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Abstract: We establish a new property of Fisher-KPP type propagation in a plane, in
the presence of a line with fast diffusion. We prove that the line enhances the asymptotic
speed of propagation in a cone of directions. Past the critical angle given by this cone,
the asymptotic speed of propagation coincides with the classical Fisher-KPP invasion
speed. Several qualitative properties are further derived, such as the limiting behaviour
when the diffusion on the line goes to infinity.

1. Introduction

In [9] we introduced a new model to describe biological invasions in the plane when a
strong diffusion takes place on a straight line. In this model, we consider a coordinate
system on R

2 with the x-axis coinciding with the line, referred to as “the road”. The
rest of the plane is called “the field”. For given time t ≥ 0, we let v(x, y, t) denote the
density of the population at the point (x, y) ∈ R

2 of the field and u(x, t) denote the
density at the point x ∈ R of the road. Owing to the symmetry of the problem, one
can restrict the field to the upper half-plane � := R × (0,+∞). There, the dynamics is
assumed to be given by a standard Fisher-KPP equation with diffusivity d, whereas, on
the road, there is no reproduction nor mortality and the diffusivity is given by another
constant D. We are especially interested in the case where D is much larger than d. On
the vicinity of the road there is a constant exchange between the densities u, and the one
in the field adjacent to the road, v|y=0, given by two rates μ, ν respectively. That is, a
proportion μ of u jumps off the road into the field while a proportion ν of v|y=0 goes
onto the road.

This model gives rise to the following system:
⎧
⎪⎨

⎪⎩

∂t u − D∂xxu = νv|y=0 − μu, x ∈ R, t > 0
∂tv − d�v = f (v), (x, y) ∈ �, t > 0
−d∂yv|y=0 = μu − νv|y=0 , x ∈ R, t > 0,

(1)
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where d, D, μ, ν are positive constants and f ∈ C1([0,+∞)) satisfies the usual KPP
type assumptions:

f (0) = f (1) = 0, f > 0 in (0, 1), f < 0 in (1,+∞), f (s) ≤ f ′(0)s for s > 0.

These hypotheses will always be understood in the following without further mention.
We complete the system with initial conditions:

u|t=0 = u0 in R, v|t=0 = v0 in �,

where u0, v0 are always assumed to be nonnegative, bounded and continuous. The
existence of a classical solution for this Cauchy problem has been derived in [9], together
with the weak and strong comparison principles.

Let cK denote the KPP spreading velocity (or invasion speed) [15] in the field:

cK = 2
√
d f ′(0).

This is the asymptotic speed at which the population would spread in any direction in
the open space—i.e., when the road is not present (see [1,2]).
The question that we treat in this paper is the following. In [9] (c.f. also Theorem 1.1
in [10]) we proved that there exists c∗ ≥ cK such that, if (u, v) is the solution of (1)
emerging from (u0, v0) �≡ (0, 0), there holds that

∀c > c∗, lim
t→+∞ sup

|x |>ct
y≥0

|(u(x, t), v(x, y, t))| = 0,

∀c < c∗, a > 0, lim
t→+∞ sup

|x |<ct
0≤y<a

|(u(x, t), v(x, y, t)) − (ν/μ, 1)| = 0. (2)

Moreover, c∗ > cK if and only if D > 2d. In other words, the solution spreads at
velocity c∗ in the direction of the road.

Clearly, the convergence of v to 1 in the second limit cannot hold uniformly in y.
The purpose of this paper is precisely to understand the asymptotic limits in various
directions, and this turns out to be a rather delicate issue. Here is one of our main results.

Theorem 1.1. There exists w∗ ∈ C1([−π/2, π/2]) such that

∀c > w∗(ϑ), lim
t→+∞ v(x0 + ct sin ϑ, y0 + ct cosϑ, t) = 0,

∀0 ≤ c < w∗(ϑ), lim
t→+∞ v(x0 + ct sin ϑ, y0 + ct cosϑ, t) = 1,

locally uniformly in (x0, y0) ∈ � and uniformly in (c, ϑ) ∈ R+ × [−π/2, π/2] such
that |c − w∗(ϑ)| > ε, for any given ε > 0.

Moreover, w∗ ≥ cK and, if D > 2d, there is ϑ0 ∈ (0, π/2) such that w∗(ϑ) > cK
if and only if |ϑ | > ϑ0.

In other words, this theorem provides the spreading velocity in every direction
(sin ϑ, cosϑ), and reveals a critical angle phenomenon: the road influences the propa-
gation on the field much further than just in the horizontal direction. In Sect. 2, we state
a slightly more general result, Theorem 2.1.

The paper is organised as follows. In Sect. 2, we state the main results and discuss
them. In Sect. 3, we compute the planar waves of system (1) linearised around v ≡ 0.
In Sect. 4, we construct compactly supported subsolutions to (1), based on the already
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computed planar waves. This is perhaps the most technical part of the paper, but which
yields a lot of information about the system. The main result, that is, the asymptotic
spreading velocity in every direction, is proved in Sect. 5. Section 6 is devoted to further
properties of the asymptotic speed in terms of the angle of the spreading directions with
the road. Finally, Sect. 7 describes the modifications that should be made when further
effects, namely transport and mortality on the road, are included. A comparison result
between generalised sub and supersolutions is given in the appendix.

2. Statement of Results and Discussion

2.1. The main result and some extensions. We say that (1) admits the asymptotic expan-
sion shapeW if any solution (u, v) emerging from a compactly supported initial datum
(u0, v0) �≡ (0, 0) satisfies

∀ε > 0, lim
t→+∞ sup

(x,y)∈�

dist( 1t (x,y),W)>ε

v(x, y, t) = 0, (3)

∀ε > 0, lim
t→+∞ sup

(x,y)∈�

dist( 1t (x,y),�\W)>ε

|v(x, y, t) − 1| = 0. (4)

Roughly speaking, this means that the upper level sets of v look approximately like
tW for t large enough. Let us emphasise that the shape W does not depend on the
particular initial datum—which is a strong property. In order for conditions (3), (4) in
this definition to genuinely make sense (and not be vacuously satisfied—think of the
set W = Q

2 ∩ �), we further require that the asymptotic expansion shape coincides
with the closure of its interior. This condition automatically implies that the asymptotic
expansion shape is unique when it exists.

In the sequel, we will sometimes consider the polar coordinate system with the
angle taken with respect to the vertical axis. Namely, we will write points in the form
r(sin ϑ, cosϑ). We now state the main result of this paper.

Theorem 2.1. Assume the above conditions on f .

(i) (Spreading). Problem (1) admits an asymptotic expansion shape W .
(ii) (Shape of W). The set W is convex and it is of the form

W = {r(sin ϑ, cosϑ) : −π/2 ≤ ϑ ≤ π/2, 0 ≤ r ≤ w∗(ϑ)}.
Here, w∗ ∈ C1([−π/2, π/2]), is even and there is ϑ0 ∈ (0, π/2] such that

w∗ = cK in [0, ϑ0], w′∗ > 0 in (ϑ0, π/2].
Moreover, W contains the set

W := conv
(
(BcK ∩ �) ∪ [−w∗(π/2), w∗(π/2)] × {0}),

and the inclusion is strict if D > 2d.
(iii) (Directions with enhanced speed). If D ≤ 2d then ϑ0 = π/2. Otherwise, if

D > 2d, ϑ0 < π/2. Furthermore, as functions of D, ϑ0 is strictly decreasing for
D > 2d and w∗(ϑ) is strictly increasing if ϑ > ϑ0.
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Fig. 1. The sets W (solid line) andW (dashed line) in the case D > 2d

If D ≤ 2d thenW ≡ BcK ∩�, that is, the road has no effect on the asymptotic speed
of spreading, in any direction, which means that the asymptotic speed coincides with
the Fisher -KPP invasion speed cK . On the contrary, in the case D > 2d, the spreading
speed is enhanced in all directions outside a cone around the normal to the road. The
closer the direction to the road, the higher the speed. Of course, w∗(±π/2) coincides
with c∗ from (2). The opening 2ϑ0 of this cone is explicitly given by (13) below. The
case D > 2d is summarized by Fig. 1.

The inclusion W ⊃ W yields the following estimates onW:

ϑ0 < ϑ1 := arcsin
cK
c∗

, ∀ϑ ≥ ϑ1, w∗(ϑ) >
cK c∗

cK sin ϑ +
√

c2∗ − c2K cosϑ

.

Consider now w∗ and c∗ as functions of D, with the other parameters frozen. We know
from [9] that c∗ → ∞ as D → ∞. Hence, the above inequalities yield

lim
D→∞ ϑ0 = lim

D→∞ ϑ1 = 0, ∀ϑ > 0, lim inf
D→∞ w∗(ϑ) ≥ cK

cosϑ
.

