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Abstract: The number of monomers in a monomer–dimer mean-field model with an
attractive potential fluctuates according to the central limit theorem when the parame-
ters are outside the critical curve. At the critical point the model belongs to the same
universality class of the mean-field ferromagnet. Along the critical curve the monomer
and dimer phases coexist.

Introduction

Interacting particle systems described with statistical mechanics models are known to
have different fluctuation properties on their critical points. In the mean-field ferromag-
net, for instance, the sum of the spins centered around its mean and normalised with
the square root of the total volume, converges toward a normal random variable (central
limit theorem) away from the critical line. At the critical point instead a non-normal
behaviour emerges, i.e., the limiting probability distribution for the sum of the spins
centered and suitably normalised is not Gaussian [6,13].

In this paper we consider a mean-field system of interacting monomers and dimers
where, beyond the hard-core interaction among particles, an attractive interaction is
added to favour configurations where similar particles lie in neighbouring sites. The
peculiar features of the presented model come from the combined presence of the two
interactions. We show that the central limit theorem and the law of large numbers hold
for the number of monomers at general values of the parameters. At the critical point
instead the central limit theorem breaks down and the number of monomers centered
around its mean and normalised with the exponent 3/4 of the total volume has a limiting
density proportional to exp(−cx4), i.e. the system exhibits the same critical behavior of
the mean-field ferromagnet. We also show that along the critical curve the law of large
numbers breaks down, due to the coexistence of the monomer and the dimer phases.
Unlike the Curie–Weiss model, the relative weights of these phases are non-constant
and display two contributions that correspond to the two types of interaction.
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Weprovide a rigorous proof of thementioned results by first studying the properties of
themoment generating function for themodelwhen the attractive interaction is zero.Here
the difficulty of the problem stems from the fact that even in the absence of the attraction
the system keeps its interacting nature and the equilibrium measure does not factorise.
To solve this problem we use a Gaussian representation for the pure monomer–dimer
model previously introduced in [2], which has the purpose of decoupling the hard-core
interaction. When instead we consider the attractive potential we follow the Gaussian
convolution method introduced in [7].

It would be interesting to further extend the results presented in this paper in the
same spirit of those obtained for the mean-field ferromagnet in [5,7] and also test for
the same purpose other methods like those based on interchangeability [3,4] or those of
Lee–Yang type [11].

The paper is organised as follows. Section 1 presents the definition of the model and
the precise statements of the results. In Sect. 2 we consider the pure hard-core model
and prove the law of large numbers and the central limit theorem by using the Gaussian
representation and an extended Laplace method (reported in the “Appendix”). In Sect. 3
we consider the hard-core model with attraction and, using the method of the Gaussian
convolution together with the formerly introduced Gaussian representation, we prove
the law of large numbers, the central limit theorem and their breakdown respectively
along the critical curve and at the critical point.

1. Definitions and Results

Let G = (V, E) be a finite graph with vertex set V and edge set E ⊆ {uv ≡
{u, v} | u, v ∈ V, u �= v}.
Definition 1.1. A dimer configuration on the graph G is a set D of pairwise non-incident
edges, called dimers:

D ⊆ E and for each v ∈ V there is at most one u ∈ V such that uv ∈ D.

(1.1)
The associated set of dimer-free vertices, called monomers, is denoted by

MG(D) := {v ∈ V | ∀u ∈ V uv �∈ D}. (1.2)

We denote byDG the configuration space, i.e. the set of all possible dimer configurations
on the graph G.

We notice that by definition

|MG(D)| + 2|D| = |V | ∀ D ∈ DG . (1.3)

In this paper we restrict our attention to the complete graph with vertex set V =
{1, . . . , N } and edge set E = {uv | u, v ∈ V, u �= v}. The corresponding configura-
tion space will be denoted by DN and the set of monomers associated to the dimer
configuration D by MN (D).

A fundamental quantity is the number of monomers for a given dimer configuration
D ∈ DN : SN (D) := |MN (D)|. SN (D) can be seen as a sum of N variables introducing,
for a given D ∈ DN and for all v ∈ V , a monomer occupancy variable

αv(D) :=
{
1, if v ∈ MN (D)

0, otherwise
. (1.4)
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Thus, one can write

SN (D) =
N∑

v=1

αv(D). (1.5)

We also define the empirical monomer density as

m N (D) := 1

N
SN (D) (1.6)

which represents an analogous of the empirical magnetization in magnetic models.
In [1] the authors consider a monomer–dimer model with imitative interaction on the

complete graph, that we call Imitative Monomer–Dimer model (IMDmodel), defined as
follows. For each integer N , the Hamiltonian function is

−HN (D) := N
(
(h − J ) m N (D) + J (m N (D))2

)
∀ D ∈ DN (1.7)

where h ∈ R is the external field and J ≥ 0 is the imitative coupling. The Hamiltonian
(1.7) induces a Gibbs probability measure on the configurations space DN

μN (D) := 1

Z N
N−|D| exp(−HN (D)) ∀ D ∈ DN , (1.8)

where
Z N :=

∑
D∈DN

N−|D|e−HN (D) (1.9)

is the partition function. The factor N−|D| is the necessary normalisation working on
the complete graph. As usual, the quantity

pN := 1

N
log Z N (1.10)

is called pressure density.

