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Abstract: For an anyon model in two spatial dimensions described by a modular tensor
category, the topological S-matrix encodes the mutual braiding statistics, the quantum
dimensions, and the fusion rules of anyons. It is nontrivialwhether one can compute theS-
matrix from a single ground state wave function. Here, we define a class of Hamiltonians
consisting of local commuting projectors and an associated matrix that is invariant under
local unitary transformations. We argue that the invariant is equivalent to the topological
S-matrix. The definition does not require degeneracy of the ground state. We prove that
the invariant depends on the state only, in the sense that it can be computed by any
Hamiltonian in the class of which the state is a ground state. As a corollary, we prove
that any local quantum circuit that connects two ground states of quantum doublemodels
(discrete gauge theories) with non-isomorphic abelian groups must have depth that is at
least linear in the system’s diameter. As a tool for the proof, a manifestly Hamiltonian-
independent notion of locally invisible operators is introduced. This gives a sufficient
condition for a many-body state not to be generated from a product state by any small
depth quantum circuit; this is a many-body entanglement witness.

1. Introduction

Aclassification problem is defined by two ingredients, a set of objects and an equivalence
relation on it. The problem is solved if one knows a complete list of equivalence classes
and can tell which equivalence class each object represents. A natural approach is of
course to find invariants assigned for each equivalence class and a method to compute
them given a representative of the equivalence class. The classification is completed
when a complete set of invariants is found such that distinct equivalence classes have
distinct sets of invariants.

For gapped Hamiltonians, the equivalence relation is given by continuous paths in
a space of gapped local Hamiltonians. An equivalence class is a quantum phase of
matter. The quasi-adiabatic evolution [1,2] gives us a new insight into this problem. A
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gapped path of Hamiltonians defines a unitary transformation U that is generated by a
sum of (quasi-)local operators and relates the ground state subspace on one end of the
path to that on the other end. Because of the locality of the generator of U , it is well
approximated by a product of layers of non-overlapping local unitary transformations,
called a local quantum circuit, where the number of layers or the depth of the quantum
circuit is much smaller than the system size. Conversely, a small-depth local quantum
circuit defines a piece-wise smooth path in the gapped local Hamiltonian space, as any
local unitary operator can bewritten as the exponential of a local operator. Thus, a gapped
Hamiltonian path and a quantum circuit are intuitively equivalent, though proving it may
involve very nontrivial approximation analyses depending on purposes. We will discuss
only the quantum circuits in this paper for their simplicity.

The intuitive correspondence between a gapped Hamiltonian path and a small-depth
quantum circuit suggests that all information about the quantum phase of matter is
contained in the ground state wave function, since the equivalence relation by quantum
circuits canbe tested for givenwave functions. Indeed, for two-dimensional topologically
ordered systems it has been proposed that the total quantum dimension [3,4] and the
topological S-matrix [5] can be computed from the ground statewave functions. The total
quantum dimension D is shown to be equal to the exponential of the universal constant
correction, called the topological entanglement entropy, to the area law of entanglement
entropy. Namely, if A is a contractible disk of circumference L , which is much larger
than the correlation length, then the entanglement entropy of the ground state for A
obeys

SA = αL − logD + · · ·,
where α is a model-dependent constant. Thus it can be computed from a single wave
function. The reason that the entanglement entropy gets negative correction may be
intuitively understood in the string condensate picture [6] as the requirement that strings
be closed should reduce the entropy. It has been argued that the total quantum dimension
is the only information one can extract from entanglement entropies of a single wave
function [7]. Even so, it was shown that from the full set of ground states on a torus one
can extract the topological S-matrix [5], which is a finer quantity of the phase of matter
than the total quantum dimension. Based on these ideas, numerical computation was
performed [8,9], measuring the topological entanglement entropy, to give an evidence
that a highly frustrated magnetic system exhibits topological order.

The argument for the robustness or the invariance of these quantities, however, is
indirect. The argument of Kitaev and Preskill [3] that there exists a universal constant
correction is invalid unless one assumes some homogeneity because of the Bravyi’s
counterexample (S. Bravyi, private communication). Bravyi pointed out that the so-
called one-dimensional cluster state, if cleverly embedded into the plane, gives a nonzero
contribution to the topological entanglement entropy, although the cluster state can be
created from a product state by a quantum circuit of depth two. Kim [10] obtains a bound
on the first order perturbation of the topological entanglement entropy, assuming cer-
tain homogeneity and an extra criterion on conditional mutual information for various
regions. The topological S-matrix of Zhang et al. [5] seems robust, but it relies on an
assumption that the system is described by a modular tensor category. On the mathemat-
ics side, there is Ocneanu’s rigidity theorem proving that any modular tensor category
cannot be deformed except for trivial basis changes [11] (See also Appendix E.6 of
[12]), but it is nontrivial when and how a two-dimensional Hamiltonian corresponds to
a modular tensor category.
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Our understanding of invariants is reflected in the status of the following problem.
If two wave functions are ground states of distinct phases of matter, how deep a local
quantumcircuitmust be in order to transformonewave function to another?This question
has been addressed and partially solved by Bravyi, Hastings, and Verstraete [13]; see
also [14]. They showed that if there are two or more degenerate ground states that are
locally indistinguishable, then this local indistinguishability is an invariant. However,
the local indistinguishability can only tell trivial product states from topological states.
Also, this is applicable, tautologically, when there are two or more states. A topological
model can be defined on a sphere, in which case the local indistinguishability is of no
use since there is a unique ground state. König and Pastawski [15] have realized this
limitation.

Here, we show that for topologically ordered systems one can define a matrix S̃,
and that it is an invariant of the state under local unitary transformations. The systems
we consider are restricted to those with unfrustrated commuting projector Hamiltonians
satisfying certain natural conditions, which are elaborated later.We argue that thismatrix
must match the topological S-matrix if the system is described by a modular tensor
category. The invariance proof directly implies that any transformation quantum circuit
between states with distinct S̃ matrices has depth that is at least linear in the system’s
diameter. Although our argument is certainly motivated by the modular tensor category
description, our treatment is independent from it. Rather, our result should be read
as a justification of the modular category description for certain lattice systems. In
addition, our treatment solely requires a large disk-like region, and does not depend on
the boundary conditions. This might shed some light on how to compute a finer invariant,
the S matrix, given a single wave function. This is potentially important in numerics for
identifying a quantum phase of matter in 2D because the density matrix renormalization
group method is systematically biased to select a particular ground state even if there is
degeneracy [9], which might prohibit obtaining the full ground state subspace.

We assume that the system is governed by an unfrustrated local commuting projector
Hamiltonian with two extra conditions. The first one is the local topological order con-
dition, which is natural for any anyon models [16]. This condition asserts that the local
reduced density matrix on a region M of a ground state wave function is inferred from
the terms of the Hamiltonian around M . The second one is a new condition, which we
call stable logical algebra condition, asserting that the algebra of all string operators on
an annulus is independent of the thickness of the annulus. Amotivation for this condition
is that the interaction among anyons is determined by the topology of the paths they have
moved along. It seems that the second condition is closely related to the finiteness of
the number of topological particle types in two dimensions; we show that this condition
fails to be true when there are infinite number of particle types.

The S̃ is defined by particle type projection operators πa supported on two annuli
of comparable size, as shown in Fig. 1. Here, πa projects onto a state where a definite
particle is present in the inner disk of the annulus. (a, b)-entry of S̃ is the expectation
value of the linking of πa on the left annulus and πb on the right annulus. This is almost
identical to the usual definition of the topological S-matrix. The difference is that we
use the particle type projection operators instead of string operators that carry particles
of definite types. Our approach is advantageous because we can avoid any difficulty in
defining the string operators associated with definite particle types.

Our S̃ = S̃(|ψ〉) matrix is independent of Hamiltonians in the sense that whenever
|ψ〉 is a common ground state of H1 and H2, where each of H1 and H2 satisfies our two
conditions, the result S̃ is the same. Central to the proof of this is a notion of locally



774 J. Haah

P Q

(a)

P Q

(b)

P Q

(c)

Fig. 1. Two annuli of the same radius on a large plane are intersecting at two diamond-like regions. The
distance between the two diamonds are comparable with the radius of the annuli. P and Q denote operators
supported on the left and right annulus, respectively. In a, the usual product P · Q is depicted. The operator on
the left is drawn closer to the reader. In b, the product Q · P is shown. In c, the twist product P∞Q is depicted.
The order of the multiplication is reversed for operator components in the bottom region. See Eq. (4). S̃ab is
defined by 〈ψ | πa∞πb |ψ〉 where πa and πb are fundamental projectors of the logical algebra on the left and
right annulus, respectively

invisible operators. They are invisible since there is no way to tell, by looking at a small
region, whether the operator is applied. This is an abstraction of the string operators that
transport anyons. It is important that the locally invisible operators are defined without
any reference to a Hamiltonian.

It turns out that the existence of the locally invisible operators is a signature of
topological order or “long-range” entanglement. That is, the locally invisible operators
are many-body entanglement witnesses. The locally invisible operators need not wrap
around a topologically nontrivial loop; they can distinguish a topologically ordered state
from a product state even though they are supported on a large but finite disk. Section 3,
where we study locally invisible operators, can be read independent of the rest of this
paper.

The main text is organized as follows. In Sect. 2 we define the particle type projector
operators πa and the matrix S̃ for a Hamiltonian H , and argue that having S̃ is equivalent
to having the topological S-matrix. We will compute S̃ for the simplest model, the
toric code [17]. Section 3 is devoted to the definition and properties of locally invisible
operators.Anunanswered question ofRef. [15]will be answered, on howdeep a quantum
circuitmust be in order to create a toric code state on a sphere. Section 4 contains ourmain
theorem.We remark that for abelian discrete gauge theories S̃ is a complete invariant. The
section is divided into several subsections to clarify and explain our technical conditions.

