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1 Department of Mathematics, The Ohio State University, 231 W 18th Ave, Columbus, OH 43220, USA.
E-mail: costin@math.ohio-state.edu; glogic.1@osu.edu

2 Mathematisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, Endenicher Allee 60,
53115 Bonn, Germany. E-mail: donninge@math.uni-bonn.de

3 Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
E-mail: mihuang@cityu.edu.hk

Received: 27 February 2015 / Accepted: 13 July 2015
Published online: 17 February 2016 – © Springer-Verlag Berlin Heidelberg 2016

Abstract: We consider an explicit self-similar solution to an energy-supercritical Yang-
Mills equation and prove its mode stability. Based on earlier work by one of the authors,
we obtain a fully rigorous proof of the nonlinear stability of the self-similar blowup
profile. This is a large-data result for a supercriticalwave equation.Ourmethod is broadly
applicable and provides a general approach to stability problems related to self-similar
solutions of nonlinear wave equations.

1. Introduction

The development of singularities in finite time is one of the most stunning features of
nonlinear evolution equations. Singularity formation (or “blowup”) of the solution sig-
nifies a dramatic change in the behavior of the underlying model or even the complete
breakdown of the mathematical description. On the level of a fundamental physical the-
ory, blowup occurs in Einstein’s equation of general relativity to indicate the dynamical
formation of a black hole. However, a rigorous treatment of Einstein’s equation in this
context is hopeless at the present stage of research. Consequently, it is a reasonable
strategy to resort to simpler toy models that capture some of the features of the more
complicated system.Natural candidates in this respect are energy-supercritical nonlinear
wave equations with a geometric origin such as wave maps or Yang-Mills models.

The easiest way to demonstrate finite-time blowup in a given evolution equation is to
construct self-similar solutions. In exceptional cases it is even possible to obtain closed-
form expressions. The relevance of such solutions depends on their stability. After all,
one would like to obtain information on the generic behavior of the system. However,
already at the linear level the stability analysis of self-similar solutions to nonlinear
wave equations is very challenging since one is confronted with highly nonself-adjoint
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spectral problems.Consequently, standardmethods donot apply.This fact poses a serious
obstacle to any rigorous analysis of the blowup dynamics.

In the present paper we develop a general approach that is capable of handling the
difficult nonself-adjoint spectral problems related to self-similar blowup. For the sake
of simplicity, however, we focus on the concrete example of an energy-supercritical
Yang-Mills equation that displays blowup via an explicitly known self-similar solution.

1.1. Anenergy-supercritical Yang-Millsmodel. Forμ ∈ {0, 1, 2, . . . , 5} let Aμ : R1,5 →
so(5) be a collection of five fields on (1+5)-dimensionalMinkowski space with values in
the matrix Lie algebra of SO(5). In other words, for fixed μ and (t, x) ∈ R

1,5, Aμ(t, x)
is a skew-symmetric real (5 × 5)-matrix. One sets

Fμν := ∂μAν − ∂ν Aμ + [Aμ, Aν]
and considers the action functional1∫

R1,5
tr(FμνF

μν). (1.1)

Formally, this is reminiscent of Maxwell’s theory. However, the commutator in the
definition of Fμν introduces a very natural nonlinearity. In this sense, Yang-Mills theory
can be viewed as a nonlinear generalization of electrodynamics. The Euler-Lagrange
equations associated to the action (1.1) are

∂μF
μν + [Aμ, Fμν] = 0

and the ansatz [5,17]

A jk
μ (t, x) = (δkμx

j − δ j
μx

k)
ψ(t, |x |)

|x |2
yields the scalar nonlinear wave equation

ψt t − ψrr − 2

r
ψr +

3ψ(ψ + 1)(ψ + 2)

r2
= 0, (1.2)

ψ = ψ(t, r), for the auxiliary function ψ : R × [0,∞) → R. Eq. (1.2) has been
proposed as a model for singularity formation in Einstein’s equation [2,4,5,21]. In
general, (classical) Yang-Mills fields attracted a lot of interest by both the physics and
mathematics communities, see e.g. [1,3,11,18,19,22–25,27–30].