Remark 1.1. Despite the Hamiltonian (1.7) depends only on the numbers of monomers,
it is possible to show [1] that in our case, namely on the complete graph, any general
Hamiltonian depending also on the number of dimers and the relative couplings is
equivalent, up to a constant, to (1.7). Thus, the parameters h, J take into account both
monomer/dimer external fields and monomer–monomer/dimer–dimer/monomer–dimer
couplings.

Beside the formal analogy between (1.7) and the Hamiltonian function of a Curie–
Weiss model, we want to stress their main difference: in the former the configuration
space DN is not a product space because of the hard-core constraint (1.1).

Let us briefly recall the results obtained in [1]. We refer to the original work for the
details.

Theorem 1.1. The thermodynamic limit of the pressure density of the IMD model is
given by

lim
N→∞ pN = sup

m
p̃(m) (1.11)
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where

p̃(m) := −Jm2 + p(0)((2m − 1)J + h), (1.12)

p(0)(h) := −1 − g(h)

2
− 1

2
log(1 − g(h)) = −1 − g(h)

2
− log g(h) + h, (1.13)

g(h) := eh

2
(
√

e2h + 4 − eh). (1.14)

Remark 1.2. We notice that, in analogy with magnetic models, one can define a general
mean-field Hamiltonian as

−HMF
N (D) = N f

(
m N (D)

)
(1.15)

for any bounded continuous function f . As in the case of spin mean-field models, using
standard Large Deviations techniques, one can prove that

lim
N→∞

1

N
log ZMF

N = sup
m

(
f (m) − I (m)

)
(1.16)

where the rate function I is given by

I (z) =
{

z log z + 1−z
2 log(1 − z) + 1−z

2 − p(0)(0) if z ∈ [0, 1]
∞ otherwise.

(1.17)

The aim of the present work is to describe the limiting distribution of the random
variable SN with respect to the measure μN , in a suitable scaling when N → ∞ . From
now on δx is the Dirac measure centered at x ,N (

m, σ 2
)
denotes the normal distribution

withmeanm and variance σ 2 and
D→ denotes the convergence in distributionwith respect

to the Gibbs measure μN , as N → ∞.
Let start by considering the case J = 0. The Hamiltonian (1.7) at J = 0 is a special

case of the original problem considered by Heilmann and Lieb [9]. We introduce the
following notation,

Z (0)
N ≡ Z N

∣∣∣
J=0

, p(0)
N ≡ pN

∣∣∣
J=0

, μ
(0)
N ≡ μN

∣∣∣
J=0

. (1.18)

Setting J = 0 in Theorem 1.1 we get

lim
N→∞ p(0)

N = p(0)(h) ∀ h ∈ R. (1.19)

Thus, the pressure is analytic as a function of h and the unique value of the limiting
monomer density is given by

lim
N→∞E

μ
(0)
N

(m N ) = lim
N→∞

∂

∂h
p(0)

N = ∂

∂h
p(0) (1.20)

and, using the properties of g given in [1], we get

∂

∂h
p(0) = g(h). (1.21)
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Fig. 1. The coexistence curve γ and the critical point (hc, Jc) in the plane (h, J )

Theorem 1.2. For the IMD model at J = 0 the followings hold:

m N
D→ δg(h) (1.22)

and
SN − N g(h)√

N

D→ N
(
0,

∂

∂h
g(h)

)
. (1.23)

We notice that, even if we are in the case J = 0, (1.23) is not a consequence of
the classical central limit theorem, indeed SN is not a sum of i.i.d. random variables
because of the presence of the hard-core interaction. The proof of the theorem is in the
next section.

Let us consider now the case J > 0. It is proven in [1] that the points where the
function p̃ defined in (1.12) reaches its maximum satisfy the following consistency
equation:

m = g((2m − 1)J + h). (1.24)

The analysis of (1.24) allows to identify the region where there exists a unique global
maximum point m∗(h, J ) of p̃. The resulting picture (see Fig. 1) is the following: the
function m∗ is single-valued and continuous on the plane (h, J ) with the exception of
an open curve γ defined by an implicit equation h = γ (J ). Moreover m∗ is smooth
outside γ union its endpoint (hc, Jc). Instead on γ , there are two global maximum points
m1(J ) = m1(γ (J ), J ) and m2(J ) = m2(γ (J ), J ). In particular, m1 < m2 thus they
represents respectively the dimer and the monomer phase. The curve γ plays a crucial
physical role since it represents the coexistence of two different thermodynamic phases
and the point (hc, Jc) is the critical point of the system, whose exact value is computed
in [1].

Outside of γ , by differentiating the expression (1.11) with respect to the external
field h, one obtains that the value m∗ maximizing p̃ is the limit of the average monomer
density m N = SN /N with respect to the Gibbs measure:

lim
N→∞EμN (m N ) = lim

N→∞
∂

∂h
pN = d

dh
p̃(m∗) = m∗(h, J ). (1.25)
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We want to stress the fact that in the standard mean-field ferromagnetic model (Curie–
Weiss model) the existence of the limiting magnetization on the coexistence curve (zero
external field) is achieved by a spin flip symmetry argument, a property that we do not
have in the present case.

