T . Thus, Schauder’s theorem ensures that T has a fixed
point f in X . From (3.6) and (3.11) we can deduce that f is a classical solution on
[0, δ0] to (1.1)–(1.3). The uniqueness follows from Lemma 3.2. Note that all the above
arguments hold on any compact subinterval of [0, δ), so the solution f exists on [0, δ).
Step 4. Lastly, we prove the continuation criterion. Assume that [0, T ) is the maximal
existence interval of the unique classical solution of (1.1)–(1.3). Let

R∗ = sup{|v − x

t + α
| : (x, v) ∈ supp f (t), t ∈ [0, T )} < ∞.

Any t0 ∈ (0, T ) can be viewed as the initial time. From the proof of local existence result
especially the computation in step 1, there exists δ1 = 1

2C0R∗ such that the solution
can be extended to [0, t0 + δ1]. Choosing t0 sufficiently close to T , we can get the
contradiction. �
Remark 3.1. If the nonnegative initial datum f0 ∈ C1

c (R3 ×R
3), the local existence and

uniqueness result was given in [3,30].

4. Global Existence of Classical Solutions

ToproveTheorem1.1,we can follow the approach in [17]. Specifically,wewill propagate
velocity-spatial moments of order higher than three.
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Theorem 4.1. Let the initial datum 0 ≤ f0 ∈ L1 ∩ L∞(R3 × R
3) and assume that for

some α > 0 and some m0 > 3∫∫
R3×R3

|x − αv|m0 f0(x, v)dvdx < ∞. (4.1)

Then there exists a weak solution f (t, x, v) to (1.1)–(1.3), and for any 3 < m < m0
there exists a positive and continuous function C(t) such that∫∫

R3×R3
|x − (t + α)v|m f (t, x, v)dvdx ≤ C(t).

Proof. Since the method in [17] is well known, our proof at the first two steps is given
roughly.
Step 1. We can deduce from (1.1) and (2.3) that for any n > 0

d

dt
Hn(t) ≤ n(t + α)

∫∫
R3×R3

|E(t, x)||x − (t + α)v|n−1 f (t, x, v)dvdx

≤ n(t + α)
n

3+n ‖E(t)‖n+3Hn(t)
2+n
3+n , (4.2)

which implies that

Hn(t) ≤ C

[
Hn(0) +

(∫ t

0
(s + α)

n
3+n ‖E(s)‖n+3ds

)n+3
]

. (4.3)

Step 2.By (4.3), to propagate the moments Hm(t)we need to estimate ‖E(t)‖m+3, where
m > 3. Following from the inequality (28) and its proof in [17], we can get

‖E(t)‖m+3 ≤ C‖ρ0(t)‖ 3(m+3)
m+6

+ C‖σ(t)‖m+3, (4.4)

where ρ0(t, x) = ∫
R3 f0(x − tv, v)dv and σ(t, x) = ∫ t

0 (s − t)
∫
(E f )(s, x + (s −

t)v, v)dvds.
Using Hölder’s inequality, we obtain

‖ρ0(t)‖ 3(m+3)
m+6

≤ ‖ρ0(t)‖
2m+3
3m

m+3
3

‖ρ0(t)‖
m−3
3m
1 ≤ C‖ρ0(t)‖

2m+3
3m

m+3
3

since m > 3 and ‖ρ0(t)‖1 ≤ ‖ f0‖1. Then, it follows from (2.4) that∥∥∥∥
∫
R3

f0(x − tv, v)dv

∥∥∥∥ 3+m
3

≤ C(t + α)−
3m
3+m

(∫∫
R3×R3

|x − (t + α)v|m f0(x − tv, v)dvdx

) 3
3+m

≤ C(t + α)−
3m
3+m

(∫∫
R3×R3

|x − αv|m f0(x, v)dvdx

) 3
3+m

≤ C(t + α)−
3m
3+m Hm(0)

3
3+m .

