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Abstract: We define the notion of a formal connection for a smooth family of star
products with fixed underlying symplectic structure. Such a formal connection allows
one to relate star products at different points in the family. This generalizes the formal
Hitchin connection, which was introduced by the first author. We establish a necessary
and sufficient condition that guarantees the existence of a formal connection, and we
describe the space of formal connections for a family as an affine space modelled on the
formal symplectic vector fields.Moreover, we show that if the parameter space has trivial
first cohomology group, any two flat formal connections are related by an automorphism
of the family of star products.

1. Introduction

1.1. Quantization and the Hitchin connection. In his seminal paper [Wit89] Witten
investigated quantum Chern–Simons theory, a 3-dimensional topological quantum field
theory (TQFT). As the 2-dimensional part of this theory, he proposed the geometric
quantization of the moduli space of flat connections on a Riemann surface �. This
moduli space has a natural symplectic structure ω and admits a prequantum line bundle,
i.e., a Hermitian line bundle L with a compatible connection, whose curvature is given
by the symplectic form.

The Teichmüller space T of the surface � parametrizes complex structures on the
moduli space, so for each point σ ∈ T and each natural number k, called the level of
quantization, we have the quantum state space of geometric quantization, which is the
space

Qk(σ ) = H0(Mσ ;Lk)
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of holomorphic sections of the k-th tensor power of the prequantum line bundle. These
form the fibres of a vector bundle Q over T , called the Verlinde bundle, and it was shown
independently by Hitchin [Hit90] and Axelrod, Della Pietra and Witten [ADPW91] that
this bundle admits a natural projectively flat connection, which we shall call the Hitchin
connection (see also [And12] for a purely finite dimensional differential geometric ap-
proach to this connection). Consequently, the quantum spaces associated with different
complex structures are identified, as projective spaces, through the parallel transport of
this connection. By the work of Lazslo [Las98], combined with the work of the first au-
thor and Ueno [AU07b,AU07a,AU12,AU15], this provides a geometric construction of
the vector spaces the Witten–Reshetikhin–Turaev TQFT associates to a closed oriented
surface [RT90,RT91,Tur94].

1.2. Formal connections. On a PoissonmanifoldM , a deformation quantization, or star
product, is aC[[h]]-linear product on the space C∞(M)[[h]] that is associative, reduces
to the pointwise product modulo h, and such that the component of degree 1 in h of its
commutator is the Poisson bracket.

In the symplectic case, the existence of star products was originally established by
De Wilde and Lecomte in [DWL83] via a cohomological approach. Fedosov provided
a more direct and geometrical construction of star products in [Fed94]. In the general
Poisson case, the question of existence and classification was settled by Kontsevich, as
a consequence of his Formality theorem [Kon03].

J. E. Andersen has studied the asymptotic relationship between Toeplitz operators
and the Hitchin connection in [And06], and extended this asymptotic analysis to higher
orders [And12], which led him to define the following notion.

Definition 1.1. Let M be a symplectic manifold equipped with a smooth family of star
products {�σ }σ∈T parametrized by a manifold T . A formal connection for {�σ }σ∈T is a
connection on the bundle T × C∞(M)[[h]] → T of the form:

DV f = V [ f ] + A(V )( f ), (1)

where A is a smooth 1-form on T with values in differential operators on M such that
A = 0mod h, f is a smooth section of the bundle, V is any smooth vector field on T ,
and V [ f ] denotes the derivative of f along V .

The formal connection is called compatiblewith the family of star products {�σ }σ∈T ,
if it is a derivation of the products for any vector field V on T , i.e.,

DV ( f �σ g) = DV ( f ) �σ g + f �σ DV (g), (2)

for all σ ∈ T and all smooth sections f and g of T × C∞(M)[[h]] → T .

Recall that on a Kähler manifold M one can consider the Berezin–Toeplitz star
product �BT , which can be constructed via the theory of Toeplitz operators, see [Sch00,
Sch11].1 This leads us to consider the following class of examples of families of star
products:

1 One of the earliest studies of star products on Kähler manifolds was Berezin’s work [Ber74]. Berezin’s
approach was extended to arbitrary Kähler manifolds by Reshetikhin and Takhtajan in [RT00].
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Definition 1.2. Let M be a symplectic manifold with a family of compatible almost
complex structures parametrized by a complex manifold T , so that for any σ ∈ T ,
the manifold Mσ is a Kähler manifold, and let {�BTσ }σ∈T be the associated family of
Berezin–Toeplitz star products.A formalHitchin connection onM is a formal connection
that is compatible with this family of star products and that is flat.

In [And12] a particular formal Hitchin connection that is associated to the Hitchin
connection fromgeometric quantizationwas studied, and it was shown that the projective
flatness of the Hitchin connection implies the flatness of this formal Hitchin connection.
An explicit expression for the 1-form Ã(V ) for the formal Hitchin connection associated
to the Hitchin connection was given in [And12,AG11]. The formula reads

Ã(V )( f ) = −V [F] f + V [F] �BT f + h(E(V )( f ) − H(V ) �BT f ), (3)

where E is a 1-form on T with values in differential operators on M , H is the 1-form
with values in C∞(M) given by H(V ) = E(V )(1), and F is the Ricci potential of the
family. The construction will be recalled in more detail in Sect. 3.

It was furthermore noticed in [And12], that—provided certain cohomology groups
of the mapping class group vanish—any formal Hitchin connection could be used to
obtain a mapping class group equivariant deformation quantization on the moduli space.
The first author has further applied these constructions to the WRT-TQFT using the
geometric description of the TQFT vector spaces described above in [And08,And10].
See also [And05,AB11], where the first author gave an explicit expression for the parallel
transport of formal Hitchin connection in the abelian case.

With this motivation in mind, we return to the general case.

1.3. Existence and classification of formal connections. Let (M, ω) be a symplectic
manifold with a family of natural star products {�σ }σ∈T that is parametrized by T .

We first establish the following necessary and sufficient condition for the existence
of a compatible formal connection:

Theorem 1.3. There exists a formal connection compatible with {�σ }σ∈T if and only if
the characteristic class [cl(�σ )] of the star products is locally constant on T .

In fact, we show that evenmore is true: we provide a natural way to associate a formal
connection to every trivialization for the family of characteristic 2-forms associated to
the family of star products and establish a formula for its curvature. The proof relies on
Fedosov’s geometrical construction of star products [Fed94].

This result specializes to the case of a symplectic manifold equipped with a smooth
family of compatible Kähler structures, where we take the family of Berezin–Toeplitz
star products associated with them. In this situation Theorem 1.3 yields the existence of
a compatible formal connection.

Theorem 1.4. Let (M, ω) be a compact, symplectic manifold, and let T be a complex
manifold parametrizing a family of compatible Kähler structures Iσ on M, with σ ∈ T .
The family of Berezin–Toeplitz star products associated with the family has constant
characteristic class, and therefore admits a compatible formal connection.

Let us assume in the following that a family of star products {�σ }σ∈T admits a
compatible formal connection. We want to understand the space of all such formal
connections. Relying on a result of Gutt and Rawnsley [GR99], we obtain:
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Theorem 1.5. Let M be a symplectic manifold equipped with a smooth family of star
products {�σ }σ∈T parametrized by T . The space F(M, �σ ) of formal connections on
M that are compatible with the family of star products is an affine space over the space
of 1-forms on T with values in formal symplectic vector fields on M, and it can then be
written as:

F(M, �σ ) = D0 + �1(T , h�sym(M)[[h]])
for a fixed formal connection D0,where�sym(M) denotes the space of symplectic vector
fields on M.

Furthermore, if we assume that H1(M;R) vanishes, all symplectic vector fields are
Hamiltonian, and therefore all derivations of a star product on M are essentially inner,
therefore they are parametrized by elements of C̃∞

h (M), the space of formal functions
on M modulo constants.

1.4. Gauge transformations of formal connections. We study the action of gauge trans-
formations on the space of formal connections F(M, �σ ). The transformations that we
consider are differential self-equivalences of the family of star products, since the gauge
transformations have to preserve the compatibility with the family of star products. If
we assume that the parameter space T of the family of star products has trivial first
cohomology group, i.e., H1(T ,R) = 0, we obtain the following result.

Theorem 1.6. Let M be a symplectic manifold with a family of star products {�σ }σ∈T
parametrized by a smooth manifold T with trivial first cohomology group. Let D, D′ ∈
F(M, �σ ) be formal connections for the family and let us assume that they are flat.
Then they are gauge equivalent via a self-equivalence of the family of star products
P ∈ C∞(T ,Dh(M)), meaning that

D′
V = P−1DV P, (4)

for any vector field V on T .

This implies the following corollary:

Corollary 1.7. Let T be a smooth manifold with trivial first cohomology group, i.e.,
H1(T ,R) = 0. If there exists a formal Hitchin connection D in the bundle T ×
C∞(M)[[h]] over T , then it is unique up to gauge-equivalence.