In the next sections we will prove the law of large numbers, the central limit theorem
and their breakdowns, respectively Theorems 1.3 and 1.4 below, for the distribution of
SN (suitable normalised) with respect to the Gibbs measure μN .

Theorem 1.3. Consider the IMD model defined by the Hamiltonian (1.7).

(i) In the uniqueness region (h, J ) ∈ R × R
+\γ , we have that

m N
D→ δm∗ . (1.26)

(ii) On the coexistence curve γ , we have that

m N
D→ ρ1 δm1 + ρ2 δm2 , (1.27)

where ρl = bl
b1+b2

, bl = (−λl(2 − ml))
−1/2 and λl = ∂2

∂m2 p̃(ml), for l = 1, 2.

Remark 1.3. We notice that, on the contrary of what happens for the Curie–Weiss model,
the statistical weights ρ1 and ρ2 on the coexistence curve are in general different, fur-
thermore they are not simply given in terms of the second derivative of the variational
pressure p̃.

The first fact can be seen numerically (Fig. 2) and analytically one can compute

lim
J→∞

ρ1(J )

ρ2(J )
= 1√

2
. (1.28)

Indeed, by exploiting the formula (p(0))′′ = g′ = 2g(1 − g)/(2 − g) (see Appendix of
[1]), one can rewrite the ratio ρ1/ρ2 as

ρ1

ρ2
=

√
(2 − m2) − 4J m2 (1 − m2)

(2 − m1) − 4J m1 (1 − m1)
. (1.29)

Furthermore, the relative weights ρl have two contributions reflecting the presence of
two different kind of interaction: the first contribution λl is given by the second derivative
of the variational pressure (1.12), while the second contribution 2− ml comes from the
second derivative of the pressure of the pure hard-core model.

Theorem 1.4. Consider the IMD model defined by the Hamiltonian (1.7).

(i) For (h, J ) ∈ (
R × R

+
)\(γ ∪ (hc, Jc)

)
, we have

SN − Nm∗

N 1/2
D→ N

(
0, σ 2

)
(1.30)

where σ 2 = −λ−1 − (2J )−1 > 0 and λ = ∂2

∂m2 p̃(m∗) < 0.
(ii) At the critical point (hc, Jc), we have

SN − Nmc

N 3/4
D→ C exp

(
λc

24
x4

)
dx (1.31)

where λc = ∂4

∂m4 p̃(mc) < 0, mc ≡ m∗(hc, Jc) and C−1 = ∫
R
exp( λc

24 x4)dx.
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Fig. 2. We extend the definition of ρ1 and ρ2 on a region that contains γ , wherem1 andm2 are local maximum
points of p̃, and thenwe compute the sign of ρ1−ρ2. The coexistence curve appears to be completely contained
in the region ρ1 < ρ2

2. The Pure Hard-Core Model

A basic ingredient of all the proofs is the knowledge of the properties of the moment
generating function of SN w.r.t. the Gibbs measure at J = 0. However, compared with
spin models, monomer–dimer models have an additional feature: the problem at J = 0
is itself non trivial in the sense that the Gibbs measure is not a product measure. We start
by deriving the properties of the partition function of the model at J = 0 that will be
used during all the proofs.

For given u, t ∈ R and η ≥ 0, using the definition (1.18) let us consider

Z (0)
N

(
u +

t

Nη

) =
∑

D∈DN

N−|D| exp
((

u +
t

Nη

)
SN (D)

)
(2.1)

In order to obtain an asymptotic expansion of (2.1), which allows us to obtain its
scaling properties, we will use a connection between the monomer–dimer problem and
Gaussian moments [2,14]. Following the same argument of [2] one finds

Proposition 2.1. The following representation of the partition function holds

Z (0)
N (u +

t

Nη
) =

√
N

2π

∫
R

(
ΨN (x)

)N
dx, (2.2)

where

ΨN (x) :=
(

x + exp(u +
t

Nη
)
)
exp(− x2

2
). (2.3)
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The above Gaussian representation allows us to use Theorem A.1 (see the “Appen-
dix”), an extension of the Laplace method, to obtain a useful asymptotic expansion of
Z (0)

N (u + t
Nη ). Precisely

Proposition 2.2. For a given u, t ∈ R and η > 0

Z (0)
N

(
u +

t

Nη

) ≡ exp
(

N p(0)
N

(
u +

t

Nη

)) ∼
N→∞ exp

(
N p(0)(u +

t

Nη

))√
1

2 − g(u)

(2.4)
where p(0) and g are defined respectively in (1.13) and (1.14).

Proof. Use Proposition 2.1 and check that the function ΨN defined in (2.3) satisfies
the hypothesis of Theorem A.1, with x̂N = e−(u+t/Nη)g(u + t/Nη). By means of the
stationarity condition x̂2N + eu+t/Nη

x̂N −1 = 0, one finds logΨN (x̂N ) = p(0)(u + t/Nη)

and ∂2

∂x2
logΨN (x̂N ) = −2 + g(u + t/Nη). ��

Wewill show that the previous proposition gives immediately Theorem 1.2. On other
hand, in the case J > 0 we need additional information about the convergence of p(0)

N
to p(0).

Proposition 2.3. For each k ∈ {0, 1, 2, . . .}, ∂k

∂hk p(0)
N (h) converges uniformly to

∂k

∂hk p(0)(h) on compact subsets of R.

