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Abstract: In this article we investigate spectral properties of the coupling H +Vλ, where
H = −iα ·∇ +mβ is the free Dirac operator inR3,m > 0 and Vλ is an electrostatic shell
potential (which depends on a parameter λ ∈ R) located on the boundary of a smooth
domain in R

3. Our main result is an isoperimetric-type inequality for the admissible
range of λ’s for which the coupling H + Vλ generates pure point spectrum in (−m,m).
That the ball is the unique optimizer of this inequality is also shown. Regarding some
ingredients of the proof, we make use of the Birman–Schwinger principle adapted to
our setting in order to prove some monotonicity property of the admissible λ’s, and we
use this to relate the endpoints of the admissible range of λ’s to the sharp constant of a
quadratic form inequality, from which the isoperimetric-type inequality is derived.

1. Introduction

We investigate spectral properties of operators that are obtained as the coupling of the
free Dirac operator in R

3 with singular measure-valued potentials. Given m ≥ 0, the
free Dirac operator in R

3 is defined by H = −iα · ∇ + mβ, where α = (α1, α2, α3),

α j =
(

0 σ j
σ j 0

)
for j = 1, 2, 3, β =

(
I2 0
0 −I2

)
, I2 =

(
1 0
0 1

)
,

and σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(1)
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compose the family of Pauli matrices. Although one can take m = 0 in the definition of
H , throughout this article we always assumem > 0 to allow the existence of a nontrivial
pure point spectrum in the interval (−m,m) for the corresponding couplings.

Following [1,2], we consider Hamiltonians of the form H + V , being V a singular
potential located at the boundary of a bounded smooth domain. These types of couplings
are usually referred as shell interactions for H . The particular case of the sphere was
studied in [3], while in [1,2] we considered boundaries of general bounded smooth
domains. Due to the singularity of the potentials under study, a first issue to be treated
is the self-adjoint character of the operator, something that we dealt with in [1]. Our
approach fits within the abstract one developed in [9,10], although we were interested
in some concrete potentials that allowed us to obtain more specific results.

This article is addressed to the particular case of electrostatic shell potentials. Let
� ⊂ R

3 be a bounded smooth domain, let σ and N be the surface measure and outward
unit normal vector field on ∂�, respectively. For convenience, we also set �+ = � and
�− = R

3\�, so ∂� = ∂�±. Given λ ∈ R and ϕ : R3 → C
4, the electrostatic shell

potential Vλ applied to ϕ is formally defined as

Vλ(ϕ) = λ

2
(ϕ+ + ϕ−)σ,

where ϕ± denote the boundary values of ϕ (whenever they exist in a reasonable sense)
when one approaches ∂� from�±. Therefore, Vλ maps functions defined inR3 to vector
measures of the form f σ with f : ∂� → C

4. In particular, one can interpret Vλ as the
distribution λδ∂� when acting on functions that have a well-defined trace on ∂�, where
δ∂� denotes the Dirac-delta distribution on ∂�.

Our interest is focused on the study of the existence of stable energy states in (−m,m)

for H + Vλ, where m > 0 is interpreted as the mass of the particle whose evolution is
modeled by the coupling ∂t + i(H +Vλ). More precisely, we look for a description of the
set of λ’s in R for which there exist a ∈ (−m,m) and a nontrivial spinor ϕ in L2(R3)4

(actually, in the domain of the definition of H + Vλ) such that

(H + Vλ)(ϕ) = aϕ. (2)

In [2] we found that this is not possible if |λ| is either too big or too small.More precisely,
we showed that there exist upper and lower thresholds λu(∂�) and λl(∂�), respectively,
with 0 < λl(∂�) ≤ 2 ≤ λu(∂�) and such that if |λ| �∈ [λl(∂�), λu(∂�)] then there
exists no nontrivial ϕ verifying (2) for some a ∈ (−m,m).

The main purpose of this paper is to determine how small can [λl(∂�), λu(∂�)] be
under some constraint on the size of ∂� and/or �. In Sect. 5.2 we show that a natural
condition is to consider

Area(∂�)

Cap(�)
= constant,

where Cap(�) stands for the Newtonian capacity of � (see Sect. 5.2 for the details). In
particular, our main result in this direction is the following theorem (see also Remark
5.5). The symbol “Ker” in the statement of the theorem denotes the kernel, referring to
(2).

Theorem 1.1. Let � ⊂ R
3 be a bounded domain with smooth boundary and assume

that

m
Area(∂�)

Cap(�)
>

1

4
√
2
. (3)
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Then

sup{|λ| : Ker(H + Vλ − a) �= 0 for some a ∈ (−m,m)}

≥ 4

(
m

Area(∂�)

Cap(�)
+

√
m2

(
Area(∂�)

Cap(�)

)2

+
1

4

)
,

inf{|λ| : Ker(H + Vλ − a) �= 0 for some a ∈ (−m,m)}

≤ 4

(
− m

Area(∂�)

Cap(�)
+

√
m2

(
Area(∂�)

Cap(�)

)2

+
1

4

)
.

In both cases, the equality holds if and only if � is a ball.

The first step to prove this result is to use the connection made in [2] between (2) and
the existence of a nontrivial eigenvalue c(a) of Ca

σ , a Cauchy type operator defined on
∂� in the principal value sense, and whose precise definition we postpone to Sect. 2.1.
This connection corresponds to the so-called Birman–Schwinger principle (see [13])
adapted to our setting (see Proposition 3.1).

The second step is to show that c(a) is a monotone function of a ∈ (−m,m). This has
important consequences because it reduces the problem to the study of the limiting cases
a = ±m. Using the well-known properties of the Cauchy operator stated in Lemma 2.2
below, it is sufficient to consider just the case a = m. This latter problem is equivalent
to finding λ ∈ R and u, h ∈ L2(σ )2 with u, v �= 0 such that

{
2mK (u) +W (h) = −u/λ,

W (u) = −h/λ,

where K is an operator on ∂� defined by the convolution with the Newtonian kernel
k(x) = (4π |x |)−1 (a positive and compact operator), andW is a “Clifford algebra” ver-
sion of the 2-dimensional Riesz transform on ∂� whose precise definition we postpone
to Sect. 4.

At this point two results become crucial. On one hand, we use that 2W is an isometry
when ∂� is a sphere. This is indeed something specific of the sphere; in [6] the authors
prove that the spheres are the only boundaries of bounded domains for which 2W is an
isometry (under some extra assumptions). On the other hand, to deal with K , we use the
fact proved in [11,12], which says that if the Newtonian capacity Cap(�) is attained on
the normalized surface measure of ∂� and � is regular enough, then ∂� is a sphere. By
a simple argument, we relate K and Cap(�). In order to use these two ingredients, we
first prove that to solve our optimization problem is equivalent to minimize, in terms of
�, the infimum over all λ > 0 such that

(
4

λ

)2∫
∂�

|W ( f )|2 dσ +
8m

λ

∫
∂�

K ( f ) · f dσ ≤
∫

∂�

| f |2 dσ (4)

for all f ∈ L2(σ )2. It is to this infimum λ to which we prove an isoperimetric-type
inequality like the first one in Theorem 1.1 (see Lemma 5.3). The constraint (3) appears
as a technical obstruction on the arguments that we use to connect the infimum λ of the
quadratic form inequality to the admissible λ’s that generate eigenvalues as in (2) (see
Theorem 4.3(iv) and Corollary 4.6, see also Remark 4.5 for a related result). We should
mention that the free Dirac operator H is neither bounded above nor below, so that
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characterizing eigenvalues by minimizing some appropriately chosen quadratic form is
not as straightforward as can be seen in [4]. Since W is self-adjoint, (4) can be read as

∫
∂�

((
4W

λ

)2

+
8mK

λ

)
( f ) · f dσ ≤

∫
∂�

| f |2 dσ.

The paper is organized as follows. In Sect. 2 we state the preliminaries, where we
introduce some notation and recall some properties of the resolvent of H , as well as
the construction of H + Vλ. Section 3 is devoted to the Birman–Schwinger principle
and the above-mentioned monotone character of the eigenvalues of Ca

σ . The relation
with the limiting case a = m for the optimization problem and the optimal constant
of the quadratic form inequality (4) is explored in Sect. 4. Finally, Sect. 5 is about the
isoperimetric-type result and contains the proof of Theorem 1.1 in Sect. 5.2. Previously,
some other natural constraint conditions not includingNewtonian capacity are discarded.