1.5. The formal Hitchin connection at low orders. As mentioned above, a formal con-
nection is called compatible with a family of star products if it is a derivation with
respect to the star products. Our main example of a formal connection is the formal
Hitchin connection defined in [And12], which is known to be a derivation with respect
to the family of Berezin–Toeplitz star products [And12]. This fact relies on the exis-
tence of the Hitchin connection in geometric quantization, as well as the link between
geometric and deformation quantization via Toeplitz operators.

This result assumes the existence of a Hitchin connection in geometric quantization,
which puts several constraints on the objects involved in the construction, among them
the condition that the family of Kähler structures be holomorphic and rigid, which are
quite strong requirements.
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On the other hand, the explicit expression (3) that was obtained in [And12] makes
sense in a more general situation, and therefore we can ask whether that expression
in general gives a derivation of the Berezin–Toeplitz star product. This is a difficult
question, because it involves the coefficients of the star product, which are in general
hard to understand. But we can give an affirmative answer if we restrict our attention to
the first order in the formal parameter. Moreover it is easy to check that the expression
(3) defines a flat formal connection up to first order, and we conclude that the expression
obtained in [And12] gives a formal Hitchin connection up to order one.

Proposition 1.8. Let M be a symplectic manifold with a family of compatible Kähler
structures parametrized by a complex manifold T . Then the expression (3) defines a
formal connection that,modulo h2, is a derivation of the family of Berezin–Toeplitz star
products on M and flat. Therefore, it defines a formal Hitchin connection in the sense
of our definition above, modulo terms of order h2.

We plan to investigate the relationship between the formal Hitchin connection stud-
ied by the first named author of this paper and the formal connections obtained from
Theorem 1.3 more closely in the future.

2. Deformation Quantization

2.1. Star products. Let M be a Poisson manifold. We let C[[h]] denote the ring of
formal power series with complex coefficients, andC∞

h (M) = C∞(M)[[h]] the algebra
of formal functions on M , which are formal power series with coefficients in C∞(M).
Then C∞

h (M) is an algebra over C[[h]], and we can extend the Poisson bracket linearly
to make C∞

h (M) into a Poisson algebra. This allows us to formulate the following
definition.

Definition 2.1. Let (M, {·, ·}) be a Poisson manifold. A (formal) star product on (or
deformation quantization of) M is a C[[h]]-bilinear map

� : C∞
h (M) × C∞

h (M) → C∞
h (M)

written as

f � g =
∞∑

k=0

ck( f, g)hk,

where, for k ∈ N, the maps ck : C∞(M) × C∞(M) → C∞(M) are bilinear and called
the coefficients of �. A star product is required to satisfy the following conditions:

1. associativity: ( f1 � f2) � f3 = f1 � ( f2 � f3),
2. unitality: f � 1 = f = 1 � f ,
3. c0( f1, f2) = f1 f2,
4. c1( f1, f2) − c1( f2, f1) = i{ f1, f2},
for all f1, f2, f3 ∈ C∞(M).

A star product is said to bedifferential if the coefficients ck are bidifferential operators,
in the sense that, for a fixed f ∈ C∞(M), both ck( f, ·) and ck(·, f ) are differential
operators for all k ∈ N.
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Definition 2.2. Two star products �, �′ on M are said to be equivalent if there is a formal
power series of linear maps

T =
∞∑

k=0

Tk, Tk : C∞
h (M) → C∞

h (M), k ∈ N,

such that T0 = Id and T ( f1) �′ T ( f2) = T ( f1 � f2), for f1, f2 smooth functions on M .

In the following, we will restrict attention to natural star products. These are differ-
ential star products that satisfy the requirement that the coefficient ck is a bidifferential
operator of order at most k. All star products which we will encounter are of this type.

2.2. Fedosov star products. We review the main ingredients of Fedosov’s geometric
construction of star products [Fed94]. InSect. 5,wewillmakeuse of Fedovo’s framework
to construct formal connections. Our exposition follows [Fed94] and Waldmann’s book
[Wal07].

Let (M, ω) be a symplectic manifold of dimension m = 2n. Since any tangent space
TxM is a symplectic vector space, we can consider the associated Weyl algebra.

Definition 2.3. The formal Weyl algebra Wx associated to TxM , for x ∈ M , is the
associative C-algebra with unit, whose elements are formal power series in h, with
formal power series on TxM as coefficients. This means that an element in Wx has the
form:

a(y, h) =
∑

k∈N

∑

α

hkak,α y
α,

where (y1, . . . , ym) are local coordinates on TxM and α = (α1, . . . , αm) is a multi-
index.

The formal Weyl algebra is equipped with the following Moyal–Weyl product:

a ◦MW b =
∞∑

k=0

(
ih

2

)k 1

k!π
i1 j1 · · · π ik jk ∂ka

∂yi1 · · · ∂yik
∂kb

∂yi1 · · · ∂yik , (5)

where π = ∑
i< j π

i j ∂
∂yi

∧ ∂
∂y j is the Poisson bivector dual to ωx . The Moyal–Weyl

product is a deformation quantization of the linear symplectic space (TxM, ωx ).
LetW = ∪x∈MWx . This defines a bundle of algebras overM , which is called theWeyl

bundle. The space of smooth sections of this bundle, �W , gives an associative algebra
with fibre-wise multiplication. This space of section can be thought of as a “quantized
tangent bundle” of M . Note that the centre of �W is formed by the elements that do not
contain any yi , and therefore is naturally identified with C∞

h (M) = C∞(M)[[h]].
We next define a useful degree on the Weyl algebra, called the total degree. It is

given by assigning degree 1 to all the yi , i.e. deg yi = 1 for any i , and deg h = 2. The
Moyal–Weyl product is additive with respect to the total degree.

A differential form on M with values in W is a section of W ⊗ �qT ∗M , and can be
expressed as:

a(x, y, h, dx) =
∑

hkak,i1,...,i p, j1,..., jq y
i1 . . . yi pdx j1 ∧ · · · ∧ dx jq
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in local coordinates, where the coefficients ak,i1,...,i p, j1,..., jq are symmetric in the i’s and
anti-symmetric in the j’s. We denote the space of these differential forms by �(M,W ).

Note that the Moyal–Weyl product on �W extends to �(M,W ). On the latter space
we define an operator δ in the following way:

δ(a) =
∑

i

dxi ∧ ∂a

∂yi
, for all a ∈ W ⊗ �qT ∗M .

This operator can also be written as

δ(a) = −
[
i

h
ωi j dy

i dx j , a

]
= − i

h
ad(ω̃),

where the commutator is with respect to the Moyal–Weyl product and ω̃ is ω, seen as a
section of T ∗M ⊗ T ∗M ⊂ W ⊗ ∧T ∗M .

An alternative interpretation of δ is as follows: we can define two commuting deriva-
tions δ and δ∗ on �(M,W ) by considering the identity morphism T M → T M as a
section of T M ⊗ T ∗M . We can now insert the T M-part into either �T ∗M or W and
multiply the T ∗M-part with the other factor, using the pointwise product on W . The
operator δ corresponds to the latter case. We define δ∗ to be the operator corresponding
to the former.

The operators δ and δ∗ are differentials, i.e. they square to zero. Moreover, one can
use δ∗ as a homotopy operator for δ, which leads to the result that the cohomology of δ

is concentrated in form-degree 0 and that H0(�(M,W ), δ) = C∞
h (M).

Definition 2.4. A symplectic connection on a symplectic manifold (M, ω) is a linear
connection ∇ that is torsion-free and such that ω is parallel with respect to ∇, i.e.
∇ω = 0.

Let us fix a symplectic connection ∇ on M . Its curvature tensor is contracted with ω

to yield an element R ∈ �2(M,W ). As usual, ∇ extends to the covariant derivative d∇
on �(M, T M), which we dualize and extend to �(M,W ). It turns out that d∇ is also a
derivation for the fibre-wise Moyal–Weyl product. Moreover, d∇ commutes with δ and
squares to − i

h ad(R).
Fedosov’s idea is to correct the non-flatness of −δ + d∇ by finding an appropriate

r ∈ �1(M,W ) such that the total operator

Dr := −δ + d∇ +
i

h
ad(r) (6)

squares to zero. Regardless of flatness, an operator of the form of Dr is a derivation of
the Moyal–Weyl product defined above, i.e.

Dr (a ◦MW b) = Dr (a) ◦MW b + a ◦MW Dr (b)

holds. Using Fedosov’s ansatz for Dr , one computes

D2
r = i

h
ad

(
−ω − δr + R + d∇r +

i

h
r ◦MW r

)
.

Hence the flatness of Dr is equivalent to the fact that

α = ω + δr − R − d∇r − i

h
r ◦MW r (7)
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lies in the center of �(M,W ), which coincides with �(M)[[h]], where we see ordinary
differential forms to be fibrewise constant polynomials on the tangent spaces.

