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Abstract: The singular values squared of the random matrix product Y = GrGr−1 · · ·
G1(G0 + A), where each G j is a rectangular standard complex Gaussian matrix while A
is non-random, are shown to be a determinantal point process with the correlation kernel
given by a double contour integral. When all but finitely many eigenvalues of A∗A are
equal to bN , the kernel is shown to admit a well-defined hard edge scaling, in which
case a critical value is established and a phase transition phenomenon is observed. More
specifically, the limiting kernel in the subcritical regime of 0 < b < 1 is independent
of b, and is in fact the same as that known for the case b = 0 due to Kuijlaars and
Zhang. The critical regime of b = 1 allows for a double scaling limit by choosing b =
(1− τ/

√
N )−1, and for this the critical kernel and outlier phenomenon are established.

In the simplest case r = 0, which is closely related to non-intersecting squared Bessel
paths, a distribution corresponding to the finite shifted mean LUE is proven to be the
scaling limit in the supercritical regime of b > 1 with two distinct scaling rates. Similar
results also hold true for the random matrix product Tr Tr−1 · · · T1(G0 + A), with each
Tj being a truncated unitary matrix.

1. Introduction and Main Results

1.1. Introduction. The squared singular values of amatrix X are equal to the eigenvalues
of the positive semi-definite Hermitian matrix X∗X , where X∗ denotes the Hermitian
conjugate of X . An ensemble of random matrices of the form X∗X may then contain
x = 0 as the left boundary of support of the eigenvalues. Since the eigenvalue density
is strictly zero for x < 0, x = 0 is then called a hard edge (see e.g. [27, Ch. 7]). As an
explicit example, consider the ensemble of n×N (n ≥ N ) rectangular standard complex
Gaussian random matrices, namely the joint density of elements being proportional
to exp{−tr(X∗X)}, and let X be a matrix from this ensemble. Let {λ j } denote the
eigenvalues of the scaled positive semi-definite matrix N−1X∗X . In the limit N → ∞
with n − N fixed, the density of {λ j } has support [0, 4]. That the support is a finite
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interval gives rise to this particular scaling being referred to as global scaling, and the
corresponding density as the global density. The explicit functional form of the global
density is given by the so-called Marchenko–Pastur law (see e.g. [54])

ρMP
(1) (λ) = 1

2π

√
4 − λ

λ
, 0 < λ ≤ 4. (1.1)

Note in particular the reciprocal square root singularity as the hard edge λ = 0 is
approached from above, in contrast to the square root singularity as λ → 4−. The point
λ = 4 is an example of what is termed a soft edge, since for finite N the eigenvalue
density is not strictly zero for λ > 4.

Continuingwith this example, for large N the eigenvalues in the neighbourhood of the
hard edge have spacingO(1) upon the introduction of the scaled variables X j = 4N 2λ j
( j = 1, . . . , N ) (see e.g. [27, Sect. 7.2.1]). This will be referred to as hard edge scaling.
Moreover, in the limit N → ∞, and with ν0 = n − N , the limiting state—referred to as
the hard edge state—is an example of a determinantal point process, meaning that the
k-point correlation function can be written in the form

ρ(k)(X1, . . . , Xk) = det[K h(X j , Xl)] j,l=1,...,k (1.2)

with correlation kernel (see e.g. [27, Exercises 7.2 q.1])

K h(x, y) = 1

4

∫ 1

0
Jν0(

√
xt)Jν0(

√
yt) dt, (1.3)

where Jν0(x) is the Bessel function of the first kind of order ν0.
Our interest in this paper is in the functional form and analytic properties of the

correlation kernel for the hard edge scaling of the squared singular values of the product
of independent random matrices

Y = GrGr−1 · · ·G1(G0 + A), (1.4)

where each G j is an (N + ν j ) × (N + ν j−1) standard complex Gaussian matrix (also
referred to as the complex Ginibre matrices since such non-Hermitian random ma-
trices in the square case were first studied by Ginibre [34]) with ν−1 = 0 and integers
ν0, . . . , νr ≥ 0,while A is of size (N+ν0)×N andfixed. Ifwe focus on the singular values
of Y , the definition (1.4) can equivalently be written as a product of independent square
matrices G j now with each being distributed according to the joint density of elements
proportional to detν j (G∗

j G j ) exp{−tr(G∗
j G j )}; see e.g. [3,45]. In this case the restric-

tion on the parameters can be relaxed to ν0, ν1, . . . , νr > −1, and the main results in the
present paper (for instance, Proposition1.1,Theorems1.2, 1.3, 3.1 and3.2) also hold true.

In the case that all entries of A are zero, the determinantal representation of the joint
eigenvalue density and the limiting hard edge state have been the subject of a number
of recent works [3,4,29,45,46,57]. For r nonzero, the product (1.4) is the simplest
nontrivial example of the more general product (Gr + Ar ) · · · (G1 + A1)(G0 + A0),
where each G j is random and each A j is fixed. However for the latter product with
r ≥ 1, it is not known how to find a closed form of the joint eigenvalue density, which is
the starting point of our study (see Proposition 1.1 below), let alone to study asymptotic
statistical properties.

The study of products of random matrices goes back to the pioneering work of
Furstenberg and Kesten [33] in the context of dynamical systems and their Lyapunov
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exponents. Later, applications were found in Schrödinger operator theory [17], in sta-
tistical physics relating to disordered and chaotic dynamical systems [20], in wireless
communication networks [59] and in combinatorics [56]. Further motivations from theo-
retical physics include theDMPKequation inmesoscopic quantum transport [11,25,51],
fluid turbulence [26, eqn. (16)] and time evolution models [50, eqn. (1)] (the last two
models can be immediately recognized after discrete integration in time).

Products of complex Ginibre matrices, and of truncations of Haar distributed ran-
dom unitary matrices, have attracted much attention as examples of determinatal point
processes with kernels possessing special integrability properties. The first advance in
this direction was by Akemann and coworkers [3,4], who derived the joint eigenvalue
density and corresponding correlation kernel in terms of biorthogonal functions for the
product of complexGinibrematrices; a double integral formula for the correlation kernel
was subsequently obtained by Kuijlaars and Zhang, cf. [46, Prop. 5.1]. These advances
have opened up the possibility to study local statistical properties, see [29,40,45,46] for
the hard edge limit and [48] for bulk and soft edge limits. All these studies form part of
a fast paced and very recent literature relating to the integrability and exactly solvable
properties of randommatrix products. Works relating to this theme which have appeared
on the electronic preprint archive over the past few months (as of July 2015) include
[19,32,35,39–41,48,61]; we refer the reader to [2] for a recent survey article. Here we
contribute to this line of research by undertaking a comprehensive study of the hard edge
state formed by the singular values of (1.4).

The first point to note is that the hard edge state in the case A = 0 depends on r , and
thus is no longer described by the correlation kernel (1.3). This fact can be anticipated by
an analysis of the global density of the squared singular values [5,31,53,56]. The global
density, which refers to the limiting density of eigenvalues of N−r−1Y ∗Y as N → ∞,
is found to exhibit the hard edge singularity (see [56] or [31, eqn (2.16)])

1

π
sin

π

r + 2
λ−1+ 1

r+2 as λ → 0+, (1.5)

which has an r -dependent exponent. In factwith the eigenvalues ofY ∗Y scaled according
to X j = Nx j ( j = 1, . . . , N ), as N → ∞ the hard edge state in the case A = 0 forms
a determinantal point process with limiting correlation kernel

K h,r (x, y) = 1

(2π i)2

∫ −1/2+i∞

−1/2−i∞
du

∮
�

dt
r∏

j=−1

�(ν j + u + 1)

�(ν j + t + 1)

sin πu

sin π t

x t y−u−1

u − t

=
∫ 1

0
G1,0

0,r+2

(
0,−ν0,−ν1, . . . ,−νr

∣∣∣ux)Gr+1,0
0,r+2

(
ν0, ν1, . . . , νr , 0

∣∣∣uy) du,

(1.6)

where Gm,n
p,q denotes the Meijer G-function defined by the contour integral

Gm,n
p,q

(a1, . . . , ap
b1, . . . , bq

∣∣∣z) = 1

2π i

∫
γ

∏m
j=1 �(b j + s)

∏n
j=1 �(1 − a j − s)∏q

j=m+1 �(1 − b j − s)
∏p

j=n+1 �(a j + s)
z−sds,

(1.7)

see [49, Sect. 5.2] for the choice of the contour γ and elementary properties of G-
functions, or [8] for a gentle introduction; it is worth mentioning a particular relation
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between the generalized hypergeometric function pFq and the Meijer G-function (cf.
eqn (14), [49, Sect. 5.2])

pFq
(
a1, . . . , ap; b1, . . . , bq ; z) =

∏q
l=1 �(bl + 1)∏p
l=1 �(al + 1)

G1,p
p,q+1

( 1 − a1, . . . , 1 − ap
0, 1−b1, . . . , 1 − bq

∣∣∣ − z
)
,

(1.8)

which thus gives an alternative way of writing the first Meijer G-function in the final
line of (1.6). These kernels were described in [46] and are named after Meijer G-kernels
in [45]. They also appear in the hard edge scaling for products with inverses of Ginibre
matrices [29], products of truncated unitary matrices [45], Cauchy two matrix mod-
els [12,13,30], and Muttalib–Borodin biorthogonal ensembles [15,52] (cf. [45] for the
relationship between Borodin’s expression and Meijer G-kernels).

As noted in [46, Sect. 5.3], in the case r = 0 the facts that

G1,0
0,2

(
0,−ν

∣∣∣ux) = (ux)−ν/2 Jν(2
√
ux), G1,0

0,2

(
ν, 0

∣∣∣uy) = (uy)ν/2 Jν(2
√
uy),

(1.9)

show

K h,0(x, y) = 4(y/x)ν/2K h(4x, 4y). (1.10)

The factor of (y/x)ν/2 cancels out of the determinant (1.2), while the factors of 4 are
accounted for by this same factor being present in the scaling leading to (1.3); recall the
text leading to this equation.

Consider now (1.4) with

A = √
bN I(N+ν0)×N , (1.11)

where I(N+ν0)×N denotes the (N + ν0) × N rectangular matrix with 1’s on the main
diagonal, and 0’s elsewhere. It was shown recently in [31, Remark 3.4] that there is a
critical value of b = 1 for which as N → ∞ the left hand edge of the support of the
global scaled squared singular values equals 0 for the last time as b increases from 0.
Moreover, it was shown that the singularity of the global density has the leading form

1

π
sin

2π

2r + 3
λ−1+ 2

2r+3 as λ → 0+, (1.12)

which gives rise to a different family of exponents to those in (1.5). We remark that
the fractional part of the exponents, 1/(r + 2) and 1/(r + 3/2) respectively in (1.5) and
(1.12), are the reciprocals of positive integers and half-integers, which given knowledge
of the correlation kernel (1.6) and its analogue in relation to (1.12) to be established
herein (see Eq. (1.24) below), is coincident with them being the simplest in terms of
tractability of the general rational fractional exponents accessible in the Raney family
(see e.g. [31, eqn. (2.16)]), so named due to the sequence formed by the moments of the
global density.

