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Abstract: It has previously been suggested that small subsystems of closed quantum
systems thermalize under some assumptions; however, this has been rigorously shown
so far only for systems with very weak interaction between subsystems. In this work,
we give rigorous analytic results on thermalization for translation-invariant quantum
lattice systems with finite-range interaction of arbitrary strength, in all cases where there
is a unique equilibrium state at the corresponding temperature. We clarify the physical
picture by showing that subsystems relax towards the reduction of the global Gibbs state,
not the local Gibbs state, if the initial state has close to maximal population entropy and
certain non-degeneracy conditions on the spectrum are satisfied. Moreover, we show
that almost all pure states with support on a small energy window are locally thermal in
the sense of canonical typicality. We derive our results from a statement on equivalence
of ensembles, generalizing earlier results by Lima, and give numerical and analytic
finite-size bounds, relating the Ising model to the finite de Finetti theorem. Furthermore,
we prove that global energy eigenstates are locally close to diagonal in the local energy
eigenbasis, which constitutes a part of the eigenstate thermalization hypothesis that is
valid regardless of the integrability of the model.
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1. Introduction

How do closed quantum systems thermalize? The last few years have seen a resurgence
of interest in this old question, motivated by new experimental [1] and numerical [2]
methods, relying on new ideas and methods from quantum information theory [3–10].
Clearly, closed quantumsystems in anygivenpure initial state cannot literally thermalize:
unitary time evolution enforces that the global state remains pure and will never become
thermal, unless there is at least a tiny interaction with some environment. However, small
subsystems of closed quantum systems can equilibrate in a certain sense, as entanglement
between the subsystem and its remainder will lead to locally mixed states, and one may
hope that these will in many cases resemble the ensembles of statistical physics.

Along these lines, it was suggested in [3] that typical pure quantum states in many-
body systems resemble thermal states on small subsystems due to entanglement, a prop-
erty called “canonical typicality”. However, no rigorous mathematical formulation of
this was given in [3]. Almost at the same time, it was rigorously proven in [4] that typical
pure quantum states in subspaces of bipartite Hilbert spaces are locally close to some
equilibrium state. However, this equilibrium state is not thermal in general. This raises
the question of what conditions are needed to ensure that the local equilibrium state will
be thermal, i.e., a Gibbs state.

In addition to these kinematical results, there has been major progress in under-
standing how closed quantum systems equilibrate dynamically [5–9]. Regarding the
emergence of the Gibbs state, the situation is similar to the kinematical case: the sub-
systems approach some equilibrium state (for most times in some time interval), which
is however not thermal in general. The question is thus the same: under what conditions
will the equilibrium state be thermal?

Important progress on this question was made in [10]: a rigorous bound on the
distance D between the local equilibrium state and a thermal state was established.
This result has two drawbacks, however. First, the given bound is rather cumbersome,
which is due to the great generality of considering arbitrary Hamiltonians. Second, and
more importantly, the upper bound on the distance D grows with the operator norm of
the interaction Hamiltonian which couples the subsystem to its surroundings. Thus, the
bound becomes trivial as soon as the boundary of the subsystem becomes moderately
large, or the interaction becomes strong.

In this work, we give rigorous analytic proofs of dynamical and kinematic formula-
tions of thermalization for interactions of finite range, but arbitrary strength. By restrict-
ing to the special case of translation-invariant lattice systems as in Fig. 1, we are able
to prove the common belief that small subsystems are indeed close to thermal, under
various natural conditions on the spectrum and the initial state that depend on the spe-
cific setup and boundary conditions. Our work also clarifies how thermalization should
generally be formalized by showing that the resulting state will in general not be the
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Fig. 1. Canonical typicality. A rectangular lattice �n evolves according to a translation-invariant finite-range
interaction Hamiltonian H p

�n
, where “p” is for periodic boundary conditions (the case of arbitrary boundary

conditions is treated in theSect. 3). If |ψ〉 is a generic state occupyingonly energies E withu−δ ≤ E/|�n | ≤ u,
then small subsystems � ⊂ �n will, for large n, behave as if the full system was in a Gibbs state of the
corresponding temperature, for all possible measurements in the subsystem. Dynamically, the same will be
true for |ψ(t)〉 for most times t if the initial state |ψ(0)〉 has close to maximal population entropy, and the
spectrum satisfies certain non-degeneracy conditions

local Gibbs state; rather, it is the reduction of the global system’s Gibbs state. This
identification is made clear from the fact that the expected distance between the local
reduced state and the thermal state goes to zero in the thermodynamic limit. In contrast,
we show that boundary effects cause the local Gibbs state in general to remain distinct
from the thermal state even in the thermodynamic limit. This shows why earlier work
led to bounds on the distance that necessarily grow with the interaction strength.

We are further able to provide concrete finite-size bounds, rather than asymptotic
bounds, for two cases of interest. We give tight analytic bounds for the distance between
the reduction of a typical global pure state and the local Gibbs state in the non-interacting
case, which already turns out to be a non-trivial problem, and we give numerical finite-
size estimates for interacting models in one lattice dimension. Building on the results
by Low [26], we also show that the kinematical result on canonical typicality remains
true if global pure states are not drawn with respect to the unitarily invariant measure
(which is hard to implement), but according to an approximation of this measure (an
“8-design”) that can be sampled efficiently.

Finally, we address the question of whether the given thermalization results can
hold even on the level of single energy eigenstates, as conjectured in the eigenstate
thermalization hypothesis (ETH) [33,34]. In a nutshell, the ETH claims that global
energy eigenstates are locally close to a thermal state. It is easy to see that the ETH
cannot be true for all the models that we consider, and that additional assumptions (along
the lines of nonintegrability) are needed. However, we prove a result that constitutes a
part of the ETH that is true for all models with finite interaction range: global energy
eigenstates are locally close to diagonal in the local energy eigenbasis. We hope that this
result (proven via Lieb-Robinson bounds) may serve as a first step towards a complete
resolution of the ETH in future work.

2. Summary of the Main Results

We provide a self-contained summary of the main results of this paper in this section,
focusing on periodic boundary conditions. The case of arbitrary boundary conditions
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will be treated in Sect. 3. While the detailed definitions will be given in Sect. 3 (and are
close to [13]), here we describe the setup and notation in a less formal way.

Ourwork considers the thermalization of interactingd-dimensional systems in a cubic
or rectangular lattice in ν spatial dimensions. These spins are constrained to interact with
each other via finite-range translationally invariantHamiltonianswith arbitrary boundary
conditions. Although these restrictions are stringent, manymodels relevant to condensed
matter physics, such as the Ising and Heisenberg models, satisfy these requirements.

We introduce the following notation to describe the lattice. We define the set of
lattice sites to be � := [λ1, μ1]× · · ·× [λν, μν], where [λ,μ] ⊂ Z denotes the interval
of integers between λ and μ ≥ λ. In particular, we consider sequences of regions
�1 ⊂ �2 ⊂ �3 . . . that converge to the full infinite lattice Z

ν ; for example, we may
have the sequence of hypercubes �n = [−n, n]ν . The physical interpretation is that
a region �n describes the actual physical system in the laboratory, and a subregion
� ⊂ �n describes a small subsystem, cf. Fig. 1. The number of sites in a region � is
denoted |�|. The “particles” located at each of these sites carry a d-dimensional Hilbert
space Cd .

Time evolution in �n is determined by a Hamiltonian HBC
�n

where the superscript
explicitly denotes the type of boundary conditions that the Hamiltonian satisfies. The
choice of Hamiltonian is subject to some conditions defined as follows. To every finite
region X ⊂ Z

ν , we associate a self-adjoint operator hX , and define the Hamiltonian with
open boundary conditions to be H� := ∑

X⊂� hX . We assume translation-invariance,
i.e. hX+y equals hX (translated to the corresponding lattice sites), and finite-range of
interaction, i.e. there is some r < ∞ such that hX = 0 whenever the diameter of X
is larger than r . In the following, we will exclude the case that the map X �→ hX is,
up to physical equivalence [13], everywhere identically zero. As a simple example in
one dimension, the Heisenberg model H[1,n] = −J

∑n−1
i=1 σ i · σ i+1 − h

∑n
i=1 σ Z

i , with
Pauli matrices σ = (σ X , σ Y , σ Z ), fits into this framework, if we define hX as −hσ Z

i if
X = {i} for some integer i , as−Jσ i · σ i+1 if X = {i, i + 1}, and as zero for all other X .

The Hamiltonian with open boundary conditions, H�n , can be augmented with addi-
tional non-translationally invariant terms on the boundary of �n to obtain some HBC

�n
.

The case of periodic boundary conditions is of particular importance to the remainder of
the discussion and we denote such Hamiltonians by H p

�n
. More general boundary condi-

tions are also permitted. The only assumption will be that ‖HBC
�n

−H�n‖∞/|�n| → 0 as
n → ∞, where ‖ · ‖∞ is the operator norm. That is, the boundary terms only contribute
a vanishing energy density.

While we aim at statements for finite regions �n , the thermodynamic limit n → ∞
becomes important as a proof tool and an indicator of phase transitions [13,14].Wemake
extensive use of the following properties, which characterize the system’s behavior in the
thermodynamic limit. States ω on the infinite lattice Zν are given by families of density
matrices (ω�)�⊂Zνfinite, with ω� = Tr�′\� ω�′ if � ⊆ �′. Translation-invariant states
ω on Z

ν have entropy density s(ω) := limn→∞ 1
|�n | S(ω�n ), with S(ρ) = −tr(ρ log ρ)

the von Neumann entropy, and energy density u(ω) := limn→∞ 1
|�n | tr(ω�n H�n ). A

characteristic quantity for any given model and β > 0 is the equilibrium Helmholtz free
energy density fth(β) := (−1/β) limn→∞ 1

|�n | log tr exp(−βH�n ). It holds

fth(β) = inf{ f (ω) | ω translation-invariant state},
where f (ω) := u(ω) − s(ω)/β is the Helmholtz free energy density [13] of state
ω. For any finite region �, the Gibbs state at inverse temperature β is γ BC

� (β) :=
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exp(−βHBC
� )/Z , with Z the partition function. Gibbs states on the infinite lattice can

be defined in several different equivalent ways; here we use a variational principle:
a translation-invariant state ω on the infinite lattice is by definition a Gibbs state at
inverse temperature β if it minimizes the free energy density, i.e. if f (ω) = fth(β). This
definition is equivalent to the well-known KMS condition [16].

For every inverse temperature β, there is at least one Gibbs state ωβ on the infinite
lattice; however, the possibility of finite-temperature phase transitions implies that there
may be more than one Gibbs state at the same β. Consequently, we say that there is
a unique equilibrium state around inverse temperature β if there is a small interval
around β such that for all β ′ in that interval, there is only one Gibbs state at inverse
temperature β ′. This is true, for example, if β is smaller than some model-dependent
critical inverse temperature [18], and it is true for all β if the lattice dimension is ν =
1 [17]. A given energy density value u will be called thermal if it is strictly larger than
the ground state energy density umin, and strictly smaller than the infinite-temperature
energy density umax. These are given by umin = limn→∞ λmin(H�n )/|�n|with λmin the
smallest eigenvalue, and umax := limn→∞ tr(H�n )/(|�n|d |�n |). If u is thermal, then
there is exactly one positive inverse temperature β ≡ β(u) such that the energy density
u(ωβ) of the corresponding Gibbs state ωβ equals u [13].

2.1. Canonical typicality. As suggested in [3], we show that the Gibbs state arises
in translation-invariant quantum lattice systems due to entanglement between small
subsystems and the remainder. Consider anymodelwith a given thermal energy density u
such that there is a unique equilibriumstate around the corresponding inverse temperature
β = β(u). For δ > 0, define the microcanonical subspace

T p
n := span {|E〉 | u − δ ≤ E/|�n| ≤ u } , (1)

where H p
�n

|E〉 = E |E〉 denotes the periodic boundary condition energy eigenstates

on the global region �n . Choose any pure state |ψ〉 ∈ T p
n at random according to the

unitarily invariant measure. Then, with high probability, this state will locally in� ⊂ �n
be very close to the reduction of the global Gibbs state, as depicted in Fig. 1:

Theorem 1 (Summary of Theorem 25). Fix δ > 0 and u thermal. Then for every ε ≥ 0,
the probability p that a state |ψ〉 ∈ T p

n sampled according to the unitarily invariant
measure satisfies

∥
∥
∥
∥
∥
Tr�n\� |ψ〉〈ψ | − Tr�n\�

exp(−βH p
�n

)

Z

∥
∥
∥
∥
∥
1

≥ ε + 
n,�

is doubly-exponentially small in the lattice size |�n|; that is, p ≤ exp
(−ε2 exp(|�n|s+

o(|�n|))), where s = s(ωβ) is the entropy density of the corresponding Gibbs state,
and 
n,� is a sequence of positive real numbers with limn→∞ 
n,� = 0 for every fixed
�. Here, β can either be set equal to β(u) as defined above, or equal to the solution of
tr(H p

�n
γ
p
�n

(β))/|�n| = u (which depends on n).

As illustrated in Fig. 1, in the limit of large n, almost all pure states |ψ〉 in
an energy window subspace will be locally almost indistinguishable from the Gibbs
state at the corresponding temperature, since the one-norm distance ‖ρ − σ‖1 =
2maxP=P†=P2 |tr(ρP)− tr(σ P)| being small means that ρ and σ give similar expecta-
tion value for all possible measurements. The theorem does not say how quickly 
n,�
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tends to zero with increasing n; we will come back to the question of finite-size estimates
later. Earlier work [3,10] attempted to prove that Tr�n\� |ψ〉〈ψ | is arbitrarily close to
the local Gibbs state γ�(β) = exp(−βH�)/Z . However, this can only be true if the
interaction across the boundary of � is very weak [10]; in particular, the given upper
bound on the distance grows with the boundary of � and is thus interesting only if
� is small or if the lattice is one-dimensional. Our theorem shows that in general the
local Gibbs state has to be replaced by the reduction of the global Gibbs state to obtain
arbitrary closeness in the thermodynamics limit, unless one considers models that are
fine-tuned such that the local Gibbs state agrees with the reduction of the global Gibbs
state.

Before we turn to the proof, we note that the unitarily invariant (Haar) measure
in Theorem 1 can be replaced by a more physically realistic measure, namely an η-
approximate t-design [25,27], for t = 8 and η = exp(−|�n|s + o(|�n|)). Here o(·) is
(asymptotic) Landau notation, where fn = o(gn) means that fn/gn converges to zero
in the limit n → ∞. Such t-designs are approximations to the Haar measure that can
be efficiently generated in a time which is polynomial in the lattice size |�n|. It follows
from the results of Low [26] that Theorem 1 remains valid, however with a probability
value that is only exponentially (not doubly-exponentially) small in the lattice site – see
Theorem 28.

To prove Theorem 1, we invoke the results of [4], which tell us that Tr�n\� |ψ〉〈ψ |
is with high probability close to Tr�n\� τn , where τn is the uniformly mixed state on
T p
n . We obtain Theorem 1 directly, with all constants, if we set 
n,� up to corrections

of order exp
(− 1

2 |�n|s + o(|�n|)
)
(cf. Eq. (36)) equal to

δn,� :=
∥
∥
∥
∥
∥
Tr�n\� τn − Tr�n\�

exp(−βH p
�n

)

Z

∥
∥
∥
∥
∥
1

. (2)

It remains to prove that δn,� → 0 as n → ∞. However, τn is nothing but themicrocanon-
ical ensemble, and the statement left to prove is that its predictions on small subsystems
� are equivalent to those of the canonical ensemble in the thermodynamic limit. Thus,
we are naturally led to study the problem of equivalence of ensembles in our setting.

2.2. Equivalence of ensembles. To state our result, note that we can regard�n as a torus,
by identifying μi + 1 in the interval [λi , μi ] with λi ; this way, we can define periodic
translations of �n as those of the resulting torus. A state τn on �n will be called �n-
translation-invariant if it is invariant with respect to all periodic translations of�n . Using
this notion, our main technical result on equivalence of ensembles reads as follows:

Theorem 2 (Summary of Theorem 10). Suppose that (τn)n∈N is any sequence of �n-
translation-invariant states on �n, and β > 0 such that there is a unique equilibrium
state around inverse temperature β. If

lim sup
n→∞

1

|�n|
(
tr(τnH

BC
�n

) − S(τn)/β
)
≤ fth(β) (3)

for some choice of boundary conditions BC, then

lim
n→∞

∥
∥
∥
∥
∥
Tr�n\�τn − Tr�n\�

exp(−βnH
p
�n

)

Zn

∥
∥
∥
∥
∥
1

= 0, (4)
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where we may set βn either equal to the fixed value β, or equal to the solution of
tr(H p

�n
γ
p
�n

(βn))/|�n| = u(β).

Theorem 2 implies Theorem 1: If τn is the microcanonical ensemble, i.e. maximal
mixture on T p

n , then tr(τnH
p
�n

)/|�n| ≤ u by construction, and S(τn) = log dim(T p
n ) =

s|�n| + o(|�n|) according to [13, Theorem IV.2.14] (as [13] does not provide a proof,
we reproduce the proof in Lemma 11 below). Since u − s/β = fth(β), (3) holds,
which shows equivalence to the canonical ensemble, limn→∞ δn,� = 0, and establishes
Theorem 1.

The crucial property of themicrocanonical subspaceT p
n used in this proof is its dimen-

sionality (which is close tomaximal given its energydensityu), namely limn→∞(1/|�n|)
log dim T p

n = s. It follows from Lemma 11 that this property is satisfied if the width
δ > 0 in the definition of the microcanonical subspace (1) is constant in n, which
corresponds to an extensive energy uncertainty. In general, one can also choose an n-
dependent width δ ≡ δn ; as long as δn tends to zero slowly enough, the necessary limit
identity will still hold. Unfortunately, giving a concrete expression for a possible choice
of δn amounts to proving a generalization of Lemma 11 for “small” microcanonical
subspaces, and we do not currently have such a generalization.

However, in the special case of the non-interacting Ising model described in Sect. 2.4
below, it is easy to see via standard inequalities (like the ones used in the proof of
Theorem 37) that one can choose δn ≥ c(log n)/n, with c > 0 some constant depending
on u. It is therefore plausible to expect that a comparable scaling of δn might be possible
also in the interacting case.

We now sketch the proof of Theorem 2. We first show that (τn)n∈N has at least one
limit point ω as a state on the infinite lattice. Since every τn is �n-translation-invariant,
ω is translation-invariant, and (3) implies that f (ω) = fth(β). Thus, ω is the unique
Gibbs state ωβ , and so

lim
n→∞Tr�n\� τn = (ωβ)�. (5)

Consider the special case where τn equals the local Gibbs state γn := γ
p
�n

(β) which
appears in (4). Everyγn is�n-translation-invariant andminimizes the free energy locally,
hence

tr(γnH
p
�n

) − S(γn)/β ≤ tr((ωβ)�n H
p
�n

) − S((ωβ)�n )/β
n→∞−→ fth(β),

which shows that (3) is satisfied for τn = γn . Consequently limn→∞ Tr�n\� γn =
(ωβ)�, and combining this with (5) proves the theorem.

This proof strategy has been pioneered by Lima [11,12]; however, our result is more
general. In particular, we allow a more general set of possible interactions, and permit
βn �= β to be determined from the finite region �n .