Convention and terminology. We consider lattices where finite dimensional degrees of
freedom (qudits) are placed at each site. We say an operator O is supported on a region
D if O acts by identity on the complement of D. The support of O is the minimal region
D onwhich O is supported. The subspace support of a hermitian operator ρ is the linear
space spanned by the eigenvectors of ρ with nonzero eigenvalues. (The projection onto
the subspace support of the density operator ρ is also known as support projection in
operator algebra.) An annulus is the bounded region between two concentric circles on
a plane. We say the annulus is of radius rann and thickness t > 0 if the radius of the
inner circle is rann − t , and the outer rann + t . A (local) quantum circuit is an ordered
product of layers of local unitary operators of non-overlapping support. Every local
unitary operator in a layer acts on at most two qudits that are nearest neighbors of each
other. The depth of a quantum circuit is the number of layers in it. The range of the
quantum circuitW is the minimum distance R such that for every operator O supported
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on a disk of radius r the conjugated operator WOW † is supported on a disk of radius
r + R for any r . Since a local unitary operator in a quantum circuit acts on a pair of qudits
separated by distance 1, the range of the quantum circuit is always less than or equal to
its depth. The interaction range of a local Hamiltonian is the distance w such that any
term in the Hamiltonian is supported on a disk of diameter w.

2. Topological S-matrix

The topological S-matrix S contains information on the mutual braiding interaction
between far separated excitations. The rows and columns of S are indexed by types
of excitations and (a, b) entry is the quantum mechanical amplitude of the process,
where a particle-anti-particle pair of type a and another pair of type b are created and
separated, the particle a is moved around the particle b (braiding), and then the particle-
anti-particle pairs are annihilated. If the braiding is sufficiently nontrivial, then S with a
proper normalization is a unitary matrix [18].

This explanation contains essential physical intuition of the S-matrix, but this, as it is
stated, cannot be a definition since we do not specify how particle types are defined. The
particle types must be a quantum number (conserved quantity) that is invariant under
certain local operators. The class of allowed local operators that preserve the quantum
number is usually determined by the symmetry of the system. For example, the total
angular momentum is invariant under the action of rotation symmetry on the physical
state of a particle, and hence is one of defining quantum numbers of the particle type,
the spin. However, in topological systems, which is of interest in our discussion, there
is no symmetry restriction. A conservation law in this unrestricted situation is termed as
a superselection rule [19], and the particle types are identified with the superselection
sector that the particle represents [20].

2.1. Particle types. To be concrete, let us restrict our discussion to two-dimensional
lattices with finite dimensional degrees of freedom placed at each site, and Hilbert
space is given by the tensor product of the local degrees of freedom. Consider a local
Hamiltonian

H = −
∑

j

h j

and localized excitation e that is separated from the rest excitations by a large distance.We
assume that every term of H is a projector commuting with any other term [h j , h j ′ ] = 0,
and on the ground state |ψ〉 every term of H is minimized h j |ψ〉 = |ψ〉, i.e., H is not
frustrated. The state

∣∣ψ ′〉 in which the excitation e is separated from the rest can be
described by the condition

ha
∣∣ψ ′〉 = ∣∣ψ ′〉 (1)

whenever ha is supported on an annulus A circling around e.
What operators should we consider in order to learn about the superselection sector

that e represents? Certainly, we should consider any operators acting on the inner disk
D of the annulus. They form a matrix algebra

Mat(D).
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These operators will create and annihilate excitations on the inner disk, but will not
change the fact that excitations outside the annulus are far separated from those on the
inner disk. In addition, we should consider Aharanov–Bohm interference measurements
about e, by letting various particles encircle e along the annulus. The operators of this
class are supported on the annulus and commute with terms of the Hamiltonian since
the overall effect of the measurement should not introduce any new excitation. So they
belong to an algebra

A = {O on A|[O, h j ] = 0 for all h j }.
Since h j are hermitian, A is in fact a C∗-algebra.

The elements ofA do not act faithfully on the state
∣∣ψ ′〉, because it is defined regard-

lessly of Eq. (1). For instance, N = (1 − ha) with ha supported on the annulus is an
element ofA, but acts on

∣∣ψ ′〉 as zero; any two operators ofA that differ by a null operator
N should have the same result on

∣∣ψ ′〉. In view of the interference thought-experiment,
the null operator corresponds to flux measurement along a small loop that is entirely
contained in the annulus, followed by the postselection onto a nonzero flux value. Since
the vacuum condition Eq. (1) ensures that the flux is zero along such small loops, this
outcome has necessarily zero probability. Thus, it is appropriate to factor out A by

N =
⎧
⎨

⎩O ∈ A
∣∣∣∣∣∣
O

⎛

⎝
∏

supp(ha)⊆A+w

ha

⎞

⎠ = 0

⎫
⎬

⎭ , (2)

the set of all null operators on
∣∣ψ ′〉, where suppmeans the support and A+w is the annulus

enlarged from A by the interaction range w.
Now, the particle types are conserved quantities under the operations of

C = A/N ⊗ Mat(D).

This set of operators forms a C∗-algebra, and for a thick but finite annulus, it is finite
dimensional over complex numbers. Recall that any finite dimensional C∗-algebra C
is isomorphic to a direct sum of full matrix algebras (simple algebras), and there exist
projectors πa in the center of C onto the simple algebra components. The projectors,
which we call fundamental projectors, are uniquely determined by the algebra C from
the conditions

C =
⊕

a

πaC where πaC is simple,

πa = (πa)
† = (πa)

2 is in the center of C. (3)

We conclude that the fundamental projectors in the center of C are precisely the
conserved operators. Therefore, we identify the particle types of excitations, or anyon
labels, that can be supported in the disk D with the fundamental projectors of C. An
immediate observation is that any central element of C should have the identity compo-
nent on Mat(D), since any full matrix algebra has trivial center consisting of scalars.
This means that the fundamental projectors of C is actually the fundamental projectors
of the smaller algebra A/N , which we call the logical algebra, on the annulus.

We do not claim that we have derived the correspondence rigorously between the
particle types and the fundamental projectors of the algebra C. Rather, mathematically,
our argument should be regarded as a motivation to define particle types.
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Remark that if there are completely disentangled qudits in the ground state, the logical
algebra is invariant upon the removal of those qudits. Specifically, suppose ha0 = |0〉 〈0|
was a single-qudit operator of rank 1 acting on the qudit a0. Any operator O ∈ A must
have a form O = ha0 ⊗ Pac0 + (I − ha0) ⊗ P ′

ac0
for some c, c′ ∈ C. But, the second term

is annihilated by ha0 . If follows that O ≡ Ia0 ⊗ Pac0 ∈ A/N . Hence, the logical algebra
is invariant for adding or removing disentangled degrees of freedom |0〉 together with
Hamiltonian terms |0〉 〈0|.

2.2. Example. Let us apply our general definition of the particle types to a simplemodel,
theZ2 gauge theory or the toric codemodel [17]. Thiswill help developing some intuition
about A/N . Our definition will reproduce what is known. The model is defined on a
two-dimensional square lattice with two-dimensional degrees of freedom at each edge.
The Hamiltonian is

H = −
∑

�

1

2

⎛

⎝I +
∏

i∈�
σ z
i

⎞

⎠ −
∑

+

1

2

(
I +

∏

i∈+
σ x
i

)
,

where� denotes four edges associated to a plaquette and+ denotes four edges associated
to a vertex. The identity operators are inserted to make H conform with our assumption
that the Hamiltonian is a sum of projectors. It is simple to verify that the product of σ z

along any closed loop of edges on the real lattice commutes with every vertex terms,
and the product of σ x along any closed loop of dual edges on the dual lattice commutes
with every plaquette terms. Here, the closed loop does not have to consist of a single
loop; any product of the loop operators commute with every term of H . Furthermore,
any operator that commutes with every plaquette and vertex term is a linear combination
of the loop and dual loop operators. Therefore, our algebra A is precisely generated by
the loop and dual loop operators supported on a given annulus.

The setN of all null operators on the annulus has to be examined carefully. Let O be
any null operator. By definition, PO = 0 where P is the product of all ha whose support
overlaps with the annulus. Assume without loss of generality that ha1 · · · ham O = 0
where m is minimum possible. We claim that each hak not only acts nontrivially on the
annulus, but is in fact supported on the annulus. To see this, suppose this is not the case.
Then, one can choose a qubit a outside the annulus such that it is acted on by ha j but
not by hak for k �= j . Since s j = 2ha j − I is a tensor product of Pauli matrices, there is
a Pauli matrix σ acting on a such that σ s j = −s jσ . Using σha j σ + ha j = I , we have

0 =
1∑

n=0

σ n

(
O

m∏

k=1

hak

)
(σ †)n = O

∏

k �= j

hak ,

which is a contradiction to the minimality of m. We conclude that

N =
{

∑

k

Ok(1 − hk)

∣∣∣∣∣ Ok, hk ∈ A
}

is a two-sided ideal of A generated by (1 − hk) = (1 − sk)/2 where the terms hk are
supported on the annulus.
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Next, we explain that, by factoring out byN , the operators of A can be “deformed”
within the annulus. If O ∈ A is a loop operator consisting of σ z , then Osa for some
σ z-type sa on the annulus that overlaps with O , is another loop which is deformed from
O . In the quotient algebra, the two operators are the same

Osa ≡ O ∈ A/N
because Osa − O = O(sa − 1) ∈ N . Generalizing to multiple multiplications of
elementary loops sa , we see that any two real or dual loop operators with the same
winding number modulo 2 around the annulus are the same members of the quotient
algebra. Therefore, we have computed the logical algebra completely,

A/N = {
c0 + c1 X̄ + c2 Z̄ + c3 X̄ Z̄ | ci ∈ C

}
,

where X̄ and Z̄ are dual and real loop operators, respectively, that wrap around the
annulus once. The fundamental projectors of A/N are

π1 = 1

4
(1 + X̄)(1 + Z̄)

πe = 1

4
(1 − X̄)(1 + Z̄)

πm = 1

4
(1 + X̄)(1 − Z̄)

πε = 1

4
(1 − X̄)(1 − Z̄)

We have named the projectors according to the conventional symbols for anyons of the
model. This verifies our identification of particle typeswith the fundamental projectors of
A/N . A similar calculation proves the same conclusion for ZN toric code, the quantum
double model with the (gauge) group ZN . The fundamental projectors are labeled by
tuples (a, b) ∈ ZN × ZN .