We want to thank P. Exner for enlightening conversations.

2. Preliminaries

This article continues the study developed in [1,2], so we assume that the reader is
familiar with the notation, methods and results in there. However, in this section we
recall some basic rudiments for the sake of completeness.

Given a positive Borel measure ν in R3, set

L2(ν)4 =
{
f : R3 → C

4 ν-measurable :
∫

| f |2 dν < ∞
}

,

and denote by 〈·, ·〉ν and ‖ · ‖ν the standard scalar product and norm in L2(ν)4, i.e.,
〈 f, g〉ν = ∫

f · g dν and ‖ f ‖2ν = ∫ | f |2 dν for f, g ∈ L2(ν)4. We write I4 or 1
interchangeably to denote the identity operator on L2(ν)4. We say that ν is a measure of
d-dimensional growth if there exists C > 0 such that ν(B(x, r)) ≤ Crd for all x ∈ R

3,
r > 0.

We denote byμ the Lebesguemeasure inR3. Concerning ∂�, note that σ is ameasure
of 2-dimensional growth. Since we are not interested in optimal regularity assumptions,
for the sequel we assume that ∂� is of class C∞. Finally, we introduce the auxiliary
space of locally finite measures

X =
{
Gμ + gσ : G ∈ L2(μ)4, g ∈ L2(σ )4

}
.

2.1. A fundamental solution of H −a. Observe that H , which is symmetric and initially
defined inC∞

c (R3)4 (C4-valued functions inR3 which areC∞ andwith compact support),
can be extended by duality to the space of distributions with respect to the test space
C∞
c (R3)4 and, in particular, it can be defined onX . The following lemma (see [2, Lemma

2.1]) is concernedwith the resolvent of H , whichwill be very useful for the results below.

Lemma 2.1. Given a ∈ R, a fundamental solution of H − a is given by

φa(x) = e−√
m2−a2|x |

4π |x |
(
a + mβ +

(
1 +

√
m2 − a2|x |

)
iα · x

|x |2
)

for x ∈ R
3\{0},
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i.e., (H −a)φa = δ0 I4 in the sense of distributions, where δ0 denotes the Dirac measure
centered at the origin. Furthermore, if a ∈ (−m,m) then φa satisfies

(i) φa
j,k ∈ C∞(R3\{0}) for all 1 ≤ j, k ≤ 4,

(ii) φa(x − y) = (φa)t (y − x) for all x, y ∈ R
3 such that x �= y,

(iii) there exist γ, δ > 0 such that
(a) sup1≤ j,k≤4 |φa

j,k(x)| ≤ C |x |−2 for all |x | < δ,

(b) sup1≤ j,k≤4 |φa
j,k(x)| ≤ Ce−γ |x | for all |x | > 1/δ,

(c) sup1≤ j,k≤4 supξ∈R3(1+ |ξ |2)1/2|F(φa
j,k)(ξ)| < ∞,whereF denotes the Fourier

transform in R3.

In the lemma above we denoted the complex conjugate of the transpose of φa by (φa)t ,
that is,

((φa)t ) j,k = φa
k, j and (φa) j,k = φa

j,k for all 1 ≤ j, k ≤ 4.

Note that the assumption a ∈ (−m,m) in Lemma 2.1 is only relevant for the validity of
properties (ii), (iii)(b) and (iii)(c).

Given a positive Borel measure ν in R3, f ∈ L2(ν)4, and x ∈ R
3, we set

(φa ∗ f ν)(x) =
∫

φa(x − y) f (y) dν(y),

whenever the integral makes sense. By Lemma 2.1 and [1, Lemma 2.1], if a ∈ (−m,m)

and ν is a measure inR3 of d-dimensional growth for some 1 < d ≤ 3, then there exists
C > 0 such that

‖φa ∗ gν‖μ ≤ C‖g‖ν for all g ∈ L2(ν)4. (5)

The next lemma (see [2, Lemma 2.2]), will be used in the sequel.

Lemma 2.2. Given g ∈ L2(σ )4 and x ∈ ∂�, set

Ca
σ (g)(x) = lim

ε↘0

∫
|x−z|>ε

φa(x − z)g(z) dσ(z) and

Ca±(g)(x) = lim
�±�y nt−→x

(φa ∗ gσ)(y),

where �± � y
nt−→ x means that y ∈ �± tends to x ∈ ∂� non-tangentially. Then Ca

σ

and Ca± are bounded linear operators in L2(σ )4. Moreover, the following holds:

(i) Ca± = ∓ i
2 (α · N ) + Ca

σ (Plemelj–Sokhotski jump formulae),
(ii) for any a ∈ [−m,m], Ca

σ is self-adjoint and −4(Ca
σ (α · N ))2 = I4.

2.2. On the divergence theorem for H − a. A simple computation involving the diver-
gence theorem shows that∫

�±

(
(α · ∇)ϕ · ψ + ϕ · (α · ∇)ψ

)
dμ = ±

∫
∂�

(α · N )ϕ · ψ dσ

for all ϕ,ψ ∈ W 1,2(χ�±μ)4, where W 1,2(χ�±μ)4 denotes the Sobolev space of C4-
valued functions defined on �± such that all its components have all their derivatives
up to first order in L2(χ�±μ). As a consequence, we easily deduce that
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∫
�±

(
(H − a)ϕ · ψ − ϕ · (H − a)ψ

)
dμ = ∓i

∫
∂�

(α · N )ϕ · ψ dσ. (6)

2.3. The construction of H + V and its domain of definition. In what follows we use a
nonstandard notation, �a , to define the convolution of measures in X with the funda-
mental solution of H − a, φa . Capital letters, as F or G, in the argument of �a denote
elements of L2(μ)4, and the lowercase letters, as f or g, denote elements in L2(σ )4.
Despite that this notation is nonstandard, it is very convenient in order to shorten the
forthcoming computations.

Given Gμ + gσ ∈ X , we define

�a(G + g) = φa ∗ Gμ + φa ∗ gσ.

Then (5) shows that ‖�a(G + g)‖μ ≤ C(‖G‖μ + ‖g‖σ ) for some constant C > 0 and
all Gμ + gσ ∈ X , so �a(G + g) ∈ L2(μ)4. Moreover, following [1, Section 2.3] one
can show that (H −a)(�a(G + g)) = Gμ+ gσ in the sense of distributions. This allows
us to define a “generic” potential V acting on functions ϕ = �a(G + g) by

V (ϕ) = −gσ,

so that (H − a + V )(ϕ) = Gμ in the sense of distributions. For simplicity of notation,
we write (H − a + V )(ϕ) = G ∈ L2(μ)4.

In order to construct a domain of definition where H + V is self-adjoint, in [1] we
used the trace operator on ∂�. For G ∈ C∞

c (R3)4, one defines the trace operator on ∂�

by t∂�(G) = Gχ∂�. Then, t∂� extends to a bounded linear operator

tσ : W 1,2(μ)4 → L2(σ )4

(see [1, Proposition 2.6], for example). From Lemma 2.1(iii)(c), we have

‖�a(G)‖W 1,2(μ)4 ≤ C‖G‖μ

for some C > 0 and all G ∈ L2(μ)4 (see [1, Lemma 2.8]), thus we can define

�a
σ (G) = tσ (�a(G)) = tσ (φa ∗ Gμ)

and it satisfies ‖�a
σ (G)‖σ ≤ C‖G‖μ for all G ∈ L2(μ)4. In accordance with the

notation introduced in [1], for the case a = 0, we write �, �σ , C± and Cσ instead of
�0, �0

σ , C
0± and C0

σ , respectively.
Finally, we recall our main tool to construct domains where H + V is self-adjoint,

namely [1, Theorem 2.11]. Actually, the following theorem, which corresponds to [2,
Theorem 2.3], is a direct application of [1, Theorem 2.11] to H + V , and we state it here
in order to make the exposition more self-contained. Given an operator between vector
spaces S : X → Y , denote

Ker(S) = {x ∈ X : S(x) = 0} and Range(S) = {S(x) ∈ Y : x ∈ X}.
Theorem 2.3. Let � : L2(σ )4 → L2(σ )4 be a bounded operator. Set

D(T ) = {�(G + g) : Gμ + gσ ∈ X , �σ (G) = �(g)} ⊂ L2(μ)4 and

T = H + VonD(T ),

where V (ϕ) = −gσ and (H + V )(ϕ) = G for all ϕ = �(G + g) ∈ D(T ). If � is
self-adjoint and Range(�) is closed, then T : D(T ) → L2(μ)4 is an essentially self-
adjoint operator. In that case, if {�(h) : h ∈ Ker(�)} is closed in L2(μ)4, then T is
self-adjoint.
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In particular, if� is self-adjoint and Fredholm, then the operator T given by Theorem
2.3 is self-adjoint.