2.3. Dynamical thermalization. It has been shown in [6–8] that subsystems of closed
quantum systems equilibrate, subject to some conditions on the initial state and spec-
trum. In general, the equilibrium state depends on the initial state, and is not thermal
unless additional conditions are met [10]. However, for translation-invariant systems,
we can say more. Consider any initial state ρ

(n)
0 on �n , pure or mixed. The index n

indicates that the state is chosen to be a function of the lattice size n. We can think
of a simple dependence such as ρ

(n)
0 = ρ

⊗�n
0 for some fixed (single-site) state ρ0 on

C
d ; however, the only technical condition we need to assume is that the density of the
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inner energyUn := tr(ρ(n)
0 H p

�n
) converges to some well-defined thermal energy density

u := limn→∞Un/|�n|.
The state evolves unitarily under the Hamiltonian H p

�n
, i.e. ρ(n)(t) = exp(−i t H p

�n
)

ρ
(n)
0 exp(i t H p

�n
). We can define the population entropy S̄(ρ

(n)
0 ) as follows. From the

spectral decomposition H p
�n

= ∑
i Eiπi , compute the weights λi := tr(ρ(n)

0 πi ), and set

S̄(ρ
(n)
0 ) := −∑

i λi log λi . Similarly, there is an inverse temperature βn corresponding

to ρ
(n)
0 , defined by tr(H p

�n
γ
p
�n

(βn)) = Un . Denote the time average by 〈·〉, i.e. ρ(n)
avg :=

〈ρ(n)(t)〉 := limT→∞(1/T )
∫ T
0 ρ(n)(t)dt . Then the actual state at time t is close to ρ

(n)
avg

for most times t , and this state is close to thermal:

Theorem 3 (Summary of Theorem 31). If there is a unique equilibrium state around
inverse temperature β := limn→∞ βn, if the (possibly pure) initial state has close to
maximal population entropy, in the sense that

S̄(ρ
(n)
0 ) ≥ S(γ

p
�n

(βn)) − o(|�n|), (6)

and if each H p
�n

is non-degenerate (i.e. all eigenspaces are one-dimensional), then
unitary time evolution thermalizes the subsystem � for most times t:

〈∥
∥
∥Tr�n\� ρ(n)(t) − Tr�n\� ρ(n)

avg

∥
∥
∥
1

〉

≤ d |�| √DG exp

(

− s(ωβ)2

4 log d
|�n| + o(|�n|)

)

, and (7)

lim
n→∞

∥
∥
∥
∥
∥
Tr�n\� ρ(n)

avg − Tr�n\�
exp(−βnH

p
�n

)

Zn

∥
∥
∥
∥
∥
1

= 0, (8)

where DG is the gap degeneracy [8] of H p
�n

, defined by DG = maxE |{(i, j) | i �=
j, Ei − E j = E}|, where Ei denotes the eigenvalues of H

p
�n

.

In Theorem 33, we generalize this result to the case of arbitrary boundary conditions
and degenerate HBC

�n
. Unlike (8), which expresses equivalence of the time-averaged

state ρ
(n)
avg and the thermal state γ

p
�n

(βn) for local observables A on �, the generalized
version shows equivalence of these global states on a different set of observables [8],
arising from averaging observables A over translations of �. We also show numerically
in Sect. 3.5 that the conditions of non-degeneracy of H p

�n
and DG = 1 are generically

satisfied for randomly chosen translation-invariant nearest-neighbor interactions in one
lattice dimension.

Our proof of Theorem 3 follows similarly to the proof of the results of [8]. First
we have to show that the “effective dimension” deff = eS2(λ) is large, with Sα(ρ) :=
(log tr(ρα))/(1 − α) the α-Rényi entropy. We do this via the inequality S2 ≥ 2ε(S −
ε/(1 + ε)S0) for 0 ≤ ε ≤ 1, which we prove from results of [29], establishing (7). From
S(ρ

(n)
avg) ≥ S̄(ρ

(n)
0 ), we conclude that ρ(n)

avg =: τn satisfies (3). We then apply Theorem 2
to prove (8).

As an example, if ρ(n)
0 is a pure state |ψ(n)

0 〉 ∼ ∑
u−δ<Ei /|�n |<u |Ei 〉which is a “flat”

uniform superposition of eigenstates |Ei 〉 of H p
�n

, Theorem 3 applies. This recovers
results of [10], albeit in a different context.
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2.4. Finite-size estimates. Estimates on how large�n has to be to have good agreement
with our asymptotic results, in particular bounds on δn,� in (2), are expected to depend
strongly on the details of the model, such as distance to phase transitions, correlation
lengths etc. [23]. To get some intuition, we now give analytic bounds for the non-
interacting Ising model, which already turns out to be a non-trivial problem. For this
model, it was already shown in [4] that local reduced states are close to thermal in the
sense of Theorem 1; however, no explicit analytic bounds on the distance have been
given in [4]. Here we provide tight analytic finite-size bounds.

We set �n = [1, n] ⊂ Z
1, and H� := ∑

i∈� Zi , where Zi is the Pauli Z -matrix at
site i . Then the microcanonical state τn is permutation-invariant, and the canonical state
is a product state, γ�n (β) = γ⊗n

β , with γβ := γ{1}(β) the single-site Gibbs state. We are
interested in estimating the distance δn,� in (2). In the case where the energy value of the
microcanonical subspace (1) is sharp, i.e. δ = 0, the state τn is the uniform mixture over
a type class, that is, over the subspace spanned by eigenvectors with a fixed frequency
of “spin-up”. In this case, it turns out that we can apply the proof of the classical finite
de Finetti theorem [22] to obtain

∥
∥
∥Tr�n\� τn − γ⊗m

β

∥
∥
∥
1
≤ 4m

n
, (9)

where m := |�|. Thus, in order to maintain a fixed 1-norm distance between the states,
the total system size n has to be increased linearly with the size of the subsystem m. As
mentioned before Eq. (2), this also upper-bounds the distance 
n,� in Theorem 1 up to
corrections exponentially small in the lattice size.

The case of finite energy uncertainty δ > 0 is more difficult to treat. If we assume
each of the lattice sites holds a qubit (d = 2) and take an appropriate rescaling of the
energy then

S
(
γ⊗m
β

∥
∥Tr�n\�m τn

)
≤ (1− δ)u

u − δ
· m

n − m
+

muδ

u − δ

(

1 +
m

n − m

)

whenever m ≤ n(u − δ), with S(ρ‖σ) := tr(ρ log ρ − ρ log σ) the quantum relative
entropy. This claim is formally stated as Lemma 36. For δ = 0 (and m � n), this
inequality is similar to (9) above, but now with the relative entropy as distance measure.
We expect it to be tight (i.e. not to allow for significant improvements) in the case
δ = 0, since it is well-known that the bound in the classical finite de Finetti theorem,
and thus (9), cannot be significantly improved. However, this inequality on the relative
entropy has the drawback that it is only interesting as long as δ � 1/m. The question
arises how n has to be scaled with growing subsystem size m in order to achieve a fixed
distance δ > 0 (for δ = 0, we have seen that n has to be increased linearly with m).
In Theorem 37, we settle this question up to a correction term of the order log n: under
some conditions on the variables, we show that

∥
∥
∥Tr�n\�m τn − γ⊗m

β

∥
∥
∥
1
≤ 2δ

n
√
u
+

√
√
√
√ m

n − m

(

1 +
4 log n

log 1−u
u

)

.

This inequality is not tight in general (as one sees by comparing with (9) for δ = 0), but
it shows that n has to be increased only slightly superlinearly with m in order to achieve
a fixed 1-norm distance also in the case δ > 0. We leave it as an open question whether
the log n term can be removed.



508 M. P. Müller, E. Adlam, L. Masanes, N. Wiebe

Fig. 2. Subregions of the whole lattice �n . We enlarge � by setting �′ = � ∪ �shell, where �shell contains
all sites outside of � which have distance l or less to �. The number of terms of H�n that have support on
both �′ and �n\�′ is denoted A, which quantifies the size of the boundary area of �′

In order to get some intuition forwhat happens in the interacting case, we numerically
study random nearest-neighbor interactions in one lattice dimension in Sect. 3.5. It turns
out that the behavior that we have shown analytically for non-interactingmodels remains
approximately valid also in the interacting case (as far as one can tell for the small lattice
sizes n ≤ 11 that are numerically tractable), see in particular Fig. 6. However, we leave
it open whether a similar behavior remains valid in lattice dimensions ν ≥ 2, where
finite-temperature phase transitions become relevant.

2.5. Towards eigenstate thermalization. The questionwhether some of the results above
can be strengthened to hold for individual energy eigenstates is known as the eigenstate
thermalization hypothesis (ETH) [33,34]. For example, consider our result on dynamical
thermalization, Theorem 3. For this result to hold, Eq. (6) must be satisfied, which says
that the initial state populates a large number of energy levels.

The question arises whether this assumption can be dropped. In the most extreme
case, we could have an energy eigenstate |E〉 as the initial state, i.e. ρ0 = |E〉〈E |. (This
notation does not assume non-degeneracy of the spectrum; |E〉 is an arbitrary pure state
in the eigenspace corresponding to energy E .) Energy eigenstates do not evolve, such
that ρ(n)(t) = ρ0 is constant in time. Thus ρ(n)(t) is close to thermal for most times t if
and only if the reduced state Tr�n\�|E〉〈E | is close to thermal.

To formulate eigenstate thermalization in more detail, consider the setup in Fig. 2.
We have argued above that one should not expect that the local marginals of random
global pure states |ψ〉 are close to a local Gibbs state, due to boundary effects (which
led us to consider the reduction of the global Gibbs state instead). More generally, to
take boundary effects into account, we can enlarge the subregion � by a shell of width
l; if l is large enough, one would expect that

Tr�n\� |E〉〈E | ≈ Tr�n\� γ�n (β) ≈ Tr�shell γ�′(β). (10)

It is immediately clear that a statement like this cannot literally be true for all eigen-
states |E〉 of all models that we consider: the non-interacting Ising model, where some
eigenstates are product states (and thus marginals are pure and not thermal), is a coun-
terexample.

However, we can prove a weaker version of this statement which is true for all
eigenstates of all translation-invariant models with finite range interaction: there is a
state ωE on �′ such that Tr�n\�|E〉〈E | ≈ Tr�shellωE , where ωE partially resembles a
thermal state. That is, ωE does not necessarily have Boltzmann weights on its diagonal
(as one would expect from the thermal state γ�′(β)), but its off-diagonal elements are
close to zero, as they are for the thermal state.

We formulate and prove this result by applying a version of the Lieb-Robinson
bound [30–32]: for models with finite-range interaction, it states that there are constants
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c,C, v > 0 such that for all operators X and Y supported on finite regions X ,Y of
distance 
, it holds ‖[X (t),Y ]‖∞ ≤ C ‖X‖∞‖Y‖∞ min{|X |, |Y|} e−c[
−v|t |], where
X (t) = eiH�n t Xe−i H�n t . The constants also appear in the following theorem, where we
assume in particular that the Hamiltonian only has interactions between sites of distance
r or less.

Theorem 4 (Summary of Theorem 38). There is a state ωE on �′ such that
∥
∥Tr�shell(ωE ) − Tr�n\� |E〉〈E |∥∥1 ≤ κ · e−c(l−r)/2, (11)

where κ = 2AJ (CA + 2)
√

l−r
8cv2

and J = maxX ‖hX‖∞, which is close to diagonal in

the eigenbasis {|e〉} of H�′ , i.e.

|〈e1|ωE |e2〉| ≤ e−(l−r)(e1−e2)2/(8cv2). (12)

This result does not assume translation-invariance; finite range of interaction is suf-
ficient for its validity. The ETH corresponds to the claim that the theorem holds for the
particular choice ωE = γ�′(β). As discussed above, the ETH cannot be true in general
for all eigenstates of all models we consider; intuitively, some additional assumptions,
possibly along the lines of nonintegrability, are needed.

Even though the mathematical details of the proof are cumbersome, it has a simple
physical interpretation. We define ωE by evolving Tr�n\�′ |E〉〈E | according to H�′ and
averaging the result over small t ; concretely, ωE := ∫∞

−∞dt g(t) e
−i H�′ t Tr�n\�′ |E〉〈E |

eiH�′ t , with g(t) some Gaussian. The Lieb-Robinson bound guarantees finite speed of
information transmission, such that the result will within� still look very much as if the
initial state |E〉〈E | evolved according to the full Hamiltonian H�n , if the shell is large
enough. Since |E〉〈E | is stationary, this leads to (11).On theother hand, interaction across
the boundary of �′ will decohere the state Tr�n\�′ |E〉〈E |; in particular, coherences
corresponding to energy levels e1, e2 with large |e1 − e2| will be suppressed, which
yields (12).

In Theorems 1, 2 and 3, we quantify thermalization by the distance to the marginal of
the global Gibbs state, that is, Tr�n\� exp(−βnH

p
�n

)/Zn . This contrasts with the above
setup (10), where one starts with the thermal state in a subregion �′ containing a shell
around �. In fact, it is easy to see that Theorems 1, 2 and 3 also hold if we replace the
thermal state on all of �n by the thermal state on �′ := �n′ ⊇ � for n′ � n, as long as
n′ → ∞with n → ∞; that is, if we consider the distance toTr�n′ \� exp(−βn′H

p
�n′ )/Zn′

instead. The drawback, however, is that we do not have any non-trivial bounds for fixed
finite n′ (in contrast to Theorem 4), which renders the formulation of the first three
theorems in terms of the more general shell setup mathematically equivalent to their
current formulation. Finding non-trivial finite-size bounds, in particular on the size of
the shell, remains as an interesting open problem.

3. Proofs of the Main Results

All results are formulated in two versions, namely for periodic and for arbitrary boundary
conditions (BC). The main results can be found in the following places:

• Equivalence of ensembles Main technical statement is Theorem 10 (periodic BC),
with Example 13 giving the standard formulation in comparing the microcanonical
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and the canonical ensemble. The corresponding formulations for arbitrary BC are
given in Theorem 20 and Example 21. Note that the norm ‖·‖{m} appearing there can
be replaced by ‖ · ‖[m], measuring the difference of expectation values on m-block
averaged observables only, due to Lemma 24.

• Canonical typicality For periodic BC, the main result is Theorem 25, with a deran-
domized version in terms of 8-designs given in Theorem 28. The corresponding
formulations for arbitrary BC are given in Theorem 26 and Theorem 29.

• Dynamical thermalization For periodic BC, the main result is Theorem 31, and for
arbitrary BC it is Theorem 33.

• Finite-size bounds without interaction Lemma 34 relates the Ising model and equiv-
alence of ensembles for sharp energy eigenspaces (δ = 0) and local Hilbert space
dimension d = 2 to the finite de Finetti theorem. Lemma 36 is a new derivation
(compared to Diaconis and Freedman [22]) in terms of the relative entropy. The
main result is Theorem 37, proving that the scaling (bath size increasing linearly
with system size to achieve fixed 1-norm error) remains basically valid also for
δ > 0.

• Numerical results They are given in Sect. 3.5, confirming that some assumptions
from the main theorems (on degeneracy of spectra etc.) are generically satisfied.
Moreover, they show that the qualitative finite-size scaling that has been proven
analytically for non-interacting systems seems to remain valid for interacting sys-
tems with periodic BC, at least for lattice dimension ν = 1.

• Eigenstate thermalization The main result is Theorem 38, showing that energy
eigenstates are locally “weakly diagonal”. Note that this result does not assume
translation-invariance (only finite range of interaction).

The notation is specified in Sect. 3.1 below. In comparison to Sect. 2, statements about
the minimization of the Helmholtz free energy density f (ω) := u(ω) − s(ω)/β are
replaced by statements about the maximization of−β f (ω) = s(ω)−β u(ω) (following
mathematical physics tradition), which has to be compared with the “pressure”

p(β,�) = −β fth(β) (β > 0).

This has the advantage that p(β,�) is also defined for β = 0, i.e. infinite temperature.
Moreover, convexity of β �→ p(β,�) will play a crucial role. Similarly, to conform
with mathematical physics literature, we will write �(X) instead of hX , and the map �

will be called an “interaction”. Furthermore, we will assume that the small subsystem
� equals �m for some fixed m, which is no loss of generality.

3.1. Equivalence of ensembles. We start by fixing some notation. We consider a ν-
dimensional quantum lattice system, with local Hilbert space dimension d. To every x ∈
Z

ν , we associate a local algebra of observablesAx , which is a copy ofMd(C), the algebra
of complex d×d matrices. For every finite region� ⊂ Z

ν , we have the local observable
algebra A� := ⊗

x∈� Ax . For every y ∈ Z
ν , there is a translation automorphism γy ,

mapping observables A in a region �, i.e. A ∈ A�, to the corresponding observable
γy(A) in the translated region � + y, i.e. γy(A) ∈ A�+y .

To every finite region X ⊂ Z
ν , we associate an interaction �(X), which is a self-

adjoint operator in AX , describing the interaction of the spins in region �. For finite
� ⊂ Z

ν , the local Hamiltonian H� is

H� :=
∑

X⊂�

�(X).
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We assume that our interaction has finite range, i.e. that �(X) = 0 whenever the diam-
eter of X is larger than r for some fixed r ∈ N. Furthermore, we assume translation-
invariance, which can be expressed as

�(X + y) = γy(�(X)) for all X ⊂ Z
ν finite, y ∈ Z

ν .

We can also define an observable algebra A∞ for the infinite lattice Z
ν by a suitable

limit procedure, called the quasi-local algebra, see [13] for details. The (operator) norm
on A∞ will be denoted ‖ · ‖∞. A state ω on A∞ is a positive linear functional with
ω(1) = 1. States are automatically weak ∗-continuous. A stateω is translation-invariant
if ω(γy(A)) = ω(A) for all A ∈ A∞ and y ∈ Z

ν (it is sufficient to demand this for all
A ∈ A� for all finite regions �). If � ∈ Z

ν is finite, there is a density matrix ω� ∈ A�

such that

tr(ω�A) = ω(A) for all A ∈ A�.

This yields the following consistency condition: if � ⊂ �′ and �′ is finite, then ω� =
Tr�′\�ω�′ . Conversely, every consistent family of density matrices defines a state on
A∞.

For translation-invariant states, the following definitions are crucial. To state them,
we consider sequences of boxes (that is, hyperrectangles) (�n)n∈N with �n ⊂ �n+1
and with the property that for every x ∈ Z

ν there is some n ∈ N with x ∈ �n . Unless
specified otherwise, all sequences of regions �n in the following will be assumed to
have these properties.

All logarithms are in base e, i.e. log(exp(x)) = x .

Definition 5. Let ω be a translation-invariant state on A∞. Then the following expres-
sions exist:

• Energy density: u(ω) := lim
n→∞

1

|�n| tr(ω�n H�n ),

• entropy density: s(ω) := − lim
n→∞

1

|�n| tr(ω�n logω�n ).

Moreover, there is the state-independent quantity pressure

p(β,�) := lim
n→∞

1

|�n| log tr exp(−βH�n )

for all β ≥ 0. It satisfies

p(β,�) = sup{s(ϕ) − β u(ϕ) | ϕ is any translation-invariant state on A∞}. (13)

See [13] for more details. In the following, we consider Gibbs state on the infinite
lattice. They are defined by any one of the following equivalent conditions.

Definition 6. Let ω be a translation-invariant state on the quasi-local algebra A∞ over
Z

ν , with translation-invariant finite-range interaction �, and let β > 0. Then the fol-
lowing conditions are equivalent:

• Variational principle it holds p(β,�) = s(ω) − β u(ω), which is the maximal
possible value according to (13).

• KMS condition at inverse temperature β (see [16],
• Gibbs condition at inverse temperature β (see also [16]).
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If ω satisfies one of these equivalent conditions, we will call ω a Gibbs state at inverse
temperature β. We say that Gibbs states are unique around inverse temperature β for a
given interaction � if there is an open interval containing β such that for every β ′ in this
interval, there is a unique (only one) Gibbs state at inverse temperature β ′.

Since we do not use the KMS and the Gibbs conditions, we do not explain them in
detail here. We refer the reader to [13,16].

For what follows, we need to extend the notion of translation-invariance to finite
regions. This is done in the obvious way. LetAn := A�n , with �n a sequence of boxes
tending to infinity as n → ∞ in the sense specified above. Call an observable A ∈ An
�n-translation-invariant if it is translation-invariant with respect to periodic translations
of �n ; that is, translations in which we regard �n as a torus. In more detail, write �n as
the product of intervals

�n = [λ1, μ1] × [λ2, μ2] × · · · × [λν, μν],
where λi , μi ∈ Z, λi ≤ μi . The statement that �n tends to infinity means that all
λi → −∞ and allμi → +∞ as n → ∞. Define ν independent translations (Tj ) j=1,...,ν
for x ∈ �n by

Tj (x) ≡ Tj (x1, . . . , xν) = (x1, . . . , x j−1, x j ⊕ 1, x j+1, . . . , xν),

where

x j ⊕ 1 =
{
x j + 1 if x j + 1 ≤ μ j ,

λ j otherwise.

We can interpret Tj as a unitary operator, translating the computational basis vectors,
constructed from the translation automorphisms γy . An observable A will be called
�n-translation-invariant if Tj AT

†
j = A for all j = 1, . . . , ν.