So, we have
‖ρ0(t)‖ 3(m+3)

m+6
≤ C(t + α)−

2m+3
m+3 . (4.5)
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For the estimate of ‖σ(t)‖m+3, we divide the integral into two parts,

‖σ(t)‖m+3 =
∥∥∥∥
∫ t

0
s
∫
R3

(E f )(t − s, x − sv, v)dvds

∥∥∥∥
m+3

≤
∥∥∥∥
∫ t0

0
s
∫
R3

(E f )(t − s, x − sv, v)dvds

∥∥∥∥
m+3

+

∥∥∥∥
∫ t

t0
s
∫
R3

(E f )(t − s, x − sv, v)dvds

∥∥∥∥
m+3

=: I1 + I2, (4.6)

where t0 ∈ (0, t) will be given later on.
Let r ′ < 3 be close enough to 3 such that r ′ ≥ max{ 1511 , 3(m+3)

m0+3
, 6 − m}. So r =

r ′
1−r ′ > 3

2 , and then Hölder’s inequality and the boundedness of f give that

I1 ≤ C

∥∥∥∥∥
∫ t0

0
s

(∫
R3

|E(t − s, x − sv)|r dv

)1/r (∫
R3

f (t − s, x − sv, v)dv

)1/r ′
ds

∥∥∥∥∥
m+3

≤ C
∫ t0

0
s1−3/r ‖E(t − s)‖r

∥∥∥∥
∫
R3

f (t − s, x − sv, v)dv

∥∥∥∥
1
r ′

m+3
r ′

ds. (4.7)

It follows from the Hardy-Littlewood-Sobolev inequality (Theorem 4.5.3 in [11] with
q = r , a = 3

2 , p = 3r
3+r ) and (2.11) that

‖E(t − s)‖r ≤ C‖ρ(t − s)‖ 3r
3+r

≤ C (4.8)

since 1 < 3r
3+r ≤ 5

3 . On the other hand, there exists k ∈ (m, m0] such that k+3
3 = m+3

r ′ ,

since 3(m+3)
m0+3

≤ r ′ < 3. It follows from (2.4), (4.1) and (4.3) that

∥∥∥∥
∫
R3

f (t − s, x − sv, v)dv

∥∥∥∥
1
r ′

m+3
r ′

=
∥∥∥∥
∫
R3

f (t − s, x − sv, v)dv

∥∥∥∥
1
r ′

k+3
3

≤ C(t + α)
− 3k

(3+k)r ′
(∫∫

R3×R3
|x − (t + α)v|k f (t − s, x − sv, v)dvdx

) 3
(3+k)r ′

= C(t + α)−
k

m+3 Hk(t − s)
1

m+3

≤ C(t + α)−
k

m+3

(
1 +

∫ t−s

0
(τ + α)

k
3+k ‖E(τ )‖k+3dτ

) 3+k
3+m

.

Remember the definition of k and r ′ ≥ 6 − m, there exists m1 ∈ (3, m] such that
3(k+3)

k+6 = m1+3
3 . Using the Hardy-Littlewood-Sobolev inequality (Theorem 4.5.3 in [11]

with q = k + 3, a = 3
2 , p = 3(k+3)

6+k ) and (2.4) again we have

‖E(τ )‖k+3 ≤ C‖ρ(τ)‖ 3(k+3)
k+6

= C‖ρ(τ)‖m1+3
3

≤ C(τ + α)
− 3m1

3+m1 Hm1(τ )
3

3+m1 ≤ C(τ + α)
− 3m1

3+m1 Hm(τ )
3m1

m(3+m1) ,
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where the last inequality comes from the Hölder inequality and the boundedness of
‖ f (τ )‖1. As a consequence, by noting that k

3+k − 3m1
3+m1

= −1 we have

∥∥∥∥
∫
R3

f (t − s, x − sv, v)dv

∥∥∥∥
1
r ′

m+3
r ′

≤ C(t + α)−
k

m+3

(
1 + sup

τ∈[0,t−s]
Hm(τ )

3m1
m(3+m1)

∫ t−s

0
(τ + α)−1dτ

) 3+k
3+m

≤ C(t + α)−
k

m+3

[
1 +

(
ln(1 +

t − s

α
)

) 3+k
3+m

sup
τ∈[0,t−s]

Hm(τ )
3+2k

(3+m)m

]
. (4.9)

Following from (4.7)–(4.9), we have that

I1 ≤ Ct2−3/r
0 (t + α)−

k
m+3

(
1 + (ln(1 + t/α))

3+k
3+m sup

s∈[0,t]
Hm(τ )

3+2k
(3+m)m

)

≤ Ct2−3/r
0 (t + α)−

k
m+3 [1 + ln(1 + t/α)] 3+k

3+m

(
1 + sup

s∈[0,t]
Hm(τ )

3+2k
(3+m)m

)
. (4.10)

For the estimation of I2, we firstly compute
∫
(E f )(t −s, x −sv, v)dv. Using Lemma

1.13 in [30] we can obtain∫
R3

|E f |(t − s, x − sv, v)dv

≤ C‖E(t − s, x − sv)‖
L3/2

w (R3
v)

