
Digital Object Identifier (DOI) 10.1007/s00220-015-2538-y
Commun. Math. Phys. 341, 263–287 (2016) Communications in

Mathematical
Physics

Quantization and Dynamisation of Trace-Poisson Brackets

Jean Avan1, Eric Ragoucy2, Vladimir Rubtsov3,4

1 Laboratoire de Physique Théorique et Modélisation (CNRS UMR 8089), Université de Cergy-Pontoise,
95302 Cergy-Pontoise, France. E-mail: avan@u-cergy.fr

2 LAPTh, CNRS and Université de Savoie, 9 Chemin de Bellevue, BP 110, 74941 Annecy le Vieux Cedex,
France. E-mail: ragoucy@lapth.cnrs.fr

3 Laboratoire Angevin de REcherche enMAthématiques (CNRSUMR6093), UNAMetUniversité d’Angers,
Faculté des Sciences, 2, Boulevard Lavoisier, 49045Angers Cedex, France. E-mail: volodya@univ-angers.fr

4 Theory Division, ITEP, 25, Bol. Tcheremushkinskaya, 117259, Moscow, Russia

Received: 4 February 2014 / Accepted: 19 October 2015
Published online: 22 December 2015 – © Springer-Verlag Berlin Heidelberg 2015

Abstract: The quantization problem for the trace-bracket algebra, derived from double
Poisson brackets, is discussed. We obtain a generalization of the boundary YBE (or
so-called ABCD-algebra) for the quantization of quadratic trace-brackets. A dynamical
deformation is proposed on the lines of Gervais–Neveu–Felder dynamical quantum
algebras.

1. Introduction

There has been a long-standing interest of both communities—mathematicians and
physicists—in a class of objects known as character varieties or spaces of represen-
tations, and their equivalence classes—or “moduli spaces”. A typical example of such
objects is the moduli space M�,G of flat connections in a principal bundle with the
structure group G over a Riemann surface �. This space is defined as a quotient
M�,G = Hom(π1(�),G)/G of the representation space of the fundamental group
π1(�) of the surface � in G with respect to conjugation by the group G.

There are many applications of the character varieties from a geometric viewpoint.
Themoduli spaces of representations can be used also for describing themoduli of stable
vector bundles over a compact Riemann surface of genus > 2. This is the set of equiv-
alence classes of irreducible unitary representations of the fundamental group. Another
classical example is the Teichmüller space of Riemann surface complex structures—the
set of equivalence classes of irreducible representations of the fundamental group in
PSL2(R) or SL2(R).

Froma physical point of view, suchmoduli spaces (or their reductions, subspaces etc.)
act as an arena of various scenarios of modern classical and quantum field theories—
(super)string theory, (super)gravity and tentatives to unify them. Many of them can
be considered as phase spaces of interesting integrable systems (Beauville-Mukai and
Hitchin models).

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-015-2538-y&domain=pdf
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An algebraic avatar of the character varieties is provided by the representation space
RepN (A) or more precisely the affine scheme C[RepN (A)]GLN (C). Indeed in an alge-
braic context the representation spaces of a (non)commutative associative algebra A
become algebraic varieties which “approximate”, by Kontsevich philosophy, the under-
lying variety—the spectrum of the commutative counterpart of A. In particular, if A is
a free associative algebra over C, that is, A = C < x1, ..., xn > is given by a finite
number of generators x1, . . . , xn , the space of N−dimensional representations is

RepN (A) = {M = (M1, . . . , Mn) ∈ MN (C) ⊕ ... ⊕ MN (C)},
where MN (C) = End(CN ).

ThegroupGLN (C) acts onRepN (A)byconjugations : g.M=(
gM1g−1, ..., gMng−1

)

and the quotient space RepN (A)GLN (C) describes isomorphism classes of semisimple
representations of A. The classical Procesi theorem onGLN -invariants [36] says that the
coordinate ringC[RepN (A)]GlN (C) is generated by traces of “words” in generic matrices
M1, . . . , Mn (see Example 2.4 below).

A typical geometric character variety carries a Poisson or symplectic structure studied
in many classical works by, e.g., Atiyah–Bott, Goldman, Hitchin, Beauville, Mukai et al.
Similarly in the above described algebraic context the affine schemeC[RepN (A)]GLN (C)

can also be supplied with a natural Poisson algebra structure. Recently the wonderful al-
gebraic mechanism governing the Poisson algebra structure on the representation spaces
was discovered by Van den Bergh [42] and in a slightly different but closely related way
by Crawley-Boevey [13].

The Van den Bergh construction is based on the notion of double Lie bracket on
an associative algebra A, which is a C-bilinear operation {{−,−}} : A ⊗ A → A ⊗ A
satisfying certain twisted Lie algebra axioms. One may add a Leibniz-like property,
different for left-hand and right-hand arguments in the correspondence with outer and
inner A-bimodule structures on A⊗ A. Such an operation is then called a double Poisson
structure on A. Precise definitions are given in Subsection 2.2.

A natural composition of a double Poisson bracket with the associative algebra mul-
tiplicationμ defines an interesting operation on A and on the space of “traces” on A (the
vector space A/[A, A]). This trace space A/[A, A] is identified with the Hochschild ho-
mology of degree 0, HH0(A, A), and Crawley-Boevey had showed that the projection of
μ◦{{−,−}} defines a Lie algebra structure< −,− > on HH0(A, A). This structure then
defines a uniquePoissonbracket on the invariant representation spaceC[Rep(A)]GLN (C).
The latter is identified with the trace map Tr : A/[A, A] → C[Rep(A)] image. These
Poisson brackets realize a “trace-covariant” object in the following sense:

{Tr(a),Tr(b)} = Tr < π(a), π(b) >,

where π : A → A/[A, A] is the natural projection.
Such “trace-invariant” Poisson structures coming from A/[A, A] appeared in [25]

and [32] in the context of some integrable ordinary differential equations on associa-
tive algebras. Such brackets were constructed, their Hamiltonian nature in the proper
framework of the Hamiltonian formalism was studied and examples of interesting non-
commutativemodels on associative algebraswere given. Theseworks initiated the recent
developments, including the formulation of analogues of Yang–Baxter conditions and
their relevance toHamiltonian formalism, together with related Poisson structures in the-
ories of integrable systemswithmatrix variables [30]. The special role of the Associative
Yang–Baxter Equation and (anti-) Frobenius algebra structures were uncovered.
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In the case of free algebra the related notion of “trace brackets” was developed and
studied extensively in [29] especially in the case of “quadratic” brackets. In the case of
quiver path algebras the trace Poisson brackets on themoduli space of finite-dimensional
representations are related to the pre-hierarchy of Hamiltonian structures of Ruijsenaar
Schneider models [10]. On the same line, Massuyeau and Turaev [24] constructed a
graded Poisson algebra structure on representation algebras associated with the loop
algebra of any smooth oriented manifold M with non-empty boundary. When M is a
Riemann surface�, the corresponding bracket coincides with the quasi-Poisson bracket
on the representation space Hom(π1(�),GLN ) defined in their previous work [23] via
the described (slightly more general) algebraic construction of Van den Bergh.

Further studies of parameter-dependent AYBE and Poisson structures were done in
[31]. It is amusing to observe that the parameter-dependentAYBEwere objects of interest
and studies even earlier than the “constant” AYBE. They appeared in different contexts:
as associativity conditions in the quadratic parameter dependent algebras related to
Sklyanin elliptic algebras of Odesskii and Feigin [28] and as a triple Massey product
expression for the associativity constraint in A∞-category, which is the derived category
of coherent sheaves on an elliptic curve [35]. The solutions of the AYBE relate to triple
Massey products for simple vector bundles on elliptic curves and their degenerations.
Further study of this connection has been continued in [11].

All these studies have been yet conducted purely on classical associative and trace
algebras. A natural question is thus to construct a quantum version of these algebras.
A second related question is to address the issue of consistent deformations of these
classical and/or quantum algebra structures. The quantum case is much easier to handle
since the underlying algebraic notions of deforming bialgebras aremuch simpler than the
classical ones related to Poisson algebras.We shall tackle these two issues here, however
restricting ourselves for the time being to non-parametric associative and trace algebras.