We can also formalize this definition somewhat differently. Denote by T(�n) the
set of all periodic translations of �n into itself; in other words, regard �n as a torus,
and T(�n) as the set of translations on the torus. These are arbitrary compositions of
translations Tj . If α ∈ Z

ν , then the periodic translation by vector α will be denoted
Tα ∈ T(�n); it equals Tα = ©ν

j=1T
α j
j , where the circle denotes composition and the Tj

are mutually commuting. Then an observable A is �n-translation-invariant if and only
if T AT † = A for all T ∈ T(�n).

So far, we have defined H� for finite regions � by summing up all interaction terms
that are fully contained in�. This is usually called the Hamiltonian with open boundary
conditions. Alternatively, one can consider periodic or other, more general boundary
conditions. We use the following definition.

Definition 7 (Periodic and arbitrary boundary conditions). Let � be any finite-range
translation-invariant interaction. A region � ⊂ Z

ν is called large enough if for every
region X with �(X) �= ∅, there is y ∈ Z

ν such that the translation X + y is contained in
�.

A choice of boundary conditions is a map that assigns to every large enough, finite
set � ⊂ Z

ν a Hamiltonian HBC
� such that

lim
n→∞

∥
∥
∥HBC

�n
− H�n

∥
∥
∥∞

|�n| = 0 (14)

for every sequence of boxes (�n)n∈N that tends to infinity in the sense specified above.
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A particularly important example of choice of boundary conditions is given by
periodic boundary conditions, with corresponding Hamiltonians denoted H p

�. Follow-
ing [13], we define it as

H p
� :=

∑

X∩� �=∅

′
T−α

[
γα(�(X))

]
T †
−α,

where α ∈ Z
ν denotes any vector that translates X into �, i.e. X +α ∈ �, and the prime

on the sum indicates that regions X, X ′ with X ′
i = Xi + niai for all i , where ai is the i th

sidelength of the boxes �, and ni ∈ Z, are not included twice in the sum, but only once
(i.e. only X or X ′ will be included).

The fact that we are demanding that regions � are large enough implies that our
definition of H p

� agrees with both of what Simon [13] calls H p,1
� and H p,2

� . To see that
H p

� satisfies (14), denote by ∂� the discrete boundary of �, that is

∂� := {
x ∈ � | ∃y ∈ Z

ν \ � : dist(x, y) ≤ 1
}
, (15)

where dist(x, y) := maxi |yi − xi |. Suppose x ∈ Z
ν is any point. Since � has finite

range and is translation-invariant, there is some finite integer κ ∈ N equal to the number
of finite regions X that contain x and have�(X) �= 0. This number is the same for every
x ∈ Z

ν . Also, ‖�‖ := maxX ‖�(X)‖∞ is finite. Thus
∥
∥
∥H

p
�n

− H�n

∥
∥
∥∞ ≤

∑

X∩�n �=∅, X �⊂�n

‖�(X)‖∞ ≤
∑

x∈∂�n

κ‖�‖ = κ‖�‖ |∂�n|.

Since |∂�n|/|�n| tends to zero for n → ∞, this proves (14). We can write H p
�n

in
an alternative form. Given �n , denote by X1, . . . , XN subsets of �n with the property
that no Xi is a periodic translation of any other X j , and such that all subsets of �n can
be generated by periodically translating some Xi . For example, if � = 0, 1, 2, 3 on a
one-dimensional lattice, then X1 = {0}, X2 = {0, 1}, X3 = {0, 2}, X4 = {0, 1, 2} and
X5 = {0, 1, 2, 3} is a possible choice of those sets. Then we have

H p
�n

=
N∑

i=1

∑

T∈T(�n)

T�(Xi )T
†,

and from the representation it becomes clear that H p
� is �n-translation-invariant.

Note that we do not consider what Simon calls “external boundary conditions”.
In the following, we will frequently use that the energy density does not depend on

the choice of boundary conditions; that is, if (τn)n∈N is an arbitrary sequence of states
on An , then

lim
n→∞

(
tr(τnH�n )

|�n| − tr(τnH BC
�n

)

|�n|

)

= 0.

This is because |tr(τnH�n ) − tr(τnH BC
�n

)| ≤ ‖H�n − HBC
�n

‖∞.

Lemma 8. Let (τn)n∈N be a sequence of density matrices inAn such that every τn is�n-
translation-invariant. For everym ∈ N, consider the sequenceof states (ρ(m)

n )n∈N ∈ Am,
defined for n ≥ m by

ρ(m)
n := Tr�n\�m τn .
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Define L(m) as the set of all limit points of the sequence (ρ
(m)
n )n∈N, and L as the set of all

possible sequences (σm)m∈N with σm ∈ L(m) and σm−1 = Tr�m\�m−1 σm. Then L is not
empty, and every element of L defines a translation-invariant state on the quasi-local
algebra. Additionally, if β ≥ 0 is such that

lim inf
n→∞

1

|�n|
(
S(τn) − β tr(τnH�n )

) ≥ p(β,�), (16)

then every state ω ∈ L is a Gibbs state at inverse temperature β, and we have equality

in (16). Furthermore, if L contains only a single elementωβ , then lim
n→∞

1

|�n| tr(τnH�n ) =
u(ωβ) and limn→∞ 1

|�n | S(τn) = s(ωβ).

Proof. First, we observe that every element of L(m) generates an element of L(m−1) by
taking the partial trace over �m \ �m−1; that is,

Tr�m\�m−1 L
(m) ⊆ L(m−1). (17)

Similarly, suppose that ρ ∈ L(m−1). By definition, this means that there is a strictly

increasing sequence of natural numbers (nk)k∈N such that ρ(m−1)
nk

k→∞−→ ρ. Now consider

the sequence ρ
(m)
nk ; since m is fixed, it is a bounded sequence on a finite-dimensional

vector space. By Bolzano-Weierstraß, it must have at least one limit point ρ̄. Since
ρ

(m−1)
nk = Tr�m\�m−1 ρ

(m)
nk , we obtain ρ = Tr�m\�m−1 ρ̄. We have thus proven that

for every ρ ∈ L(m−1), there is ρ̄ ∈ L(m) such that ρ = Tr�m\�m−1 ρ̄. (18)

Furthermore, by Bolzano-Weierstraß, L(1) is non-empty. Combining the properties (17)
and (18), we obtain Tr�m\�m−1 L

(m) = L(m−1) as an equality between non-empty sets.
This is sketched inFig. 3,whereweplot elements of L(m) as dots,with an edge connecting
two dots if the left element (in L(m−1)) is the partial trace of the right one (in L(m)).
Wandering from left to the right, no path will lead to a dead end; furthermore, every
point can be reached this way by starting with some element in L(1). Thus, there is at
least one path that starts with some element σ1 ∈ L(1) and extends to infinity – that is, a
sequence (σm)m∈N with σm−1 = Tr�m\�m−1 σm . L is the set of all these paths and hence
not empty. Every ω ∈ L can be interpreted as a state: for any finite region � ⊂ Z

ν , take
the smallest n such that � ⊂ �n , and set ω� := Tr�n\� ωm . This defines a consistent
family of density matrices, hence a state on the quasi-local algebra.

Fig. 3. Schematics of the sequence L(m) of limit points, as defined in the proof of Lemma 8. Note that
|L(1)| > 1 is possible
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Now let ω ∈ L be any state. We claim that ω is translation-invariant. It will be
sufficient to show the invariance equationω(γy(A)) = ω(A) for observables 0 ≤ A ≤ 1
and translations γδ j , where δ j = (0, . . . , 0, 1︸︷︷︸

j

, 0, . . . , 0). So let � ⊂ Z
ν be finite,

A ∈ A� an observable with 0 ≤ A ≤ 1, and j ∈ {1, . . . , d}; set γ := γδ j . Choose
m large enough such that � ⊆ �m and � + δ j ⊆ �m . Let ε > 0 be arbitrary. Since
ω�m ∈ L(m), there is some n ≥ m such that

∥
∥Tr�n\�m τn − ω�m

∥
∥
1 < ε.

The effect of the translation of the observable A in the region �n can be written

γ (A) ⊗ 1�n\(�+δ j ) = Tj (A ⊗ 1�n\�)T †
j ,

where Tj ∈ A�n is the unitary translation operator in �n as defined shortly before
Definition 7.Using this,we see that there are two real numbers
,
′ ∈ Rwith |
| < 2ε,
|
′| < 2ε such that

ω(γ (A)) = tr
[
ω�m

(
γ (A) ⊗ 1�m\(�+δ j )

)]

= tr
[(
Tr�n\�m τn

) (
γ (A) ⊗ 1�m\(�+δ j )

)]
+ 


= tr
[
τn

(
γ (A) ⊗ 1�n\(�+δ j )

)]
+ 
 = tr

[
τnTj (A ⊗ 1�n\�)T †

j

]
+ 


= tr
[
T †
j τnTj (A ⊗ 1�n\�)

]
+ 
 = tr

[
τn(A ⊗ 1�n\�)

]
+ 


= tr
[(
Tr�n\�m τn

)
(A ⊗ 1�m\�)

]
+ 
 = tr

[
ω�m (A ⊗ 1�m\�)

]
+ 
 + 
′

= ω(A) + 
 + 
′.

Since ε > 0 was arbitrary, this proves translation-invariance of ω.
In particular, every ω ∈ L has a well-defined entropy rate s(ω); what can we say

about it? Fix m ∈ N, and let ωm := ω�m . Remember that ρ
(m)
n = Tr�n\�m τn . Since

ωm ∈ L(m), there exists a sequence (nk)k∈N such that

ρ(m)
nk

k→∞−→ ωm .

Fix k ∈ N. We now decompose �nk into a disjoint union of boxes, where each box is
a translate of �m (where we consider translations as in the notion of �nk -translation
invariance – that is, we regard �nk as a torus). In general, this cannot be done perfectly,
but there will be some remaining part of �nk not covered by a translate of �m . To spell

out the details, let a(1)
m , . . . , a(ν)

m denote the sidelengths of the box�m , and a
(1)
nk , . . . , a(ν)

nk
the sidelengths of �nk . Write

a(i)
nk = �i · a(i)

m + ji , where 0 ≤ ji < a(i)
m .

Clearly, all �i tend to infinity for k → ∞ on fixed m. Let Nk := �1 · �2 · . . . · �ν , then
there are Nk translates �

(1)
m ,�

(2)
m , . . . , �

(Nk )
m of �m and the remainder �rem ⊂ �Nk , all

of them pairwise disjoint, such that

�nk =
Nk⋃

i=1

�(i)
m ∪ �rem.
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We have |�rem| = |�nk | − Nk · a(1)
m · . . . · a(ν)

m , hence

|�rem|
Nk

= |�nk |
Nk

− a(1)
m · . . . · a(ν)

m = a(1)
nk · a(2)

nk · . . . · a(ν)
nk

�1�2 . . . �ν

− a(1)
m a(2)

m . . . a(ν)
m

<
(�1 + 1)a(1)

m · . . . · (�ν + 1)a(ν)
m

�1�2 . . . �ν

− a(1)
m a(2)

m . . . a(ν)
m

= |�m | ·
[(

1 +
1

�1

)

· · ·
(

1 +
1

�ν

)

− 1

]
k→∞−→ 0.

As a consequence, we also obtain

lim
k→∞

|�nk |
Nk

= lim
k→∞

(

|�m | + |�rem|
Nk

)

= |�m |.

Since τnk is �nk -translation-invariant, its marginals on all the boxes �
(i)
m are equal, that

is, equal to ρ
(m)
nk . Due to subadditivity of von Neumann entropy S, we have

S(τnk ) ≤ NkS(ρ(m)
nk ) + S(τ�rem ) ≤ NkS(ρ(m)

nk ) + |�rem| · log d,

where d is the single-site Hilbert space dimension. Thus, we obtain

S(ωm) = lim
k→∞ S(ρ(m)

nk )

≥ lim sup
k→∞

1

Nk

[
S(τnk ) − |�rem| · log d]

= lim sup
k→∞

1

Nk
S(τnk ) = |�m | lim sup

k→∞
1

|�nk |
S(τnk ). (19)

Furthermore, we can estimate the energy expectation value of ωm as follows. Define
a Hamiltonian H (m)

�nk
on �nk by “switching off” all interaction terms that are not fully

contained in one of the �
(i)
m , that is,

H (m)
�nk

:=
Nk∑

i=1

∑

X⊂�
(i)
m

�(X).

We can estimate the norm difference of H (m)
�nk

and H�nk
as follows. All missing terms

are either fully contained in �rem, or act across the boundary of some �
(i)
m . With the

boundary ∂�
(i)
m as defined in (15), we obtain limm→∞ |∂�m |/|�m | = 0, and due to

finite-range of the interaction �, there are constants c1, c2 > 0 such that

∥
∥
∥H�nk

− H (m)
�nk

∥
∥
∥∞ ≤ c1|�rem| + c2

Nk∑

i=1

|∂�(i)
m | = c1|�rem| + c2Nk |∂�m |.

By construction and translation-invariance of �, we have

tr
(
τnk H

(m)
�nk

)
= Nk tr

(
ρ(m)
nk H�m

)
.
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Combining these identities, we get

1

|�m | tr(ωmH�m ) = 1

|�m | lim
k→∞ tr

(
ρ(m)
nk H�m

)
= 1

|�m | lim
k→∞

1

Nk
tr
(
τnk H

(m)
�nk

)

≤ 1

|�m | lim sup
k→∞

1

Nk

(
tr(τnk H�nk

) + c1|�rem| + c2Nk |∂�m |
)

= c2|∂�m |
|�m | + lim sup

k→∞
1

|�nk |
tr
(
τnk H�nk

)
. (20)

Since lim inf(an + bn) ≤ lim inf an + lim sup bn , we obtain

1

|�m |
(
S(ωm) − β tr(ωmH�m )

) ≥ lim sup
k→∞

1

|�nk |
S(τnK )

−β lim sup
k→∞

1

|�nk |
tr
(
τnk H�nk

)
− βc2

|∂�m |
|�m |

≥ lim inf
k→∞

1

|�nk |
(
S(τnk )−β tr(τnk H�nk

)
)
−βc2

|∂�m |
|�m |

≥ lim inf
n→∞

1

|�n|
(
S(τn) − β tr(τnH�n )

)− βc2
|∂�m |
|�m | .

Taking the limit m → ∞ finally shows that s(ω) − β u(ω) ≥ p(β,�). Since ω is
translation-invariant, we must have equality, and ω must be a Gibbs state.

Now suppose that L contains only a single element, then so does L(m); hence ρ
(m)
n

converges for n → ∞, and we can choose the convergent subsequence to be nk = k.
Repeating the calculation of (20) with inequality in both directions yields

lim inf
k→∞

1

|�k | tr(τk H�k ) ≥ 1

|�m | tr(ωmH�m ) − c2|∂�m |
|�m | ,

lim sup
k→∞

1

|�k | tr(τk H�k ) ≤ 1

|�m | tr(ωmH�m ) +
c2|∂�m |
|�m | ,

By taking the limitm → ∞ of the right-hand side, we obtain limn→∞ 1
|�n | tr(τnH�n ) =

u(ωβ). Then it follows directly from (16) that lim infn→∞ 1
|�n | S(τn) = s(ωβ). Fur-

thermore, (19) shows that lim supn→∞ 1
|�n | S(τn) ≤ s(ωβ), hence limn→∞ 1

|�n | S(τn) =
s(ωβ). ��

We can always define a maximally mixed state ω on the quasi-local algebra A∞,
by defining its local density matrix for finite � ⊂ Z

ν as ω� := 1�/d |�|. It is easy
to check that this is a consistent family of density matrices, defining a translation-
invariant state on A∞. According to Definition 5, its energy density exists; it is u(ω) =
limn→∞ tr(H�n )/d

|�n |. This fact will be used in the following lemma. To state that
lemma, we have to assume that the interaction � does not vanish – and, in addition,
that it is not physically equivalent to zero. An example would be an interaction in
one dimension (i.e. ν = 1) with �({1, 2}) = −�({1}) ⊗ 12, such that the resulting
Hamiltonian is zero up to boundary terms. For a formal definition of physical equivalence
and a further example see [13]. Note also that � is physically equivalent to zero if and
only if p(β,�) = log d for all β ≥ 0, which is the same value as for � = 0.
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Lemma 9. Let�be an interactionwhich is not physically equivalent to zero,with ground
state energy density umin(�) = limn→∞ λmin(H�n )/|�n| = − limβ→∞ β−1 p(β,�)

and infinite temperature energy density umax(�) := limn→∞ tr(H�n )/(|�n|d |�n |).
Then, for every u ∈ (umin(�), umax(�)], there exists a unique β ≡ β(u) ≥ 0 such
that there is at least one Gibbs state ω at inverse temperature β with energy density
u(ω) = u. Its entropy density is s(ω) = s(u) := p(β(u),�) + u β(u), and this is the
maximal possible entropy density of any translation-invariant state with energy density
u.

Proof. These statements are proven in [13]; uniqueness of β(u) can be seen as follows.
If � is not physically equivalent to zero, then the function β �→ p(β,�) is strictly
convex, see [13, p. 349 and Theorem II.1.5]. Consider any translation-invariant state ω;
it defines an affine-linear map β �→ s(ω) − β u(ω) =: �ω(β). According to (13), the
line �ω lies completely on or below of the graph of p; that is, �ω(β) ≤ p(β,�) for all
β. According to Definition 6, it is a Gibbs state if and only if �ω touches the graph of
p; that is, if there is some β such that �ω(β) = p(β). If we are given some value of u,
then every translation-invariant state with this energy density has a corresponding line
�ω with slope (−u). Consider all those lines. Then only one of them can touch the graph
of p, and it can do so in only one point, due to the strict convexity of p. The β-value of
the unique touching point is then β(u). ��

Nowwe have all ingredients to prove our main theorem on the equivalence of ensem-
bles.

Theorem 10 (Equivalence of ensembles). Let (τn)n∈N be a sequence of�n-translation-
invariant states on An, let β ≥ 0, and let � be a translation-invariant finite-range
interaction which is not physically equivalent to zero, and for which there is a unique
Gibbs state ωβ at inverse temperature β. Suppose that

lim inf
n→∞

1

|�n|
(
S(τn) − β tr(τnH�n )

) ≥ p(β,�),

then we have equality in this expression, and

lim
n→∞Tr�n\�m τn = (ωβ)�m (21)

for every m ∈ N. Furthermore, we have

lim
n→∞

1

|�n| S(τn) = s(ωβ), lim
n→∞

1

|�n| tr(τnH�n ) = u(ωβ),

and

lim
n→∞

∥
∥
∥
∥
∥
Tr�n\�m τn − Tr�n\�m

exp(−βH p
�n

)

Zn

∥
∥
∥
∥
∥
1

= 0, (22)

where Zn = tr(exp(−βH p
�n

)), and H p
�n

is the Hamiltonian on �n with periodic bound-

ary conditions. If the lattice dimension is ν = 1, then H p
�n

in (22) can be replaced
by H�n , the Hamiltonian with open boundary conditions. Furthermore, if Gibbs states
are unique around inverse temperature β, define βBC

n as the solution of the equation

1

|�n| tr
(

HBC
�n

exp(−βBC
n H p

�n
)

Zn

)

= un, where BC denotes an arbitrary fixed choice of

boundary conditions, and (un)n∈N is an arbitrary sequence with limn→∞ un = u(ωβ).
Then limn→∞ βBC

n = β, and
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lim
n→∞

∥
∥
∥
∥
∥
Tr�n\�m τn − Tr�n\�m

exp(−βBC
n H p

�n
)

Zn

∥
∥
∥
∥
∥
1

= 0. (23)

Proof. Set ρ
(m)
n := Tr�n\�m τn , and define L(m) and L exactly as in the statement of

Lemma 8. Since there is only one Gibbs state ωβ at inverse temperature β, Lemma 8
implies that L = {ωβ}, and so L(m) = (ωβ)�m for all m ∈ N. In other words, for every

m, the state (ωβ)�m is the unique limit point of the sequence (ρ
(m)
n )n∈N, and thus the

limit of this sequence. This proves the first identity. To infer the second identity, Eq. (22),
either apply [13, Theorem IV.2.12], or note that τ ′

n := exp(−βH p
�n

)/Zn maximizes the

functional ρ �→ S(ρ) − β tr(H p
�n

ρ), thus

lim inf
n→∞

1

|�n|
(
S(τ ′

n) − β tr(τ ′
nH�n )

) = lim inf
n→∞

1

|�n|
(
S(τ ′

n) − β tr(τ ′
nH

p
�n

)
)

≥ lim inf
n→∞

1

|�n|
(
S((ωβ)�n ) − β tr((ωβ)�n H

p
�n

)
)

= s(ωβ) − β u(ωβ) = p(β,�).