Equation (1.2) is energy-supercritical [4] and large-data solutions can develop sin-
gularities in finite time as is evidenced by the existence of self-similar solutions of the
form ψ(t, r) = f ( r

1−t ), see [7]. Bizoń [5] found an explicit example of this kind given
by

ψ0(t, r) = f0(
r

1−t ), f0(ρ) = − 8ρ2

5 + 3ρ2 .

Numerical investigations [2,4,5] yield strong evidence that the solution ψ0 gives rise
to a stable self-similar blowup mechanism. Motivated by this, the second author [13]
developed a complete nonlinear stability theory for the solution ψ0, see also [12,14–16]
for other types of nonlinear wave equations. However, the results in [13] are conditional
in the sense that they depend on a spectral assumption which could not be verified
rigorously so far. It is the aim of the present paper to close this gap.

1 Einstein’s summation convention is in force. Greek indices take the values 0 to 5 whereas latin indices
run from 1 to 5. Our convention for the Minkowski metric is η = diag(−1, 1, 1, 1, 1, 1).
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1.2. The mode stability problem. The first important step in a stability analysis of the so-
lutionψ0 is to rule out unstablemodes. To this end, one introduces similarity coordinates
[2]

τ = − log(1 − t), ρ = r

1 − t
.

Eq. (1.2) transforms into

φττ + φτ + 2ρφτρ − (1 − ρ2)(φρρ + 2
ρ
φρ) +

3φ(φ + 1)(φ + 2)

ρ2 = 0 (1.3)

where φ(τ, ρ) = ψ(1 − e−τ , e−τ ρ). Due to finite speed of propagation one is mainly
interested in the behavior inside the backward lightcone of the singularity, which corre-
sponds to the coordinate domain τ ≥ 0, ρ ∈ [0, 1]. Note that the self-similar solution is
independent of τ and simply given by f0(ρ). Next, one inserts the mode ansatz

φ(τ, ρ) = f0(ρ) + eλτuλ(ρ), λ ∈ C

and linearizes in uλ. This yields the ODE spectral problem

−(1 − ρ2)(u′′
λ + 2

ρ
u′

λ) + 2λρu′
λ + λ(λ + 1)uλ +

V (ρ)

ρ2 uλ = 0 (1.4)

for the function uλ, where the potential V is given by

V (ρ) = 6 + 18 f0(ρ) + 9 f0(ρ)2 = 6
25 − 90ρ2 + 33ρ4

(5 + 3ρ2)2
.

Observe that Eq. (1.4) has a singular point at the lightcone ρ = 1 which is a consequence
of the fact that lightcones are the characteristic surfaces of Eq. (1.2).

Admissible solutions of Eq. (1.4) with Re λ ≥ 0 lead to instabilities of f0 at the linear
level. However, it is not entirely trivial to determine what “admissible” in this context
means. This question can in fact only be answered once one has a suitablewell-posedness
theory for Eq. (1.3). The necessary framework is developed in [13] and it turns out that
if Re λ ≥ 0, only smooth solutions are admissible. Consequently, a nonzero solution
uλ ∈ C∞[0, 1] of Eq. (1.4) with Re λ ≥ 0 is called an unstable mode. The corresponding
λ is called an (unstable) eigenvalue. As a matter of fact, there exists an unstable mode.
The function

u1(ρ) := −ρ f ′
0(ρ) = 80ρ2

(5 + 3ρ2)2

turns out to be a smooth solution of Eq. (1.4) with λ = 1, as one easily checks. However,
this mode is not a “real” instability of the solution f0 but rather a consequence of the time
translation symmetry of Eq. (1.2). Indeed, the profile f0 defines in fact a one-parameter
family of blowup solutions given by

ψT (t, r) = f0(
r

T−t )

where T > 0 is a free parameter. By the chain rule it follows that

∂TψT (t, r)|T=1 = − r
(1−t)2

f ′
0(

r
1−t ) = −eτ ρ f ′

0(ρ)

solves the linearized equation. These observations lead to the following definition.

