
Digital Object Identifier (DOI) 10.1007/s00220-016-2583-1
Commun. Math. Phys. 347, 271–289 (2016) Communications in

Mathematical
Physics

The Vlasov-Poisson Dynamics as the Mean Field Limit
of Extended Charges

Dustin Lazarovici

Mathematisches Institut, Ludwig-Maximilians Universität, Theresienstr. 39, 80333 Munich, Germany.
E-mail: lazarovici@math.lmu.de

Received: 4 August 2015 / Accepted: 8 November 2015
Published online: 26 February 2016 – © Springer-Verlag Berlin Heidelberg 2016

Abstract: The paper treats the validity problem of the nonrelativistic Vlasov-Poisson
equation in d ≥ 2 dimensions. It is shown that the Vlasov-Poisson dynamics can be de-
rived as a combined mean field and point-particle limit of an N-particle Coulomb system
of extended charges. This requires a sufficiently fast convergence of the initial empirical

distributions. If the electron radius decreases slower than N−
1

d(d+2) , the corresponding
initial configurations are typical. This result entails propagation of molecular chaos for
the respective dynamics.

1. Introduction

We are interested in a microscopic derivation of the Vlasov-Poisson dynamics in d ≥ 2
spatial dimensions. This is the system of equations

∂t f + p · ∇q f + (k ∗ ρt ) · ∇p f = 0, (1)

where k is the Coulomb kernel

k(q) := σ
q

|q|d , σ = {±1} (2)

and

ρt (q) = ρ[ ft ](q) =
∫

f (t, q, p) d3 p (3)

is the charge density induced by the distribution function f (t, p, q) ≥ 0, describing the
density of particles with position q ∈ R

d andmomentum p ∈ R
d . Here, units are chosen

such that all constants, in particular the mass and charge of the particles, are equal to 1.
The Vlasov-Poisson equation provides an effective description of a collisionless

plasma with electrostatic (σ = +1) or gravitational (σ = −1) interactions. In the
gravitational case, the equation is also known as Vlasov-Newton.
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1.1. Derivation ofmean field equations. Kinetic equations of theVlasov type are usually
conceived of asmean field equations, effective descriptions of many-particle systems, in
which the N -particle interactions are approximated by an “average” effect, determining
an autonomous time-evolution for the distribution function f .

Classical results, dealing with simplified models with Lipschitz-continuous forces,
prove a statement of the following kind: If for an initial microscopic configuration
Z = (qi , pi )i=1,...,N the empirical distribution μN

0 [Z ] = 1
N

∑N
i=1 δqi δpi approxi-

mates a continuous density f0, then, at time t > 0, the time-evolved distribution
μN
t = 1

N

∑N
i=1 δqi (t)δpi (t) approximates ft , where ft is a solution of the corresponding

Vlasov equation of the form (1). Formally, the approximation is understood in terms of
weak convergence of probability measures, quantified by an appropriate metric. (Neun-
zert and Wick [19], Braun and Hepp [4], Dobrushin [6]; see also [18,24].)

1.2. Results for singular forces. For singular forces—up to but not including the
Coulomb case—similar results could be proven only recently. Hauray and Jabin [10]
treat force kernels bounded as |k(q)| ≤ C

|q|α with α < d − 1. For 1 < α < d − 1 they

require an N -dependent cut-off, which can be chosen as small as N−1/2d for α ↗ d−1,
while for α < 1 they are able to perform the mean field limit without cut-off. Pickl and
Boers improve the cut-off for singularities near the Coulomb case to N−1/d [1].

The microscopic justification of the Vlasov-Poisson equation, corresponding to the
case α = d − 1, has been an open problem, so far. In this paper, we propose a par-
ticle approximation by extended charges with N -dependent radius that can decrease

as fast as N−
1

d(d+2)+ε . The proof is based on a stability result of Loeper [16] and an
anisotropic variant of the Wasserstein distance. An alternative proof, generalizing the
methods introduced in [1], is simultaneously presented in [14].

The microscopic regularization proposed here can be understood as a nonrelativistic
analogue of the rigid charges model that was used by Golse to perform the mean field
limit for a regularized version of the Vlasov-Maxwell dynamics [8]. Our discussion
might thus also be interesting in view of a possible generalization to the relativistic
Vlasov-Maxwell system.

1.3. Convergence in law and molecular chaos. What all recent results with singular
forces have in common is that they are probabilistic in the sense that the mean field limit
can be performed for typical initial conditions. In other words, the microscopic density
μN
t converges in law to the constant variable ft , which is given as the solution of the

corresponding mean field equation. By a well-known result in probability theory (e.g.
[9,13,17,25, Proposition 2.2 ]), this is equivalent to molecular chaos in the following
sense: If at time t = 0 the particles are identically and independently distributed with
law f0 and if the corresponding product measure FN

0 = ⊗N f0 on R6N evolves with the
microscopic N -particle flow, then, for times t > 0, it holds that FN

t = �N
t #F

N
0 ≈ ⊗N ft ,

where the approximation is understood in terms of convergence of marginals. That is,
writing xi = (qi , pi ), we consider the k-particle marginal

(k)FN
t (x1, . . . , xk) :=

∫
FN
t (Z) dxk+1 . . . dxN .

Then (k)FN
t converges weakly to ⊗k f0 as N →∞ for all k ∈ N.
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Note that the probabilistic nature of these statements is in contrast to earlier results in
[4,6], which are, in effect, deterministic, allowing arbitrary sequences of initial configu-
rations. One reason is that for singular forces, there exist “bad” initial conditions leading
to clustering of particles and significant deviations from the typical mean field behavior.

1.4. Comparison of recent result, open problems. The strategy employed in [10], as well
as in the present paper, is thus to impose additional constraints on the initial conditions,
subsequently showing that these constraints are satisfied with probability 1 in the limit
N → ∞. In [10], the respective bounds are imposed on the concentration of particles
at t = 0, while in our proof, the probabilistic element enters through the requirement
of a sufficiently fast convergence of the initial microscopic distribution. In any case,
these assumptions assure that the initial configuration is “well-placed”, so to speak,
preventing, in particular, a blow-up of the microscopic dynamics.