We call a connection of the form (6) abelian if α satisfies this condition, i.e. if it is a
scalar 2-form. If this is the case, then by theBianchi identitywe have that dα = Drα = 0,
and so α is closed (i.e. α ∈ Z2(M)[[h]]) and is called the Weyl curvature of Dr .

The following theorem shows how to construct the appropriate r in order to obtain
an abelian Dr .

Theorem 2.5 (Fedosov). Let ∇ be a symplectic connection on M and

α = ω + hα1 + h2α2 + · · · ∈ Z2(M)[[h]]
be a closed formal 2-form that is a perturbation of the symplectic form. Then there exists
a unique r ∈ �2(M,W ), such that the Dr given by (6) is an abelian connection with
Weyl curvature α and δ∗r = 0.

We are now in position to define the Fedosov star product corresponding to a given
Fedosov connection. One first shows that every element f ∈ C∞(M)[[h]] extends
uniquely to an element

τ( f ) ∈ �0(M,W )[[h]]
which is parallel with respect to the Fedosov connection Dr . The proof amounts to break-
ing up the equation Drτ( f ) = 0 into its homogeneous pieces with respect to the total
degree. Cohomological considerations similar to the ones in the proof of Theorem 2.5
guarantee that the extension τ( f ) exists and is unique.

The Fedosov star product �∇,α associated to the closed formal 2-form α and to the
symplectic connection ∇ on M is given by the following formula:

f �∇,α g := p(τ ( f ) ◦MW τ(g)), (8)

where p : �(W ) → C∞
h (M) is the projection of a section of the Weyl bundle to its

fibrewise constant part. Since Dr is a derivation with respect to ◦MW , this defines an
associative product and one checks inductively that one actually obtains a natural star
product, i.e. �∇,α is given by bidifferential operators whose component of order hk is of
differential-order at most k in each argument.

Definition 2.6. The characteristic 2-form of a Fedosov star product �∇,α is

cl(�∇,α) = α ∈ Z2(M;R)[[h]],
where α is the Weyl curvature of the corresponding Fedosov connection Dr .

The class of cl(�∇,α) is called the characteristic class of �∇,α .

The definition of the characteristic class of Fedosov star products generalizes to
arbitrary differential star products since every differential star product is equivalent
to one of Fedosov type and two Fedosov star products are equivalent if and only if
their characteristic classes coincide. Hence one just defines the characteristic class of
an arbitrary differential star product to be the characteristic class of an equivalent star
product of Fedosov type. For a more extensive treatment of classification results, we
refer the reader to [Del95,GR99] as well as the exposition in [Wal07].

We note that if we restrict attention to natural star products, a stronger statement
holds, see [GR03, Theorem 4.1]: every such star product is equivalent to a preferred
Fedosov star product through a preferred equivalence. This allows one to assign not
only a characteristic class, but a characteristic 2-form to a natural star product—just take
it to be the characteristic 2-form of the preferred equivalent Fedosov star product.
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2.3. The Berezin–Toeplitz star product. We describe the link between geometric quan-
tization and deformation quantization due to [Sch00].

Definition 2.7. A prequantum line bundle over a symplectic manifold (M, ω) is the
data of a complex line bundle L, equipped with a Hermitian metric h and a compatible
connection ∇ whose curvature satisfies:

F∇ = −iω.

We say that a symplectic manifold is prequantizable if it admits a prequantum line
bundle. If we assume that M is a compact prequantizable Kähler manifold we can make
the following definition.

Definition 2.8. Let f ∈ C∞(M). TheToeplitz operator T (k)
f : C∞(M;Lk) → H0(M;Lk)

is the map defined by

T (k)
f (s) = π(k)( f s),

mapping a smooth section s on Lk to its projection onto the subspace of holomorphic
sections.

Schlichenmaier showed in [Sch00] that any compactKählermanifold admits a natural
star product on it, namely the Berezin–Toeplitz star product.

Theorem 2.9 (Schlichenmaier). There exists a unique star product �BT for M, called
the Berezin–Toeplitz star product, which is expressed by:

f1 �BT f2 =
∞∑

k=0

c(k)( f1, f2)h
k,

with c(k)( f1, f2) ∈ C∞(M) determined by the requirement that for all f1, f2 ∈ C∞(M)

and for any positive integer L the following estimate holds:
∥∥∥∥T

(k)
f1,σ

T (k)
f2,σ

−
L∑

l=0

T (k)

c(l)
σ ( f1, f2),σ

k−l
∥∥∥∥ = O(k−(L+1)).

Karabegov and Schlichenmaier proved [KS01] that the Berezin–Toeplitz star product
is of Wick type. This means that for any locally defined functions f and g with f anti-
holomorphic and g holomorphic, and any function h one has

f � h = f h and h � g = hg.

Remark 2.10. A star product is said to be with separation of variables if it has the same
property characterizing star products of Wick type, but with the roles of holomorphic
and anti-holomorphic switched. For any star product �, we can define the opposite star
product �o by setting f �o g := g � f . Therefore, if � is a of Wick type, then �o is with
separation of variables.

Gammelgaard [Gam14] showed that star products with separation of variables can
be expressed locally in a graph theoretical way, with weights determined by the auto-
morphisms of the graphs.

The formal Hitchin connection that we define in the next section is closely related to
the Berezin–Toeplitz star product.
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3. The Hitchin Connection

Here we review briefly the construction of the Hitchin connection, in the differential
geometric version of [And12]. The Hitchin connection was introduced by Hitchin in
[Hit90] as a connection over the Teichmüller space in the bundle one obtains by apply-
ing geometric quantization to the moduli spaces of flat SU (n) connections. Furthermore
Hitchin proved that this connection is projectively flat, which was also proved inde-
pendently by Axelrod, Della Pietra and Witten [ADPW91]. Hitchin’s construction was
motivated by Witten’s study [Wit89] of quantum Chern–Simons theory in 2 + 1 dimen-
sions. In [And12] a differential geometric construction of the Hitchin connection which
works for a more general class of manifolds was provided.

3.1. Smooth families of Kähler structures. Let (M, ω) be a symplectic manifold and let
T be a smooth manifold that parametrizes smoothly a family of Kähler structures on M .
This means that we have a smooth map

I : T → C∞(M,End(T M))

that associates to each σ ∈ T an integrable and compatible almost complex structure on
M . The requirement that the map I is smooth means that it defines a smooth section of
the pullback bundle

π∗
M (End(T M)) → T × M,

where πM : T × M → M denotes the canonical projection map.
The symplectic formω is non-degenerate, thereforewe obtain from it an isomorphism

iω : T MC → T M∗
C
by contraction in the first entry. We can use this isomorphism to

define the bivector field:

ω̃ = −(i−1
ω ⊗ i−1

ω )(ω),

which satisfies the identity ω · ω̃ = ω̃ · ω = Id, where the dot indicates contraction
of tensors in their entries closest to the dot, which is relevant when working with non-
symmetric tensors. For example ω · ω̃ means that the right-most entry of ω is contracted
with the left-most one of ω̃.

Similarly we obtain a type-interchanging isomorphism igσ : T MC → T M∗
C
, induced

by the Kähler metric on Mσ . The two isomorphisms are related by the equation: igσ =
Iσ iω. From the fact that g and ω have type (1, 1) it follows that these two isomorphisms
exchange types. As done for ω, we can define the inverse metric tensor by

g̃ = (i−1
g ⊗ i−1

g )(g),

which gives a symmetric bivector field satisfying the relation g · g̃ = g̃ · g = Id. This
bivector field is related to the bivector field associated to ω by ω̃ = I · g̃.

On an (almost) complex manifold M we have a natural decomposition of the com-
plexified tangent bundle:

T MC = T ′MI ⊕ T ′′MI ,

where the two summands are the eigenspaces of the endomorphism I for the eigenvalues
i and −i , respectively:

T ′MI = ker(I − i Id), T ′′MI = ker(I + i Id).
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Sections of the first subspace are said to be vector fields of type (1, 0), and sections of the
second subspace are vector fields of type (0, 1). The decomposition is explicitly given
by the projections to the two subspaces:

π
1,0
I = 1

2
(Id−i I ), π

0,1
I = 1

2
(Id +i I ),

and for a vector field X we denote its decomposition by X = X ′
I + X ′′

I .