Let A be again given by (1.11), and consider the case r = 0 in (1.4) so that Y =
G0 +

√
bN I(N+ν0)×N . It is well known that the squared singular values allow for an

interpretation as the positions of non-intersecting particles on the half line evolving
according to the squared Bessel process with parameter d = 2(ν0 +1) (see e.g. [37,38]).
In this interpretation the particles all begin at the same point bN , evolve for t = 1 time
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units, and furthermore are conditioned to remain non-intersecting if the process was to
continue to t → ∞. The support of the density of such a process with a delta function
initial condition Nδ(x − a) is, for Nt < a equal at leading order to [−Nt + a, Nt + a]
(this fact is implied by results in [43], for example), so we see that with a = bN and
t = 1, the particles first come in contact with the wall x = 0 as b is decreased to b = 1.
A functional form of the hard edge scaled kernel in the critical case b = 1, generalised
to a double scaling by setting b = (1− τ/

√
N )−1, has recently been obtained in [44]. In

the present paper an alternative functional form to that in [44] is derived; see Eq. (1.25)
below. The kernel (1.25), further specialised to ν0 = −1/2 reads

1

2π2i

( 1

ξη

)1/4 ∫ ∞

0
du

∫
iR

dv
e−τu+ 1

2 u
2+τv+ 1

2 v2

u − v

cos(2
√
uξ)

u1/2
cos(2

√
vη). (1.13)

With ξ and η replaced by squared variables, (1.13) is identified in [44] as the symmetric
Pearcey kernel found in the study [16]. Moreover, our method of derivation of this new
functional form in the case r = 0 works equally as well for the double scaling of the
critical kernel in the general r case, which is our main theme. The resulting explicit
double contour integral expression is given in Theorem 1.2 below.

1.2. Main results. In preparation for the statement of our first key result, let us introduce
two auxiliary functions. The first is defined to be


(u; x) = 1

(2π i)r
1

�(ν0 + 1)

∫
γ1

dw1 · · ·
∫

γr

dwr

r∏
l=1

w
−νl−1
l ewl

× ex/(w1···wr )
0F1

(
ν0 + 1;−ux/(w1 · · · wr )

)
, (1.14)

where γ1, . . . , γr are paths starting and ending at negative infinity and encircling the
origin once in the positive direction, or equivalently (cf. (4.4), Sect. 4 below),


(u; x) = 1

�(ν0 + 1)

1

2π i

∫
γ

dw (−x)−w
1F1

(
w; ν0 + 1; u)

×�(w)

r∏
l=1

1

�(νl + 1 − w)
, (1.15)

with γ encircling all non-positive integers, while the other reads

�(v; y) = 1

2π i

∫ c+i∞

c−i∞
ds y−sφ(v; s)

r∏
l=1

�(νl + s), (1.16)

where c > −min{ν0, ν1, . . . , νr }, and

φ(v; s) = 1

�(ν0 + 1)

∫ ∞

0
dt tν0+s−1e−t

0F1(ν0 + 1;−vt) (1.17)

= �(ν0 + s)

�(ν0 + 1)
1F1(ν0 + s; ν0 + 1;−v). (1.18)

In the case r = 0 (1.14) is to be interpreted as


(u; x) = 1

�(ν0 + 1)
ex 0F1(ν0 + 1;−ux), (1.19)
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and a calculation shows that (1.16) simplifies to read

�(v; y) = 1

�(ν0 + 1)
yν0e−y

0F1(ν0 + 1;−vy). (1.20)

The two auxiliary functions appear in a double contour integral expression for the cor-
relation kernel, which we present next. Its significance is that it provides the starting
point for further asymptotic analysis. The special case r = 0 was previously obtained
by Desrosiers and one of the present authors; see [24, Prop. 5].

Proposition 1.1. Let Y be defined by (1.4), and suppose that all eigenvalues a1, . . . , aN
of A∗A are positive. The joint density of eigenvalues for Y ∗Y can be written in the form

PN (x1, . . . , xN ) = 1

N ! det[KN (xi , x j )]Ni, j=1 (1.21)

with correlation kernel

KN (x, y) = 1

2π i

∫ ∞

0
du

∫
C
dv uν0e−u+v
(u; x)�(v; y) 1

u − v

N∏
l=1

u + al
v + al

, (1.22)

where C is a counterclockwise contour encircling −a1, . . . ,−aN but not u.

Remark 1.1. When some of the parameters al ’s are null, the double integral representa-
tion (1.22) remains valid provided that

∫ ∞
0 du is interpreted as limε→0+

∫ ∞
ε

du, or for
given u > 0 C is chosen such that Re{v} < u with any v ∈ C.

One of the main results in the present paper concerns a double scaling limit near the
critical point, which permits a new family of limiting kernels.

Theorem 1.2 (Critical kernel). With the kernel (1.22), for τ ∈ R let

a1 = · · · = aN = N (1 − τ/
√
N )−1. (1.23)

Then we have

lim
N→∞

1√
N
KN

( ξ√
N

,
η√
N

)

= 1

2π i

∫ ∞

0
du

∫
iR

dv
(u

v

)ν0 e−τu− 1
2 u

2+τv+ 1
2 v2

u − v

× G1,0
0,r+2

(
0,−ν0,−ν1, . . . ,−νr

∣∣∣uξ
)
Gr+1,0

0,r+2

(
ν0, ν1, . . . , νr , 0

∣∣∣vη
)

=: Kh,r (ξ, η; τ), (1.24)

valid uniformly for ξ, η in any compact set of (0,∞) and for τ in any compact set of R.

In the special case r = 0, upon making use of (1.9) we see from (1.24) that

(ξ

η

)ν0/2Kh,0
(
ξ, η; τ

)
= 1

2π i

∫ ∞

0
du

∫
iR

dv
(u

v

)ν0/2 e−τu− 1
2 u

2+τv+ 1
2 v2

u − v

× Jν0(2
√
uξ)Jν0(2

√
vη), (1.25)



Products of Complex Ginibre Matrices with a Source 339

where the integral form on the RHS of the above equation is similar to (1.22) with r = 0
(cf. [24, Prop. 5]). In the study [44, displayed equation below (1.34)], this kernel was
conjectured to be an equivalent functional form to that derived therein in the case r = 0.
Our work thus provides a direct way of deriving (1.25) for the r = 0 critical kernel.
Recently, an understanding of the resulting functional identity has been given in [22,
Remark 2.26].

Theorem 1.2 quantifies the limiting correlation kernel for the situation that ak =
N (1 − τ/

√
N )−1 (k = 1, . . . , N ), which is shown to depend on τ , thus justifying the

term critical kernel. A variation on this setting is to have at most finitely many source
eigenvalues, say a1, . . . , am , go to infinity at a smaller but appropriate scale and others
remain at the same critical value. This gives rise to a multi-parameter deformation of
the critical kernel (1.24).

Theorem 1.3 (Deformed critical kernel). With the kernel (1.22), for a fixed nonnegative
integer m, let

a j = √
Nσ j , j = 1, . . . ,m and ak = N (1 − τ/

√
N )−1, k = m + 1, . . . , N ,

(1.26)

where τ ∈ R and σ1, . . . , σm > 0. Then we have

lim
N→∞

1√
N
KN

( ξ√
N

,
η√
N

)

= 1

2π i

∫ ∞

0
du

∫ −c+i∞

−c−i∞
dv

(u
v

)ν0 e−τu− 1
2 u

2+τv+ 1
2 v2

u − v

×
m∏
j=1

u + σ j

v + σ j
G1,0

0,r+2

(
0,−ν0,−ν1, . . . ,−νr

∣∣∣uξ
)
Gr+1,0

0,r+2

(
ν0, ν1, . . . , νr , 0

∣∣∣vη
)

=: Kh,r
m (ξ, η; τ, σ ), (1.27)

where 0 < c < min{σ1, . . . , σm}.
In the simplest case r = 0, upon making use of (1.9) we see from (1.27) that

(ξ

η

)ν0/2Kh,0
m

(
ξ, η; τ

)
= 1

2π i

∫ ∞

0
du

∫ −c+i∞

−c−i∞
dv

×
(u

v

)ν0/2 e−τu− 1
2 u

2+τv+ 1
2 v2

u − v

×
m∏
j=1

u + σ j

v + σ j
Jν0(2

√
uξ)Jν0(2

√
vη). (1.28)

Even in this special case, the kernel (1.27) appears to be new.
We remark that the inter-relationship between the interpolating kernel (1.27) and crit-

ical kernel (1.24) is similar in form to that between the interpolating Airy kernel andAiry
kernel (see e.g. [1,9]). Furthermore, as the parameter b displayed in Eq. (1.11) increases
from zero, we will establish a phase transition at the hard edge from the Meijer G-kernel
(cf. Theorem 3.1) to the critical and deformed critical kernels (cf. Theorems 1.2 and 1.3),
then to the shifted mean LUE kernel (cf. Theorem 3.2); see Sect. 3 for more details. A
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similar phase transition occurs in another randommatrix product Tr Tr−1 · · · T1(G0 + A),
with each Tj being a truncated unitary matrix; see Sect. 4.

The paper is organized as follows. Section 2 is devoted to the joint eigenvalue proba-
bility density function (PDF) and a double contour integral representation for the corre-
lation kernel of the squared singular values of the product (1.4). The proof of Proposition
1.1 will be given, and the formulas for the average of the ratio of characteristic polyno-
mials and a single (inverse) characteristic polynomial are also derived. In Sect. 3 the hard
edge limits of the kernel in different regimes are evaluated, which include the proofs of
Theorems 1.2 and 1.3. Our methods are used to similarly analyse the product of r trun-
cated unitary matrices and one shifted mean Ginibre matrix in Sect. 4. In Sect. 5 further
discussions on asymptotics for large variables, and some open problems, are presented.

2. Eigenvalue PDF and Double Integral for Correlation Kernel

2.1. Correlation kernels. Consider (1.4) in the case r = 0.Let x1, . . . , xN anda1, . . . , aN
denote the eigenvalues of Y ∗Y and A∗A respectively. It is well known (see e.g. [24,
Prop. 5], [27, Sect. 11.6]) that the eigenvalue PDF of the random matrix Y ∗Y is an
example of a biorthogonal ensemble [15]

QN (x1, . . . , xN ) = 1

ZN
det[ηi (x j )]Ni, j=1 det[ξi (x j )]Ni, j=1, (2.1)

whereηi (x) = xi−1, ξi (x) = xν0e−x
0F1(ν0+1; ai x), and ZN denotes the normalisation.

Our first task is to specify a functional form for the joint eigenvalue PDF of Y ∗Y in the
case of general r . For this purpose use will be made of a recent result due to Kuijlaars
and Stivigny [45].

Proposition 2.1 (Special case of [45, Thm. 2.1]). Let W be an n × n random matrix,
and suppose that the eigenvalue PDF of W ∗W can be written in the form

∏
1≤ j<k≤n

(xk − x j ) det[ fk−1(x j )]nj,k=1 (2.2)

for some { fk−1(x)}k=1,...,n. For ν ≥ 0, let G be an (n + ν) × n standard complex
Gaussian matrix. The squared singular values of GW, or equivalently the eigenvalues
of (GW )∗GW, then have their PDF proportional to

∏
1≤ j<k≤n

(yk − y j ) det[gk−1(y j )]nj,k=1, (2.3)

where

gk(y) =
∫ ∞

0
xνe−x fk

( y

x

) dx

x
, k = 0, . . . , n − 1. (2.4)

Let Y be defined in (1.4) and let a1, . . . , aN denote the eigenvalues of A∗A. Starting
with (2.1), application of Proposition 2.1 r times in succession shows that the joint
eigenvalue PDF of Y ∗Y is equal to

1

ZN
det[ηi (x j )]Ni, j=1 det[ξi (x j )]Ni, j=1, (2.5)
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where ηi (x) = xi−1 and ξ j (x) = �(−a j ; x), while with T = t1 · · · tr

�(v; y) = 1

�(ν0 + 1)

∫ ∞

0
dt1 · · ·

∫ ∞

0
dtr

r∏
i=1

tνi−1
i e−ti (

y

T
)ν0e− y

T 0F1(ν0 + 1;−v
y

T
),

(2.6)

valid for r ≥ 1 (for r = 0 ξ j (x) is defined as below (2.1)). Here �(v; y) is actually the
same as defined in (1.16), for which application of the Mellin transform gives

∫ ∞

0
ys−1�(v; y) dy = φ(v; s)

r∏
l=1

�(νl + s), (2.7)

while use of the inverseMellin transformgives the sought expression.We stress thatwhen
some of the a j ’s in (2.5) coincide L’Hospital’s rule provides the appropriate eigenvalue
density.