Definition 1.1. The solutionψ0 (or f0) is said to bemode stable if u1 is the only unstable
mode.
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1.3. The main result. With these preparations at hand we can formulate our main result.

Theorem 1.2. The self-similar solution ψ0 is mode stable.

The first result of this kind was proved very recently for a similar problem related
to the wave maps equation [10]. However, the method we develop here is different and
much more effective. As a consequence, the main argument fits on a few pages and the
method easily generalizes to other types of nonlinear wave equations. In view of the
fact that rigorous research on self-similar blowup in supercritical wave equations was
blocked for a long time by the difficulties related to these spectral problems, we hope that
our method will trigger new developments in the field. In this respect we also remark that
Theorem 1.2 in conjunction with the theory developed in [13] yields a fully rigorous
proof of stable self-similar blowup dynamics for the Yang-Mills equation (1.2). The
precise statement is given in [13], Theorem 1.3. We emphasize that this is a large-data
result for an energy-supercritical wave equation.

2. Removal of the Symmetry Mode

Although the eigenvalue λ = 1 is not connected to a real instability of the solution
ψ0, it is still inconvenient for the further analysis. Consequently, it is desirable to “re-
move” it. This can be done by a suitable adaptation of a well-known procedure from
supersymmetric quantum mechanics which we recall here briefly.

2.1. Interlude on SUSY quantum mechanics. Consider the Schrödinger operator H =
−∂2x + V on L2(R) with some nice potential V and suppose there exists a ground state
f0 ∈ L2(R) ∩ C∞(R), i.e., f ′′

0 = V f0. Assume further that f0 has no zeros. Then one
has the factorization

−∂2x + V =
(

−∂x − f ′
0

f0

) (
∂x − f ′

0

f0

)
=: Q∗Q.

By interchanging the order of this factorization, one defines the SUSY partner H̃ of H ,
i.e., H̃ := QQ∗. Explicitly, the SUSY partner is given by

H̃ =
(

∂x − f ′
0

f0

) (
−∂x − f ′

0

f0

)
= −∂2x − V + 2

f ′2
0

f 20
=: −∂2x + Ṽ

where Ṽ = −V +2
f ′2
0
f 20

is called the SUSY potential. The point of all this is the following.

Suppose λ is an eigenvalue of H , i.e., H f = Q∗Q f = λ f for some (nontrivial) f .
Applying Q to this equation yields QQ∗Q f = λQ f , i.e., H̃ Q f = λQ f . Thus, if
Q f 	= 0, i.e., if f /∈ ker Q, λ is an eigenvalue of H̃ as well. Obviously, we have
ker Q = 〈 f0〉 and thus, if λ 	= 0 is an eigenvalue of H , then it is also an eigenvalue of H̃ .
Moreover, 0 is not an eigenvalue of H̃ for if thiswere the case,wewould have QQ∗ f = 0
for a nontrivial f , i.e., f ∈ ker Q∗ or Q∗ f ∈ ker Q. The former is impossible since
ker Q∗ = 〈 1

f0
〉 but 1

f0
/∈ L2(R). The latter is impossible since rg Q∗ ⊥ ker Q. In

summary, H̃ has the same set of eigenvalues as H except for 0.
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2.2. The supersymmetric problem. Now we implement a version of this SUSY factor-
ization trick for our problem. Note that the Frobenius indices of Eq. (1.4) at ρ = 0 are
{−3, 2} and at ρ = 1 we have {0, 1 − λ}. Suppose uλ is an unstable mode of Eq. (1.4)
and λ 	= 0. By definition, uλ ∈ C∞[0, 1] and from Frobenius theory it follows that
|uλ(ρ)|  ρ2 as ρ → 0+ as well as |uλ(ρ)|  1 as ρ → 1−. We define a new function
vλ by2

uλ(ρ) = ρ−1(1 − ρ2)−λ/2vλ(ρ).