One of the key innovations in our proof is that a regularization is applied on the level
of the charge density, which allows us to work with bounded densities rather than Dirac
masses. The L∞-norm of the microscopic charge density is controlled by propagating a
respective Wasserstein bound (Lemma 4.3). Similar estimates can be used to carry over
stronger regularity properties from the Vlasov density to the microscopic density. While

this method is rather simple, it requires a relatively large cut-off of order ∼ N−
1

d(d+2)+ε

for some ε > 0. Moreover, there is no immediate connection between the width of the
cut-off and the strength of the singularity. This is in contrast to the situation in [10] or
[1], where the lower bound on the required regularization decreases with α.

Most notably, Hauray and Jabin [10], are able to prove molecular chaos for weak
singularities (α < 1) with no cut-off at all, while the method proposed here requires
in any case a regularization (smearing of the charges). However, we emphasize that the
results in [10] do not include the Coulomb case α = d − 1, which is the main focus of
our paper. Furthermore, our result applies also in dimension 2, while the assumptions
required in [10] are no longer generic in that case.

The method introduced in [1] and extended in [14] is designed for stochastic initial
conditions, thus aiming directly at a typicality result. Rather than controlling the differ-
ence between f N andμN in some weak metric, one considers a stochastic process of the
form E(|� f

t,0(Z)−�
μ
t,0(Z)|∞), where �

f
t,0,�

μ
t,0 are the N-particle flows generated by

themean field dynamics and themicroscopic dynamics, respectively. The corresponding
proof allows the cut-off to decrease as fast as N−1/d+ε , i.e., (almost) as fast as the typical
distance between a particle and its nearest neighbour.

Whether mean field results for strongly singular forces—approaching or even in-
cluding the Coulomb case—can be obtained with no cut-off at all is an open question.
Concerning related problems, we believe that some of the methods presented here could
be generalized to the relativistic Vlasov-Maxwell dynamics and we leave this to be
treated in a future paper.

2. The Microscopic Model

As the force kernel considered here is strongly singular at the origin, we will require
a regularization on the microscopic level. We shall consider as a microscopic model
the dynamics of smeared (extended) charges with Coulomb interactions. The cut-off
parameter rN thus has a straight-forward physical interpretation as a finite electron
radius. In the relativistic case, an analogous model of rigid charges (without collisions
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and rotations) was used by Golse to derive a regularized version of the Vlasov-Maxwell
system [8] (c.f. also Rein [21]).

While the smearing of charges is a natural way to regularize point-interactions, the
cut-off thus introduced is a technical necessity rather than a realistic physical model. In
particular, the N -dependence of the electron radius might seem strange from a physical
point of view, though similar regularizations are commonly used in numerical simula-
tions. Also note that in our proof, the radius has to be chosen so large that a great number
of particles will typically overlap. Intuitively, the combined limit N → ∞, rN → 0
describes a regime where a large number of smeared electrons blurs into a continuous
charge cloud.
As before, let

k : Rd → R
d , q → σ

q

|q|d ,

denote the Coulomb kernel. That is, if 	 : Rd → R is a solution of Poisson’s equation


	 = ∓c ρ, lim|q|→+∞	(q) = 0

in the sense of

	(q) =
∫

σ

|q − q ′|d−2 ρ(q ′) ddq ′, d ≥ 3,

or

	(q) = −σ

∫
ln(q − q ′)ρ(q ′) dq ′, for d = 2,

then

−∇	(q) = k ∗ ρ(q) = σ

∫
q − q ′

|q − q ′|d ρ(q ′) ddq ′.

We consider a system of N charges, smeared out by a smooth, non-negative, spherically
symmetric form-factor χ ∈ C∞0 (Rd). For simplicity, we shall assume that χ satisfies:

(i) supp(χ) ⊆ B(1; 0) = {x ∈ R
d : ‖x‖ ≤ 1}.

(ii) ‖χ‖∞ = supx∈R χ(x) = 1.
(iii) ‖χ‖1 =

∫
χ(x)dx = 1.

We call a sequence (rN )N∈N of positive real numbers a rescaling sequence if it ismonoto-
nously decreasing with r1 = 1 and lim

N→∞ rN = 0. Given such a rescaling sequence, we

define a rescaled form-factor as

χN (x) := 1

rdN
χ

(
x

rN

)
, N ∈ N. (4)

The configuration of the microscopic system is given by Z(t) = (qi (t), pi (t))1≤i≤N ,
where qi (t) is the center of mass of particle i , and pi (t) the corresponding momentum
at time t . The equations of motion in the so called mean field scaling read:

{
q̇i (t) = pi (t)

ṗi (t) = K N (qi ; q1, . . . , qN ),
(5)
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with

K N (qi ; q1, . . . , qN ) := 1

N

N∑
j=1

∫ ∫
χN (q j − y)k(z − y)χN (qi − z) dd y dd z. (6)

The N -particle force (6) can be rewritten in the following way: Given the microscopic
density μN

t = 1
N

∑N
i=1 δqi (t)δpi (t), one checks that

K N (·; q1, . . . , qN ) = χN ∗ k ∗ χN ∗ ρ[μN
t ] =: k̃ ∗ ρ̃[μN

t ],
where we introduce the notation

ϕ̃ := χN ∗x ϕ, (7)

for ϕ, a measure or measurable function on R
d and ∗ denoting the convolution with

respect to the space variable.
Except for the scaling-factor N−1, these equations describe the regular Coulomb

dynamics for smeared charges with form-factor χN . They can be understood as the
nonrelativistic limit of a Maxwell-Lorentz system of rigid charges (also known as the
Abraham model, c.f. [23, Chs. 2, 13]). The double-convolution results from the fact
that the charge enters the interaction-term quadratically; In other words, the charges
acting and the charge being acted upon are both smeared out. Note that this system is
Hamiltonian for

H(qi , pi ) =
N∑
i=1

1

2
p2i +

1

2N

∑
i, j

∫ ∫
χ(y − qi )

σ

|z − y|d−1χ(z − q j )dy dz,

and thus conserves total energy.Note also that thisHamiltonian includes self-interactions.

2.1. The regularized Vlasov-Poisson equation. For the microscopic model described
above, we introduce a corresponding mean field equation:

∂t f + p · ∇q f + kN [ρt ] · ∇p f = 0,

kN [ρt ](q) := χN ∗ k ∗ χN ∗ ρt (q), (8)

ρt (q) = ρ[ ft ](q) =
∫

f (t, q, p) dd p.

We call this the regularized Vlasov-Poisson system with cut-off parameter rN . For N →
∞, the form-factor χN approximates a delta-measure in the sense of distributions and
(8) formally reduces to the Vlasov-Poisson system (1).