(∫
R3

f (t − s, x − sv, v)dv

)1/3

‖ f (t − s)‖2/3∞

≤ Cs−2‖E(t − s, x)‖
L3/2

w (R3
x )

(∫
R3

f (t − s, x − sv, v)dv

)1/3

≤ Cs−2
(∫

R3
f (t − s, x − sv, v)dv

)1/3

, (4.11)

since ‖E(t)‖
L3/2

w (R3)
≤ C‖ρ(t)‖1 (see Theorem 1 of Section V.1.2 in [35] with α =

1, n = 3, p = 1 and q = 3
2 ). Here, L3/2

w (R3) is the weak L3/2-space which is defined
as the space of all measurable functions h on R

3 such that ‖h‖
L3/2

w (R3)
:= sup

τ>0
τ |{x ∈

R
3 : |h(x)| > τ }|2/3 < ∞. Consequently, by (4.6), (4.11) and (2.4) we have

I2 ≤ C

∥∥∥∥∥
∫ t

t0
s−1

(∫
R3

f (t − s, x − sv, v)dv

)1/3

ds

∥∥∥∥∥
m+3

≤ C
∫ t

t0
s−1

∥∥∥∥
∫
R3

f (t − s, x − sv, v)dv

∥∥∥∥
1/3

(m+3)/3
ds

≤ C(t + α)−
m

3+m

∫ t

t0
s−1Hm(t − s)

1
3+m ds

≤ C(t + α)−
m

3+m ln(t/t0) sup
s∈[0,t]

Hm(s)
1

3+m . (4.12)
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By (4.6) (4.10) and (4.12), we obtain

‖σ(t)‖m+3 ≤ Ct2−3/r
0 (t + α)−

k
m+3 [1 + ln(1 + t/α)] 3+k

3+m

(
1 + sup

s∈[0,t]
Hm(s)

3+2k
(3+m)m

)

+C(t + α)−
m

3+m ln(t/t0) sup
s∈[0,t]

Hm(s)
1

3+m . (4.13)

So, it follows from (4.4), (4.5) and (4.13) that

‖E(t)‖m+3 ≤ Ct2−3/r
0 (t + α)−

k
m+3 [1 + ln(1 + t/α)] 3+k

3+m

(
1 + sup

s∈[0,t]
Hm(s)

3+2k
(3+m)m

)

+C(t + α)−
m

3+m ln(t/t0) sup
s∈[0,t]

Hm(s)
1

3+m + C(t + α)−
2m+3
m+3 . (4.14)

Step 3. Now we estimate Hm(t). Combining the above estimate with (4.2), we have

d

dt
Hm(t) ≤ Ct2−3/r

0 (t + α)
m−k
m+3 [1 + ln(1 + t/α)] 3+k

3+m

(
1 + sup

s∈[0,t]
Hm(s)

3+2k
(3+m)m

)
Hm(t)

2+m
3+m

+C ln(t/t0) sup
s∈[0,t]

Hm(s)
1

3+m Hm(t)
2+m
3+m + C(t + α)−1Hm(t)

2+m
3+m .

For simplicity, Hm(t) will be still used to denote sup
s∈[0,t]

Hm(s). By the definition of k,

we have 2 − 3
r = k−m

m+3 , and then

d

dt
(Hm(t) + 1) ≤ C

(
t0

t + α

)2−3/r

[1 + ln(1 + t/α)] 3+k
3+m (Hm(t) + 1)1+μ

+C ln(t/t0)(Hm(t) + 1) + C(Hm(t) + 1), (4.15)

where μ = 3+2k
(3+m)m − 1

3+m > 0. If for any t ≥ 0

3(Hm(t) + 1)μ ≤
(

t

t + α

)3/r−2

,

then let t → ∞, we have 3 ≤ lim
t→∞ 3(Hm(t) + 1) < 1, which is a contradiction. Thus,

there exists t∗ > 0 such that

3(Hm(t) + 1)μ >

(
t

t + α

)3/r−2

, ∀t > t∗,

and

3(Hm(t) + 1)μ <

(
t

t + α

)3/r−2

, ∀t < t∗, (4.16)

since the left side is increasing on t and the right one is decreasing. So we have

3(t + α)3/r−2(Hm(t) + 1)μ > t3/r−2, ∀t > t∗.