Let us briefly summarize the content of our work. We shall first describe the relevant
structures, detailing in particular double-brackets (classical) and their subsequent trace-
Poisson algebras. We shall then give a full r -matrix type description of a ‘parameter-
independent” trace-Poisson algebra, taking the form of a generalized a, s Poisson struc-
ture à laMaillet [21,22].We shall define its extension to themost general quadratic form,
which lead us to a consistent quantum algebraic structure mimicking the Freidel–Maillet
[18] quadratic exchange algebras, albeit with a new, third vector index. The bivector for-
mulation introduced by Freidel and Maillet plays a crucial role here. By newly deriving
the bivector formulation for the known three dynamical reflection algebras (without the
extra vector index or “flavor index”) we identify several key features of a consistent dy-
namical deformation of quadratic exchange algebras, which we then extend in the most
natural way to define a dynamical deformation of the quantum trace reflection algebra.

2. Double Brackets on Algebras and Their Representations

We introduce here the general, purely algebraic notions of double Lie and double Poisson
brackets together with the associated general notion of trace Poisson brackets to be used
extensively in the following. Let us first establish the algebraic framework.

2.1. Algebraic generalities. We suppose that A is an associative finite dimensional C-
algebra (with unity). We will consider A ⊗ A as an A − A bimodule with respect to the
outer and the inner structures, defined respectively by

a · (α ⊗ β) · b = (aα) ⊗ (βb), α ⊗ β ∈ A ⊗ A and a, b ∈ A (2.1)



266 J. Avan, E. Ragoucy, V. Rubtsov

a(α ⊗ β)b = (αb) ⊗ (aβ). (2.2)

The A ⊗ A-valued derivations D(A, A ⊗ A) of A (w.r.t. the outer bimodule structure)
will play the role of the usual derivations (“vector fields”) on A.

Example 2.1. Let A be the free C-algebra with n generators A = C < x1, . . . , xn >.
The partial double derivations are defined for each generator xα as ∂α ∈ D(A, A ⊗ A)

such that ∂α(xα) = 1 ⊗ 1 and ∂α(xβ) = 0, α �= β, 1 ≤ α ≤ m.

The A-bimodule �A of 1-differentials is generated by da, a ∈ A, with relations
d(ab) = a(db) + (da)b for a, b ∈ A and we assume d2a = d(da) = 0 and d(a) = da.
We have

D(A, A ⊗ A) = HomA⊗Ao(�A, A ⊗ A).

Here Ao denotes the “opposite” algebra: if μ : A ⊗ A → A is the multiplication law in
A : μ(a ⊗ b) = ab, then μo : Ao ⊗ Ao → Ao is μo(a ⊗ b) = ba. We shall denote by
Ae := A ⊗ Ao the enveloping algebra of A.

2.2. Double Lie and Poisson brackets.

Definition 2.2. Let V be any C-vector space. A double Lie bracket is a C-linear map
{{, }} : V ⊗ V 
→ V ⊗ V satisfying the following two conditions:

skew-symetry : {{u, v}} = −{{v, u}}o, (2.3)

and

σ -associativi t y : {{u, {{v,w}}}}l + σ
({{u, {{v,w}}}}l

)
+ σ 2({{u, {{v,w}}}}l

) = 0,

(2.4)

where σ ∈ S3 is the cyclic permutation

(
1 2 3
2 3 1

)
, whose action is defined as follows:

for v = v1 ⊗ v2 ⊗ v3 ∈ V1 ⊗ V2 ⊗ V3 one has σ(v) = vσ−1(1) ⊗ vσ−1(2) ⊗ vσ−1(3).
The bracket in (2.4), {{u, {{v,w}}}}l has to be understood as an extension of the oper-

ation {{−,−}} ∈ End(V ⊗ V ) by

{{u, v ⊗ w}}l := {{u, v}} ⊗ w

and defines an element in V ⊗ V ⊗ V .

If we replace the vector space V by an associative C-algebra A we must examine
the compatibility of the double Lie bracket (2.2) with the associative multiplication. We
suppose, following Van den Bergh [42], that the double Lie bracket satisfies the “usual”
Leibniz rule on the right argument:

{{a, bc}} = b {{a, c}} + {{a, b}} c, (2.5)

for any a, b, c ∈ A. In other words the operation {{a,−}} : A → A ⊗ A is a double
derivation with values in the bimodule A⊗ A with the outer A-bimodule structure. The
derivation property with respect to the left argument follows from the skew-symmetry
of the double Lie bracket and from (2.5):

{{ab, c}} = a {{b, c}} + {{a, c}} b. (2.6)

This means that the operation {{−, b}} : A → A ⊗ A is a double derivation with values
in the bimodule A ⊗ A with the inner A-bimodule structure.
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Definition 2.3. A double Lie bracket {{−,−}} : A × A → A ⊗ A on an associative
C-algebra A satisfying (2.5) is called a double Poisson bracket on A.

2.3. From double Poisson brackets to trace Poisson brackets.

2.3.1. The affine varieties of representations and their coordinates. Following [30,42]
and [23] we now define classes of Poisson structures on representation spaces of the
given associative algebra A. For any natural number N ≥ 1 we define an algebra
AN whose commutative generators are defined by a correspondence from elements
a ∈ A : a → ai j , 1 ≤ i, j ≤ N which satisfy the standard C-matrix element relations:

(a + b)i j = ai j + bi j , (ab)i j =
∑

k

aikbk j , 1i j = δi j ,

where a, b ∈ A and 1 ≤ i, j ≤ N . In other words, there is a canonical bijection between
A∗
N = HomC(AN , C) and Hom(A, MN (C)) which assign to each linear functional l ∈

A∗
N the algebra morphism l̂ : A → MN (C) defined by [l̂(a)]i j = l(ai j ). Reciprocally

if we have a map l : A → MN (C) then it corresponds by the bijection to the linear
map AN → C such that the generator ai j ∈ AN is transformed in i, j−component of
the matrix l(a). Geometrically, one can say that there exists an affine variety RepN (A)

whose coordinate algebra C[RepN (A)] is the commutative algebra AN .

2.3.2. Trace map. The usual matrix trace defines correctly the map Tr : A → AN by
Tr(a) := ∑

i aii for any a ∈ A. This map annihilates the commutators : Tr(ab−ba) = 0
for any a, b ∈ A and extends to the map Tr : A
 → AN where A
 := A/[A, A] is the
quotient vector space (the “trace space of A”). We shall denote in what follows the
projection of a ∈ A in A
 by p(a).

Example 2.4. Consider the case of the free associative algebra A = C < x1, . . . , xm >.
The coordinate algebra C[RepN (A)] in this case is the polynomial ring of mN 2

variables x j
i,α , where

xα → Mα =
⎛

⎝
x11,α · xN1,α· · ·
x1N ,α · xNN ,α

⎞

⎠ , 1 ≤ α ≤ m.

The map Tr gives the following interpretation of the variables x j
i,α : if ei j denotes the

(i, j)-matrix unit (i.e. the N × N matrix with 0 everywhere except the i-th row and j-th
column) then x j

i,α = Tr(ei j Mα).

2.3.3. Trace Poisson brackets from double brackets. Van den Bergh defines a bracket
operation on AN starting from a double Poisson structure on it. We shall use Sweedler’s
notations: an element α ∈ A ⊗ A shall be denoted by α = α(1) ⊗ α(2) meaning that
there is in fact a finite family (α

(1)
i , α

(2)
i ) in A × A such that α = ∑

i α
(1)
i ⊗ α

(2)
i .

Theorem 2.5 [42].

• Given a double Poisson bracket on A one defines a bracket [−,−] : A × A → A

[a, b] := {{a, b}}(1){{a, b}}(2) =
∑

i

{{a, b}}(1)i {{a, b}}(2)i (2.7)
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such that
– (2.7) satisfies the following derivation property:

[a, [b, c]] = [a, b], c]] + [b, [a, c]];
– The restriction [−,−] : A
 × A
 → A
 defines on A
 a Lie algebra structure:

[p(a), p(b)] := p([a, b]); (2.8)

– The map [p(a),−] ∈ End(A
) is induced by a derivation of A.
• Given a double Poisson bracket on A one defines a Poisson structure on the repre-

sentation variety RepN (A) i.e. a Poisson bracket {−,−} : AN × AN → AN such
that on generators of AN (defined by elements a and b of A) we have

{ai j , bkl} := {{a, b}}(1)k j {{a, b}}(2)il (2.9)

• The map Tr : A
 → AN is a morphism of Lie algebras A
 and AN = C[RepN (A)].
Namely:

{Trp(a),Trp(b)} = Tr([p(a), p(b)]). (2.10)

Definition 2.6. We shall refer to the Poisson brackets (2.9) (following the suggestion in
[29]) as trace Poisson brackets.