From Eq. (1.4) it follows that vλ satisfies

−v′′
λ +

V (ρ)

ρ2(1 − ρ2)
vλ = λ(2 − λ)

(1 − ρ2)2
vλ. (2.1)

For λ = 1 we have

v1(ρ) = ρ(1 − ρ2)
1
2 u1(ρ) = 80ρ3(1 − ρ2)

1
2

(5 + 3ρ2)2
.

We rewrite Eq. (2.1) as

−v′′
λ + V1vλ = λ(2 − λ) − 1

(1 − ρ2)2
vλ

with

V1(ρ) = V (ρ)

ρ2(1 − ρ2)
− 1

(1 − ρ2)2
.

Then we have v′′
1 = V1v1 and thus, Eq. (2.1) may be factorized as

(−∂ρ − v′
1

v1
)(∂ρ − v′

1
v1

)vλ = λ(2 − λ) − 1

(1 − ρ2)2
vλ

or

−(1 − ρ2)2(∂ρ +
v′
1

v1
)(∂ρ − v′

1
v1

)vλ = [λ(2 − λ) − 1]vλ.

We set ṽλ = (∂ρ − v′
1

v1
)vλ and apply the operator ∂ρ − v′

1
v1

to the equation which yields
the supersymmetric problem

−(∂ρ − v′
1

v1
)[(1 − ρ2)2(∂ρ +

v′
1

v1
)]ṽλ = [λ(2 − λ) − 1]ṽλ. (2.2)

2 Observe that this transformation depends on λ. This is the reason why Eq. (1.4) is not equivalent to a
standard self-adjoint Sturm-Liouville problem.What happens is the following. Since |uλ(ρ)|  1 as ρ → 1−,
the corresponding vλ behaves like |vλ(ρ)|  (1 − ρ)Re λ/2. The Hilbert space in which the spectral problem
for vλ is symmetric is L2w(0, 1) with the weight w(ρ) = 1

(1−ρ2)2
. Thus, if Re λ ≤ 1, the admissible solution

vλ does not belong to L2w(0, 1)! Consequently, for Re λ ≤ 1 the self-adjoint formulation does not yield any
information. This shows that the spectral problem (1.4) is truly nonself-adjoint in nature. In particular, there
can be nonreal eigenvalues. For Re λ > 1, on the other hand, one can indeed use Sturm oscillation theory to
exclude eigenvalues.
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Note the asymptotics

v′
1

v1
(ρ) = 3ρ−1 + O(ρ) (ρ → 0+)

v′
1

v1
(ρ) ∼ − 1

2 (1 − ρ)−1 (ρ → 1−).

Consequently, from the representation vλ(ρ) = ρ3hλ(ρ
2), where hλ is analytic near 0,

we get ṽλ(ρ) = O(ρ4) near ρ = 0 and from vλ(ρ) ∼ c(1 − ρ)λ/2 we infer ṽλ(ρ) ∼
c(1 − ρ)λ/2−1 near ρ = 1 (unless λ = 1). Writing out Eq. (2.2) explicitly yields

−(1 − ρ2)2ṽ′′
λ + 4ρ(1 − ρ2)ṽ′

λ +
(1 − ρ2)Ṽ (ρ)

ρ2 ṽλ = λ(2 − λ)ṽλ (2.3)

with the supersymmetric potential

Ṽ (ρ) = 20
15 − 2ρ2 + 3ρ4

(5 + 3ρ2)2
.

Setting ũλ(ρ) = ρ−1(1 − ρ2)1−λ/2ṽλ(ρ) we find the equation

−(1 − ρ2)(ũ′′
λ +

2
ρ
ũ′

λ) + 2λρũ′
λ + (λ2 + λ − 2)ũλ +

Ṽ (ρ)

ρ2 ũλ = 0. (2.4)

Note that the Frobenius indices of Eq. (2.4) are {−4, 3} at 0 and {0, 1 − λ} at ρ = 1.
With minor modifications the same procedure can be performed in the case λ = 0. As
before, we say that λ ∈ C is an unstable eigenvalue of Eq. (2.4) if Re λ ≥ 0 and there
exists a nontrivial solution ũλ ∈ C∞[0, 1] of Eq. (2.4). In summary, we have proved the
following result.