For any fixed t > t∗ we choose t0 ∈ (0, t) such that

t3/r−2
0 = 3(t + α)3/r−2(Hm(t) + 1)μ,
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which means that

t0 = 3− r
2r−3 (Hm(t) + 1)−

rμ
2r−3 (t + α) < 2−1(t + α),

since 3/2 < r ≤ 15/4. Then putting this t0 into (4.15), we have that for any t ≥ t∗

d

dt
(Hm(t) + 1) ≤ C

[
(1 + ln(1 + t/α))

3+k
3+m + ln(Hm(t) + 1)

]
(Hm(t) + 1). (4.17)

Note that t∗ ≤ (3
r

2r−3 − 1)−1α < α, since

3(Hm(t∗) + 1)μ =
(

t∗

t∗ + α

)3/r−2

≥ 3.

So, it follows from (4.17) that any t ≥ α,

Hm(t) ≤ (Hm(α) + 1)eC(t−α)

e(eC(t−α)−1)(ln(1+t/α))
3+k
3+m − 1. (4.18)

Now, we need to show Hm(α) ≤ C . For any t ∈ [0, α], we have from (4.15) that

d

dt
(Hm(t) + 1) ≤ Ct2−3/r

0 (Hm(α) + 1)μ(Hm(t) + 1) + C(| ln t0| + 1)(Hm(t) + 1).

By choosing t0 ∈ (0, α) such that

t
2− 3

r
0 = α2− 3

r [1 + Hm(α)]−μ,

we can obtain that for all t ∈ [0, α].
d

dt
(Hm(t) + 1) ≤ C(Hm(t) + 1)[1 + ln(Hm(t) + 1)].

SoGronwall’s inequality gives that Hm(α) ≤ C . Combining this estimatewith (4.18),we
find a positive and continuous function C(t) such that Hm(t) ≤ C(t) for all
t ≥ 0. �
Remark 4.1. The case of α = 0 was considered in [6], where the propagation of spatial
moments of order higher than three was obtained with an additional assumption that∫∫

R3×R3 |v|ε f0dvdx < ∞ for some arbitrarily small ε > 0. Since the singularity of
t → 0+ is removed in all a-priori estimates for the case of α > 0, we can give a more
direct result, which is very similar to the one in [17]. However, the upper bound C(t)
for the velocity-spatial moments is better than the one for the velocity moments in [17].

Proof of Theorem 1.1. Following from the a-priori estimate (2.7), ‖ f (t)‖1 and ‖ f (t)‖∞
are uniformly bounded for any t ≥ 0. And by (2.4), we have ‖ρ(t)‖2 ≤ C H3(t)1/2.
Then by using Lemma 4.5.4 of [11] with p = 2, a = 3/2 and the estimate (3.7), we
know that

‖E(t)‖∞ ≤ C‖ρ(t)‖
2
3
2 ‖ρ(t)‖

1
3∞ ≤ C H3(t)

1/3R(t),

where R(t) is defined by

R(t) = sup{|v − x

t + α
| : (x, v) ∈ supp f (t)}.
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For 0 ≤ s ≤ T and (x, v) ∈ supp f0, using (2.1) we have

|V (t, 0, x, v) − X (t, 0, x, v)

t + α
| ≤ |v − x

α
| +

∫ t

0
‖E(τ )‖∞dτ

≤ R(0) + C
∫ t

0
H3(τ )1/3R(τ )dτ.

Since f (t, X (t, 0, x, v), V (t, 0, x, v)) = f0(x, v), we know for any 0 ≤ t ≤ T

R(t) ≤ R(0) + C
∫ t

0
H3(τ )1/3R(τ )dτ,

which means that

R(t) ≤ R(0)eC
∫ t
0 H3(s)1/3ds . (4.19)

From the above theorem we have sup
t∈[0,T ]

Hm(t) ≤ CT for some m > 3, and by conser-

vation of mass we also have

H3(t) =
(∫∫

|x−(t+α)v|>1
+

∫∫
|x−(t+α)v|≤1

)
|x − (t + α)v|3 f dvdx

≤
∫∫

R3×R3
(|x − (t + α)v|m + 1) f dvdx ≤ Hm(t) + ‖ f0‖1.

So, sup
t∈[0,T ]

H3(t) ≤ CT . Combining itwith (4.19),wehave R(t) ≤ CT for any0 ≤ t ≤ T .

Thus, Theorem 3.3 gives our conclusion. �

5. Propagation of Low Moments

According to the continuation criterion in Theorem 3.3, the key to prove the global
existence is controlling the velocity-spatial support. The above method utilizes the fact
that such support can be bounded through propagation of high order velocity-spatial
moments, which follows the Eulerian approach in [17]. However, a more direct way is
the Lagrangian approach due to Pfaffelmoser [28]: fixing a (x∗, v∗) ∈ supp f (t) and
estimating

∫ T
0 |E(s, X (s, t, x∗, v∗))|ds by appropriately splitting (t, x, v) ∈ [0, T ] ×

R
3 × R

3 into suitable subsets. Using this method one can get a much better estimate
than (4.19) for the velocity-spatial support.