Thus limn→∞(Tr�n\�m τn −Tr�n\�m τ ′
n) = (ωβ)�m − (ωβ)�m = 0. Note that this also

shows that limn→∞ 1
|�n | tr(τ

′
nH�n ) = u(ωβ). In the case of lattice dimension ν = 1,

apply the fact that in this case, the local Gibbs state exp(−βH�n )/Zn weakly converges
to the unique global Gibbs state in the limit n → ∞, as shown in [15].

It remains to prove (23). To this end, use the notation Zn(β) := tr(exp(−βH p
�n

)), and

τ ′
n := exp(−βBC

n H p
�n

)/Zn(β
BC
n ). First we have to show that βBC

n is well-defined for

n large enough and that it is a bounded sequence. Set ρ(β ′) := exp(−β ′H p
�n

)/Zn(β
′)

for β ′ ≥ 0. Choose β0, β1 ∈ R such that 0 < β0 < β < β1, and such that the Gibbs
states at inverse temperatures β0 and β1 are unique. Then the previous results show

that limn→∞ 1
|�n | tr

(
HBC

�n
ρ(βi )

)
= ui for i = 0, 1, where ui := u(ωβi ). It follows

u0 > u > u1, and thus for n large enough, we have 1
|�n | tr(H

BC
�n

ρ(β0)) > un >
1

|�n | tr(H
BC
�n

ρ(β1)), so β0 < βBC
n < β1 for n large enough; in particular, a solution

βBC
n can be found in the interval (β0, β1). Moreover, since β0 and β1 can be chosen

arbitrarily close to β, this proves that limn→∞ βBC
n = β. Direct calculation shows that

S(τ ′
n) = log Zn(β

BC
n ) + βBC

n un|�n|, thus

lim inf
n→∞

1

|�n|
(
S(τ ′

n) − β tr(τ ′
nH�n )

)

= lim inf
n→∞

1

|�n|
(
log Zn(β

BC
n ) + βBC

n un|�n| − β tr(τ ′
nH

BC
�n

)
)

= lim inf
n→∞

(

(βBC
n − β)un +

1

|�n| log Zn(β
BC
n )

)

≥ lim inf
n→∞

1

|�n|
(
log Zn(β) − | log Zn(β

BC
n ) − log Zn(β)|

)

≥ p(β,�) − lim sup
k→∞

|βBC
n − β| ‖H p

�n
‖∞

|�n| = p(β,�),
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where we have used that | log Zn(β
BC
n ) − log Zn(β)| ≤ |βBC

n − β| · ‖H p
�n

‖∞, see [13,
Lemma II.2.2Q]. This shows that limn→∞ Tr�n\�m τ ′

n = (ωβ)�m . Combining this
with (21) proves (23). ��

In order to obtain some concrete instances of this equivalence of ensembles result,
we need a series of lemmas. The first one is given in [13, Theorem IV.2.14], though with
typos; see also [11,12], and for newer results on equivalence of ensembles, see [19].
Since the lemma is crucial for our paper, we give the proof for completeness, translating
the proof of [13, Theorem III.4.15] to the quantum case.

Lemma 11. Suppose that � is any finite-range translation-invariant interaction, not
physically equivalent to zero. Then, for all u ∈ (umin(�), umax(�)], we have

lim
n→∞

1

|�n| log
∣
∣
{
eigenvalues of H�n ≤ u · |�n|

}∣
∣ = s(u),

where s(u) is defined in Lemma 9.

Proof. We transfer the classical proof of [13, Thm. III.4.15] to the quantum case (with
slight modifications and simplifications, using notation established earlier). Define

N�n (u) := ∣
∣
{
eigenvalues of H�n ≤ u · |�n|

}∣
∣

s̄(u) := lim sup
n→∞

1

|�n| log N�n , s(u) := lim inf
n→∞

1

|�n| log N�n .

Denote the eigenvalues of H�n by Ei , and Z := tr(exp(−β(u)H�n )), then

1 ≥ 1

Z

∑

Ei : Ei /|�n |≤u

e−β(u)Ei ≥ 1

Z
N�n e

−β(u)u|�n |.

Taking logarithms, we obtain 1
|�n | log N�n ≤ 1

|�n | log Z + β(u)u
n→∞−→ s(u), hence

s̄(u) ≤ s(u). (24)

The converse inequality is more involved. Fix u1 ≤ u2, δ > 0, and 0 < λ < 1. Use the
notation of the proof of Lemma 8, where we have split �nk into disjoint regions �

(i)
m ,

i = 1, . . . , Nk , and �rem. Set nk = k. Denote by |E1〉, . . . , |EM 〉mutually orthonormal
eigenvectors of H�m with energy density less than or equal to u1, and |E ′

1〉, . . . , |E ′
N 〉

mutually orthonormal eigenvectors of H�m with energy density less than or equal to
u2 − δ, where M := N�m (u1) and N := N�m (u2 − δ). Set i := (i1, . . . , iNk ), where
i1, . . . , i�λNk ∈ {1, . . . , M}, and i�λNk +1, . . . , iNk ∈ {1, . . . , N }. For every possible
choice of i , define

|ψi 〉 :=
�λNk ⊗

l=1

|Eil 〉�(l)
m

⊗
Nk⊗

l=�λNk +1
|E ′

il 〉�(l)
m

⊗ |0〉�rem ,

where |0〉�rem is an arbitrary pure state on �rem. Then we have

〈ψi |H�k |ψi 〉
|�k | ≤ 〈ψi |H (m)

�k
|ψi 〉 + ‖H�k − H (m)

�k
‖∞

|�k |
≤ �λNk 

|�k | |�m |u1 + Nk − �λNk 
|�k | |�m |(u2 − δ)

+c1
|�rem|
|�k | + c2

Nk

|�k | |∂�m |.
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If k and m are large enough (while k ! m), the right-hand side is less than u′ :=
λu1 + (1 − λ)u2. Furthermore, if i �= i ′ then |ψi 〉 ⊥ |ψi ′ 〉, thus N�k (u

′) ≥ |{|ψi 〉}| =
M�λNk NNk−�λNk . Taking logarithms, we obtain

1

|�k | log N�k

(
u′) ≥ 1

|�k |
(�λNk log N�m (u1) + (Nk − �λNk ) log N�m (u2 − δ)

)
.

Since limk→∞ Nk/|�k | = 1/|�m |, this yields
s
(
u′) ≥ λ

|�m | log N�m (u1) +
1− λ

|�m | log N�m (u2 − δ),

and thus
s (λu1 + (1− λ)u2) ≥ λs(u1) + (1− λ)s(u2 − δ). (25)

Now consider a fixed value of u, and set β := β(u). We use the elementary inequalities
for a ≤ b:

lim sup
k→∞

1

|�k | log
∑

i : Ei /|�k |∈[a,b]
e−βEi ≤ −βa + s̄(b), (26)

lim inf
k→∞

1

|�k | log
∑

i : Ei /|�k |∈[a,b]
e−βEi ≤ −βa + s(b), (27)

where the Ei are now the eigenvalues of H�k . Suppose thatβ is a point of differentiability
of p(·,�) such that (due to strict convexity) s(u′) − βu′ < p(β,�) for all u′ �= u. Let
α > 0 such that s(u′) − βu′ ≤ p(β,�) − α for all u′ with |u′ − u| > δ. Choose ε > 0
such that εβ ≤ α/2. Nowwe decompose the energy density interval into a disjoint union

(umin(�), umax(�)] \ (u − δ, u + δ) =
n−1⋃

j=1

I j , where I j = (a j , b j ]

with |b j − a j | ≤ ε; In := (umax(�),∞).

Due to (26), we have lim sup
k→∞

1

|�k | log
∑

i : Ei /|�k |∈I j
e−βEi ≤ βa j + s̄(b j ), and due to (24),

we obtain for j ≤ n − 1

s̄(b j ) − βa j ≤ s(b j ) − βb j + β(b j − a j ) ≤ s(b j ) − βb j +
α

2
≤ p(β,�) − α

2
,

and for j = n, we get

s̄(b j ) − βa j = log d − βumax(�) = s(an) − βan ≤ p(β,�) − α.

Thus

lim sup
k→∞

1

|�k | log
∑

i : |Ei /|�k |−u|≥δ

e−βEi = lim sup
k→∞

1

|�k | log
n∑

j=1

∑

i : Ei /|�k |∈I j
e−βEi

≤ lim sup
k→∞

1

|�k |

⎛

⎝log n + max
j

∑

i : Ei /|�k |∈I j
e−βEi

⎞

⎠

≤ p(β,�) − 1

2
α.
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But since limk→∞ 1
|�k | log

∑
i e

−βEi = p(β,�) by definition of the pressure, we obtain

lim inf
k→∞

1

|�k | log
∑

i : |Ei /|�k |−u|≤δ

e−βEi ≥ p(β,�).

Comparing this to (27) yields p(β,�) ≤ −β(u − δ) + s(u + δ), hence

s(u + δ) ≥ lim
δ→0

s(u + δ) ≥ lim
δ→0

p(β,�) + β(u − δ) = p(β,�) + βu = s(u).

This finally shows that

s(u + δ) ≥ s(u) for all δ > 0, if β(u) is a point of differentiability of β �→ p(β,�).

Since β �→ p(β,�) is strictly convex, the right and left derivatives D+ p and D− p
exist everywhere, and the set B := {β > 0 | (D+ p)(β) �= (D−)(p)(β) is countable.
Furthermore, the set A := {u ∈ (umin(�), umax(�)) | β(u) ∈ B} is a countable union
of closed intervals. If u is any value such that there is a sequence (un)n∈N, un ≤ u, with
limn→∞ un = u and un �∈ A, then s(u) ≥ s(un), and due to continuity of s, we get
s(u) ≥ s(u). We get this inequality for all u �∈ A and the left-hand endpoints of intervals
in A.

Finally, let [u0, u1] ⊂ A be an isolated closed interval and u ∈ (u0, u1]. Then for
every ε ≥ 0 there is λε ∈ (0, 1) with u = λε(u1 + ε)+ (1−λε)u0. Then, for every ε > 0
small enough such that u1 + ε �∈ A, and δ > 0 small enough such that u0 − δ �∈ A, we
get due to (25)

s(u) = s(λε(u1 + ε) + (1− λε)u0) ≥ λεs(u1 + ε) + (1− λε)s(u0 − δ)

≥ λεs(u1 + ε) + (1− λε)s(u0 − δ).

Since s is continuous, we can first take the limit δ → 0 and then the limit ε → 0 to
obtain

s(u) ≥ λ0s(u1) + (1− λ0)s(u0) = s(u),

wherewe have used the fact that s is linear on [u0, u1]. Together with (24), this completes
the proof. ��

This lemma only refers to the Hamiltonian H�n corresponding to open boundary
conditions.However,we need this inmore generality, in particular for the case of periodic
boundary conditions.

Lemma 12. Let H BC
�n

be the Hamiltonians corresponding to an arbitrary choice of
boundary conditions in the sense of Definition 7. Then

lim
n→∞

1

|�n| log
∣
∣
∣
{
eigenvalues of H BC

�n
≤ u · |�n|

}∣
∣
∣ = s(u).

Proof. Define HBC
∂�n

:= HBC
�n

− H�n . Fix u, and let ũ < u be arbitrary. If n is large
enough, then

ũ|�n| + ‖HBC
∂�n

‖∞ ≤ u|�n|.
Thus, due to Weyl’s Perturbation Theorem [20], if λ1, . . . , λk are the k smallest eigen-
values of H�n , then HBC

�n
has eigenvalues λ′

i ≤ λi + ‖HBC
∂�n

‖. Therefore
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lim inf
n→∞

1

|�n| log
∣
∣
∣
{
eigenvalues of HBC

�n
≤ u|�n|

}∣
∣
∣

≥ lim inf
n→∞

1

|�n| log
∣
∣
∣
{
eigenvalues of HBC

�n
≤ ũ|�n| + ‖HBC

∂�n
‖
}∣
∣
∣

≥ lim inf
n→∞

1

|�n| log
∣
∣
{
eigenvalues of H�n ≤ ũ|�n|‖

}∣
∣ = s(ũ).

By continuity of s, since this is true for all ũ < u, the previous inequality is also true if
s(ũ) is replaced by s(u). Similarly, if ũ > u is arbitrary, then

lim sup
n→∞

1

|�n| log
∣
∣
∣
{
eigenvalues of HBC

�n
≤ u|�n|

}∣
∣
∣

≤ lim sup
n→∞

1

|�n| log
∣
∣
∣
{
eigenvalues of HBC

�n
≤ ũ|�n| − ‖HBC

∂�n
‖
}∣
∣
∣

≤ lim sup
n→∞

1

|�n| log
∣
∣
{
eigenvalues of H�n ≤ ũ|�n|‖

}∣
∣ = s(ũ).

This proves the claim. ��
As an immediate consequence we obtain the following result.

Example 13 (Microcanonical versus canonical ensemble). The sequence of states
(τn)n∈N which are defined as the maximal mixtures on the microcanonical subspaces

T p
n := span

{

|E〉
∣
∣
∣
∣ H

p
�n

|E〉 = E |E〉, E

|�n| ∈ (u − δ, u)

}

,

where H p
�n

is the Hamiltonian on �n with periodic boundary conditions satisfies the
premises of Theorem 10. That is, we obtain equivalence of ensembles in the standard
sense:

lim
n→∞

∥
∥
∥
∥
∥
Tr�n\�m τn − Tr�n\�m

exp(−βH p
�n

)

Zn

∥
∥
∥
∥
∥
1

= 0,

where one may either set β equal to β(u), the inverse temperature corresponding to
energy density u in the thermodynamic limit, or equal to the (n-dependent) solution

of
1

|�n| tr
(

HBC
�n

exp(−βH p
�n

)

Zn

)

= u, where BC denotes an arbitrary fixed choice of

boundary conditions.

In this example, as well as in Theorem 10, the partial traces cannot be removed:
globally, the microcanonical and the canonical ensemble will in general have large
one-norm distance. In the example of a non-interacting system of binary spins, the well-
known tightness of the classical finite de Finetti theorem provides a proof of this, see
Lemma 34.

Furthermore, it is crucial to use the reduction of the global Gibbs state, Tr�n\�m exp
(−βH p

�n
)/Zn , instead of the local Gibbs state, exp(−βH p

�m
). Replacing the former by

the latter renders the statement of the theorem false in general. This is rather obvious:
the local Gibbs state will in general be different from the reduction of the global one,
due to interaction terms across the boundary of�m . This phenomenon will also occur in
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Sect. 3.6, where we prove a special case of the “eigenstate thermalization hypothesis”
only by taking the boundary terms into account. A concrete counterexample to the
naive version of equivalence of ensembles is already given by the classical Ising model,
interpreted as a quantum model.

Example 14 (The Ising model). Consider the one-dimensional model on �n := {−n,

. . . , n}

H p
�n

:= −J
n∑

i=−n

Zi Zi+1 − h
n∑

i=−n

Zi , (28)

identifying n + 1 ≡ −n. Here, Zi denotes the Pauli Z -matrix Z =
(
1 0
0 −1

)

on lattice

site i . This model has a unique Gibbs state ωβ (in the thermodynamic limit n → ∞) for
all β ≥ 0, see [24]. Fix m = 0, and consider the reduction of the global microcanonical
state τn to �0 = {0}, a single lattice site. Due to Example 13 and Theorem 10, we have

lim
n→∞Tr�n\�0τn = (ωβ)�0 .

On the other hand, using the known formula for themagnetization of the Isingmodel [24],
we have

tr
(
(ωβ)�0 Z

) = 1

2n + 1

n∑

i=−n

tr
(
(ωβ)�n Zi

) = sinh(βh)
√
sinh2(βh) + exp(−4β J )

, (29)

where the first equality is due to translation-invariance, and the second equality follows
from taking the limit n → ∞ and using the well-known result for the magnetization
of this model. We can compare this with the local Gibbs state ωloc

β , which is defined as
the normalization of exp(−βH�0). We run into an immediate conceptual problem: how
do we define H�0? The most obvious choice is H�0 = Z0, but we have the freedom
to interpret (28) in different ways, by subtracting local terms from Zi Zi+1 and adding
them to the Zi -term. This is exactly the freedom that we encountered before, in the
definition of physical equivalence that we discussed before Lemma 9. Whatever we
define to be H�0 , it should be some fixed Hamiltonian which can be written in the form

H�0 = U

(
E1 0
0 E2

)

U †, with U unitary and E1, E2 ∈ R its energy eigenvalues. Our

crucial assumption will be that whatever H�0 is, it should be independent of β. But then

tr(ωloc
β Z) =

tr

[

U

(
exp(−βE1) 0

0 exp(−βE2)

)

U †Z

]

exp(−βE1) + exp(−βE2)
.

Regarding this as a function f (β) for complex β ∈ C, we obtain a function that is
holomorphic except for possibly countably many isolated singularities on the imaginary
axis (if E1 �= E2). This is not true for (29)which is a functionwith branch cut singularities
due to the presence of the square root. This shows that ωloc

β �= (ωβ)�0 at least for some
values of β > 0, no matter how we define H�0 . Thus Tr�n\�m τn cannot converge to
ωloc

β in the thermodynamics limit where n → ∞.
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The standard microcanonical ensemble (mentioned in Example 13 above) is defined
as a flat distribution on the energy windows subspace corresponding to the interval
(u − δ, u). However, we can apply Theorem 10 more generally. In order to slightly
generalize Example 13, we need another simple lemma:

Lemma 15. Let (p1, . . . , pn) be discrete probability distribution, and suppose that there

exists M ≥ 1 such that
pi
p j

≤ M for all i �= j . Then its Shannon entropy satisfies

H(p) ≥ log n − logM.

Proof. Let �i := log(1/pi ), then log(pi/p j ) = � j −�i , and the condition above implies
|�i − � j | ≤ logM for all i, j . Then all �i lie in the interval [�min, �max ], where �min :=
mini �i and �max := maxi �i . This interval has size at most �max − �min ≤ logM . Since
mini pi ≤ 1/n ≤ maxi pi , the quantity log n must be contained in this interval. Thus
|�i − log n| ≤ logM for all i . It follows that

|H(p) − log n| =
∣
∣
∣
∣
∣

∑

i

pi log
1

pi
−

∑

i

pi log n

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

∑

i

pi�i −
∑

i

pi log n

∣
∣
∣
∣
∣
≤

∑

i

pi |�i − log n| ≤ logM.

��
Now we apply this to prove a generalization of Example 13.

Example 16 (Microcanonical ensemble with given distribution function). Let � be an
interaction which is not physically equivalent to zero, and let umin(�) < u ≤ umax(�).
Let f : [umin(�), umax(�)] → Rbe a boundednonnegative function such that f (x) = 0
for all x > u and such that there exists δ > 0 such that f is continuous and strictly
positive on [u − δ, u], cf. Fig. 4. For every n ∈ N, let {|Ei 〉}i be an arbitrary energy
eigenbasis of H p

�n
, the Hamiltonian on �n with periodic boundary conditions. Then the

set of states defined by

τn := 1

N
∑

i

f

(
Ei

|�n|
)

|Ei 〉〈Ei |,

Fig. 4. Spectral density functions that satisfy the premises of Example 16, and yield equivalence of ensembles
in the sense that the correspondingmicrocanonical state locally resembles the canonical state. The non-negative
bounded function f must satisfy f (x) = 0 for all x ≥ u, and there must be δ > 0 such that f is continuous
and strictly positive on the interval [u − δ, u]. For x < u − δ, f can have all kinds of discontinuities
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whereN := ∑
i f (Ei/|�n|), satisfies the premises of Theorem10. That is, thismodified

microcanonical ensemble resembles locally the canonical ensemble.