2.2. The method of characteristics. Let ν = (νt )t∈[0,T ) a continuous family of probabil-
ity measures onRd×R

d for T ∈ R
+∪{+∞}. Let ρt [ν](q) = ∫

ν(q, p) dd p the induced
charge distribution on R

d . We denote by ϕν
t,s =

(
Qν(t, s, q0, p0), Pν(t, s, q0, p0)

)
the

one-particle flow on R
d × R

d solving:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d
dt Q = P
d
dt P = χN ∗ k ∗ χN ∗ ρ(Q)

Q(s, s, q0, p0) = q0
P(s, s, q0, p0) = p0.

(9)
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This flow exists and is well-defined since the vector-field is Lipschitz for all N . If
f N (t, q, p) is a solution of (8), it is now straight-forward to check that

f Nt = ϕ
f N
t,s # f

N
s , ∀0 ≤ s ≤ t < T . (10)

Here,ϕ(·)# f denotes the image-measure of f underϕ, definedbyϕ# f (A) = f (ϕ−1(A))

for any Borel set A ⊆ R
2d .

Conversely, if ft is a fixed-point of (νt ) → ϕν
t # f0, it is a solution of (8) with initial

datum f0. In particular, one observes that Z(t) = (qi (t), pi (t))i=1,...,N is a solution of
(5) if and only ifμN [Z(t)] = 1

N

∑N
i=1 δqi (t)δpi (t) solves (8) in the sense of distributions.

Basically, our aim is thus to show that this relation carries over to the limit N →∞.
For the (unregularized) Vlasov-Poisson equation, the corresponding vector-field is not
Lipschitz, in general. However, if we assume the existence of a solution ft with ρ ∈
L∞([0, T ] ×R

d), the mean field force k ∗ ρt does satisfy a Log-Lip bound of the form
|k ∗ ρt (x) − k ∗ ρt (y)| ≤ C |x − y||log(|x − y|)| (for |x − y| < 1

2 , let’s say). This is
sufficient to ensure the existence of a characteristic flow ψt,s = (Qt,s, Pt,s) solving

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d
dt Qt,s = Pt,s
d
dt Pt,s = k ∗ ρ[ ft ](Qt,s)

Q(s, s, q0, p0) = q0
P(s, s, q0, p0) = p0

(11)

such that ft = ψt,s# fs, for all 0 ≤ s ≤ t ≤ T .

2.3. Existence of solutions. For the regularized mean field Eq. (8), all forces are Lip-
schitz continuous and the solution theory is fairly standard, see e.g. [4,6]. For the actual
Vlasov-Poisson system, the issue is more subtle. Fortunately, in the physically most rel-
evant, 3-dimensional case, we can rely on various results, establishing global existence
and uniqueness of (classical) solutions under reasonable conditions on the initial f0
(Pfaffelmoser [20], Schaeffer [22], Lions and Perthame [15], Horst [12]). The situation
is similar in the 2-dimensional case, treated in Ukai and Okabe [26] andWollmann [28].

For the rest of the paper, we shall work under the following assumption:

Assumption 2.1. For f0 ∈ L1 ∩ L∞(Rd ×R
d ;R+

0) there exists a T
∗ > 0 such that the

Vlasov-Poisson system (1-3) has a unique solution ft on [0, T ∗) with f (0, ·, ·) = f0.
Moreover, as we consider the sequence of solutions to the regularized Eq. (8), the charge
density remains bounded uniformly in N and t , i.e. ∃C0 < +∞ such that

‖ρ[ f Nt ]‖∞ ≤ C0, ∀t < T ∗ ∀N ∈ N ∪ {+∞}, (12)

where, with a slight abuse of notation, f∞t := ft .

In fact, given a bounded charge density, uniqueness of the solution (in the set of bounded,
positive measures) is proven in Loeper [16]. Moreover, it is well known that as long as
the charge density is bounded, solutions with smooth initial data remain smooth (see
e.g. in [11]).

In dimension d = 3, the existence result of Lions and Perthame [15] ensures that the
above assumption is satisfied for a relatively large class of initial data and T ∗ = +∞.
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Theorem 2.2 (Lions and Perthame). Let f0 ≥ 0, f0 ∈ L1(R3 × R
3) ∩ L∞(R3 × R

3)

satisfy ∫
|p|m f0(q, p) dq dp < +∞ (13)

for all m < m0 and some m0 > 3.

(1) Then, the Vlasov-Poisson system defined by Eqs. (1)–(3) has a continuous, bounded
solution f (t, ·, ·) ∈ C(R+; Lr (R3 × R

3) ∩ L∞(R+; L∞(R3 × R
3)), 1 ≤ r < ∞,

satisfying

sup
t∈[0,T ]

∫
|p|m f (t, q, p) dp dp < +∞, (14)

for all T <∞,m < m0.
(2) If, in fact, m0 > 6 and we assume that f0 satisfies

supess{ f0(q ′ + pt, p′) : |q − q ′| ≤ Rt2, |p − p′| < Rt}
∈ L∞

(
(0, T )× R

d
q ; L1(R3

p)
)

(15)

for all R > 0 and T > 0, then there exists C > 0 such that

‖ρ[ f Nt ]‖∞ < C, ∀t > 0 ∀N ∈ N ∪ {∞}. (16)

Note that Lions and Perthame state (16) only for ft , though they remark (and it is straight-
forward to check) that the proof actually yields an upper bound on the charge densities
ρ[ f Nt ] as one considers a sequence of regularized time-evolutions as, for instance, in
(8).
In higher dimensions, where blow-up might occur, there exists at least some T ∗ > 0,
depending only on f0, such that (15) is satisfied, if one assumes that f0 has compact
support. This is ensured by the following lemma.

Lemma 2.3 (Local existence of solutions). Let f0 ∈ L1 ∩ L∞(Rd ×R
3) with compact

support and f a (local) solution of (1) with f |t=0= f0. Let

D(t) := sup {|q| : ∃p ∈ R
d : f (t, q, p) �= 0} (17)

R(t) := sup {|p| : ∃q ∈ R
d : f (t, q, p) �= 0} (18)

the diameter of the support in the q-, respectively p-coordinates. Then there exists a
constant C > 0 such that

D(t) ≤ D(0) +

t∫

0

R(s) ds (19)

R(t) ≤ R(0) + C ‖ f0‖∞‖ f0‖1/d1

t∫

0

Rd−1(s) ds. (20)

These estimates hold independent of N as we consider the sequence f N of solutions to
the regularized Eq. (8) with f N |t=0= f0.
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3. Statement of the Results

Our approximation result for the Vlasov-Poisson dynamics is formulated in terms of
(modified) Wasserstein distances. In the context of kinetic equations, the Wasserstein
distance was introduced by Dobrushin [6]. Here, we shall briefly recall the definition
and some basic properties. For further details, we refer the reader to the book of Villani
[27, Chapter 6].