The significance of the structure (2.5) is that it provides a systematic way to compute
the corresponding k-point correlation functionρ(k)(x1, . . . , xk), where the normalization
has been chosen such that integrating gives N (N − 1) · · · (N − k + 1), see e.g. [27,
eqn (5.1)] for the definition.

Proposition 2.2 ([15, Prop. 2.2]). With gi, j := ∫ ∞
0 ηi (x)ξ j (x) dx, let [gi, j ]ni, j=1 be

invertible for each n = 1, 2, . . . . Defining ci, j by

([ci, j ]Ni, j=1

)t = ([gi, j ]Ni, j=1

)−1
, (2.8)

and setting

KN (x, y) =
N∑

i, j=1

ci, jηi (x)ξ j (y), (2.9)

we have that the k-point correlation function is given by

ρ(k)(x1, . . . , xk) = det[KN (x j , xl)]kj,l=1. (2.10)

We are now ready to complete the proof of Proposition 1.1.

Proof of Proposition 1.1. Our first task is to compute gi, j := ∫ ∞
0 ηi (x)ξ j (x) dx . For

this purpose, we require the fact (see e.g. [7, eqns. (6.2.15), (6.2.33) and (4.5.2)]) that
with Lν0

n (y) denoting the Laguerre polynomial of degree n, one has the Hankel pair

Lν0
n (y) = ey

n!�(ν0 + 1)

∫ ∞

0
tν0+ne−t

0F1(ν0 + 1;−yt) dt (2.11)

and

tn = n!et
�(ν0 + 1)

∫ ∞

0
yν0Lν0

n (y)e−y
0F1(ν0 + 1;−t y) dy. (2.12)

Combination of (2.7), (1.17) and (2.11) shows that

gi, j = (i − 1)!ea j Lν0
i−1(−a j )

r∏
l=1

�(νl + i). (2.13)
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According to Proposition 2.2, we must now invert the matrix (2.13). With G =
[gi, j ]Ni, j=1, let C = (G−1)t , the entries ci, j of C then satisfy

eak
N∑
i=1

(i − 1)! Lν0
i−1(−ak)

r∏
l=1

�(νl + i) ci, j = δ j,k . (2.14)

Without loss of generality we assume that a1, . . . , aN are pairwise distinct. In this case
the above equations imply

N∑
i=1

(i − 1)! Lν0
i−1(u)

r∏
l=1

�(νl + i) ci, j = e−a j

N∏
l=1,l 	= j

−u − al
a j − al

, (2.15)

as can be verified by noting that both sides are polynomials of degree N − 1 in u which
are equal at N different points since (2.14) is satisfied. Using this implicit formula for
{ci, j }we nowwant to show that (2.9) implies the double contour integral formula (1.22).

Using the integral representation of the reciprocal Gamma function

1

�(z)
= 1

2π i

∫
γ

w−zewdw, (2.16)

we have from (2.9) that

KN (x, y) = 1

(2π i)r

N∑
i, j=1

ξ j (y)
∫

γ1

dw1 · · ·
∫

γr

dwr

r∏
l=1

w
−νl−1
l ewl

× ( x

w1 · · · wr

)i−1
r∏

l=1

�(νl + i) ci, j

= 1

(2π i)r

N∑
j=1

ξ j (y)
∫

γ1

dw1 · · ·
∫

γr

dwr

r∏
l=1

w
−νl−1
l ewl

N∑
i=1

(i − 1)!
r∏

l=1

�(νl + i) ci, j

× 1

�(ν0 + 1)
e

x
w1 ···wr

∫ ∞

0
du uν0Lν0

i−1(u) e−u
0F1

(
ν0 + 1;− ux

w1 · · · wr

)

= 1

(2π i)r

N∑
j=1

ξ j (y)
∫

γ1

dw1 · · ·
∫

γr

dwr

r∏
l=1

w
−νl−1
l ewl e

x
w1 ···wr

× 1

�(ν0 + 1)

∫ ∞

0
du uν0e−u

0F1
(
ν0 + 1;− ux

w1 · · ·wr

)
e−a j

∏
l 	= j

−u − al
a j − al

. (2.17)

Here the formulae (2.12) and (2.15) have been made use of respectively in the second
and third equalities.

Finally, with (2.6) and (1.14) in mind, these facts substituted into (2.17) imply that

KN (x, y) =
∫ ∞

0
du uν0e−u
(u; x)

N∑
j=1

�(−a j ; y) e−a j
∏
l 	= j

−u − al
a j − al

. (2.18)
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We recognise the sum over j as the sum of the residues at {al} of

e−v�(−v; y) 1

−u − v

N∏
l=1

−u − al
v − al

(2.19)

considered as a function of v. Applying the residue theorem and changing v to −v, we
thus arrive at the desired result. 
�
Remark 2.1. The case in which each al = 0 has been analysed previously [3,4,46], but
using different working. Thus instead of computing the inverse matrix (2.8), functions

Pj−1(x) ∈ Span {η1(x), . . . , η j (x)}, Q j−1(x) ∈ Span {ξ1(x), . . . , ξ j (x)},
with the biorthogonality property

∫ ∞
0 Pk(x)Ql(x) dx = δk,l were constructed. In terms

of these functions (2.9) simplifies from a double sum to the single sum

KN (x, y) =
N∑
j=1

Pj−1(x)Q j−1(y). (2.20)

Instead of (1.22) with each al = 0 (which strictly speaking is ill-defined due to the
restriction on the contour C, but can be well understood in a limiting sense, cf. Remark
1.1), this leads to the double integral formula

KN (x, y) = 1

(2π i)2

∫ −1/2+i∞

−1/2−i∞
du

∮
�

dt
r∏

j=−1

�(ν j + u + 1)

�(ν j + t + 1)

× �(t − N + 1)

�(u − N + 1)

xt y−(u+1)

u − t
, (2.21)

where� is a simple closed contour encircling anti-clockwise t = 0, 1, . . . , N−1 but not
u; see [46, Prop. 5.1] for the detailed derivation, where similar integral representations
for both multiple orthogonal functions Pj−1 and Q j−1 are first derived and then the
double integral follows from a particular combination.

Next, we further investigate Proposition 1.1 and establish a corollary under the as-
sumption that all but a fixed number of source parameters are equal to a. Precisely, for
m ≥ 0 let am+1 = · · · = aN = a. More definitions are also needed. For k = 1, 2, 3, . . .
and n = 0, 1, 2, . . ., set

L(k)
n (x; a, a1, . . . , ak−1) =

∫ ∞

0
du uν0e−u
(u; x)(u + a)n

k−1∏
l=1

(u + al), (2.22)

and

L̃(k)
n (x; a, a1, . . . , ak) = 1

2π i

∫
C
dv ev�(v; x)(v + a)−n

k∏
l=1

1

v + al
, (2.23)

where C is a counterclockwise contour encircling −a,−a1, . . . ,−ak but not any point
on the positive real axis.
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Corollary 2.3. Let KN be the kernel (1.22), and for m ≥ 0 let

am+1 = · · · = aN = a. (2.24)

Then we have

KN (x, y) = 1

2π i

∫ ∞

0
du

∫
C
dv uν0e−u+v
(u; x)�(v; y) 1

u − v

(u + a

v + a

)N−m

+
m∑

k=1

L(k)
N−m(x; a, a1, . . . , ak−1) L̃(k)

N−m(x; a, a1, . . . , ak), (2.25)

where C is a counterclockwise contour encircling −a but not u.

Proof. We will use the identity

1

u − v

m∏
l=1

u + al
v + al

= 1

u − v
+

m∑
k=1

∏k−1
l=1 (u + al)∏k
l=1(v + al)

(2.26)

which has been proved by induction in [23, see the equation (5.12) therein]. A direct
proof can be given as follows. Rewriting u − v = u + ak − (v + ak), we have

(u − v)

m∑
k=1

∏k−1
l=1 (u + al)∏k
l=1(v + al)

=
m∑

k=1

k∏
l=1

u + al
v + al

−
m∑

k=1

k−1∏
l=1

u + al
v + al

=
m∏
l=1

u + al
v + al

− 1,

(2.27)

and (2.26) follows.
Recalling (2.24), substituting (2.26) in (1.22), comparing the sought equation with

(2.22) and (2.23) this completes the proof. 
�

2.2. Average of characteristic polynomials. Recall from Eq. (2.1) that a biorthogonal
ensemble [15] refers to the joint density function

QN (x1, . . . , xN ) = 1

ZN
det[ηi (x j )]Ni, j=1 det[ξi (x j )]Ni, j=1, (2.28)

where all variables x1, . . . , xN are assumed to lie in the same interval I ⊆ R for sim-
plicity.

For the special case ηi = xi−1, the average ratio of characteristic polynomials under
the density (2.28) can be expressed in terms of the correlation kernel; thus as a minor
variant of [24, Prop. 1] we have the following.

Proposition 2.4. With the same assumption and notation as in Proposition 2.2, let
η j (x) = x j−1 for j = 1, 2, . . .. Then, for z ∈ C\I

E
[ N∏
l=1

x − xl
z − xl

] =
∫
I
du

x − u

z − u
KN (x, u). (2.29)

Equivalently, if for x ∈ R we define the residue

Resz=x f (z) = lim
ε→0+

1

π
Im f (x − iε), (2.30)
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then

KN (x, y) = 1

x − y
Resz=xE

[ N∏
l=1

x − xl
z − xl

]
. (2.31)

In the case of the average of a single characteristic polynomial or its reciprocal,
alternative expressions are also available; cf. Proposition 2 of [24].

Proposition 2.5. With the same assumption and notation as in Proposition 2.2, let
η j (x) = x j−1 for j = 1, 2, . . .. Then,

E
[ N∏
l=1

1

z − xl

] = N !
ZN

∣∣∣∣∣∣∣∣∣

g1,1 g1,2 . . . g1,N
...

...
. . .

...

gN−1,1 gN−1,2 . . . gN−1,N∫
I du

ξ1(u)
z−u

∫
I du

ξ2(u)
z−u . . .

∫
I du

ξN (u)
z−u

∣∣∣∣∣∣∣∣∣
(2.32)

=
∫
I
du

1

z − u

N∑
j=1

cN , jη j (u), (2.33)

for z ∈ C\I and

E
[ N∏
l=1

(x − xl)
] = N !

ZN

∣∣∣∣∣∣∣∣

g1,1 . . . g1,N η1(x)
g2,1 . . . g2,N η2(x)
...

...
...

...

gN+1,1 . . . gN+1,N ηN+1(x)

∣∣∣∣∣∣∣∣
(2.34)

= 1

c̃N+1,N+1

N+1∑
j=1

c̃ j,N+1x
j−1, (2.35)

where the normalization ZN = N ! det[gi, j ]Ni, j=1, and c̃ j,N+1 is the (N + 1, j) entry of

the inverse of [gi, j ]N+1
i, j=1.

Proof. The formulas (2.32) and (2.34) have been proved in Proposition 2 of [24]. After
noting the facts [gi, j ]N [ci, j ]tN = IN and N !/ZN = det[ci, j ]tN , building on (2.32) simple
manipulation gives (2.33). On the other hand, by [c̃i, j ]tN+1[gi, j ]N+1 = IN+1 and

N !
ZN

= ZN+1

(N + 1)ZN

(N + 1)!
ZN+1

= ZN+1

(N + 1)ZN
det[c̃i, j ]tN+1, (2.36)

we have from (2.34) that

E
[ N∏
l=1

(x − xl)
] = ZN+1

(N + 1)ZN

N+1∑
j=1

c̃ j,N+1x
j−1, (2.37)

which further implies the sought Eq. (2.35) since it is a monic polynomial. 
�
Application of the previous two propositions gives us explicit evaluation of averages

of characteristic polynomials for the product of random matrices (1.4).
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Proposition 2.6. For the eigenvalue PDF (2.5), the following hold true.