Proof. Since tr(τnH
p
�n

) ≤ u|�n|, we have ū := lim supn→∞ 1
|�n | tr(τnH�n ) ≤ u.

Define In := {i | Ei/|�n| ∈ [u − δ, u]}, then τn = (1− λn)σn + λnσ
′
n , where

σn =
∑

i∈In

f (Ei/|�n|)
∑

j∈In f (E j/|�n|) |Ei 〉〈Ei |, σ ′
n =

∑

i �∈In

f (Ei/|�n|)
∑

j �∈In f (E j/|�n|) |Ei 〉〈Ei |,

λn =
∑

j �∈In f (E j/|�n|)
∑

j f (E j/|�n|) .

According to Lemma 12, we have
∑

j �∈In
f (E j/|�n|) ≤ #{i | Ei/|�n| < u − δ} · ‖ f ‖∞ = exp[|�n| s(u − δ) + o(|�n|)].

On the other hand,
∑

j

f (E j/|�n|)≥
∑

j∈In
f (E j/|�n|) ≥ #In · min

x∈[u−δ,u] f (x) = exp[|�n| s(u) − o(|�n|)].

This shows that limn→∞ λn = 0, and concavity of the entropy, i.e. S(τn) ≥ (1 −
λn)S(σn) + λn S(σ ′

n), yields

lim inf
n→∞

1

|�n| S(τn) ≥ lim inf
n→∞

1

|�n| S(σn).

But the eigenvalues ofσn are pi := f (Ei/|�n|)
∑

j∈In f (E j/|�n|) , such that
pi
p j

= f (Ei/|�n|)
f (E j/|�n|) ≤

b

a
, where a := minx∈[u−δ,u] f (x) and b := maxx∈[u−δ,u] f (x). Thus, Lemma 15 shows

that

S(σn) ≥ log #In − log
b

a
= |�n| · s(u) − o(|�n|),

and so s := lim infn→∞ 1
|�n | S(τn) ≥ s(u). In summary, we obtain

lim inf
n→∞

1

|�n|
(
S(τn) − β tr(τnH�n )

) ≥ s − β ū ≥ s(u) − β u = p(β,�).

This proves all the premises of Theorem 10. ��
Remark. The condition that f has a discontinuity at u (i.e. f (u) > 0, but f (x) = 0 for
all x > u) can be relaxed: the statement above will remain valid if f (u) = 0 as long
as f (x) does not tend to zero too quickly as x → u. However, the question what “too
quickly” means mathematically seems to depend on the choice of the model, because
it depends on subtle properties of the spectrum of H�, in particular on the number of
eigenvalues in certain intervals with diameters of order o(|�|). In this paper, we only
analyze what can be said in full generality from translation-invariance alone, without
reference to any details of the model.

Themain proof idea used in this subsection—to apply the variational principle (13)—
has been pioneered by Lima [11,12]. Our result however is more general:
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• It involves more general spectral density functions (the function f in Example 16)
instead of only the flat distribution,

• it allows to determine the inverse temperature from the energy density on the finite
region �n ,

• it allows local lattice site dimensions larger than two, and, most significantly,
• Lima considers only a restricted set of interactions that commute with a particle

number operator, see [12, p. 183], and [11, p. 63]. There is no such restriction in this
work.

In the remainder of this subsection, we will consider the case of sequences of states
(τn)n∈N that are not necessarily �n-translation-invariant. The simplest example is given
by the microcanonical ensembles (in the sense of Example 13) if boundary conditions
are not periodic. The proof of Theorem 10 does not work any more, because we cannot
guarantee that limit points of this sequence, as states on the quasi-local algebra, are
translation-invariant.

However, we can still prove a version of equivalence of ensembles in this case, even
though it will be a weaker version. This was already seen by Lima [12]. In a nutshell,
we will prove an equivalence of ensemble result for a restricted set of observables. The
following definition specifies the class of observables that we will consider.

Definition 17 (m-block periodically averaged observable). For m ≤ n, an operator
A ∈ An will be called an m-block periodically averaged observable if there exists
A′ ∈ Am with A′ = (A′)† such that

A = 1

|T(�n)|
∑

T∈T(�n)

T (A′ ⊗ 1)T †, (30)

where T(�n) denotes all periodic translations of the finite region �n into itself, and
the unit observable is supported on �n \ �m . Moreover, A will be called an m-block
periodically averaged effect if there exists A′ ∈ Am which satisfies the equation above,
and additionally satisfies 0 ≤ A′ ≤ 1.

Note that m-block periodically averaged observables A on �n are automatically
�n-translation-invariant. The notion “effect” refers to the property that they satisfy
0 ≤ A ≤ 1 (as inherited from A′), and can thus be interpreted as defining a binary
measurement with POVM elements (A, 1 − A).

The usual ‖ · ‖1-distance on density matrices (which is twice the trace distance) can
be interpreted (up to a factor of two) as the maximal possible difference of probabilities
in any binary measurement that is applied to the states:

‖ρ − σ‖1 = 2 max
0≤P≤1

|tr(Pρ) − tr(Pσ)| .

Similarly, we can define a pseudonorm that quantifies the extent to which two states
differ in the expectation value of m-block periodically averaged effects: for m ∈ N and
M = M† ∈ An with n ≥ m, set

‖M‖{m} := 2max {|tr(PM)| | P is an m-block periodically averaged effect on �n} .

As a consequence, ‖ρ − σ‖{m} denotes the maximal difference in probabilities of any
measurements described by m-block averaged effects that are performed on ρ resp. σ .
It is clear that 0 ≤ ‖A‖{m} ≤ ‖A‖1, and the norm properties ‖λA‖{m} = |λ| ‖A‖{m} for
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λ ∈ R as well as ‖A + B‖{m} ≤ ‖A‖{m} + ‖B‖{m} are satisfied. However, ‖A‖{m} can be
zero without A being zero, which shows that ‖ · ‖{m} is not a norm.

In the case where we have an m-block periodically averaged observable which does
not come from an effect, we have the following inequality:

Lemma 18. Let A be an m-block periodically averaged observable on�n, coming from
an observable A′ ∈ Am according to (30). Then for all quantum states ρ, σ on �n, we
have

|tr(ρA) − tr(σ A)| ≤ ‖A′‖∞‖ρ − σ‖{m}.

Proof. Denote by λmin resp. λmax the smallest resp. largest eigenvalue of A′. If λmax =
λmin then there is nothing to prove. Otherwise, set B ′ := (λmax − λmin)

−1(A′ − λmin1),
then 0 ≤ B ′ ≤ 1. Define B := 1

|T(�n)|
∑

T∈T(�n)
T (B ′ ⊗ 1)T †, then B is an m-block

periodically averaged effect, and hence

|tr(ρB) − tr(σ B)| ≤ 1

2
‖ρ − σ‖{m}.

On the other hand, we have B = (λmax − λmin)
−1(A − λmin1). Substituting this into

the previous inequality, and using that λmax − λmin ≤ 2‖A′‖∞, we obtain the claimed
inequality. ��

As a preparation, we need a lemmawhich says that periodically averaged local Gibbs
states for arbitrary boundary conditions converge to the global Gibbs state if it is unique.

Lemma 19. Fix any β ≥ 0, and let H BC
�n

be a sequence of Hamiltonians with arbitrary
boundary conditions, corresponding to an interaction � which is not physically equiv-
alent to zero and which has a unique Gibbs state ωβ at inverse temperature β. Then, for
every m ∈ N,

lim
n→∞Tr�n\�m

⎛

⎝ 1

|T(�n)|
∑

T∈T(�n)

T
exp(−βHBC

�n
)

Zn
T †

⎞

⎠ = (ωβ)�m , (31)

where Zn = tr
(
exp(−βHBC

�n
)
)
. Furthermore, if Gibbs states are unique around inverse

temperature β > 0, and if we define βBC
n as the solution of the equation 1

|�n | tr(

HBC
�n

exp(−βBC
n H BC

�n
)

Zn

)

= un, with (un)n∈N an arbitrary sequence with limn→∞ un =
u(ωβ), then limn→∞ βBC

n = β, and

lim
n→∞Tr�n\�m

⎛

⎝ 1

|T(�n)|
∑

T∈T(�n)

T
exp(−βBC

n H BC
�n

)

Z ′
n

T †

⎞

⎠ = (ωβ)�m ,

where Z ′
n = tr

(
exp(−βBC

n H BC
�n

)
)
.

Proof. Set ρn(β
′) := exp(−β ′HBC

�n
)/Zn(β

′), and ρn := ρn(β). By construction, ρn

maximizes the functional ρ �→ S(ρ) − β tr(HBC
�n

ρ). Thus



Thermalization and Canonical Typicality in Translation-Invariant Quantum Lattice Systems 529

S(ρn) − β tr(HBC
�n

ρn) ≥ S
(
(ωβ)�n

)− β tr
(
HBC

�n
(ωβ)�n

)
.

Setρ′
n := 1/(|T(�n)|)∑T∈T(�n)

TρnT †, then concavity of the entropy implies S(ρ′
n) ≥

S(ρn). Since T †H p
�n

T = H p
�n

for all T ∈ T(�n), we have tr(ρ′
nH

p
�n

) = tr(ρnH
p
�n

).
We obtain

lim inf
n→∞

1

|�n|
(
S(ρ′

n) − β tr(ρ′
nH�n )

)

≥ lim inf
n→∞

1

|�n|
(
S(ρn) − β tr(ρ′

nH
p
�n

)
)

= lim inf
n→∞

1

|�n|
(
S(ρn) − β tr(ρnH

p
�n

)
)

= lim inf
n→∞

1

|�n|
(
S(ρn) − β tr(ρnH

BC
�n

)
)

≥ lim inf
n→∞

1

|�n|
(
S
(
(ωβ)�n

)− β tr
(
HBC

�n
(ωβ)�n

))

= s(ωβ) − β u(ωβ) = p(β,�). (32)

Since everyρ′
n is�n-translation-invariant, Theorem10proves (31) and also limn→∞ 1

|�n |
tr(ρ′

nH�n ) = u(ωβ). Thus

u(ωβ) = lim
n→∞

1

|�n| tr(ρ
′
nH

p
�n

) = lim
n→∞

1

|�n| tr(ρnH
p
�n

) = lim
n→∞

1

|�n| tr(ρnH
BC
�n

).

Choose β0, β1 ∈ R such that 0 < β0 < β < β1, and such that the Gibbs
states at inverse temperatures β0 and β1 are unique. Then the previous results show

that limn→∞ 1
|�n | tr

(
HBC

�n
ρn(βi )

)
= ui for i = 0, 1, where ui := u(ωβi ). It fol-

lows u0 > u > u1, and thus for n large enough, we have 1
|�n | tr(H

BC
�n

ρn(β0)) >

un > 1
|�n | tr(H

BC
�n

ρn(β1)), so β0 < βBC
n < β1 for n large enough; in particu-

lar, a solution βBC
n can be found in the interval (β0, β1). Moreover, since β0 and

β1 can be chosen arbitrarily close to β, this proves that limn→∞ βBC
n = β. We

can then repeat the calculation (32), with β after the minus sign replaced by βBC
n

where necessary, ωβ left unchanged, ρn replaced by ρn(β
BC
n ), and ρ′

n replaced by
ρ′
n(β

BC
n ) := 1/(|T(�n)|)∑T∈T(�n)

Tρn(β
BC
n )T †, proving the final claim of the

lemma. ��
Nowwe have all the ingredients to prove our main theorem on equivalence of ensem-

bles.

Theorem 20 (Equivalence of ensembles, non-translation-invariant states). Let (τn)n∈N
be a sequence of states onAn, let β ≥ 0, and let� be a translation-invariant finite-range
interaction which is not physically equivalent to zero, and for which there is a unique
Gibbs state ωβ at inverse temperature β. Suppose that

lim inf
n→∞

1

|�n|
(
S(τn) − β tr(τnH�n )

) ≥ p(β,�),
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then we have equality in this expression, and

lim
n→∞

∥
∥
∥
∥
∥
τn − exp(−βHBC

�n
)

Zn

∥
∥
∥
∥
∥{m}

= 0, as well as lim
n→∞

1

|�n| tr(τnH�n ) = u(ωβ),

where Zn = tr(exp(−βHBC
�n

)), and H BC
�n

is the Hamiltonian on �n corresponding to
� with arbitrary boundary conditions. Furthermore, if Gibbs states are unique around
inverse temperature β > 0, we have

lim
n→∞

∥
∥
∥
∥
∥
τn − exp(−βBC

n H BC
�n

)

Zn

∥
∥
∥
∥
∥{m}

= 0,

where βBC
n is defined as the solution of the equation 1

|�n | tr
(

HBC
�n

exp(−βBC
n H BC

�n
)

Zn

)

= un,

where (un)n∈N is any sequence with limn→∞ un = u(ωβ).

Proof. We prove both claims at once, by defining two sequences (βn)n∈N and (β ′
n)n∈N,

either setting βn := β and β ′
n := β, or setting βn := βBC

n and β ′
n := β

p
n . Define

�(σ) := 1

|T(�n)|
∑

T∈T(�n)

TσT †, then it is easy to check that � is Hilbert-Schmidt

self-adjoint, i.e. tr(A�(B)) = tr(�(A)B) for A = A†, B = B†. Furthermore, define
τ ′
n := �(τn), then concavity of the entropy implies that S(τ ′

n) ≥ S(τn). Since the
Hamiltonian with periodic boundary conditions satisfies T H p

�n
T † = H p

�n
, we obtain

tr(τ ′
nH

p
�n

) = tr(τnH
p
�n

), and thus

lim inf
n→∞

1

|�n|
(
S(τ ′

n) − β tr(τ ′
nH�n )

) ≥ lim inf
n→∞

1

|�n|
(
S(τn) − β tr(τ ′

nH
p
�n

)
)

= lim inf
n→∞

1

|�n|
(
S(τn) − β tr(τnH

p
�n

)
)

= lim inf
n→∞

1

|�n|
(
S(τn) − β tr(τnH�n )

)

≥ p(β,�).

Thus, τ ′
n satisfies the premises of Theorem 10, and (22) and (23) tell us that

lim
n→∞

∥
∥
∥
∥
∥
Tr�n\�m τ ′

n − Tr�n\�m

exp(−β ′
nH

p
�n

)

Z ′
n

∥
∥
∥
∥
∥
1

= 0,

where Z ′
n = tr

(
exp(−β ′

nH
p
�n

)
)
. Now let A be anym-block periodically averaged effect

on �n , then it is of the form (30) with A′ ∈ Am , 0 ≤ A′ ≤ 1. A simple calculation
shows that tr(τn A) = tr(τ ′

n(A
′ ⊗ 1)), and �n-translation-invariance of H

p
�n

implies that

tr

(
exp(−β ′

nH
p
�n

)

Z ′
n

A

)

= tr

(
exp(−β ′

nH
p
�n

)

Z ′
n

(A′ ⊗ 1)

)

. Thus
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∥
∥
∥
∥
∥
τn − exp(−β ′

nH
p
�n

)

Z ′
n

∥
∥
∥
∥
∥{m}

= 2max
A

∣
∣
∣
∣
∣
tr(τn A) − tr

(
exp(−β ′

nH
p
�n

)

Z ′
n

A

)∣
∣
∣
∣
∣

= 2max
A′

∣
∣
∣
∣
∣
tr
(
A′ Tr�n\�m τ ′

n

)− tr

(

A′ Tr�n\�m

exp(−β ′
nH

p
�n

)

Z ′
n

)∣
∣
∣
∣
∣

≤
∥
∥
∥
∥
∥
Tr�n\�m τ ′

n − Tr�n\�m

exp(−β ′
nH

p
�n

)

Z ′
n

∥
∥
∥
∥
∥
1

n→∞−→ 0. (33)

Nowwe extend this to arbitrary boundary conditions. Let A be anym-block periodically
averaged effect, then there exists A′ ∈ Am such that A = �(A′ ⊗ 1). Setting Zn =
tr(exp(−βnH BC

�n
)), we obtain

∣
∣
∣
∣
∣
tr

(

A
exp(−βnH BC

�n
)

Zn

)

− tr

(

A
exp(−β ′

nH
p
�n

)

Z ′
n

)∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
tr

(

�(A′ ⊗ 1)
exp(−βnH BC

�n
)

Zn

)

− tr

(

�(A′ ⊗ 1)
exp(−β ′

nH
p
�n

)

Z ′
n

)∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
tr

(

(A′ ⊗ 1)�

(
exp(−βnH BC

�n
)

Zn

))

− tr

(

(A′ ⊗ 1)�

(
exp(−β ′

nH
p
�n

)

Z ′
n

))∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
tr

(

A′ Tr�n\�m �

(
exp(−βnH BC

�n
)

Zn

))

−tr

(

A′ Tr�n\�m �

(
exp(−β ′

nH
p
�n

)

Z ′
n

))∣
∣
∣
∣
∣

≤ 1

2

∥
∥
∥
∥
∥
Tr�n\�m �

(
exp(−βnH BC

�n
)

Zn

)

− Tr�n\�m �

(
exp(−β ′

nH
p
�n

)

Z ′
n

)∥
∥
∥
∥
∥
1

n→∞−→ 0

for all m ∈ N according to Lemma 19. Taking the supremum over all A shows that

lim
n→∞

∥
∥
∥
∥
∥

exp(−βnH BC
�n

)

Zn
− exp(−β ′

nH
p
�n

)

Z ′
n

∥
∥
∥
∥
∥{m}

= 0 for all m ∈ N.

Combining this with (33) proves the second claim. Furthermore, Theorem 10 implies
that

u(ωβ) = lim
n→∞

1

|�n| tr(τ
′
nH

p
�n

) = lim
n→∞

1

|�n| tr(τnH
p
�n

) = lim
n→∞

1

|�n| tr(τnH�n ).

This completes the proof of the theorem. ��
The simplest example application is as follows.

Example 21 (Microcanonical versus canonical ensemble, arbitrary boundary condi-
tions). The sequence of states (τn)n∈N which are defined as the maximal mixtures on
the microcanonical subspaces

T BC
n := span

{

|E〉
∣
∣
∣
∣ H

BC
�n

|E〉 = E |E〉, E

|�n| ∈ (u − δ, u)

}

,
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where HBC
�n

is a Hamiltonian on �n with arbitrary boundary conditions, satisfies the
premises of Theorem 20. That is, if Gibbs states are unique around inverse temperature
β := β(u), we obtain equivalence of ensembles on m-block periodically averaged
observables:

lim
n→∞

∥
∥
∥
∥
∥
τn − exp(−βHBC

�n
)

Zn

∥
∥
∥
∥
∥{m}

= 0 for all m ∈ N.

Furthermore, the same result is true if β is defined as the (n-dependent) solution of
1

|�n | tr
(

HBC
�n

exp(−βHBC
�n

)

Zn

)

= u.

Remark. The choice of boundary conditions in the definition of T BC
n and in the statement

of the example need not be identical.

Proof. ApplyLemma12and 1
|�n | tr(τnH

BC
�n

) ≤ u to show that lim infn→∞ 1
|�n |

(
S(τn)−

β tr(τnH�n )
) ≥ p(β,�). ��

For non-periodic boundary conditions, it is somewhat unnatural to consider period-
ically averaged observables. Instead, we may consider m-block averaged observables,
where the region�m is translated only inside the boundaries of�n , without considering
the periodic extension of the latter.

Definition 22 (m-block averaged observable). For m ≤ n, define T(�m,�n) := {y ∈
Z

ν | �m + y ⊂ �n}. An operator A ∈ An will be called anm-block averaged observable
if there exists A′ ∈ Am with A′ = (A′)† (resp. m-block averaged effect if 0 ≤ A′ ≤ 1)
such that

A = 1

|T(�m,�n)|
∑

y∈T(�m ,�n)

γy(A
′) ⊗ 1, (34)

where the unit observable is supported on �n \ (�m + y). Moreover, we define the
pseudonorm ‖ · ‖[m] on self-adjoint operators M ∈ An by

‖M‖[m] := 2max {|tr(PM)| | P is an m-block averaged effect on �n} .

The following lemma translates Lemma 18 to the pseudonorm ‖ · ‖[m] and also
generalizes it.