Definition 3.1. LetP(Rk) the set of probabilitymeasures onRk (equippedwith its Borel
algebra). For given μ, ν ∈ P(Rk) let �(μ, ν) be the set of all probability measures
R
k × R

k with marginal μ and ν respectively.
For p ∈ [1,∞) we define the Wasserstein distance of order p by

Wp(μ, ν) := inf
π∈�(μ,ν)

( ∫

Rk×Rk

|x − y|p dπ(x, y)
)1/p

. (21)

Convergence inWasserstein distance implies, in particular, weak convergence inP(Rk),
i.e. ∫

�(x) dμn(x)→
∫

�(x) dμ(x), n→∞,

for all bonded, continuous functions �. Moreover, convergence in Wp implies conver-
gence of the first p moments. Wp satisfies all properties of a metric on P(Rk), except
that it may take the value +∞.

An important result is the Kantorovich-Rubinstein duality:

W p
p (μ, ν) = sup

{∫
�1(x) dμ(x)−

∫
�2(y) dν(y) :

(�1,�2) ∈ L1(μ)× L1(ν),�1(y)−�2(x) ≤ |x − y|p
}
. (22)

A particularly useful case is the firstWasserstein distance, for which the problem reduces
further to

W1(μ, ν) = sup
‖�‖Lip≤1

{∫
�(x) dμ(x)−

∫
�(x) dν(x)

}
,

where ‖�‖Lip := sup
x �=y

�(x)−�(y)
|x−y| , to be compared with the bounded Lipschitz distance

dBL(μ, ν) = sup
{∫

�(x) dμ(x)−
∫

�(x) dν(x) ; ‖�‖Lip, ‖�‖∞ ≤ 1
}
.

We can now state our precise results in the following theorems.

Proposition 3.2 (Deterministic Result). Let f0 ∈ L1 ∩ L∞(Rd × R
d), f ≥ 0. Let

(rN )N∈N be a rescaling sequence and f Nt the unique solution of the regularized Vlasov-
PoissonEq. (8)with f N (0, ·, ·) = f0. Assume that on [0, T ] the sequence ( fN )N satisfies
the uniform bound (12) on the induced charge densities. Suppose we have a sequence
of initial conditions Z ∈ R

6N such that

lim
N→∞ r

−(1+ d
2 +ε)

N W2(μ
N
0 [Z ], f0) = 0 (23)
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for some ε > 0. Then it holds that

lim
N→∞ r

−(1+ d
2 )

N W2(μ
N
t [Z ], f Nt ) = 0, ∀0 ≤ t ≤ T . (24)

Since we will also show that W2( f Nt , ft ) = o(r1−ε
N ) (Proposition 4.6) this establishes a

particle approximation of the Vlasov-Poisson equation for initial conditions satisfying
(23).

Theorem 3.3 (Typicality Result). Let f0 ∈ L∞(Rd × R
d) a probability measure such

that the Vlasov-Poisson Eq. (1) has a unique solution on [0, T ∗), T ∗ ∈ R
+ ∪ {+∞}

with f (0, ·, ·) = f0. Assume that the sequence ( fN )N of solutions to the regularized
Vlasov-Poisson Eq. (8) with the same initial data satisfies the uniform bound (12) on the
induced charge densities. Assume, in addition, that there exists k > 2d

d−1 such that

Mk( f0) :=
∫

(|q| + |p|)k f0(q, p) dq dp < +∞. (25)

Suppose that rN ≥ N−δ with

δ = 1− ε

d(2 + d + 2ε)
, ε > 0.

Then there exist constants C1,C2,C3 such that for all T < T ∗ and N large enough that

rN ≤ e−(
2C1T+1

ε
)2 it holds that

P0

[
sup

t∈[0,T ]
W2(μ

N
t [Z ], ft ) > r1−ε

N

]
≤ C2

(
e−C3N ε

+ N 1− k
2 +

k
2d ), (26)

where the probabilityP0 is defined in terms of the productmeasure⊗N f0 on (Rd×Rd)N .
The constant C1 depends on d, χ and C0 as in (12), while C2,C3 depend on d, k and
Mk( f0).

Remark 3.4. 1. In dimension 3, the necessary cut-off is of order N−δ with δ < 1
15 .

2. If the finite moment condition (25) is replaced by the assumption of a finite expo-
nential moment

∫
eγ |x |κd f0(x), the rate of convergence becomes exponential, as

well. This holds, in particular, for compactly supported f0.

3.1. Sketch of the Proof. We give here a brief sketch of our derivation and the central
concepts and ideas on which it is based.

1. To control the distance between microscopic density and mean field density, we
introduce a variant WN

2 of the second Wasserstein distance defined with respect to
the N -dependent metric:

dN (
(q1, p1), (q2, p2)

) := (1 ∨√|log(rN )|) |q1 − q2| + |p1 − p2|,
where a ∨ b := max{a, b}.

2. We use an estimate from Loeper’s proof of uniqueness of weak solutions with
bounded density [16] to control the L2-norm of the difference between mean field
force and microsocpic force in terms of the quadratic Wasserstein distance.
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3. The regularization yields a Lipschitz bound on the microscopic force that diverges
logarithmically with N . In terms of the modified Wasserstein distance, this leads to
a Gronwall estimate of the form

d

dt
W N

2 (μN
t , f Nt ) ≤ C

√|log(rN )|WN
2 (μN

t , f Nt ).

4. The previous bounds can be applied if the (smeared) microscopic charge density
ρ̃μ = χN ∗ ρ[μt ] remains bounded uniformly in N . We show that this can be
assured as long as W2(μ

N
t [Z ], f Nt ) = O(r−(1+d/2)

N ). Given a sufficiently fast rate
of convergence at t = 0, i.e. assumption (23), we conclude with 3. that this bound
propagates.