Recently, some remarkable propagation results were given by Pallard [22,23]. He
combined the above two approaches to propagate velocity moments of order higher than
two. The critical issue is that the upper boundof

∫ T
0 |E(s, X (s))|ds can be independent of

the velocity support of f (t) but depend on sup
t∈[0,T ]

∫∫
R3×R3 |v|2+0 f (t)dvdx . And the up-

per boundwas further proved todepend just onT, k, ‖ f0‖1, ‖ f0‖∞,
∫∫

R3×R3 |v|k f0dvdx
for any k > 2. Then spatial moments of order higher than two were also propagated in
[23], where a similar but weaker estimate was obtained for the self-generated field, we
put both estimates (Proposition 3 in [22], Theorem 4 in [23]) together into the following
lemma.
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Lemma 5.1 [22,23]. Suppose given a nonnegative f0 ∈ C1
c (R3 × R

3) and let f ∈
C1(R+ × R

3 × R
3) be the unique classical solution to (1.1)–(1.3). Then for any k > 2

and T > 0

sup
x,v

∫ T

0
|E(s, X (s, t, x, v))|ds ≤ C(T, k, ‖ f0‖1, ‖ f0‖∞,

∫∫
R3×R3

|v|k f0dvdx)

(5.1)
and

sup
x,v

∫ t+δ

t
s|E(s, X (s, t, x, v))|ds ≤ C(T, ε, k, ‖ f0‖1, ‖ f0‖∞,

∫∫
R3×R3

|x |k f0dvdx)δ
1

2+ε ,

(5.2)
where ε > 0 and 0 ≤ t ≤ t + δ ≤ T .

Note that (5.1) is stronger than (5.2) for integrability of |E(s, X (s, t, x, v))|. Now,
we point out that a similar estimate like (5.1) can be established without boundedness
of kinetic energy. Before doing this, we give a new notation for simplicity.

Definition 5.1. we define for any t ≥ 0 and δ > 0

Q(t, δ) = sup
x,v

∫ t+δ

t
|E(s, X (s, t, x, v))|ds.

It follows from (2.1) that
∣∣∣∣V (s) − X (s)

s + α

∣∣∣∣ ≤
∣∣∣v − x

t + α

∣∣∣ + Q(t, δ), ∀s ∈ (t, t + δ]. (5.3)

In particular,

∣∣∣∣V (t + δ) − X (t + δ)

t + δ + α

∣∣∣∣ ≤
∣∣∣v − x

t + α

∣∣∣ + Q(t, δ).

Notice that we use the forward characteristics but not the backward characteristics, and
Q(t, δ) ≤ Q(t, δ0) + Q(t + δ0, δ − δ0) for 0 < δ0 < δ.

Theorem 5.2. Let the initial datum 0 ≤ f0 ∈ C1
0 ∩ L1(R3 × R

3) and assume that

sup{|x − αv| : (x, v) ∈ supp f0} < ∞
for some α > 0. Let f be the unique classical solution to (1.1)–(1.3), Then for any
k > 2 and 0 < ε < 1 there exists a positive constant C depending on Mk(0), ‖ f0‖1,
‖ f0‖∞, k, α and ε such that for any t > 0

Q(0, t) ≤ Ct
1
2 (1 + t)

1
2 +ε. (5.4)

Lemma 5.3. For any t ≥ 0, δ > 0 and ε > 0, there exists a positive constant C
depending on M2(0), ‖ f0‖1, ‖ f0‖∞, α and ε such that

Q(t, δ) ≤ C
[
δQ(t, δ)4/3 + δ1/2(1 + M2+ε(t))

1/2]. (5.5)
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Proof. For any fixed (t, x∗, v∗) ∈ [0,∞) × R
3 × R

3, δ > 0, we devote to estimating
the following integral:

∫ t+δ

t
|E(s, X (s, t, x∗, v∗))|ds ≤

∫ t+δ

t

∫
R3

ρ(s, x)

|x − X∗(s)|2 dxds

=
∫ t+δ

t

∫∫
R3×R3

f (s, x, v)

|x − X∗(s)|2 dvdxds

=: I

where (X∗(s), V ∗(s)) = (X (s, t, x∗, v∗), V (s, t, x∗, v∗)). Similar to the decomposition
in [14,21–23,32], the integral area is divided into three sets:

G = {(s, x, v) ∈ (t, t + δ) × R
3 × R

3 : |v − V ∗(s)| ≤ P

or |v − x/(s + α)| ≤ P},
B = {(s, x, v) ∈ (t, t + δ) × R

3 × R
3 : colon|x − X∗(s)|

≤ r(s, x, v)}\G,

U = (t, t + δ) × R
3 × R

3\(G ∪ B),

with P = 5Q(t, δ) and r(s, x, v) = L
(
1 +

∣∣v − x
s+α

∣∣2+ε
)−1 |v − V ∗(s)|−1. When

α = 0, M2+ε(t) is singular for small times. So H2+ε(t) instead of M2+ε(t) was used to
control Q(t, δ) in [23] and r was given by r(s, x, v) = L

∣∣v − x
s

∣∣−2−ε |v − V ∗(s)|−1

correspondingly, however, the final estimate is also singular for small times (see Proposi-
tion 1 in [23]). Since M2+ε(t) is good enough for α > 0, we can establish the estimation
of Q(t, δ) paralleled to Proposition 1 in [22]. Now we give precise computation.

Denote

ρ̄(s, x) =
∫

|v−V ∗(s)|≤P or |v−x/(s+α)|≤P
f (s, x, v)dv.

Following from (2.11), we have ‖ρ̄(s, ·)‖5/3 ≤ C . And using Lemma 4.5.4 of [11] with
p = 5/3, a = 3/2 we obtain that

IG �
∫∫∫

G

f (s, x, v)

|x − X∗(s)|2 dvdxds ≤
∫ t+δ

t

∫
R3

ρ̄(s, x)

|x − X∗(s)|2 dxds

≤ C
∫ t+δ

t
‖ρ̄(s, ·)‖5/95/3‖ρ̄(s, ·)‖4/9∞ ds

≤ C P4/3δ. (5.6)

For IB �
∫∫∫

B
f (s,x,v)

|x−X∗(s)|2 dvdxds, we decompose B into two parts as that in [23]:

B1 = B ∩ {s, x, v : |v − x

s + α
| ≥ |v − V ∗(s)|}, B2 = Bc

1 ∩ B.

Since r(s, x, v) ≤ L
(
1 + |v − V ∗(s)|2+ε

)−1 |v − V ∗(s)|−1 when (s, x, v) ∈ B1, by

integrating in the space variable first we obtain that
∫∫∫

B1

f (s, x, v)

|x − X∗(s)|2 dvdxds ≤ C
∫ t+δ

t

∫
R3

L(
1 + |v − V ∗(s)|2+ε

)|v − V ∗(s)|dvds ≤ CδL .
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On the other hand, using variable substitution w = v − x
s+α

and then do a similar
computation as above, we have that

∫∫∫
B2

f (s, x, v)

|x − X∗(s)|2 dvdxds ≤ C
∫ t+δ

t

∫
R3

L

(1 + |w|2+ε)|w|dwds ≤ CδL .

Thus, there exists a positive constant C depending on ε such that

IB ≤ CδL . (5.7)

Note that the characteristic flow is measure preserving and f (s, X (s), V (s)) =
f (t, x, v), we have
∫∫∫

U

f (s, x, v)

|x − X∗(s)|2 dvdxds =
∫∫

R3×R3

(∫ t+δ

t

1U (s, X (s), V (s))

|X (s) − X∗(s)|2 ds

)
f (t, x, v)dvdx .

Using the classical method to deal with the ugly setU (see e.g. the proof of (33) in [23]),
we can deduce from (5.3) that

∫ t+δ

t

1U (s, X (s), V (s))

|X (s) − X∗(s)|2 ds ≤ C
1 + |v − x

t+α
|2+ε

L
.

As a consequence,

IU �
∫∫∫

U

f (s, x, v)

|x − X∗(s)|2 dvdxds ≤ C L−1(1 + M2+ε(t)). (5.8)

It follows from (5.6)–(5.8) that∫ t+δ

t
|E(s, X (s, t, x∗, v∗))|ds ≤ I ≤ C

[
δQ(t, δ)4/3 + δL + L−1(1 + M2+ε(t))

]
.

By the definition of Q(t, δ), we have

Q(t, δ) ≤ C
[
δQ(t, δ)4/3 + δL + L−1(1 + M2+ε(t))

]
.

Choose L = δ−1/2(1 + M2+ε(t))1/2, we get the desired result. �
Proof of Theorem 5.2. Following from Lemma 5.3, we can obtain the conclusion by
adapting the method used in [22,23], so we only give a very sketchy proof.