For general quantum double models, a similar calculation has been done by Bombin
and Martin-Delgado [21, App. B], who show that the algebra A on the thinnest pos-
sible annulus, known as a ribbon, is spanned by projectors onto definite particle type
states. This is consistent with our identification because N for the ribbon has to be
zero according to their calculation. However, the calculation is insufficient to verify our
identification since it does not show the structure of the operator algebra A orN for an
annulus of non-minimal thickness. Levin and Wen [6] have computed (string) operators
that commute with every term of Hamiltonians possibly except at the ends for the string-
net models. They have noted that particle types are identified with certain “irreducible”
solutions of commutativity equations. This irreducibility depends on the structure of
their particular equations. It would be a nontrivial task to adapt this irreducibility to our
more general setting.

2.3. Twist product and topological S-matrix. Consider a pair of large circular annuli
AL and AR as shown in Fig. 1. We require that the annuli are of comparable size with
each other and their center is separated by a distance comparable to the radius. The
intersection of the annuli then consists of two diamond-like regions Cu and Cd that are
separated by a distance comparable to the radius. The configuration is to ensure that any
local operator can only intersect at most one of Cu or Cd . For each of the annuli, there
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is an algebra C(i) = A(i)/N (i), where i = L , R. We will see how to extract entries of
topological S-matrix from C(L), C(R) by taking a special product.

Definition 2.1. For a pair of bipartite operators

PMM ′ =
∑

j

P j
M ⊗ P j

M ′ , QMM ′ =
∑

k

Qk
M ⊗ Qk

M ′ ,

the twist product is defined by

PMM ′∞QMM ′ :=
∑

jk

P j
M Qk

M ⊗ Qk
M ′ P

j
M ′ . (4)

That is, we reverse the order of the product in the subsystem M ′. Note that the twist
product is independent of any linear decomposition of the operators into tensor product
operators. This is because Eq. (4) is bilinear in its arguments:

(aP1 + bP2)∞Q = a(P1∞Q) + b(P2∞Q),

P∞(aQ1 + bQ2) = a(P∞Q1) + b(P∞Q2)

for any a, b ∈ C. Unless specified otherwise, the operator P that appears on the left of
the symbol ∞ will always be supported on the left annulus, and Q on the right of ∞
will always be on the right annulus.

Let M be a region that includes Cu but not Cd , and let M ′ be the complement of M .
If we take, with respect to this bipartition of the plane, the twist product of P on the left
annulus and Q on the right annulus, the resulting operator P∞Q have indeed a twisted
configuration compared to the usual product PQ. See Fig. 1. Observe that the precise
choice of M is immaterial to P∞Q. M can be the region above an arbitrary horizontal
line placed between Cu and Cd .

Definition 2.2. Given a state |ψ〉 and the pair of annuli,

(P, Q) �→ 〈ψ | P∞Q |ψ〉
is a bilinear map from operators to complex numbers. We will call it the twist pairing
of P and Q.

We particularly consider a matrix formed by the twist pairings of particle type pro-
jectors πa defined previously in Sect. 2.1.

S̃ab := 〈ψ | π(L)
a ∞π

(R)
b |ψ〉 . (5)

Here, we have abused notation. πa ∈ A/N is an equivalence class of operators, and,
strictly speaking, is not an operator. The pairing should be read as the twist pairing
of any representatives of the classes πa and πb. Although S̃ is defined by arbitrary
representatives, the resulting value is well-defined. To see this, it is enough to show that

〈ψ | N∞O |ψ〉 = 0 (6)

for any operator N ∈ NL on the left annulus, and O ∈ AR on the right annulus. Since
both N and O are commuting with any term h j of the Hamiltonian, we have

〈ψ | N∞O |ψ〉 = 〈ψ | (N∞O)h j |ψ〉 = 〈ψ | (Nh j )∞O |ψ〉.
Applying this repeatedly, we can bring any number of h j ’s to N . By definition, N is an
operator that is annihilated by some product of h j ’s. Therefore, Eq. (6) holds.
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2.4. Connection to modular tensor category. Let us illustrate how S̃ is related to the
topological S-matrix. Our discussion will be heuristic and rather brief, and we will
not attempt to establish the relation from first principles, as we do not claim that we
have proved the correspondence of the particle types with the fundamental projectors.
Suppose that our system has excitations that are described by a modular tensor category,
and that the operators on the annulus can be unambiguously decomposed as a linear
combination of closed string operators carrying particles of definite type. In the modular
tensor category, a linking diagram represents morphisms where vertical segments are
labeled by objects. We identify the lines of a linking diagram as worldlines of physical
anyons. For any particle type a, the closed string operator for the particle type a is
normalized as

〈ψ | ©a |ψ〉 = da ≥ 1,

where da , the quantum dimension of a, is determined by the fusion rules of the modular
tensor category. Then, the topological S-matrix is given by

Sab = 1

D 〈ψ | ©a ∞ ©b |ψ〉∗ , (7)

where the complex conjugation is to follow the traditional convention; see [18, Chap. 3],

[12, App. E], and Fig. 1. The numberD =
√∑

a d
2
a is the total quantum dimension. For

the distinguished label a =“1”, the vacuum, we have ©1 = I . It follows that

S1a = da/D
by the normalization.

In writing Eq. (7), we have exploited an expected property of any topological theory
that the expectation value of any linked operators depends only on the topology of
their configuration in spacetime. As noted in the beginning of this section, an entry of
the topological S-matrix is an amplitude of a braiding process. Hence, the operators
inserted between 〈ψ | and |ψ〉 should have been a linking diagram that is extended in the
time direction; taking the vertical direction of this piece of paper as the time t and the
horizontal direction as one of the space directions, say x , the diagram should look like
Fig. 1c. Relying on the expected property of topological theory, we rotate the operators
in spacetime so that the vertical direction of this piece of paper is now y direction of the
space. For these rotated operators our twisted product is well-suited.

The particle type projection operators πa as a linear combination of the string oper-
ators ©a can be obtained using Lemma 3.1.4 of Ref. [18] or Eq. (225) of Ref. [12]

b

c

=
S∗
bc

S1c
c

(8)

and the unitarity of the topological S-matrix. If πa = ∑
b ξab©b, then

δac

c

= πa

c

=
∑

b

ξab b

c

=
∑

b

ξab
S∗
bc

S1c
c
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Hence,

πa = da
D

∑

b

Sab ©b . (9)

Therefore, using the linearity of twist pairing, we have

S̃ab = dadb
D Sab. (10)

We can recover S from S̃ since the trivial particle or vacuum is distinguished. There
exists a unique label a = “1” such that π1 |ψ〉 = |ψ〉, and all other πa with a �= 1
annihilates |ψ〉. The uniqueness of “1” is not immediate from what we have assumed
for constructing πa , but will follow from the local topological order condition that we
will explain in Remark 4.3 in Sect. 4.2. On the other hand, the uniqueness is a part of
assumptions of the modular tensor category.

The quantum dimensions of each particle type can be read as

S̃1a = d2a
D2 = S̃a1.

The total quantum dimension can be read off from S̃11 = 1/D2. Therefore, D and da
are determined, and S is reconstructed from S̃.

Remark that except for the unique label “1” the rows and columns of the matrix S̃
have no preferred ordering. In addition, without appealing to some homogeneity of the
state, there is no guarantee that the number of rows and that of columns are the same.
Indeed, if an annulus straddles two regions, one of a topological state and the other of
a trivial state, separated by a gapped boundary, into which some of the particles can be
absorbed [22,23], the logical algebra can have smaller dimension as a vector space than
it did when there was no boundary.

We conclude this section by proving that the value of the twist pairing is invariant
under small-depth quantum circuit in the following sense.

Lemma 2.3. For any pair of operators P on the left annulus and Q on the right, and
for any local quantum circuit W of range R where

R < dist(Cu,Cd)/10 (11)

it holds that

W (P∞Q)W † = (WPW †)∞(WQW †). (12)

Proof. The range of the circuit is conditioned (Eq. (11)) such that even if one fattens
the annuli by distance R, the intersection of the fattened annuli will still consist of two
separated regions.

Since the local quantum circuit is a product of local unitaries, it suffices to show
Eq. (12) for a local unitary U acting on at most, say, 2 nearby qubits. From the defining
formula Eq. (4) our claim is clear if U is acting on either M or M ′ but not on both. If U
is acting across M and M ′, we can always choose a different M such that M includes
or excludes the support of U . The choice is possible because the intersection of the two
operators P, Q is well-separated. ��
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This lemma roughly suggests that the topological S-matrix is invariant under any
quantum circuit if the circuit is not too deep. This is because the algebra on the annulus is
defined in terms of the commutativitywith terms of theHamiltonian, and the deformation
of the state and the Hamiltonian by a quantum circuit leaves all commutation relations
untouched. Hence, the quotient algebra A/N is anticipated to be isomorphic by a map
induced by the quantum circuit conjugation. Then, the fundamental projectors before and
after the transformation will be corresponded unambiguously, and their twist products,
and hence the matrix S̃, are the same by the lemma.

This sounds reasonable, but we find it difficult to prove it rigorously along the line
we just described. The first problem is that the anticipation that the quotient algebra
A/N would be invariant may not be true in general. In order to deal with quantum
circuits, it appears that we have to consider situations where the support of the logical
algebra is enlarged. In Remark 4.7 below, we discuss a stack of two-dimensional toric
code layers in three dimensions and consider its logical algebra supported on the (thick)
wall of a sphere. The logical algebra changes as its support is enlarged. This happens
essentially because there are formally infinitely many particle types, which might be the
only reason. The second problem is in our explicit use of the Hamiltonian to construct
the algebraA/N . We wish to find an invariant of the state, and this approach alone does
not give any Hamiltonian-independent quantity.