3.2. A symmetric bivector field. We now assume that (M, ω) is a symplectic manifold
equipped with a smooth family of compatible almost complex structures I , parametrized
by T . We can define a bivector field G̃(V ) ∈ C∞(M, T MC ⊗ T MC) by requiring that
the relation

V [I ] = (Id⊗ iω)(G̃(V )) (9)

holds for all vector fields V . If we differentiate the identity g̃ = −I · ω̃ along a vector
field V on T , we get that

V [g̃] = −V [I ] · ω̃ = −G̃(V ),

and since g̃ is a symmetric bivector field, so is G̃(V ). Moreover, because of the types of
V [I ] and ω̃, we get a decomposition

G̃(V ) = G(V ) + Ḡ(V ),

where G(V )σ ∈ C∞(M, S2(T ′Mσ )) and Ḡ(V )σ ∈ C∞(M, S2(T ′′Mσ )).
Recalling the identity g = ω · I , we obtain a formula for the variation of the Kähler

metric:

V [g] = ω · V [I ] = ω · G̃(V ) · ω,

and the (1, 1)-part of V [g] vanishes because of the types of ω and G̃(V ).
Before defining the Hitchin connection, we need to define a certain differential

operator associated to a bivector field. From a symmetric holomorphic bivector field
Z ∈ C∞(M, S2(T ′Mσ )) we can obtain a holomorphic bundle map Z : T ′M∗

σ → T ′Mσ

by contraction. We define the operator �Z to be the composition:

C∞(M,Lk)
∇(1,0)

σ−−−→ C∞(M, T ′M∗
σ ⊗ Lk)

Z⊗Id−−−→ C∞(M, T ′Mσ ⊗ Lk)

∇̃(1,0)
σ ⊗Id + Id⊗∇(1,0)

σ−−−−−−−−−−−−→ C∞(M, T ′M∗
σ ⊗ T ′Mσ ⊗ Lk) → C∞(M,Lk),

where ∇̃(1,0)
σ is the holomorphic part of the Levi-Civita connection, and the last arrow

is the trace.
This operator can be expressed in a more concise way as follows. Define the operator

∇2
X,Y = ∇X∇Y − ∇∇XY ,

which is tensorial and symmetric in the vector fields X and Y . Hence it can be evaluated
on a symmetric bivector field and we have:

�Z = ∇2
Z + ∇δ(Z),
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where δ(Z) denotes the divergence of the bivector field Z .
The previous construction can be done for any line bundle L over M . In particular, if

we consider the trivial line bundle overM with the trivial connection, then the sections are
just functions on M , and the operator�g̃ (where g̃ denotes the bivector field obtained by
raising both indices of the metric tensor) coincides with the Laplace–Beltrami operator
�.

3.3. Holomorphic and rigid families. The explicit construction of a Hitchin connection
in [And12] is for a compact symplectic manifold equipped with a smooth family of
Kähler structures that satisfy two additional properties, which we shall explain below.

Assuming that the manifold T has a complex structure, it makes sense to require the
family I is a holomorphic map from T to the space of complex structures. We make this
requirement precise as follows:

Definition 3.1. Let T be a complex manifold, and I a family of Kähler structures on M
that is parametrized by T . We say that I is holomorphic if:

V ′[I ] = V [I ]′ and V ′′[I ] = V [I ]′′,
for any vector field V on T .

The second condition is the rigidity of the family of Kähler structures.

Definition 3.2. We say that the family I of Kähler structures on M is rigid if

∇X ′′G(V ) = 0, (10)

for all vector fields V on T and X on M .

In other words, the family I is rigid if G(V ) is a holomorphic section of S2(T ′M),
for any vector field V on T .

Remark 3.3. The expression rigid family is used in this context for the following reason
(the notion was first introduced in [And12]): it might be possible to extend a rigid family
to a bigger family of rigid structures whose dimension at σ in the family is given by
dim H0(M, S2(T ′M)), but beyond this the family does not deform any further. Thus it
is rigid in this sense.

3.4. The Hitchin connection. The prequantum space Pk = C∞(M,Lk) forms the fibre
of a trivial vector bundle over T of infinite rank,

P̂k = T × Pk . (11)

Let ∇ t denote the trivial connection on this bundle.

Definition 3.4. A Hitchin connection in the bundle P̂k is a connection of the form

∇ = ∇ t + a, (12)

where a ∈ �1(T ,D(M,Lk)) is a one-form on T with values in the space of differential
operators on sections of Lk , such that ∇ preserves the quantum subspaces

Qk(σ ) = H0(Mσ ,Lk)

of holomorphic sections of the k-th power of the prequantum line bundle, inside each
fibre of P̂k .
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The existence of a Hitchin connection in the bundle P̂k implies that the subspaces
Qk(σ ) form a subbundle Q̂k , because it can be trivialized locally through parallel trans-
port by ∇.

We are now ready to state the main result of [And12], showing the existence of the
Hitchin connection.

Theorem 3.5 (Andersen). Let (M, ω) be a compact, prequantizable, symplectic man-
ifold and assume that H1(M;R) = 0 as well as that there is an n ∈ Z such that the
first Chern class of (M, ω) coincides with n

[
ω
2π

] ∈ H2(M;Z). Moreover suppose that
I is a rigid holomorphic family of Kähler structures on M, parametrized by a complex
manifold T . Then there exists a Hitchin connection in the bundle Q̂k over T , given by
the following expression:

∇̂V = ∇ t
V +

1

4k + 2n
{�G(V ) + 2∇G(V )·dF + 4kV ′[F]},

where ∇ t
V is the trivial connection in P̂k, and V is any smooth vector field on T .

4. Formal Connections

The idea of formal connections arises as a generalization of the formalHitchin connection
that was defined in [And12] as the analogue of the Hitchin connection from geometric
quantization. In that paper it was shown that the formal Hitchin connection is flat under
certain conditions. Its trivialization up to first order has been given by the first named
author of this paper together with Gammelgaard in [AG11].

Let M be a symplectic manifold and T a smooth manifold parametrizing a family of
star products on M . We let Ch be the trivial fibre bundle over T with fibre C∞(M)[[h]],
i.e.

Ch = T × C∞(M)[[h]].
Let D(M) denote the space of differential operators on M , and let Dh(M) =

D(M)[[h]] denote formal differential operators on M , which are formal power series
with coefficients in D(M).

Definition 4.1. A formal connection D is a connection in the bundle Ch over T that can
be written as

DV f = V [ f ] + A(V )( f ), (13)

where A is a smooth 1-form on T with values in Dh(M) such that A = 0mod h, f
is a smooth section of Ch , V is any smooth vector field on T , and V [ f ] denotes the
derivative of f along V .

The operator A(V )( f ) can be expressed as a series of differential operators

A(V )( f ) =
∞∑

k=1

Ak(V )( f )hk,

where each Ak is a smooth 1-form on T with values in D(M).
Normally we are interested in looking at formal connections in the presence of a

family of star products on the manifold, and then we require the following compatibility:
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Definition 4.2. Let {�σ }σ∈T be a family of star products on M . We say that a formal
connection D is compatible with the family of star products {�σ }σ∈T if DV is a derivation
of �σ for every vector field V and every σ ∈ T , that is, the following equality holds:

DV ( f �σ g) = DV ( f ) �σ g + f �σ DV (g) (14)

for all smooth sections f and g of Ch .

If the family of star products is natural, we also require the 1-form A to consist of
natural differential operators, i.e. the degree as a differential operator of the component
Ak is bounded by k.

4.1. The formal Hitchin connection associated to geometric quantization.

Definition 4.3. Let M be a symplectic manifold with a family of compatible almost
complex structures parametrized by a complex manifold T , so that for any σ ∈ T , the
manifold Mσ is Kähler. Let {�BTσ }σ∈T be the associated family of Berezin–Toeplitz star
products, see Sect. 2.3. A formal Hitchin connection for T is a formal connection which
is compatible with {�BTσ }σ∈T and which is flat.

The Hitchin connection ∇̂ in Q̂k which we discussed in the previous section induces
a connection ∇̂e in the endomorphism bundle End(Q̂k). The following result estab-
lishes the existence of a formal Hitchin connection under the same assumptions as in
Theorem 3.5.

Theorem 4.4 (Andersen). There is a unique formal connection D, written as DV =
V + Ã(V ), which satisfies

∇̂e
V T

(k)
f ∼ T (k)

(DV f )(1/(2k+n)) (15)

for all smooth sections f of Ch and all smooth vector fields V on T . Here the symbol ∼
has the following meaning: for any positive integer L we have that

∥∥∥∥∇̂e
V T

(k)
f −

(
T (k)
V [ f ] +

L∑

l=1

T (k)

Ã(l)
V f

1

(2k + n)l

)∥∥∥∥ = O(k−(L+1))

uniformly over compact subsets of T for all smooth maps f : T → C∞(M).

In [And12] the following explicit formula for Ã is given:

Ã(V )( f ) = −V [F] f + V [F] �BT f + h(E(V )( f ) − H(V ) �BT f ), (16)

where E is a 1-form on T with values in D(M) and H is a 1-form with values in
C∞(M) given by H(V ) = E(V )(1). This result has been further refined by the first
named author of this paper and Gammelgaard, who obtained an explicit formula for E
in [AG11] which reads:

E(V )( f ) = −1

4
(�G̃(V )

( f ) − 2∇G̃(V )dF ( f ) − 2�G̃(V )
(F) f − 2nV [F] f ). (17)
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From this equation we immediately get an expression for H :

H(V ) = E(V )(1) = 1

2
(�G̃(V )

(F) + nV [F]).