Proof. The location of the complex zeros h ∈ C of the partition function Z (0)
N (h) was

described in the work of Heilmann and Lieb in [9]: Theorem 4.2 in [9] shows that these
zeros satisfy �(eh) = 0, that is �(h) ∈ π

2 + πZ . Set U := R + i
( − π

4 , π
4

) ⊂ C.

The analytic function Z (0)
N (h) does not vanish on the simply connected open set U ,

hence p(0)
N (h) ≡ 1

N log Z (0)
N (h) is a well-defined analytic function on U . Moreover the

sequence
(

p(0)
N (h)

)
N∈N is bounded uniformly in N and in h ∈ K , for every K compact

subset of U ; indeed

∣∣p(0)
N (h)

∣∣ ≤ 1

N

∣∣ log ∣∣Z (0)
N (h)

∣∣ ∣∣ +
2π

N
,

from the definition of Z (0)
N it follows immediately

1

N
log

∣∣Z (0)
N (h)

∣∣ ≤ 1

N
log Z (0)

N

(
sup
h∈K

�(h)
)
,

andon the other hand, since Z (0)
N is a polynomial in the variable eh , using theFundamental

Theorem of Algebra and thank to the choice of U , it follows

1

N
log

∣∣Z (0)
N (h)

∣∣ ≥ inf
h∈K

e�(h)

√
2

2
.

Thus, the claim is a consequence of the Vitali–Porter andWeiestrass Theorems [12]. ��
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Let now prove Theorem 1.2. For each u ∈ R and η ≥ 0 we define

SN ,η,u := SN − u

Nη
. (2.5)

In order to prove the two statements of the Theorem 1.2, namely the law of large numbers
(1.22) and the central limit theorem (1.23), it is enough to compute the limit of the
moment generating function of SN ,η,u for η = 1, u = 0 and for η = 1

2 , u = g(h)

respectively.
Consider themoment generating function of SN ,η,u with respect to theGibbsmeasure

μ
(0)
N with external field h, namely for all t ∈ R

φSN ,η,u (t) :=
∑

D∈DN

μ
(0)
N (D) et SN ,η,u(D). (2.6)

By (2.1) one can rewrite (2.6) as

φSN ,η,u (t) = e−tu/Nη Z (0)
N (h + t

Nη )

Z (0)
N (h)

. (2.7)

Using Proposition 2.2 for the numerator and the denominator of (2.7) one gets

Z (0)
N (h + t

Nη )

Z (0)
N (h)

∼
N→∞ exp

(
N

(
p(0)(h +

t

Nη

) − p(0)(h)

))
(2.8)

Setting η = 1 and u = 0 and using the Taylor expansion p(0)(h + t
N ) − p(0)(h) =

t
N

∂
∂h p(0)(h) + O(N−2) and (1.21), we obtain

lim
N→∞ φSN ,1,0(t) = et g(h) ∀ t ∈ R (2.9)

which implies (1.22).
In the case of the central limit theorem, setting η = 1

2 and u = g(h), the leading
order is provided by the Taylor expansion of p(0)(h + t√

N
) up to the second order

p(0)(h +
t√
N

) = p(0)(h) +
t√
N

∂

∂h
p(0)(h) +

t2

2N

∂2

∂h2 p(0)(h) + O(N− 3
2 ),

and then we obtain

lim
N→∞ φS

N , 12 ,g(h)
(t) = e

t2
2

∂
∂h g(h) ∀ t ∈ R (2.10)

which implies (1.23) and completes the proof. ��
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3. The Model with Attractive Potential

The strategy in the case J > 0 follows the general method of Ellis and Newman [5],
namely, in order to overcome the obstacle of the quadratic term in the interaction, we
consider the convolution of the Gibbs measure μN with a suitable Gaussian random
variable. Let us start by two simple lemmas.

Lemma 3.1. For all integer N, let WN and YN be two independent random variables.

Assume that WN
D→ W , where

E eitW �= 0 ∀t ∈ R.

Then YN
D→ Y if and only if WN + YN

D→ W + Y .

Lemma 3.2. Let W ∼ N (0, (2J )−1) be a random variable independent of SN for all
N ∈ N. Then given η ≥ 0 and u ∈ R, the distribution of

W

N 1/2−η
+

SN − Nu

N 1−η
(3.1)

is
CN exp

(
N FN

( x

Nη
+ u

))
dx, (3.2)

where C−1
N = ∫

R
exp

(
N FN ( x

Nη + u)
)
dx and

FN (x) := −J x2 + p(0)
N (2J x + h − J ). (3.3)

Proof. Given θ ∈ R,

P

{
W

N 1/2−η
+

SN − Nm

N 1−η
≤ θ

}
= P

{√
N W + SN ∈ E

}
(3.4)

where E = (−∞, θ N 1−η + Nm].
The law of

√
N W + SN is given by the convolution of the Gaussian N (0, N (2J )−1)

with the distribution of SN w.r.t. the Gibbs measure μN :

P

{√
N W + SN ∈ E

}

=
(

J

π N

) 1
2
∫

E
dt EμN exp

(
− J

N

(
t − SN

)2)

= 1

Z N

(
J

π N

) 1
2
∫

E
dt exp

(
− J

N
t2

)
Z (0)