Note that our objects and statements can be tested without invoking concepts of
anyons or framework of modular tensor categories, though the former are certainly
motivated by the latter. In the next sections, we will assume an extra condition on the
quotient algebraA/N , and prove that indeed the S̃ is invariant under small-depth quan-
tum circuits. Furthermore, we will prove that there exists a certain class of Hamiltonians
such that whenever they share a ground state the corresponding S̃ matrices are the same.
This supports a belief that a ground state wave function contains all information about
the phase of matter it represents. The independence of the S̃ on the Hamiltonian leads
us to a lower bound on the depth of any transformation quantum circuits between states
with distinct S̃ matrices.

3. Locally Invisible Operators: Many-Body Entanglement Witness

In this section, we define a class of operators, which we call locally invisible operators,
that manifestly depends only on a given state, and study their properties. We will show
that the existence of a nontrivial pair of locally invisible operators is a sufficient condition
that the state requires a deep local quantum circuit to be generated. In general, it is a
very hard problem to give a lower bound on the complexity of the quantum circuit. In
some physically important cases, it is sufficient to examine space-correlation functions
to give such a lower bound, since quantum circuits of small depth can only generate
short-ranged correlations. The problem is to determine what correlation functions to
examine. Our approach may be considered as a way to find those correlation functions.

The sufficient condition given by the locally invisible operators defines a “many-body
entanglement witness.” To the best of the author’s knowledge, this is the first rigorous
witness that only depends on the bulk of the wave-function and that is applicable to
topologically ordered states.

To motivate the notion, let us recall what was physically important for elements of
our algebra. The string operators are responsible for transporting anyons through the
system, and their algebraic relations determine all topological data of the state. The
precise location of the string is never important, but what matters is the topology of
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the strings whether the string encircles a particular region or whether the string has end
points. This demands that the strings be locally invisible; any local observable on the
support of the string away from the end points should not reveal whether the string
operator has acted on the ground state. In exactly solved examples, this invisibility
follows from the fact that there are many equivalent string operators.

We characterize the invisibility without resorting to the Hamiltonian as follows. Let
|ψ〉 be an arbitrary quantum state on some lattice, and A ⊆ B be two regions.

Definition 3.1. An operator O is said to be locally invisible at (A, B) with respect to
|ψ〉 if for any |φ〉 such that

trBc [|φ〉 〈φ|] = trBc [|ψ〉 〈ψ |] ,
one has

trAc

[
O |φ〉 〈φ| O†

]
∝ trAc [|ψ〉 〈ψ |] .

If O is locally invisible on |ψ〉 at every pair (A, B) where A is any disk of radius r , and
B is t-ball of A, then we simply say that O is (r, t)-locally invisible with respect to
|ψ〉.

A locally invisible operator determines the local reduced density matrix on A based
on the local reduced density matrix on B as if it were the identity operator. In particular,
it does not change the local reduced density matrix when acted on |ψ〉. A direct conse-
quence is that any locally invisible operator on a product (trivial) state actually acts like
a scalar multiplication on the state. We will provide examples shortly.

Lemma 3.2. Suppose O is (r, t)-locally invisible on |ψ〉 = |00 · · · 0〉 for some r ≥ 1.
Then, O |ψ〉 = |ψ〉 〈ψ | O |ψ〉.
Proof. The product state is defined by local projectors 
i = |0〉 〈0|i acting on site i by
the equations 
i |ψ〉 = |ψ〉. The local invisibility implies 
i (O |ψ〉) = (O |ψ〉). This
equation actually determines the state O |ψ〉 up to scalars. ��

On a general state |ψ〉, however, the locally invisible operator need not be a stabilizer
for |ψ〉. As we will see later, it might map |ψ〉 to an orthogonal state or some other state.
By the lemma, this happens only if |ψ〉 is not a product state. In fact, the existence of
any locally invisible operator with nontrivial action indicates that |ψ〉 is not even close
to the product state. To see this, let us first show that the local invisibility is invariant
under local unitary transformations.

Lemma 3.3. Let W be a local quantum circuit of range R. If O is (r, t)-locally invisible
with respect to |ψ〉, where r > R, then WOW † is (r − R, t + R)-locally invisible with
respect to W |ψ〉.

This easily follows from the general observation that for any state ρ (mixed or pure)
the reduced density matrix of WρW † on a ball of radius r is determined by the reduced
density matrix of ρ on the concentric ball of radius r + R whenever the range of the
quantum circuit W is R.

Proof. Let A′, A, B, B ′ be concentric disks of radius r−R, r , r+t , r+t+R, respectively.
Let |φ〉 be a state with the same reduced density matrix on B ′ as W |ψ〉. We have to
show that WOW † |φ〉 has the same reduced density matrix on A′ as W |ψ〉.
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The state W † |φ〉 has the reduced density matrix on B that is the same as that of |ψ〉.
By the local invisibility, the state OW † |φ〉 has the same reduced density matrix on A as
|ψ〉. This implies that WOW † |φ〉 has the reduced density matrix on A′ that is the same
as that of W |ψ〉. ��
Thus, given a locally invisible operator on a state |ψ〉, one knows at least one locally
invisible operator on a “perturbed” state W |ψ〉.

3.1. Trivial states. Here, we compute all possible values of twist pairing of locally
invisible operators with respect to a product state.

Theorem 3.4. Let P and Q be (r, t)-locally invisible operators on two annuli with
respect to a product state |ψ〉, where r ≥ 1 and t ≥ 0 such that the two regions of
intersection of the annuli are separated by a distance > 2(r + t). Then,

〈ψ | P∞Q |ψ〉 = 〈ψ | P |ψ〉 〈ψ | Q |ψ〉 .

Proof. By Lemma 2.3, we can assume |ψ〉 = |00 · · · 0〉. The reduced density operator of
|ψ〉 is a rank1projector
M = |0 · · · 0〉 〈0 · · · 0| for any regionM . Let A, B be concentric
disks of radius r and r + t , respectively. Let |φ〉 be a state such that the reduced density
matrix on B is the same as that of |ψ〉. This is equivalent to the condition |φ〉 = 
B

∣∣φ′〉

for some unnormalized
∣∣φ′〉. The local invisibility of Q says 
AQ |φ〉 = Q |φ〉. Thus,

we have 
AQ
B
∣∣φ′〉 = Q
B

∣∣φ′〉, which holds for any
∣∣φ′〉. Therefore,


AQ
B = Q
B . (13)

Note that the support of 
B overlaps with at most one region of intersection of the
annuli.

Place A and B around the upper intersection region Cu ; see Fig. 1. By Eq. (13),

(P∞Q) |ψ〉 = (P∞Q)
B |ψ〉 = ((P
A)∞Q)
B |ψ〉

For other locations of A and B, it obviously holds that (P∞Q) |ψ〉 = ((P
A)∞Q) |ψ〉.
We conclude that

(P∞Q) |ψ〉 = ((P
∏

A


A)∞Q) |ψ〉

where the product over A covers the whole system. But,
∏

A 
A = |ψ〉 〈ψ | since |ψ〉 is
a product state. By Lemma 3.2, P |ψ〉 = (〈ψ | P |ψ〉) |ψ〉. Our theorem is thus proved.

��
Note that Lemma 3.2 is essentially used. Eq. (13) may be true even if |ψ〉 is not a product
state.
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3.2. Generating a state that admits nontrivial twist pairing. As a trivial consequence
of Theorem 3.4, we obtain a many-body entanglement witness.

Corollary 3.5. For a pair of annuli of which two regions of the intersection are separated
by a distance > 2(r + t), suppose there are operators P and Q that are (r, t)-locally
invisible with respect to |ψ〉, where r ≥ 2 and t ≥ 0. If

〈ψ | P∞Q |ψ〉 �= 〈ψ | P |ψ〉 〈ψ | Q |ψ〉 ,

then the range of any local quantum circuit W generating |ψ〉 = W |00 · · · 0〉 from a
product state |00 · · · 0〉 must be at least r/10.
Proof. Let R be the range of W . Suppose R < r/10. W †PW and W †QW are (r −
R, t + R)-locally invisible with respect toW † |ψ〉 by Lemma 3.3, and their twist pairing
is still the same by Lemma 2.3. This contradicts to Theorem 3.4. ��

As a simple example, consider a trivial product state on a sphere. Remove a qubit at
the North pole and another at the South pole, and bring a Bell pair (|00〉 + |11〉)/√2 to
place a half at the North pole and the other half at the South pole. Now, let overall state
be |ψ〉. The state is stabilized by two-qubit non-local operators

X̄ = σ x
South pole ⊗ σ x

North pole,

Z̄ = σ z
South pole ⊗ σ z

North pole.

We regard one great circle through the poles as the left annulus, and another great
circle through the poles that is perpendicular to the first one as the right annulus. The
expectation values of the two non-local operators are 1, but their twist pairing is −1.
The reduced density matrix at a pole consists of product state part and I/2 (completely
mixed) for the pole. Both X̄ and Z̄ are easily seen to be locally invisible. In fact, any
small-depth quantum circuit that stabilizes the state is locally invisible. (See the proof
of Lemma 3.3.) Corollary 3.5 implies that any quantum circuit that generates |ψ〉 from a
product state must have depth that is at least linear in the system’s diameter. This linear
bound is tight up to constants; create a Bell pair locally, and transport a half of the Bell
pair by swap operators. This generating circuit for |ψ〉 has depth approximately equal
to the circumference of the great circle.

A similar conclusion can be drawn for a topologically ordered state. Consider a toric
code state on the sphere. We know that there are loop operators X̄ and Z̄ consisting of
σ x and σ z , respectively, going around the great circles. They both stabilizes the state
X̄ |ψ〉 = |ψ〉 = Z̄ |ψ〉, but their twist pairing is

〈ψ | X̄∞Z̄ |ψ〉 = −1.

They are depth-1 quantum circuits that stabilize the state, so they are locally invisible.
Therefore, a linear-depth circuit is needed to generate the toric code state from a product
state. Note that since there is a unique state the arguments of Refs. [13,15] that utilize
the local indistinguishability between two orthogonal states cannot be applied.