5. It remains to check that the constraints so imposed on the initial data are satisfied for
typical Z , if the initial configuration is chosen randomly according to the product
law⊗N f0. This is achievedwith a recent large deviation estimate found by Fournier
and Guilin [7]. This estimate also sets the upper bound on the rate at which rN can
go to zero in the limit N →∞.

4. A Gronwall-Type Argument

Our mean field limit is based on the following stability result by Loeper [16, Theorem
2.9], which is proven by methods from the theory of optimal transportation.

Proposition 4.1 (Loeper). Let k the Coulomb kernel and ρ1, ρ2 ∈ L1(Rd) ∩ L∞(Rd)

two (probability) densities. Then

‖k ∗ ρ1 − k ∗ ρ2‖2 ≤
[
max{‖ρ1‖∞, ‖ρ2‖∞}

]1/2
W2(ρ1, ρ2). (27)

Moreover, we require the following estimates on the mean field force:

Lemma 4.2. Let k as before and ρ ∈ L1(Rd) ∩ L∞(Rd). Then it holds that

(i) ‖k ∗ ρ‖∞ ≤ |Sd−1| ‖ρ‖∞ + ‖ρ‖1
(ii) ‖χN ∗ k ∗ ρ‖Lip ≤ CL(1 ∨ |log(rN )|) (‖ρ‖1 + ‖ρ‖∞)
where we use again the notation a∨ b := max{a, b}. |Sd−1| denotes the area of the unit
sphere and CL is a constant depending on χ .

Proof. (i) For the first inequality, we compute

‖k ∗ ρ‖∞ ≤
∥∥∥

∫

|y|<1

k(y)ρ(x − y) dd y
∥∥∥∞ +

∥∥∥
∫

|y|>1

k(y)ρ(x − y) dd y
∥∥∥∞

≤ ‖ρ‖∞
∫

|y|<1

1

|y|d−1 d
d y + ‖ρ‖1 = |Sd−1|‖ρ‖∞ + ‖ρ‖1.

(ii)We split the expression as
∥∥∇(χ ∗ k ∗ ρ)

∥∥∞ ≤
∥∥∇(χ ∗ k|x≥rd+1N

∗ ρ)
∥∥∞ +

∥∥∇(χ ∗ k|x<rd+1N
∗ ρ)

∥∥∞
≤ ∥∥χN

∥∥
1

∥∥∇k|x≥rd+1N
∗ ρ

∥∥∞ +
∥∥∇χN

∥∥∞
∥∥k|x<rd+1N

∥∥
1

∥∥ρ
∥∥∞.
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Now, we have:∣∣∣∣∇k|x≥rd+1N
∗ ρ (x)

∣∣∣∣ ≤
∫

|y|≥rd+1n

1

|y|d ρ(x − y) dd y

≤
∫

rd+1N ≤|y|≤1

1

|y|d ρ(x − y)dd y +
∫

|y|>1

1

|y|d ρ(x − y)dd y

≤ (d + 1)|Sd−1| ‖ρ‖∞ log(r−1N ) + ‖ρ‖1.
Furthermore:

‖∇χN‖∞ = r−(d+1)
N ‖∇χ‖∞

and ∥∥k|x<rd+1N

∥∥
1 =

∫

|y|<rd+1N

1

|y|d−1 dd y = |Sd−1| rd+1N .

Putting everything together, the statement follows. ��
For the continuous solutions f Nt to the (regularized) Vlasov-Poisson equation, the cor-
responding charge-densities ρt = ρ[ f Nt ] are bounded by assumption. The challenge
is to provide a bound on the microscopic charge density that holds uniformly in N ,
i.e. as the electron radius decreases and the forces become more singular. The idea is
to show that as long as μN

t and f Nt are close as probability measures, the L∞-norm
of ρ[ f Nt ] provides a bound on the L∞-norm of ρ̃[μN

t ]. A simple such estimate was
obtained in [3, Proposition 2.1] for the first Wasserstein distance. In view of the general
Kantorovich-Rubinstein duality, we generalize this result to Wasserstein distances of
higher order.

Lemma 4.3. Let ρ1, ρ2 two probability measures on R
d and ρ2 ∈ L∞(Rd). Then:

‖ρ̃1‖∞ ≤ |Bd(2)| ‖ρ2‖∞ + r−(p+d)
N W p

p (ρ1, ρ2), (28)

where Bd(2) ⊂ R
d is the d-dimensional ball with radius 2.

Proof. For any integrable function �, we consider the c-conjugate

�c(y) := sup
x
{�(x)− |x − y|p}.

This is the smallest function satisfying �c(y) ≥ �(y) and �(x) − �c(y) ≤ |x −
y|p, ∀x, y ∈ R

d .
Now, we write

ρ̃1(x) = r−(d+p)
N

[∫
rd+pN χN (x − y)ρ1(y)dy −

∫
(rd+pN χN (x − ·))c(z)ρ1(z) dz

+
∫

(rd+pN χN (x − ·))c(z) ρ1(z)dz
]
.

By the Kantorovich duality theorem (22) we have∫
rd+pN χN (x − y) ρ1(y)dy −

∫
(rd+pN χN (x − ·))c(z) ρ2(z)dz ≤ W p

p (ρ1, ρ2).
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It remains to estimate ∫
(rd+pN χN (x − ·))c(z) ρ2(z) dz.

Recalling that ‖χN‖∞ = r−dN , we find

(rd+pN χN (x − ·))c(z) = sup
y∈R3
{rd+pN χN (x − y)− |y − z|p} ≤ rd+pN ‖χN‖∞ = r pN .

Moreover, we observe that

supp (rd+pN χN (x − ·))c ⊆ B(2rN ; x) := {z ∈ R
3 : |z − x | ≤ 2rN }, (29)

since |z− x | > 2rN implies χN (x− y) = 0, unless |y− z| ≥ rN . But then: r
d+p
N χN (x−

y)− |y − z|p ≤ rd+pN r−dN − r pN = 0. Hence,
∫

(rd+pN χN (x − ·))c(z)ρ2(z)dz ≤ ‖ρ2‖∞ r pN |B(2rN ; x)| ≤ 2d |Bd(1)| ‖ρ2‖∞ rd+pN .

In total, we find
‖ρ̃1‖∞ ≤ r−(p+d)

N W p
p (ρ1, ρ2) + |Bd(2)|‖ρ2‖∞

as announced. ��
We shall apply the previous Lemma to ρ1 := ρ[μN

t (Z)] and ρ2 := ρ[ f Nt ] using
‖ρ[ f Nt ]‖ ≤ Cρ and W2(ρ[μN

t (Z)], ρ[ f Nt ]) ≤ W2(μ
N
t (Z), f Nt ) to get a bound on

the (smeared) microscopic charge density.
Finally, we need the following inequalities for the smeared densities.