We can summarize the previous results by writing the following formula for the
formal Hitchin connection studied by Andersen:

DV f = V [ f ] − 1

4
h�G̃(V )

( f ) +
1

2
h∇G̃(V )dF ( f ) + V [F] �BT f − V [F] f

− 1

2
h(�G̃(V )

(F) �BT f − nV [F] �BT f − �G̃(V )
(F) f − nV [F] f ).

(18)

The following two propositions, proved in [And12], assert that the formal connection
constructed in Theorem 3.5 is a derivation with respect to the Berezin–Toeplitz star
product (thus it is compatible with the family of Berezin–Toeplitz star products) and
that it is flat whenever the Hitchin connection is projectively flat.

Proposition 4.5. The formal operator DV is a derivation with respect to the star product
�BTσ for each σ ∈ T , meaning that it satisfies the relation:

DV ( f1 �BT f2) = DV ( f1) �BT f2 + f1 �BT DV ( f2) (19)

for all f1, f2 ∈ C∞(M).

Proposition 4.6. If the Hitchin connection ∇̂ in Q̂k is projectively flat, then the formal
Hitchin connection DV = V + Ã(V ) associated to it is flat.

Remark 4.7. Proposition 4.5 relies on the theory of geometric quantization and Toeplitz
operators, and their link to deformation quantization. Consequently its validity can be
traced back to the existence of a Hitchin connection in geometric quantization, which
puts many requirements on the objects involved—in particular, one needs the compatible
Kähler structures to be rigid and holomorphic. That is, if we adopt the assumptions
of Theorem 3.5 and if the Hitchin connection ∇̂ is projectively flat, the previous two
propositions imply that formal Hitchin connection from [And12] is a formal Hitchin
connection according to Definition 4.3.

4.2. Low orders of the formal Hitchin connection. The explicit expression of the formal
Hitchin connection (18) makes sense in a more general setting. Therefore the question
arises to which extent this expression actually defines a formal connection compatible
with the Berezin–Toeplitz star products. In other words, we wonder whether it defines a
derivation of the Berezin–Toeplitz star products for a general family of Kähler structures.

Here we shall answer this question up to order one by a direct computation, for
which we need not assume that a Hitchin connection in the framework of geometric
quantization exists. We include two preliminary lemmata concerning the coefficients of
the Berezin–Toeplitz star product.

Recall thatwe use the special notation c(k) for the coefficients of �σ , whenwe consider
a Berezin–Toeplitz star product.
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Lemma 4.8. Let M be a symplectic manifold with a family of compatible Kähler struc-
tures parametrized on M, by a manifold T , and let c(k) denote the coefficients of the
Berezin–Toeplitz star product associated to the complex structure for a certain σ ∈ T .
Then we have:

V [c(1)]( f, g) = 1

4

(
�G̃(V )

( f g) − �G̃(V )
( f )g − �G̃(V )

(g) f
)

. (20)

Proof. By a result of Karabegov [Kar96] we know that the degree 1 coefficient of the
Berezin–Toeplitz star product can be written as:

c(1)( f, g) = g(∂ f, ∂̄g) = i∇X ′′
g
( f ), (21)

for any functions f, g ∈ C∞(M), where X f is the Hamiltonian vector field associated
to f .

By differentiating equation (21), we get the following relation:

V [c(1)]( f, g) = 1

2
d f G̃(V )dg = 1

2
∇G̃(V )dg( f ). (22)

The operator �G̃(V )
is written as �G̃(V )

= ∇2
G̃(V )

+ ∇
δG̃(V )

, thus we get that

�G̃(V )
( f g) − �G̃(V )

( f )g − �G̃(V )
(g) f = ∇2

G̃(V )
( f g) − ∇2

G̃(V )
( f )g − ∇2

G̃(V )
(g) f,

since the sum of the order one terms vanishes. We can express the symmetric bivector
field G̃(V ) as

∑
j (X j ⊗ Y j ) for vector fields X j and Y j , and rewrite the right hand side

of (20) as:

1

4

⎛

⎝
∑

j

∇X j ∇Y j ( f g) − g
∑

j

∇X j (∇Y j f ) − f
∑

j

∇X j (∇Y j g)

⎞

⎠

= 1

4

∑

j

(∇Y j ( f )∇X j (g) + ∇X j ( f )∇Y j (g)
) = 1

2

∑

j

(∇X j ( f )∇Y j (g)
)

= 1

2
d f G̃(V )dg,

where we use the symmetry of the bivector field. This concludes the proof. ��
Remark 4.9. Let us note that the expression we obtained for V [c(1)] also shows that it is
symmetric in the two variables.

We remark that because the Berezin–Toeplitz star product is natural, the first order
coefficient c(1) is a differential operator of order 1 and hence is a derivation with respect
to both arguments.

We now show that the expression (18) gives a derivation of the Berezin–Toeplitz star
product up to order 1 in h. The derivation relation (19) can be written as:

f V [�BT ] g = Ã(V )( f ) �BT g + f �BT Ã(V )(g) − Ã(V )( f �BT g), (23)
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where V [�BT ] denotes the product with coefficients V [c(k)]. Modulo h2 and using Ã0 =
0, we arrive at the following condition that has to hold for all vector fields V on T and
smooth functions f and g on M :

V [c(1)]( f, g) = − Ã1(V )( f g) + Ã1(V )( f )g + f Ã1(V )(g). (24)

To check this, we extract the expression for Ã1 from (18), which gives us the following:

Ã1(V )( f ) = −1

4
�G̃(V )

( f ) + c(1)(V [F], f ) + V [c(1)](F, f ).

We can now substitute this into the right-hand side of Eq. (24) and get:

1

4

(
�G̃(V )

( f g) − g�G̃(V )
( f ) − f �G̃(V )

(g)
)

.

Observe that the second and third terms in Ã1(V ) do not appear, since they are differential
operators of order 1 and hence automatically satisfy Leibniz rule.We finally observe that
what we obtained is precisely the expression from Lemma 4.8, and so we have checked
that the formal connection corresponding to Ã1 is compatible with �BT modulo terms
of order h2.

Moreover we can check that the expression (18) defines a formal connection that is
flat up to order one in h. This amounts to showing that its curvature vanishes modulo
h2. Note that the only terms we see when we compute the curvature modulo h2 are
those coming from dT Ã1, since the commutator terms in the curvature are of order at
least h2. Therefore Ã1 defines a flat connection up to order one if an only if it is closed
with respect to dT . The closeness is most easily established by defining the 0-form
P1 = 1

4� − c(1)(F, f ) and checking that V [−P1] = Ã1(V ) for any vector field on T .
The discussion above can be summed up in the following proposition.

Proposition 4.10. Let M be a symplectic manifold with a family of compatible Kähler
structures parametrized by a complex manifold T . Then expression (18) defines a formal
connection that, up to order one in the formal parameter, is a derivation of the family
of Berezin–Toeplitz star products on M and flat. Therefore it defines a formal Hitchin
connection in the sense of Definition 4.3 modulo terms of order h2.

4.3. Derivations of star products. We shall now put aside the formal Hitchin connection
and look at formal connections in general. We aim at describing the space of formal
connections on a symplectic manifold.

We begin by studying the space of derivations of a star product. Recall that a map
B : C∞

h (M) → C∞
h (M) is a derivation with respect to a fixed star products if it satisfies

the relation:

B( f � g) = B( f ) � g + f � B(g), (25)

for any f, g smooth (formal) functions on M .
Gutt and Rawnsley showed the following proposition in [GR99]:
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Proposition 4.11. Ona symplecticmanifold (M, ω)with a star product �,any derivation
B of � can be written as B = ∑

k∈N Bkhk where each Bk corresponds to a symplectic
vector field Yk on M. The correspondence can be made explicit on any contractible open
subset U ⊂ M by the following relation:

Bk( f )|U = 1

h
(bk � f − f � bk),

where bk ∈ C∞(U ) is such that Yk( f )|U = {bk, f }|U .
Wesay that a formal symplectic vector field is a formal seriesY = ∑

k∈N Ykhk , where
Yk is a symplectic vector field for all k. Then the proposition above is telling us that
derivations correspond to formal symplectic vector fields and that locally a derivation
can be written as 1

h ad� b for a formal smooth function b.
In general we have an isomorphism:

�sym(M)/�Ham(M) ∼= H1(M;R),

where �sym(M) and �Ham(M) denote the space of symplectic and Hamiltonian vector
fields on M , respectively. Therefore, if H1(M;R) = 0, all symplectic vector fields are
Hamiltonian, and hence, every derivation corresponds to a formal Hamiltonian vector
field Xb = ∑

k∈N Xbk h
k , for a formal smooth function b in that case.More explicitly, any

derivation can be written globally in the form 1
h ad� b for a formal function b. Observe

that the kernel of b �→ 1
h ad� b are exactly the constant formal functions.