Lemma 23. Let A be an m-block averaged observable on �n, coming from an observ-
able A′ ∈ Am according to (34). Then for all quantum states ρ, σ on �n, we have

|tr(ρA) − tr(σ A)| ≤ ‖A′‖∞‖ρ − σ‖[m].

Furthermore, we have ‖A‖∞ ≤ ‖A′‖∞; if in addition A′ ≥ 0, then we also have
‖A‖∞ ≥ 1

|�m | ‖A′‖∞. In the special case where |�m | = 1, we have ‖A‖∞ = ‖A′‖∞
whether or not A′ is positive.

Proof. The proof of the first statement is identical to that of Lemma 18 and thus omitted.
Clearly, ‖A‖∞ ≤ ‖A′‖∞ follows directly from the definition (34) and ‖γy(A′)⊗1‖∞ =
‖γy(A′)‖∞ = ‖A′‖∞. Since �m is a box, it can be written �m = [λ1, μ1] × . . . ×
[λν, μν]. Consider two boxes � ⊂ �n and �′ ⊂ �n which are congruent to �m , i.e.
are translations of �m . We call � and �′ equivalent if there is a translation y such that



Thermalization and Canonical Typicality in Translation-Invariant Quantum Lattice Systems 533

�′ = � + y, which has components yi = ki (μi − λi ) with ki ∈ Z. In other words,
equivalent boxes (which are shaped like �m) do not overlap, and they can tesselate �n
(up to sites close to the boundary).

Every equivalence class is uniquely determined by an element x ∈ �m , which spec-
ifies a box � in that equivalence class which is �m + y, where x = (λ1, . . . , λν) + y.
Thus, the number of equivalence classes is upper-bounded by |�m |. Now call two trans-
lations y, z ∈ T(�m,�n) equivalent if �m + y is equivalent to �m + z in the sense
just specified. There will be N equivalence classes T1, . . . , TN , where N ≤ |�m |,
and T(�m,�n) = ⋃N

i=1 Ti , which is a disjoint union. Consequently, at least one
of them—say, T j—must have |T j | ≥ |T(�m,�n)|/N . For the moment, suppose
that A′ is a positive-semidefinite matrix. Then there is a state |ψ〉 on �m such that
‖A′‖∞ = 〈ψ |A′|ψ〉. We can write �n = ⋃

y∈T j
(�m + y) ∪ �rest , where unions are

disjoint. Now we define a state |�〉 on �n , by taking the tensor product of copies of |ψ〉
in the regions �m + y, and an arbitrary pure reference state |0〉 on �rest . We get

‖A||∞ ≥ 〈�|A|�〉 = 1

|T(�m,�n)|
N∑

i=1

∑

y∈Ti

〈�|γy(A′) ⊗ 1|�〉

≥ 1

|T(�m,�n)|
∑

y∈T j

〈�|γy(A′) ⊗ 1|�〉

= |T j |
|T(�m,�n)| 〈ψ |A′|ψ〉 ≥ 1

N
‖A′‖∞ ≥ 1

|�m | ‖A
′‖∞.

If |�m | = 1, choose the single-site state |ψ〉 such that ‖A′‖∞ = |〈ψ |A′|ψ〉|. Let |ψ⊗�n 〉
be the state |ψ〉, copied onto every lattice site of �n . Then

‖A‖∞ ≥ ∣
∣〈ψ⊗�n |A|ψ⊗�n 〉∣∣

=
∣
∣
∣
∣
∣
∣

1

|T(�m,�n)|
∑

y∈T(�m ,�n)

〈ψ⊗�n |γy(A′) ⊗ 1|ψ⊗�n 〉
∣
∣
∣
∣
∣
∣

= |〈ψ |A′|ψ〉| = ‖A′‖∞.

The claim follows. ��
Asymptotically, that is for large n, the pseudonorms ‖·‖{m} and ‖·‖[m] are equivalent.

This is the statement of the following lemma. Thus, our equivalence of ensemble results
in Theorem 20 and Example 21 remain valid of the former pseudonorm is replaced by
the latter. This yields a more natural physical interpretation of our results.

Lemma 24 (Equivalence of both averaging methods). For every m ≤ n and all states
ρ, σ on �n, we have

∣
∣ ‖ρ − σ‖{m} − ‖ρ − σ‖[m]

∣
∣ ≤ 8|�m | · |∂�n|

|�n|
which tends to zero for fixed m as n → ∞.

Proof. Define the completely positive map � : Am → An by setting �(A′) as the
right-hand side of (30). Similarly, define the completely positive map �′ : Am → An
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by setting �′(A′) as the right-hand side of (34). Note that �(1) = 1 = �′(1). Then
‖M‖{m} = 2max0≤A′≤1 |tr(M�(A′))| and ‖M‖[m] = 2max0≤A′≤1 |tr(M�′(A′))|. If
M is traceless (as is the case for M = ρ − σ ), then tr(M�(1 − A′)) = −tr(M�(A′))
and similarly for �′, and the absolute values under the maxima can be removed.
Thus

∣
∣ ‖M‖{m} − ‖M‖[m]

∣
∣ = 2

∣
∣
∣
∣ max
0≤A′≤1

tr(M�(A′)) − max
0≤A′≤1

tr(M�′(A′))
∣
∣
∣
∣

≤ 2 max
0≤A′≤1

∣
∣tr(M�(A′)) − tr(M�′(A′))

∣
∣

≤ 2‖M‖1 max
0≤A′≤1

∥
∥�(A′) − �′(A′)

∥
∥∞ .

To compare� and�′, we note thatwe can interpret every translation y ∈ T(�m,�n) as a
periodic translation T ∈ T(�n) such that γy(A′)⊗1 = T (A′⊗1)T † for every A′ ∈ Am ;
this is an equality of observables on�n . In this sense,we canwriteT(�m,�n) ⊂ T(�n).
A simple application of the triangle inequality and ‖A′‖∞ ≤ 1 gives

∥
∥�(A′) − �′(A′)

∥
∥∞

≤
∥
∥
∥
∥
∥
∥

1

|T(�n)|
∑

T∈T(�n)

T (A′ ⊗ 1)T † − 1

|T(�n)|
∑

y∈T(�m ,�n)

γy(A
′) ⊗ 1

∥
∥
∥
∥
∥
∥∞

+

∥
∥
∥
∥
∥
∥

1

|T(�n)|
∑

y∈T(�m ,�n)

γy(A
′) ⊗ 1 − 1

|T(�m,�n)|
∑

y∈T(�m ,�n)

γy(A
′) ⊗ 1

∥
∥
∥
∥
∥
∥∞

= 1

|T(�n)|

∥
∥
∥
∥
∥
∥

∑

T∈T(�n)\T(�m ,�n)

T (A′ ⊗ 1)T †

∥
∥
∥
∥
∥
∥∞

+

(
1

|T(�m,�n)| −
1

|T(�n)|
)
∥
∥
∥
∥
∥
∥

∑

y∈T(�m ,�n)

γy(A
′) ⊗ 1

∥
∥
∥
∥
∥
∥∞

≤ 2
|T(�n)| − |T(�m,�n)|

|T(�n)| .

Estimating this expression is a matter of simple lattice geometry. First, it is easy to
see that |T(�n)| = |�n|, the number of sites in the region. Consider any translation
T ∈ T(�n) \T(�m,�n). It translates �m periodically inside �n , but not in a way such
that the same is achieved by a non-periodic translation γy with y ∈ Z

ν . Instead, the
corresponding y-translation will map �m partially inside and partially outside of �n .
That is, there must be some intersection of y + �m with the boundary of �n defined
in (15). However, for every given boundary point x ∈ ∂�n , there are only |�m | many
translations y such that x ∈ �m + y. Hence

|T(�n)| − |T(�m,�n)| = |T(�n) \ T(�m,�n)| ≤ |∂�n| · |�m |.
Combining the previous inequalities, and using that ‖ρ −σ‖1 ≤ 2, completes the proof.

��
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3.2. Canonical typicality. With the results of the previous subsection, in particular
Examples 13 and 21, it is easy to prove a general result on canonical typicality for
translation-invariant quantum systems.

Theorem 25 (Canonical typicality, periodic boundary conditions). Let � be any
translation-invariant finite-range interaction, not physically equivalent to zero, with
corresponding periodic boundary condition Hamiltonians H p

�n
, let umin(�) < u ≤

umax(�) and δ > 0. Suppose that there is a unique infinite-volume Gibbs state ωβ at
inverse temperature β ≡ β(u). Consider the microcanonical subspace

T p
n := span

{

|E〉
∣
∣
∣
∣ H

p
�n

|E〉 = E |E〉, E

|�n| ∈ (u − δ, u)

}

.

If |ψ〉 ∈ T p
n is a random pure state, then for every m ∈ N there is a sequence of positive

real numbers (
m,n)n∈N with limn→∞ 
m,n = 0, such that

Prob

{∥
∥
∥
∥
∥
Tr�n\�m |ψ〉〈ψ | − Tr�n\�m

exp(−βH p
�n

)

Zn

∥
∥
∥
∥
∥
1

≥ 
m,n + ε

}

≤ exp
(
− ε2 exp(|�n| s(u) + o(|�n|))

)

for every ε ≥ 0. Furthermore, if Gibbs states are unique around inverse temperature
β > 0, then the same result is true if β is chosen as the (n-dependent) solution of
1

|�n | tr
(

HBC
�n

exp(−βH p
�n

)

Zn

)

= u, where BC denotes an arbitrary fixed choice of boundary

conditions.

Proof. It follows from [4, Theorem 1] that

Prob

{
∥
∥Tr�n\�m |ψ〉〈ψ | − �m,n

∥
∥
1 ≥ ε +

d |�m |
√
|T p

n |

}

≤ 2 exp

(

−|T p
n |ε2

18π3

)

for all ε ≥ 0, where |T p
n | denotes the dimension of the subspace T p

n , and �m,n :=
Tr�n\�m τn , with τn the maximally mixed state on T p

n . Set

δm,n :=
∥
∥
∥
∥
∥
�m,n − Tr�n\�m

exp(−βH p
�n

)

Zn

∥
∥
∥
∥
∥
1

, (35)

then Example 13 resp. Theorem 10 imply that limn→∞ δm,n = 0. Thus, the previous
statements imply

Prob

{∣
∣
∣
∣
∣
Tr�n\�m |ψ〉〈ψ | − Tr�n\�m

exp(−βH p
�n

)

Zn

∥
∥
∥
∥
∥
1

≥ ε +
d |�m |
√
|T p

n |
+ δm,n

}

≤ 2 exp

(

−|T p
n |ε2

18π3

)

.

Furthermore, according to Lemma 12, we have |T p
n | = exp[|�n| s(u)+o(|�n|)]. Setting


m,n := δm,n + d |�m |/
√

|T p
n | (36)

completes the proof of the theorem. ��
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Example 14 shows again that we cannot in general replace the restriction of the global
Gibbs state, Tr�n\�m exp(−βH p

�n
)/Zn , with the local Gibbs state, exp(−βHBC

�m
)/Zm ,

no matter what boundary conditions we choose for HBC
�m

.
Similarly as for our equivalence of ensembles result, we can prove an analogue of

this theorem in the case of arbitrary boundary conditions by replacing ‖ · ‖1 by ‖ · ‖{m}.
Theorem 26 (Canonical typicality, arbitrary boundary conditions). Let � be any
translation-invariant finite-range interaction, not physically equivalent to zero, with
corresponding arbitrary boundary condition Hamiltonians H BC

�n
, let umin(�) < u ≤

umax(�) and δ > 0. Suppose that there is a unique infinite-volume Gibbs state ωβ at
inverse temperature β ≡ β(u). Consider the microcanonical subspace

T BC
n := span

{

|E〉
∣
∣
∣
∣ H

BC
�n

|E〉 = E |E〉, E

|�n| ∈ (u − δ, u)

}

.

If |ψ〉 ∈ T BC
n is a random pure state, then for every m ∈ N there is a sequence of positive

real numbers (
m,n)n∈N with limn→∞ 
m,n = 0, such that

Prob

{∥
∥
∥
∥
∥
|ψ〉〈ψ | − exp(−βHBC

�n
)

Zn

∥
∥
∥
∥
∥[m]

≥ 
m,n + ε

}

≤ exp
(
− ε2 exp(|�n| s(u) + o(|�n|))

)

for every ε ≥ 0. Furthermore, if Gibbs states are unique around inverse temperature
β > 0, then the same result is true if β is chosen as the (n-dependent) solution of
1

|�n | tr
(

HBC
�n

exp(−βHBC
�n

)

Zn

)

= u.

Proof. Denote by τ BC
n the maximally mixed state on T BC

n . Suppose that η ≥ 0 is any
real number such that ∥

∥
∥ |ψ〉〈ψ | − τ BC

n

∥
∥
∥[m] ≥ η. (37)

By definition, this means that there exists some observable A′ ∈ Am such that

2

∣
∣
∣
∣
∣
∣

1

|T(�m,�n)|
∑

y∈T(�m ,�n)

(
〈ψ |γy(A′) ⊗ 1|ψ〉 − tr(τ BC

n γy(A
′) ⊗ 1

)
∣
∣
∣
∣
∣
∣
≥ η,

and thus, there must be some y ∈ T(�m,�n) such that

2
∣
∣
∣〈ψ |γy(A′) ⊗ 1|ψ〉 − tr(τ BC

n γy(A
′) ⊗ 1)

∣
∣
∣ ≥ η.

Let � := �m + y, then |�| = |�m |, � ⊂ �n , and
∥
∥
∥Tr�n\� |ψ〉〈ψ | − Tr�n\� τ BC

n

∥
∥
∥
1
≥ η.

Now consider the case η = ε + d |�m |/
√|T BC

n |. According to [4, Theorem 1], the
probability that the previous inequality holds on Haar-random choice of |ψ〉 is upper-
bounded by 2 exp

(−|T BC
n |ε2/(18π3)

)
. Thus

Prob

{
∥
∥
∥ |ψ〉〈ψ | − τ BC

n

∥
∥
∥[m] ≥ ε +

d |�m |
√
|T p

n |

}

≤ 2 exp

(

−|T BC
n |ε2
18π3

)

.
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Now set

δm,n :=
∥
∥
∥
∥
∥
τ BC
n − exp(−βHBC

�n
)

Zn

∥
∥
∥
∥
∥[m]

,

and set 
m,n := δm,n + d |�m |/
√|T BC

n |. Example 21 and Lemma 24 show that limn→∞
δm,n = 0 = limn→∞ 
m,n , and arguing as in the proof of Theorem 25 completes the
proof. ��

Drawing a pure state |ψ〉 according to the Haar measure is a process that cannot
be achieved efficiently in practice, as parameter counting shows. Thus, it is also to be
expected that no process in nature really produces a Haar-random state. However, what
canbe achieved efficiently—for example, by application of random local unitaries [25]—
are approximations to the Haar measure known as (approximate) unitary t-designs. As
shown in [26], they give a way to “derandomize” results like the canonical typicality
theorems above.

There are different definitions of what is called an ε-approximate k-design ν; they all
have in common that the computational effort of sampling from themscales polynomially
in log ε and log d, where d is the underlying Hilbert space dimension.

Here, we use the definition from [26]. It utilizes the notion of a balanced monomial
of degree k of a matrix U , which is a monomial in the components of U and U † which
contains the same number (k) of conjugated as unconjugated elements. For example,
Ui jU∗

pq is a balanced monomial of degree 1.

Definition 27 (Approximate design). A measure ν on the unitary group U (d) is called
an ε-approximate (unitary) k-design, if for all balanced monomials M of degree less
than or equal to k, we have

|EU∼νM(U ) − EU∼μH M(U )| ≤ ε

dk
,

where EU∼μ denotes the expectation with respect to a measure μ, and μH is the Haar
measure.

We now use Theorem 1.4 in [26] to prove a derandomized version of canonical
typicality. Note that the theorem in [26] uses as an implicit additional assumption that k
is an integer-multiple of 8.

Theorem 28 (Canonical typicality, periodic boundary conditions, derandomized ver-
sion). Let � be any translation-invariant finite-range interaction, not physically equiv-
alent to zero, with corresponding periodic boundary condition Hamiltonians H p

�n
, let

umin(�) < u ≤ umax(�) and 
 > 0. Suppose that there is a unique infinite-volume
Gibbs stateωβ at inverse temperature β ≡ β(u). Consider the microcanonical subspace

T p
n := span

{

|E〉
∣
∣
∣
∣ H

p
�n

|E〉 = E |E〉, E

|�n| ∈ (u − δ, u)

}

.

Choose a state |ψ〉 at random from T p
n by choosing a unitary from an ε-approximate 8-

design and applying it to a fixed initial pure state, where ε = exp(−|�n|s(u)+o(|�n|)).
Then for every m ∈ N large enough such that d |�m | ≥ 14, there is a sequence of positive
real numbers (δm,n)n∈N with limn→∞ δm,n = 0, such that
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Probν

{∥
∥
∥
∥
∥
Tr�n\�m |ψ〉〈ψ | − Tr�n\�m

exp(−βH p
�n

)

Zn

∥
∥
∥
∥
∥
1

≥ δm,n + κ

}

≤ d3|�m |

κ2 exp
(− |�n|s(u) + o(|�n|)

)

for all κ > 0. Furthermore, if Gibbs states are unique around inverse temperature
β > 0, then the same result is true if β is chosen as the (n-dependent) solution of
1

|�n | tr
(

HBC
�n

exp(−βH p
�n

)

Zn

)

= u, where BC denotes an arbitrary fixed choice of boundary

conditions.

Proof. Let τn be the maximally mixed state on T p
n , and set ε := 6d3|�m |/|T p

n |. Due
to [26, Theorem 1.4], we have

Probν

{∥
∥Tr�n\�m |ψ〉〈ψ | − Tr�n\�m τn

∥
∥
1 ≥ κ

} ≤ 24d3|�m |

|T p
n |κ2

(38)

for all κ > 0. Define δm,n as in (35), use Example 13 and absorb the factor 24 into the
exp(o|�n|)-term. ��

One still has concentration on the thermal state; however, in contrast to the Haar
measure result in Theorem25, the concentration is nowexponential in the number of sites
|�n|, not doubly-exponential. This behavior is more in line with standard expectations
on physical systems in statistical mechanics.

It is now clear how Theorem 26 can be derandomized, by imitating the proof of
Theorem 26 in conjunction with the T BC

n -analogue of (38) and the inequality ‖ · ‖[m] ≤
‖ · ‖1. We omit the details.

Theorem 29 (Canonical typicality, arbitrary boundary conditions, derandomized ver-
sion). Let � be any translation-invariant finite-range interaction with corresponding
arbitrary boundary condition Hamiltonians H BC

�n
, let umin(�) < u ≤ umax(�) and

δ > 0. Suppose that there is a unique infinite-volume Gibbs state ωβ at inverse temper-
ature β ≡ β(u). Consider the microcanonical subspace

T BC
n := span

{

|E〉
∣
∣
∣
∣ H

BC
�n

|E〉 = E |E〉, E

|�n| ∈ (u − δ, u)

}

.

Choose a state |ψ〉 at random from T BC
n by choosing a unitary from an ε-approximate 8-

design and applying it to a fixed initial pure state, where ε = exp(−|�n|s(u)+o(|�n|)).
Then for every m ∈ N large enough such that d |�m | ≥ 14, there is a sequence of positive
real numbers (δm,n)n∈N with limn→∞ δm,n = 0, such that

Probν

{∥
∥
∥
∥
∥
|ψ〉〈ψ | − exp(−βHBC

�n
)

Zn

∥
∥
∥
∥
∥[m]

≥ δm,n + κ

}

≤ d3|�m |

κ2 exp
(− |�n|s(u) + o(|�n|)

)

for all κ > 0. Furthermore, if Gibbs states are unique around inverse temperature
β > 0, then the same result is true if β is chosen as the (n-dependent) solution of
1

|�n | tr
(

HBC
�n

exp(−βHBC
�n

)

Zn

)

= u.
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Since the effort of sampling from an ε-approximate 8-design ν scales polynomially
in log ε and the logarithm of the Hilbert space dimension, we obtain that sampling from
ν in the theorems above amounts to an effort that grows only polynomially in |�n|, i.e.
the particle number.