(i) Let KN be the kernel (1.22), then for z ∈ C\R,

E
[ N∏
l=1

x − xl
z − xl

] =
∫ ∞

0
du

x − u

z − u
KN (x, u). (2.38)

(ii) Let � be given by (1.16), then for z ∈ C\R,

E
[ N∏
l=1

1

z − xl

] = 1

2π i

(−1)N−1∏r
l=1 �(νl + N )

∫ ∞

0
dt

×
∫
C
dv ev�(v; t) 1

z − t

N∏
l=1

1

v + al
(2.39)

where C is a counterclockwise contour encircling −a1, . . . ,−aN but not any point on
the positive real axis.

(iii) Let 
 be given by (1.14), then

E
[ N∏
l=1

(x − xl)
] = (−1)N

r∏
l=1

�(νl + N + 1)

×
∫ ∞

0
du uν0e−u 
(u; x)

N∏
l=1

(u + al). (2.40)

Proof. It is immediate that Proposition 2.4 implies (i). For (ii), noting that the leading
term of the Laguerre polynomial is

n!Lν0
n (x) = (−x)n + · · · , (2.41)

dividing by (−u)N−1 and taking the limit u → ∞ in (2.15) we see that

cN , j =
r∏

l=1

1

�(νl + N )
e−a j

N∏
l=1,l 	= j

1

a j − al
. (2.42)

Substituting cN , j in (2.33) and noting η j (u) = �(−a j ; u), we obtain (2.39).
For (iii),wefirst introduce an auxiliary variableaN+1 and setηN+1(u) = �(−aN+1; u).

The fact that ([gi, j ]N+1)
t [c̃i, j ]N+1 = IN+1 implies

c̃N+1,N+1 = det[gi, j ]N
det[gi, j ]N+1

=
r∏

l=1

1

�(νl + N + 1)
e−aN+1

N∏
l=1

1

aN+1 − al
. (2.43)

Changing N to N + 1 and using (2.15), as derived in (2.17) we obtain

N+1∑
j=1

c̃ j,N+1x
j−1 =

∫ ∞

0
duuν0e−u 
(u; x)e−aN+1

N∏
l=1

−u − al
aN+1 − al

. (2.44)

Combination of (2.43), (2.44) and (2.35) completes the proof of (iii). 
�
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Again, for the eigenvalue PDF (2.5), let

QN−1(x) = Resz=xE
[ N∏
l=1

1

z − xl

]
, x ∈ (0,∞), (2.45)

then use of Proposition 2.6 (ii) shows

QN−1(x) = 1

2π i

(−1)N−1∏r
l=1 �(νl + N )

∫
C
dv ev�(v; x)

N∏
l=1

1

v + al
; (2.46)

when a1, . . . , aN are pairwise distinct it is a special case of [24, Proposition 2]. Also,
let

PN (x) = E
[ N∏
l=1

(x − xl)
]
, (2.47)

combining Corollary 2.3 wherem is taken to be zero and Proposition 2.6, the correlation
kernel KN given by (1.22) can be expressed as the single sum (2.20) in terms of Pj (x)
and Q j (x). Here, without loss of generality, it is assumed that Pj (x) corresponds to the
multi-parameters a1, . . . , a j while Q j (x) corresponds to a1, . . . , a j+1.

Remark 2.2. In the special case r = 0, use of (1.19) shows that (2.40) reduces to

PN (x) = (−1)Nex

�(ν0 + 1)

∫ ∞

0
uν0e−u

0F1(ν0 + 1;−xu)

N∏
l=1

(u + al) du.

This same expression has been derived using combinatorial means in [28], and as the
solution of a partial differential equation in [14]. Furthermore, in this case QN−1(x) and
PN (x) are so-called multiple functions of type I and II respectively, and (2.20) reduces
to Corollary 7 in [24]; see [24] or [42] for more details, especially when the parameters
a j ’s coalesce into D different values. For the case of a1 = · · · = aN = 0 and general r ,
QN−1(x) and PN (x) are also multiple functions of type I and II associated with r + 1
weights; see [46]. However, in the general case it remains as a challenge to identify a
multiple orthogonal functions structure.

3. Hard Edge Limits

In this section we choose the source A such that all but possibly a fixed number m of
the eigenvalues of A∗A are equal to bN . Three regimes are distinguished: subcritical
regime 0 < b < 1, critical regime b = 1 and supercritical regime b > 1; as to the former
two regimes, see [43] and [44] for a relevant discussion on non-intersecting Bessel paths
which corresponds to the case r = 0. In the present paper we focus on the scaled hard
edge limits in the three regimes and leave the bulk and soft-edge limits to a future work;
for the case a1 = · · · = aN = 0 the latter two limits have been established in [48]. The
critical kernel results from a double scaling limit, and its functional form is our main
result as stated in Sect. 1. As b increases from zero, we will describe a phase transition
from theMeijer G-kernel (1.6) to the critical kernel (cf. Theorem 1.2), then to the shifted
mean LUE kernel (1.22) (cf. Theorem 3.2 for the case r = 0).
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3.1. Limiting kernels. We first suppose that 0 < b < 1. The hard edge scaling in this
parameter range is in fact independent of b, and the hard edge correlation kernel (1.6)
already known for the case b = 0 is reclaimed.

Theorem 3.1 (Subcritical regime). With the kernel (1.22), let

a1 = · · · = aN = bN . (3.1)

Then for 0 < b < 1, we have

lim
N→∞

1

(1 − b)N
KN

( ξ

(1 − b)N
,

η

(1 − b)N

)
= K h,r (ξ, η), (3.2)

where K h,r is given by (1.6), valid uniformly for ξ, η in any compact set of (0,∞).

Proof. Introducing rescaled variables x = ξ/((1 − b)N ), y = η/((1 − b)N ) in (1.22)
and substituting u, v by uN , vN respectively, we obtain

1

(1 − b)N
KN

( ξ

(1 − b)N
,

η

(1 − b)N

)
=

∫ ∞

0
du

∫
C
dv

× 1

2(1 − b)π i

e−N ( f (u)− f (v))

u − v
(Nu)ν0


(
Nu; ξ

(1 − b)N

)
�

(
Nv; η

(1 − b)N

)
,

(3.3)

where

f (z) = z − log(b + z). (3.4)

Although both the functions 
 and � in the integrand of (3.3) depend on N , we will
see that for the large N they do not enter the saddle point equation (e.g., cf. (3.10) and
(3.11) below). So we may perform saddle-point approximations and this is what we will
do next.

Consider now the exponent on the RHS of (3.3). Since

f ′(z) = 1 − 1

b + z
, (3.5)

there is a saddle point z0 = 1 − b. We hereby deform the contour C into the union
of two closed contours C1

⋃ C−
2 such that C1 = {z ∈ C : |z + b| = 1} and C−

2 is a
clockwise contour encircling the segment [0, 1 − b] but not −b (C−

2 and C2 refer to the
same curve except that the former indicates the clockwise direction). For instance, we
can choose C2 as the union of two segments from −0.5b to −b + e±iε respectively and
an arc {z : z = −b+eiθ ,−ε ≤ θ ≤ ε} for some small positive ε. With such a choice, we
divide the integration over C into two parts, and furthermore rewrite the double integral
on the RHS of (3.3) as a sum of two integrals, that is,

1

(1 − b)N
KN

( ξ

(1 − b)N
,

η

(1 − b)N

)
= p.v.

∫ ∞

0
du

∫
C1

dv(·) + p.v.
∫ ∞

0
du

∫
C−
2

dv(·)

:= I1 + I2. (3.6)

Here the notation p.v. denotes the Cauchy principal value integral. It is worth stressing
that, from (3.3), we can put some restrictions on the range of u, v in the above integrals
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such that u 	= 1 − b and v 	= ±i . This is done for the convenience of subsequent
asymptotic analysis only.

As N → ∞, we claim that the leading contribution of the double integral on the
RHS of (3.3) comes from the range of u ∈ (0, 1− b) and v ∈ C2. Actually, for I2, when
u > 1 − b the v-integral vanishes by Cauchy’s theorem since the integrand does not
have any singularities inside C2, while for 0 < u < 1 application of the residue theorem
gives

I2 = 1

1 − b

∫ 1−b

0
du (Nu)ν0


(
Nu; ξ

(1 − b)N

)
�

(
Nu; η

(1 − b)N

)
. (3.7)

Using the asymptotic expansion of the function 1F1 for the large argument (cf. [7,
Theorem 4.2.2 and Corollary 4.2.3]), for large N we have

1F1(ν0 + s; ν0 + 1;−Nv) = �(ν0 + 1)

�(1 − s)
(Nv)−ν0−s(1 +O(

1

N
)
)
, Re v > 0, (3.8)

and

1F1(ν0 + s; ν0 + 1;−Nv) = �(ν0 + 1)

�(ν0 + s)
(−Nv)s−1e−Nv

(
1 +O(

1

N
)
)
, Re v < 0.

(3.9)

Keeping in mind (1.16) and (1.18), by definition of the Meijer G-function (1.7) we have
from (3.8) that

(Nu)ν0�
(
Nu; η

(1 − b)N

) ∼ Gr+1,0
0,r+2

(
ν0, . . . , νr , 0

∣∣∣ uη

1 − b

)
. (3.10)

Here and below we use the notation fN ∼ gN to mean that limN→∞ fN/gN = 1. On
the other hand, consideration of the definition (1.14) shows



(
Nu; ξ

(1 − b)N

) ∼ G1,0
0,r+2

(
0,−ν0, . . . ,−νr

∣∣∣ uξ

1 − b

)
, (3.11)

where use has been made of the identity (cf. Eq. (1.8))

G1,0
0,r+2

(
0,−ν0, . . . ,−νr

∣∣∣z) =
r∏

l=0

1

�(νl + 1)
0Fr+1

(
ν0 + 1, . . . , νr + 1;−z

)
. (3.12)

Combining (3.7), (3.10) and (3.11), and changing variables we get

I2 → K h,r (ξ, η). (3.13)

Next, we deal with the integral I1 and show that it is negligible. In this case because
of different asymptotic forms of 1F1 given in (3.8) and (3.9), we divide I1 into two parts
as

I1 = p.v.
∫ ∞

0
du

∫
C1,+

dv(·) +
∫ ∞

0
du

∫
C1,−

dv(·) := I11 + I12, (3.14)

where C1,+ = C1
⋂{v : Re v > 0} and C1,− = C1

⋂{v : Re v < 0}. Notice that for
0 < b < 1 one can easily check that Re{ f (u)} attains its global minimum at u = 1− b
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over (0,∞), while Re{ f (v)} attains its global maximum at v = 1−b over C1. Therefore,
for I11 combining (1.16), (1.18), (3.8) and (3.11) we have

I11 ∼ p.v.
∫ ∞

0
du

∫
C1,+

dv
1

2(1 − b)π i

e−N ( f (u)− f (v))

u − v

(u
v

)ν0

G1,0
0,r+2

(
0,−ν0, . . . ,−νr

∣∣∣ uξ

1 − b

)
Gr+1,0

0,r+2

(
ν0, . . . , νr , 0

∣∣∣ vη

1 − b

)
. (3.15)

For this, the standard steepest descent argument shows that the main contribution comes
from the neighbourhood of the saddle point z0 = 1 − b, namely,

I11 = O(1/
√
N ). (3.16)

Similarly, for I12 combination of (1.16), (1.18), (3.9) and (3.11) then gives us

I12 ∼
∫ ∞

0
du

∫
C1,−

dv
1

2(1 − b)π i

e−N ( f (u)− f (1−b))

u − v
G1,0

0,r+2

(
0,−ν0, . . . ,−νr

∣∣∣ uξ

1 − b

)

× uν0e−N (log(b+v)+1−b) 1

2π i

∫ c+i∞

c−i∞
ds

( η

1 − b

)−s
(−v)s−1N ν0+2s−1

r∏
l=1

�(νl + s),

(3.17)

for which the integrals of u and v respectively afford us the bounds O(1/
√
N ) and

O(N ν0+2c−1e−(1−b)N ). Together, we obtain the exponential decay estimation

I12 = O(N ν0+2c−3/2e−(1−b)N ). (3.18)

Combining (3.13), (3.16) and (3.18), we arrive at the Eq. (3.2). Furthermore, it is clear
that the previously derived estimates are valid uniformly for ξ, η in any given compact
set of (0,∞). 
�
Remark 3.1. When all the parameters al ’s are null, if we understand the double integral
representation (1.22) as described in Remark 1.1, then the same argument as in the proof
of Theorem 3.1 is also applicable. This gives another derivation of (1.6) different from
that in [46].