Before we end this section, we mention a marginal generalization of Theorem 3.4.
Though we have exclusively stated the theorem using the annuli, the geometry of the
annuli is not too important. The key property of the two annuli is that the intersection con-
sists of far separated two regions, where two locally invisible operators are respectively
supported. The theorem remains true in a situation where P acts on the whole system
and Q acts on a far separated two disks. The proof for this situation requires hardly any
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modification. This generalization can be applied to the Greenberger–Horne–Zeilinger
state

|GHZ〉 = 1√
2

|00 · · · 0〉 + 1√
2

|11 · · · 1〉

on a line or on a plane. The GHZ state is stabilized by X̄ = (σ x )⊗n and Z̄ = σ z
i ⊗ σ z

j ,
where n is the total number of qubits, and i, j are distinct qubits. Taking the qubits i and
j that are far apart, we see that the twist pairing of X̄ and Z̄ is −1. Therefore, the GHZ
state requires a linear depth quantum circuit to generate.

4. An Invariant of States Under Shallow Quantum Circuits

The locally invisible operators discussed in the previous section is defined in terms of a
given state. However, they do not in general form an algebra; if P and Q are (r, t)-locally
invisible operators, neither P + Q nor PQ has to be (r, t)-locally invisible. In order to
choose useful and canonical elements from the set of all locally invisible operators with
respect to a ground state, we resort to Hamiltonians, and effectively give an algebra
structure to the set of all locally invisible operators.

To this end, we assume technical conditions on the Hamiltonian. The first one is the
so-called local topological order condition, which, roughly speaking, asserts that local
reduced density matrix of a ground state is determined locally. This condition is used in
a gap stability proof of topological order [24,25]. The second one is an independence of
the logical algebra A/N on the size of its support. Recall that the logical algebra is the
algebra A of all (string) operators on an annulus that commute with every term of the
Hamiltonian, modulo null operators N that annihilate any state without excitations on
the annulus. (See Sect. 2.3 or Definition 4.5 in Sect. 4.3 below.) The algebra A and its
ideal N generally depends on the radius of the annulus and the thickness of the radius.
The second condition, which we call the stable logical algebra condition, asserts that
the logical algebra is independent of the thickness for a given radius. We will rigorously
state the conditions in the following subsections.

Theorem 4.1. Suppose a state |ψ〉 on a plane of radius > L admits an unfrustrated
local commuting projector Hamiltonian H of interaction range w satisfying the local
topological order condition and the stable logical algebra condition such that |ψ〉 is a
ground state of H. Then, whenever 1200w < 60t < rann < L the following is true.

For any such Hamiltonians H1, H2, the logical algebras

Ci = AHi
t /N Hi

t i = 1, 2

on an annulus of radius rann and thickness t are isomorphic by a map that preserves
twist pairing. Thus, C(|ψ〉) = Ci is well-defined in terms of |ψ〉. Moreover, for any
quantumcircuitW of range< t , the logical algebraC(W |ψ〉) is isomorphic toC(|ψ〉). In
particular, the S̃-matrix for |ψ〉 defined inEq. (5) is invariant underW up to permutations
of rows and columns.

Sketch of the proof. We will establish the following statements in Sect. 4.4.

(i) The local topological order condition implies that any operator ofAt is locally invis-
ible. Conversely, any locally invisible operator can be “symmetrized” to become a
member of At ′ , where t ′ is slightly larger than t .
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(ii) The stable logical algebra condition implies that the logical algebra At/Nt is in
bijection with the set of all locally invisible operators modulo “locally null” oper-
ators.

(iii) Since the locally invisible and null operators are defined in terms of the state, the
logical algebra is the same regardless of the Hamiltonian whenever (i) and (ii) are
valid. This proves the first part.

(iv) The evolved Hamiltonian WHW † satisfies the local topological order and stable
logical algebra conditions. Therefore, the logical algebra for W |ψ〉 can be calcu-
lated from WHW †, and is thus isomorphic to the logical algebra for |ψ〉 by the
conjugation W · W †.

(v) The set of fundamental projectors is uniquely determined by the algebra. We know
it for CWHW †

from that of CH . The twist product is not affected by small depth
quantum circuits. This proves the second part. ��

4.1. Transformations between ground states of quantum double models with finite
abelian groups. From the calculations of Sect. 2.2, we know that the ZN -toric code
Hamiltonian is unfrustrated and commuting, and satisfies the stable logical algebra con-
dition. By a criterion in Ref. [16] we know that it also satisfies the local topological order
condition. Juxtaposing a layer of ZN -toric code with another layer of ZN ′ -toric code,
we have a ground state of a quantum double model with the group ZN × ZN ′ [17]. This
is because, firstly, a gauge transformation under a product group is a product of gauge
transformations of the component groups, and, secondly, a vanishing flux condition for
a product group is equivalent to vanishing flux conditions for each component group.
Since any finite abelian group is a direct product of finitely many cyclic groups, we see
that the ground state of a quantum double model with a finite abelian group satisfies
the conditions of Theorem 4.1. Inserting any ancillary qudits in the trivial product state
does not change the logical algebra at all. Therefore, we have a separation of phases of
matter by quantum circuits of at least linear depth:

Theorem 4.2. Let |ψ(G)〉 denote a ground state of quantum double model with any
finite abelian group G with possible ancillary qudits in the trivial product state. Let L
be the radius of a disk contained in the system. If there is a local quantum circuit W
such that

∣∣ψ(G ′)
〉 = W |ψ(G)〉, then either G ∼= G ′ or the depth of W must be at least

cL for some constant c > 0.

In view of a modular tensor category description of anyons, the theorem is a simple
corollary of the Verlinde formula since Theorem 4.1 guarantees that the S-matrices of∣∣ψ(G ′)

〉
andW |ψ(G)〉 are the same. For an abelian group G, the anyons of the quantum

double model are all abelian, and the fusion rules are the same as the group operation
of D(G) ∼= G × G. The Verlinde formula [26]

Nc
ab =

∑

x

Sax Sbx S∗
cx

S1x

tells us how to extract the fusion rules out of the S-matrix. Therefore, the group G × G
and hence G is reconstructed. The proof below is a direct translation of this argument
into what we have rigorously.

Proof. Without loss of generality, we can assume that the whole system is on a
sphere of radius L . Theorem 4.1 says that if W had small depth, then S̃(|ψ(G)〉) =
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S̃(W |ψ(G)〉) = S̃(
∣∣ψ(G ′)

〉
). (The independence of S̃ on Hamiltonians is essentially

used.) We will reconstruct the group G from S̃(|ψ(G)〉).
As we have just noted above, if G = H × K is a product group, then |ψ(G)〉 =

|ψ(H)〉 ⊗ |ψ(K )〉. Thus, the logical algebra C(G) on a (left) annulus of |ψ(G)〉 is a
tensor product of those of |ψ(H)〉 and |ψ(K )〉:

C(G) = C(H) ⊗ C(K ).

Then, the fundamental projectors of the logical algebra that give the decomposition into
simple subalgebras are the tensor products of those of C(H) and C(K ):

πG
(ab) = πH

a ⊗ πK
b .

where (ab) is a double index. It follows that

S̃(ab)(a′b′)(G) = 〈ψ(G)| πG
(ab)∞πG

(a′b′) |ψ(G)〉
= 〈ψ(H)|πH

a ∞πH
a′ |ψ(H)〉 · 〈ψ(K )|πK

b ∞πK
b′ |ψ(K )〉

= S̃aa′(H)S̃bb′(K ). (14)

The matrix S̃(d)(|ψ(G)〉) for a cyclic group G = Zd is simple to compute. The funda-
mental projectors are

πaxaz = 1

d2

(
d−1∑

k=0

ω
kax
d X̄ k

) (
d−1∑

k=0

ω
kaz
d Z̄ k

)

where ωd = exp(2π i/d) is the d-th root of unity, ax , az = 0, 1, . . . , d − 1 label the d2

fundamental projectors, and X̄ , Z̄ are loop operators consisting respectively of unitary
operators

X =
∑

k∈ZN

|k + 1 mod N 〉 〈k| , Z =
∑

k∈ZN

ωk
d |k〉 〈k| , (15)

and their inverses. The loop operators satisfy

X̄n Z̄m∞X̄n′
Z̄m′ = ω−nm′−n′m

d X̄n+n′
Z̄m+m′

,

We have used our convention that an operator on the left (right) of the symbol ∞ is on
the left (right) annulus. (The phase factor ω−nm′−n′m

d could be inversed, depending on
the orientation convention of the lattice.) A direct computation yields

S̃(d)

(axaz),(a′
x a

′
z)

= 1

d2
ω
aza′

x+axa
′
z

d .

(This is consistent with Eq. (10).) Consider

Nc
ab := d4

∑

p

S̃(d)
ap S̃(d)

bp S̃(d)∗
cp = δax+bx ,cx δaz+bz ,cz (16)

where δ is the Kronecker delta and + in the subscript of δ is modulo d. This means that
Nc
ab reveals the group structure of Zd × Zd on the unsorted label set {a} = {(ax , az) :

ax , az ∈ Zd} of the fundamental projectors.
Eq. (16) generalizes to any product group G of cyclic groups using Eq. (14). There-

fore, the group G × G can be reconstructed just from S̃ whose rows and columns are
unsorted. The finite abelian groupG×G is uniquely determined byG, which completes
the proof. ��
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We believe that the group G being abelian is not essential in the theorem. For a
nonabelian group G, one has to check the stable logical algebra condition, which would
involve nontrivial computations [21]. The local topological order condition is proved,
albeit implicitly, in [27, Sec. 3]. Note that Theorem 4.1 states that the S̃-matrix is invari-
ant, and we have shown for the abelian quantum double models S̃ is a complete invariant.
We have not addressed how fine or coarse the invariant S̃ is in general. However, it will
not be the case that each quantum double model with general finite group G gives a
unique S̃. This is because there exist non-isomorphic groups that give rise to isomorphic
modular tensor categories [28].

4.2. Assumption I: Local topological order. In this and the next subsections, we define
the assumptions of Theorem 4.1 and explain how they are physically motivated.

Suppose |ψ〉 is any ground state of a local commuting Hamiltonian

H = −
∑

j

h j , (17)

where h j = h2j are local projectors such that [h j , hk] = 0. We assume that the Hamil-
tonian is frustration-free:

h j |ψ〉 = |ψ〉 for all j. (18)

Further we assume that the reduced density matrix on a disk D is determined by those
h j that acts nontrivially on D whenever D does not wrap around the whole system.