N

(
2J t

N
+ h − J

)
, (3.5)

where the last equality follows from (2.1). Making the change of variable x = (t −
Nu)/N 1−η in (3.5), we obtain:

P
{√

N W + SN ∈ E
}

= CN

∫ θ

−∞
dx exp

(
− J N

( x

Nη
+ u

)2)
Z (0)

N

(
2J

( x

Nη
+ u

)
+ h − J

)
(3.6)

and the integrated function can be rewritten as (3.2). ��
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The core of the problem is the convergence of the sequence of measures determined
by (3.2) for suitable values of η and u. Thus, we are interested in the limit of quantities
of the form ∫

R

exp
(

N FN

( x

Nη
+ u

))
ψ(x) dx (3.7)

where ψ is an arbitrary bounded continuous function. Clearly, the results depend cru-
cially on the scaling properties of FN near its maximum point(s). By (1.12), (1.19) and
(3.3) we know that

lim
N→∞ FN (x) = p̃(x), ∀ x ∈ R. (3.8)

However, the study of the asymptotic behaviour of the integral (3.7) requires stronger
convergence results provided by Propositions 2.2 and 2.3.

Given a sequence of functions fN : R → R, for any x, y ∈ R we define

Δ fN (x; y) := fN (x + y) − fN (y). (3.9)

Let μ ≡ μ(h, J ) be a maximum point of p̃ and denote by 2k the order of the first
non zero derivative at μ. Hence, making a Taylor expansion, one finds as N → ∞

N Δ p̃(x N− 1
2k ;μ) = λ

(2k)! x2k + O
(

N− 1
2k

)
(3.10)

where λ = ∂2k

∂m2k p̃(μ) < 0.
The next proposition relates the asymptotic behaviors of N ΔFN and N Δ p̃.

Proposition 3.1. For any x, y ∈ R and η ≥ 0,

lim
N→∞ exp

(
N

(
FN (x N−η + y) − p̃(x N−η + y)

))
= c(y) (3.11)

where c(y) := (
2 − g(2J y + h − J )

)−1/2
. Hence,

N
(
ΔFN (x N−η; y) − Δ p̃(x N−η; y)

)
→

N→∞ 0. (3.12)

Proof. Keeping in mind the definitions (3.3), (1.12) and using Proposition 2.2 we get
(3.11). Then (3.12) is a straightforward consequence. ��

The next two propositions allow us to control the integral (3.7) in the large N limit.

Proposition 3.2. Set M := max{ p̃(x)|x ∈ R}, let C be any closed (possibly unbounded)

subset of R which contains no global maximum points of p̃. Then there exists ε > 0 such
that

e−N M
∫
C

eN FN (x)dx = O(e−Nε) as N → ∞. (3.13)

Proof. We observe that the sequence of functions (p(0)
N )N∈N is uniformly Lipschitz with

constant 1, namely for all h, h′ ∈ R and N ∈ N

|p(0)
N (h) − p(0)

N (h′)| ≤ |h − h′|, (3.14)
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since ∂
∂h p(0)

N = E
μ

(0)
N

(m N ) ∈ [0, 1]. From (3.14) and definition (3.3) we get

lim|x |→∞ sup
N

FN (x) = −∞ (3.15)

and

sup
N

∫
R

eFN (x)dx < ∞. (3.16)

Fixed ε1 > 0, by (3.15) we can pick a number A ∈ R sufficiently large such that

sup
x∈OA

FN (x) − M ≤ −ε1 ∀ N ∈ N (3.17)

where OA ≡ {x ∈ R : |x | > A}. Furthermore C\OA is compact (or possibly empty)
and then, by Proposition 2.3, there exist ε2 > 0 and N̄ such that

sup
x∈C\OA

FN (x) − M ≤ −ε2 ∀ N > N̄ . (3.18)

Thus setting ε := min(ε1, ε2) we get

sup
x∈C

FN (x) − M ≤ −ε ∀ N > N̄ (3.19)

Hence, for N > N̄ ,

e−N M
∫
C

eN FN (x)dx ≤ e−N M e(N−1)(M−ε)

∫
C

eFN (x)dx

≤ e−Nε e−(M−ε)

∫
R

eFN (x)dx .

(3.20)

The last is uniformly bounded in N by (3.16) and this completes the proof. ��
In the rest of this section ∂k f (x) denotes the kth-derivative of a function f at the

point x .

Proposition 3.3. Let μ be a maximum point of p̃, let 2k be the order of the first non-zero
derivative of p̃ at μ. Given δ, ε > 0, there exists N ε such that for all N > N ε

N ΔFN
(
x N− 1

2k ;μ
) ≤

2k−1∑
j=1

ε x j + Lδ,ε x2k ∀ x, |x | < δN
1
2k (3.21)

where

Lδ,ε := ∂2k p̃(μ) + ε

(2k)! + δ
sup[μ−δ,μ+δ] |∂2k+1 p̃| + ε

(2k + 1)! . (3.22)

In particular, since ∂2k p̃(μ) < 0, one can choose δ, ε > 0 such that Lδ,ε < 0, and then
the sequence of functions

exp
(
N ΔFN (x N− 1

2k ;μ)
)
1
(|x | < δN

1
2k

)
(3.23)

turns out to be dominated by an integrable function of x.
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Proof. The Taylor expansion of FN at the point μ gives