Since w∗(ϑ) ≤ cK / cosϑ , as it is readily seen by comparison with the tangent line
y = cK , we have the following

Proposition 2.2. As functions of D, the quantities ϑ0 and w∗ satisfy

lim
D→∞ ϑ0 = 0, ∀ϑ ∈ [−π/2, π/2], lim

D→∞ w∗(ϑ) = cK
cosϑ

.

That is, as D ↗ ∞, the set W increases to fill up the whole strip R × [0, cK ).

Let us give an extension of Theorem 2.1. In [10], we further investigated the effects of
transport and reaction on the road. This results in the two additional terms q∂xu and g(u)

in the first equation of (1). We were able to extend the results of [9] under a concavity
assumption on f and g. The additional assumption on f is not required if g is a pure
mortality term, i.e., g(u) = −ρu with ρ ≥ 0. This is the most relevant case from the
point of view of the applications to population dynamics. The system with transport and
pure mortality on the road reads

⎧
⎪⎨

⎪⎩

∂t u − D∂xxu + q∂xu = νv|y=0 − μu − ρu, x ∈ R, t > 0
∂tv − d�v = f (v), (x, y) ∈ �, t > 0
−d∂yv|y=0 = μu − νv|y=0 , x ∈ R, t > 0,

(5)
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with q ∈ R and ρ ≥ 0. The first difference with (1) is that (ν/μ, 1) is no longer
a solution if ρ �= 0. However, we showed in [10] that (5) admits a unique positive,
bounded, stationary solution (US, VS), with US constant and VS depending only on y
and such that VS → 1 as y → +∞. We then derived the existence of the asymptotic
speed of spreading (to (US, VS)) in the direction of the line. This is not symmetric if
q �= 0. There are indeed two asymptotic speeds of spreading c±∗ , in the directions±(1, 0)
respectively. They satisfy c±∗ ≥ cK , with strict inequality if and only if

D

d
> 2 +

ρ

f ′(0)
∓ q

√
d f ′(0)

. (6)

The method developed in the present paper to prove Theorem 2.1 can be adapted to
the case of system (5). The details on how this is achieved are given in Sect. 7 below. In
this framework, the notion of the asymptotic expansion shape is modified by replacing
1 with VS(y) in (4).

Theorem 2.3. For system (5), the following properties hold true:

(i) (Spreading). There exists an asymptotic expansion shape W .
(ii) (Expansion shape). The set W is convex and it is of the form

W = {r(sin ϑ, cosϑ) : −π/2 ≤ ϑ ≤ π/2, 0 ≤ r ≤ w∗(ϑ)},

with w∗ ∈ C1([−π/2, π/2]) such that

w∗ = cK in [ϑ−, ϑ+], w′∗ < 0 in [−π/2, ϑ−), w′∗ > 0 in (ϑ+, π/2],

for some critical angles −π/2 ≤ ϑ− < 0 < ϑ+ ≤ π/2.
(iii) (Directions with enhanced speed). If (6) does not hold then ϑ± = ±π/2. Other-

wise, if (6) holds, ϑ± �= ±π/2 (Fig. 2).

Fig. 2. The asymptotic expansion shape in the presence of a transport term towards right on the road (q > 0)
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2.2. Discussion and comments. Let us first comment on how the spreading velocity in
the direction ξ = (sin ϑ, cosϑ) is sought for. It will be the least c > 0 such that the
linearisation of (1) around 0 admits solutions of the form

(U (x, t), V (x, y, t)) = (e−(α,β)·((x,0)−ctξ), γ e−(α,β)·((x,y)−ctξ)),

with α, β ∈ R, γ > 0. Let us point out that V is not exactly a planar wave in the direction
ξ , for the simple reason that its level sets are not hyperplanes orthogonal to ξ , but to
(α, β). We will find that, when D > 2d and ϑ is larger than a critical angle ϑ0, the
vector (α, β) associated with the least c is not parallel to ξ . This is the reason why the
velocity w∗(ϑ) looks different from the classical Freidlin-Gärtner formula [14], that we
recall here: for a scalar equation of the form

ut − �u + b(x) · ∇u = μ(x)u − u2, (7)

with μ > 0, μ and b 1-periodic, the spreading velocity in the direction ξ is given by

w∗(ξ) = inf
ξ ·ξ ′>0

c∗(ξ)

ξ · ξ ′ (8)

where c∗(ξ) is the least c such that the linearisation of (7) around 0:

ut − �u + b(x) · ∇u = μ(x)u, (9)

admits solutions of the form

φ(x)eλ(x ·ξ−ct), φ > 0, 1-periodic.

The optimal assumption for μ is not, by the way, μ > 0. A more general assumption is
λ
per
1 (−� − μ(x)) < 0, where λ

per
1 denotes the first periodic eigenvalue. In any case,

(8) gives the formula

∀ξ, ξ ′ ∈ R
N\{0}, c∗(ξ) ≥ w∗(ξ)ξ · ξ ′.

We will see in Sect. 6 (Lemma 6.1 below) that a similar, but different, formula holds in
our case, namely,

∀ϑ ∈ [ϑ0, π/2], ϑ̃ ∈ [0, π/2], w∗(ϑ̃) ≤ cos(ϑ − ϕ∗(ϑ))

cos(ϑ̃ − ϕ∗(ϑ))
w∗(ϑ).

It will, in fact, be derived as a consequence of the expression of the spreading velocity.
Several proofs of the Freidlin–Gärtner formula have been given, besides that of [14].

See Evans and Souganidis [12] for a viscosity solutions/singular perturbations approach,
Weinberger [17] for an abstract monotone system proof; Berestycki et al. [4] for a PDE
proof. See also [5] for equivalent formulae and estimates of the spreading speed in
periodic media, as well as [8] for one-dimensional general media. Many of these results
are explained, and developped, in [3].

Let us now discuss the shape of the setW in Theorem 2.1, and how it compares toW .
The latter has a very natural interpretation as the reachable set from the origin in time 1
by moving with speed c∗ on the road and cK in the field. Indeed, considering trajectories
obtained by moving on the road until time λ ∈ [0, 1] and then on a straight line in the
field for the remaining time 1 − λ, one finds that the reachable set is the convex hull of
the union of the segment [−c∗, c∗] × {0} and the half-disc BcK ∩ �, that is,W .
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Another way to obtain the set W is the following: consider a set-valued map t �→
Ut ∈ � and impose that the trace of Ut expands at speed c∗ on the x-axis, and that the
rest evolves by asking that the normal velocity of its boundary equals cK . In PDE terms,
Ut = {(x, y) : φ(x, y, t) ≥ 1}, where φ solves the eikonal equation

{
φt − cK |∇φ| = 0 t > 0, (x, y) ∈ �

φ(x, 0, t) = 1[−c∗t,c∗t](x) t > 0, x ∈ R

So, the family of sets (Ut )t>0 is simply obtained by applying the Huygens principle with
the segment [−c∗t, c∗t] on the road as a source. In other words, tW = Ut and it evolves
with normal velocity cK . Notice that imposing that a family of sets (t A)t>0 evolves with
constant normal velocity cK forces the curvature of A to be either 1/cK or 0, i.e., A is
locally either a disc of radius cK or a half-plane. It would have been tempting to think that
W coincides withW , just as in the singular perturbation approach to front propagation
in parabolic equations or systems—see Evans and Souganidis [12,13]. The fact that the
asymptotic expansion shape is actually larger than this set is remarkable. And, as amatter
of fact, we estimate in Proposition 6.4 below the difference betweenW andW in terms
of the normal velocities of their boundaries when dilated by t . Namely, we discover that
the normal speed of (tW)t>0 at a boundary point t (sin ϑ, cosϑ), ϑ > ϑ0, coincides
with the travelling speed of the planar wave (for the linearised system) which defines
w∗(ϑ)—see the next section. This speed is larger than cK because the exponential decay
rate of the planar wave is less than the critical one:

√
f ′(0)/d. We expect this decay to be

approximatively satisfied for large time by the solution of (1) emerging from a compactly
supported initial datum. Thus, heuristically, the presence of the road would result in an
“unnatural” decay for solutions of the KPP equation with compactly supported initial
data, which, in turns, would be the reason why W does not coincide with the set W
following from Huygens’ principle.

3. Planar Waves for the Linearised System

Consider the linearisation of system (1) around v = 0:

⎧
⎪⎨

⎪⎩

∂t u − D∂xxu = νv|y=0 − μu x ∈ R, t > 0
∂tv − d�v = f ′(0)v (x, y) ∈ �, t > 0
−d∂yv|y=0 = μu(x, t) − νv|y=0 x ∈ R, t > 0.