That is, if there is a state |φ〉 such that
h j |φ〉 = |φ〉 for every h j that meets the disk D, (19)

then the reduced density matrix of |φ〉 on D is the same as that of |ψ〉
trDc |φ〉 〈φ| = trDc |ψ〉 〈ψ | . (20)

This condition is called the local topological order condition [25], and has been used
to show the stability of the energy gap under small but arbitrary perturbations [16].
This is a property of the Hamiltonian; there could be two different Hamiltonians whose
ground states are equal while one satisfies the local topological order condition but the
other does not. It is somewhat related to the homogeneity of the Hamiltonian. Consider
H = −∑

i σ
z
i σ z

i+1 − σ z
0 , the Ising model on a line with magnetic field at one particular

spin. The ground state is unique with all spins up. On a region far from the spin where the
field term acts, all-spin-down state satisfies Eq. (19). Thus, Eq. (20) cannot be satisfied.
On the other hand, H0 = −∑

i σ
z
i has the same unique ground state such that Eq. (19)

implies Eq. (20).
We allow the Hamiltonian to have degenerate ground space, though we do not require

it. If H has degeneracy, which might depend on the topology of the underlying lattice,
then our local topological order condition requires that they should be locally indistin-
guishable. Therefore, any classical Hamiltonian with local topological order condition
is essentially the trivial Hamiltonian H0 with non-degenerate ground state. Although the
trivial product state is not usually termed as topologically ordered, this is consistent since
the trivial state can be regarded as an anyon system with the sole anyon, the vacuum.
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Remark 4.3. In Sect. 2.4 we have mentioned that the vacuum label “1” is distinguished.
This is a consequence of the local topological order condition. Recall that the particle
types are defined by the fundamental projectors of the logical algebra C = A/N on
an annulus of some large size. An operator of the logical algebra is not necessarily
local, but is anyway supported on a disk that does not wrap the whole system. By
definition of the logical algebra, O |ψ〉 is a ground state for any O ∈ C. (We are
abusing notation here as before. O |ψ〉 should be understood as the state O ′ |ψ〉 for
any representative O ′ ∈ O ∈ A/N . It is well-defined since N annihilates any ground
state. See the discussion belowEq. (5).) By the local topological order condition,wemust
have O |ψ〉 = c(O) |ψ〉 for some number c(O). If πa are fundamental projectors, then∑

a πa |ψ〉 = |ψ〉 so ∑
a c(πa) = 1, but πaπb |ψ〉 = c(πa)c(πb) |ψ〉 = 0 whenever

a �= b. See Eq. (3). Therefore, one and only one c(πa) is nonzero, and the corresponding
label a = “1” represents the distinguished vacuum.

Kitaev’s quantum double model Hamiltonians [17] satisfy the local topological order
condition. Ref. [27, Sec. 3] does not explicitly mention this, but it is proved that the
expectation value of local observables are determined by Hamiltonian terms that act
nearby, which is equivalent to the present local topological order condition. We believe
that Levin andWen’s string-net model Hamiltonians [6] also satisfy the local topological
order condition for the following reason. The ground state wave function can be viewed
as a string condensate—a superposition of certain loop configurations. The local terms
in the Hamiltonians are just enough to infer allowed configurations of the loops, their
local deformation rules, and the relative amplitudes among the deformed loops, which
are enough to determine the local reduced density matrix.

The following is a simple fact implied by the local topological order condition. We
will use it frequently in the proof of Theorem 4.1.

Lemma 4.4. Let D be a disk and 
D be the projector onto the subspace support of the
reduced density operator on D of the ground state |ψ〉. If h j is a term of the Hamiltonian
Eq. (17) whose support is contained in D, then

h j
D = 
D.

If PD is the product of all terms of the Hamiltonian whose support overlap with D, then


DPD = PD.

Proof. The ground state |ψ〉 has the Schmidt decomposition |ψ〉 = ∑
a λa

∣∣ψa
D

〉 ∣∣ψa
Dc

〉

where λa > 0. The projector is 
D = ∑
a

∣∣ψa
D

〉 〈
ψa

D

∣∣ . Since the Hamiltonian is
frustration-free, we know h j |ψ〉 = |ψ〉. In terms of the Schmidt decomposition,

∑

a

λah j
∣∣ψa

D

〉 ∣∣ψa
Dc

〉 =
∑

a

λa
∣∣ψa

D

〉 ∣∣ψa
Dc

〉
.

Since
∣∣ψa

Dc

〉
are orthonormal, we must have

h j
∣∣ψa

D

〉 = ∣∣ψa
D

〉

for each a. Therefore, h j
D = 
D . The second assertion can be proved by the local
topological order condition. For any vector |φ〉, PD |φ〉 has (after normalization) the
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reduced density operator on D which is equal to that of |ψ〉. In other words, the Schmidt
decomposition of PD |φ〉 must be

PD |φ〉 ∝
∑

a

λa
∣∣ψa

D

〉 ∣∣φa
Dc

〉

for some orthonormal
∣∣φa

Dc

〉
. The equation
DPD = PD follows since |φ〉was arbitrary.

��
Technically, the conditions of Ref. [24] are phrased slightly differently than ours. It

turns out that they are equivalent. “TQO-2” [24] states that if OD is an operator supported
on a disk D such that OD |ψ〉 = 0 for any ground state |ψ〉, then ODPD = 0 where PD
is as in Lemma 4.4. This readily follows from our definition. If OD |ψ〉 = 0, then OD
annihilates any Schmidt component on D of |ψ〉, which means OD
D = 0, but then
ODPD = OD
DPD = 0 by Lemma 4.4. The converse is contained in Corollary 1 of
[24].

4.3. Assumption II: Stable logical algebras.

Definition 4.5. Given a Hamiltonian Eq. (17) of interaction range w, an operator O
supported on an annulus At of thickness t is said to be H -null if it can be expressed as

O = O1 + · · · + On

where for each Oi there exists a term h j (i) of H on the annulus At+w of thickness t +w

such that h j (i)Oi = Oih j (i) = 0. In addition, we define two sets:

• At : the set of all operators on the annulus of thickness t that commute with every
term of H . It is a C∗-algebra.

• Nt : the subset ofAt consisting of all H -null operators. It is a two-sided ideal ofAt .

The definition ofAt is the same as the one given in Sect. 2.1, but that ofNt is slightly
different—previously we have defined Nt by the condition that O is annihilated by the
product of ha’s that are supported on the annulus of thickness t + w. See Eq. (2). The
present definition clearly implies the previous one because the product of h j (i)’s will
annihilate O . Conversely,

Lemma 4.6. Let P be a finite product of some terms h j of the Hamiltonian supported
on the annulus of thickness t + w. For an operator O ∈ At , if OP = 0, then O ∈ Nt .

Proof. Let P = ha1ha2 · · · ham . One can rewrite O = (1 − P)O = ∑m
k=1 Ok where

Ok = ha1ha2 · · · hak−1(1 − hak )O.

It is clear that Okhak = 0. ��
Now our stable logical algebra condition asserts that when 10w ≤ t ≤ t ′ ≤ rann/10

the inclusion At ↪→ At ′ induces an isomorphism

At/Nt → At ′/Nt ′

for the left and right annuli. (Of course, the constant 10 is an arbitrary choice that is
larger than 1.) Note that the induced map is always well-defined because Nt is a subset
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of Nt ′ . That is, any equivalent operators of the quotient algebra At/Nt are mapped to
equivalent operators in At ′/Nt ′ .

The induced map being surjective means that for any operator Ot ′ of At ′ there is an
operatorOt equivalent toOt ′ moduloNt ′ such thatOt is supported on a thinner annulus of
thickness t . Recall that the operators ofAt are physically the string operators transporting
anyons. The equivalence relation byNt is motivated by the fact that the string operators
should be deformed without affecting its action if the deformation sweeps a region of no
anyons. Thus, the existence of Ot reflects the intuition that any string operator’s action
can always be achieved by acting on a narrow region.

The induced map being injective means that any nontrivial action (/∈ Nt ) of the string
operator will still be nontrivial even if one has provided with additional information that
there is no anyon on an enlarged region (/∈ Nt ′ ). This is related to the fact that there are
finitely many anyon labels, and any anyon in the disk enclosed by the annulus can be
moved to a fixed finite region, which can be chosen to be the center of the disk without
altering the far outside region.

Remark 4.7. Indeed, the injectivity of the induced mapAt/Nt → At ′/Nt ′ may be false
in a system with infinitely many particle types; the stable logical algebra condition is not
implied by the local topological order condition in general. As a concrete example, we
can consider an infinite stack of toric code layers. Let us say that the layers are parallel
to the xy-plane. This state is three-dimensional, but the particles can only move within
each layer; there are infinitely many particle types living on different layers. An analog
of the annulus in the three-dimensional space is a sphere with a wall of thickness t . The
algebraAt and its idealNt are similarly defined. Depending on the position of the layer,
the intersection of the layer and the wall can be either an annulus, a disk, or empty. An
e-particle projector πe acting on a layer Y is an element of At/Nt , which is zero if the
intersection of Y with the wall is a disk, but nonzero if it is an annulus. Suppose the layer
Y is close to the north pole, but is not too close so that πe is nonzero. As we increase the
thickness of the wall, the intersection of Y with the wall changes its topology from an
annulus to a disk. Therefore, at some thickness t ′ > t , πe becomes zero inAt ′/Nt ′ . The
induced map At/Nt → At ′/Nt ′ is not injective in this example. A similar situation is
also found in the cubic code model [29].

As far asweknow, the only exampleswhere this injectivity fails exist in three or higher
dimensions. It is an interesting problem whether the stable logical algebra condition
follows from the local topological order condition in two dimensions.

4.4. Proof of Theorem 4.1. We now prove the theorem. Fix a ground state |ψ〉 of a
Hamiltonian Eq. (17) with local topological order.