Similar to the proof of Proposition 2 in [22], using Lemma 5.3 we can deduce

Q(0, t) ≤ C[t (1 + M2+ε(t))] 12 + Ct (1 + M2+ε(t))
4
7 (5.9)

by the forward characteristics. Note that the characteristic flow is measure preserving
and f (s, X (s), V (s)) = f (t, x, v), we get from (5.3) that

Mk(t) =
∫∫

R3×R3
|v − x

t + α
|k f (t, x, v)dvdx

=
∫∫

R3×R3
|V (t, 0, x, v) − V (t, 0, x, v)

t + α
|k f (t, X (t, 0, x, v), V (t, 0, x, v))dvdx

≤
∫∫

R3×R3

(|v − x

α
| + Q(0, t)

)k
f0(x, v)dvdx

≤ 2k Mk(0) + 2k‖ f0‖1Q(0, t)k . (5.10)

Then following the proof of Proposition 3 in [22] we can get our conclusion. �
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Now we give some corollaries of Theorem 5.2. Using (5.4) and (5.10) we can prop-
agate the corresponding velocity-spatial moments of order higher than two.

Corollary 5.4. Let the initial datum 0 ≤ f0 ∈ L1 ∩ L∞(R3 × R
3) and assume that for

some α > 0 and some k > 2∫∫
R3×R3

|x − αv|k f0(x, v)dvdx < ∞.

Then there exists a weak solution f (t, x, v) to (1.1)–(1.3) such that for some positive
and continuous function C(t)∫∫

R3×R3
|x − (t + α)v|k f (t, x, v)dvdx ≤ C(t), t ≥ 0.

Combining (5.4) with Lemma 3.2 we have a uniqueness result. We refer to [17,22,
23,31] for other uniqueness results.

Corollary 5.5. Let the initial datum 0 ≤ f0 ∈ L1 ∩ L∞(R3 × R
3) and assume that for

some α > 0 and some k > 2∫∫
R3×R3

|x − αv|k f0(x, v)dvdx < ∞.

Moreover, if for some 0 < ε < 1

supess{ f0(y − tv,w) : |y − x | ≤ Ct
3
2 (1 + t)

1
2 +ε, |w − v| ≤ Ct

1
2 (1 + t)

1
2 +ε}

∈ L∞
loc([0,∞); L∞(R3

x ; L1(R3
v))),

where C is the precise constant in (5.4). Then the weak solution f (t, x, v) to (1.1)–(1.3)
is unique and satisfies for any T > 0

sup
t∈[0,T ]

‖ρ(t)‖∞ < +∞.

From (5.1) and (5.4) we can simultaneously propagate velocity and velocity-spatial
moments.

Corollary 5.6. Let the initial datum 0 ≤ f0 ∈ L1 ∩ L∞(R3 × R
3) and assume that for

some α > 0,
∫∫

R3×R3(|v|m+|x−αv|l) f0dvdx < ∞ with m > 2, l > 0 or m > 0, l > 2,
then the solution f (t, x, v) of (1.1)–(1.3) satisfies for any t ∈ [0, T ]∫∫

R3×R3
(|v|m + |x − (t + α)v|l) f (t, x, v)dvdx

≤ C(T, ‖ f0‖1, ‖ f0‖∞, ‖(|v|m + |x − αv|l) f0‖1, α).

The last corollary almost reaches the natural cases: l = 2 or m = 2 for α > 0, so
we focus on the remaining case, α = 0. For m > 3, l > 0 or l > 3, m > 0, these
propagation results were proved by Castella [6]. Then with an additional assumption
of the initial datum, the propagation was established for the case of m > 2, l > 1

3
in [9]. As a consequence of (5.1) in [22], the conclusion also holds for the case of
m > 2, l > 0. So there is an open question stated in [23], that is, how to propagate the
velocity (0 < m < 2) and spatial (2 < l ≤ 3) moments. At last, we try to give a partial
answer of it.
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Theorem 5.7. Let the initial datum 0 ≤ f0 ∈ L1 ∩ L∞(R3 × R
3) satisfy

∫∫
R3×R3

(|v|m + |x |l) f0(x, v)dvdx < +∞

with 2 < l ≤ 3 and 0 < m < 3l2

(l+3)2
+ l

l+3 , m ≤ 1. Then there exists a weak solution f
to the Cauchy problem (1.1)–(1.3) such that for any T > 0 and any t ∈ [0, T ] we have
∫∫

R3×R3
(|v|m + |x − vt |l ) f (t, x, v)dvdx ≤ C(T, ‖ f0‖1, ‖ f0‖∞, ‖(|v|m + |x |l ) f0(x, v)‖1).