(10)

Take a unit vector ξ = (ξ1, ξ2), with ξ2 ≥ 0. By symmetry, we restrict to ξ1 ≥ 0. As
said above, solutions are sought for in the form

(U (x, t), V (x, y, t)) = (e−(α,β)·((x,0)−ctξ), γ e−(α,β)·((x,y)−ctξ)), (11)

with c ≥ 0, γ > 0 and α, β ∈ R (not necessarily positive). This leads to the system

⎧
⎪⎨

⎪⎩

c ξ · (α, β) − Dα2 = νγ − μ

c ξ · (α, β) − d(α2 + β2) = f ′(0)
dγβ = μ − νγ.
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The third equation yields γ = μ/(ν + dβ) and then β > −ν/d. Setting χ(s) :=
μs/(ν + s), the system on (α, β) reads

{
cξ1α + cξ2β − Dα2 = −χ(dβ)

cξ1α + cξ2β − d(α2 + β2) = f ′(0). (12)

The first equation in the unknown α has the roots

α±
D(c, β) := 1

2D

(

cξ1 ±
√

(cξ1)2 + 4D (cξ2β + χ(dβ))

)

,

which are real if and only if β is larger than some value β(c) ∈ (−ν/d, 0]. The set of
real solutions (β, α) of the first equation in (12) is then �(c) = �−(c) ∪ �+(c), with

�±(c) := {(β, α±
D(c, β)) : β ≥ β(c)}.

This is a smooth curve with leftmost point (β(c), cξ1/2D). Rewriting the second equa-

tion in (12) as |(α, β) − c

2d
ξ |2 = c2

4d2
− f ′(0)

d
, we see that it has solution if and only

if c ≥ cK , where cK := 2
√
d f ′(0) is the invasion speed in the field. In the (β, α) plane,

it represents the circle �(c) of centre C(c) and radius r(c) given by

C(c) = c

2d
(ξ2, ξ1), r(c) =

√

c2 − c2K
2d

.

Let S(c) denote the closed set bounded from below by �−(c) and from above by �+(c)
and let G(c) denote the closed disc with boundary �(c). Exponential functions of the
type (11) are supersolutions of (10) if and only if (β, α) ∈ S(c) ∩ G(c). Since the
centre C(c) belongs to the line s �→ s(ξ2, ξ1) and the closest point of �(c) to the origin,
P(c) := C(c) − r(c)(ξ2, ξ1), satisfies

P ′(c) · (ξ2, ξ1) = 1

2d
− c

d
√

c2 − c2K

< 0, lim
c→+∞ P(c) = 0,

we find that

∀c′ ≥ c ≥ cK , G(c′) ⊃ G(c),
⋃

c≥cK

G(c) = {(β, α) : (β, α) · (ξ2, ξ1) > 0}.

On the other hand, α+
D(c, β) is increasing in c and concave in β, the latter following

from the concavity of cξ2β + χ(dβ).
Therefore, there exists w∗ ≥ cK , depending on ξ , such that

S(c) ∩ G(c) �= ∅ ⇔ c ≥ w∗,

with S(w∗) ∩ G(w∗) consisting in a singleton, denoted by (β∗, α∗), see Figs. 3 and 4.
Moreover,w∗ = cK if and only ifC(cK ) ∈ S(cK ), namely, if and only ifC(cK ) satisfies
the first condition in (12) with = replaced by ≥:

c2K
2d

− Dc2K
4d2

ξ21 ≥ − μcK ξ2

2ν + cK ξ2
.
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(a) c < w∗ (b) c = w∗ (c) c > w∗

Fig. 3. The case w∗ > cK ; supersolutions correspond to the shaded region

(a) c = cK (b) c > cK

Fig. 4. The case w∗ = cK ; supersolutions correspond to the shaded region

Since ξ21 = 1 − ξ22 , this inequality rewrites

2d + D(ξ22 − 1) +
4d2μξ2

2νcK + c2K ξ2
≥ 0.

The function � : [0,+∞) → R defined by

�(s) := 2d + D(s2 − 1) +
4d2μs

2νcK + c2K s
,

is increasing and satisfies �(0) = 2d − D, �(1) > 0. As a consequence, w∗ = cK if
and only if either D ≤ 2d, or D > 2d and ξ2 ≥ �−1(0) ∈ (0, 1). Observe that the sets
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S(c) shrink as D increases and therefore w∗ is a strictly increasing function of D when
w∗ > cK .

We now consider the critical speedw∗ as a function of the angle formed by the vector
ξ and the vertical axis. Namely, forϑ ∈ [−π/2, π/2], we callw∗(ϑ) the quantity defined
above associated with ξ = (sin ϑ, cosϑ). We further let (β∗(ϑ), α∗(ϑ)) denote the first
contact point (β∗, α∗). For ϑ = π/2, the above construction reduces exactly to the one
of [9], thus w∗(π/2) coincides with the value c∗ arising in (2). The function w∗ is even
and continuous, as it is immediate to verify. We know that if D ≤ 2d then w∗ ≡ cK .
Otherwise, if D > 2d, w∗(ϑ) > cK if and only if ϑ > ϑ0, where

ϑ0 := arccos(�−1(0)). (13)

Notice that ϑ0 is a decreasing function of D. We finally define

W := {r(sin ϑ, cosϑ) : −π/2 ≤ ϑ ≤ π/2, 0 ≤ r ≤ w∗(ϑ)}.
The object of Sects. 4 and 5 is to show that W is the asymptotic expansion set for (1).

4. Compactly Supported Subsolutions

This section is dedicated to the construction, for all ϑ ∈ (−π/2, π/2), of compactly
supported subsolutions moving in the direction ξ = (sin ϑ, cosϑ) with speed less than,
but arbitrarily close to, w∗(ϑ). We derive the following

Lemma 4.1. For all ϑ ∈ (−π/2, π/2) and ε > 0, there exist c > w∗(ϑ) − ε and a
pair (u, v) of nonnegative functions with the following properties: u

∣
∣
t=0 and v

∣
∣
t=0 are

compactly supported,

∃(x̂, ŷ) ∈ �, ∀t ≥ 0, v(x̂ + ct sin ϑ, ŷ + ct cosϑ, t) = v(x̂, ŷ, 0) > 0, (14)

and κ(u, v) is a generalised subsolution of (1) for all κ ∈ (0, 1].
By symmetry, it is sufficient to prove the lemma for ϑ ≥ 0. The case ϑ = π/2 was

treated in [9]. If ϑ ∈ [0, ϑ0] then w∗(ϑ) = cK and the construction is standard, as we
will see in Sect. 4.2. In Sect. 4.3 we treat the remaining cases by exploiting the analysis
of planar waves performed in the previous section. We will proceed as follows:

1. We first give a definition of generalised subsolutions adapted to our context.
2. For c ∈ (0, w∗(ϑ)) close enough to w∗(ϑ), we apply Rouché’s theorem to prove

the existence of a complex exponential solution (U, V ) of the linearised system,
which moves in the direction ξ = (sin ϑ, cosϑ) with speed c. We actually work on
a perturbed system in order to get strict subsolutions of the nonlinear one.

3. The connected components of the positivity set of u := ReU are bounded intervals
and those of v := Re V are infinite strips. In order to truncate those strips, we
consider the reflection vL of v with respect to the line (x, y) ·ξ⊥ = L > 0. We then
define the pair (u, v) by setting (u, v) = (u, v − vL) in a connected component of
the positivity sets of u and v − vL , (0, 0) outside.

4. The function v is automatically a generalised subsolution of the equation in the
field. We show that, choosing L large enough, (u, v) is a generalised subsolution
of the equations on the road too.
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4.1. Sub/supersolutions. In the sequel, we will need to compare the solution of the
Cauchy problem with a pair (u, v) which is a subsolution inside some regions, vanishes
on their boundaries, and is truncated to 0 outside. In the case of a single equation,
such type of functions are generalised subsolutions, in the sense that they satisfy the
comparison principlewith supersolutions. This kind of properties has the flavour of those
presented in [7]. In the case of a system, this property may not hold because, roughly
speaking, one could truncate one component in a region where it is needed for the others
to be subsolutions. This is why we need a different notion of generalised subsolution.

We consider pairs (u, v) such that u is the maximum of subsolutions of the first
equation in (1) with v = v, while v is the maximum of subsolutions of the second
equation and of the last equation with u = u. More precisely:

Definition 4.2. A pair (u, v) is a generalised subsolution of (1) if u, v are continuous
and satisfy the following properties:

(i) for any x ∈ R, t > 0, there is a function u such that u ≤ u in a neighbourhood of
(x, t) and, at (x, t) (in the classical sense),

u = u, ∂t u − D∂xxu + μu ≤ νv
∣
∣
y=0 ;

(ii) for any (x, y) ∈ �, t > 0, there is a function v such that v ≤ v in a neighbourhood
of (x, y, t) and, at (x, y, t),

v = v, ∂tv − d�v ≤ f (v) if y > 0, −d∂yv + νv ≤ μu if y = 0.