2.4. Electrostatic shell potentials. In [1, Theorem 3.8] we proved that, if λ ∈ R\{0,±2}
and T is the operator defined by

D(T ) = {
�(G + g) : Gμ + gσ ∈ X , �σ (G) = �(g)

}
and T = H + Vλ on D(T ),

where

� = −(1/λ + Cσ ), Vλ(ϕ) = λ

2
(ϕ+ + ϕ−)σ (7)

and ϕ± = �σ (G) + C±(g) for ϕ = �(G + g) ∈ D(T ), then T : D(T ) ⊂ L2(μ)4 →
L2(μ)4 is self-adjoint. Moreover, we also showed that Vλ = V on D(T ) for all λ �= 0,
so the self-adjointness was a consequence of Theorem 2.3. Let us mention that if one
replaces �σ (G) = �(g) by λ�σ (G) = λ�(g) in the definition of D(T ) above, one
recovers the well-known fact that D(H + V0) = D(H) = W 1,2(μ)4 when λ = 0.

3. Birman–Schwinger Principle and Monotonicity

We will make use of the following proposition, which corresponds to [2, Proposition
3.1] and can be understood as the classical Birman-Schwinger principle adapted to our
setting.

Proposition 3.1. Let T be as in Theorem 2.3. Given a ∈ (−m,m), there exists ϕ =
�(G + g) ∈ D(T ) such that T (ϕ) = aϕ if and only if �(g) = (Ca

σ − Cσ )(g) and
G = a�a(g). Therefore, Ker(T − a) �= 0 if and only if Ker(� + Cσ − Ca

σ ) �= 0.

The following lemma contains the monotonicity property mentioned in the introduc-
tion.

Lemma 3.2. Given a ∈ [−m,m], the eigenvalues of Ca
σ form a finite or countable

sequence ∅ �= {c j (a)} j ⊂ R, with 1/4 being the only possible accumulation point of
{c j (a)2} j . Moreover, d

da c j (a) > 0 for all a ∈ (−m,m) and all j .
As a consequence, given a ∈ (−m,m), the set of real λ’s such thatKer(H +Vλ−a) �=

0 form a finite or countable sequence ∅ �= {λ j (a)} j ⊂ R, with 4 being the only possible
accumulation point of {λ j (a)2} j . Furthermore,λ j (a) is a strictlymonotonous increasing
function of a ∈ (−m,m) for all j .

Proof. For any a ∈ [−m,m], the existence of the sequence ∅ �= {c j (a)} j ⊂ R stated
in the lemma and its possible accumulation point are guaranteed by [2, Remark 3.5]
(which also holds for a = ±m) and the self-adjointness of Ca

σ .
Given a ∈ [−m,m] and c j (a), let g j (a) ∈ L2(σ )4 be such that ‖g j (a)‖σ = 1 and

Ca
σ (g j (a)) = c j (a)g j (a). (8)

To differentiate c j (a) with respect to a, we take the scalar product of (8) with g j (a), so

c j (a) = 〈c j (a)g j (a), g j (a)〉σ = 〈Ca
σ (g j (a)), g j (a)〉σ .



490 N. Arrizabalaga, A. Mas, L. Vega

We abbreviate ∂a ≡ d
da . Then, at a formal level,

∂ac j (a) = 〈∂a
(
Ca

σ (g j (a))
)
, g j (a)〉σ + 〈Ca

σ (g j (a)), ∂ag j (a)〉σ
= 〈(∂aCa

σ )(g j (a)), g j (a)〉σ + 〈Ca
σ (∂ag j (a)), g j (a)〉σ + 〈Ca

σ (g j (a)), ∂ag j (a)〉σ
= 〈(∂aCa

σ )(g j (a)), g j (a)〉σ + 2Re〈∂ag j (a),Ca
σ (g j (a))〉σ , (9)

wherewe used in the last equality above thatCa
σ is self-adjoint. Recall that ‖g j (a)‖σ = 1

for all a ∈ (−m,m), thus (8) gives

0 = c j (a)∂a〈g j (a), g j (a)〉σ = 〈∂ag j (a), c j (a)g j (a)〉σ + 〈c j (a)g j (a), ∂ag j (a)〉σ
= 2Re〈∂ag j (a),Ca

σ (g j (a))〉σ ,

which plugged into (9) yields

∂ac j (a) = 〈(∂aCa
σ )(g j (a)), g j (a)〉σ . (10)

To justify the above computations, in particular in what respects to the issue of the
principal value in the definition of Ca

σ , one can decompose the kernel

φa(x) = e−√
m2−a2|x |

4π |x |
(
a + mβ + i

√
m2 − a2 α · x

|x |
)
+
e−√

m2−a2|x | − 1

4π
i

(
α · x

|x |3
)

+
i

4π

(
α · x

|x |3
)

=: ω1(x) + ω2(x) + ω3(x)

and note that the principal value only concerns ω3, since the kernels ω1 and ω2 are
absolutely integrable on ∂� and actually define compact operators, but ω3 does not
depend on a. At this point, standard arguments in perturbation theory (by compact
operators which depend continuously on the perturbation parameter) allow us to justify
the formal computations carried out above concerning ∂a .

Our aim now is to understand the operator ∂aCa
σ . One may guess that, since Ca

σ is
defined as the convolution operator on ∂� with the fundamental solution of H − a, and
formally ∂a((H − a)−1) = (H − a)−2, then ∂aCa

σ should be defined as the convolution
operator on ∂� with the fundamental solution of (H − a)2. This is indeed the case. In
the following lines, we are going to prove the details of this argument. We can easily
compute

∂a(φ
a(x)) = ae−√

m2−a2|x |

4π
√
m2 − a2

(
a + mβ + i

√
m2 − a2 α · x

|x |
)
+
e−√

m2−a2|x |

4π |x | . (11)

Note that

−iα · ∇(e−√
m2−a2|x |) = i

√
m2 − a2e−√

m2−a2|x | α · x

|x | ,

so (11) gives

∂a(φ
a(x)) = a (H + a)

e−√
m2−a2|x |

4π
√
m2 − a2

+
e−√

m2−a2|x |

4π |x | . (12)
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A simple calculation shows that

(−� + m2 − a2)
e−√

m2−a2|x |

8π
√
m2 − a2

= e−√
m2−a2|x |

4π |x | (13)

which, combined with (12) and using that −� + m2 − a2 = (H − a)(H + a), yields

∂a(φ
a(x)) =

(
a(H + a) +

1

2
(−� + m2 − a2)

)
e−√

m2−a2|x |

4π
√
m2 − a2

=
(
a +

1

2
(H − a)

)
(H + a)

e−√
m2−a2|x |

4π
√
m2 − a2

= (H + a)2
e−√

m2−a2|x |

8π
√
m2 − a2

.