It is an easy exercise to check that the trace Poisson brackets are defined in fact on
the invariant part of AN or, more precisely, on conjugation classes C[RepN (A)]GLN (C),
where GLN (C) acts on AN by conjugations. This is the unique Poisson structure on
C[RepN (A)]GLN (C) such that (2.10) holds.

We shall be mostly interested by the trace Poisson brackets induced by double
brackets on a free associative algebra such as considered in Example 2.4.

3. Associative Yang–Baxter Equation

We are now interested in double bracket structures induced by endomorphisms r ∈
End(V ⊗V ) (and not simply maps) later identified with “classical r-matrices”. Associa-
tivity conditions on the double Poisson algebra induces conditions of Yang–Baxter type
on their structure constants encapsulated in r [2]. Note that the general situation of r
maps would give rise to structures analog to the “set-theoretical YB equations” studied
in e.g. [1,12,33].

3.1. AYBE and double Lie brackets. Schedler [39] proposed the following existence
criterion for double Lie brackets (2.2):

Proposition 3.1. Let r ∈ End(V ⊗ V ) defines the operation

{{u, v}} := r(u ⊗ v). (3.1)

This operation induces a double Lie bracket on V iff r is skew-symmetric and satisfies
the Associative Yang–Baxter Equation (AYBE) in V ⊗ V ⊗ V :

AY BE(r) := r12r13 − r23r12 + r13r23 = 0, (3.2)

where, as usual, r i j acts in V⊗3, non trivially on (i, j) spaces and as identity elsewhere.
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Here the skew-symmetry of r means that it satisfies the condition

r(v ⊗ u) = −r(u ⊗ v)o, (3.3)

which implies (2.3).
Conjugating (3.2) by the permutation operator P13 and using the skew-symmetry

property of r implies:

AY BE∗(r) = r23r12 + r31r23 + r12r31 = 0. (3.4)

Now r ∈ End(V ) satisfies both (3.2) and (3.4). Such r then satisfies the full Skew-
Symmetric Classical Yang–Baxter Equation:

[r12, r13] + [r12, r23] + [r13, r23] = AY BE(r) − AY BE∗(r)
= r12r13 − r23r12 + r13r23 − (r23r12 + r31r23 + r12r31) = 0 − 0 = 0. (3.5)

The full classical Yang–Baxter equation for a non-skew symmetric r matrix exhibits
a different display of indices 32–13 in the third term.

3.1.1. AYBE and double Poisson brackets. The following result of Schedler [39] is a
direct corollary from the definitions and (3.1)

Theorem 3.2. Let A be any C-algebra. An element r ∈ EndC(A⊗ A) induces a double
Poisson bracket iff r is a skew element satisfying the AYBE and r ∈ DerAe⊗Ae ((A ⊗
A)l,r , (A ⊗ A)in,out ).

Remark 3.3. We consider (A ⊗ A)l,r as an Ae ⊗ Ae-module by having the first Ae act
on the first component, and the second on the second component:

(
(u ⊗ uo) ⊗ (v ⊗ vo)

)
(a ⊗ b) = uauo ⊗ vbvo,

and consider (A ⊗ A)in,out as an Ae ⊗ Ae-module by having the first Ae act by inner
multiplication and the second Ae act by outer multiplication:

(
(x ⊗ xo) ⊗ (y ⊗ yo)

)
(a ⊗ b) = yaxo ⊗ xbyo.

4. The Trace Poisson Brackets of the Free Associative Algebras

We shall from now on consider the situation of Example 2.4. In addition we restrict our-
selves to particular choices of double brackets and their derived trace Poisson brackets,
namely constant, linear and quadratic brackets.

4.1. Three particular brackets.

4.1.1. Constant, linear and quadratic brackets. Let A = C < x1, . . . , xm > be the free
associative algebra. If the double brackets {{xα, xβ}} between all generators are fixed,
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then the bracket between two arbitrary elements of A is uniquely defined by identities
(2.3) and (2.4).

The constant, linear, and quadratic double brackets are defined respectively by

{{xα, xβ}} = cαβ1 ⊗ 1, with cα,β = −cβ,α, (4.1)

{{xα, xβ}} = bγ
αβxγ ⊗ 1 − bγ

βα1 ⊗ xγ , (4.2)

and

{{xα, xβ}} = ruv
αβ xu ⊗ xv + avu

αβ xuxv ⊗ 1 − auv
βα 1 ⊗ xvxu, (4.3)

where
rσε
αβ = −r εσ

βα. (4.4)

The summation with respect to repeated indexes is assumed.
It is easy to verify that the bracket (4.1) satisfies (2.4) for any skew-symmetric tensor

cαβ .
The following observations of [34] gives us that the condition (2.4) is equivalent for

the bracket (4.2) to the identity

bμ
αβb

σ
μγ = bσ

αμb
μ
βγ , (4.5)

which means that bσ
αβ are structure constants of an associative algebra structure on a

vector space V = ⊕N
i=1Cxi .

The corresponding statement for the quadratic bracket is more subtle. It was shown
in [30] that the bracket (4.3) satisfies (2.4) iff the following relations hold:

rλσ
αβ r

μν
στ + rμσ

βτ r
νλ
σα + rνσ

τα r
λμ
σβ = 0, aσλ

αβ a
μν
τσ = aμσ

τα aνλ
σβ,

aσλ
αβ a

μν
στ = aμσ

αβ rλν
τσ + aμν

ασ rσλ
βτ , aλσ

αβ a
μν
τσ = aσν

αβ r
λμ
στ + aμν

σβ r
σλ
τα .

(4.6)

4.1.2. Trace brackets Let us specify the form of the trace Poisson brackets.
We start with the constant trace algebra. It is somehow trivial, but fixes the notation:

{x j
i,α, x j ′

i ′,β} = cαβ δ
j ′
i δ

j
i ′ ⇐ {{xα, xβ}} = cαβ1 ⊗ 1. (4.7)

Here i, j, i ′, j ′ are “matrix” indices running from 1 to N whereas α, β, γ are “vector”
indices running from 1 to m. One naturally understands the set of variables x j

i,α as a
m vector-labeled set of N × N matrices. One immediately sees that the vector index is
an extra feature of this trace algebra when compared to the usual setting of classically
integrable systems where the variables are encapsulated into a singlematrix. The vector
index shall later be denoted as “flavor” index using a transparent analogy with particle
physics.

The linear trace algebra takes the form:

{x j
i,α, x j ′

i ′,β} = bγ
αβx

j ′
i,γ δ

j
i ′ − bγ

βαx
j
i ′,γ δ

j ′
i ⇐ {{xα, xβ}} = bγ

αβxγ ⊗ 1 − bγ
βα1 ⊗ xγ .

(4.8)

The trace Poisson bracket corresponding to the general quadratic double Poisson
bracket (4.3) can be defined on C[RepN (A)] in the following way [29]:

{x j
i,α, x j ′

i ′,β} = rγ ε
αβ x

j ′
i,γ x

j
i ′,ε + aγ ε

αβ x
k
i,γ x

j ′
k,εδ

j
i ′ − aγ ε

βαx
k
i ′,γ x

j
k,εδ

j ′
i , (4.9)
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where x j
i,α are entries of the matrix xα and δ

j
i is the Kronecker delta-symbol. Relations

(4.4) and (4.6) hold iff (4.9) is a Poisson bracket.
It is finally interesting to note that these brackets also take a Hamiltonian form

following:

Remark 4.1. Using the observation at the end of the Example 2.4 one writes (4.9) as

{x j
i,α, x j ′

i ′,β} = {Tr(ei j Mα),Tr(ei ′ j ′Mβ)}. (4.10)

The constant bracket can be rewritten as

{xα, xβ} = Tr(ei j cα,β ei ′ j ′). (4.11)

The linear trace-Poisson brackets then read:

{x j
i,α, x j ′

i ′,β} = Tr(ei j�α,β(ei ′ j ′)). (4.12)

Following [25], we have introduced the Hamiltonian operator � ∈ A(A) ⊗ MN (C) for
the algebraA(A) generated by left- and right multiplications in A = C < x1, ..., xm >:

�α,β = bσ
αβLxσ − bσ

βαRxσ , (4.13)

where bσ
αβ are structure constants of an associative algebra as above in (4.2), and

Lxα :
{
A → A
y → Lxα (y) = xα y

and Rxβ :
{
A → A
y → Rxβ y = yxβ.