Although this will not be needed in the paper, we may define generalised supersolu-
tions in analogous way, by replacing “≤” with “≥” everywhere in Definition 4.2. This
notion is stronger than that of viscosity solution (see, e.g., [11]). Nevertheless, it recov-
ers: (i) classical subsolutions, (ii) maxima of classical subsolutions and (iii) generalised
subsolutions in the sense of [9]. From now on, generalised sub and supersolutions are
understood in the sense of Definition 4.2. The comparison principle reads:

Proposition 4.3. Let (u, v) and (u, v) be respectively a generalised subsolution bounded
from above and a generalised supersolution bounded from below of (1) such that (u, v)

is below (u, v) at time t = 0. Then (u, v) is below (u, v) for all t > 0.

The proof is similar to the one of Proposition 3.3 in [9], even if the notion of sub
and supersolution is slightly more general here. It is included here in Appendix 7 for the
sake of completeness.

4.2. The case ϑ ≤ ϑ0. Let λ(R) and ϕ be the principal eigenvalue and eigenfunction of
the operator −d� − c(sin ϑ, cosϑ) · ∇ in the two dimensional ball BR , with Dirichlet
boundary condition. This operator can be reduced to a self-adjoint one by multiplying
the functions times e(sin ϑ,cosϑ)·(x,y)c/2d . One then finds that (λ(R) − c2/4d)/d is equal
to the principal eigenvalue of −� in BR . Whence, for 0 < c < w∗(ϑ) = cK ,

lim
R→∞ λ(R) = c2

4d
< f ′(0).

There is then R > 0 such that f (s) ≥ λ(R)s for s > 0 small enough, and therefore we
can normalise the principal eigenfunction ϕ in such a way that

∀κ ∈ [0, 1], −d�(κϕ) − c(sin ϑ, cosϑ) · ∇(κϕ) ≤ f (κϕ) in BR .
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It follows that the pair (u, v) defined by u ≡ 0,

v(x, y, t)=
{

ϕ(x − ct sin ϑ, y−R−ct cosϑ) if (x, y − R)−ct (sin ϑ, cosϑ) ∈ BR

0 otherwise

satisfies the properties stated in Lemma 4.1.

4.3. The case ϑ > ϑ0. Suppose now that D > 2d and consider ϑ ∈ (ϑ0, π/2). Call

ξ := (sin ϑ, cosϑ), ξ⊥ := (− cosϑ, sin ϑ),

and, to ease notation, w∗ = w∗(ϑ), α∗ = α∗(ϑ), β∗ = β∗(ϑ).

4.3.1. Complex exponential solutions for the penalised system. We start with the fol-
lowing

Lemma 4.4. For c ∈ (0, w∗) close enough to w∗, problem (10) admits an exponential
solution (U, V ) of the type (11) with α, β, γ ∈ C\R satisfying

Re α,Re β > 0, 0 <
Im α

Im β
<

Re α

Re β
<

ξ1

ξ2
. (15)

Proof. For c < w∗, problem (10) does not admit exponential solutions of the type (11),
with α, β, γ ∈ R. However, if w∗ − c is small enough, applying the Rouché theorem to
the distance between � and � as a function of β, one obtains an exponential solution
(U, V ) with α, β, γ ∈ C, depending on c, and satisfying

α = αr + iαi , β = βr + iβi , γ = μ

ν + dβ
,

βr = β∗ + O(w∗ − c), 0 �= βi = O(
√

w∗ − c).

See the proof of Lemma 6.1 in [9] for the details.Writing separately the real and complex
terms of the second equation of the system (12) satisfied by α, β, we get

{
cξ · (αr , βr ) − d(α2

r − α2
i + β2

r − β2
i ) = f ′(0)

cξ · (αi , βi ) − 2d(αrαi + βrβi ) = 0.
(16)

The first equation of (16) yields

cξ1αr − d(α2
r − α2

i ) = f ′(0) − [cξ2β∗ − dβ2∗] + o(1)

= cξ1α∗ − dα2∗ + o(1), as c → w∗.

It follows that

lim inf
c→w−∗

(αr − c

2d
ξ1)

2 ≥ lim inf
c→w−∗

(α∗ − c

2d
ξ1)

2.

In particular, αr stays away from c
2d ξ1 as c → w−∗ . Rewriting the second equation

of (16) as ( c
2d ξ1 − αr )αi = (βr − c

2d ξ2)βi , we then infer that αi = O(
√

w∗ − c). Then,
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Fig. 5. Relations between the slopes of ξ , (αr , βr ) and (αi , βi )

since Im γ = O(
√

w∗ − c) too, considering the real part of (12), we eventually find that
αr = α∗ + o(1) as c → w−∗ .

We use again the second equation of (16) to derive

lim
c→w−∗

αi

βi
= lim

c→w−∗

βr − c
2d ξ2

c
2d ξ1 − αr

= β∗ − c
2d ξ2

c
2d ξ1 − α∗

.

The latter represents the slope of the tangent line to G(w∗) at the point (β∗, α∗). From
the convexity of S(w∗) we know that this line intersects the α-axis at some α > cξ1/D.
It follows in particular that its slope is smaller than the one of the line through (0, 0) and
(β∗, α∗). This, in turn, is less than the slope of the line through (0, 0) and the centre of
G(w∗), which is parallel to (ξ2, ξ1), see Fig. 5a. We deduce that

0 < lim
c→w−∗

αi

βi
<

α∗
β∗

= lim
c→w−∗

αr

βr
<

ξ1

ξ2
.

This concludes the proof.

Consider now the penalised system
⎧
⎪⎨

⎪⎩

∂t u − D∂xxu = νv|y=0 − μu − ε(u + v) x ∈ R, t > 0
∂tv − d�v = ( f ′(0) − ε)v (x, y) ∈ �, t > 0
−d∂yv|y=0 = μu − νv|y=0 − ε(u + v) x ∈ R, t > 0.

(17)

A small perturbation ε does not affect the qualitative results of Sect. 31 nor that of Lemma
4.4. Thus, for ε small enough, there existswε∗ such that (17) admits exponential solutions
in the form (11) with α, β, γ ∈ R for c ≥ wε∗, and with α, β, γ ∈ C\R satisfying (15)
for c < wε∗ close enough to wε∗. Moreover, wε∗ → w∗ as ε → 0. We are interested in
the complex ones. Until the end of Sect. 4, (U, V ) will denote an exponential solution
of (17), with ε > 0 sufficiently small, α, β, γ ∈ C\R satisfying (15) and c < wε∗ close

1 The curves �, � are replaced by some curves converging locally uniformly to �,� as ε → 0, together
with their derivatives.
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to wε∗. Changing the sign to the imaginary part of bothU and V we still have a solution.
Hence, by (15), it is not restrictive to assume that Im α, Im β > 0.

We set for short αr := Re α, αi := Im α, βr := Re β, βi := Im β. Since γ −1 =
(ν + ε + dβ)/(μ − ε) by the last equation of (17), it follows that Arg (γ −1) ∈ (0, π/2).
Resuming, we have:

αr , αi , βr , βi > 0,
αi

βi
<

αr

βr
<

ξ1

ξ2
, Arg (γ −1) ∈ (0, π/2). (18)

4.3.2. Truncating the exponential solution and the equation in the field. The pair (u, v)

defined by

u := ReU = e−(αr ,βr )·[(x,0)−ctξ ] cos((αi , βi ) · [(x, 0) − ctξ ]),
v := Re V = |γ |e−(αr ,βr )·[(x,y)−ctξ ] cos((αi , βi ) · [(x, y) − ctξ ] − Arg γ ),

is a real solution of (17). Consider the following connected components of the positivity
sets of u, v at time 0:

U =
(

− π

2αi
,

π

2αi

)

,

V := {(x, y) ∈ R
2 : (αi , βi ) · (x, y) ∈ (−π

2
+ Arg γ,

π

2
+ Arg γ )}.

As the time t increases, these connected components are shifted, becoming

Ut := U + ct{ξ1 + βi

αi
ξ2}, Vt := V + ct{ξ}.

In order to truncate the sets Vt we consider the reflection with respect to the line (x, y) ·
ξ⊥ = L , with L > 0, where, we recall, ξ⊥ := (− cosϑ, sin ϑ). Namely

RL(x, y) = (x, y) + 2(L − (x, y) · ξ⊥)ξ⊥.

We then define

V L(x, y, t) := V (RL(x, y), t), vL := Re V L .