We turn to proofs of Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Rescaling variables in (1.22), we have

1√
N
KN

( ξ√
N

,
η√
N

)

=
√
N

2π i

∫ ∞

0
du

∫
C
dv

e−N ( f (u)− f (v))

u − v
(Nu)ν0
(Nu; ξ√

N
)�(Nv; η√

N
), (3.19)

where f (z) = z − log(1 + z/b) with b = (1 − τ/
√
N )−1. If b is equal to the critical

value 1, then the saddle point of f (z) is z0 = 0. This time, for a fixed small number
δ > 0 we choose the contour as

C = {z = −1 + (1 + 2δ)eiθ : θ0 ≤ |θ | ≤ π} ∪ LA−OA+ , (3.20)
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where

θ0 = arccos
1 + δ

1 + 2δ
, A± = −1 + (1 + 2δ)e±iθ0 , (3.21)

and LA−OA+ denotes the union of two line segments from the point A− to the origin to
the point A+. It is clear that A± = (δ,±√

(2 + 3δ)δ), and the intersections of the y-axis
and the contour C are B± = (0,±2

√
(1 + δ)δ). Moreover, the four points come close

to the origin as δ → 0, which permits us to use the Taylor series expansion of f (v) for
any v ∈ C+ defined below (3.22).

First, we divide the integral on the RHS of (3.19) into two parts

1√
N
KN

( ξ√
N

,
η√
N

)
=

∫ ∞

0
du

∫
C−

dv (·) +
∫ ∞

0
du

∫
C+

dv (·) := I− + I+, (3.22)

where C− = {v ∈ C : Re v < 0} and C+ = {v ∈ C : Re v > 0}. We claim that the
dominant contribution to (3.19) comes from the neighbourhoods of u0 = 0 and v0 = 0,
so we need to expand the function f (z) at z0 = 0. With the double scaling in mind, we
obtain the Taylor series

f (z) = τ z√
N

+
1

2
(1 − τ√

N
)2z2 − 1

3
(1 − τ√

N
)3z3 + · · · . (3.23)

Therefore for I+, combining (1.14), (1.16), (1.18) and (3.8), together with the relation
(3.12) and the definition of Meijer G-function (1.7) we see that

I+ ∼
√
N

2π i

∫ ∞

0
du

∫
C+

dv
e−N ( f (u)− f (v))

u − v

(u
v

)ν0

× G1,0
0,r+2

(
0,−ν0, . . . ,−νr

∣∣∣√Nuξ
)
Gr+1,0

0,r+2

(
ν0, . . . , νr , 0

∣∣∣√Nvη
)
. (3.24)

Fix the two endpoints B± of C+ and deform it to the imaginary axis, then after substituting
(3.23) into (3.24) and rescaling u, v by u/

√
N , v/

√
N , we conclude that I+ converges

to the kernel defined by (1.24), uniformly for ξ, η in a compact set of (0,∞) and for τ

in a compact set of R.
Secondly, for the integral I−, combination of (1.14), (1.16), (1.18) and (3.9) yields

I− ∼ 1

2π i

∫ ∞

0
du

∫
C−

dv
e−N f (u)−N log(1+v/b)

u − v
uν0G1,0

0,r+2

(
0,−ν0, . . . ,−νr

∣∣∣√Nuξ
)

× 1

2π i

∫ c+i∞

c−i∞
ds η−s(−v)s−1N ν0+(3s−1)/2

r∏
l=1

�(νl + s). (3.25)

Since for sufficiently large N ,

Re{log(1 + v

b
)} = 1

2
log

(
(1 + 2δ)2 +O(

τ√
N

)
)

> log(1 + δ) (3.26)

holds true uniformly for τ in a compact set of R and for v ∈ C−, use of the steepest
descent argument leads to an exponential decay

I− = O(
N ν0−1+1.5ce−N log(1+δ)

)
. (3.27)

Lastly, by combining the foregoing results for I− and I+, we then complete the
proof. 
�
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Proof of Theorem 1.3. Rescaling variables in (1.22), we have

1√
N
KN

( ξ√
N

,
η√
N

)
= 1

2π i

∫ ∞

0
du

∫
C
dv N ν0+1/2uν0

e−N ( f (u)− f (v))

u − v

×
m∏
j=1

(v + b)(u + σ j/
√
N )

(u + b)(v + σ j/
√
N )


(Nu; ξ√
N

)�(Nv; η√
N

), (3.28)

where f (z) = z − log(1 + z/b) with b = (1 − τ/
√
N )−1.

Proceeding as in the proof of Theorem 1.2, Taylor expanding f (z) at z = 0, and
rescaling u, v by u/

√
N , v/

√
N , we can complete the proof. 
�

We next consider the supercritical case, that is b > 1. For r = 0, the limiting
eigenvalue density has support [L1, L2] with L1 > 0 (thus the left-most end changes
from the hard to the soft edge as b increases beyond unity as already remarked in
the Introduction); see e.g. [43,44]. However, for r > 0 and fixed ν0, ν1, . . . , νr ≥ 0,
considerations from free probability theory suggest that the support will include the
origin for general b. Nonetheless, in the simplest case of r = 0 a particular tuning and
scaling of the supercritical case can be given which, on an appropriate length scale,
effectively separates a bunch of eigenvalues near the origin from the rescaled left-end
support. A similar result is conjectured to be true for the general r > 0.

Theorem 3.2 (Supercritical regime for r = 0). With the kernel (1.22) where r = 0, for
a fixed positive integer m let

a j = σ j b/(b − 1), j = 1, . . . ,m and ak = bN , k = m + 1, . . . , N , (3.29)

where b > 1 and σ1, . . . , σm > 0. Then we have

lim
N→∞ e(1− 1

b )(η−ξ)
(
1 − 1

b

)
KN

((
1 − 1

b

)
ξ,

(
1 − 1

b

)
η
)

= 1

2π i

ην0

(�(ν0 + 1))2

×
∫ ∞

0
du

∫
C
dv 0F1(ν0 + 1;−uξ) 0F1(ν0 + 1;−vη)uν0

e−u+v

u − v

m∏
j=1

u + σ j

v + σ j
, (3.30)

where C is a counterclockwise contour encircling −σ1, . . . ,−σm but not u.

Proof. Set κ = (b − 1)/b. For the large N , we have from (1.22) with r = 0 that

(
1 − 1

b

)
KN

((
1 − 1

b

)
ξ,

(
1 − 1

b

)
η
)

= κ

2π i

∫ ∞

0
du

∫
C
dv uν0

e−u+v

u − v

× 
(u; κξ)�(v; κη)

m∏
j=1

u + σ j/κ

v + σ j/κ

(1 + u/(bN )

1 + v/(bN )

)N−m := I1 + I2, (3.31)

where we have rewritten C = C1 ∪C2 and I j = ∫ ∞
0 du

∫
C j

dv (·). The closed contour C1
encircles −σ1/κ, . . . ,−σm/κ and on its left lies the path C2 encircling −bN , beginning
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at and returning to−∞. Keeping (1.19) and (1.20) in mind, for the choice of the contour
of I2 we have used the asymptotic property of 0F1 (cf. [49, Sect. 5.11.2])

0F1(ν0 + 1; z) = �(ν0 + 1)

2
√

π
(−z)−

1+2ν0
4

×
(
e−2i

√−z(1 +O(
1√
z
)) + e2i

√−z(1 +O(
1√
z
))

)
, |z| → ∞, (3.32)

Again with (1.19) and (1.20) in mind, by taking the limit and changing variables, as
N → ∞ it is less difficult to know that eκ(η−ξ) I1 goes to the desired integral. For the
part I2, by the fact (3.32), taking the limit in the integrand we see that the v-integral over
the closed contour C2 equals zero since the resulting integrand has no pole. The proof is
thus completed. 
�

By comparison with (1.22) in the case r = 0, N = m, {al} = {σl}, substitution of
(1.19) and (1.20) shows that the RHS of (3.30) is equal to eη−ξ Km(ξ, η)|{al }={σl }, which
is equivalent to the kernel for the m ×m Laguerre Unitary Ensemble with a source (see
e.g. [24] or [27, Chapter 11]). For general r ≥ 1, as to the supercritical case of b > 1
the following similar result is expected to be true

lim
N→∞

(
1 − 1

b

)
KN

((
1 − 1

b

)
ξ,

(
1 − 1

b

)
η
)

= 1

2π i

∫ ∞

0
du

∫
C
dv

(u
κ

)ν0 e
−u+v

u − v

× 
(u/κ; κξ)�(v/κ; κη)

m∏
j=1

u + σ j

v + σ j
=: K̃h,r

m (ξ, η; κ; σ), (3.33)

where κ = (b − 1)/b, 
,� are given by (1.14), (1.16), and C is a counterclockwise
contour encircling −σ1, . . . ,−σm but not u. To prove it, if we might control the behav-
ior of e−κu
(u; κξ) and eκv�(v; κη) (for instance, we can try to derive an estimate
eκv�(v; κη) = O(v−2) as v → −∞ which should further be expected to vanish sub-
exponentially), then I2 → 0 and I1 goes to the desired integral as in the proof of Theorem
3.2. But such an estimate is yet to be found. Furthermore, we expect the correlations im-
plied by (3.33) to be the same as those for Km(ξ, η)|{al }={σl } after beingmultiplied by the
factor g(κ; η)/g(κ; ξ) for some properly chosen function g. However, the mechanism
which makes this true in the cases r ≥ 1 remains to be clarified.

Remark 3.2. It is of interest to contrast the scalings of {a j } in Theorems 1.3 and 3.2
applying to the critical and supercritical cases respectively. Some insight as to the chosen
values is possible by restricting attention to the case r = 0, forwhich the squared singular
values have the interpretation as non-intersecting Brownian particles confined to a half
line, asmentioned in the Introduction. In this interpretation, the initial position of particle
j is a j , and the particles evolve for time t = 1. We interpret the values in a j in Theorem
1.3 as being such that the particles at the hard edge are all of the same order, with the
k outlier particles appropriately merging with the spectrum edge of the N − k particles
which started originally at N (1− τ/

√
N ). On the other hand, in Theorem 3.2 only the k

particles starting at order unity from the hard edge are at order unity from the hard edge
when t = 1, with the remaining N − k particles never reaching the hard edge by this
time.
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Remark 3.3. If we strengthen the results in Theorems 1.2, 1.3, 3.1 and 3.2 from uniform
convergence into the trace norm convergence of the integral operators with respect to the
correlation kernels, then as a direct consequence we have the limiting gap probabilities
after rescaling, especially including the smallest eigenvalue distribution; see [27, Chap-
ters 8 & 9]. Since the proof of trace norm convergence is only a technical elaboration
that confirms a well-expected result, we do not give the details.