4.4. The affine space of formal connections. Let D and D′ be two formal connections
on M for the same family of star products parametrized by T . It is immediate to see that

D′
V − DV = A′(V ) − A(V ) = (A′ − A)(V ).

Hence their difference is a 1-form on T with values in the derivations of the star products
of the family, and it is zero modulo h. In the following Der(M, �) denotes the space of
derivations of the star product � on M and Der0(M, �) denotes the subset of derivations
that are trivial modulo h.

Given a symplectic manifold M equipped with a family of star products {�σ }σ∈T
parametrized by T , we denote by F(M, �σ ) the space of the formal connections that
are compatible with the family. We see that F(M, �σ ) is an affine space over the space
of 1-forms on T with values in Der0(M, �), and thus can be written as:

F(M, �σ ) = D0 + �1(T ,Der0(M, �σ )), (26)

for a fixed formal connection D0, which is compatible with {�σ }σ∈T .
As remarked above, the derivations of � correspond to formal symplectic vector fields

on M , therefore we can rewrite (26) in the following way:

F(M, �σ ) = D0 + �1(T , h�sym(M)[[h]]).
If we assume that H1(M;R) vanishes, all derivations of � are essentially inner, and

therefore they are parametrized by an element in C̃∞
h (M), the space of formal functions

on M modulo the constants. Therefore the compatible formal connections form an affine
space modelled on the 1-forms on T with values in hC̃∞

h (M).

F(M, �σ ) ∼= D0 + �1(T , hC̃∞
h (M)),

for a fixed compatible formal connection D0.
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4.5. Gauge transformations of formal connections. We shall study gauge transforma-
tions on the space of formal connections F(M, �σ ). The transformations we consider
are self-equivalences of the family of star products, since the connections should still act
as derivations after we transform them. This means that we look at P ∈ C∞(T ,Dh(M))

with P = id mod h such that

Pσ ( f �σ g) = Pσ ( f ) �σ Pσ (g), (27)

for any σ ∈ T and any smooth function f and g.
We are now ready to prove the following theorem.

Theorem 4.12. Let M be a symplectic manifold with a family of star products {�σ }σ∈T
parametrized by a smooth manifold T with H1(T ,R) = 0. Let D, D′ ∈ F(M, �σ ) be
formal connections for the family and let us assume that they are flat. Then they are gauge
equivalent via a self-equivalence of the family of star products P ∈ C∞(T ,Dh(M)),

meaning that

D′
V = P−1DV P, (28)

for any vector field V on T .

Proof. As usual we can write the formal connections in the form:

DV = V + A(V )

DV = V + A′(V ),

for two 1-forms A, A′ ∈ �(T ,Dh(M)) with values in formal differential operators on
M , and any vector field V on T . Then we can rewrite (28) by plugging in a section f of
the bundle as:

V [ f ] + A′(V )( f ) = P−1(V + A(V ))P( f )

= P−1 (V [P]( f ) + P(V [ f ]) + A(V )(P( f ))) .
(29)

Therefore if we apply P on both sides we get the following equation:

V [P] = PA′(V ) − A(V )P. (30)

If we can find a P = ∑
k∈N Pkhk that solves the equation, then we get the wanted gauge

transformation. To do so we proceed inductively. By definition we have P0 = id and
hence V [P0] = 0. Let us assume that we have determined P(l) = ∑

k≤l Pkh
k such that

V [P(l)] = P(l)A′(V ) − A(V )P(l) + O(hl+1).

This can be written as:

Bl+1(V )hl+1 = V [P(l)] − (P(l)A′(V ) − A(V )P(l)) + O(hl+2), (31)

where Bl+1 is a 1-form on T with values in differential operators on M . Let us define a 1-
formαl onT with values in formal differential operators onM byαl(V ) = (P(l)A′(V )−
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A(V )P(l)). We want to show that αl is closed modulo hl+2. Let V and W be two
commuting vector fields on T . Then we have that:

dT αl(V,W )

= V [α(W )] − W [α(V )]
= V [P(l)A′(W ) − A(W )P(l)] − W [P(l)A′(V ) − A(V )P(l)]
= P(l) (

A′(V )A′(W ) − A′(W )A′(V ) + V [A′(W )] − W [A′(V )])

− (A(V )A(W ) − A(W )A(V ) + V [A(W )] − W [A(V )]) P(l)

+ hl+1(Bl+1(V )A′(W ) − A(W )Bl+1(V ) − Bl+1(V )A′(V ) + A(V )Bl+1(V )),

(32)

where we substituted the expression for V [P(l)] and W [P(l)] again in order to obtain
the last equality. Note also that the following expression, which appears in the last line
of the equation,

Bl+1(V )A′(W ) − A(W )Bl+1(V ) − Bl+1(V )A′(V ) + A(V )Bl+1(V )

is of order h. Let us now compute the expressions for the curvature of D, which we are
assuming is flat:

0 = FD(V,W ) = DV DW − DW DV − D[V,W ].

The last summand vanishes because we chose commuting vector fields, hence we get,
for any section:

0 = A(V )A(W )( f ) − A(W )A(V )( f ) − W [A(V )( f )]
+ A(V )W [ f ] + V [A(W )( f )] − A(W )V [ f ]

= A(V )A(W )( f ) − A(W )A(V )( f ) − W [A(V )]( f ) + V [A(W )]( f ),
(33)

which is the same as:

0 = FD(V,W ) = A(V )A(W ) − A(W )A(V ) + V [A(W )] − W [A(V )].
By computing the curvature in the same way for D′ we obtain:

0 = FD′(V,W ) = A′(V )A′(W ) − A′(W )A′(V ) + V [A′(W )] − W [A′(V )].
By comparing with (32), we see that dT αl = 0 (mod hl+2), and therefore, by (31), we
also have that dT Bl+1 = 0. Since H1(T ;R) is trivial, we can find a smooth function
Pl+1 : T → D(M) such that V [Pl+1hl+1] = −Bl+1hl+1.2 We now set P(l+1) = P(l) +
Pl+1hl+1 as the notation suggests. To conclude the inductive step and the proof it is
enough to show that:

V [P(l+1)] − (P(l+1)A′(V ) − A(V )P(l+1)) = 0 (mod hl+2).

2 The existence of Pl+1 follows from the existence of an operator

d∗ : d(�k−1(T )) → �k−1(T ),

called the anti-differential, such that dd∗β = β holds, and which maps smooth families to smooth families.
For T compact, d∗ might be constructed using Hodge-theory. For arbitrary T one can use the Čech-de Rham
double complex to construct such an operator, as is done in [AG14].
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By expanding the left-hand side we get:

V [P(l)] − (P(l)A′(V ) − A(V )P(l)) − hl+1Bl+1 + hl+1(Pl+1A
′(V ) − A(V )Pl+1),

which is a multiple of hl+2 since Pl+1A′(V ) − A(V )Pl+1 is of order h. ��
Remark 4.13. At first glance Theorem 4.12 seems too strong, since one might naively
expect the vanishing of the fundamental group, instead of the first cohomology, to be the
relevant condition. However two factors improve the situation: First of all, the bundle
under consideration Ch is assumed to be trivial. Second, the Lie algebra in which our
connection takes values in is the Lie algebra of formal differential operatorswhich vanish
modulo h. This Lie algebra is filtered by those formal differential operators which start
at order hk . The associated graded Lie algebra is easily seen to be abelian. This two facts
show that we are effectively dealing with the case of connection with values in an abelian
Lie algebra. Hence flatness reduces to closedness and gauge-equivalence reduces to a
shift by an exact one-form. This explains the purely cohomological nature of our result.

We record the following consequence of our considerations:

Corollary 4.14. LetT beamanifoldwith trivial first cohomologygroup, i.e. H1(T ,R) =
0. If there exists a formal Hitchin connection D in the bundle Ch = T ×C∞

h (M) on T ,

then it is unique up to gauge equivalence.

5. Existence of Formal Connections

In this section we study the question of existence of formal connections on a symplectic
manifold (M, ω), equipped with a smooth family of natural star products {�σ }σ∈T . As
we will see, this problem can be reduced to a cohomological condition in terms of the
corresponding family cl(�σ ) of characteristic 2-forms, see Sect. 2.2.

We briefly review the Hochschild complex HC•(A, A) of an algebra A with values
in itself, relying on [Ger63,Wal07]. It is given by

HCk(A, A) := Hom(A⊗k, A),

the space of multilinear maps from A to itself. The graded vector space HC•(A, A)

comes equipped with the Gerstenhaber bracket [·, ·]G . For ψ ∈ HCr+1(A, A) and
ϕ ∈ HCs+1(A, A), it is given by

[ψ, ϕ](a0, . . . , ar+s) :=
r∑

i=0

(−1)isψ(a0, . . . , ai−1, ϕ(ai , . . . , ai+s), ai+s+1, . . . , ar+s)

−(−1)rs
s∑

j=0

(−1) jrϕ(a0, . . . , a j−1, ψ(a j , . . . , a j+r ), a j+r+1, . . . , ar+s).