Proposition 2.1. Let λ 	= 1 be an unstable eigenvalue of Eq. (1.4). Then λ is an unstable
eigenvalue of Eq. (2.4).

3. Absence of Unstable Eigenvalues for the Supersymmetric Problem

In this section we exclude unstable eigenvalues of Eq. (2.4). Via Proposition 2.1 this
implies the main result Theorem 1.2.

Theorem 3.1. The supersymmetric problem Eq. (2.4) does not have unstable eigenval-
ues.

The Frobenius indices of (2.4) at 0 are −4 and 3, hence the solution analytic at 0 has
the power series representation

∞∑
n=0

an(λ)ρ2n+3, a0 	= 0. (3.1)

Note that λ is an eigenvalue of (2.4) if and only if the radius of convergence of (3.1) is
greater than 1. Therefore, our aim is to prove that for any λ in the closed right half-plane
(which from now on we denote by H), (3.1) cannot be analytically extended through
ρ = 1.
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By substituting (3.1) into (2.4) we obtain a four term recurrence relation (with the
initial condition a0 = 1 and an = 0 for n < 0)

p3(n)an+3 + p2(n)an+2 + p1(n)an+1 + p0(n)an = 0, (3.2)

where

p3(n) = −100n2 − 950n − 1950,

p2(n) = −20n2 + (100λ − 150)n + 25λ2 + 375λ − 370,

p1(n) = 84n2 + (120λ + 462)n + 30λ2 + 330λ + 630,

p0(n) = 36n2 + (36λ + 126)n + 9λ2 + 63λ + 90.

One can check that an = (−3/5)n is an exact solution to (3.2), hence the order of the
recurrence (3.2) can be reduced by one through the substitution

bn = an+1 + 3
5 an . (3.3)

This yields a three term recurrence relation for bn

q2(n)bn+2 + q1(n)bn+1 + q0(n)bn = 0, (3.4)

where

q2(n) = p3(n),

q1(n) = p2(n) − 3
5 p3(n),

q0(n) = p1(n) − 3
5 p2(n) + 9

25 p3(n).

After substituting for pi (n) in the last three relations, dividing all of them by 5 and using
the qi notation for the new coefficients, we get

q2(n) = −20n2 − 190n − 390,

q1(n) = 8n2 + (20λ + 84)n + 5λ2 + 75λ + 160,

q0(n) = 12n2 + (12λ + 42)n + 3λ2 + 21λ + 30.

By letting An = q1(n)/q2(n) and Bn = q0(n)/q2(n), (3.4) becomes equivalent to

bn+2 + Anbn+1 + Bnbn = 0, (3.5)

with the initial condition b−2 = 0 and b−1 = 1.

Lemma 3.2. Given λ in the complex plane, either

lim
n→∞

bn+1(λ)

bn(λ)
= 1, (3.6)

or

lim
n→∞

bn+1(λ)

bn(λ)
= −3

5
. (3.7)
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Proof. Since limn→∞ An(λ) = −2/5 and limn→∞ Bn(λ) = −3/5, the characteristic
equation associated to (3.5) is

t2 − 2
5 t − 3

5 = 0. (3.8)

As the solutions to (3.8) (1 and−3/5) have distinctmoduli, by a theoremof Poincaré (see,
for example, [20], p. 343, or [6]), either bn is zero eventually in n, or limn→∞ bn+1(λ)/

bn(λ) exists and it is equal to either 1 or −3/5. Now, for a fixed λ, bn cannot be zero
eventually in n, since by backward induction from (3.5) one would get b−1 = 0, hence
the claim follows. ��

Note that in order to prove Theorem 3.1, it suffices to show that (3.6) holds for all λ
in H, for that implies non-analyticity of (3.1) at 1. Indeed, defining fλ by (3.1) and gλ

by gλ(ρ) = a0(λ)ρ +
∑∞

n=0 bn(λ)ρ2n+3, one easily checks that

fλ(ρ) = 5ρ2

3ρ2 + 5
gλ(ρ). (3.9)

So if (3.6) holds and therefore gλ is singular at 1, then, by (3.9), so is fλ.
Let rn = bn+1/bn . Then from (3.5) we obtain

rn+1 = −An − Bn

rn
, (3.10)

where

r−1 = b0
b−1

= −A−2(λ) = 1

18
λ2 +

7

18
λ +

4

15
. (3.11)

The idea is to find a “simple”, provably close approximation to rn in H, that converges
to 1 for any fixed λ, which would then imply (3.6).

We use the quasi-solution approach, initially developed for ordinary differential equa-
tions in [8,9], which we here, in a sense, extend to difference equations of type (3.10).
Namely, as a quasi-solution to (3.10) we define

r̃n(λ) = λ2

4n2 + 31n + 43
+

λ

n + 4
+
n + 2

n + 4
. (3.12)

Of course, the choice is not arbitrary, and in Sect. 4.1 we describe in some detail how
to obtain such an approximate solution. The quasi-solution r̃n turns out to be a good
approximation to rn in the whole of H.

Lemma 3.3. r1 and (r̃n)−1 for n ≥ 1, are analytic in H.

Proof. From (3.10) and (3.11) we compute

r1(λ) = 1

78

25λ6 + 825λ5 + 10945λ4 + 69735λ3 + 207694λ2 + 260856λ + 96192

25λ4 + 450λ3 + 2735λ2 + 5070λ + 2016
.

The denominator of r1 and the polynomials r̃n(λ) for n ≥ 1 are Hurwitz-stable i.e., all
of their zeros are in the (open) left half-plane, which can be straightforwardly checked
by, say, the Routh-Hurwitz criterion or its reformulation byWall (see [32] or Sect. 4.2).3

The conclusion follows. ��
3 There are, of course, elementary ways of proving this claim. However, the suggested approach is more

general.
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Now, let

δn = rn
r̃n

− 1. (3.13)

Substitution of (3.13) into (3.10) leads to the following recurrence relation for δn ,

δn+1 = εn + Cn
δn

1 + δn
, (3.14)

where

εn = −Anr̃n − Bn

r̃nr̃n+1
− 1 and Cn = Bn

r̃nr̃n+1
. (3.15)

Lemma 3.4. The following estimates hold in H,

|δ1| ≤ 1

4
, (3.16)

|εn| ≤ 1

20
, n ≥ 1, (3.17)

|Cn| ≤ 3

5
, n ≥ 1. (3.18)

Proof. The method of proof is the same for all three quantities, so we illustrate it only
on Cn .

Lemma 3.3 and (3.15) imply that Cn is analytic inH. Also, being a rational function,
Cn is evidently polynomially bounded inH. Hence, according to the Phragmén-Lindelöf
principle,4 it suffices to prove that (3.18) holds on the imaginary line. To that end, we
first bring Cn+1(λ) to the form of the ratio of two polynomials P1(n, λ) and P2(n, λ).5

Then, for t real, |Cn+1(i t)|2 is equal to the quotient of two polynomials, Q1(n, t2) =
|P1(n, i t)|2 and Q2(n, t2) = |P2(n, i t)|2. In order to show that |Cn+1(i t)| ≤ 3/5, for
all real t and n ≥ 0, all we need is to show that |Cn+1(i t)|2 = Q1(n, t2)/Q2(n, t2) ≤
9/25, or equivalently 9/25 · Q2 − Q1 ≥ 0. Using elementary calculations, we see that
9/25 ·Q2−Q1 has manifestly positive coefficients, and the variable t appears with even
powers only. Thus, (3.18) holds on the whole imaginary line, and the result follows. ��
Proof of the Theorem 3.1. From (3.14) and Lemma 3.4, a simple inductive argument
implies that

|δn| ≤ 1

4
, for all n ≥ 1, and λ ∈ H. (3.19)