(4.14)

It is not difficult to write the Hamiltonian operator for the quadratic trace-Poisson
brackets (4.3).

�α,β = aσε
αβ Lxσ Lxε − aεσ

βαRxσ Rxε + rσε
αβ Lxσ Rxε , (4.15)

where aσε
αβ and rσε

αβ satisfy the relations (4.4).

Ourmain purpose now is to reformulate the linear and quadratic trace Poisson algebra
in a fully algebraic notation involving the relevant generalization of a classical linear or
quadratic r matrix structure.

4.2. Linear trace-brackets: the r-matrix formulation. The linear trace-Poisson algebra is
re-expressed using a matrix-Poisson formula, with notations derived from the canonical
classical r -matrix formalism [40,41] but augmented by the flavor indices. Accordingly
one introduces two auxiliary vector spaces C

N and C
m and define the following objects

embedded in the general tensorized structure Mm(C)⊗MN (C)⊗C
m ⊗MN (C), where

Mm(C) = End(Cm):

B12 =
m∑

α,β,γ=1

N∑

i j=1

bγ
αβ eαγ ⊗ ei j ⊗ eβ ⊗ e ji ∈ Mm(C) ⊗ MN (C) ⊗ C

m ⊗ MN (C), (4.16)

B21 =
m∑

α,β,γ=1

N∑

i j=1

bγ
αβ eβ ⊗ ei j ⊗ eαγ ⊗ e ji ∈ C

m ⊗ MN (C) ⊗ Mm(C) ⊗ MN (C), (4.17)
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X =
m∑

α=1

N∑

i j=1

x j
iαeα ⊗ e ji ∈ C

m ⊗ MN (C), (4.18)

X1 = X ⊗ Im ⊗ IN ∈ C
m ⊗ MN (C) ⊗ Mm(C) ⊗ MN (C), (4.19)

X2 =
m∑

α=1

N∑

i j=1

x j
iα Im ⊗ IN ⊗ eα ⊗ e ji ∈ C

m ⊗ MN (C) ⊗ Mm(C) ⊗ MN (C). (4.20)

I denotes the identity operator in the corresponding vector space.
We define:

{X1
⊗, X2} ≡ {x j

i,α, x j ′
i ′,β} eα ⊗ e ji ⊗ eβ ⊗ e j ′i ′ ∈ C

m ⊗ MN (C) ⊗ C
m ⊗ MN (C)

(4.21)

which yields:

{X1
⊗, X2} = bγ

αβ x j ′
i,γ eα ⊗ e ji ⊗ eβ ⊗ e j ′ j − bγ

βα x j
i ′,γ eα ⊗ e ji ⊗ eβ ⊗ eii ′ . (4.22)

One easily verifies:

B12X1 = bγ
αβx

j
i,γ eα ⊗ ei ′i ⊗ eβ ⊗ e ji ′ , (4.23)

B21X2 = bγ
αβx

j
i,γ eβ ⊗ e ji ′ ⊗ eα ⊗ ei ′i . (4.24)

One then deduces the matrix form of the trace Poisson algebra :

Proposition 4.2. The notation {X1
⊗, X2} = B12X1 − B21X2 reproduces the relations

of the linear brackets for

X =
m∑

α=1

N∑

i j=1

x j
iαeα ⊗ e ji , B12 =

m∑

α,β,γ=1

N∑

i j=1

bγ
αβ eαγ ⊗ ei j ⊗ eβ ⊗ e ji ∼ b12 ⊗ P,

where P ∈ MN (C) ⊗ MN (C) is the flip operator and b12 = bγ
αβ eαγ ⊗ eβ .

We have used the symbol ∼ for an equality valid up to re-ordering in the tensor
product of spaces.

The proof is by direct identification.
Let us now discuss the associativity of this linear Poisson bracket in relation with the

σ -associativity of its corresponding double bracket.

Proposition 4.3. The algebra structure on theC−vector space V =< e1, .., em > given
by the tensor bγ

αβ :

eαeβ = bγ
αβeγ

satisfies the associativity constraint iff

bμ
αβb

σ
μγ = bσ

αμb
μ
βγ ⇐⇒ b12b13 = b23b12 ⇐⇒ B12B13 = B23B12. (4.25)

This condition ensures that the trace-Poisson bracket of proposition 4.2 obeys the
Jacobi identity.
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The proof is immediate. Indeed,

b12b13 = bγ
αβb

γ ′
γβ ′eαγ ′ ⊗ eβ ⊗ eβ ′ = b23b12.

For the second equivalence it is enough to observe that

B12B13 ∼ b12b13 ⊗ P12P13, B23B12 ∼ b23b12 ⊗ P23P12

but P23P12 = P12P13 which proves the first claim.
The Jacobi identity for the trace-Poisson bracket is implied by the condition

B12B13 − B23B12 + B32B13 − B13B12 = 0 (4.26)

which is obviously a weaker consequence of (4.25).

4.3. Quadratic trace brackets: the r-matrix formulation. We recall the form of the
quadratic Poisson brackets (4.9):

{x j
i,α, x j ′

i ′,β} = rγ ε
αβ x

j ′
i,γ x

j
i ′,ε + aγ ε

αβ x
k
i,γ x

j ′
k,εδ

j
i ′ − aγ ε

βαx
k
i ′,γ x

j
k,εδ

j ′
i , (4.27)

{{xα, xβ}} = rγ ε
αβ xγ ⊗ xε + aεγ

αβ xγ xε ⊗ 1 − aγ ε
βα1 ⊗ xεxγ . (4.28)

Using the same embedding as before one introduces the following objects:

r12 =
m∑

α,β,γ,ε

N∑

i j=1

rγ ε
αβ eαγ ⊗ ei j ⊗ eβε ⊗ e ji ∼ r12 ⊗ P, (4.29)

a12 =
m∑

α,β,γ,ε

N∑

i j=1

aγ ε
αβeαγ ⊗ ei j ⊗ eβε ⊗ e ji ∼ a ⊗ P. (4.30)

One then has

r12X1X2 = rγ ε
αβ x

j
i ′γ x

i
kε eα ⊗ eii ′ ⊗ eβ ⊗ e jk, (4.31)

Xt
2a12X1 = aγ ε

αβ x
j
i ′γ ′xljε eα ⊗ eii ′ ⊗ etβ ⊗ eli , (4.32)

Xt
1a21X2 = aγ ε

αβ x
j ′
iε x

i
kγ etβ ⊗ e j ′ j ⊗ eα ⊗ e jk . (4.33)

It is crucial to emphasize here that the transposition xt is a partial transposition taking
place in the flavor space C

m . A “transposed” vector is of course now a co-vector or a
linear form, identified by canonical duality.

The Poisson brackets can be expressed as

{X1
⊗, X2} = rγ ε

αβ x
j ′
iγ x

j
i ′εeα ⊗ e ji ⊗ eβ ⊗ e j ′ j

+ aγ ε
αβ x

k
iγ x

j ′
kεeα ⊗ e ji ⊗ eβ ⊗ e j ′ j − aγ ε

βαx
k
i ′γ x

j
kεeα ⊗ e ji ⊗ eβ ⊗ eii ′ .

(4.34)

The new r -matrices R and A only carry non-trivial indices of flavor type. In other
words the non-trivial contributions to Poisson structure arise solely between any two X
matrices with different flavors whilst the same-flavor Poisson structure is trivial. This
is again an important distinction with respect to standard quadratic Poisson structure
formulation.

The formulas (4.22) and (4.29)–(4.33) finally result in the following
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Proposition 4.4. The quadratic Poisson brackets (4.27) can be rewritten as

{X1
⊗, X2} = r12X1X2 + (Xt

2a12X1)
t2 − (Xt

1a21X2)
t1 (4.35)

where

X =
m∑

α=1

N∑

i j=1

x j
iα eα ⊗ e ji , (4.36)

r12 =
m∑

α,β,γ,ε

N∑

i j=1

rγ ε
αβ eαγ ⊗ ei j ⊗ eβε ⊗ e ji (4.37)

a12 =
m∑

α,β,γ,ε

N∑

i j=1

aγ ε
αβeαγ ⊗ ei j ⊗ eβε ⊗ e ji . (4.38)

The properties of r and a implies the following relations for r and a:

r12 = −r21 ⇒ r12 = −r21, a12 = a21 ⇒ a12 = a21.