Definition 4.8. Given a state |ψ〉, an operator O is said to be s-locally null near an
annulus if it can be expressed as

O = O1 + · · · + On,

such that for each Oi there exists a disk Di of radius at most s meeting the annulus such
that


Di Oi = Oi
Di = 0

where 
Di is the projector onto the subspace support of the reduced density operator of|ψ〉 on the disk Di . In addition, we define two sets:
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• It : the set of all operators O supported on the annulus of thickness t such that both
O and O† are (s, s)-locally invisible for all t/16 ≤ s ≤ t/4.

• Mt : the set of all (t/2)-locally null operators near the annulus of thickness t .

Note thatMt is a linear space, but It may not be.Mt is not guaranteed to be a subset
of It . Nevertheless, we consider an equivalence relation on It defined by

O ∼ O ′ if and only if O − O ′ ∈ Mt

for any O, O ′ ∈ It . The relation is reflexive (O ∼ O), symmetric (O ∼ O ′ ⇔ O ′ ∼
O), and transitive (O ∼ O ′ and O ′ ∼ O ′′ imply O ∼ O ′′). We denote by

It/Mt

the set of all the equivalence classes. It andMt are defined purely in terms of the state,
while At and Nt depend on the Hamiltonian.

The locally null operators are defined similarly to the H -null operators. See Eq. (2)
and Lemma 4.6. In particular, it holds that any locally null operator makes the twist
pairing to be zero. Indeed, suppose O is locally null, or more specifically

O ∈ Mt ,

where t is much smaller than the radius of the annulus. Since the local projectors to
annihilate O will be supported on a thickened annulus, we will need a left annulus
A2t of thickness 2t . Recall that the left annulus and the right annulus intersect at two
diamonds, one in the north and the other in the south. Let � be the region of A2t that
contains all points of the left annulus except those in the south diamond. Similarly, let
� be the region of A2t that contains all points of the left annulus but those in the north
diamond. Let
� and
� be, as in Lemma 4.4, the projectors onto the subspace support
of the reduced density operator of the ground state on the region � and �, respectively.
It is easy to verify that


�
D = 
�, 
E
� = 
�

for any disk D contained in� and any disk E in� by continued Schmidt decompositions.
(This is equivalent to say that ker ρAB ⊇ ker ρA ⊗ ρB for any bipartite density matrix
ρAB . This follows from 
A
BρAB
B
A = ρAB where 
A,B are projectors such that
ker ρA,B = 
⊥

A,B .) Therefore,


�O
� = 0

by the definition of Mt . Now,


�(O∞O ′) = (
�O)∞O ′

(O∞O ′)
� = (O
�)∞O ′

for any O ′ on the right annulus. See Fig. 1. Since 
� |ψ〉 = |ψ〉 = 
� |ψ〉, we have
〈ψ | O∞O ′ |ψ〉 = 〈ψ | 
�(O∞O ′)
� |ψ〉 = 0. (21)

We conclude that any equivalent operators of It give the same value for the twist pairing.

Lemma 4.9. An operator O that commutes with every term of the Hamiltonian is (r, w)-
locally invisible with respect to the ground state |ψ〉 for any r > 0, where w is the
interaction range.
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Proof. Pick any concentric disks A, B of radius r, r +w, respectively. Let |φ〉 be a state
vector with the same reduced density operator on B as |ψ〉. By Lemma 4.4, h j |φ〉 =
|φ〉 whenever h j is supported inside B. These include all h j whose support meet A.
By assumption, we have h j O |φ〉 = Oh j |φ〉 = O |φ〉. The local topological order
condition implies that these equations determine the reduced density matrix ρA of O |φ〉
on A, and ρA is the same as that of |ψ〉. ��
Lemma 4.10. Assume t > 16w. At is a subset of It ′ for t ′ ≥ t , and the inclusion map
induces a well-defined map At/Nt → It ′/Mt ′ .

Proof. Lemma 4.9 says that At ⊆ It . (The constant 16 is because we have defined
members of It to be (t/16, t/16)-locally invisible.) We have to show that the induced
map is well-defined, i.e., that equivalent operators of At/Nt are mapped to the same
equivalence class of It ′/Mt ′ . Suppose O − O ′ ∈ Nt . There exists a decomposition

O − O ′ = O1 + · · · + On,

such that for each Oi there is h j (i) on the annulus of thickness t +w such that Oih j (i) =
h j (i)Oi = 0. We can certainly choose a disk Di of radius t ′/2 that contains the support
h j (i) and meets the annulus. Let 
Di be as in Lemma 4.4. Since h j (i)
Di = 
Di , we
see Oi
Di = 
Di Oi = 0. This means that O ∼ O ′. ��

Conversely, we can map locally invisible operators into the logical algebra. Consider
the symmetrization (superoperator) φ j for each h j defined by

φ j : O �→ 1

2
(O + (2h j − 1)O(2h j − 1)), (22)

and the composition of all φ j ’s

φ =
∏

j

φ j . (23)

Since h j ’s are commutingwith one another, the order of the composition does notmatter.
If O commuteswith h j , thenφ j (O) = O . Therefore, applyingφ to any operator enlarges
its support only by w, the interaction range. It will be used below that for any h j ,

(2h j − 1)[O − φ j (O)](2h j − 1) = −[O − φ j (O)]. (24)

Lemma 4.11. The symmetrization map φ of Eq. (23) defines a map from It to At+w,
and for any S, T ∈ It we have

S(T − φ(T )) ∈ Mt , (T − φ(T ))S ∈ Mt .

Setting S = id, we see that any locally invisible operator can be “deformed” to an
operator that commutes with every term in the Hamiltonian by enlarging its support
slightly.

Proof. That φ : It → At+w is already shown. For clarity of notation, assume that
h j = h1, . . . , hm are all the terms of the Hamiltonian whose support overlap the annulus
At on which O is supported. So, φ(O) = (φmφm−1 · · · φ1)(O).

Consider, for each h j that meets the annulus At , concentric disks Dr
j of radius

r , with their center inside the support of h j . We will use the disks of radius r =
t/16, 2t/16, . . . , 8t/16.
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Let Q j be the product of all terms hi of the Hamiltonian whose support is contained

in D3t/16
j . The local topological order condition implies that for any state |φ〉, the state

Q j |φ〉 has the same reduced density matrix on D2t/16
j as the ground state. Since T is

(t/16, t/16)-locally invisible, the reduced density matrix on Dt/16
j of T Q j |φ〉 is the

same as that of the ground state. In particular, h j T Q j |φ〉 = T Q j |φ〉 for any state |φ〉,
or equivalently,

h j T Q j = T Q j . (25)

The disk Dj = Dt/2
j certainly meets the annulus At . By Lemma 4.4, we have

Q j
Dj = 
Dj . (26)

Now, let φI be any composition of φi ’s, and s j = 2h j − 1.

S[φ jφI (T ) − φI (T )]
Dj

= S[φ jφI (T ) − φI (T )]Q js j
Dj Eq. (26)

= S[φ jφI (T Q j ) − φI (T Q j )]s j
Dj h j ’s are commuting

= S[φ jφI (s j T Q j ) − φI (s j T Q j )]s j
Dj Eq. (25)

= Ss j [φ jφI (T ) − φI (T )]Q js j
Dj h j ’s are commuting

= Ss j [φ jφI (T ) − φI (T )]s j
Dj Eq. (26)

= −S[φ jφI (T ) − φI (T )]
Dj Eq. (24)

= 0

Next, we show [φ jφI (T ) − φI (T )]S
Dj = 0 by a similar calculation. Let Q′
j be

the product of all terms hi of the Hamiltonian whose support is contained in Dt/2
j . Since

S is (3t/16, 3t/16)-locally invisible and Q′
j determines the reduced density matrix on

D6t/16
j , we have

S
Dj = SQ′
j
Dj = Q j SQ

′
j
Dj = Q j S
Dj . (27)

With Eq. (27) in place of Eq. (26), one can similarly show that

[φ jφI (T ) − φI (T )]S
Dj = 0.

Since S† and T † are also locally-invisible, the hermitian conjugate of the above compu-
tation is valid:


Dj [φ jφI (T ) − φI (T )]S = 0, 
Dj S[φ jφI (T ) − φI (T )] = 0.

We have proved that

[φ jφI (O) − φI (O)]S ∈ Mt , S[φ jφI (O) − φI (O)] ∈ Mt .

Finally, using

φ(T ) − T =
m∑

j=1

φ jφ j−1 · · · φ1(T ) − φ j−1φ j−2 · · ·φ1(T ) (28)
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we see that

S(φ(T ) − T ) ∈ Mt , (φ(T ) − T )S ∈ Mt .

��
Lemma 4.12. Assume 3w < t . Suppose the canonical map At+w/Nt+w → A3t/N3t
induced by the inclusionAt+w ↪→ A3t is injective. Then, the inducedmap φ̄ : It/Mt →
At+w/Nt+w by the symmetrization map φ of Eq. (23) is well-defined and injective.

Proof. We first have to show that φ̄ is well-defined. Suppose O ∼ O ′ for O, O ′ ∈ It ,
i.e.,

O − O ′ = O1 + · · · + On

where for each Oi there exists a disk Di of radius≤ t/2meeting the annulus of thickness
t such that 
Di Oi = Oi
Di = 0. Here, 
Di is as in Lemma 4.4. Collect all h j that
meet Di and let PDi be the product of those. By Lemma 4.4, we have 
Di PDi = PDi .
Note that PDi is supported on the annulus of thickness 3t .

Since φ is linear,

φ(O) − φ(O ′) = φ(O1) + · · · + φ(On).

Since h j ’s are commuting,

φ(Oi )PDi = φ(Oi PDi ) = φ(Oi
Di PDi ) = 0.

Thus,φ(O)−φ(O ′) ∈ N3t byLemma4.6.But,we already knowφ(O)−φ(O ′) ∈ At+w.
Since the kernel of the map

At+w → A3t/N3t

isAt+w ∩N3t = Nt+w by assumption, it follows that φ(O)−φ(O ′) ∈ Nt+w. Therefore,
φ̄ is well-defined.