Lemma 4.4. Let χ ∈ C∞0 (Rd), (rN )N a rescaling sequence and χN the rescaled form-
factor as defined in (4). Let μ, ν ∈ P(Rd) and ν̃ = χN ∗x ν etc. Then we have for
1 ≤ p <∞:

(i) Wp(ν̃, ν) ≤ rN ,
(ii) Wp(μ̃, ν̃) ≤ Wp(μ, ν).

Proof. (i) Define π(x, y) := ν(x)χN (x − y) and observe that
∫
dx π(x, y) = ν̃(y),∫

dy π(x, y) = ν(x), hence π ∈ �(ν̃, ν). π has support in {|x − y| < rN }. Thus, we
conclude

Wp(ν̃, ν) = inf
π ′∈�(ν,ν̃)

( ∫

Rd×Rd

|x − y|p dπ ′(x, y)
)1/p

≤
( ∫

Rd×Rd

|x − y|p dπ(x, y)
)1/p ≤ rN .

(ii) In view of the Kantorovich duality (22), we find for (�1,�2) ∈ L1(μ)× L1(ν)with
�1(x)−�2(y) ≤ |x − y|p:
∫

�1(x) dμ̃(x)−
∫

�2(y) dν̃(y) =
∫

(χ ∗�1)(x) dμ(x)−
∫

(χ ∗�2)(y) dν(y).
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But χ ∗�1 and χ ∗�2 also satisfy

∣∣χ ∗�1(x)− χ ∗�2(y)
∣∣ =

∣∣∣
∫

χ(z)�1(x − z) dz −
∫

χ(z)�2(y − z) dz
∣∣∣

≤
∫

χ(z)
∣∣�1(x − z)−�2(y − z)

∣∣ dz ≤
∫

χ(z) |x − y|p dz = |x − y|p.

Hence, we have
∫

�1 dμ̃−
∫

�2 dν̃ =
∫

�̃1 dμ−
∫

�̃2 dν ≤ Wp(μ, ν)

and taking the supremum over all (�1,�2) yields the desired inequality. ��

4.1. Modified Wasserstein distance. As we want to establish a Gronwall inequality for
the distance between empirical density and Vlasov density, we aim for a bound of the
form:

dist(μN
t+
t , f Nt+
t )− dist(μN

t , f Nt ) ∝ dist(μN
t , f Nt )
t + o(
t).

The choice of a metric, giving precise meaning to dist(μN
t , f Nt ), is thus a balancing act.

While a stronger metric is, in general, more difficult to control, it also yields stronger
bounds as it appears on the right hand side of the Gronwall estimate.

If we compare the characteristic flow of the mean field dynamics with the flow
corresponding to the “true”, i.e.microscopic, dynamics, the growth in the spatial distance
is trivially bounded by the distance of the respective momenta. The only problem lies
in controlling fluctuations in the force, i.e. the growth of the distance in momentum
space. The idea, first employed in [14], is thus to be more rigid on deviations in the
q-coordinates, weighing them with an appropriate N -dependent factor, and use this to
obtain better control on the forces.

Definition 4.5. Let (rN )N∈N be a rescaling sequence. On R
d × R

d we introduce the
(N -dependent) metric:

dN (
(q1, p1), (q2, p2)

) := (1 ∨√|log(rN )|) |q1 − q2| + |p1 − p2|. (30)

Now let WN
p (·, ·) be the p’th Wasserstein metric with respect to dN , i.e.:

WN
p (μ, ν) := inf

π∈�(μ,ν)

( ∫

Rd×Rd

dN (x, y)p dπ(x, y)
)1/p

. (31)

Note that Wp(μ, ν) ≤ WN
p (μ, ν) ≤ (1∨√|log(rN )|)Wp(μ, ν), ∀μ, ν ∈ P(Rd ×R

d).
Finally, we define

W ∗(μ, ν) := min
{
1, r

−(1+ d
2 )

N W N
2 (μ, ν)

}
. (32)

Obviously, convergence with respect to W ∗ is much stronger than convergence with
respect to W2. Concretely, we have for any sequence (νN )N∈N and ν ∈ P(Rd × R

d):

W ∗(νN , ν)→ 0⇒ W2(νN , ν) = o
(
r
1+ d

2
N

)
.



284 D. Lazarovici

4.2. Deterministic result. We now come to the central part of our argument:

Proof of Proposition 3.2. Let N ∈ N and π0 ∈ �(μN
0 , f0). Let ϕ

μ
t = (Qμ

t , Pμ
t ) and

ϕ
f
t = (Q f

t , P f
t ) the flow induced by the characteristic Eq. (9) for μN

t and f Nt , respec-
tively. For any t ∈ [0, T ], T < T ∗, define the (N -dependent) measure πt onR6N ×R6N

by πt = (ϕ
μ
t , ϕ

f
t )#π0. Then πt ∈ �(μN

t , ft ), ∀t ∈ [0, T ]. We set

D(t) :=
[ ∫

R6×R6

dN (x, y)2 dπt (x, y)
]1/2

=
[ ∫

R6×R6

(
(1 ∨√|log(rN )|) |x1 − y1| + |x2 − y2|

)2
dπt (x, y)

]1/2

=
[ ∫

R6×R6

(
(1 ∨√|log(rN )|) |Qμ

t (x)− Q f
t (y)| + |Pμ

t (x)− P f
t (y)|

)2
dπ0(x, y)

]1/2
.

Note that WN
2 (μN

t , f Nt ) < D(t) for any π0 ∈ �( f0, f0). Now we consider:

D∗(t) := min
{
1, r

−(1+ d
2 )

N D(t)
}
. (33)

Obviously, d
dt D

∗(t) ≤ 0 whenever D(t) ≥ r
1+ d

2
N since D∗(t) is already maximal. For

D(t) < r
1+ d

2
N , we compute:

d

dt
D2(t)

= 2
∫ (

(1 ∨√|log(rN )|) |Qμ
t (x)− Q f

t (y)| + |Pμ
t (x)− P f

t (y)|
)
·

(
(1 ∨√|log(rN )|) |Pμ

t (x)− P f
t (y)| + ∣∣k̃ ∗ ρ̃

μ
t (Qμ

t (x))− k̃ ∗ ρ̃
f
t (Q f

t (y))
∣∣) dπ0(x, y).