Since for any fixed λ, limn→∞ r̃n(λ) = 1, (3.13) and (3.19) exclude the possibility
of (3.7). Hence, (3.6) holds in H, and the claim follows. ��

4 We use the sectorial formulation of this principle, see, for example, [31], p. 177.
5 For all three quantities, straightforward calculations would lead to the form that we used. However, to

prevent possible ambiguity, in Sect. 4.3 we give the explicit form (as a ratio of polynomials) for all three
quantities.
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4. Appendix

4.1. Description of how to obtain a quasi-solution. First, the minimax polynomial ap-
proximation6 of degree two to rn over an interval [0, 10] is found, where n ranges from
0 to 20. Then, appropriate rational functions in n are fitted to the coefficients of the
approximation polynomials.
We should point out that interval of polynomial approximation and the range of values
of n can vary, and the ones from the description are just our choice. We choose quadratic
polynomial approximations due to the fact that rn is a ratio of two polynomials whose
degrees differ by two.

4.2. Wall’s criterion for Hurwitz-stability. Let P(z) = zn + a1zn−1 + · · · + an be a
polynomialwith real coefficients, and let Q(z) = a1zn−1+a3zn−3+· · · be the polynomial
that contains exactly those terms of P(z) that have odd-indexed coefficient. Then all the
zeros of P(z) have negative real parts if and only if the quotient Q(z)/P(z) can be
represented in a finite continued fraction form

1/(a1 + 1/(a2 + 1/(a3 + · · · + 1/an) . . .),

where a1 = c1z + 1, a2 = c2z, . . . , an = cnz, and the coefficients c1, c2, . . ., cn are all
positive.
In our case, for the denominator of r1, the coefficients ci are c1 = 1/18, c2 = 135/736,
c3 = 33856/64863 and c4 = 36035/15456, and for r̃n , c1 = (n + 4)/(4n2 + 31n + 43), and
c2 = 1/(n + 2).

4.3. Detailed expressions for Cn, εn and δ1. We give details of these quantities in order
to fully clarify the notations. We have

Cn+1 = P1(n, λ)/P2(n, λ),

where

P1(n, λ) = −3(n + 5)(n + 6)(4n2 + 39n + 78)(4n2 + 47n + 121)

× [λ2 + (4n + 11)λ + 4n2 + 22n + 28]
and

P2(n, λ) = 10(2n2 + 23n + 60)[(n + 5)λ2 + (4n2 + 39n + 78)(λ + n + 3)]
× [(n + 6)λ2 + (4n2 + 47n + 121)(λ + n + 4)],

respectively. Furthermore, εn+1 = P3(n, λ)/P2(n, λ), where

P3(n, λ) = 5(n + 1)(n + 5)(n + 6)λ4

− 5(8n4 + 158n3 + 1095n2 + 3171n + 3162)λ3

− (112n5 + 2364n4 + 17243n3 + 48805n2 + 33244n − 36060)λ2

− 4(4n2 + 39n + 78)(4n2 + 47n + 121)

× [(3n2 + 5n − 3)λ − 4n2 − 3n + 36].
6 The minimax polynomial approximation of degree n to a continuous function f on a given finite interval

[a, b] is defined to be the best approximation, among the polynomials of degree n, to f in the uniform sense
on [a, b]. For the proof of existence and uniqueness of this approximation and an algorithm to obtain it, see
[26], §2.4.



Stability of Self-Similar Solutions 309

Finally,

δ1 = −5λ2(15λ3 − 20λ2 − 939λ + 1412) − 36(1093λ − 256)

(5λ2 + 78λ + 234)(25λ4 + 450λ3 + 2735λ2 + 5070λ + 2016)
.
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