To show φ̄ is injective, suppose φ(O) − φ(O ′) ∈ Nt+w. We have to show that
O − O ′ ∈ Mt . By the argument in the proof of Lemma 4.10, we see thatNt+w ⊆ Mt .
It remains to show O − φ(O) ∈ Mt and O ′ − φ(O ′) ∈ Mt , but this is already shown
in Lemma 4.11. The injectivity of the map φ̄ is proved. ��
Corollary 4.13. Suppose At/Nt for various 20w < t < rann/20 are all isomorphic
by the inclusions At1 ↪→ At2 whenever t1 ≤ t2, i.e., assume the stable logical algebra
condition. Then, the inclusion At ↪→ It induces a bijection

At/Nt ∼= It/Mt .

for 20w < t < rann/60.

Proof. We have a commutative diagram inferred fromLemma 4.10 and 4.12. Our choice
of the range 20w < t < rann/60 is to ensure we can apply these lemmas.

At
ι ��

��

It φ ��

��

At+w

��
At/Nt

ῑ �� It/Mt
φ̄ �� At+w/Nt+w
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The vertical arrows are the canonical maps from elements to equivalence classes that
they represent. The assumption implies φ̄ is well-defined and injective. The upper line
φ ◦ ι is just the inclusion map since the symmetrization acts as identity on the elements
that already commute with h j . The assumption says φ̄ ◦ ῑ is bijective. It follows that φ̄

is surjective. Therefore, φ̄ is bijective, and in turn, this means that ῑ is bijective. ��
Corollary 4.14. SupposeHamiltonians H1 and H2 of interaction rangew shareaground
state, and satisfy our local topological order and stable logical algebra conditions. Then,
the logical algebrasAH1

t /N H1
t andAH2

t /N H2
t are isomorphic as C∗-algebras for some

t (and hence for all t) where 20w < t < rann/60, by a map that preserves the twist
pairing.

Proof. Every map in this subsection (the symmetrization Eq. (23) or the inclusion)
preserves hermitian conjugation. Thus, it suffices to show that the composition �

� : A(1)
t /N (1)

t

ῑ1 �� It/Mt
φ̄2 �� A(2)

t+w/N (2)
t+w

ῑ2 �� It+w/Mt+w

φ̄′
2 �� A(2)

t+2w/N (2)
t+2w

(29)
preserves addition andmultiplication, i.e., is an algebra-homomorphism. Here, the maps
ῑ1, ῑ2 are by Lemma 4.10, and φ̄2, φ̄

′
2 are by Lemma 4.12; w is the interaction range of

H2; and the superscripts (1), (2) refer to the Hamiltonians H1, H2. The stable logical
algebra condition and Corollary 4.13 imply that � is bijective.

The addition is readily preserved in � since every map is linear. To show that the
multiplication is preserved, suppose x, y ∈ A(1)

t . Then, surely, xy ∈ AH1
t . We have to

show that �([xy]) = �([x])�([y]). (The brackets are to distinguish representatives
from their equivalence classes.) Since every map is well-defined, we may instead trace
the images of x, y, xy under inclusions and symmetrizations. Under ι2◦φ2◦ι1 : A(1)

t →
It+w, the operators x, y, xy are mapped to φ2(x), φ2(y), φ2(xy) ∈ It+w, respectively.
Now, consider the equivalence relation supplied byMt+w. Lemma 4.11 applied to It+w

implies

φ2(xy) ∼ xy ∵ xy ∈ A(1)
t ⊆ It+w,

xy ∼ xφ2(y) ∵ x, y ∈ A(1)
t ⊆ It+w,

xφ2(y) ∼ φ2(x)φ2(y) ∵
{
x ∈ It+w,

φ2(y) ∈ A(2)
t+w ⊆ It+w

where ∵ stands for “because.” The transitivity of the relation ∼ implies

φ2(xy) = φ2(x)φ2(y) + m

for some element m ∈ Mt+w. We have then

φ′
2(φ2(xy)) = φ′

2(φ2(x)φ2(y)) + φ′
2(m).

Lemma 4.12 implies that φ′
2(m) ∈ Nt+2w. Since an operator that already commutes

with every term in the Hamiltonian remains the same under further symmetrization, we
have φ′

2(φ2(xy)) = φ2(xy) and φ′
2(φ2(x)φ2(y)) = φ2(x)φ2(y). This proves �([xy]) =

�([x])�([y]), and the C∗-isomorphism is established.
It remains to show that the isomorphism preserves the twist pairing. Let [Oi ] ∈

AHi
t /N Hi

t for i = 1, 2 be the corresponding elements under the isomorphism. We have
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shown that [O1] and [O2] are mapped by the inclusion to the same element in It/Mt .
This implies that O1 − O2 ∈ Mt . By the result of Eq. (21), this means that O1 and O2
give the same twist pairing. ��

Note that we made use of two consecutive symmetrizations φ2 and φ′
2, which might

seem redundant, in order to treat the remainder term m.

Proof of Theorem 4.1. We have proved the first statement in Corollary 4.14. To prove
the second statement, we claim that the new Hamiltonian

H ′ = WHW † =
∑

j

Wh jW
†

forW |ψ〉 is commuting and locally topologically ordered, and the corresponding algebra

C′
t ′ = A′

t ′/N ′
t ′

is isomorphic to Ct when t ′ = t + R with an isomorphism being the conjugation by W .
Here, A′

t ′ and N ′
t ′ are with respect to the new Hamiltonian WHW †.

Then, since Ct is stable with respect to t , so will C′
t ′ . This will mean that W |ψ〉

admits a locally topologically ordered Hamiltonian, and the logical algebra is stable,
so S̃(W |ψ〉) will be defined. Moreover, since the isomorphism Ct → C′

t ′ is induced by
W , the fundamental projectors πa of Ct will represent fundamental projectors of C′

t ′ as
WπaW †. Therefore,

〈ψ |W †(WπaW
†)∞(WπbW

†)W |ψ〉 = 〈ψ | π L
a ∞π R

b |ψ〉
by Lemma 2.3, and we will complete the proof of the theorem.

The terms of the new Hamiltonian WHW † is clearly commuting with one another,
since the conjugation is an algebra-automorphism. To show that it is locally topologically
ordered, we use the observation made in the proof of Lemma 3.3. Given a disk D, let
D′ be (w + R)-ball of D. Let PD′ be the product of all terms h j of H that are supported
on D′, and define P ′

D′ = WPD′W †. P ′
D′ is supported on (w + 2R)-ball of D. Let |φ〉

be any state such that P ′
D′ |φ〉 = |φ〉. We claim that the reduced density matrix on D

of |φ〉 is the same as that of W |ψ〉 on D. Since PDW † |φ〉 = W † |φ〉, using the local
topological order condition of H , we knowW † |φ〉 has the same reduced density matrix
on the R-ball of D as |ψ〉. Using the fact that W is a quantum circuit of range R, the
reduced density matrix on D of |φ〉 = W (W † |φ〉) is the same as that of W |ψ〉. This
proves the claim.

To show that C′
t ′ is isomorphic to Ct , consider the conjugation by W

ω : At
W ·W †−−−→ A′

t+R .

It is straightforward to check that WNtW † ⊆ N ′
t+R , so

ω̄ : Ct W ·W †−−−→ C′
t+R

is induced and well-defined. Similarly, consider a map

ω̄† : C′
t+R

W †·W−−−→ Ct+2R .
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Certainly, ω† ◦ ω : At → At+2R is the inclusion, so ω̄† ◦ ω̄ is an isomorphism by our
stable logical algebra assumption. In particular, ω̄† is surjective.We claim ω̄† is injective
as well. Suppose ω†(O ′) = W †O ′W ∈ Nt+2R . By the definition of Nt+2R ,

W †O ′W = O1 + · · · + On

and there exist h j (i) supported on the annulus of thickness t +2R+w such that Oih j (i) =
h j (i)Oi = 0. The decomposition can be written equivalently as

O ′ = WO1W
† + · · · +WOnW

†.

EachWOiW † is annihilatedbyWh j (i)W † which is supportedon the annulus of thickness
t+3R+w = t+R+w′, wherew′ = w+2R is the interaction range of H ′. Thismeans that
O ′ ∈ N ′

t+R , and the injectivity of ω̄† is proved. Therefore, ω̄† is bijective. We conclude
that ω̄ is also bijective, and Ct and C′

t+R are isomorphic. ��

5. Discussion

We have defined an invariant matrix S̃ under local unitary transformations for ground
states of a particular class of commuting Hamiltonians. S̃ is naturally motivated by the
braiding of quasi-particles and its modular tensor category description, but we have
avoided dealing with the axioms of the categorical description, by analyzing operator
algebras that stabilize the state from the beginning. Our definition of S̃ matrix is in terms
of the Hamiltonian, complemented by a proof that S̃ is independent of the Hamiltonian
as long as it belongs to a class specified by the local topological order and stable logical
algebra conditions.

It is certainly desirable to have an invariant that is manifestly defined in terms of
the bulk of the state. The topological entanglement entropy could be a good exemplary
quantity, but we do not yet have a rigorous answer when this quantity is invariant.
Our notion of locally invisible operators would give much more information about the
state, but they generally do not form an algebra, which makes it hard to extract useful
information out. Our local topological order and stable logical algebra assumptions
constitute a sufficient condition for the locally invisible operators to form an algebra.
Perhaps, in two dimensions the stable logical algebra assumption may follow from the
local topological order assumption, as the latter seems to imply the number of particle
types in 2D is bounded. This is an interesting open problem.

Another interesting problem is to determine when the unitarity of the S matrix (the
modularity) can be derived. Note that this cannot be proved unless some homogeneity
is assumed. For example, if an annulus happens to include a gapped boundary, then the
logical algebra may have a different C-dimension from that on an annulus in the bulk.
Then, the S̃ matrix between the two logical algebras is not necessarily square.

We have mainly discussed two-dimensional lattices, but a higher dimensional gen-
eralization is straightforward; one can replace the annulus with spheres with a thick
enough wall, or more generally consider any embedding of lower dimensional mani-
folds. In three dimensions for example, one can consider a sphere and a circle that are
intersecting at a pair of distant points. This corresponds to braiding of point-like particles
around string-like excitations.
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