The bracket [·, ·]G makes HC(A, A) into a graded Lie algebra if we assign to an element
ψ ∈ HCr+1(A, A) the degree r . Moreover, the associativity of the productm : A⊗A →
A of A can be rewritten as

[m,m]G = 0.
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As a consequence, the map dH (ϕ) := [m, ϕ]G defines a coboundary operator on
HC•(A, A), which is referred to as the Hochschild differential. The cohomology of
HC•(A, A) with respect to dH is called the Hochschild cohomology of A and is known
to control the infinitesimal deformations of the algebra A.

Wewill be interested in the case of A beingC∞
h (M), seen as amodule overC[[h]]. To

get a reasonable cohomology theory, one has to take the Fréchet-topology into account
(thus modifying the tensor product and the space of homomorphisms). Alternatively,
one can restrict to the space of multi-differential operators Dm(M), where m is the
number of arguments. The Gerstenhaber bracket [·, ·]G and the Hochschild differential
dH restrict to D•(M) = ⊕m≥0Dm(M). We will also consider the space of formal
multi-differential operatorsD•

h(M) and theC[[h]]-linear extensions of [·, ·]G and dH to
D•

h(M), respectively.
Let {�σ }σ∈T be a family of star products for (M, ω), smoothly parametrized by T .

Given a vector field V on T , we write V [�σ ] for the product whose i-th coefficient is
V [ci ], i.e. the variation of {�σ }σ∈T in the direction of V . The operator

BV ( f, g) = f V [�σ ]g
can be seen as a family of elements in D2

h(M). Since associativity of {�σ }σ∈T can be
written as

[�σ , �σ ]G = 0,

we obtain

dH BV = [�σ , V [�σ ]]G = 1

2
V ([�σ , �σ ]G) = 0,

i.e. BV is closed with respect to the Hochschild differential associated to the family of
star products {�σ }σ∈T .

We now reconsider the compatibility requirement between a formal connection D
and {�σ }σ∈T from Definition 4.2. Using the decomposition DV = V + A(V ), the
compatibility can be written as

A(V )( f ) �σ g + f �σ A(V )(g) − A(V )( f �σ g) = f V [�σ ]g. (34)

We see that the above equation can be further rewritten as

dH A(V ) = V [�σ ]
and we arrive at the following interpretation of (34):

Proposition 5.1. Let (M, ω) be a symplectic manifold, equipped with a family of natural
star products {�σ }σ∈T on M, smoothly parametrized by T .

There is a one-to-one correspondence between:
1. Formal connections DV = V + A on T which are compatible with {�σ }σ∈T .
2. Families of formal differential operators A(V ) ∈ D1

h(M), with A(V ) = 0mod h
that satisfy

dH A(V ) = V [�σ ],
where dH denotes the Hochschild coboundary operator with respect to the family of
star products {�σ }σ∈T .
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In particular, a family of star products {�σ }σ∈T admits a compatible formal connec-
tion if and only if the family of cocycles given by B(σ, V ) = V [�σ ] is exact.

By work of Weinstein–Xu [WX98], the Hochschild cohomology of C∞
h (M) with

respect to a star product is isomorphic to the de Rham cohomology hH•(M,R)[[h]].
Consequently, one expects that the cohomological condition on V [�σ ] from Proposi-
tion 5.1 translates into a cohomological condition on the characteristic 2-forms cl(�σ ).
We will show that this is indeed the case. Instead of applying the results of [WX98],
we directly work in Fedosov’s framework, which we modify for our purposes. More
precisely, we aim at showing that every choice of trivialization for the family of char-
acteristic 2-forms cl(�σ ) leads to a compatible formal connection of the corresponding
star products �σ . We introduce

P := {β ∈ �1(T ,�1(M)[[h]]) | dMiVβ = V [cl(�σ )]},
which we regard as the space of trivializations of all variations of cl(�σ ) and

C := {A ∈ h�1(T ,D1
h(M)) | dH iV A = V [�σ ]},

the space of trivializations of all variations of the family �σ in D2
h(M).

Theorem 5.2. Let (M, ω) be a symplectic manifold which is equipped with a family of
natural star products {�σ }, smoothly parametrized by T . There is a natural map

C : P → C

The proof of Theorem 5.2 is postponed to the next subsection. If we combine Theo-
rem 5.2 and Proposition 5.1, we obtain

Theorem 5.3. Let (M, ω) be a symplectic manifold which is equipped with a family of
natural star products {�σ }, smoothly parametrized by T .

Then the following statements are equivalent:
1. The cohomology class of the family of characteristic 2-forms cl(�σ ) is locally constant

in T .
2. There is a 1-form A ∈ �1(T , hD1

h(M)) with values in formal differential operators
on M such that for any vector field V on T , and any smooth functions f and g on
M the identity

f V [�]g = A(V )( f ) � g + f � A(V )(g) − A(V )( f � g)

holds.
3. The family of star products admits a formal connection.

Proof. We start with the implication (1) ⇒ (2). Assuming Theorem 5.2, the only part
of this statement that needs additional arguing is that, given family of closed 2-forms
ασ := cl(�σ ) with locally constant cohomology class, one can find a smooth 1-form β

on T with values in �1(M) such that for all vector fields V on T the identity

dMiVβ = V [ασ ]
holds. To this end, we assume without loss of generality that T is connected. We fix a
base-point t0 ∈ T and consider the family

α − αt0 ,
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which is exact. Hence there is a family of 1-forms γ on M such that

dMγ = α − αt0

holds. If we apply the Lie derivative with respect to a vector field V on T , we obtain:

−dMiV (dT γ ) = V [α].
Hence β := −dT γ is the desired 1-form on T with values in �1(M).

The implication (2) ⇒ (3) is precisely the content of Proposition 5.1.
The implication (3) ⇒ (1) relies on the parallel transport of the connection DV =

V + A(V ). Given two points σ and σ ′ in the same connected component of T , we can
choose a smooth path γ which starts at σ and ends at σ ′. We pull back the family �σ

and the connection DV along γ . We claim that the parallel transport �(t) of DV along
γ exists and is unique. If we consider a fixed order of h, this reduces to the existence
and uniqueness of solutions to an ODE of the form

d

dt
F(t) = G(t),

with G(t) a given smooth one-parameter family of differential operators on M . Modulo
constants (with respect to t) there is clearly a unique solution, given by integration over
t .

We can now consider the family of star products

�(t) ◦ �σ ◦ �(t)−1 ⊗ �(t)−1.

At t = 0, it coincides with �γ (t) and satisfies the same ordinary differential equation,
which is

d

dt
�γ (t) = �γ (t) ◦ (A

(
dγ

dt

)
⊗ id + id ⊗ A

(
dγ

dt

)
) − A

(
dγ

dt

)
◦ �γ (t).

By uniqueness of the solution to this ODE, we conclude

�γ (t) = �(t) ◦ �σ ◦ �(t)−1 ⊗ �(t)−1.

In particular, �σ and �σ ′ are equivalent star products. Consequently their characteristic
classes coincide. ��

The discussion above specializes to the case of a compact symplectic manifold M
with a family of compatible Kähler structures parametrized by T . As in Sect. 2.3, one can
consider the family of Berezin–Toeplitz star products {�σ }σ∈T . The characteristic class
of �σ is proportional to the first Chern class ofM , see [Haw00]. Since the first Chern class
is independent of the compatible complex structure σ , we may apply Theorem 5.3 to
the family {�σ }σ∈T and obtain the existence of a formal connection which is compatible
with {�σ }σ∈T . Even better, we might directly apply Theorem 5.2: The only input data
is a family βσ of 1-forms on T with values in �(M)1[[h]] such that the condition from
Theorem 5.2 holds. Using Hodge-theory with respect to the family of Kähler metrics
yields a preferred such family. We hence obtain the following result:

Theorem 5.4. Let (M, ω) be a compact, symplectic manifold equipped with a family
of compatible Kähler structures parametrized by a manifold T . Let us consider the
corresponding family of Berezin–Toeplitz star products {�σ }σ∈T . Then the family admits
a preferred formal connection.

The details of the proof will be given in future work. There, we also hope to compare
more closely the formal connection from Theorem 5.4 to the expression for the formal
Hitchin connection given in Eq. (18), Sect. 4.1.