(14)

Recall that (4π |x |)−1e−√
m2−a2|x | is a fundamental solution of −� + m2 − a2, that is

(−� + m2 − a2)
e−√

m2−a2|x |

4π |x | = δ0

in the sense of distributions. In particular, from (13) we get that

(−� + m2 − a2)2
e−√

m2−a2|x |

8π
√
m2 − a2

= δ0. (15)

Since −� + m2 − a2 commutes with H + a, we easily see that

(H − a)2(H + a)2 = (−� + m2 − a2)2,

and then, from (14) and (15), we finally deduce that

(H − a)2 ∂a(φ
a(x)) = δ0, (16)

whichmeans that ∂a(φa(x)) is a fundamental solution of (H−a)2, and ∂aCa
σ corresponds

to the operator of convolution on ∂� with this kernel, as suggested before (11). Note
that ∂a(φa(x)) = O(1/|x |) for |x | → 0, so in particular ∂aCa

σ is compact in L2(σ )4.
Given g ∈ L2(σ )4, set

u(x) =
∫

∂a(φ
a(x − y))g(y) dσ(y) for x ∈ R

3,

so u = (∂aCa
σ )(g) on ∂�. Using (14), that −�+m2 − a2 and H + a commute and (13),

we see that for any x ∈ R
3\∂�,

(H − a)u(x) =
∫

(Hx − a)∂a(φ
a(x − y))g(y) dσ(y)

=
∫

(−�x + m2 − a2)(Hx + a)
e−√

m2−a2|x−y|

8π
√
m2 − a2

g(y) dσ(y)

=
∫

(Hx + a)
e−√

m2−a2|x−y|

4π |x − y| g(y) dσ(y) = �a(g)(x), (17)
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because φa(x) = (H + a)(4π |x |)−1e−√
m2−a2|x | by construction. Concerning the no-

tation employed, we mention that �x and Hx denote the Laplace and Dirac operators
acting as a derivative on the x variable. Since φa is a fundamental solution of H − a,
we see from (17) that (H − a)2u = 0 outside ∂�, a fact that we already knew in view
of (16) and the definition of u.

From Lemma 2.2(i), we have g = i(α · N )(Ca
+(g) − Ca−(g)). Therefore, using (6),

that (H − a)�a(g) = 0 outside ∂� and (17), we finally get

〈(∂aCa
σ )(g), g〉σ = −i

∫
(α · N )u · (Ca

+(g) − Ca−(g)) dσ

=
∫
R3\∂�

(
(H − a)u · �a(g) − u · (H − a)�a(g)

)
dμ

=
∫
R3\∂�

|�a(g)|2 dμ. (18)

Thanks to the Plemelj–Sokhotski jump formulae from Lemma 2.2(i), we see that if
g ∈ L2(σ )4 is such that �a(g) = 0 in R

3\∂� then Ca±(g) = 0, and thus g = 0.
Therefore, applying (18) to g j (a) and plugging it into (10) yields

∂ac j (a) = 〈(∂aCa
σ )(g j (a)), g j (a)〉σ =

∫
R3\∂�

|�a(g j (a))|2 dμ > 0,

because g j (a) is not identically zero (since ‖g j (a)‖σ = 1 by assumption).
To finish the proof of the lemma, it only remains to be shown the stated conclusions

about {λ j (a)} j . By Proposition 3.1 and the definition of � in (7), if a ∈ (−m,m) then

Ker(H + Vλ − a) �= 0 if and only if Ker(1/λ + Ca
σ ) �= 0,

thus the existence of a sequence ∅ �= {λ j (a)} j ⊂ R such that Ker(H + Vλ j (a) − a) �= 0
and the fact stated in the lemma concerning its unique possible accumulation point follow
from the first part of the lemma. Moreover, by setting c j (a) = −1/λ j (a) we see that
λ j (a) is a strictly monotonous increasing function of a ∈ (−m,m) for all j . ��
Corollary 3.3. Given a ∈ (−m,m), we have

sup{λ < 0 : Ker(H + Vλ − a) �= 0} = −4/ sup{λ > 0 : Ker(H + Vλ − a) �= 0},
(19)

and the same holds replacing sup by inf on both sides of (19). Set

λs±m = sup{λ ∈ R : Ker(1/λ + C±m
σ ) �= 0},

λi±m = inf{λ ∈ R : Ker(1/λ + C±m
σ ) �= 0}.

Then λs±m > 0 > λi±m and the following hold:

(i) sup{λ ∈ R : Ker(H + Vλ − a) �= 0 for some a ∈ (−m,m)} = λsm ,
(ii) inf{λ ∈ R : Ker(H + Vλ − a) �= 0 for some a ∈ (−m,m)} = λi−m ,
(iii) sup{|λ| : Ker(H + Vλ − a) �= 0 for some a ∈ (−m,m)} = max{λsm,−λi−m},
(iv) inf{|λ| : Ker(H + Vλ − a) �= 0 for some a ∈ (−m,m)} = 4/max{λsm,−λi−m}.
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Proof. Given a ∈ (−m,m), by [2, Remark 3.5] we see that {λ ∈ R\{0} : Ker(H +Vλ −
a) �= 0} is a non empty set. Furthermore, in [2, Theorem 3.3] we also proved that

Ker(H + Vλ − a) �= 0 if and only if Ker(H + V−4/λ − a) �= 0. (20)

In particular, we see that {λ < 0 : Ker(H+Vλ−a) �= 0} and {λ > 0 : Ker(H+Vλ−a) �=
0} are non empty sets. Then, a simple argument using (20) proves (19).

Note that [2, Remark 3.5] still aplies to the case a = ±m, so {λ ∈ R : Ker(1/λ +
C±m

σ ) �= 0} is a non empty set, and thus λs±m and λi±m are well defined. An inspection
of the proof of [2, Theorem 3.3] shows that, for any a ∈ [−m,m],

Ker(1/λ + Ca
σ ) �= 0 if and only if Ker(−λ/4 + Ca

σ ) �= 0, (21)

which in fact is a consequence of Lemma 2.2(ii) (note that (20) follows by (21) and
Proposition 3.1). A straightforward application of (21) proves that λs±m > 0 > λi±m .
Furthermore, (i) and (ii) are a direct consequence of the monotonicity property proved
in Lemma 3.2, and (iii) follows from (i), (ii) and the fact that λsm > 0 > λi−m . Regarding
(iv), note that inf{|λ| : Ker(H + Vλ − a) �= 0 for some a ∈ (−m,m)} is the minimum
between − sup{λ < 0 : Ker(H + Vλ − a) �= 0 for some a ∈ (−m,m)} and inf{λ >

0 : Ker(H + Vλ − a) �= 0 for some a ∈ (−m,m)}, which by (19) and Lemma 3.2
correspond to 4/λsm and −4/λi−m , respectively. This yields (iv). ��

4. Quadratic Forms

For a ∈ R and σ = (σ1, σ2, σ3), where the σ j ’s compose the family of Pauli matrices
introduced in (1), define the kernels

ka(x) = e−√
m2−a2|x |

4π |x | I2 and wa(x) = e−√
m2−a2|x |

4π |x |3
(
1 +

√
m2 − a2|x |

)
i σ · x

for x ∈ R
3\{0}. Given f ∈ L2(σ )2 and x ∈ ∂�, set

Ka( f )(x) =
∫

ka(x − z) f (z) dσ(z) and Wa( f )(x)

= lim
ε↘0

∫
|x−z|>ε

wa(x − z) f (z) dσ(z).

That Ka and Wa are bounded operators in L2(σ )2 can be verified similarly to the case
of Ca

σ in L2(σ )4, we omit the details. Moreover, note that

Ca
σ =

(
(a + m)Ka Wa

Wa (a − m)Ka

)
. (22)

The results in the following lemma are contained in [2, Section 4].

Lemma 4.1. For any a ∈ [−m,m], K a is positive and self-adjoint, Wa is also self-
adjoint and the following hold:

(i) the anticommutator {(σ · N )Ka, (σ · N )Wa} vanishes identically,
(ii) ((σ · N )Wa)2 + (a2 − m2)((σ · N )Ka)2 = −1/4.
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For simplicity of notation, we write k, w, K and W instead of km , wm , Km and Wm ,
respectively. Observe that k(x) = 1/(4π |x |) and w(x) = iσ · x/(4π |x |3). If T denotes
a bounded operator in L2(σ )2, we write ‖T ‖σ instead of ‖T ‖L2(σ )2→L2(σ )2 .

The following lemma is essentially contained in [6], but we give a simple proof for
the sake of completeness.

Lemma 4.2. ‖W‖σ ≥ 1/2. Moreover, ‖W‖σ = 1/2 if and only if {σ · N ,W } = 0, and
in this case 2W is an isometry in L2(σ )2.