3.2. Characteristic polynomials. In this subsection we want to evaluate scaling limits
for the ratio of characteristic polynomials according to three different regimes.

Theorem 3.3. With the eigenvalue PDF (2.5), fix m ∈ {0, 1, 2, . . . , } and let

am+1 = · · · = aN = Nb.

(i) Set a j = Nb j with b j > 0 for j = 1, . . . ,m, if 0 < b < 1, then for ζ ∈ C\R,

lim
N→∞

1

(1 − b)N
E

[ N∏
l=1

xl − ξ/((1 − b)N )

xl − ζ/((1 − b)N )

]
=

∫ ∞

0
du

ξ − u

ζ − u
K h,r (ξ, u). (3.34)

(ii) Set a j = √
Nσ j with σ j > 0 for j = 1, . . . ,m, if b = 1/(1 − τ/

√
N ) with

τ ∈ R, then for ζ ∈ C\R,

lim
N→∞

1√
N
E

[ N∏
l=1

xl − ξ/
√
N

xl − ζ/
√
N

]
=

∫ ∞

0
du

ξ − u

ζ − u
Kh,r

m (ξ, u; τ, σ ). (3.35)

(iii) Set a j = σ j b/(b − 1) with σ j > 0 for j = 1, . . . ,m, if b > 1 and m ≥ 1, then
for r = 0 and for ζ ∈ C\R,

lim
N→∞(1 − 1

b
)E

[ N∏
l=1

xl − (1 − 1
b )ξ

xl − (1 − 1
b )ζ

]
=

∫ ∞

0
du

ξ − u

ζ − u
K̃h,0

m (ξ, u; 1 − 1

b
; σ). (3.36)

Proof. By Proposition 2.6, Theorems 3.1, 1.3 and 3.2 imply the sought results although
a minor modification in the proof of Theorem 3.1 is required in relation to (3.34) (in the
same circumstance the limiting subcritical kernel still holds true). 
�

Likewise, based on Proposition 2.6, we can prove the following theorem concerning
the average of one single characteristic polynomial or its inverse. For this purpose we
introduce four sets of generalised multiple functions (we say generalised since only
for r = 0 do we know the multiple polynomial system; recall Remark 2.2) of types II
and I with m parameters σ1, . . . , σm > 0. For k = 1, 2 . . . ,m, we define two sets of
generalised multiple functions by

�(k)(x; σ1, . . . , σk−1) =
∫ ∞

0
duuν0e−τu− 1

2 u
2

× G1,0
0,r+2

(
0,−ν0,−ν1, . . . ,−νr

∣∣∣xu) k−1∏
j=1

(u + σ j ), (3.37)
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and

�̃(k)(x; σ1, . . . , σk) = 1

2π i

∫ i∞

−i∞
dvv−ν0eτv+ 1

2 v2

× Gr+1,0
0,r+2

(
ν0, ν1, . . . , νr , 0

∣∣∣xv) k∏
j=1

1

v + σ j
, (3.38)

while for 0 < κ ≤ 1 two sets of Laguerre-like generalised multiple functions are defined
by

L(k)(x; κ; σ1, . . . , σk−1) =
∫ ∞

0
du (u/κ)ν0e−u
(u/κ; κx)

k−1∏
l=1

(u + σl), (3.39)

and

L̃(k)(x; κ; σ1, . . . , σk) = 1

2π i

∫
γ

dv ev�(v/κ; κx)
k∏

l=1

1

v + σl
. (3.40)

Here γ is a closed path which is encircling−σ1, . . . ,−σm once in the positive direction.

Theorem 3.4. With the eigenvalue PDF (2.5), fix m ∈ {0, 1, 2, . . . , } and let

am+1 = · · · = aN = Nb.

(i) Set a j = Nb j with b j > 0 for j = 1, . . . ,m, if 0 < b < 1, then

lim
N→∞

−√
N

ϒ
(sub)
N

E

[ N∏
l=1

1

xl − ζ/((1 − b)N )

]

=
∫ ∞

0
du

1

ζ − u
Gr+1,0

0,r+2

(
ν0, ν1, . . . , νr , 0

∣∣∣u)
, (3.41)

lim
N→∞

√
N

r∏
l=1

(νl + N )ϒ
(sub)
N E

[ N∏
l=1

(
xl − ξ/((1 − b)N )

)]

= G1,0
0,r+2

(
0,−ν0,−ν1, . . . , νr

∣∣∣ξ)
(3.42)

where

ϒ
(sub)
N = (−1)N

√
2πN ν0+Ne−(1−b)N

r∏
l=1

�(νl + N ) (1 − b)ν0
m∏
j=1

(1 − b + b j ).

(3.43)
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(ii) Set a j = √
Nσ j with σ j > 0 for j = 1, . . . ,m, if b = 1/(1 − τ/

√
N ), then

lim
N→∞

−√
N

ϒ
(cri)
N

E

[ N∏
l=1

1

xl − ζ/
√
N

]
=

∫ ∞

0
du

1

ζ − u
�̃(m)(u; σ1, . . . , σm), (3.44)

lim
N→∞

√
N

r∏
l=1

(νl + N )ϒ
(cri)
N E

[ N∏
l=1

(
xl − ξ/

√
N

)] = �(m+1)(ξ ; σ1, . . . , σm)

(3.45)

where

ϒ
(cri)
N = (−1)N N N+(ν0−m)/2e

√
Nτ+τ 2/2

r∏
l=1

�(νl + N ). (3.46)

(iii) Set a j = σ j b/(b − 1) with σ j > 0 for j = 1, . . . ,m, if b > 1, then for r = 0,

lim
N→∞

−b

(b − 1)ϒ(sup)
N

E

[ N∏
l=1

1

xl − (1 − 1
b )ζ

]

=
∫ ∞

0
du

1

ζ − u
L̃(m)(u; 1 − 1/b; σ1, . . . , σm), (3.47)

lim
N→∞

b

b − 1

r∏
l=1

(νl + N )ϒ
(sup)
N E

[ N∏
l=1

(
xl − (1 − 1/b)ξ

)]

= L(m+1)(ξ ; 1 − 1/b; σ1, . . . , σm) (3.48)

where

ϒ
(sup)
N = (−1)N (bN )N−m(

b/(b − 1)
)m

. (3.49)

Proof. By Proposition 2.6, following almost the same procedure as that in Theorems
3.1, 1.3 and 3.2 we can evaluate the scaling limits. As a matter of fact, the proof will be
simpler since it only involves a single variable integral. We omit the details. 
�

Let us conclude this section with two relationships between the limiting kernels
(cf. (1.27) and (3.33)) and the generalised multiple functions defined by (3.37)–(3.40);
cf. Corollary 2.3.

Proposition 3.5. We have

Kh,r
m (x, y; τ, σ ) = Kh,r (x, y; τ) +

m∑
k=1

�(k)(x; σ1, . . . , σk−1) �̃(k)(y; σ1, . . . , σk),

(3.50)

and

K̃h,r
m (x, y; κ; σ) =

m∑
k=1

L(k)(x; κ; σ1, . . . , σk−1) L̃(k)(y; κ; σ1, . . . , σk). (3.51)

Proof. By use of the relation (2.26), noting the definition of involved functions (3.37)–
(3.40), term-by-term integration immediately implies the above two formulas. Here use
has been made of K̃h,r

0 (x, y; κ; σ) = 0 for the second formula. 
�
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4. Product with Truncated Unitary Matrices

The derivation of the double contour integral expression (1.22) for the correlation kernel
is expected to be applicable to a wider class of biorthogonal ensembles, specifically to
those characterized by the form of (2.1) with ηi (x) = xi−1 and ξi (x) = h(ai , x) for
some appropriate function of two variables h and N generic parameters a1, . . . , aN . In
this section we consider the specific case of the biorthogonal ensemble corresponding
to the product of r truncated unitary matrices and one shifted mean Ginibre matrix, and
derive a double integral representation of the correlation kernel and analyze the scaled
limits at the hard edge. Other types of products Xr · · · X1Z , where each X j is a Ginibre
or truncated unitary matrix while Z is a spiked Wishart matrix of the form G0� or a
triangular random matrix (cf. [18,32]), are presently under consideration [47].

Explicitly, instead of (1.4), we now consider the matrix product

Y = Tr · · · T1(G0 + A), (4.1)

where each Tj is an (N + ν j ) × (N + ν j−1) truncation of a Haar distributed unitary
matrix of size Mj × Mj and G0 is an (N + ν0) × N standard complex Gaussian matrix
while A is of size (N + ν0)× N and fixed. Here ν−1 = 0, ν0, . . . , νr are the nonnegative
integers and μ j := Mj − N > ν j (for the general ν j > −1 the analysis below is also
applicable). In the case that the matrix (G0 + A) is absent, this product has been studied
in a recent paper [40].

An analogue of Proposition 1.1 for the correlation kernel can be given. As in Proposi-
tion 1.1, two auxiliary functions are required, and so as to stress the structural similarities,
analogous notation is used. Specifically, with r = 1, 2, . . . , and 0 ≤ q ≤ r , the first is
defined to be


q(u; x) = 1

(2π i)r
1

�(ν0 + 1)

∫
(0,∞)q

dt
∫

�

dw

q∏
l=1

tμl
l e−tl

×
r∏

l=1

w
−νl−1
l ewl exp

{
x

t1 · · · tq
w1 · · · wr

}
0F1

(
ν0 + 1;−xu

t1 · · · tq
w1 · · ·wr

)
, (4.2)

where � = γ1 × · · · × γr , and γ1, . . . , γr are paths starting and ending at −∞ and
encircling the origin anticlockwise, while the other reads

�q(v; y) = 1

2π i

∫ c+i∞

c−i∞
ds y−sφ(v; s)

r∏
l=1

�(νl + s)
q∏

l=1

1

�(μl + s)
, (4.3)

where φ(v; s) is given in (1.18) and c > −min{ν0, ν1, . . . , νr }. It is worth stressing that

q(u; x) can be expressed as a single contour integral


q(u; x) = 1

�(ν0 + 1)

1

2π i

∫
γ

dw (−x)−w
1F1

(
w; ν0 + 1; u)

×�(w)

q∏
l=1

�(μl + 1 − w)

r∏
l=1

1

�(νl + 1 − w)
, (4.4)

where γ encircles all non-positive integers such that Re{w} < min{μ1 + 1, . . . , μq + 1}
for any w ∈ γ . This is a nice analogue of the definition of the function �q(v; y) and
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can be derived as follows. First, the power series expansions for the two functions ex

and 0F1
(
ν0 + 1;−xu

)
give us the relation

ex 0F1
(
ν0 + 1;−xu

) =
∞∑
k=0

1

k! x
k
1F1

( − k; ν0 + 1; u)
, (4.5)

fromwhich, togetherwith the definition of the function (4.2), by term-by-term integration
we then read off


q(u; x) = 1

�(ν0 + 1)

∞∑
k=0

1

k! x
k
1F1

( − k; ν0 + 1; u)

×
q∏

l=1

�(μl + 1 + k)
r∏

l=1

1

�(νl + 1 + k)
. (4.6)

With this, noting that the integrand for the integral (4.4) has simple poles at 0,−1,−2, . . .,
we thereby apply the residue theorem to get the desired result.

Proposition 4.1. Let Y be defined by (4.1), and suppose that all eigenvalues a1, . . . , aN
of A∗A are positive. The eigenvalue PDF of Y ∗Y can be written as

PN (x1, . . . , xN ) = 1

N ! det[KN (xi , x j )]Ni, j=1 (4.7)

with correlation kernel

KN (x, y) = 1

2π i

∫ ∞

0
du

∫
C
dv uν0e−u+v
r (u; x)�r (v; y) 1

u − v

N∏
l=1

u + al
v + al

, (4.8)

where C is a counterclockwise contour encircling −a1, . . . ,−aN but not u.