N ΔFN (x N− 1
2k ; μ) =

2k−1∑
j=1

∂ j FN (μ)

j ! N 1− j/2k x j +
∂2k FN (μ)

(2k)! x2k +
∂2k+1FN (ξ)

(2k + 1)! N− 1
2k x2k+1

(3.24)
where ξ ∈ (μ,μ + x N− 1

2k ). We claim that for any j ∈ {1, . . . , 2k − 1}
∂ j FN (μ) N 1− j/2k →

N→∞ 0. (3.25)

Indeed, by (3.12)

N
(
ΔFN (x N− 1

2k ;μ) − Δ p̃(x N− 1
2k ;μ)

)
→

N→∞ 0, (3.26)

that is, by substituting (3.24) and (3.10) into (3.26),

2k−1∑
j=1

∂ j FN (μ)

j ! N 1− j/2k x j +
∂2k FN (μ) − ∂2k p̃(μ)

(2k)! x2k + O
(

N− 1
2k

)
→

N→∞ 0, (3.27)

hence using Proposition 2.3, we get

2k−1∑
j=1

∂ j FN (μ)

j ! N 1− j/2k x j →
N→∞ 0 (3.28)

which implies (3.25) since x is arbitrary. Thus (3.25) gives the control of the terms
of order up to 2k − 1 in (3.24). The last two terms in (3.24) can be grouped together

observing that |x |2k+1 < x2kδN
1
2k ; then the estimate (3.21) is obtained using the uniform

convergence of ∂2k FN , ∂2k+1FN on the compact set [μ − δ, μ + δ], which is guaranteed
by Proposition 2.3. ��

Let now prove Theorem 1.3.We denote byM = {μl}l=1,...,P the set globalmaximum
points of p̃ and let kl and λl be as in (3.10). Set M := maxm p̃(m) = p̃(μl) for each
l = 1, . . . , P . From the analysis of p̃ and using the properties of the function g (see
[1]), it turns out that kl do not depend on l and precisely

(M, k
) =

⎧⎪⎨
⎪⎩

({m∗(h, J )}, 1) if (h, J ) ∈ (R × R
+)\(γ ∪ (hc, Jc)

)({mc}, 2
)

if (h, J ) = (hc, Jc)({m1(J ), m2(J )}, 1) if (h, J ) ∈ γ.

(3.29)

The argument described below applies in all the cases proving respectively (1.26)
and (1.27). Keeping in mind (3.29), we proceed with the computation of the limiting
distribution of the monomer density m N = SN /N . By Lemmas 3.1 and 3.2 with η = 0
and u = 0, it suffices to prove that for any bounded continuous function ψ∫

R

eN FN (x)ψ(x)dx∫
R

eN FN (x)dx
→

∑P
l=1 ψ(μl)bl∑P

l=1 bl
. (3.30)
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For each l = 1, . . . , P let δl > 0 such that the sequence of functions (3.23), with μl
in place of μ, is dominated by an integrable function. We choose δ̄ = min{δl | l =
1, . . . , P}, decreasing it (if necessary) to assure that 0 < δ̄ < min{|μl − μs | : 1 ≤ l �=
s ≤ P}. Denote by C the closed set

C := R\
P⋃

l=1

(μl − δ̄, μl + δ̄);

by Proposition 3.2 there exists ε > 0 such that as N → ∞

e−N M
∫
C

eN FN (x)ψ(x)dx = O(e−Nε). (3.31)

For each l = 1, . . . , P we have

N
1
2k e−N M

∫ μl+δ̄

μl−δ̄

eN FN (x)ψ(x) dx

= eN (FN (μl )−M)

∫
|w|<δ̄N

1
2k

exp
(

N ΔFN
(
wN− 1

2k ;μl
))

ψ
(
wN− 1

2k + μl
)

dw

(3.32)

where the equality follows from the change of variable x = μl + wN− 1
2k and ΔFN is

defined in (3.9).
Since M ≡ p̃(μl), from (3.11) we know that

lim
N→∞ eN (FN (μl )−M) = 1√

2 − g(2Jμl + h − J )
= 1√

2 − μl
(3.33)

where the last equality follows from the fact thatμl must satisfy the consistency equation
(1.24).

By Proposition 3.3 we can apply the dominated convergence theorem to the integral
on the r.h.s. of (3.32), then by (3.12) and (3.10) we obtain

lim
N→∞ N

1
2k e−N M

∫ μl+δ̄

μl−δ̄

eN FN (x) ψ(x) dx

= 1√
2 − μl

∫
R

exp
( λl

(2k)!w
2k

)
ψ(μl) dw. (3.34)

Making the change of variable x = w(−λl)
1
2k in the r.h.s. of (3.34) and using (3.31) we

obtain

lim
N→∞ N

1
2k e−N M

∫
R

eN FN (x)ψ(x)dx =
P∑

l=1

1√
2 − μl

(−λl )
− 1

2k ψ(μl )

∫
R

exp
(
− x2k

(2k)!
)

dx .