The function v − vL vanishes on (x, y) · ξ⊥ = L and satisfies the second equation
of (17). The quotient |V L |/|V | satisfies

|V L |
|V | = e−(αr ,βr )·[RL (x,y)−ctξ ]

e−(αr ,βr )·[(x,y)−ctξ ] = e−2(αr ,βr )·ξ⊥(L−(x,y)·ξ⊥).

Let us call σ := (αr , βr ) · ξ⊥. It follows from (18) that σ > 0. Hence,

|V L |
|V | ≤ 1 if (x, y) · ξ⊥ ≤ L ,

|V L |
|V | ≤ e−σ L if (x, y) · ξ⊥ ≤ L

2
. (19)

We deduce that, when restricted to the half-plane {(x, y) · ξ⊥ ≤ L/2}, a connected
component of the set where (v − vL) is positive at time t , denoted by VL

t , converges in
Hausdorff distance to Vt as L → ∞, uniformly in t ≥ 0. We can now define

u(x, t) :=
{
u(x, t) if x ∈ Ut

0 otherwise,
v(x, y, t) :=

{
(v − vL)(x, y, t) if (x, y) ∈ VL

t

0 otherwise.
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We claim that v is bounded. The set VL
t satisfies

VL
t ⊂ {(x, y) · ξ⊥ ≤ L} ∩ {−π + Arg γ ≤ (αi , βi ) · [(x, y) − ctξ ] ≤ π + Arg γ },

as it is seen by noticing that v = −|V | on the boundary of the latter set and |vL | ≤ |V |
if (x, y) · ξ⊥ ≤ L . Thus

v≤2|γ | sup
(x,y)·ξ⊥≤L

[(x,y)−ctξ ]·(αi ,βi )≥−π+Arg γ

e−(αr ,βr )·[(x,y)−ctξ ] =2|γ | sup
(x,y)·ξ⊥≤L

(x,y)·(αi ,βi )≥−π+Arg γ

e−(αr ,βr )·(x,y).

It follows from geometrical considerations that the latter supremum is finite, see Fig. 5b.
Analytically, one sees that it is finite if and only if

{(x, y) · (−ξ⊥) ≥ 0} ∩ {(x, y) · (αi , βi ) ≥ 0} ⊂ {(x, y) · (αr , βr ) ≥ 0},
which is equivalent to require that (αr , βr ) = λ1(−ξ⊥) + λ2(αi , βi ) with λ1, λ2 ≥ 0.
This property holds true by (18). We therefore have that (u, v) is bounded. Furthermore,
v is a generalized subsolution of the second equation of (17). Since f (s) ≥ ( f ′(0)−ε)s
for s > 0 small enough, we can renormalise (u, v) in such a way that κv is a generalized
subsolution of the second equation of (1) too, for all κ ∈ [0, 1]. Next, like v, vL satisfies
vL((x, y)+ctξ, t) = vL(x, y, 0) and thus (14) holds. It only remains to show that (u, v)

is a generalized subsolution of the equations on the road in the sense of Definition 4.2.

4.3.3. The equations on the road. Let us write

Ut = (a−(t), a+(t)), Vt ∩ {y = 0} = (b−(t), b+(t)) × {0}.
Since Arg (γ −1) ∈ (0, π/2) by (18), we deduce that

b−(t) = a−(t) − Arg (γ −1)

αi
< a−(t) < b−(t) +

π

αi
= b+(t)

= a+(t) − Arg (γ −1)

αi
< a+(t).

We further see that

u(b±(t) + x, t)

|U (b±(t) + x, t)| = ± sin(−αi x + Arg (γ −1)). (20)

v(b±(t) + x, 0, t)

|V (b±(t) + x, 0, t)| = ∓ sin(αi x). (21)

For t ≥ 0 and (x, 0) ∈ Vt we see that

x > b−(t) = 1

αi
(−π

2
+ Arg γ + ct (αi , βi ) · ξ) ≥ 1

αi
(−π

2
+ Arg γ ),

whence

(x, 0) · ξ⊥ = −ξ2x <
ξ2

αi
(
π

2
− Arg γ ).

It follows that Vt ∩ {y = 0} is contained in {(x, y) · ξ⊥ ≤ L/4} for L large enough
and t ≥ 0. Thus, the sets VL

t ∩ {y = 0} approach (b−(t), b+(t)) × {0} as L → +∞,
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uniformly with respect to t ≥ 0. We consider separately the two equations on the road.
Below, the time t ≥ 0 is fixed and the expressions depending on the y-variable are
always understood at y = 0.

The third equation of (1).
The condition involving the third equation of (1) in Definition 4.2 is trivially satisfied if
v = 0. Otherwise, if v > 0, then (x, 0) ∈ VL

t and there holds

−d∂yv + νv ≤ μu − ε(u + v) + h|V L |,
for some h > 0 only depending on α, β, ξ⊥. For L large enough, VL

t ∩ {y = 0} is
contained in {(x, y) · ξ⊥ ≤ L/2} and then (19) yields

− d∂yv + νv ≤ μu − ε(u + v) + h|V |e−σ L . (22)

By (20), there exists k, δ0 > 0 only depending on αi and Arg (γ −1) such that, for
δ ∈ (0, δ0),

u(x, t)

|U (x, t)| < −k if |x − b−(t)| < δ,
u(x, t)

|U (x, t)| > k if |x − b+(t)| < δ. (23)

Our aim is to show that, for δ small and L large enough independent of t , (u, v) is a
generalised subsolution of the last equation of (1) for x ∈ [b−(t) − δ, b+(t) + δ]. Thus,
up to increasing L in such a way that VL

t ∩ {y = 0} ⊂ (b−(t) − δ, b+(t) + δ) × {0} for
all t ≥ 0, it is a generalised subsolution of that equation everywhere.

We first focus on a neighbourhood of b+, where u = u. From (22), using (21), (23)
and recalling that |V | = |γ ||U |, we obtain, for |x − b+(t)| < δ,

−d∂yv + νv − μu ≤ −ε(u + v) + h|V |e−σ L

< [−ε(k − |γ |αiδ) + h|γ |e−σ L ]|U |.
Choosing then δ ≤ k/(2|γ |αi ) yields

−d∂yv + νv − μu <

(

−εk

2
+ h|γ |e−σ L

)

|U |.

We eventually infer that, for L large enough independent of t , (u, v) is a generalised
subsolution of the last equation of (1) in the δ neighbourhood of b+(t). Consider now
points such that |x − b−(t)| < δ, where u = 0. By (22) we get

−d∂yv + νv − μu ≤ (μ − ε)u − εv + h|V |e−σ L

< [−(μ − ε)k + ε|γ |αiδ + h|γ |e−σ L ]|U |,
provided that ε < μ. Taking ε < μ/2 we end up with the same inequality as in the case
|x − b+(t)| < δ treated above. It remains the case x ∈ [b−(t) + δ, b+(t) − δ]. There we
have that v ≥ k′|V |, for some k′ > 0 only depending on αi , δ. Consequently, using the
fact that u = max(u, 0), we obtain

−d∂yv + νv ≤ (μ − ε)u − εv + h|V |e−σ L

≤ μu − (εk′ − he−σ L)|V |.
We get again a subsolution for L large enough.
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The second equation of (1).
The non-trivial case is x ∈ Ut = (a−(t), a+(t)), where

∂t u + μu − νv = (ν − ε)v − εu − νv.

If x ∈ [b+(t), a+(t)) then ∂t u+μu−νv ≤ 0, provided that ε ≤ ν. As before, let k, δ0 > 0
be such that (23) holds for δ ∈ (0, δ0). Using (21) and the equality |V | = |γ ||U | we get,
if |x − b+(t)| < δ,

∂t u + μu − νv ≤ (|ν − ε||γ |αiδ − εk
)|U |,

which is negative for δ small, independent of t . Consider the remaining case x ∈
(a−(t), b+(t) − δ]. There, from one hand v ≥ k′|V | with k′ only depending on αi , γ, δ,
from the other, by (19), vL ≤ |V |e−σ L provided that L is large enough in such a way
that −a−(t) cosϑ ≤ L/2. Hence,

∂t u + μu − νv = νvL − εv − εu ≤ (νe−σ L − εk′)|V |.
We eventually infer that, for L large enough independent of t , (u, v) is a generalised
subsolution of the second equation of (1). This concludes the proof of Lemma 4.1.

5. Proof of the Spreading Property

In this section we show that the set W defined in Sect. 3 is indeed the asymptotic
expansion shape of the system (1). This proves Theorem 2.1 part (i). Moreover, by the
definition of the critical angle ϑ0, part (iii) also follows.