Formal Connections for Families of Star Products 763

5.1. Proof of Theorem 5.2. This subsection contains the proof of Theorem 5.2. We will
use Fedosov’s framework for the deformation quantization of symplectic manifolds,
which we reviewed in Sect. 2.2. The first step of the proof is in fact the reduction to
families of Fedosov star products via [GR03, Theorem 4.1]: Gutt and Rawnsley show
there that every natural star product is equivalent to a preferred star product of Fedosov-
type through a preferred equivalence. Hence we assume from now on without loss of
generality that each member �σ of the family of star products which we consider equals
�∇σ ,ασ , where:

• ∇σ is a symplectic connection for (M, ω),
• ασ is an element of ω + hZ2(M,R)[[h]].
Moreover, these data fit together into smooth families parametrized by T .

Our aim is to understand the dependence of Fedosov’s construction from Sect. 2.2
on the data {∇σ , ασ }σ∈T . As in the proof of Theorem 5.2 we can fix a 1-form β on T
with values in �1(M)[[h]] such that for all vector fields V on T the equation

dMiVβ = V [ασ ]
holds.

We now go through Fedosov’s construction, seen as fibred over the parameter space
T . In the first step, we realize each star product �∇σ ,ασ with the help of a Fedosov
connection Dr(σ ). In the following, we interpret r as a family of elements in�2(M,W ).
Recall thatW denotes the Weyl bundle over M . By definition, the star product �∇σ ,ασ is
given by

f �∇σ ,ασ g = p(τr(σ )( f ) ◦MW τr(σ )(g)),

where τr(σ )( f ) is the unique extension of f to �(W ) which is constant with respect to
the connection Dr(σ ) and p is the canonical projection �(W ) → C∞

h (M).
We claim that there is a 1-form s on T with values in�0(M,W ) such that the operator

D̂s := dτ +
i

h
ad(s)

commutes with Dr in the graded sense, i.e.

[D̂s, Dr ] := D̂s ◦ Dr + Dr ◦ D̂s = 0.

Using the form of Dr and our ansatz for D̂s , we obtain the following expression for
the graded commutator

iV [D̂s, Dr ] = i

h
ad (−Dr (iV s) + V [r ]) + V [d∇σ ],

where V is an arbitrary vector field on T . Recall that ∇σ is a family of symplectic
connections. These form an affine space over the subspace S of �1(M,End(T M))

which corresponds to totally symmetric contravariant 3-tensors after contraction with
ω. Hence the variation of ∇σ is encoded by a 1-form Sσ on T with values in S. In the
following we use ω to turn Sσ into a 1-form on T with values in �1(M,W ).

Lemma 5.5. The variation V [d∇σ ] of the covariant derivative d∇σ on �(M,W ) can be
expressed as

V [d∇σ ] = i

2h
ad(iV Sσ ).
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Proof. If we consider a ∈ W which does not depend on h, only odd powers of h will
appear in the adjoint action ad(a) under the Moyal–Weyl product. Hence we only need
to compute ad(iV Sσ ) to first order, which is essentially given by contracting iV Sσ by the
Poisson bivector field dual to ω, just undoing the contraction by ω that occurred before.
��

Thanks to the lemma, we arrive at the following formula for the commutator:

iV [D̂s, Dr ] = i

h
ad

(
−Dr (iV s) + V [r ] + 1

2
iV Sσ

)
.

Our strategy is now the same as in Fedosov’s construction: we have to choose s such
that the expression in the bracket on the right hand side of the above equation lies in the
center of �(M,W ), which is �(M)[[h]], i.e. we impose

− Dr (iV s) + V [r ] + 1

2
iV Sσ = iVβ (35)

for β a 1-form on T with values in�1(M). One finds a necessary condition for Equation
(35) which reads

V [ασ ] = dMiVβ,

and coincides with the condition we imposed on β at the beginning.
We have the following analogon to Theorem 2.5:

Proposition 5.6. There is a unique s ∈ �1(T ,�1(M,W )) such that

−Dr (iV s) + V [r ] + 1

2
iV Sσ = iVβ

and δ∗(iV s) = 0 hold for all vector fields V on T .

Proof. We rewrite the equation as

Dr (iV s) = V [r ] + 1

2
iV Sσ − iVβ.

By general cohomological considerations, it suffices to now prove that the right hand
side of the above equation is closed with respect to Dr .

By 0 = [Dr , [dT , Dr ]] = ± i
h ad(Dr (V [r ]+ 1

2 iV Sσ −iVβ)),weknow that Dr (V [r ]+
1
2 iV Sσ − iVβ) is central. If we compute the component of this element in the center, we
obtain V [ασ ] − dMiVβ, which vanishes by assumption.

We now know that there is an appropriate solution iV s. The condition δ∗(iV s) = 0
singles out a unique one. ��
Lemma 5.7. Let V be a vector field on T . The variation of τr ( f ) in the direction of V
is given by

V [τr ( f )] = i

h
(τ ◦ p − id) ([iV s, τr ( f )]) .
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Proof. Let us define μ( f ) to be D̂sτr ( f ). Since Dr and D̂s commute, μ( f ) is closed
with respect to Dr . Moreover, the image under p computes to

p(μ( f )) = p((dT +
i

h
ad(s))τr ( f )) = i

h
p([s, τr ( f )]).

Since Dr -closed elements are determined by their image under p, we obtain

μ( f ) = i

h
(τ ◦ p)([s, τr ( f )]).

Inserting μ( f ) = (dT + i
h ad(s))τr ( f ) into the equality yields

dT τr ( f ) = i

h
(τ ◦ p − id)([s, τr ( f )]).

��
Proposition 5.8. Let s ∈ �1(T ,�0(M,W )) be as in Proposition 5.6.

Then

A(V ) := i

h
p ([iV s, τr (·)])

defines a 1-form on T with values in D1
h(M) that satisfies the following:

1. If X f denotes the Hamiltonian vector field of f and β1 is the component of β of order
h, we have

A(V )( f ) = −h(iV iX f β1) (mod h2).

2. The identity

dH iV A(V ) = V [�∇σ ,ασ ]
holds.

Proof. That A(V ) is a differential operator follows from the fact that the value of τr ( f ) at
x depends only on the jet of f at x and that the Moyal–Weyl product only acts fibrewise.

To verify the claim about the lowest order terms of A(V ), we have to consider the
lowest orders of s and τr ( f ) with respect to the total degree, which is given by the
polynomial degree in the Weyl-algebra plus twice the power in h. The expansion up to
order 1 of τr ( f ) is f + d f , where d f is seen as a function on T with values inW . Since
f ∈ C∞(M) lies in the center of the Weyl-algebra, only the term d f is relevant for our
considerations.

Concerning s, we notice that we only need to consider its component in T ∗M ⊂ W
because we are only interested in p([s, d f ]), and all other components lead to terms that
project to zero under p. Inspecting this component in lowest order, we find an element
a which is uniquely determined by

−δ(iV a) = −hiVβ1, and δ∗a = 0,

where β1 is the term of order h in β. The solution to this equation is given by

a = hδ∗iVβ1.
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In total, we obtain that the lowest order term of A(V ) is given by

i

h
ad(a)(d f ) = i[δ∗iVβ1, d f ] = −h(iV iX f β1),

where X f denotes the Hamiltonian vector field of f .
It remains to verify that the image of A(V ) under the Hochschild differential dH is

V [�σ ]. In fact we compute:

V [ f �∇σ ,ασ g] = p(V [τr ( f )] ◦MW τr (g)) + p(τr ( f ) ◦MW V [τr (g)]).
Wenowuse the expression for the variation of τr ( f ) and τr (g)weobtained in Lemma5.7
and arrive at

V [ f �∇σ ,ασ g] = A(V )( f ) �∇σ ,ασ g − f �∇σ ,ασ A(V )(g) − A(V )( f �∇σ ,ασ g),

which is exactly V [�∇σ ,ασ ] = dH A(V ). ��
Combining Propositions 5.6 and 5.8, we obtain an assignment

C : C → P

and thereby complete the proof of Theorem 5.2.
The following result expresses the curvature of the formal connection DV = V+A(V )

in terms of the element s:

Proposition 5.9. Let A(V ) := i
h p([iV s, τr (·)]) be the connection 1-form associated

to the element s from Proposition 5.6. The curvature of the formal connection DV =
V + A(V ) equals the 2-form �s on T with values in formal differential operators on M
given by

�s( f ) := i

h
p([dT s +

i

h
s ◦MW s, τr ( f )]).

Proof. We first compute (dT A)( f ) = dT i
h p([s, τr ( f )]). By Lemma 5.7, we obtain

i

h
p([dT s, τr ( f )] − [s, i

h
(τ ◦ p − id)[s, τr ( f )]]).

On the other hand, applying A ∧ A to f yields

(
i

h

)2

p([s, τr p([s, τr ( f )])]),

which cancels with one of the terms from (dT A)( f ). The remaining terms are

i

h
p([dT s, τr ( f )] + i

h
[s, [s, τr ( f )]]).

In order to arrive at the claimedexpression,weapply the identity [s, [s, X ]] = 1
2 [[s, s], X ]

= [s ◦MW s, X ]. ��
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