(3.35)
The analogous limit for the denominator of (3.30) follows from (3.35) by choosing
ψ = 1. This concludes the proof of the Theorem 1.3. ��
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Let now prove the Theorem 1.4. Keeping in mind (3.29), let us start by proving the
following∫

R

exp
(

N FN
(
x N− 1

2k + m∗)) ψ(x) dx∫
R

exp
(

N FN
(
x N− 1

2k + m∗)
)

dx
→

∫
R

exp
( λ

(2k)! x2k
)

ψ(x) dx∫
R

exp
( λ

(2k)! x2k
)

dx
(3.36)

for any bounded continuous function ψ . We pick δ > 0 such that the sequence of
functions (3.23) is dominated by an integrable function. By Proposition 3.2 there exists
ε > 0 such that as N → ∞

e−N M
∫

|x |≥δN
1
2k
exp

(
N FN

(
x N− 1

2k + m∗))ψ(x) dx = O
(
N

1
2k e−Nε

)
(3.37)

where M = maxm p̃(m). On the other hand as |x | < δN 1/2k

e−N M
∫

|x |<δN
1
2k
exp

(
N FN

(
x N− 1

2k + m∗))ψ(x) dx

= e(FN (m∗)−M)

∫
|x |<δN

1
2k
exp

(
N ΔFN

(
x N− 1

2k ; m∗)) ψ(x) dx . (3.38)

Thus, by Proposition 3.3 we can apply the dominated convergence theorem, and then
by (3.10), (3.12) and (3.33) we obtain

lim
N→∞ e−N M

∫
|x |<δN

1
2k
exp

(
N FN

(
x N− 1

2k + m∗)) ψ(x) dx

= 1√
2 − m∗

∫
R

exp
( λ

(2k)! x2k
)

ψ(x) dx (3.39)

which, combined with (3.37), implies (3.36).
For k = 2, by Lemmas 3.1 and 3.2 with η = 1/4 and u = m∗, the convergence (3.36)

is enough to obtain (1.31).
For k = 1, by Lemmas 3.1 and 3.2 with η = 1/2 and u = m∗, since W ∼

N (0, (2J )−1), the Eq. (3.36) implies that the random variable SN converges to a
Gaussian whose variance is σ 2 = (−λ)−1 − (2J )−1, provided that

(−λ)−1 − (2J )−1 = λ + 2J

−2λJ
> 0 (3.40)

where λ = ∂2

∂m p̃(m∗) . Considering the function g defined in (1.14), we have that
∂2

∂m p̃(m∗) + 2J = (2J )2 g′(2Jm∗ + h − J ). Since g′ > 0 and λ < 0 the inequality
(3.40) holds true. ��
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A. Extended Laplace Method

The usual Laplace method deals with integrals of the form∫
R

(
ψ(x)

)n
dx

as n goes to infinity. In this appendix we prove a slight extension of the previous method
where ψ can depend on n. Other results in this direction can be found in [8,10].

Theorem A.1. For all n ∈ N let ψn : R → R . Suppose there exists a compact interval
K ⊂ R such that ψn > 0 on K , so that

ψn(x) = e fn(x) ∀ x ∈ K .

Suppose that fn ∈ C2(K ) and

(a) fn →
n→∞ f uniformly on K ;

(b) f ′′
n →

n→∞ f ′′ uniformly on K .

Moreover suppose that:

(1) maxK fn is attained in a point x̂n ∈ int(K );
(2) lim supn→∞

(
supR\K log |ψn| − maxK fn

)
< 0;

(3) maxK f is attained in a unique point x̂ ∈ K ;
(4) f ′′(x̂) < 0;
(5) lim supn→∞

∫
R

|ψn(x)| dx < ∞.

Then, ∫
R

(
ψn(x)

)n dx ∼
n→∞ en fn(x̂n)

√
2π

−n f ′′(x̂)
. (A.1)

In the proof we use the following elementary fact:

Lemma A.1. Let ( fn)n be a sequence of continuous functions uniformly convergent to f
on a compact set K . Let (In)n and I be subsets of K such thatmaxx∈In , y∈I dist(x, y) →
0 as n → ∞. Then

• maxIn fn →
n→∞ maxI f ;

• argmaxIn
fn →

n→∞ argmaxI f , provided that f has a unique global maximum point

on I .

Proof of Theorem A.1. Since x̂n is an internal maximum point for fn (hypothesis 1),
f ′
n(x̂n) = 0 and for all x ∈ K

fn(x) = fn(x̂n) +
1

2
f ′′
n (ξx,n) (x − x̂n)2 with ξx,n ∈ (x̂n, x) ⊂ K . (A.2)

Fix ε > 0. Since f ′′
n →

n→∞ f ′′ uniformly on K , there exists Nε such that

| f ′′
n (ξ) − f ′′(ξ)| < ε ∀ ξ ∈ K ∀ n > Nε. (A.3)
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Since f ′′ is continuous in x̂ , there exists δε > 0 such that B(x̂, δε) ⊂ K and

| f ′′(ξ) − f ′′(x̂)| < ε ∀ ξ : |ξ − x̂ | < δε. (A.4)

By the Lemma A.1 x̂n →
n→∞ x̂ , because x̂ is the unique maximum point of f on K

(hypothesis 3). Thus there exists N̄δε such that

|x̂n − x̂ | <
δε

2
∀ N > N̄δε . (A.5)

Therefore for n > Nε ∨ N̄δε and x ∈ B(x̂, δε) it holds:

|ξx,n − x̂ | ≤ |ξx,n − x | + |x − x̂ | ≤ |x̂n − x | + |x − x̂ | (A.5)
<

δε

2
+

δε

2
= δε

⇒ | f ′′
n (ξx,n) − f ′′(x̂)| ≤ | f ′′

n (ξx,n) − f ′′(ξx,n)| + | f ′′(ξx,n) − f ′′(x̂)| (A.3),(A.4)
< ε + ε = 2ε.