We show separately that solutions spread at most and at least with the velocity setW ,
c.f. (3) and (4) respectively. The upper bound (3) follows by comparison with the planar
waves of Sect. 3. The proof of (4) is more involved. It combines the convergence result
close to the road given by [9] with the existence of compactly supported subsolutions
provided by Lemma 4.1. Then one concludes using a standard Liouville-type result for
strictly positive solutions.

Throughout this section, (u, v) denotes a solution of (1) with an initial datum
(u0, v0) �≡ (0, 0) compactly supported. As already mentioned in the introduction, the
well-posedness of the Cauchy problem is proved in [9].

5.1. The upper bound.

Proof of (3). We prove (3) showing that, for any ε > 0, there exists T > 0 such that
the following holds:

∀ϑ ∈ [−π/2, π/2], c ≥ w∗(ϑ) + ε, t ≥ T, v(ct sin ϑ, ct cosϑ, t) < ε.

By symmetry, we can restrict ourselves to ϑ ∈ [0, π/2]. Let R > 0 be such that

supp u0 ⊂ [−R, R], supp v0 ⊂ BR .

For ϑ ∈ [−π/2, π/2], let (Uϑ , Vϑ) be the planar wave for the linearised system (10)
defined by (11) with ξ = (sin ϑ, cosϑ), c = w∗(ϑ), α = α∗(ϑ), β = β∗(ϑ) and
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γ = μ/(ν + dβ∗(ϑ)). It is straightforward to check that the functions α∗ and β∗ are
continuous, hence bounded. Since for ϑ ∈ [0, π/2] it holds that
∀(x, y) ∈ BR, Uϑ(x, 0) ≥ e−|R|α∗(ϑ), Vϑ(x, y, 0) ≥ μ

ν + dβ∗(ϑ)
e−|R|(α∗(ϑ),β∗(ϑ)),

there exists κ > 0, independent of ϑ , such that all the κ(Uϑ , Vϑ) are above (u, v) at
time 0. The pairs κ(Uϑ , Vϑ) are still supersolutions of (10), and then of (1) because, by
the KPP hypothesis, f ′(0)κVϑ ≥ f (κVϑ). The comparison principle then yields that,
for ϑ ∈ [0, π/2] and t ≥ 0, κVϑ ≥ v, whence, in particular,

∀c ≥ 0, v(ct sin ϑ, ct cosϑ, t) ≤ κμ

ν + dβ∗(ϑ)
e−(c−w∗(ϑ))t (α∗(ϑ),β∗(ϑ))·(sin ϑ,cosϑ).

Notice now that the functions α∗ and β∗ are strictly positive, excepted at 0 where α∗ = 0,
β∗ �= 0, and at π/2 where α∗ �= 0, β∗ = 0 if D ≤ 2d. It follows that (α∗(ϑ), β∗(ϑ)) ·
(sin ϑ, cosϑ) is positive on [0, π/2], thus it has a positive minimum by continuity. The
result then follows. ��

5.2. The lower bound.

Proof of (4). We first show that v is bounded from below away from 0 in some suitable
expanding sets. This allows us to conclude by means of a standard Liouville-type result
for entire solutions with positive infimum.

Step 1. For ε ∈ (0, cK ) and ϑ ∈ [−π/2, π/2], there exist (x̂, ŷ) ∈ � and an
open set A in the relative topology of � such that

A ⊃ {r(sin ϑ, cosϑ) : 0 ≤ r ≤ w∗(ϑ) − ε}, inf
t≥1

(x,y)∈t A
v(x̂ + x, ŷ + y, t) > 0.

Consider the case ϑ �= ±π/2. Let (u, v) be a generalised subsolution given by Lemma
4.1, with c > w∗(ϑ) − ε > 0, and set

δ := c − w∗(ϑ) + ε

2c
∈ (0, 1/2).

Even if itmeansmultiplying u, v by a small factor κ > 0,we can assume that sup u
∣
∣
t=0 <

ν/μ, sup v
∣
∣
t=0 < 1. We now make use of the spreading result from [9], summarized

here by (2). Recalling that the c∗ there coincides withw∗(π/2), the second limit implies
the existence of τ > 0 such that, for λ ∈ (δ, 1] and |c′| < w∗(π/2)− ε/2, the following
holds true:

∀(x, y) ∈ �, t ≥ τ, v(x + c′λt, y, λt) > v(x, y, 0), u(x + c′λt, λt) > u(x, 0).

Then, by comparison, v(x + c′λt, y, λt + s) ≥ v(x, y, s) for t ≥ τ and s ≥ 0, from
which, taking s = (1 − λ)t and (x, y) = (x̂, ŷ) + c(1 − λ)t (sin ϑ, cosϑ), where (x̂, ŷ)
is such that (14) holds, we get

v(x̂ + [c(1 − λ) sin ϑ + c′λ]t, ŷ + [c(1 − λ) cosϑ]t, t) > v(x̂, ŷ, 0) > 0.

Namely,

inf
t≥τ

(x,y)∈t A
v(x̂ + x, ŷ + y, t) > 0,
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where A is the following set:

A = {(c(1 − λ) sin ϑ + c′λ, c(1 − λ) cosϑ) : δ < λ ≤ 1, |c′| < w∗(π/2) − ε/2},
which is open in the relative topology of �. By the choice of δ, restricting to the values
c′ = 0 and 2δ ≤ λ ≤ 1 in the expression of A we recover the segment {r(sin ϑ, cosϑ) :
0 ≤ r ≤ w∗(ϑ) − ε}. While, restricting to λ = 1 and |c′| ≤ w∗(π/2) − ε, we obtain
[−w∗(π/2)+ε,w∗(π/2)−ε]×{0}, which is the sought segment in the case ϑ = ±π/2.

The proof of the step 1 is thereby complete, because the minimum of v on compact
subsets of � × [1, τ ] is positive by the strong comparison principle with (0, 0).

Step 2. Conclusion.
Fix ε ∈ (0, cK ). Let ((xn, yn))n∈N be a sequence in � and (tn)n∈N a sequence in R+

such that

lim
n→∞ tn = +∞, ∀n ∈ N, dist

(
1

tn
(xn, yn),�\W

)

> ε.

By the boundedness of v it follows that (v(xn, yn, tn))n∈N converges up to subsequences.
In order to prove (4) we need to show that the limits of all converging subsequences are
equal to 1. Let us still call (v(xn, yn, tn))n∈N one of such subsequences and set

m := lim
n→∞ v(xn, yn, tn).

If (yn)n∈N admits a bounded subsequence (ynk )k∈N then, since

ε < dist

(
1

tnk
(xnk , ynk ),�\W

)

≤ dist

(
xnk
tnk

, R\[−w∗(π/2), w∗(π/2)]
)

+
ynk
tnk

,

we derive |xnk | ≤ (w∗(π/2) − ε/2)tnk for k large enough. It then follows from (2)
that m = 1 in this case. Consider now the case where (yn)n∈N diverges. Let us write
1/tn(xn, yn) = rn(sin ϑn, cosϑn), with |ϑn| ≤ π/2 and 0 ≤ rn ≤ w∗(ϑn) − ε, and call
ϑ , r the limit of (a subsequence of) (ϑn)n∈N, (rn)n∈N respectively. The continuity of w∗
yields 0 ≤ r ≤ w∗(ϑ) − ε. Consider the sequence of functions (vn)n∈N defined by

vn(x, y, t) := v(x + xn, y + yn, t + tn).

For n large enough, the vn are defined in any given K ⊂⊂ R
2 × R and, by interior

parabolic estimates (see, e.g., [16]) they are uniformly bounded inC2,δ(K ) andC1,δ(K )

with respect to the space and time variables respectively, for some δ ∈ (0, 1). Hence,
(vn)n∈N converges (up to subsequences) locally uniformly to a solution v∞ of

∂tv∞ − d�v∞ = f (v∞), (x, y) ∈ R
2, t ∈ R. (24)

Moreover, v∞(0, 0, 0) = m. Consider the point (x̂, ŷ) and the set A given by the step
1, associated with ε and ϑ . For (x, y) ∈ R

2 and t ∈ R, we see that

lim
n→∞

1

t + tn
(x + xn − x̂, y + yn − ŷ) = r(sin ϑ, cosϑ) ∈ A.