Proof. From Lemma 4.1(ii) we have

1

16

∫
| f |2 dσ =

∫
|((σ · N )W )2( f )|2 dσ ≤ ‖W‖2σ

∫
|W ( f )|2 dσ ≤ ‖W‖4σ

∫
| f |2 dσ

(23)

for all f ∈ L2(σ )2. From this we see that ‖W‖σ ≥ 1/2.
On one hand, if ‖W‖σ = 1/2, then (23) yields

1

4

∫
| f |2 dσ =

∫
|W ( f )|2 dσ for all f ∈ L2(σ )2, (24)

which shows that 2W is an isometry in L2(σ )2. By Lemma 4.1 and (24) we conclude
that

∫
|{σ · N ,W }( f )|2 dσ

=
∫

((σ · N )W +W (σ · N ))( f ) · ((σ · N )W +W (σ · N ))( f ) dσ

=
∫ (

|W ( f )|2 + |W (σ · N )( f )|2 − 1

4
| f |2 − 1

4
|(σ · N ) f |2

)
dσ = 0

for all f ∈ L2(σ )2, which implies that {σ · N ,W } = 0.
On the other hand, if {σ · N ,W } = 0 then, once again by Lemma 4.1,

∫
|W ( f )|2 dσ =

∫
W (σ · N )(σ · N )W ( f ) · f dσ

=
∫

W (σ · N ){σ · N ,W }( f ) · f dσ +
1

4

∫
| f |2 dσ = 1

4

∫
| f |2 dσ

(25)

for all f ∈ L2(σ )2. In particular, ‖W‖σ = 1/2. ��
We must mention that in [6] the authors show that {σ · N ,W } = 0 (or, equivalently,
‖W‖σ = 1/2) if and only if ∂� is a plane or a sphere, as commented in the introduction
in reference to the isometric character of 2W .

The following theoremexplores the connection between the quadratic form inequality
(4) and the eigenvalues ofC±m

σ , and it is a key ingredient to derive the isoperimetric-type
inequalities contained in Theorem 1.1.
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Theorem 4.3. Let λ� be the infimum over all λ > 0 such that(
4

λ

)2∫
|W ( f )|2 dσ +

8m

λ

∫
K ( f ) · f dσ ≤

∫
| f |2 dσ (26)

for all f ∈ L2(σ )2. Then, λ� is also the infimum over all λ > 0 such that∫
| f |2 dσ + 2mλ

∫
K ( f ) · f dσ ≤ λ2

∫
|W ( f )|2 dσ (27)

for all f ∈ L2(σ )2, and the following hold:

(i) 2 < 4
(
m‖K‖σ +

√
m2‖K‖2σ + 1/4

) ≤ λ� ≤ 4
(
m‖K‖σ +

√
m2‖K‖2σ + ‖W‖2σ

)
,

(ii) if λ > 0 is such that Ker(1/λ + Cm
σ ) �= 0 then λ ≤ λ�,

(iii) if λ < 0 is such that Ker(1/λ + C−m
σ ) �= 0 then λ ≥ −λ�,

(iv) (26) holds for all λ ≥ λ� and it is sharp for λ = λ�. If λ = λ� > 2
√
2 then the

equality in (26) is attained. In this case, the minimizers of (26) (that is, functions
that attain the equality) give rise to functions in Ker(1/λ� + Cm

σ ) and vice versa;
the same holds replacing Ker(1/λ� + Cm

σ ) by Ker(−1/λ� + C−m
σ ),

(v) (iv) also holds replacing (26) by (27).

Proof. Given λ > 0 and f ∈ L2(σ )2, set

A(λ, f ) =
(
4

λ

)2∫
|W ( f )|2 dσ +

8m

λ

∫
K ( f ) · f dσ.

Let us prove (i). Note that

A(λ, f ) ≤
((

4‖W‖σ

λ

)2

+
8m‖K‖σ

λ

)
‖ f ‖2σ . (28)

Hence, if λ ≥ 4
(
m‖K‖σ +

√
m2‖K‖2σ + ‖W‖2σ

)
then (28) easily yields A(λ, f ) ≤ ‖ f ‖2σ

for all f ∈ L2(σ )2, which in turn implies that λ� ≤ 4
(
m‖K‖σ +

√
m2‖K‖2σ + ‖W‖2σ

)
.

The inequality from below is a bit more involved. Let λ > 0 be such that

A(λ, f ) ≤ ‖ f ‖2σ for all f ∈ L2(σ )2. (29)

If we set h = 4
λ
(σ · N )W ( f ) ∈ L2(σ )2, then f = −λ(σ · N )W (h) by Lemma 4.1(ii)

taking a = m. Furthermore,
∫

|W ( f )|2 dσ =
(

λ

4

)2∫
|(σ · N )h|2 dσ =

(
λ

4

)2∫
|h|2 dσ (30)

and ∫
| f |2 dσ = λ2

∫
|(σ · N )W (h)|2 dσ = λ2

∫
|W (h)|2 dσ. (31)

Moreover, using Lemma 4.1,∫
K ( f ) · f dσ = λ2

∫
K (σ · N )W (h) · (σ · N )W (h) dσ

= −λ2
∫

K (σ · N )W (σ · N )W (h) · h dσ = λ2

4

∫
K (h) · h dσ.

(32)
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Gathering (29) with (30), (31) and (32) yields
∫

|h|2 dσ + 2mλ

∫
K (h) · h dσ ≤ λ2

∫
|W (h)|2 dσ for all h ∈ L2(σ )2. (33)

Note that this argument is reversible, thus in particular we have proven that

λ� = inf

{
λ > 0 :

∫
| f |2 dσ + 2mλ

∫
K ( f ) · f dσ

≤ λ2
∫

|W ( f )|2 dσ ∀ f ∈ L2(σ )2
}

,

which yields (27). If we multiply (33) by 16/λ4 we get

16

λ4

∫
| f |2 dσ +

32m

λ3

∫
K ( f ) · f dσ ≤ 16

λ2

∫
|W ( f )|2 dσ for all f ∈ L2(σ )2,

which added to (29) gives

2m
∫

K ( f ) · f dσ ≤
(

λ

4
− 1

λ

) ∫
| f |2 dσ for all f ∈ L2(σ )2.

Since K is bounded, positive and self-adjoint, we see from the above inequality that

2m‖K‖σ = 2m sup
‖ f ‖σ =1

∫
K ( f ) · f dσ ≤ λ

4
− 1

λ
,

which in turn is equivalent to

λ2 − 8m‖K‖σ λ − 4 ≥ 0,

since λ > 0 by assumption. Therefore, wemust haveλ ≥ 4
(
m‖K‖σ +

√
m2‖K‖2σ + 1/4

)
for all λ > 0 satisfying (29). This gives the desired inequality from below for λ�, and
finishes the proof of (i). Observe that this lower bound for λ� is strictly greater than 2
because ‖K‖σ > 0.

We now prove (ii). Assume that λ > 0 is such that Ker(1/λ +Cm
σ ) �= 0. Let 0 �= g ∈

L2(σ )4 be such that Cm
σ (g) = −g/λ. In view of (22),

if g =
(
u
h

)
then

{
2mK (u) +W (h) = −u/λ,

W (u) = −h/λ.
(34)

From Lemma 4.1(ii) and the last equality in (34) we deduce that

u = −4((σ · N )W )2(u) = 4

λ
(σ · N )W (σ · N )(h), (35)

which plugged in the other equation in (34) yields

(
8m

λ
K (σ · N )W (σ · N ) +W +

4

λ2
(σ · N )W (σ · N )

)
(h) = 0. (36)
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Using Lemma 4.1, we may write

8m

λ
K (σ · N )W (σ · N ) +W +

4

λ2
(σ · N )W (σ · N )

=−8m

λ
W (σ · N )K (σ · N ) +W (σ · N )(σ · N ) − 16

λ2
(W (σ · N ))2(σ · N )W (σ · N )

= W (σ · N )

(
−8m

λ
K + 1 − 16

λ2
W 2

)
(σ · N ). (37)

Since W (σ · N ) is invertible by Lemma 4.1(ii), from (36) and (37) we get that
(