By substituting into (A.2) we obtain that for n > Nε ∨ N̄δε and x ∈ B(x̂, δε)

fn(x)

{
≤ fn(x̂n) + 1

2

(
f ′′(x̂) + 2ε

)
(x − x̂n)2

≥ fn(x̂n) + 1
2

(
f ′′(x̂) − 2ε

)
(x − x̂n)2

. (A.6)

Now split the integral into two parts:∫
R

(
ψn(x)

)n dx =
∫

B(x̂n ,δε)

en fn(x) dx +
∫
R\B(x̂n ,δε)

(
ψn(x)

)n dx . (A.7)

• To control the second integral on the r.h.s. of (A.7) we claim that there exists ηδε > 0
and N∗

δε
such that

log |ψn(x)| < fn(x̂n) − ηδε ∀ x ∈ R\B(x̂n, δε) ∀ N > N∗
δε

; (A.8)

namely lim supn→∞ supx∈R\B(x̂n ,δε)
log |ψn(x)| − fn(x̂n) < 0. Indeed:

lim sup
n→∞

sup
x∈R\B(x̂n ,δε)

log |ψn(x)| − fn(x̂n)

=
(
lim sup

n→∞
sup

x∈K\B(x̂n ,δε)

fn(x) − fn(x̂n)

)
∨

(
lim sup

n→∞
sup

x∈R\K
log |ψn(x)| − fn(x̂n)

)

=
(

sup
x∈K\B(x̂,δε)

f (x) − f (x̂)

)
∨

(
lim sup

n→∞
sup

x∈R\K
log |ψn(x)| − fn(x̂n)

)

where the last identity holds true by the Lemma A.1.
Moreover supx∈K\B(x̂,δε)

f (x) − f (x̂) < 0 since x̂ is the unique maximum point of the
continuous function f on the compact set K (hypothesis 3); while
lim supn→∞ supx∈R\K log |ψn(x)| − fn(x̂n) < 0 by the hypothesis 2. This proves the
claim.
Now using (A.8) and the hypothesis 5, there exist C and N such that for all n > N ∨ N∗

δε∫
R\B(x̂n ,δε)

∣∣ψn(x)
∣∣n dx ≤ e(n−1)( fn(x̂n)−ηδε )

∫
R

|ψn(x)| dx

≤ C en( fn(x̂n)−ηδε ). (A.9)
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•To study the first integral on the r.h.s. of (A.7), choose ε ∈ (0, ε0], where f ′′(x̂)+2ε0 <

0 (hypothesis 4). By (A.6), since we can compute Gaussian integrals, we find an upper
bound: ∫

B(x̂n ,δε)

en fn(x) dx ≤ en fn(x̂n)

∫
R

e
n
2 ( f ′′(x̂)+2ε) (x−x̂n)2 dx

= en fn(x̂n) 1√
− n

2 ( f ′′(x̂) + 2ε)

∫
R

e−x2 dx

= en fn(x̂n)

√
2π

−n ( f ′′(x̂) + 2ε)
(A.10)

and a lower bound:∫
B(x̂n ,δε)

en fn(x) dx ≥ en fn(x̂n)

∫
B(x̂n ,δε)

e
n
2 ( f ′′(x̂)+2ε) (x−x̂n)2 dx

= en fn(x̂n) 1√
− n

2 ( f ′′(x̂) + 2ε)

∫
B
(
0, δε

√− n
2 ( f ′′(x̂)−2ε)

) e−x2 dx

= en fn(x̂n)

√
2π

−n ( f ′′(x̂) − 2ε)
(1 + ωn,ε,δε ) (A.11)

where ωn,ε,δε → 0 as n → ∞ and ε is fixed.
In conclusion, by (A.7), (A.9), (A.10), (A.11) we obtain that for ε ∈ (0, ε0] and

n > Nε ∨ N̄δε ∨ N ∨ N∗
δε
it holds:

∫
R

(
ψn(x)

)n dx

en fn(x̂n)
√

2π
−n f ′′(x̂)

≤
√

f ′′(x̂)

f ′′(x̂) + 2ε
+ C

√
−n f ′′(x̂)

2π
e−n ηδε

→
n→∞

√
f ′′(x̂)

f ′′(x̂) + 2ε
→
ε→0

1;

and: ∫
R

(
ψn(x)

)n dx

en fn(x̂n)
√

2π
−n f ′′(x̂)

≥
√

f ′′(x̂)

f ′′(x̂) − 2ε
(1 + ωn,ε,δε ) − C

√
−n f ′′(x̂)

2π
e−n ηδε

→
n→∞

√
f ′′(x̂)

f ′′(x̂) − 2ε
→
ε→0

1;

hence (A.1) is proved. ��
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