4.4. Classical YBE for the full r-matrix structure (r, a). Consider now the Yang–Baxter
equations for the full structurematrices r and a deduced from the compatibility equations
for the components r, a previously obtained. We first have:

Proposition 4.5. If r is a skew-symmetric solution of the AYBE (4.6) then r, as defined
in Proposition 4.4, is a solution of the classical Yang–Baxter equation

[r12, r13 + r23] + [r13, r23] = 0. (4.39)

It is indeed easy to see that:

[r12, r13 + r23] + [r13, r23] = (r12r13 − r23r12 + r13r23) ⊗ P12P13
+ (r12r23 − r13r12 − r23r13) ⊗ P12P23 = 0.

When a classical r -matrix is not skew-symmetric it obeys a generalized version of this
better-known CYB equation [21,22,40]. It is however more relevant, in particular with
respect to quantization issues, to formulate the CYB conditions for a split pair, here (r, a)
where one assumes in addition that r is skew-symmetric and a is symmetric (i.e. a12 =
a21). The skew-symmetric part r as we have just establish, obeys the canonical skew-
symmetric YB equation (4.39). The other condition now is the adjoint (r, a) equation
[21,22] which reads:

[r12, a13 + a23] + [a13, a23] = r12a13 ⊗ P12P13 + r12a23 ⊗ P12P23 + a13a23 ⊗ P13P23
− a13r12 ⊗ P13P12 − a23r12 ⊗ P23P12 − a23a13 ⊗ P23P13

= 0. (4.40)

Note that the sum r+a then obeys the non-skew-symmetric classical YB equation given
some general properties of r, a which we shall not detail here.

One now establishes easily that:
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Proposition 4.6. If (r, a) is a solution of the AYBE relations (4.4) such that a12 = a21
then (r, a), as defined in Proposition (4.4), is a solution of the adjoint classical Yang–
Baxter equation (4.40).

This is a direct consequence of the formula

[r12, a13 + a23] + [a13, a23] = (r12a13 − a23r12 + a13a23) ⊗ P12P13
+ (r12a23 − a13r12 − a23a13) ⊗ P12P23

and the implication:

r13a12 − a32r13 = a32a12 ⇒ r12a13 − a23r12 = a23a13

(via the permutation of spaces 2 → 3). We use also a12a31 = a31a12 and a12 = a21
which imply a12a31 = a13a21. Hence a23a13 = a32a13 = a31a23.

4.5. Reflection Algebra Poisson brackets. The formulation of quadratic trace Poisson
structure still lacks one type of term as can be seen from the famous general quadratic
Poisson bracket ansatz of Freidel and Maillet [18]

{l1 ⊗, l2} = ã12l1l2 + l1b̃12l2 − l1l2d̃12 + l2c̃12l1. (4.41)

To get a full quadratic classical Poisson structure, hereafter denoted reflection algebra
(RA), it then appears that we need to add to our formulas some analogue of the term d̃.
This is achieved by introducing the transposed matrix of r defined by:

r̃12 = r
t12
12 =

m∑

α,β,γ,ε

N∑

i j=1

rγ ε
αβ eγα ⊗ ei j ⊗ eεβ ⊗ e ji .

Then one has the identification:

(Xt
2X

t
1r̃12)

t12 = r12X1X2

so that we end up with the fully quadratic formulation a la Freidel–Maillet.

Proposition 4.7. The reflection classical trace Poisson algebra is defined as:

{X1
⊗, X2} = 1

2
r12X1X2 − 1

2
(Xt

2X
t
1r̃21)

t12 + (Xt
2a12X1)

t2 − (Xt
1a21X2)

t1 . (4.42)

We have used the notation of Proposition 4.4.

This now clearly suggests a consistent quantization of the trace Poisson algebra as a
reflection algebra type structure.
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5. Quantum Reflection Trace Algebra

5.1. Quantisation of the trace-Poisson algebra. We now move to the formulation of a
quantization for these Poisson algebras. We first consider the quadratic trace-Poisson
algebra discussed above and propose a quantized form. We then introduce a general
quantum quadratic algebra and define its associated Yang–Baxter equations, using a
generalization of the bivector formulation of Freidel–Maillet.

The quantization of a single-flavor general quadratic Poisson bracket has been done
in [18]. Here, we need to take into account the delicate issue of transposition with respect
to the flavor indices, as it occurred in the previously derived formulae. By analogy, we
come up with the following proposition of a quantum quadratic trace algebra:

Proposition 5.1. Let R and A be twomatrices acting on the tensor product of two copies
of an auxiliary space V = C

N ⊗ C
m. The space C

N (resp. Cm) will be called the color
(resp. flavor) space.

We define an associative algebra A through the following relation

(R12(K1
t A21K2)

t1)t2 = ((K2
t A12K1)

t1R12
t1t2)t1, (5.1)

where the transposition acts solely on the flavor indices, and K ∈ A⊗ End(CN )⊗C
m.

Then A is a quantization of the trace Poisson algebra defined in Proposition 4.7.

Note that the following relation, deduced from (5.1) by exchanging the auxiliary
spaces 1 and 2,

(R21(K
t
2A12)

t2K1)
t1 = (K t

1(A21K2)
t2 Rt1t2

21 )t2 (5.2)

is a priori not1 equivalent to (5.1) and must also be considered simultaneously.
Consistency of proposition 5.1 is now proved by defining a quasi-classical limit,

assuming the existence of the following � expansions:

R = I − �r + · · ·, A = I + �a + · · ·, K = X + �(Y );
[X1, X2] = �{X1, X2} + · · ·

There is no contribution to order �
0. The term in �

1 reads:

{X1
⊗, Xt

2} = (r12X1X2)
t2 + (Xt

1a21X2)
t12 − (Xt

2a12X1) − (Xt
2X

t
1r̃12)

t1 .

If we apply now the transposition ()t2 we get:

{X1
⊗, X2} = (r12X1X2) + (Xt

1a21X2)
t1 − (Xt

2a12X1)
t2 − (Xt

2X
t
1r̃12)

t12

which is exactly the classical quadratic trace algebra. We thereby prove the consistency
of the choice of (5.1) as a quantization of (4.42).

Proposition 5.1 suggests to introduce what appears as the most general quadratic
quantum exchange algebra of trace-type, introducing four a priori distinct structure
constant matrices A, B,C, D in a notation directly borrowed from [18].

1 Of course, this is true only when the flavor space is not trivial: when the flavor space is one-dimensional,
the two relations become equivalent.
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Definition 5.2. The quantum trace reflection algebra relations read:

(A12(K
t
1B12)

t1K2)
t2 = (K t

2(C12K1)
t1D12)

t1 . (5.3)

Again, we recall that each of the auxiliary spaces 1 and 2 is itself a tensor space of a
flavor and a color space. The transposition acts solely on the flavor indices. As before,
the following relation, deduced from (5.3) by exchanging the auxiliary spaces 1 and 2,

(A21(K
t
2B21)

t2K1)
t1 = (K t

1(C21K2)
t2D21)

t2 (5.4)

is a priori not2 equivalent to (5.3) and must be considered simultaneously.

5.2. Freidel–Maillet RA formulation and YB equation. In order to derive sufficient con-
ditions for associativity of this RAwe need to introduce an alternative representation. For
single-flavor RA, it was originally proposed in [18] and possibly related (in this context)
to the interpretation of RA as twists of a tensor product of several quantum algebras [14].
This representation interprets the K matrices as partially transposed bivectors. It yielded
a completely bivector form for the RA of ZF algebra type: RK K = KK [15,44].

In our context, we must bi-vectorialize the color space End(CN ) of K , which yields
the following proposition:

Proposition 5.3. The quantum reflection trace algebra can be reformulated as:

RI,II
11′,22′ KI

11′KII
22′ = KII

22′KI
11′ where RI,II

11′,22′ = (C
T2′
12′ )−1(D

T1′T2′
1′2′ )−1A12B

T1′
1′2 , (5.5)

As a convention, 11′ and 22′ denote the color spaces that are bivectorialized, while I and
II label the flavor spaces. The transpositions are defined as T1′ ≡ t1′ tI and T2′ ≡ t2′ tII.