−8m

λ
K + 1 − 16

λ2
W 2

)
( f ) = 0, (38)

where we have set f = (σ · N )h. Note that u is given in terms of h by (35) and g �= 0
by assumption, thus we can also assume that f �= 0. In conclusion, we have seen that if
Ker(1/λ + Cm

σ ) �= 0 then there exists 0 �= f ∈ L2(σ )2 such that (38) holds. Actually,
since all the involved arguments are reversible, we see that

Ker(1/λ + Cm
σ ) �= 0 if and only if Ker(−(8m/λ)K + 1 − (16/λ2)W 2) �= 0. (39)

Moreover, if we multiply (38) by f and we integrate with respect to σ , using the self-
adjointness of W we get

A(λ, f ) = ‖ f ‖2σ for all f ∈ Ker(−(8m/λ)K + 1 − (16/λ2)W 2). (40)

Using that W is invertible and that K is positive, it is easy to show that A(λ − ε, f ) >

A(λ, f ) for all f �= 0 and all 0 < ε < λ. In particular, A(λ − ε, f ) > ‖ f ‖2σ for all
0 �= f ∈ Ker(−(8m/λ)K + 1− (16/λ2)W 2), which easily implies that λ − ε ≤ λ� for
all 0 < ε < λ whenever Ker(−(8m/λ)K +1− (16/λ2)W 2) �= 0. Finally, applying (39)
and taking ε → 0 we conclude that if Ker(1/λ + Cm

σ ) �= 0 then λ ≤ λ�, and the proof
of (ii) is complete.

Concerning (iii), if one repeats the arguments used to prove (ii) but on the assumption
that Ker(1/λ + C−m

σ ) �= 0, one can show that there exists some f ∈ L2(σ )2 such that

0 =
(
8m

λ
K + 1 − 16

λ2
W 2

)
( f ) =

(
−8m

|λ| K + 1 − 16

|λ|2W
2
)

( f ),

since we are assuming λ < 0. Hence, we are reduced to the case treated in (38) but with
the parameter |λ|. The rest of the proof follows the same lines, getting that −λ = |λ| ≤
λ�. In particular, we also obtain that

Ker(1/λ + C−m
σ ) �= 0 if and only if Ker((8m/λ)K + 1 − (16/λ2)W 2) �= 0. (41)

Let us prove (iv). Since K is positive, A(λ, f ) is a non-increasing function of λ > 0
for all f ∈ L2(σ )2. By the definition of λ�, this monotony implies that (26) holds for
all λ ≥ λ� and it is sharp for λ = λ�. It remains to be shown that if λ� > 2

√
2 then the

equality is attained and that the minimizers give rise to functions in Ker(1/λ� + Cm
σ )

and vice versa. As we did in (25),∫
|W ( f )|2 dσ =

∫
W (σ · N ){σ · N ,W }( f ) · f dσ +

1

4

∫
| f |2 dσ



498 N. Arrizabalaga, A. Mas, L. Vega

for all f ∈ L2(σ )2. Set

T = W (σ · N ){σ · N ,W } = W 2 − 1

4
.

From Lemma 4.1 we see that T is self-adjoint and, since ∂� is C∞, it is also compact
by the same arguments that prove [1, Lemma 3.5]. Now, we can write

A(λ, f ) − ‖ f ‖2σ =
∫ (

16

λ2
T +

8m

λ
K

)
( f ) · f dσ +

(
4

λ2
− 1

) ∫
| f |2 dσ. (42)

Let λ > 2. Then, (42) shows that

A(λ, f ) ≤ ‖ f ‖2σ if and only if
∫

Tλ( f ) · f dσ ≤
∫

| f |2 dσ, (43)

where we have set

Tλ = 4

λ2 − 4
(4T + 2mλK ) ,

and the same holds replacing “≤” by “=” or “>” on both sides of (43). Observe that Tλ is
also self-adjoint and compact (for all real λ �= ±2), since T and K also are. In particular,
by [5, Lemma (0.43)], there exists 0 �= fλ ∈ L2(σ )2 such that Tλ( fλ) = ‖Tλ‖σ fλ or
Tλ( fλ) = −‖Tλ‖σ fλ.

We are going to show that if λ� > 2
√
2 then we must have Tλ�( fλ�) = ‖Tλ�‖σ fλ�

with ‖Tλ�‖σ = 1. Using (42) we see that, if λ > 2,

A(λ, f ) ≥ 0 if and only if
∫

Tλ( f ) · f dσ ≥ − 4

λ2 − 4

∫
| f |2 dσ. (44)

Since A(λ, f ) ≥ 0 for all λ > 0 because K is positive, from (44) we get that
∫

Tλ( f ) · f dσ > −
∫

| f |2 dσ for all 0 �= f ∈ L2(σ )2 and all λ > 2
√
2. (45)

Combining (43) and (45), and using that Tλ is self-adjoint, we deduce that

‖Tλ‖σ = sup
‖ f ‖σ =1

∣∣∣∣
∫

Tλ( f ) · f dσ

∣∣∣∣ ≤ 1 for all λ ≥ λ� if λ� > 2
√
2. (46)

Furthermore, the definition of λ� and (43) imply that ‖Tλ‖σ > 1 for all λ < λ�.
From this and (46) we get that if λ� > 2

√
2 then ‖Tλ�‖σ = 1, since ‖Tλ‖σ depends

continuously on λ for all λ > 2. In particular, we have seen that there exists 0 �= fλ� ∈
L2(σ )2 such that Tλ�( fλ�) = fλ� or Tλ�( fλ�) = − fλ� . However, if λ� > 2

√
2 then

(45) shows that the case Tλ�( fλ�) = − fλ� is not possible, thus Tλ�( fλ�) = fλ� as
claimed. From (43), we finally get A(λ�, fλ�) = ‖ fλ�‖2σ , which proves that the equality
in (26) is attained for λ = λ� on fλ� .

Concerning the minimizers of (26), assume that A(λ�, f ) = ‖ f ‖2σ for some f �= 0.
Then (43) gives

∫
Tλ�( f ) · f dσ =

∫
| f |2 dσ. (47)
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Since Tλ� is a compact self-ajoint operator (so it diagonalizes in an orthonormal basis
of eigenvectors) and ‖Tλ�‖σ = 1 if λ� > 2

√
2, by (47) we must have Tλ�( f ) = f .

From the definitions of Tλ� and T , we get(
16W 2 + 8mλ�K − λ�

2
)

( f ) = 0,

which implies that Ker(1/λ� + Cm
σ ) �= 0 by (39) and that Ker(−1/λ� + C−m

σ ) �= 0 by
(41). On the contrary, if Ker(1/λ� + Cm

σ ) �= 0 then (39) and (40) show that there exists
f �= 0 such that A(λ�, f ) = ‖ f ‖2σ , and similarly for Ker(−1/λ� + C−m

σ ) �= 0 using
(41) and (40).

Regarding (v), one can check that the conclusions in (iv) also hold when one works
with (27) instead of (26) since these quadratic form inequalities are equivalent (recall
the computations carried out between (29) and (33)), we leave the details for the reader.
The theorem is finally proved. ��
Remark 4.4. Gathering (39) and (41), we get that

Ker(1/λ + Cm
σ ) �= 0 if and only if Ker(−1/λ + C−m

σ ) �= 0. (48)

This corresponds to the endpoint case a = m in [2, Theorem 3.6], thanks to Proposition
3.1. The relevant fact here is that, despite that in [2, Theorem3.6]wewere assuming some
invariance of σ with respect to reflections in order to obtain the antisymmetry property
of the eigenvalues with respect to the potential, (48) holds without this assumption on
σ .