Proof. Starting with the eigenvalue PDF (2.1) of (G0 + A)∗(G0 + A), application of
[40, Corollary 2.4] r times in succession shows that the eigenvalue PDF of Y ∗Y is
proportional to

det[ηi (x j )]Ni, j=1 det[ξi (x j )]Ni, j=1, (4.9)

where ηi (x) = xi−1 and with T = t1 · · · tr

ξi (x) = 1

�(ν0 + 1)

∫
(0,1)r

dt
r∏

l=1

tνl−1
l (1 − tl)

μl−νl−1 (
y

T
)ν0e− y

T 0F1(ν0 + 1; ai x
T

).

(4.10)

Next, we proceed as in the proof of Proposition 1.1. Our first task is to compute
gi, j := ∫ ∞

0 ηi (x)ξ j (x) dx . For this purpose, we note that application of the Mellin
transform gives

∫ ∞

0
ys−1ξ j (y) dy = φ(−a j ; s)

r∏
l=1

B(νl + s, μl − νl), (4.11)
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where the notation B(a, b) refers to the gamma function evaluation of the beta integral
and φ(v; s) is given in (1.18), while use of the inverse Mellin transform gives

ξ j (y) = �r (−a j ; y)
r∏

l=1

�(μl − νl), (4.12)

where �r is defined in (4.3) with q = r . Combining (4.11), (1.17) and (2.11), we obtain

gi, j = (i − 1)!ea j Lν0
i−1(−a j )

r∏
l=1

B(νl + i, μl − νl). (4.13)

According to Proposition 2.2, with G = [gi, j ]Ni, j=1 and C = (G−1)t , the entries ci, j
of C then satisfy

eak
N∑
i=1

(i − 1)! Lν0
i−1(−ak)

r∏
l=1

B(νl + i, μl − νl) ci, j = δ j,k . (4.14)

Without loss of generality we assume that a1, . . . , aN are pairwise distinct. The above
equations imply

N∑
i=1

(i − 1)! Lν0
i−1(u)

r∏
l=1

B(νl + i, μl − νl) ci, j = e−a j

N∏
l=1,l 	= j

−u − al
a j − al

, (4.15)

which can be verified by noting that both sides are polynomials of degree N − 1 in
u which are equal at N different points. Using this implicit formula for {ci, j } and the
integral representations

�(z) =
∫ ∞

0
t z−1e−t dt,

1

�(z)
= 1

2π i

∫
γ

w−zewdw, (4.16)

we have from (2.9) that with T = t1 · · · tr and W = w1 · · · wr

KN (x, y) = 1

(2π i)r

N∑
i, j=1

ξ j (y)
r∏

l=1

1

�(μl − νl )

∫
(0,∞)r

dt
∫
�
dw

(
xT/W

)i−1

×
r∏

l=1

(
tμl
l w

−νl−1
l ewl−tl

) r∏
l=1

B(νl + i, μl − νl ) ci, j

= 1

(2π i)r

N∑
j=1

�r (−a j ; y)
∫
(0,∞)r

dt
∫
�
dw

r∏
l=1

(
tμl
l w

−νl−1
l ewl−tl

) exT/W

�(ν0 + 1)

×
N∑
i=1

(i − 1)!
r∏

l=1

B(νl + i, μl − νl ) ci, j

∫ ∞
0

du uν0 Lν0
i−1(u)e−u

0F1
(
ν0 + 1; −uxT/W

)

= 1

(2π i)r

N∑
j=1

�r (−a j ; y)
∫
(0,∞)r

dt
∫
�
dw

r∏
l=1

(
tμl
l w

−νl−1
l ewl−tl

) exT/W

�(ν0 + 1)

×
∫ ∞
0

du uν0e−u
0F1

(
ν0 + 1; −uxT/W

)
e−a j

∏
l 	= j

−u − al
a j − al

. (4.17)
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Here the formulae (2.12) and (4.15) have been used in the second and third equalities
respectively.

Finally, recalling (4.2) we can rewrite (4.17) as

KN (x, y) =
∫ ∞

0
du uν0e−u
r (u; x)

N∑
j=1

�r (−a j ; y) e−a j
∏
l 	= j

−u − al
a j − al

. (4.18)

If we recognise the sum over j as the sum of the residues at {al} of the v-function

e−v�r (−v; y) 1

−u − v

N∏
l=1

−u − al
v − al

, (4.19)

by changing v to −v we then arrive at the desired result. 
�
At this stage it would be possible to develop the theory of the corresponding averaged

characteristic polynomials and their reciprocals, and then proceed to analyse their hard
edge limit; recall Sects. 2.2 and 3.2.Howeverwepass on this, and instead analyse the hard
edge phase transition analogous to the workings in Sect. 3.1. Specifically, taking N →
∞, we keep all ν j fixed and simultaneously let some of μ1, . . . , μr go to ∞. Without
loss of generality, we suppose that for some 0 ≤ q ≤ r all ν1, . . . , νr , μ1, . . . , μq are
constants, and moreover

μq+1, . . . , μr → ∞ as N → ∞; (4.20)

see [40, Theorem 2.8] for the assumptions.

Theorem 4.2 (Subcritical kernel). With the kernel (4.8), for a fixed nonnegative integer
m let

a j = Nσ j , j = 1, . . . ,m and ak = bN , k = m + 1, . . . , N , (4.21)

where 0 < b < 1 and σ1, . . . , σm > 0. Set cN = (1 − b)Nμq+1 · · ·μr . Under the
assumption (4.20) we have

lim
N→∞

1

cN
KN

( ξ

cN
,

η

cN

)

=
∫ 1

0
G1,q

q,r+2

( −μ1, . . . ,−μq

0,−ν0, . . . ,−νr

∣∣∣uξ
)
Gr+1,0

q,r+2

( μ1, . . . , μq

ν0, . . . , νr , 0

∣∣∣uη
)
du. (4.22)

Proof. Substituting u, v by uN , vN respectively in (4.8), we obtain

1

cN
KN

( ξ

cN
,

η

cN

)
=

∫ ∞

0
du

∫
C
dv

N

2cNπ i

e−N ( f (u)− f (v))

u − v

×
m∏
j=1

(v + b)(u + σ j )

(u + b)(v + σ j )
(Nu)ν0
r

(
Nu; ξ

cN

)
�r

(
Nv; η

cN

)
, (4.23)

where f (z) = z − log(b + z).
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We can complete the proof in much the same way as in that of Theorem 3.1. But this
time we need to estimate the large N leading terms of the functions 
 and �. That is,
we have to rescale variables tq+1, . . . , tr and rewrite them according to


r
(
Nu; ξ

cN

) = 1

(2π i)r
1

�(ν0 + 1)

∫
(0,∞)r

dt
∫

�

dw

r∏
j=q+1

(
μ

μ j+1
j eμ j (log t j−t j )

)

×
q∏

l=1

tμl
l e−tl

r∏
l=1

w
−νl−1
l ewl exp

{ ξ

(1 − b)N

t1 · · · tq
w1 · · · wr

}

× 0F1
(
ν0 + 1;− ξu

1 − b

t1 · · · tq
w1 · · · wr

)
, (4.24)

and

�r (Nv; η

cN
) = 1

2π i

∫ c+i∞

c−i∞
ds

( η

(1 − b)N

)−s
φ(Nv; s)

×
r∏

l=q+1

μ j

�(μ j + s)

r∏
l=1

�(νl + s)
q∏

l=1

1

�(μl + s)
, (4.25)

then apply the saddle point analysis (see e.g. [60]) to the integrals over tq+1, . . . , tr in
r
near the saddle point t0 = 1, or expand the integrand in�r by the Stirling approximation
formula as μq+1, . . . , μr → ∞. Tracking the same contour deformations and following
almost the same analysis as in Theorem 3.1, the proof will be done. We leave the details
to the reader. 
�

The limiting kernel on the RHS of (4.22), with the parameter ν0 absent and r + 1
replaced by r first appeared in [40, Theorem 2.8] as the hard edge correlation kernel for
a product of truncated unitary matrices. Clearly, it reduces to the Meijer G-kernel (1.6)
in case q = 0. More generally, as remarked in [40] (cf. eqns (2.37) and (2.38) therein),
it can be interpreted as a finite rank perturbation of (1.6).

For the critical regime, tracking the same contour deformations and following almost
the same analysis as in Theorem1.3, as for the proof of Theorem4.2 the requiredworking
to establish the following theorem can be given.

Theorem 4.3 (Deformed critical kernel). With the kernel (4.8), for a fixed nonnegative
integer m let

a j = √
Nσ j , j = 1, . . . ,m and ak = N (1 − τ/

√
N )−1, k = m + 1, . . . , N ,

(4.26)

where τ ∈ R and σ1, . . . , σm > 0. Set cN = √
Nμq+1 · · ·μr . Under the assumption

(4.20) we have

lim
N→∞

1

cN
KN

( ξ

cN
,

η

cN

)
= 1

2π i

∫ ∞

0
du

∫ −c+i∞

−c−i∞
dv

(u
v

)ν0 e−τu− 1
2 u

2+τv+ 1
2 v2

u − v

×
m∏
j=1

u + σ j

v + σ j
G1,q

q,r+2

( −μ1, . . . ,−μq

0,−ν0, . . . ,−νr

∣∣∣uξ
)
Gr+1,0

q,r+2

( μ1, . . . , μq

ν0, . . . , νr , 0

∣∣∣vη
)
, (4.27)

where 0 < c < min{σ1, . . . , σm}.
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We remark that the kernels on the RHS of (4.27) reduce to the deformed critical
kernels Kh,r

m in (1.27) in case q = 0. These are the most general form of critical kernels
that we have derived in the present paper. Moreover, they are new except for the simplest
case q = r = m = 0, which as previously remarked corresponds to non-intersecting
squared Bessel paths and has been studied in [22,24,44].

As to the supercritical regimewhere b > 1, when r ≥ 1we have a similar expectation
on the scaling limit (see Eq. (3.33) and relevant description below it), which can be stated
as follows. With the kernel (4.8), for a fixed positive integer m let

a j = σ j b/(b − 1), j = 1, . . . ,m and ak = bN , k = m + 1, . . . , N , (4.28)

where b > 1 and σ1, . . . , σm > 0. Set cN = μq+1 · · ·μr b/(b − 1), then under the
assumption (4.20) we have

lim
N→∞

1

cN
KN

( ξ

cN
,

η

cN

)
= 1

2π i

∫ ∞

0
du

∫
C
dv

(u
κ

)ν0 e
−u+v

u − v

× 
q(u/κ; κξ)�q(v/κ; κη)

m∏
j=1

u + σ j

v + σ j
, (4.29)

where κ = (b − 1)/b, 
q ,�q are given by (4.2), (4.3), and C is a counterclockwise
contour encircling −σ1, . . . ,−σm but not u.

5. Asymptotics for Large Parameters and Variables

5.1. Limits for large parameters. The behavior of the critical kernel (1.24) for large
values of the parameters will be discussed, one of which is the confluent relation be-
tween correlation kernels. The first to be considered is when some of ν1, . . . , νr , say
νm+1, . . . , νr , go to infinity.

Proposition 5.1. Let Kh,r (ξ, η; τ) be the critical kernel (1.24). If 0 ≤ m < r , then as
νm+1, . . . , νr → ∞ we have

(νm+1 · · · νr )Kh,r ((νm+1 · · · νr )x, (νm+1 · · · νr )y; τ
) −→ Kh,m(x, y; τ). (5.1)

Proof. This immediately follows from the identity (3.12) for G1,0
0,r+2 and the definition

(1.7) for Gr+1,0
0,r+2. 
�

The above confluent relation allows for a natural interpretation, particularly in the
original finite matrix dimension. Actually, in (1.4) substituting all G j as square ma-
trices being distributed according to the joint density proportional to detν j (G∗

j G j )

exp{−tr(G∗
j G j )} (see the relevant description below (1.4)), then a saddle point ap-

proximation shows that all Gm+1, . . . ,Gr go to the identity matrix of order N as
νm, . . . , νr → ∞. Thus these matrices do not contribute to the hard edge state.