For the sake of simplicity we have omitted the flavor labels I and II in the matrices A,
B, C, D.

This is easily seen by expanding the relation on the canonical basis. The matrices A,
B, C , D are generically expanded as

M =
N∑

i, j,k,l=1

m∑

α,β,γ,δ=1

Mi j,kl
αβ,γ δ ei j ⊗ eαβ ⊗ ekl ⊗ eγ δ

and K is obtained from K as

K =
N∑

i, j=1

m∑

α=1

Ki j
α ei j ⊗ eα ⇒ K =

N∑

i, j=1

m∑

α=1

Ki, j
α ei ⊗ e j ⊗ eα with Ki j

α = Ki, j
α .

RA projected on ei ⊗ eq ⊗ eμ ⊗ ek ⊗ es ⊗ eν now reads:

N∑

j,l,n,p=1

m∑

α,β,γ,δ=1

Ai j,kl
μβ,νγ B

nq,lp
αβ,γ δK j,n

α Kp,s
δ =

N∑

j,n,u,r=1

m∑

α,β,γ,δ=1

Dqn,us
μα,νδC

i j,ru
αβ,γ δKk,r

γ K j,n
β .

(5.6)

2 Again, this is true only when the flavor space is not trivial.
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A careful reinterpretation of the indices in (5.6) allows us to give it a matricial form:

A12B
T1′
1′2KI

11′KII
22′ = D

T1′T2′
1′2′ C

T2′
12′ KII

22′KI
11′ (5.7)

Multiplying by the inverse matrices of D
T1′T2′
1′2′ and C

T2′
12′ , one gets the ZF algebra type

relation (5.5).
Note that R is now expanded on the canonical basis as

RI,II
11′,22′ =

N∑

i, j ′,p,q′
r,s′,k,l′ =1

m∑

α,α′,γ,γ ′=1

Ri j ′,pq ′;rs′,kl ′
αα′,γ γ ′ ei j ′

︸︷︷︸
1

⊗ epq ′
︸︷︷︸
1′

⊗ eαα′
︸︷︷︸

I

⊗ ers′︸︷︷︸
2

⊗ ekl ′︸︷︷︸
2′

⊗ eγ γ ′
︸︷︷︸

II

(5.8)

with

Ri j ′,pq ′;rs′,kl ′
αα′,γ γ ′ =

N∑

j,l,q,s=1

m∑

β,β′,β′′
δ,δ′,δ′′ =1

C̃i j,kl
αβ,γ δ D̃

pq,ll ′
ββ ′,δδ′ A

j j ′,rs
β ′β ′′,δ′δ′′ B

qq ′,ss′
α′β ′′,δ′′γ ′ (5.9)

where C̃i j,kl
αβ,γ δ corresponds to the expansion of (C

T2′
12′ )−1

N∑

j,l=1

m∑

β,δ=1

C̃i j,kl
αβ,γ δ C

j j ′,l ′l
ββ ′,δ′δ = δαβ ′ δγ δ′ δi j

′
δkl

′
, (5.10)

and D̃i j,kl
αβ,γ δ to the expansion of (D

T1′T2′
12′ )−1

N∑

j,l=1

m∑

β,δ=1

D̃i j,kl
αβ,γ δ D

j ′ j,l ′l
β ′β,δ′δ = δαβ ′ δγ δ′ δi j

′
δkl

′
. (5.11)

5.3. Consistency conditions.

5.3.1. Conditions of unitarity. So-called “Unitarity conditions” follow from requiring
that the RA and its rewriting by exchange of the auxiliary space labels 1 and 2 have
the same content. Indeed in the RT T = T T R case this condition only yields unitarity
conditions on the quantum R matrix hence the name.

The Freidel–Maillet formulation now provides a simple way to get this unitary con-
dition. Comparing both writings leads immediately to

RI,II
11′,22′ RII,I

22′,11′ = I, (5.12)

where RI,II
11′,22′ is given in (5.5). Then, one gets the following sufficient conditions:

C I,II
12 = B II,I

21 and
(
(DI,II

1′2′)T1′T2′
)−1

AI,II
12 = (AII,I

21)
−1 (DII,I

2′1′)T1′T2′ . (5.13)
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5.3.2. Conditions of associativity (YBE). Let us now examine the associativity property
of the RA

Theorem 5.4. A sufficient condition for associativity of the RA is given by the Quantum
Yang–Baxter equation forR:

RI,II
11′,22′ RI,III

11′,33′ RII,III
22′,33′ = RII,III

22′,33′ RI,III
11′,33′ RI,II

11′,22′ , (5.14)

where RI,II
11′,22′ is the R-matrix introduced in (5.5).

Due to the mixing of flavor indices between A, B,C, D in the definition of RI,II
11′,22′

it is more delicate to separate (5.14) into four distinct QYB equations (schematically
written as AAA, ABB, DCC and DDD) as was done in the Freidel–Maillet RA We
give below some examples where it can nevertheless be done.

5.3.3. Sufficient conditions for consistency. In this section, we shall assume that the
flavor and color indices are completely decoupled:

M I,II
11′,22′ = MI,II ⊗ M11′,22′ for M = A, B,C, D.

Unitarity condition for RI,II
11′,22′ is fulfilled when:

C12 = B21; D1′2′ D2′1′ = I; A12 A21 = I, (5.15)

CI,II = BII,I;
(
DtItII

I,II

)−1
AI,II = (AII,I)

−1 DtItII
II,I . (5.16)

The Yang–Baxter equation for RI,II
11′,22′ then splits into color and flavor relations. The

color relations read

A12A13A23 = A23A13A12, D12D13D23 = D23D13D12; (5.17)

A12C13C23 = C23C13A12, D12B13B23 = B23B13D12. (5.18)

The matrices realizes the well-known reflection Yang–Baxter equations which need not
be discussed here.

For the flavor spaces, we get
(
CtII

I,II

)−1
RI,II B

tI
I,II

(
CtIII

I,III

)−1
RI,III B

tI
I,III

(
CtIII

II,III

)−1
RII,III B

tII
II,III

= (
CtIII

II,III

)−1
RII,III B

tII
II,III

(
CtIII

I,III

)−1
RI,III B

tI
I,III

(
CtII

I,II

)−1
RI,II B

tI
I,II. (5.19)

We have introduced

RI,II = (
DtItII

I,II

)−1
AI,II, (5.20)

which is unitary, RI,IIRII,I = I by (5.16). Remark that the matrices A and D appear only
through R, showing a freedom

AI,II → G I,IIAI,II and DI,II → DI,IIG
tItII
I,II (5.21)

where G I,II is any invertible matrix.
The flavor part has the form of a Yang–Baxter equation with the following twisted R

matrix:

R̃I,II = (
CtII

I,II

)−1
RI,IIC

tI
II,I with R̃I,II R̃I,III R̃II,III = R̃II,III R̃I,III R̃I,II, (5.22)
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where we have used (5.16) to get the result. It is easy to see that R̃I,II is also unitary.
Starting now from any unitary solution to the Yang–Baxter equation R̃I,II and any

invertible matrix FI,II, one reconstructs the matrices R, B and C through

BII,I = CI,II = FtII
I,II ; RI,II = F−1

I,II R̃I,IIFII,I. (5.23)

Remarkably, the splitting of color and flavor spaces induces the usual reflectionYang–
Baxter equations for the color part, whereas we identify a twisted Yang–Baxter equation
for the flavor part.

6. Dynamisation

The next issue is now to define consistent dynamical extensions of the trace reflection
algebra. Dynamical extensions of quantum algebra have a long story going back to
the Gervais–Neveu–Felder equation (also called “dynamical Yang–Baxter equation”)
[17,19], characterizing the Belavin–Baxter statistical mechanics R-matrix [3] for IRF
models. The general idea is there to introduce a dependance of the R-matrix, and the
matrix T encapsulating the algebra generators, in so-called “dynamical” non-operatorial
parameters interpreted as coordinates on the dual of some Lie subalgebra of the under-
lying Lie algebra (or affine algebra) in the quantum structure. In the GNF case, which
will be the basis of our derivation here, the subalgebra is the abelian Cartan subalge-
bra of this Lie/affine algebra (for non-abelian cases see e.g. [43]). The RT T relations
and associativity conditions are accordingly modified to yield the GNF-type dynamical
Yang–Baxter equations.