The interesting term to control is the interaction term

∣∣k̃ ∗ ρ̃
μ
t (Qμ

t (x))− k̃ ∗ ρ̃
f
t (Q f

t (y))
∣∣

≤ ∣∣k̃ ∗ ρ̃
μ
t (Qμ

t (x))− k̃ ∗ ρ̃
μ
t (Q f

t (y))
∣∣ (34)

+
∣∣k̃ ∗ ρ̃

μ
t (Q f

t (y))− k̃ ∗ ρ̃
f
t (Q f

t (y))
∣∣. (35)

We begin with (34) and find with Lemma 4.2:

∣∣k̃ ∗ ρ̃
μ
t (Qμ

t (x))− k̃ ∗ ρ̃
μ
t (Q f

t (y))
∣∣

≤ CL(1 ∨ |log(rN )|)(1 + ‖ρμ
t ‖∞)

∣∣Qμ
t (x)− Q f

t (y)
∣∣. (36)

Hence, we have
d

dt
D2(t) ≤ J1(t) + J2(t), (37)
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with

J1(t) := 2
∫

dπ0(x, y)
(
(1 ∨√|log(rN )|) |Qμ

t (x)− Q f
t (y)| + |Pμ

t (x)− P f
t (y)|

)
·

(
(1∨√|log(rN )|)|Pμ

t (x)−P f
t (y)|+CL(1∨|log(rN )|)(1+‖ρμ

t ‖∞)
∣∣Qμ

t (x)−Q f
t (y)

∣∣),

(38)

J2(t) := 2
∫ (

(1 ∨√|log(rN )|) |Qμ
t (x)− Q f

t (y)| + |Pμ
t (x)− P f

t (y)|
)
·

∣∣k̃ ∗ ρ̃
μ
t (Q f

t (y))− k̃ ∗ ρ̃
f
t (Q f

t (y))
∣∣ dπ0(x, y). (39)

Now we observe that

J1(t) ≤ CL(1 ∨ |log(rN )|)(1 + ‖ρμ
t ‖∞)D2(t), (40)

while for the second term, we find with Hölders inequality

J2(t)

≤ 2
[∫ (

(1 ∨√|log(rN )|) |Qμ
t (x)− Q f

t (y)| + |Pμ
t (x)− P f

t (y)|
)2
dπ0(x, y)

]1/2
(41)[∫ ∣∣k̃ ∗ ρ̃

μ
t (Q f

t (y))− k̃ ∗ ρ̃
f
t (Q f

t (y))
∣∣2 dπ0(x, y)

]1/2
. (42)

We identify (41) as 2D(t), while for (42) we get

[∫ ∣∣k̃ ∗ (ρ̃
μ
t − ρ̃

f
t
)(
Q f

t (y)
)∣∣2 dπ0(x, y)

]1/2

=
[∫ ∣∣k̃ ∗ (ρ̃

μ
t − ρ̃

f
t
)(
Q0(y)

)∣∣2 dπt (x, y)
]1/2

≤
[∫ (

k̃ ∗ ρ̃
μ
t − k̃ ∗ ρ̃

f
t
)2

f (t, y) d2d y)
]1/2

=
[∫ (

k̃ ∗ ρ̃
μ
t − k̃ ∗ ρ̃

f
t
)2

(q) ρ
f
t (q) ddq)

]1/2

≤ ‖ρ f
t ‖1/2∞ ‖k̃ ∗ (ρ̃

μ
t − ρ̃

f
t )‖2 ≤ C1/2

0 ‖k ∗ (ρ̃
μ
t − ρ̃

f
t )‖2. (43)

From Lemma 4.3, we know that as long as D(t) ≤ r
1+ d

2
N , i.e. D∗(t) ≤ 1, the microscopic

charge density is bounded as

‖ρμ
t ‖∞ ≤|Bd(2)|‖ρ[ f Nt ]‖∞ + r−(d+2)

N D2(t)

≤|Bd(2)| sup
N∈N
‖ρ[ f Nt ]‖∞ + 1

≤|Bd(2)|C0 + 1 =: Cρ.

(44)
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Note that this bound holds independent of N . Hence, we can use Loeper’s stability result,
Proposition 4.1, in (43) and get:

‖k ∗ (ρ̃
μ
t − ρ̃

f
t )‖2 ≤

[
max{‖ρ̃μ

t ‖∞, ‖ρ̃ f
t ‖∞}

] 1
2 W2(ρ̃

μ
t , ρ̃

f
t ) ≤ C

1
2
ρ D(t). (45)

Putting everything together and setting C1 := 2CρCL , we have

d

dt
D2(t) ≤ 2C1(1 ∨

√|log(rN )|) D2(t)

or, after dividing by 2D(t) and multiplying both sides by r
−(1+ d

2 )

N ,

d

dt
D∗(t) ≤ C1(1 ∨

√|log(rN )|)D∗(t).
By an application of Gronwall’s Lemma, we conclude that:

D∗(t) ≤ D∗(0) et C1(
√|log(rN )|+1).

Finally, taking on the right hand side the infimum over all π0 ∈ �(μN
0 , f0), D∗(0)

becomes W ∗(μN
0 [Z ], f0) and we get for all t ∈ T :

W ∗(μN
t , f Nt ) ≤ W ∗(μN

0 , f0) e
t C1(
√|log(rN )|+1). (46)

If there exists an ε > 0 such that lim
N→∞

W2(μ
N
0 , f0)

r1+d/2+ε
N

= 0, the right hand side converges to

0, so that, in particular, lim
N→∞ r

1+ d
2

N W2(μ
N
t , f Nt ) = 0. ��

To show convergence to solutions of the (unregularized) Vlasov-Poisson equation, we
also require the following:

Proposition 4.6. Let f0 satisfy the assumptions of Proposition 3.2. Let f Nt and ft be the
solution of the regularized, respectively the proper Vlasov-Poisson equation with initial
data f0. Then:

W2( f
N
t , ft ) ≤ rN etC1(

√|log(rN )|+1). (47)

Proof. Let ρN
t := ρ[ f Nt ] and ρ∞t := ρ[ ft ] be the charge density induced by f Nt and ft ,

respectively. Let ϕN
t = (QN

t , PN
t ) the characteristic flow of f Nt and ψt = (Qt , Pt ) the

characteristic flow of ft . We consider π0(x, y) := f0(x)δ(x − y) ∈ �( f0, f0), which
is already the optimal coupling yielding WN