Thus, for n large enough, since y + yn − ŷ > 0 and A is open in �, we have that
(x + xn − x̂, y + yn − ŷ) ∈ (t + tn)A, whence vn(x, y, t) ≥ h > 0, with h independent
of (x, y, t). It follows that v∞ ≥ h in all R

2 × R. Since f > 0 in (0, 1) and f < 0 in
(1,+∞), it is straightforward to see by comparison with solutions of the ODE z′ = f (z)
in R, that the unique bounded solution of (24) which is bounded from below away from
0 is v∞ ≡ 1. As a consequence, m = v∞(0, 0, 0) = 1, which concludes the proof of
(4). ��
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6. Further Properties of the Function w∗

We now study the function w∗ : [−π/2, π/2] → R+ defined in Section 3. This will
complete the proof of Theorem 2.1 part (ii). Since w∗ is even, we restrict ourselves
to [0, π/2]. If D ≤ 2d then w∗ ≡ cK . Thus, throughout this section, we assume that
D > 2d. We recall that (β∗(ϑ), α∗(ϑ)) is the unique intersection point between the sets
S(w∗(ϑ)) and G(w∗(ϑ)) associated with ξ = (sin ϑ, cosϑ).

We start with the following observation.

Lemma 6.1. The function w∗ satisfies

∀ϑ ∈ [ϑ0, π/2], ϑ̃ ∈ [0, π/2], w∗(ϑ̃) ≤ cos(ϑ − ϕ∗(ϑ))

cos(ϑ̃ − ϕ∗(ϑ))
w∗(ϑ),

where ϕ∗(ϑ) = arctan α∗(ϑ)/β∗(ϑ).

Proof. Take ϑ, ϑ̃ as in the statement of the lemma. The pair (U, V ) defined by (11),
with ξ = (sin ϑ, cosϑ), c = w∗(ϑ), α = α∗(ϑ), β = β∗(ϑ) and γ = μ/(ν + dβ∗(ϑ)),
is a solution of (10). We call

ξ̃ := (sin ϑ̃, cos ϑ̃), c̃ := (α∗(ϑ), β∗(ϑ)) · ξ

(α∗(ϑ), β∗(ϑ)) · ξ̃
w∗(ϑ),

and we rewrite (U, V ) in the following way:

(U (t, x), V (t, x, y)) = (e−(α∗(ϑ),β∗(ϑ))·((x,0)−c̃t ξ̃ ), γ e−(α∗(ϑ),β∗(ϑ))·((x,y)−c̃t ξ̃ )).

Thus, by the definition of w∗(ϑ̃), we derive

w∗(ϑ̃) ≤ c̃ = (α∗(ϑ), β∗(ϑ)) · ξ

(α∗(ϑ), β∗(ϑ)) · ξ̃
w∗(ϑ). (25)

The result then follows. ��
Proposition 6.2. The function w∗ satisfies

w∗ ∈ C1([0, π/2]), w∗ = cK in [0, ϑ0], w′∗ > 0 in (ϑ0, π/2].
Proof. The fact that w∗ = cK in [0, ϑ0] is just what defines ϑ0, see Sect. 3. The
smoothness of w∗ outside the point ϑ0 is an easy consequence of the implicit func-
tion theorem. Lemma 6.1 implies that, for fixed ϑ ∈ (ϑ0, π/2), the smooth function
ϑ̃ �→ cos(ϑ−ϕ∗(ϑ))

cos(ϑ̃−ϕ∗(ϑ))
w∗(ϑ) touches w∗ from above at the point ϑ , whence we derive

∀ϑ ∈ (ϑ0, π/2), w′∗(ϑ) = tan(ϑ − ϕ∗(ϑ))w∗(ϑ).

In particular, w′∗(π/2) = w∗(π/2)β∗(π/2)/α∗(π/2) > 0. For ϑ ∈ (ϑ0, π/2), we
deduce that w′∗(ϑ) > 0 if and only if ϑ > ϕ∗(ϑ), which is equivalent to tan ϑ >

α∗(ϑ)/β∗(ϑ). Calling as usual ξ := (sin ϑ, cosϑ), this inequality reads ξ1/ξ2 >

α∗(ϑ)/β∗(ϑ), which holds true by geometrical considerations, as already seen in the
proof of Lemma 4.4, see Fig. 5 (a). As ϑ → ϑ+

0 , the disc G(w∗(ϑ)) collapses to the point
cK /2d(cosϑ0, sin ϑ0), whencew∗(ϑ) → cK , ϕ∗(ϑ) → ϑ0 and eventuallyw′∗(ϑ) → 0.
This shows that w′∗ is continuous at ϑ0 too. ��
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To conclude the proof of Theorem 2.1 part (ii) it remains to show that W is convex
and that

W � W := conv
(
(BcK ∩ �) ∪ [−c∗, c∗] × {0}),

where, we recall, c∗ = w∗(π/2). Proposition 6.2 implies that ∂W is of classC1, except at
the extremal points (±c∗, 0). The exterior unit normal toW at those points is understood
as the limit of the normals to points of � ∩ ∂W converging to (±c∗, 0).

Proposition 6.3. The set W is strictly convex and, for ϑ ∈ (ϑ0, π/2], its exterior unit
normal at the point w∗(ϑ)(sin ϑ, cosϑ) is parallel to (α∗(ϑ), β∗(ϑ)).

In particular, W � W .

Proof. Fix ϑ ∈ [ϑ0, π/2]. For (x, y) ∈ W ∩{x ≥ 0}, we write (x, y) = r(sin ϑ̃, cos ϑ̃)

for some ϑ̃ ∈ [0, π/2] and 0 ≤ r ≤ w∗(ϑ̃). Using the inequality given by Lemma 6.1
in the form (25), with ξ = (sin ϑ, cosϑ) and ξ̃ := (sin ϑ̃, cos ϑ̃), yields

(α∗(ϑ), β∗(ϑ)) · (x, y) = r(α∗(ϑ), β∗(ϑ)) · ξ̃

≤ w∗(ϑ̃)(α∗(ϑ), β∗(ϑ)) · ξ̃ ≤ w∗(ϑ)(α∗(ϑ), β∗(ϑ)) · ξ,

and equality holds if and only if (x, y) = w∗(ϑ)ξ . This shows thatW ∩ {x ≥ 0} is con-
tained in the half-plane {(α∗(ϑ), β∗(ϑ))·(x, y) < w∗(ϑ)(α∗(ϑ), β∗(ϑ))·(sin ϑ, cosϑ)},
except for the pointw∗(ϑ)(sin ϑ, cosϑ)which belongs to its boundary. Then, clearly, the
same property holds for the wholeW . This shows the convexity ofW and the directions
of the normal vectors.

Let us prove the last statement of the proposition. Proposition 6.2 implies that W
contains BcK ∩ �, whence, being convex, it contains W . We prove that W �≡ W
by showing that the (acute) angle ϕ∗ formed by W with the x-axis is strictly larger
than the one formed by W , which is ϑ1 := arcsin(cK /c∗). We know from the first
part of the proposition that ϕ∗ = arctan(α∗/β∗), where, for short, α∗ := α∗(π/2) and
β∗ := β∗(π/2). Recall that (β∗, α∗) is the tangent point between the sets S(c∗) and
G(c∗) associated with ξ = (1, 0), defined in Sect. 3. It then follows from geometrical
considerations that ϕ∗ > ϑ1, see Fig. 6.

We deduce from Proposition 6.3 and Fig. 3b that, for ϑ ∈ (ϑ0, π/2], the exterior
normal at the point w∗(ϑ)(sin ϑ, cosϑ) is steeper than (sin ϑ, cosϑ).

Let us finally estimate by how muchW is larger than W .

Proposition 6.4. The family of sets (tW)t>0 evolves with normal speed cK in the sector
{(sin ϑ, cosϑ) : |ϑ | ≤ ϑ0} and with normal speed strictly larger than cK in the sectors
{(sin ϑ, cosϑ) : ϑ0 < |ϑ | ≤ π/2}.
Proof. The assertion for the sector {(sin ϑ, cosϑ) : |ϑ | ≤ ϑ0} trivially holds because
W coincides with BcK there. Consider ϑ ∈ (ϑ0, π/2] and set ξ := (sin ϑ, cosϑ). By
Proposition 6.3, the exterior unit normal to W at the point w∗(ϑ)ξ is

n(ϑ) := (α∗(ϑ), β∗(ϑ))

|(α∗(ϑ), β∗(ϑ))| .

Hence, the speed of expansion of the set tW at the point tw∗(ϑ)ξ in the normal direction
n(ϑ) is cn(ϑ) := w∗(ϑ)ξ · n(ϑ). This is precisely the normal speed of the level lines
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Fig. 6. The angles ϕ∗ and ϑ1

of the function V defined by (11) with c = w∗(ϑ), α = α∗(ϑ), β = β∗(ϑ) and
γ = μ/(ν + dβ∗(ϑ)). Indeed, we can rewrite

V (x, y, t) = γ e−|(α∗(ϑ),β∗(ϑ))|[(x,y)·n(ϑ)−cn(ϑ)t].

Plugging the above expression in the second equation of (10) satisfied by V , we get

cn(ϑ) = f ′(0)
|(α∗(ϑ), β∗(ϑ))| + d|(α∗(ϑ), β∗(ϑ))|.