This notion naturally extends to RA. The first dynamical RA was identified as con-
sistency conditions [9] for the boundary matrix defining open IRF models. It was later
studied as “dynamical boundary algebra” in [16] and [27]. It is identified with a dynami-
cal twist of a quadruple tensor product of quantum affine RT T algebras [20]. The second
one was identified [4,5] in the quantum formulation of Ruijsenaar–Schneider models
[38]. It was later studied in [27] and characterized in [6] as a deformation of a non-
dynamical RT T algebra by a dynamical semi-gauge action. A third one was recently
constructed in [7] and seems related to twisted Yangian structures instead of quantum
affine algebras.

6.1. Freidel–Maillet formulation of the dynamical reflection algebras. In order to define
dynamical versions of the trace RA we will use the bivector formulation a la Freidel–
Maillet. We must first of all construct such a formulation for the single-flavor dynamical
RA described above. To the best of our knowledge this has never been done. The for-
mulation which we propose follows on these lines:

All three dynamical RA’s are represented by similar-looking quadratic exchange
algebra relations:

A12(λ)K1(λ − εRh2)B12(λ)K2(λ + εLh1)

= K2(λ − εRh1)C12(λ)K1(λ + εLh2)D12(λ) (6.1)

where εL and εR are some complex number characterizing the different reflection alge-
bras (see below).

The dynamical variables are encapsulated in an n dimensional vector λwhich will be
omitted whenever no ambiguity of notation arises. It is assumed that the auxiliary vector
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space on which the structure matrices act is a diagonalizable, fully reducible module of
the Cartan algebra, hence notations such as K1(λ − εRh2) are self explanatory. They
will be used everytime the shift operates along a copy of the dual Cartan algebra not
acted upon by the matrix inside which it appears. Shifts along copies of the dual Cartan
algebra acted upon by the matrix itself must be defined in a more specific context. This
brings us to define precisely the notions of “external” and “internal” shifts which will
be of use throughout our derivation.

Definition 6.1. We recall the well-known notation of outside action of a shift operator
[i.e. shift along a Cartan algebra copy (a) not acted upon by the matrix M(λ)]. It reads:

e(εha∂)M...(λ)e(−εha∂) = M...(λ + εha). (6.2)

Definition 6.2. Consider now the problem of inside action. Denote by M...a... a matrix
acted upon by e(εha∂). In order to obtain a pure c-number matrix without explicit dif-
ference operators after action of the shifts we must then consider only the following
objects:

((e(εha∂)M)ta e(−εha∂))ta := Msr(a), (6.3)

((e(εha∂)(Me(−εha∂))ta := Msc(a), (6.4)

where, for conciseness, we have omitted the λ-dependence in M .
One also defines a natural extension of the shift-row procedure to single vector

indices:

K
sa′ (−εL )

aa′ := (
(e(εha′∂)Kaa′

)t ′a e(−εha′∂))ta′, a ∈ {1, 2}. (6.5)

In the following, we will use the notation K̄aa′ = K
sa′ (−εL )

aa′ .

This defines the notations sc(a), sr(a) and sa . We see of course that their application
to a matrix depending on λ mean that the matrix elements are transformed by a shift of
their dynamical variables as λi → λi + δi,k where k is column (resp. row) index in their
tensorial factor (a). In this way we have taken care of the situation where shifts occur
along copies of the dual Cartan algebra acted upon by the matrix itself.

A number of identities must now be established as interplay between different types
of shifts. First of all one has:

(Msr(a))ta = (Mta )sc(a). (6.6)

This identity does not follow in a manifest way from (6.3), (6.4) but must be checked
directly by computing the matrix elements.

Then one can in fact reinterpret outside shift as inside shift of a ‘completed” matrix
as follows:

M...(λ + εha) := (M... ⊗ Ia)
sc(a) := (M... ⊗ Ia)

sr(a). (6.7)

Shift operations along a space (a) factor out on matrix products only when one of
the factor matrices acts diagonally on this space. One has:

(M...a...D...a...)
sc(a) := (Msc(a)

...a... D...a...)
sc(a) (6.8)
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and

(D...a...M...a...)
sr(a) := (Dsr(a)

...a...M...a...)
sr(a), (6.9)

where M is any matrix and D is diagonal on space (a). Of course shift-row and shift-
column are identical operations on D. Combining (6.7), (6.9) and (6.8) yields the iden-
tification:

(N...(λ + εha)(M...a...)
sr(a) := (N...M...a...)

sr(a) (6.10)

and dually

Msc(a)
...a... N...(λ + εha) := (M...a...N...)

sc(a). (6.11)

Let us now consider the particular case of structure matrices. A key consistency
property for dynamical reflection algebras are the zero-weight conditions of the structure
matrices A, B,C, D. They must indeed obey:

εR [h(1) + h(2), A12] = εL [h(1) + h(2), D12] = 0, (6.12)

[εR h(1) − εL h
(2), C12] = [εL h(1) − εR h(2), B12] = 0. (6.13)

The three dynamical RA’s respectively correspond to the choice εR = −1, εL = 1
(DBA); εR = −1, εL = 0 (so-called semi-dynamical RA) ; εR = −1, εL = −1
(twisted Yangian RA).

We now introduce the notion of zero-weight shift which will be in fact particularly
relevant to such structure matrices:

Definition 6.3. Consider a matrix M...ab... obeying a zero-weight condition

[εa h(a) + εb h
(b), M...ab...] = 0. (6.14)

The exponential of the “zero-weighted” shifts e(εaha+εbhb∂) does act on the relevant
matrix to yield again a pure c-number matrix (no shift term remains) with shifts inside
the matrix elements given in terms of the sr, sc notions. This action yields a crossing
shift formula:

e(εaha∂)M̃abe
(−εbhb∂) := e(−εbhb∂)Mabe

(εaha∂ ). (6.15)

In particular from the zero-weight conditions on A, B,C, D one has:

e(εRh1∂) Ã12e
(−εRh2∂) := e(εRh2∂)A12e

(−εRh1∂ ), (6.16)

e(εLh1∂) D̃12e
(−εLh2∂) := e(εLh2∂)D12e

(−εLh1∂ ), (6.17)

e(εLh1∂) B̃12e
(εRh2∂) := e(εRh2∂)B12e

(εLh1∂), (6.18)

e(εLh2∂)C̃12e
(εRh1∂) := e(εRh1∂)C12e

(εLh2∂). (6.19)

An important property of the shift of a product involving a zero-weight matrix is the
following:
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Proposition 6.4. Given a AN zero-weight matrix Mab such that

[h(a) + h(b), Mab] = 0

(the possible other space labels are omitted) and a matrix Cab (without any weight
conditions), then:

(CabMab)
sc(a)sc(b) := Csc(a)sc(b)

ab Msc(a)sc(b)
ab (6.20)

and

(MabCab)
sr(a)sr(b) := Msr(a)sr(b)

ab Csr(a)sr(b)
ab . (6.21)

The proof is by direct computation of the respective matrix elements, using the fact
that the set of row and column indices of a AN zero-weight matrix are identified.

We are now able to prove the following:

Theorem 6.5. The dynamical RA (6.1) is represented in the bivector formalism by the
following expression:

A12(λ − εL(h2′ + h1′))
(
B
t1′
1′2(λ − εLh2′)

)sr1′ (εL )
K̄11′(λ−εRh2 − εLh2′)K̄22′(λ)

= (
D

t1′ t2′
1′2′ (λ)

)sr1′ (εL )sr2′ (εL )(
C
t2′
12′(λ − εLh1′)

)sr2′ (εL )
K̄22′(λ−εRh1 − εLh1′)K̄11′(λ).

(6.22)

The proof is a long and delicate (but rather straightforward) computation. It requires
first of all to rewrite (6.1) using explicit shift operators of the general form e(−εL/Rh2/1∂).

A12e
(−εRh2∂)K

t1′
11′e(εRh2∂)B1′2e

(εLh1′∂)K
t2′
22′

= e(−εRh1∂)K
t2′
22′e(εRh1∂)C12′e(εLh2′∂)K

t1′
11′e(−εLh2′∂)D1′2′e(εLh1′∂).