3.3. Dynamical thermalization. We can apply the previous results to obtain statements
about dynamical thermalization, using the results of [8] which are elaborations of earlier
results in [6,7]. However, for the technicalities, we need to relate the von Neumann
entropy with the Rényi entropy of order two. For α > 0 with α �= 1 and density matrices
ρ, we define [28]

Sα(ρ) := 1

1− α
log tr(ρα),

and the limit α → 1 recovers von Neumann entropy, S1(ρ) := S(ρ) = −tr(ρ log ρ),
and the limit α → 0 yields S0(ρ) := log rank(ρ). If α ≤ α′ then Sα ≥ Sα′ . In fact,
we will use Rényi entropy only for classical probability vectors λ = (λ1, . . . , λN ), and
write sloppily Sα(λ) for classical Rényi entropy, which is the same as the quantumRényi
entropy of the diagonal matrix with entries λi . We use some inequalities and insights
from [29] to show the following:

Lemma 30. For every 0 ≤ ε ≤ 1, we have S2(ρ) ≥ 2ε
(
S(ρ) − ε

1 + ε
S0(ρ)

)
≥

2ε(S(ρ) − εS0(ρ)).

Proof. As shown in [29], we have ∂
∂q

q−1
q Sq ≥ 0, hence q−1

q Sq ≤ 1
2 S2 for all q ∈ [1, 2].

Since the function q �→ Sq is convex, the value of Sq lies on or above the line g(x) :=
S0 − (S0 − S1)x that connects S0 and S1, i.e. Sq ≥ g(q) = S0 − (S0 − S1)q. We get

S2 ≥ 2(q − 1)

q
Sq ≥ 2(q − 1)

q

(
S0 − (S0 − S1)q

) = 2(q − 1)S1 − 2(q − 1)2

q
S0.

Setting q =: 1 + ε proves the claim. ��
Following [8], for any Hamiltonian H , we define its gap degeneracy by

DG(H) := max
E

∣
∣{(i, j) | i �= j, Ei − E j = E}∣∣ ,

where the Ei denotes the (energy) eigenvalues of H . Using Theorem 3 of [8], we can
easily show the following.

Theorem 31 (Thermalization, periodic boundary conditions). Let � be a translation-
invariant finite-range interaction which is not physically equivalent to zero, and
(ρ

(n)
0 )n∈N any sequence of initial states on �n which have energy expectation

value of Un := tr(ρ(n)
0 H p

�n
) with density Un/|�n| converging to some value u ∈

(umin(�), umax(�)) as n → ∞.
Suppose that the initial states have close to maximal “population entropy” in the

following sense. Define S̄(ρ
(n)
0 ) := S(λ1, . . . , λN ), where S is Shannon entropy, and

λi := tr(ρ(n)
0 πi ) is the probability that the i-th energy level is populated, where H

p
�n

=:
∑N

i=1 Eiπi is the spectral decomposition. Furthermore, suppose that either H p
�n

is

non-degenerate, or that every πiρ
(n)
0 πi is�n-translation-invariant. Then, determine the

corresponding inverse temperature βn for which
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tr(H p
�n

γ
p
�n

(βn)) = Un, where γ
p
�n

(βn) := exp(−βnH
p
�n

)

Zn
.

If the initial states have close to maximal population entropy in the sense that

S̄(ρ
(n)
0 ) ≥ S(γ

p
�n

(βn)) − o(|�n|), (39)

then unitary time evolution ρ(n)(t) := exp(−i t H p
�n

)ρ
(n)
0 exp(i t H p

�n
) thermalizes the

subsystem �m for most times t:
〈∥
∥
∥Tr�n\�m ρ(n)(t) −

〈
Tr�n\�m ρ(n)(t)

〉∥
∥
∥
1

〉

≤ d |�m |
√
DG(H p

�n
) exp

(

− s(ωβ)2

4 log d
|�n| + o(|�n|)

)

, and

lim
n→∞

∥
∥
∥
∥
∥

〈
Tr�n\�m ρ(n)(t)

〉
− Tr�n\�m

exp(−βnH
p
�n

)

Zn

∥
∥
∥
∥
∥
1

= 0,

where Zn = tr(exp(−βnH
p
�n

)), and 〈·〉 denotes the average over all times t ≥ 0.
Furthermore, in this statement, βn can be replaced by β := β(u).

Remark. If H p
�n

is non-degenerate, we have S̄(ρ
(n)
0 ) = S(ρ̄

(n)
0 ), where ρ̄

(n)
0 := ∑

i πi

ρ
(n)
0 πi is the dephased initial state. Furthermore, we can summarize the result by saying

that
〈∥
∥
∥
∥
∥
Tr�n\�m ρ(n)(t) − Tr�n\�m

exp(−βnH
p
�n

)

Zn

∥
∥
∥
∥
∥
1

〉
n→∞−→ 0

as long as the gap degeneracy DG grows at most subexponentially with |�n|. However,
the more detailed formulation above contains more information: while the difference to
the Gibbs state may tend to zero polynomially in |�n|, the result shows strong equili-
bration of time evolution indicated by a trace distance which goes to zero exponentially
in |�n|.
Proof. According to [8, Theorem 3 resp. 25], we have

〈∥
∥
∥Tr�n\�m ρ(n)(t) − (ρ̄

(n)
0 )�m

∥
∥
∥
1

〉
≤ d |�m |

√
DG(H p

�n
)

deff
, (40)

where d−1
eff = ∑

i λ
2
i , thus deff = exp(S2(λ1, . . . , λN )), and ρ̄

(n)
0 = 〈ρ(n)(t)〉 =

∑N
i=1 πiρ

(n)
0 πi . If H p

�n
is non-degenerate, then every πiρ

(n)
0 πi is a real multiple of

πi and thus �n-translation-invariant. Thus, the conditions of the lemma ensure that ρ̄(n)
0

is �n-translation-invariant. Since the πiρ
(n)
0 πi/λi for λi �= 0 are density matrices with

mutually orthogonal supports, we have

S(ρ̄
(n)
0 ) = S

⎛

⎝
∑

i :λi �=0

λi
πiρ

(n)
0 πi

λi

⎞

⎠

= S(λ1, . . . , λN ) +
∑

i :λi �=0

λi S

(
πiρ

(n)
0 πi

λi

)

≥ S(λ1, . . . , λN ) = S̄(ρ
(n)
0 ).
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Note that tr(ρ(n)
0 H p

�n
) = tr(ρ̄(n)

0 H p
�n

). Furthermore, Theorem 10 shows that limn→∞
βn = β := β(u), and ρ(βn) maximizes the functional ρ �→ S(ρ) − βn tr(ρH

p
�n

). Thus

lim inf
n→∞

1

|�n|
(
S(ρ̄

(n)
0 ) − β tr(ρ̄(n)

0 H�n )
)

≥ lim inf
n→∞

1

|�n|
(
S̄(ρ

(n)
0 ) − β tr(ρ̄(n)

0 H p
�n

)
)

≥ lim inf
n→∞

1

|�n|
(
S(γ

p
�n

(βn)) − β tr(ρ(n)
0 H p

�n
)
)

= lim inf
n→∞

1

|�n|
(
S(γ

p
�n

(βn)) − β tr(γ p
�n

(βn)H
p
�n

)
)

= lim inf
n→∞

1

|�n|
(
S(γ

p
�n

(βn)) − βn tr(γ
p
�n

(βn)H
p
�n

)
)

≥ lim inf
n→∞

1

|�n|
(
S((ωβ)�n ) − βn tr((ωβ)�n H

p
�n

)
)

= s(ωβ) − β u(ωβ) = p(β,�), (41)

and Theorem 10 proves that

lim
n→∞

∥
∥
∥
∥
∥
Tr�n\�m ρ̄

(n)
0 − Tr�n\�m

exp(−βnH
p
�n

)

Zn

∥
∥
∥
∥
∥
1

= 0

and limn→∞ 1
|�n | S(ρ̄

(n)
0 ) = s(ωβ) as well as limn→∞ 1

|�n | tr(ρ̄
(n)
0 H�n ) = limn→∞ 1

|�n |
tr(ρ(n)

0 H p
�n

) = u(ωβ). Together with (39), this implies that S̄(ρ
(n)
0 ) = s(ωβ)|�n| +

o(|�n|). It remains to estimate deff . This will be done via Lemma 30. Writing λ =
(λ1, . . . , λN ) and using that S0(λ) ≤ log N ≤ |�n| log d and S(λ) = S̄(ρ

(n)
0 ), we

obtain S2(λ) ≥ 2ε(S(λ) − ε|�n| log d) = 2ε
(
(s(ωβ) − ε log d)|�n| + o(|�n|)

)
for

all 0 ≤ ε ≤ 1. The special case ε = s(ωβ)/(2 log d) yields deff = exp(S2(λ)) ≥
exp

(
s(ωβ)2

2 log d
|�n| + o(|�n|)

)

. ��

Here is an example of a suitable sequence of initial states that appeared in work by
Riera et al. [10]:

Example 32 (“Flat” pure initial state). Consider pure initial states ρ
(n)
0 = |ψ(n)

0 〉〈ψ(n)
0 |

which have a flat energy distribution in an energy window, as discussed in [10]. Con-
cretely, denote the energy eigenstates of H p

�n
by |Ei 〉, fix δ > 0, and set (up to normal-

ization)

|ψ(n)
0 〉 ∼

∑

u−δ<Ei /|�n |<u

|Ei 〉.

If H p
�n

is non-degenerate, then S̄(ρ
(n)
0 ) is the logarithm of the number of energy levels

between densities u − δ and u, which is s(u)|�n| + o(|�n|) = S(γ
p
�n

(β)) + o(|�n|)
according to Lemma 12. Thus, Theorem 31 proves thermalization of small subsystems.
The same conclusion holds if |ψ(n)

0 〉 is not exactly flat, but populates the energy levels
as given in Example 16 and Fig. 4.
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This example and Theorem 31 (in one formulation) assume that H p
�n

is non-
degenerate. In fact, we show numerically in Sect. 3.5 that generic models of the kind
we consider are non-degenerate, despite translation-invariance. Alternatively, we can lift
the condition of non-degeneracy or periodic boundary conditions by proving a weaker
statement about m-block-averaged observables.

Theorem 33 (Thermalization, arbitrary boundary conditions). Let � be a translation-
invariant finite-range interaction which is not physically equivalent to zero, and
(ρ

(n)
0 )n∈N any sequence of initial states on �n which have energy expectation

value of Un := tr(ρ(n)
0 HBC

�n
) with density Un/|�n| converging to some value u ∈

(umin(�), umax(�)) as n → ∞, where BC denotes an arbitrary fixed choice of bound-
ary conditions.

Suppose that the initial states have close to maximal “population entropy” in the
following sense. Define S̄(ρ

(n)
0 ) := S(λ1, . . . , λN ), where S is Shannon entropy, and

λi := tr(ρ(n)
0 πi ), where H BC

�n
=: ∑N

i=1 Eiπi is the spectral decomposition. Then,
determine the corresponding inverse temperature βn for which

tr(HBC
�n

γ BC
�n

(βn)) = Un, where γ BC
�n

(βn) := exp(−βnH BC
�n

)

Zn
.

If the initial states have close to maximal population entropy in the sense that

S̄(ρ
(n)
0 ) ≥ S(γ BC

�n
(βn)) − o(|�n|),

then unitary time evolution ρ(n)(t) := exp(−i t H BC
�n

)ρ
(n)
0 exp(i t H BC

�n
) thermalizes all

m-block averaged observables for most times t:

〈∥
∥
∥ρ(n)(t) −

〈
ρ(n)(t)

〉∥
∥
∥[m]

〉

≤ d |�m |
√
DG(HBC

�n
) exp

(

− s(ωβ)2

4 log d
|�n| + o(|�n|)

)

, and

lim
n→∞

∥
∥
∥
∥
∥

〈
ρ(n)(t)

〉
− exp(−βnH BC

�n
)

Zn

∥
∥
∥
∥
∥[m]

= 0,

where Zn = tr(exp(−βnH BC
�n

)), and 〈·〉 denotes the average over all times t ≥ 0.
Furthermore, in this statement, βn can be replaced by β := β(u).

Remark. As in the previous theorem, we can summarize the result (at the expense of
losing some information) as

lim
n→∞

〈∥
∥
∥
∥
∥
ρ(n)(t) − exp(−βnH BC

�n
)

Zn

∥
∥
∥
∥
∥[m]

〉

= 0

whenever the gap degeneracy DG does not grow too quickly with |�n|. In fact, we
can always force DG to be equal to one—that is, remove degeneracies—by adding
appropriate boundary conditions in the sense of Definition 7.
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Proof. For any X = X† ∈ An , we can estimate the ‖ · ‖[m]-norm via

‖X‖[m] =2max

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

1

|T(�m,�n)|
∑

y∈T(�m ,�n)

tr
[
X (γy(A

′) ⊗ 1)
]
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
A′ ∈Am, 0≤ A′ ≤1

⎫
⎬

⎭

≤ 2max

⎧
⎨

⎩

1

|T(�m,�n)|
∑

y∈T(�m ,�n)

∣
∣tr

[
X (γy(A

′) ⊗ 1)
]∣
∣

∣
∣
∣
∣
∣
∣
A′ ∈Am, 0≤ A′ ≤1

⎫
⎬

⎭

≤ 2

|T(�m,�n)|
∑

y∈T(�m ,�n)

max
{ ∣
∣tr

[
X (γy(A

′) ⊗ 1)
]∣
∣
∣
∣ A′ ∈ Am, 0 ≤ A′ ≤ 1

}

= 1

|T(�m,�n)|
∑

y∈T(�m ,�n)

∥
∥Tr�n\(�m+y) X

∥
∥
1 .

Using again the results of [8] in the form (40), setting again ρ̄
(n)
0 := 〈ρ(n)(t)〉 =

∑
i πiρ

(n)
0 πi , we obtain

〈∥
∥
∥ρ(n)(t) − ρ̄

(n)
0

∥
∥
∥[m]

〉

≤ 1

|T(�m,�n)|
∑

y∈T(�m ,�n)

〈∥
∥
∥Tr�n\(�m+y) ρ(n)(t) − Tr�n\(�m+y) ρ̄

(n)
0

∥
∥
∥
1

〉

≤ d |�m |
√

DG(HBC
�n

)

deff
,

where deff = exp(S2(λ)). As in the proof of Theorem 31, we have S(ρ̄
(n)
0 ) ≥ S̄(ρ

(n)
0 ) =

S(λ), and also tr(ρ(n)
0 HBC

�n
) = tr(ρ̄(n)

0 HBC
�n

). Furthermore, Lemma 19 implies that
limn→∞ βn = β := β(u). Thus, we can repeat the calculation (41) in the proof of

Theorem 31, and obtain that lim infn→∞ 1
|�n |

(
S(ρ̄

(n)
0 ) − β tr(ρ̄(n)

0 H�n )
)

≥ p(β,�).

Consequently, Theorem 20 and Lemma 24 imply that

lim
n→∞

∥
∥
∥
∥
∥
ρ̄

(n)
0 − exp(−βnH BC

�n
)

Zn

∥
∥
∥
∥
∥[m]

= 0 and lim
n→∞

1

|�n| tr(ρ̄
(n)
0 HBC

�n
) = u(ωβ).

As in the proof of Theorem 31, it also follows that S̄(ρ
(n)
0 ) ≥ s(ωβ)|�n| + o(|�n|) =

S(λ). Repeating the final steps of the proof of Theorem 31 yields the claimed estimate
for deff . ��

3.4. Finite-size estimates for systems without interaction. As the most simple special
case, consider the non-interacting Hamiltonian

H� :=
∑

x∈�

hx ,

where hx = γx (h) denotes a fixed self-adjoint matrix h sitting on site x ∈ �. This
corresponds to an interaction � of the form
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�(X) =
{

γX (h) if #X = 1
0 otherwise.

Since there is no interaction, the dimension ν of the lattice Zν does not play any role;
without loss of generality, we may assume that ν = 1. Similarly, we set �m = [1,m] ⊂
Z. Without interaction, the (restriction of the global) Gibbs state becomes the product
state

Tr�n\�m

exp(−βH�n )

Zn
= γ⊗m

β ,

where γβ = exp(−βh)/Z1 is the single-site Gibbs state with single-site partition func-
tion Z1. We will now look at equivalence of ensembles – and its finite-size behavior –
in this special case. That is, we consider the maximally mixed state τn on

Tn := span

{

|E〉
∣
∣
∣
∣
E

n
∈ [u − δ, u]

}

,

where δ > 0 and u will be considered fixed in what follows. On every site, we can
choose the local basis such that h is diagonal, denoting the corresponding single-site
eigenstates of h by {|0〉, . . . , |d−1〉}. (Recall that d denotes the single-site Hilbert space
dimension.) For 0 ≤ j ≤ d − 1, the eigenvalue corresponding to | j〉 will be denoted
E j ; that is,

h| j〉 = E j | j〉.
We may always choose a basis and shift the energy such that 0 = E0 ≤ E1 ≤ . . . ≤
Ed−1, i.e.

h =

⎛

⎜
⎜
⎝

0
E1

. . .

Ed−1

⎞

⎟
⎟
⎠ .

Every string s = s1s2 . . . sn of length n over the alphabet {0, . . . , d − 1} describes an
eigenvector |s〉 := |s1〉 ⊗ . . .⊗ |sn〉 of H on n sites, where H |s〉 = ∑

i h|si 〉 =
∑

i Esi .
Thus, the microcanonical subspace can also be written

Tn = span

{

|s〉
∣
∣
∣
∣
∣
s ∈ {0, 1, . . . , d − 1}n, 1

n

n∑

i=1

Esi ∈ [u − δ, u]
}

.

Our goal is to estimate the difference
∥
∥
∥Tr�n\�m τn − γ⊗m

β

∥
∥
∥
1
. (42)

Since all relevant operators compute, we can restrict to the probability distributions on
the diagonal; we have a purely classical problem. Our first observation is that a tight
upper bound on this expression is known in the special case δ = 0 and d = 2; it has
been obtained in proofs of the finite classical de Finetti Theorem [22].

Lemma 34. In the case of a perfectly sharp microcanonical subspace, i.e. δ = 0, and
of qubit systems, i.e. d = 2, we have
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∥
∥
∥Tr�n\�m τn − γ⊗m

β

∥
∥
∥
1
≤ 4m

n
,

assuming that the energy density u is chosen such that the correspondingmicrocanonical
subspace Tn is not empty.

Proof. We have h =
(
0
E1

)

, and so ρβ =
(
1
e−βE1

)

· 1

1 + e−βE1
. The inverse

temperature β is determined by tr(γβh) = u. In this case, u = E1 · p1, where p1 is
the relative frequencies of 1’s in the strings s with |s〉 ∈ Tn . This equation implies

γβ =
(
1− p1

p1

)

, with classical probability distribution Pβ := (1 − p1, p1) on the

diagonal. If we denote by Q the classical probability distribution on {0, 1}m determined
by the diagonal elements of Tr�n\�m τn , we have

∥
∥
∥Tr�n\�m τn − γ⊗m

β

∥
∥
∥
1
=

∥
∥
∥Q − P⊗m

β

∥
∥
∥
1
,

where ‖ · ‖1 on the right-hand side denotes the variation distance of two probability
distributions:

‖P − Q‖1 =
2m∑

i=1

|Pi − Qi | = 2 max
A⊆{1,...,2m } |P(A) − Q(A)|.

Consider an urnU with n balls, where p1 · n of them are marked by a “1” and all others
marked by a “0”. Then P⊗m

β describes the distribution obtained by m draws from U
with replacement, whereas Q described the distribution obtained by m draws from U
without replacement, where in both cases the order of the results is taken into account.
These distributions are considered in [22] in the proof a finite version of the classical de
Finetti theorem. The main result then follows from Theorem (4) in [22]. ��

For d ≥ 3, even if δ = 0, the results of [22] do not directly yield an upper bound on
expression (42). This is for two reasons. First, the typical subspace Tn will in general
not be spanned by a single type class, but by several ones. For example, consider the
case d = 3 with energies E0 = 0, E1 = 1, and E2 = 2. Fixing the energy density to
u = 2/3 yields the microcanonical subspace

T3 = span {|011〉, |101〉, |110〉, |002〉, |020〉, |200〉} .