The function R+ � λ �→ f ′(0)/λ + dλ attains its minimum cK at the unique value
λ = √

f ′(0)/d . Thus, to prove the proposition we need to show that |(α∗(ϑ), β∗(ϑ))| �=
√

f ′(0)/d . This follows from the geometrical interpretation of the point P∗ ≡
(β∗(ϑ), α∗(ϑ)), see Fig. 3b: the convexity ofS(c) implies that the angle between the seg-
ments P∗ C(c) and P∗ O , O denoting the origin, is larger than π/2, whence, since these

segments have length
√

c2 − c2K /2d and c/2d respectively, elementary considerations

about the triangle O P∗ C(c) show that |(α∗(ϑ), β∗(ϑ))| < c2K /2d = √
f ′(0)/d .

7. The Case with Transport and Mortality on the Road

We now describe how to modify the arguments used for problem (1) in order to treat the
case of (5). This is done section by section, keeping the same notation.

Section 3.
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We need to consider the values ξ1 ≤ 0 too. The transport and mortality terms affect
(12) through the additional term −qα + ρ in the left-hand side of the first equation. This
results in the new functions

α±
D(c, β) = 1

2D

(

cξ1 − q ±
√

(cξ1 − q)2 + 4D(cξ2β + χ(dβ) + ρ)

)

.

One can readily check that α+
D(c, β) is still increasing in c and concave in β. It further

satisfies the following property, that will be crucial in the sequel: α+
D(c, 0) ≥ 0. We can

therefore define w∗ as before. We have that w∗ = cK if and only if C(cK ) ∈ S(cK ),
which now reads

c2K
2d

− Dc2K
4d2

ξ21 − qcK
2d

ξ1 + ρ ≥ − μcK ξ2

2ν + cK ξ2
.

This inequality can be rewritten in terms of ξ1 as �(ξ1) ≥ 0, with

�(s) := 2 − D

d
s2 − 2q

cK
s +

4dρ

c2K
+

4dμ
√
1 − s2

2νcK + c2K
√
1 − s2

.

Explicit computation shows that all the above terms are concave in s. Hence, since
�(0) > 0 and �(±∞) = −∞, there are two values s− < 0 < s+ such that w∗ = cK
if and only if ξ1 ∈ [s−, s+]. We have that |s±| < 1 if and only if �(±1) < 0, which is
precisely condition (6). Therefore, writingw∗ as a function of the angle ϑ , we derive the
condition for the enhancement of the speed stated in Theorem 2.3, with ϑ± = arcsin s±
if (6) holds, ϑ± = ±π/2 otherwise. For ϑ = ±π/2, we recover the asymptotic speeds
of spreading c±∗ in the directions ±(1, 0) given by Theorem 1.1 of [10].

Section 4.
The only point one has to check is the argument to derive (15) in the proof of Lemma
4.4. That argument is based on the fact that the slope of the tangent line to G(w∗) at
the point (β∗, α∗) is less than α∗/β∗, which, in turn, is less than ξ1/ξ2. This properties
follow exactly as before, from the fact that α+

D is concave in β and it is nonnegative at
β = 0.

Section 5.
The proof of the upper bound (3) works exactly as for Theorem 2.1. In the lower bound
(4), the value 1 is now replaced by the function VS(y). However, since Vs(+∞) = 1, we
can proceed exactly as in Sect. 5.2, by use of the compactly supported subsolutions and
the convergence result close to the road. The latter is now provided by Theorem 1.1 of
[10].

The arguments in Sect. 6 are unaffected by the presence of the additional terms.
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Appendix: The Generalised Comparison Principle

Proof of Proposition 4.3. Following the arguments of the proof of Proposition 3.2 in
[9], we start with reducing (u, v) to a strict supersolution (û, v̂) which is strictly above
(u, v) at time 0 and satisfies

lim|x |→∞ û(x, t) = +∞, lim|(x,y)|→∞ v̂(x, y, t) = +∞, uniformly w.r.t. t ≥ 0. (26)

To do this, we first multiply (u, v) and (u, v) by e−lt , where l is the Lipschitz constant
of f , and we end up with generalised sub and supersolutions2 (still denoted (u, v) and
(u, v)) of the new system

⎧
⎪⎨

⎪⎩

∂t u − D∂xxu + (μ + l)u = νv|y=0 , x ∈ R, t > 0
∂tv − d�v = h(t, v), (x, y) ∈ �, t > 0
−d∂yv|y=0 + νv|y=0 = μu, x ∈ R, t > 0,

(27)

with h(t, v) := e−lt f (velt )− lv. In such a way we gain the nonincreasing monotonicity
in v of the nonlinear term h. Next, we introduce a nonnegative smooth function χ : R →
R satisfying

χ = 0 in [0, 1], lim
r→+∞ χ(r) = +∞, |χ ′′| ≤ δ,

where δ > 0 will be chosen later. Then, for ε > 0, we set

û(x, t) := u(x, t) + ε(χ(|x |) + t + 1),

v̂(x, y, t) := v(x, y, t) +
μ

ν
ε(χ(|x |) + χ(y) + t + 1),

We claim that δ can be chosen small enough, independently of ε, in such away that (û, v̂)

is still a generalised supersolution of (27), in the strict sense for the first two equations.
Take x ∈ R and t > 0. By the definition of generalised supersolution, there exists a
function u satisfying u ≥ u in a neighbourhood of (x, t) and, at (x, t),

u = u, ∂t u − D∂xxu + (μ + l)u ≥ νv|y=0 .

The function ũ(x, t) := u(x, t) + ε(χ(|x |) + t + 1) satisfies ũ ≥ û in a neighbourhood
of (x, t) and, at (x, t),

ũ = û, ∂t ũ − D∂xx ũ + (μ + l)ũ ≥ ν v̂
∣
∣
y=0 + ε(1 − Dχ ′′(|x |)).

Then the desired strict inequality holds provided δ < 1/D. For the second equation, we
start from a “test function” v at some (x, y) ∈ �, t > 0 and we see that ṽ(x, y, t) :=
v(x, y, t) + μ

ν
ε(χ(|x |) + χ(y) + t + 1) satisfies, at (x, y, t),

∂t ṽ − d�ṽ ≥ h(t, v) +
μ

ν
ε(1 − 2dδ).

If δ < 1/2d, the right hand side is strictly larger than h(t, v), which, in turn, is larger
than h(t, ṽ) by the monotonicity of h. The case of the third equation is straightforward.
The claim is thereby proved.

2 Formally, but it is straightforward to verify it in the generalised sense of Definition 4.2.



The Shape of Expansion Induced by a Line with Fast Diffusion in Fisher-KPP Equations 231

The pair (û, v̂) is strictly above (u, v) at t = 0. Assume by contradiction that (û, v̂) is
not strictly above (u, v) for all time and call

T := sup{t ≥ 0 : u < û in R × [0, t], v < v̂ in � × [0, t]} ∈ [0,+∞).

It follows that u ≤ û in R × [0, T ], v ≤ v̂ in � × [0, T ]. Moreover, by (26) and the
continuity of the functions we see that T > 0 and either û−u or v̂−v vanish somewhere
at time T . Suppose that (û − u)(x, T ) = 0 for some x ∈ R. We now use the fact that
(u, v) and (û, v̂) are a subsolution and a strict supersolution respectively of (27), in the
generalised sense. There exist u1, u2 such that u1 ≤ u ≤ û ≤ u2 in some cylinder
C := Bδ(x) × (T − δ, T ] and, at (x, T ), u1 = u = û = u2 and

∂t u1 − D∂xxu1 + (μ + l)u1 ≤ νv
∣
∣
y=0 ≤ ν v̂

∣
∣
y=0 < ∂t u2 − D∂xxu2 + (μ + l)u2.

Since (x, T ) is a maximum point for u1 − u2 in C, we have that, there, ∂t u1 = ∂t u2
and ∂xxu1 ≤ ∂xxu2. We then get a contradiction with the above strict inequality. Thus,
minR(û − u)(·, T ) > 0 and there exists (x, y) ∈ � such that (v̂ − v)(x, y, T ) = 0.
Using the other two equations of (27), we find v1, v2 such that v1 ≤ v ≤ v̂ ≤ v2 in a
cylinder C := Bδ(x, y) × (T − δ, T ] and, at (x, y, T ), v1 = v = v̂ = v2 and

∂tv1 − d�v1 ≤ h(T, v1) = h(T, v2) < ∂tv2 − d�v2 if y > 0,

−d∂yv1 + νv1 ≤ μu < μû ≤ −d∂yv2 + νv2 if y = 0.

As before, we get a contradiction with the fact that v1 − v2 has a maximum in C at
(x, y, T ). ��
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