A similar effect happens in relation to the parameter ν0 associated with G0, although
now we find that a different rescaling is necessary, and furthermore that the limiting
kernel is now subcritical.
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Proposition 5.2. Let Kh,r (ξ, η; τ) be the critical kernel (1.24). For r ≥ 1, we have

lim
ν0→∞

√
ν0Kh,r (√ν0x,

√
ν0y; τ

) = K h,r−1(x, y)
∣∣∣{ν0,...,νr−1}→{ν1,...,νr }

, (5.2)

where K h,r−1 is given by (1.6).

Proof. Substituting u, v by
√

ν0u and
√

ν0v respectively in (1.24), we get

√
ν0Kh,r (√ν0x,

√
ν0y; τ

) = 1

2π i

∫ ∞

0
du

∫
iR

dv
e−ν0( f (u)− f (v))

u − v
e−τ

√
ν0u+τ

√
ν0v

× ν0G
1,0
0,r+2

(
0,−ν0,−ν1, . . . ,−νr

∣∣∣ν0ux
)
Gr+1,0

0,r+2

(
ν0, ν1, . . . , νr , 0

∣∣∣ν0vy
)

(5.3)

where f (z) = − log z + z2/2.
Choose one saddle point z0 = 1 from f ′(z) = 0 and deform iR as the union of one

closed clockwise contour C encircling the interval [0, 1) and the vertical line x = 1.
Note that as ν0 → ∞

ν0G
1,0
0,r+2

(
0,−ν0,−ν1, . . . ,−νr

∣∣∣ν0ux
)
Gr+1,0

0,r+2

(
ν0, ν1, . . . , νr , 0

∣∣∣ν0vy
)

∼ G1,0
0,r+1

(
0,−ν1, . . . ,−νr

∣∣∣ux)Gr,0
0,r+1

(
ν1, . . . , νr , 0

∣∣∣vy), (5.4)

proceeding as in the proof of Theorem 3.1, we can show that the dominant contribution
comes from the range of u ∈ [0, 1) and v ∈ C. Finally, application of the residue theorem
gives the proof. 
�

Similarly, for large negative τ , we observe a transition from the critical kernel to the
Meijer G-kernel. This is to be expected, as then the parameter b in (1.11) enters the
subcritical regime b < 1, since effectively b = (1 − τ/N )−1.

Proposition 5.3. Let Kh,r (ξ, η; τ) be the critical kernel (1.24). Then we have

lim
τ→−∞(−1/τ)Kh,r ( − x/τ,−y/τ ; τ

) = K h,r (x, y). (5.5)

Proof. Substituting u, v by −τu and −τv respectively in (1.24), we get

(−1/τ)Kh,r ( − x/τ,−y/τ ; τ
)

= 1

2π i

∫ ∞

0
du

∫
iR

dv
(u

v

)ν0 e−τ 2( f (u)− f (v))

u − v

× G1,0
0,r+2

(
0,−ν0,−ν1, . . . ,−νr

∣∣∣ux)Gr+1,0
0,r+2

(
ν0, ν1, . . . , νr , 0

∣∣∣vy) (5.6)

where f (z) = −z+ z2/2. Proceeding as in the proof of Proposition 5.2, the sought result
follows. 
�

Lastly, as to the critical kernel on the RHS of (4.27) withm = 0, the functions �̃(1)(x)
and �̃(0)(x) defined in (3.37) and (3.38), there exists similar asymptotic behavior for
large parameters as in the above three propositions, but we refrain from writing them
down.
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5.2. Conjectures and open problems. In the concluding section of [29] a number of
questions, mostly relating to asymptotics, were posed in relation to the kernel (1.6).
As we will indicate, these all carry over to the critical kernel (1.24). It is also the case
that the conjectured behaviours are all closely related to analogous expected asymptotic
properties of the finite N kernel (1.22). Two classes of asymptotic problems stand out.

The first is to establish the global scaling limit of the critical one-point function. For
this we expect

lim
N→∞ Nr KN (Nr+1x, Nr+1x)

∣∣∣
al=N

= 1

π
ImG(x − i0), (5.7)

where w(z) := zG(z), satisfies the algebraic equation

wr+3/2 − zw1/2 + z = 0. (5.8)

The latter is known to specify the Raney distribution with parameters (3 + 2r, 2), which
according to free probability theory is the global density for the matrix (1.4) in the
critical case (see e.g. [31, Remark 3.4]). In the case of the global limit (5.7) with al = 0
(l = 1, . . . , N ), a recent achievement [48] has been the use of the double contour integral
formula (2.21) to deduce that (5.7) with w(z) := zG(z) satisfies the algebraic equation

wr+2 − zw + z = 0. (5.9)

The latter specifies the Raney distribution with parameters (r + 2, 1), also known as the
Fuss–Catalan distribution with parameter r + 1 [56], and should give the asymptotic
behavior of global density for small argument throughout the subcritical regime. In the
supercritical regime, from a macroscopic viewpoint the number of random matrices in
the product (1.4) is effectively r , since A dominates G0 and moreover A is proportional
to the identity. This implies that the corresponding asymptotic behaviour of the global
density near the origin now corresponds to that of the Fuss–Catalan distribution with
parameter r .

To see the relevance of (5.7) to the asymptotics of the density in the critical hard edge
scaled state, Kh ,r (x, x), we recall (cf. [31, Cor. 2.5]) that it can be deduced from (5.9)
that for small x the global density has its leading asymptotics given by (1.12). In keeping
with the discussion in the concluding section of [29], this should be the leading large x
asymptotic form of Kh,r (x, x). Combining this with the small x asymptotic form (1.5)
for the Fuss–Catalan density as applies to the subcritical and supercritical regimes (the
latter with r �→ r − 1 as already commented), we therefore expect

Kh,r, (∗)(x, x) ∼
x→∞

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

π
sin

π

r + 2
x−1+ 1

r+2 , (∗) = subcritical

1

π
sin

2π

2r + 3
x−1+ 1

r+3/2 , (∗) = critical

1

π
sin

π

r + 1
x−1+ 1

r+1 , (∗) = supercritical.

(5.10)

In general if the global density at the hard edge diverges as x−p, then the expected
number of eigenvalues in the interval (0, s) is proportional to Ns1−p. For this to be
of order unity we must scale s �→ N 1/(1−p)s. Taking into consideration the scaling
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x �→ Nr+1x already present in (5.7), this suggests that the appropriate hard edge scalings
are

x �→
⎧⎨
⎩

(1/N )x, subcritical
(1/

√
N )x, critical

no change, supercritical,
(5.11)

in agreement with those used in the main body of the text.
The second class of asymptotic of the type identified in the concluding section of

[29] is to compute the leading asymptotic form of the off diagonal analogue of the LHS
of (5.7), namely

K̂N (x, y)
·:= Nr+1KN (Nr+1x, Nr+1y), x 	= y, (5.12)

where the dot above := indicates that terms which oscillate and average to zero are to be
ignored. To see the interest in this quantity, note from (2.10) that the truncated (or con-
nected) two-point correlation ρT

(2),N (x1, x2) := ρ(2),N (x1, x2)−ρ(1),N (x1)ρ(1),N (x2) is

given by ρT
(2),N (x1, x2) = −KN (x1, x2)KN (x2, x1), so knowledge of the asymptotics

of K̂ (x, y) tells us the asymptotics of

ρ̂T
(2),N (x, y)

·:= N 2(r+1)ρT
(2),N (Nr+1x, Nr+1y), x 	= y, (5.13)

With G = ∑N
j=1 g(x j ) denoting a linear statistic in the bulk scaled system, in view of

the formula (see e.g. [27, eqn. (14.38)])

Var G = N 2(r+1)
∫ ∞

0
dx1

∫ ∞

0
dx2 g(x1)g(x2)ρ

T
(2),N (Nr+1x1, N

r+1x2)

+ Nr+1
∫ ∞

0
g2(x)ρ(1)(N

r+1x) dx (5.14)

one sees that (5.13) (sometimes referred to as a wide correlator; see e.g. [36]) essentially
determines the large N form of this fluctuation, which is expected to be O(1) (see e.g.
[27, Sect. 14.3]).

As a concrete example of this second type of asymptotics, consider the simplest case
of (1.4), namely r = 0 and A = 0. The squared singular values correspond to the
eigenvalues of G∗

0G0, where G0 is a (N + ν0) × N standard complex Gaussian matrix.
This class of random matrices is referred to as the complex Wishart ensemble (see e.g.
[27, Sect. 3.2]). For this ensemble it is a known result that [10]

N 2ρT
(2),N (Nx, Ny)

·∼ − 1

2π2

1

(x − y)2
(L/2)(x + y) − xy

(x(L − x)y(L − y))1/2
, x 	= y, (5.15)

with L = 4, and where the dot above the asymptotic sign denotes a restriction to non-
oscillatory terms.

Suppose now that in the definition (5.12) of K̂N (x, y) we introduce a scale factor
L and compute instead the asymptotic form of (Nr+1/L)KN (Nr+1x/L , Nr+1y/L). For
the complex Wishart ensemble the RHS of (5.15) with L a variable results. For general
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r , if the original leading asymptotic form of ρ̂T
(2)(x, y) was R(x, y), this will now equal

(1/L2)R(x/L , y/L). Following [10] we expect that

lim
L→∞

1

L2 R
( x

L
,
y

L

)
→ Rh(x, y), (5.16)

where Rh(x, y) is the leading non-oscillatory large x , large y asymptotic form of the
hard edge scaling of ρT

(2),N (x, y). In the context of the present setting this corresponds

to seeking the large x , large y form of Kh,r (x, y). In the case of the complex Wishart
ensemble, (5.16) applied to (5.15) predicts that

ρ
h,T
(2) (x, y)

·∼ − 1

4π2

(x/y)1/2 + (y/x)1/2

(x − y)2
, (5.17)

which is in fact a known exact result (see e.g. [27, eqn. (7.75)]). The analogue of (5.17)
is known for the case r = 1, A = 0 of (1.4) [29, eqn. (5.28)], but the analogue of (5.15)
is yet to be obtained. As discussed in [29], knowledge of an asymptotic form such as
(5.17) is of interest for the computation of the variance of a scaled linear statistic at the
hard edge, Gα = ∑∞

j=1 g(x j/α) when α → ∞, which is given by

lim
α→∞Var Gα := lim

α→∞
( ∫ ∞

0
dλ1

∫ ∞

0
dλ2 × g(λ1/α)g(λ2/α)ρ

T,h, r
(2) (λ1, λ2)

+
∫ ∞

0
dλ g2(λ/α)ρ

h, r
(1) (λ)

)
. (5.18)

A number of challenges for future research present themselves from the above dis-
cussion. We conclude this section with a list of a few more.

• Under the assumption of a1 = · · · = aN = bN with b > 0, verify the sine-kernel in
the bulk and Airy-kernel at the soft edge for (1.22) and (4.8) (see recent monographs
[6,21,27,58] for the sine and Airy kernels and [48] for recent progress on the random
matrix products).

• Under the assumption of am+1 = · · · = aN = bN with b > 0, by tuning the
parameters a1, . . . , am verify the BBP transition for (1.22) and (4.8) (cf. [9,55]).

• Verify the transitions from the critical kernels (1.24) and (4.27) to the sine-kernel
and to the Airy-kernel (cf. [27, Exercise 7.2] and [29]).
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