2 ( f Nt , ft )|t=0= WN
2 ( f0, f0) = 0 and set

πt = (ϕN
t , ψt )#π0 ∈ �( f Nt , ft ). As above, we define

D(t) :=
[ ∫

R6×R6

(
(1 ∨√|log(rN )|) |x1 − y1| + |x2 − y2|

)2
dπt (x, y)

]1/2
(48)

and compute

d

dt
D2(t) ≤ 2

∫ (
(1 ∨√|log(rN )|) |QN (t, x)− Q(t, y)| + |PN (t, x)− P(t, y)|

)
(
(1 ∨√|log(rN )|) |PN (t, x)− P(t, y)| + ∣∣k̃ ∗ ρ̃N

t (QN (x))− k ∗ ρ
f
t (Qt (y))

∣∣) dπ0(x, y).
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The proof proceeds analogous to Proposition 3.2, simplified by the fact that the charge
densities remain bounded by assumption. The only noteworthy difference is in Eq. (45).
Observing that k̃ ∗ ρ̃ = k ∗ ˜̃ρ = k ∗ (χN ∗ χN ∗ ρ), we use Lemma 4.4 to conclude:

W2( ˜̃ρN
t , ρt ) ≤ W2(ρ

N
t , ρt ) + 2rN ≤ W2( f

N
t , ft ) + 2rN ≤ D(t) + 2rN (49)

In total, we find:

d

dt
D2(t) ≤ 2C0CL (1 ∨√|log rN |) D2(t) + 2C0D(t)(D(t) + 2rN )

or
d

dt
D(t) ≤ C1(

√|log rN | + 1) D(t) + 2C0rN ,

with C1 > 2C0CL as defined in the previous proof. Using Gronwall’s inequality and the
fact that D(0) = 0, we have

W2( f
N
t , ft ) ≤ D(t) ≤ rN etC1(

√|log rN |+1),

from which the desired statement follows. ��

4.3. Typicality. To complete the proof of Theorem 3.3, it remains to show that the
assumptions of Proposition 3.2 are satisfied for typical initial conditions, i.e. with prob-
ability approaching one as N tends to infinity. It is a classical result that if Z1, . . . , ZN

are i.i.d. with law f , their empirical density μN [Z ] = 1
N

∑N
i=1 δZi goes to f in proba-

bility. Establishing quantitative bounds on large deviations (concentration estimates) is,
however, a longstanding problem in probability theory with a vast amount of literature.
To our knowledge, one of the first paper to address this question in the context ofWasser-
stein metrics was Bolley et al. [3]. Subsequently, other authors have derived stronger
concentration estimates, see, in particular, [2] and [5]. Very recently, great progress has
been made in the paper of Fournier and Guillin, which considerably improves upon
previous results, both in strength and generality [7]. We cite now their concentration
estimates and apply them to conclude the proof of our main theorem.

Theorem 4.7 (Fournier and Guillin). Let f be a probability measure on R
n such that

∃k > 2p:

Mk( f ) :=
∫

Rk

|x |kd f (x) < +∞.

Let (Zi )i=1,...,N be a sample of independent variables, distributed according to the law
f and consider μN [Z ] := ∑N

i=1 δZi . Then, for any ε > 0 there exist constants c,C
depending only on k, Mk( f ) and ε such that for all N ≥ 1 and ξ > 0:

P0

(
W p

p (μN , f ) > ξ
)
≤ CN (Nξ)

− k−ε
p + C1ξ≤1 a(N , ξ)

with

a(N , ξ) :=

⎧⎪⎨
⎪⎩
exp(−cNξ2) if p > n/2
exp(−cN (

ξ
ln(2+1/ξ)

)2) if p = n/2

exp(−cNξ k/p) if p ∈ [1, n/2).

(50)
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We now apply this result to conclude the proof of our main theorem and establish an
upper bound on rN .

Proof of Theorem 3.3. Let rN ≥ N−δ and ε > 0. Let A ⊆ R
2d be the (N -dependent)

set defined by

Z ∈ A ⇐⇒ W2(μ
N
0 [Z ], f0) > r

1+ d
2 +ε

N . (51)

We apply the previous in n = 2d dimensions with ξ = N−δ(2+d+2ε) ≤ r
2(1+ d

2 +ε)

N and
the finite moment assumption (25). We find:

P0(A) ≤ C
(
exp(−cN N−δ(2+d+2ε)d) + N 1− k−ε

2 (1−δ(2+d+2ε))
)
.

Where the probability is defined with respect to ⊗N f0. Choosing

δ = 1− ε

(2 + d + 2ε)d
(52)

we have
P0(A) ≤ C

(
exp(−cN ε) + N 1− k

2 +
k
2d

)→ 0, N →∞.

For the typical initial conditions Z ∈ Ac, it holds according to Proposition 3.2 that for
all t ≤ T ,

W ∗(μN
t , f Nt ) ≤ W ∗(μN

0 , f0) e
t C1(
√|log(rN )|+1)

≤ (1 ∨√|log(rN )|) r−(1+ d
2 )

N W2(μ
N
0 , f0) e

t C1(
√|log(rN )|+1)

≤ (1 ∨√|log(rN )|) r ε
N eT C1(

√|log(rN )|+1). (53)

Observing that e
√|log rN | = (

e− log rN )
1√|log rN | = (rN )

−1√|log rN | , there exists N0 ∈ N such
that (53) < 1 for all N ≥ N0. More precisely, it suffices to choose N0 large enough that

rN0 < e−(
2C1T+1

ε
)2 . Then we find:

W ∗(μN
t , f Nt ) < 1⇒ W2(μ

N
t , f Nt ) < r

1+ d
2

N W ∗(μN
t , f Nt ) < r

1+ d
2

N . (54)

Now we recall from Proposition 4.6:

W2( f
N
t , ft ) ≤ rN etC1(

√|log(rN )|+1),

which is smaller than 1
2r

1−ε
N for N ≥ N0. We conclude the proof by noting that

W2(μ
N
t [Z ], ft ) ≤ W2(μ

N
t [Z ], f Nt ) +W2( f

N
t , ft ) ≤ r

1+ d
2

N +
1

2
r1−ε
N ≤ r1−ε

N ,

for all Z ∈ Ac, N ≥ N0 and t ∈ [0, T ]. ��
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