Proof. Firstly, we use Theorem 1 in [23] to get that
∫∫

R3×R3
|x − tv|l f (t, x, v)dvdx ≤ C(T, ‖ f0‖1, ‖ f0‖∞, ‖|x |l f0(x, v)‖1).

Then we bound
∫∫

R3×R3 |v|m f dxdv for m ≤ 1. From (2.5) we have

∣∣∣∣ d

dt

∫∫
R3×R3

|v|m f (t, x, v)dvdx

∣∣∣∣ ≤ m
∫
R3

(∫
R3

|v|m−1 f dv

)
|E |dx

≤ C
∫
R3

(∫
R3

f dv

) 2+m
3 |E |dx .

Using (2.2) we obtain that for some 0 ≤ k ≤ l (which will be chosen later)

∫
R3

f dv ≤ Ct−
3k

k+3

(∫
R3

|x − tv|k f dv

) 3
k+3

.

So, the above estimates give that
∣∣∣∣ d

dt

∫∫
R3×R3

|v|m f (t, x, v)dvdx

∣∣∣∣

≤ Ct−
(2+m)k

k+3

∫
R3

(∫
R3

|x − tv|k f dv

) 2+m
k+3 |E |dx

≤ Ct−
(2+m)k

k+3

(∫∫
R3×R3

|x − tv|k f dvdx

) 2+m
k+3 ‖E(t)‖

1+k−m
k+3
k+3

1+k−m

≤ Ct−
(2+m)k

k+3 ‖E(t)‖
1+k−m

k+3
k+3

1+k−m
. (5.11)

Using the Hardy–Littlewood–Sobolev inequality (Theorem 4.5.3 in [11] with a = 3
2 ,

p = m+3
3 , q = 3(m+3)

6−m ) and (2.6) with l = 0, k = m, we get that

‖E(t)‖ 3(m+3)
6−m

≤ C‖ρ(t)‖m+3
3

≤ C

(∫∫
R3×R3

|v|m f dvdx

) 3
m+3

.

Similarly, for 2 ≤ n ≤ l
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‖E(t)‖ 3(n+3)
6−n

≤ C‖ρ(t)‖ n+3
3

≤ Ct−
3n

n+3

(∫∫
R3×R3

|x − vt |n f dvdx

) 3
n+3 ≤ Ct−

3n
n+3 .

If we further choose k such that 3(m+3)
6−m ≤ k+3

1+k−m ≤ 3(n+3)
6−n , we have

‖E(t)‖ k+3
1+k−m

≤ ‖E(t)‖1−θ
3(m+3)
6−m

‖E(t)‖θ
3(n+3)
6−n

≤ Ct−
3nθ
n+3

(∫∫
R3×R3

|v|m f dvdx

) 3(1−θ)
m+3

,

where θ ∈ [0, 1]. Put this estimate into (5.11), we can obtain

∣∣∣∣ d

dt

∫∫
R3×R3

|v|m f (t, x, v)dvdx

∣∣∣∣ ≤ Ct−α(m,k)

(∫∫
R3×R3

|v|m f dvdx

)β(m,k)

for some 0 ≤ β(m, k) < 1 and

α(m, k) = (2 + m)k

k + 3
+
3n(1 + k − m)

(n + 3)(k + 3)
θ. (5.12)

Now we need to choose k and n such that α(m, k) < 1 for 0 < m < 3l2

(l+3)2
+ l

l+3 .

For 0 < m < 1
5 , by choosing k = 0 andn = 2wecangetα(m, k) = 2(1−m)(m2+m+3)

9(2−m)
<

1.
For 1

5 ≤ m ≤ 22
25 , let r = k+3

1+k−m , then from (5.12) we have

α(m, k) = m − 1 +
3

r
+

27n(n − m)

(n + 3)2(6r − mr − 3m − 9)
.

So, we fix r = k+3
1+k−m = 3(n+3)

6−n , then θ = 1 and we can obtain

α(m, k) = m − 3n2

(n + 3)2
+

3

n + 3
< 1,

where 2 < n < l.
For 22

25 < m < 3l2

(l+3)2
+ l

l+3 , from the above arguments we fix n = l and k+3
1+k−m =

3(l+3)
6−l , then α(m, k) < 1. �

Remark 5.2. From the above proof, m can be at least in (0, 22
25 ] for any l > 2. And if

l > 1+
√
13

2 , we know that 3l2

(l+3)2
+ l

l+3 > 1, so m can be any point of (0, 1]. But if l ≤ 3,
this method can not be used to propagate the velocity moments of 1 < m < 2.
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