Partial transposition with respect to space indices 1′ and 2′ redefines as before K as
bivectors instead of matrices. Using the cross-shift properties (6.17), (6.18), (6.19) and
(6.16) allows to rewrite the previous equality as:

A12e
(−εRh2∂)(B̃

t1′
1′2)

sc1′ (εL)e(εLh1′∂)K
s1′ (−εL)

11′ e(εRh2∂)e(εLh2′∂)K
s2′ (−εL )

22′

= ((C̃12′(D̃1′2′(εRh1))
sc1′ (εL)t2′ )sc2′ (εL)e(εLh2′∂)K

s2′ (−εL )

22′ e(εRh1∂)e(εLh1′∂)K
s1′ (−εL )

11′ .

In the equation above and in the following, only shifts in the dynamical parameter are
indicated, and for instance D1′2′(εRh1) stands for D1′2′(λ + εRh1).

Pushing the shift operators e(εRh2∂)e(εLh2′∂) and e(εRh1∂)e(εLh1′∂) to the left, using the
definition of the internal shifts allows for undoing the cross-shift of A, B,C, D to yield:

A12(−εL(h2′ + h1′))(B
t1′
1′2(−εLh2′))sr1′ (εL ) K̄11′(−εRh2 − εLh2′)K̄22′

= [(C12′(−εLh1′)(D
sc1′ (−εL )

1′2′ )t1′ )sr2′ (−εL )]t2′ K̄22′(−εRh1 − εLh1′)K̄11′ . (6.23)

The structurematrices on the l.h.s. are nowdecoupled.To achieve a similar decoupling

of [(C12′(−εLh1′)(D
sc1′ (−εL )

1′2′ )t1′ )sr2′ (−εL )]t2′ on the r.h.s. we essentially use Eqs. (6.6),
(6.7), Proposition 6.4 and Eq. (6.11) to finally yield the decoupled terms:

(D
t1′ t2′
1′2′ )sr1′ (εL )sr2′ (εL )(C

t2′
12′(−εLh1′))sr2′ (εL ).
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This representation of the dynamical reflection algebras allows to identify some key
features of dynamical reflection algebras which shall be crucial guidelines in our conjec-
tured formulation of a dynamical quantum reflection algebra. The bivector representation
is indeed essential to identify these features and represent probably a deeper formulation
of reflection algebras in general.

Criterion 1. The shifts separate into shifts labeled by the tensorial factors generated by
the original vector-type indices in K (row indices, unprimed) weighted by −εR ; and
shifts labeled by the tensorial factors corresponding to the original covector-type indices
in K (column indices, primed) weighted by −εL .

Criterion 2. The structure matrices A, B,C, D are zero-weighted according to the na-
ture of their tensorial labels with the proviso that the zero-weight conditions be written
for the partially transposed matrices such as occur in the bivector formulation.

Criterion 3. All four structurematrices are shifted along both primed-labeled directions,
weighted by −εL . Depending whether these labels occur or not in the matrix the shifts
are inside shifts (resp. outside).

Criterion 4. The K matrices are shifted along three directions: the two respective out-
side shifts and the inside prime (transposed covector) shift occur with their respective
consistent weights of Criterion 1.

6.2. Conjectural dynamical quantum reflection trace algebra. The quantum reflection
trace algebra structure essentially differs from the QRA by the occurrence of the flavor
vector index in K and the pair of corresponding extra auxiliary spaces in A, B,C, D. Our
key hypothesis is to treat this extra vector index in K as a supplementary ‘true” vector
index (unprimed). The dynamization will now also contain a deformation parametrized
by coordinates on the dual of the abelian Cartan subalgebra of the new flavor Lie algebra,
a priori here Am−1. Once again one assumes that the supplementary flavor vector spaces
are diagonalizable fully reducible modules of this flavor Cartan algebra.

Accordinglywe now introduce a thirdweight ε f for the associated shifts (Criterion 1);
complement the zero-weight conditions on A, B,C, D by this extra weight and the extra
generators of the abelian Cartan subalgebra of the new flavor Lie algebra (Criterion 2);
do not modify the shift structure on the matrices A, B,C, D themselves (since this
extra vector index is a ‘true” index, not a transposed covector) (Criterion 3); shift the K
matrices additionally along their outside flavor space (Criterion 4).

We thus propose the following form where the flavor space labels have been omitted
for the sake of simplicity, and as in (5.5) the transpositions are defined as T1′ ≡ t1′ tI and
T2′ ≡ t2′ tII.

A12(λ − εL (h2′ + h1′ ))
(
B
T1′
1′2 (λ − εLh2′ )

)sr1′ (εL )
K̄11′ (λ − εRh2 − εLh2′ − ε f hII)K̄22′ (λ)

= (
D

T1′ T2′
1′2′ (λ)

)sr1′ (εL )sr2′ (εL )(
C

T2′
12′ (λ − εLh1′ )

)sr2′ (εL )
K̄22′ (λ − εRh1 − εLh1′ − ε f hI)K̄11′ (λ).

(6.24)

Although the transpositions T contain transpositions of the flavor-labeled compo-
nents in the structure matrices A, B,C, D we have decided here to formulate and apply
Criterion 3 so as to not shift the corresponding matrices along these flavor transposed
space, since we interpret the shifts of B,C, D in (6.23) to only operate in directions cor-
responding to transposed covector indices in K . There is however a possible ambiguity
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since one could also interpret more broadly these shifts as occurring along all direc-
tions characterized by a transposed label. In this case one should reinterpret sr1′, sr2′
as sr1′ + srI, sr2′ + srII in B,C, D and K̄ wherever they occur in (6.24). Lifting the am-
biguity requires an in-depth study of these structures which we shall leave for a later
investigation.

7. Conclusion

We have established a consistent form for the quantum trace reflection algebra, and
conjectured a form for an abelian dynamical deformation, on the lines defined by the
flavorless dynamical reflection algebras. We wish to emphasize once again that the
rewriting of reflection algebras (particularly dynamical) in a bivector formalism plays a
crucial role in that it has allowed us to extract what appear to be the key features of this
type of dynamical deformation. It suggests that the bivector Freidel–Maillet formulation
is possibly the relevant frame to understand in depth the quantum reflection algebra (a
point always defended by the authors of [18] and consistent with the construction of
reflection algebras by twisting a quadrupled algebra in [14,20]).

It is worth stressing here that our approach to the quantization problem of trace-
Poisson brackets and the very formulation of this problem has no immediate straightfor-
ward application to the natural question of a proper deformational quantization of the
Van den Bergh double Poisson structure itself as it was addressed by Calaque3: “Is there
a notion of “quantization”, or “double star-product” for double Poisson algebras, so that
it would induce genuine star-products quantizing the above mentioned (i.e. coordinate
rings of the representation moduli spaces) Poisson varieties?” Or, in other words “what
kind of algebraic structure on an algebra A ensures that one will get star-products on
RepN(A)?”. Anyway, we hope that the scheme proposed here will help to clarify some
aspects of the problem.

Let us also stress that we have not addressed here the case of linear double brackets
and their subsequent trace-Poisson brackets. Their structure is described (4.16) by a
mixed object B carrying both matrix and vector flavor indices. By contrast the quadratic
double brackets yield quadratic trace-Poisson “structure constants” with pure matrix
flavor indices, allowing for a quantization and dynamization on more familiar lines as
Yang–Baxter R-type matrices. It is not clear at this stage how to address the linear case
and we shall postpone its discussion for the time being.

Besides this issue several deep questions are now opened following our derivations.
A few have already been mentioned: how about the parametric AYB algebras? This
of course immediately begs the question of elliptic-type deformations (i.e., along the
d generator of an underlying affine algebra). In addition we should ask the question
of a co-algebra or (more probably) co-ideal structure in the non-dynamical case, in
relationwith the quasi-Hopf structure, which it seems to exhibit. Finally in the dynamical
case one must now address the issues both of consistency and relevance (physical and
mathematical) of this conjectured structure (whichever version of Criterion 3 turns out
to be consistent). The existence of a full rewriting procedure, reversing the previous
bivectorializations, of this structure in terms of K matrices as an explicit reflection
formula mimicking (5.5) with suitable internal and external shifts, may provide a good
consistency criterion.

3 See http://mathoverflow.net/questions/29543/what-is-a-double-star-product.

http://mathoverflow.net/questions/29543/what-is-a-double-star-product
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