Remark 4.5. The assumption λ� > 2
√
2 in Theorem 4.3(iv) can be weakened using

essentially the same arguments as before. Roughly speaking, from (23) one sees that
16‖W‖2σW 2 ≥ 1, considering this as an inequality between operators in the sense of
quadratic forms. Then

Tλ = 4 (4T + 2mλK )

λ2 − 4
≥ 16T

λ2 − 4
= 16W 2 − 4

λ2 − 4
≥ 1

λ2 − 4

(
1

‖W‖2σ
− 4

)
. (49)

The right hand side of (44) formally corresponds to the limiting case ‖W‖σ = ∞ in
(49). Since the arguments in the proof of Theorem 4.3(iv) require that Tλ� > −1 in
order to get ‖Tλ�‖σ = 1 and find the minimizers, in view of (49) one sees that a possible
assumption is

λ� > 2

√
2 − 1

4‖W‖2σ
, (50)

which is weaker than λ� > 2
√
2. Following the arguments in the forthcoming pages of

this article until the proof of Theorem 1.1 but using (50) instead of λ� > 2
√
2, one can

see that (3) can be weakened to

m
Area(∂�)

Cap(�)
>

1 − 1
4‖W‖2σ

4
√
2 − 1

4‖W‖2σ
.

However, inwhat respects to thepotential applications ofTheorem1.1 as an isoperimetric-
type inequality, one may find bounded domains � with constant mArea(∂�)/Cap(�)

but with ‖W‖σ arbitrarily large, since this last quantity strongly depends on the abrupt-
ness of ∂�. As a consequence, in general one has to assume (3) (or equivalently the
limiting case λ� > 2

√
2) to make use of Theorem 1.1.
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Corollary 4.6. Let λsm and λi−m be as in Corollary 3.3. If λ� > 2
√
2, then

λ� = λsm = −λi−m

= sup{λ ∈ R : Ker(H + Vλ − a) �= 0 for some a ∈ (−m,m)}
= − inf{λ ∈ R : Ker(H + Vλ − a) �= 0 for some a ∈ (−m,m)}
= sup{|λ| : Ker(H + Vλ − a) �= 0 for some a ∈ (−m,m)}

and 4/λ� = inf{|λ| : Ker(H + Vλ − a) �= 0 for some a ∈ (−m,m)}.
Proof. From Corollary 3.3 we already know that λsm > 0 > λi−m . Combining Theorem
4.3(ii) and (iv), we easily see that

λsm = sup{λ ∈ R : Ker(1/λ + Cm
σ ) �= 0} = λ�,

and similarly, using Theorem 4.3(iii) and (iv), we get that λi−m = −λ�. Hence, the
corollary follows directly from Corollary 3.3. Observe that the supremum and the infi-
mum in the definitions of λsm and λi−m are a maximum and a minimum, respectively, if
λ� > 2

√
2. ��

Remark 4.7. Combining the methods used above one can also show that, if λ� > 2
√
2,

4/λ� = inf{λ > 0 : Ker(H + Vλ − a) �= 0 for some a ∈ (−m,m)}
= − sup{λ < 0 : Ker(H + Vλ − a) �= 0 for some a ∈ (−m,m)}.

5. An Isoperimetric-Type Inequality

For the sake of clarity, given a bounded open set � ⊂ R
3 with smooth boundary, we set

Vol(�) = μ(�) and Area(∂�) = σ(∂�).

Furthermore, to stress the dependence of K and W on σ (that is, on ∂�), we write K�

and W� respectively.

5.1. A test to exclude constraints on �. In the setting of bounded domains with smooth
boundary, due to Theorem 4.3(i) we have

4
(
m‖K�‖σ +

√
m2‖K�‖2σ + 1/4

) ≤ λ� ≤ 4
(
m‖K�‖σ +

√
m2‖K�‖2σ + ‖W�‖2σ

)
.

Since ‖W�‖2σ = 1/4 if and only if ∂� is a sphere (recall [6]), one may be tempted to
look for an isoperimetric-type inequality for ‖K�‖σ so that the ball is a minimizer, and
thus obtaining an inequality for λ�. In order to do so, one may impose some constraint
on the admissible domains because of the rescaling properties of ‖K�‖σ under dilations;
if

�t = {t x : x ∈ �} for t > 0

and σt is the surface measure on ∂�t then ‖K�t ‖σt = O(t) but ‖W�t ‖σt = ‖W�‖σ =
O(1). We are going to present a simple and classical method to test possible constraints
that do not permit the existence of domains that minimize ‖K�‖σ . Roughly speaking,
the method is based on the splitting of a domain into two suitable copies of itself. In
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particular, it allows us to prove that “there is no bounded domain with smooth boundary
that attains the infimum of ‖K�‖σ over all bounded domains � with smooth boundary
and constant volume”. The same holds replacing “volume” by “area of the boundary”.

For t > 0 and z ∈ R
3, we set �t,z = �t ∪ (�t + z) and we denote by σt,z the surface

measure on ∂�t,z . We assume that |z| is big enough, so �t ∩ (�t + z) = ∅.
Lemma 5.1. Given � ⊂ R

3 and t > 0, if |z| is big enough then

∣∣‖K�t,z‖σt,z − t‖K�‖σ

∣∣ ≤ σ(∂�t,z)

2πdist(∂�t , ∂�t + z)
.

Proof. Since K�t is positive and self-adjoint, a change of variables easily yields

‖K�t ‖σt = sup
f �=0

1

‖ f ‖2σt

∫
K�t ( f ) · f dσt = sup

f �=0

1

‖ f ‖2σt

∫∫
f (x) · f (y)

4π |x − y| dσt (x) dσt (y)

= sup
f �=0

t∫ | f (t x)|2 dσ(x)

∫∫
f (t x) · f (t y)

4π |x − y| dσ(x) dσ(y) = t‖K�‖σ . (51)

Given f ∈ L2(σt,z)
2, set

I ( f ) =
∫∫

f (x) · f (y)

4π |x − y| dσt,z(x) dσt,z(y).

Since ∂�t,z = ∂�t ∪ (∂�t + z), using Fubini’s theorem we can decompose

I ( f )=
(∫∫

∂�t×∂�t

+
∫∫

(∂�t+z)×(∂�t+z)
+2Re

∫∫
∂�t×(∂�t+z)

)
f (x) · f (y)

4π |x − y| dσt,z(x) dσt,z(y)

=: I1( f ) + I2( f ) + I3( f ). (52)

Note that ‖K�t+z‖σt+z = ‖K�t ‖σt and ‖ f ‖2σt + ‖ f ‖2σt+z = ‖ f ‖2σt,z , thus using (51) we
get

I1( f ) + I2( f ) = ‖ f ‖2σt
I1( f )

‖ f ‖2σt
+ ‖ f ‖2σt+z

I2( f )

‖ f ‖2σt+z
≤ ‖ f ‖2σt ‖K�t ‖σt + ‖ f ‖2σt+z‖K�t+z‖σt+z = ‖ f ‖2σt,z t‖K�‖σ . (53)

Moreover, by Hölder’s inequality,

|I3( f )| ≤
∫
∂�t

| f | dσt,z
∫
∂�t+z

| f | dσt,z

2πdist(∂�t , ∂�t + z)
≤ σ(∂�t,z)‖ f ‖2σt,z

2πdist(∂�t , ∂�t + z)
. (54)

Dividing by ‖ f ‖2σt,z and taking the supremum over all f �= 0 in (52), and using (53) and
(54), we finally obtain

‖K�t,z‖σt,z = sup
f �=0

I ( f )

‖ f ‖2σt,z
≤ sup

f �=0

I1( f ) + I2( f )

‖ f ‖2σt,z
+ sup

f �=0

I3( f )

‖ f ‖2σt,z
≤ t‖K�‖σ +

σ(∂�t,z)

2πdist(∂�t , ∂�t + z)
. (55)
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Given f ∈ L2(σt )
2 and g ∈ L2(σt + z)2, set h = f χ∂�t /‖ f ‖σt + gχ∂�t+z/‖g‖σt+z ∈

L2(σt,z)
2 (we extended f to be identically zero in ∂�t + z and analogously for g). Then

‖h‖2σt,z = 2 and, using (52) and (54) on h, we get

I1( f )

‖ f ‖2σt
+

I2(g)

‖g‖2σt+z
= I1(h) + I2(h) ≤ 2

I (h)

‖h‖2σt,z
+ |I3(h)|

≤ 2‖K�t,z‖σt,z +
σ(∂�t,z)

πdist(∂�t , ∂�t + z)
. (56)

Taking the supremum over all f �= 0 and g �= 0 in (56), and since K�t and K�t+z are
positive and self-adjoint, using (51) we see that

2t‖K�‖σ = ‖K�t ‖σt + ‖K�t+z‖σt+z ≤ 2‖K�t,z‖σt,z +
σ(∂�t,z)

πdist(∂�t , ∂�t + z)
. (57)

The lemma follows from (55) and (57). ��
With Lemma 5.1 at our disposal, we can easily prove that “there is no bounded open

set with smooth boundary that attains the infimum of ‖K�‖σ over all bounded open
sets � with smooth boundary and constant volume”, and that the same holds replacing
“volume” by “area of the boundary”. Let� be a bounded open set with smooth boundary.
If |z| is big enough, Vol(�2−1/3,z) = 2Vol(�2−1/3) = Vol(�), and Lemma 5.1 shows
that

‖K�2−1/3,z
‖σ2−1/3,z

≤ 2−1/3‖K�‖σ +
σ(∂�2−1/3)

πdist(∂�2−1/3 , ∂�2−1/3 + z)
< ‖K�‖σ ,

thus given�we have constructed another bounded domain�2−1/3,z with smooth bound-
ary,with the same volume as�, butwith a strictly smaller normof the associated operator
K . Hence, there can not exists a minimizer. In case that the constraint concerns “constant
area of the boundary”, one only needs to argue with �2−1/2,z instead of �2−1/3,z .

Finally, under the assumption of connectedness, the statement “there is no bounded
domain with smooth boundary that attains the infimum of ‖K�‖σ over all bounded
domains � with smooth boundary and constant volume” can be proven with the same
arguments as before but connecting, in a smooth way, the two connected components of
�t,z (once t and z are properly chosen) by a thin tube and showing that the contribution of
the tube in ‖K�t,z‖σt,z is as small as we want by taking the tube thin enough, essentially
because the kernel k is locally integrable with respect to surface measure. We leave the
details for the reader.

5.2. The relation to the Newtonian capacity. Given a compact set E ⊂ R
3, the New-

tonian capacity of E (sometimes referred in the literature as electrostatic or harmonic
capacity) is defined by

Cap(E) =
(
inf
ν

∫∫
dν(x) dν(y)

4π |x − y|
)−1

,

where the infimum is taken over all probability Borel measures ν supported in E . Some-
times in the literature, the 4π appearing in the definition of Cap(E) is changed by another
precise constant. For the case of open sets U ⊂ R

3, one defines

Cap(U ) = sup{Cap(E) : E ⊂ U, E compact}.
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The Newtonian capacity has a number of distinguished properties which we state as a
lemma for future applications (see [7, Chapters 9 and 11] or [8], for example).

Lemma 5.2. Let � be a bounded open set with smooth boundary. Then,

(i) Cap(�) = Cap(�) = Cap(∂�),
(ii) Pólya–Szegö inequality: let �∗ be the closed ball centered at the origin such that

Vol(�∗) = Vol(�). Then Cap(�) ≥ Cap(�∗). Moreover, the equality holds if and
only if � is a ball.

(iii) Cap(�) = 2(6π2)1/3Vol(�)1/3 if � is a ball.

Regarding the uniqueness of the minimizer in Lemma 5.2(ii), it is important to impose
some restriction on ∂� (such as regularity) in order to avoid sets of Newtonian capacity
zero.

Lemma 5.3. Let � ⊂ R
3 be a bounded domain with smooth boundary. Then

λ� ≥ 4

(
m

Area(∂�)

Cap(�)
+

√
m2

(
Area(∂�)

Cap(�)

)2

+
1

4

)
, (58)

and the equality holds if and only if � is a ball.

Proof. Since K� is a positive self-adjoint operator, we have

‖K�‖σ = sup
f �=0

1

‖ f ‖2σ

∫
K�( f ) · f dσ ≥ 1

σ(∂�)

∫
K�

((
1
0

))
·
(
1
0

)
dσ

= σ(∂�)

∫∫
1

4π |x − y|
dσ(x)

σ (∂�)

dσ(y)

σ (∂�)
≥ Area(∂�)

Cap(�)
, (59)

where we also used Lemma 5.2(i) in the last inequality above. Gathering (59) and
Theorem 4.3(i), we get (58).

Assume that� is a ball of radius r > 0 centered at the origin. Then, for any x, y ∈ ∂�,

(σ · N (x))(σ · (x − y)) = 1

r
(σ · x)(σ · (x − y)) = 1

r
(r2 − (σ · x)(σ · y))

= −1

r
(−r2 + (σ · x)(σ · y)) = −1

r
(σ · (x − y))(σ · y))

= −(σ · (x − y))(σ · N (y)).

This identity easily yields {σ · N ,W�} = 0 and, by Lemma 4.2, ‖W�‖σ = 1/2. There-
fore, from Theorem 4.3(i) we get that

λ� = 4
(
m‖K�‖σ +

√
m2‖K�‖2σ + 1/4

)
(60)

if � is a ball. Let e3 = (0, 0, 1) ∈ R
3, and we identify the matrix k with its scalar

version. Following [5, Generalized Young’s Inequality (0.10)] and since ∂� is invariant
under rotations, it is easy to see that

‖K�‖σ ≤ ‖k(· − re3)‖L1(σ ) = 1

σ(∂�)

∫∫
dσ(y) dσ(x)

4π |re3 − y| = 1

σ(∂�)

∫∫
dσ(y) dσ(x)

4π |x − y| .
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In particular, this shows that the first inequality in (59) is an equality if � is a ball. It is
well-known that the infimum in the definition of Cap(�) is attained on the normalized
surface measure σ/σ(∂�) when � is a ball (the Newtonian potential of σ/σ(∂�) cor-
responds to the harmonic function that takes the constant value 1 on ∂�, zero at infinity
and minimizes the exterior Dirichlet energy), thus the second inequality in (59) is also
an equality in this case. Therefore, ‖K�‖σ = Area(∂�)/Cap(�) if � is a ball, which
combined with (60) proves that (58) is an equality in this case.

On the contrary, assume that (58) is an equality. From (59) and Theorem 4.3(i) we
see that the second inequality in (59) must be an equality, which means that the infimum
in the definition of Cap(�) is attained on σ/σ(∂�). In the literature, the probability
measure that gives the minimum in Cap(�) is referred as equilibrium distribution. Let
us recall Gruber’s conjecture (see [6, Section 4.1]): “the equilibrium distribution of �

is cσ for some c > 0 if and only if � is a ball”. In [11] and [12], the author shows that
Gruber’s conjecture holds in the case of C2,ε-domains. Putting all together, we see that if
� is a bounded and smooth domain such that the equality in (58) holds, the equilibrium
distribution of� is σ/σ(∂�), which implies that� is a ball by Gruber’s conjecture. The
lemma is finally proved. ��

Despite (58) is sharp, it may not be a completely satisfactory inequality in the sense
that the right hand side involves some “obscure” term, namely Cap(�), from a measure
theoretic point of view. It would be interesting to derive some related inequality such
that the right hand side only involves Area(∂�) and/or Vol(�). This is precisely the pur-
pose of the following corollary, where and isoperimetric-type inequality for the product
λ�Cap(�) is derived.

Corollary 5.4. Let � ⊂ R
3 be a bounded open set with smooth boundary. Then

λ�Cap(�) ≥ 4
(
mArea(∂�) +

√
m2Area(∂�)2 + 62/3π4/3Vol(�)2/3

)
,

and the equality holds if and only if � is a ball.

Proof. From Lemma 5.2(ii) and (iii), we get

2(6π2)1/3Vol(�)1/3 = 2(6π2)1/3Vol(�∗)1/3 = Cap(�∗) ≤ Cap(�),

and the equality holds if and only if� is a ball. The corollary follows from this and (58).
��

Proof of Theorem 1.1. This is a straightforward application of Corollary 4.6 and Lemma
5.3, just observe that if 4

√
2mArea(∂�)/Cap(�) > 1 then λ� > 2

√
2. ��

Remark 5.5. Combining Remark 4.7 with Corollary 4.6 and Lemma 5.3, we see that
Theorem 1.1 also holds replacing

sup{|λ| : . . .} by sup{λ > 0 : . . .} or − inf{|λ < 0| : . . .}, and
inf{|λ| : . . .} by inf{λ > 0 : . . .} or − sup{λ < 0 : . . .}.
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