This is a disjoint union of two type classes. While T4 = {0} and T5 = {0}, we have
T6 = span {|000022〉, . . . , |000112〉, . . . , |001111〉, . . .} ,

where the dots denotes all permutations. This is a union of three type classes. Then the
results in [22] do not prove directly that Tr�n\�m τn is close to a product state, but that
it is close to a convex combination of product states, resembling the de Finetti theorem.

In this particular example, it can be checked numerically that the qualitative behav-
ior of Lemma 34 remains true: n needs to be increased linearly with m in order
to achieve a fixed one-norm distance error. The inverse temperature turns out to be

β = log[(1+√33)/4], and γβ = diag
(
(15−√

33)/18, (
√
33− 3)/9, (9−√

33)/18
)
.
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Fig. 5. Minimal number of sites n to guarantee that a subsystem of given size m is ε-close to the local Gibbs
state, where ε = 1/100, energy density u = 2/3, local Hilbert space dimension d = 3, and energy levels
E0 = 0, E1 = 1 and E2 = 2. In this case, the microcanonical subspace of width δ = 0 is spanned by more
than one type class. It can be seen that the size of the “bath” has to be increased linearly with the size of the
subsystem

The subspace Tn is non-trivial whenever n is a multiple of 3. Define the function
f : N → N by

f (m) := smallest possible n ∈ N such that
∥
∥
∥Tr�n\�m τn − γ⊗m

β

∥
∥
∥
1
≤ 1

100
.

This function is evaluated numerically in Fig. 5. It can be seen that n = f (m) increases
linearly with m.

It turns out that for δ = 0, the previous example is atypical in the sense that generic
energy windows usually lead to microcanonical subspaces Tn that contain only a single
type class. This can be characterized as in the following lemma. We use the standard
terminology to call a set of real numbers E1, . . . , Ed−1 rationally dependent if there are
rational numbers λ1, . . . , λd−1 ∈ Q, not all of them zero, such that

∑d−1
i=1 λi Ei = 0,

and otherwise rationally independent.

Lemma 35. Suppose that δ = 0. Then, all non-trivial microcanonical subspaces Tn �=
{0}, for all n and u, are spanned by a single type class if and only if the energies
E1, . . . , Ed−1 are rationally independent.

Proof. We denote type classes as follows:

T (k0, . . . , kd−1) := {
s ∈ {0, . . . , d − 1}n | #{i : si = j} = k j for all j

}
,

that is, the set of all strings that have k0 zeroes, k1 ones, and so on. All strings s in the
same type class have the same energy 〈s|H |s〉 =: Es = ∑

i Esi = ∑d−1
j=0 k j E j . Thus,

the microcanonical subspace Tn must be a disjoint union of (spans of) type classes.
Suppose the energies are rationally independent, and suppose that span T (k0, . . . ,

kd−1) ⊂ Tn and at the same time span T (k′0, . . . , k′d−1) ⊂ Tn . Then

u · n = k1E1 + . . . + kd−1Ed−1 = k′1E1 + . . . + k′d−1Ed−1.

Thus

(k1 − k′1)︸ ︷︷ ︸
∈Z

E1 + · · · + (kd−1 − k′d−1)︸ ︷︷ ︸
∈Z

Ed−1 = 0,
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and rational independence implies that k j = k′j for all j , so Tn is the span of a single
type class.

Conversely, suppose that E1, . . . , Ed−1 are rationally dependent. That is, there are
k1, . . . , kd−1 ∈ Z, not all ki = 0, such that

k1E1 + . . . + kd−1Ed−1 = 0.

There is at least one energy Ei with Ei > 0, so this equation can only be satisfied if
mini ki =: k j < 0 and maxi ki > 0. Set

E := −k j (E1 + · · · + Ed−1) = (k1 − k j )E1 + · · · + (kd−1 − k j )Ed−1

Then all k′i := ki − k j ≥ 0 are integers, and they cannot all be zero. Choose any n ∈ N

with

n ≥ max{(d − 1)|k j |, (k1 − k j ) + (k2 − k j ) + · · · + (kd−1 − k j )}.
Set k0 := n − (d − 1)|k j | ≥ 0 and k′0 := n − [(k1 − k j ) + · · · + (kd−1 − k j )] ≥ 0, and
set the energy density to u := E/n. Then we have

span T (k0, |k j |, |k j |, . . . , |k j |) ⊆ Tn,

span T (k′0, k1 − k j , k2 − k j , . . . , kd−1 − k j ) ⊆ Tn .

Thus, Tn is spanned by at least two different type classes. ��
There is a second reason why the results in [22] cannot directly be used if d ≥ 3,

even in the case where δ = 0 and assuming the rational independence of the energies.
It follows from [22] that in this case

∥
∥Tr�n\�m τn − γ⊗m

∥
∥
1 ≤ 2dm

n
; (43)

however, the state γ is in general not equal to γβ for any β. Instead, γ is the single-site
density matrix with the symbols’ relative frequencies in the type class as eigenvalues,
and this is in general not a thermal state.

As a simple example, consider the case d = 3, with single-site Hamiltonian h =
diag

(
0, 1,

√
2
)
and energy density u = (2 +

√
2)/6. If n is a multiple of 6, then Tn

contains all basis vectors |s〉 with strings s ∈ {0, 1}n that have n/2 zeroes, n/3 ones and
n/6 twos. Then the γ appearing in (43) is γ = diag(1/2, 1/3, 1/6), and there does not
exist any β such that γ = γβ .

In the following, we will generalize the result of Lemma 34, by showing that also in
the case of a microcanonical subspace of width δ > 0, the qualitative behavior of Fig. 5
remains true, at least in the case d = 2, i.e. in the qubit case. First, we prove a lemma
which shows this for δ = 0 or δ depending on n and approaching zero fast enough. Later,
we will extend the result to arbitrary fixed δ > 0 by some large deviations argument.

Lemma 36. Consider the case of qubits, i.e. d = 2, and shift the energies such that
E0 = 0 and E1 = 1. If τn is the maximal mixture on the non-trivial microcanonical
subspace corresponding to the energy interval n · [u − δ, u], with 0 ≤ δ < u ≤ 1

2 , and
γβ is the single-site Gibbs state with corresponding inverse temperature β, then we have
for subsystems of size m ≤ n(u − δ),

S
(
γ⊗m
β

∥
∥Tr�n\�m τn

)
≤ (1− δ)u

u − δ
· m

n − m
+

muδ

u − δ

(

1 +
m

n − m

)

,
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where S denotes the quantum relative entropy (with logarithm in base e). In particular,
if δ = 0, the relative entropy is upper-bounded by m/(n−m), and the Pinsker inequality
yields

∥
∥
∥Tr�n\�m τn − γ⊗m

β

∥
∥
∥
1
≤

√
1

2
· m

n − m
(special case δ = 0).

Proof. As explained above, the calculation is classical: we can regard γ⊗m
β as a classical

probability distribution on the binary strings of length m, given by

P⊗m
β (x) = uk(1− u)m−k, where k is the number of ones in x .

From elementary combinatorics, the marginal distribution Q is given by

Q(x) = (dim Tn)
−1 ·

∑

�∈[$n(u−δ)%,�nu ], �≥k

(
n − m

� − k

)

,

and the numerator counts all possible ways to complete x to a string of length n which
has � ones such that the energy is in the suitable interval. Since k ≤ m ≤ n(u − δ) ≤
$n(u − δ)%, the condition � ≥ k is automatically satisfied for all � in the summation
interval; hence this condition can be removed from the specification of the sum. The
dimension of the microcanonical subspace is given by

dim Tn =
�nu ∑

�=$n(u−δ)%

(
n

�

)

. (44)

Thus, the quantum relative entropy S can be written in terms of the classical relative
entropy H ,

S
(
γ⊗m
β

∥
∥Tr�n\�m τn

)
= H

(
P⊗m

β

∥
∥
∥ Q

)

=
∑

x∈{0,1}m
P⊗m

β (x)
(
log P⊗m

β (x) − log Q(x)
)

=
m∑

k=0

(
m

k

)

uk(1− u)m−k (log Pk − log Qk) , (45)

where

Pk = uk(1− u)m−k, (46)

Qk = (dim Tn)
−1 ·

�nu ∑

�=$n(u−δ)%

(
n − m

� − k

)

.

Using that (n−m)! = n!/[(n−m +1)(n−m +2) . . . n] and similar identities for (�−k)!
and [n − � − (m − k)]!, we obtain

Qk = (dim Tn)
−1 ·

�nu ∑

�=$n(u−δ)%

n!∏k−1
j=0(� − j)

∏m−k−1
j=0 (n − � − j)

∏m−1
j=0 (n − j) �!(n − �)!
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In order to eliminate all �-variables from all products, we substitute the inequalities

� − j ≥ $n(u − δ)% − j,

n − � − j ≥ n − �nu − j

and obtain

Qk ≥ (dim Tn)
−1

∏k−1
j=0

($n(u − δ)% − j
)∏m−k−1

j=0

(
n − �nu − j

)

∏m−1
j=0 (n − j)

�nu ∑

�=$n(u−δ)%

(
n

�

)

.

Thus, the sum on the right-hand side exactly cancels the factor (dim Tn)−1 according
to (44), and we obtain

log Qk ≥
k−1∑

j=0

log
($n(u − δ)% − j

)
+

m−k−1∑

j=0

log
(
n − �nu − j

)−
m−1∑

j=0

log(n − j)

=
k−1∑

j=0

log
$n(u − δ)% − j

n − j − m + k
+

m−k−1∑

j=0

log
n − �nu − j

n − j
.

It is easy to check that the addends in both sums are (negative and) decreasing functions
in j ; thus, we can lower-bound the sums by integrals:

log Qk ≥
∫ k

0
log

$n(u − δ)% − j

n − j − m + k
d j +

∫ m−k

0
log

n − �nu − j

n − j
d j

= $n(u − δ)% log$n(u − δ)% − $n(u − δ)% log ($n(u − δ)% − k)

+ k log ($n(u − δ)% − k)

+ (n − m) log(n − m) + (n − �nu ) log (n − �nu )
− (n − �nu ) log (n − �nu − m + k)

+ (m − k) log (n − �nu − m + k) − n log n.

The right-hand side contains the expressions f
($n(u − δ)%) and g

(
n − �nu ), where

f (x) := x log x − x log(x − k)+ k log(x − k) and g(x) := x log x − x log(x −m + k)+
(m−k) log(x−m +k). It is easy to check that f and g are both increasing in the relevant
intervals, thus we have f

($n(u − δ)%) ≥ f
(
n(u − δ)

)
and g

(
n − �nu ) ≥ g(n− nu),

and all the floors and ceilings in the inequality above can be dropped.
Due to (46), we have log Pk = k log u + (m − k) log(1− u), thus

log Pk − log Qk ≤ k log u + (m − k) log(1− u) − n(u − δ) log[n(u − δ)]
+ n(u − δ) log[n(u − δ) − k]
− k log[n(u − δ) − k] − (n − m) log(n − m)

− n(1− u) log[n(1− u)]
+ n(1− u) log[n(1− u) − m + k] − (m − k)

log[n(1− u) − m + k] + n log n.

The largest contribution to the sum in (45) will be those k where k ≈ mu. This motivates
the definition εk := k−mu (despite the name, this can be a negative number). Replacing
all k by mu + εk yields
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log Pk − log Qk ≤ [n − m − nu + mu + εk] log
(

1 +
εk

(1− u)(n − m)

)

− (mu + εk) log

(

1− δ

u

)

+ (nu − mu − εk − nδ) log

(

1− εk + mδ

(u − δ)(n − m)

)

− nδ log
(
1− m

n

)
.

All real numbers x > −1 satisfy x/(1 + x) ≤ log(1 + x) ≤ x . Thus

log Pk − log Qk ≤ [(n − m)(1− u) + εk] · εk

(1− u)(n − m)
+ (mu + εk)

δ/u

1− δ/u

+ [n(u − δ) − mu − εk]
(

− εk + mδ

(u − δ)(n − m)

)

+ nδ
m/n

1− m/n
.

(47)

We have the following three equations for the Binomial distribution:

m∑

k=0

(
m

k

)

uk(1− u)m−k = 1, (48)

m∑

k=0

(
m

k

)

uk(1− u)m−kεk = 0, (49)

m∑

k=0

(
m

k

)

uk(1− u)m−kε2k = mu(1− u), (50)

where (48) is simply the normalization of the Binomial distribution, (50) is its vari-
ance, and (49) follows from its expectation value. Thus, when substituting (47) into the
expression (45) for the relative entropy, we can drop all terms linear in εk . We obtain

S
(
γ⊗m
β

∥
∥Tr�n\�m τn

)
≤

m∑

k=0

(
m

k

)

uk(1− u)m−k

[
ε2k

(1− u)(n − m)
+

mδ

1− δ/u
+ nδ

m

n − m

+
ε2k

(u − δ)(n − m)
− mδ

(u − δ)(n − m)
(n(u − δ) − mu)

]

= (1− δ)u

u − δ
· m

n − m
+

muδ

u − δ

(

1 +
m

n − m

)

.

This proves the claim. ��
Theorem 37. Consider the case of qubits, i.e. d = 2, and shift the energies such that
E0 = 0 and E1 = 1. Suppose that τn is the maximal mixture on the non-trivial
microcanonical subspace corresponding to the energy interval n · [u − δ, u], with
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0 ≤ δ < u < 1
2 , and γβ is the single-site Gibbs state with corresponding inverse tem-

perature β. If the size of the subsystem m is large enough such that 20
m log m

u ≤ log 1−u
u ,

and at the same time 5 ≤ m ≤ n(u − δ), then we have

∥
∥
∥Tr�n\�m τn − γ⊗m

β

∥
∥
∥
1
≤ 2δ

n
√
u
+

√
√
√
√ m

n − m

(

1 +
4 log n

log 1−u
u

)

.

Proof. We start by introducing some notation. For arbitrary subsets S ⊆ [0, u] define
τ S
n to be the maximally mixed state on the subspace

T S
n := span

{

|s〉
∣
∣
∣
∣
∣
s ∈ {0, 1}n, 1

n

n∑

i=1

Esi ∈ S

}

.

As before, we set Tn := T [u−δ,u]
n and τn := τ

[u−δ,u]
n . Moreover, define

μS
n := dim T S

n

dim Tn
;

then, if we write [u− δ, u] as any disjoint union of two sets S and T , the microcanonical
state can be written as a convex combination, τn = μS

nτ
S
n + μT

n τ T
n . In the following,

(αn)n∈N will be any sequence of positive real numbers tending to zero, satisfying 1/n <

αn < u − 1/n, to be specified later. We start with the identity

τn = μ[u−δ,u−αn)
n τ [u−δ,u−αn)

n + μ[u−αn ,u]
n τ [u−αn ,u]

n .

Due to convexity, the Pinsker inequality, and Lemma 36, we have
∥
∥
∥Tr�n\�m τn − γ⊗m

β

∥
∥
∥
1
≤ μ[u−δ,u−αn)

n

∥
∥
∥Tr�n\�m τ [u−δ,u−αn)

n − γ⊗m
β

∥
∥
∥
1

+μ[u−αn ,u]
n

∥
∥
∥Tr�n\�m τ [u−αn ,u]

n − γ⊗m
β

∥
∥
∥
1

≤ 2μ[u−δ,u−αn)
n +

√
1

2
S
(
γ⊗m
β

∥
∥
∥Tr�n\�m τ

[u−αn ,u]
n

)

≤ 2μ[u−δ,u−αn)
n

+

√
1

2
·
√

(1− αn)u

u − αn
· m

n − m
+

muαn

u − αn

(

1 +
m

n − m

)

.

(51)

Let ũ be the largest p ∈ [u − δ, u] with the property that T {p}
n �= {0}; it is given by

the equation �u · n = ũ · n. Then we can upper-bound the measure μ
[u−δ,u−αn)
n in the

following way:

μ[u−δ,u−αn)
n =

∑
p∈[u−δ,u−αn)

dim T {p}
n

∑
p∈[u−δ,u] dim T {p}

n

≤
∑

j∈N: j/n∈[u−δ,u−αn)

(n
j

)

dim T {ũ}
n
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≤ #{ j ∈ N : j/n ∈ [u − δ, u − αn)} ·
( n
�n(u−αn) 

)

( n
nũ

)

≤ nδ
( n
�n(u−αn) 

)

( n
�nu 

) . (52)

The Binomial coefficients can be estimated by using Lemma 17.5.1 in [21]: For 0 <

p < 1 such that np is an integer, we have

1√
8np(1− p)

≤
(
n

np

)

e−nH(p) ≤ 1√
πnp(1− p)

,

where H(p) = −p log p−(1− p) log(1− p) is the binary entropy function. Substituting
this into (52), defining p by np = �n(u − αn) , and using that p ≤ u − αn as well as
u ≥ ũ ≥ u − 1/n, we obtain

μ[u−δ,u−αn)
n ≤ nδ

(
n

np

)(
n

nũ

)−1

≤ nδ

√
ũ(1− ũ)

p(1− p)
en[H(u−αn)−H(u−1/n)] (53)

(note that u > 1/n due to n ≥ m/(u − δ) > m/u ≥ 1/u). Since the binary entropy
function H is concave in the interval [0, 1/2], we have

H(u − αn) ≤ H

(

u − 1

n

)

− H ′
(

u − 1

n

)

·
(

αn − 1

n

)

⇒ H(u − αn) − H

(

u − 1

n

)

≤ −
(

αn − 1

n

)

log
1− (u − 1/n)

u − 1/n
.

Substituting this and ũ(1 − ũ) ≤ 1/4 as well as 1/
√
p(1− p) ≤ √

2/p and p ≥
u − αn − 1/n into (53), we get

μ[u−δ,u−αn)
n ≤ 1

2
nδ

√
2

u − αn − 1/n
(cn)

−n
(
αn− 1

n

)

, where cn =
(
1− (

u − 1
n

)

u − 1
n

)

.

Now set

αn := 1

n
+

2 log n

n log cn
= O

(
log n

n

)

. (54)

Since n > m/u, this is less than u − 1/n as necessary if m is large enough; it turns out
that m ≥ 5 and (20/m) log(m/u) ≤ log((1− u)/u) gives in fact αn < u/2− 1/n. This

yields (cn)
−n

(
αn− 1

n

)

= n−2, and so

μ[u−δ,u−αn)
n ≤ δ

n
√
u

.

Substituting this and u − αn > u/2 as well as m/(n − m) ≤ 1 into (51) yields

∥
∥
∥Tr�n\�m τn − γ⊗m

β

∥
∥
∥
1
≤ 2δ

n
√
u
+

1√
2

√

2
m

n − m
+ 4mαn .

Then the claim follows by substituting (54) and log cn = log(1 − u + 1/n) − log(u −
1/n) > log(1− u) − log u. ��
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This mainly recovers the result depicted in Fig. 5, where the size of the “bath”, n−m,
has to be increased linearly with the size of the subsystem,m, to achieve a fixed error. In
this theorem, for δ > 0, the (log n)-term contributes a small correction to this behavior,
and n has to be increased slightly super-linearly with m.

3.5. Numerical results on finite-size behavior in one dimension. Hereweprovide numer-
ical examples that not only show that random local Hamiltonians satisfy our require-
ments for canonical typicality and dynamical thermalization, but also that the replacing
the global Gibbs state with the local Gibbs state does not give the correct statistics. This
emphasizes that entanglement is key to understanding why closed quantum systems
can conform to thermodynamic predictions. The class of Hamiltonians that we consider
are random 2-local Hamiltonians acting on n qubits on a line with periodic boundary
conditions:

H p
�n

=
n∑

i=1

(
H (i)
0 + H (i,i+1 mod n)

int

)
, (55)

where the onsite term is of the form for constants a1, a2 and a3,

H (i)
0 = a1σ

(i)
x + a2σ

(i)
y + a3σ

(i)
z , (56)

and the interaction term takes the form, for constants b1,1, b1,2, . . . , b3,3,

H (i, j)
int = b1,1σ

(i)
x σ

( j)
x + b1,2σ

(i)
x σ

( j)
y + · · · + b3,3σ

(i)
z σ

( j)
z . (57)

The constants ai and bi, j are chosen randomly according to a Gaussian distribution
with zero mean and unit variance. For ease of comparison, each random translationally
invariant Hamiltonian is re-normalized to have unit norm. Note that one-dimensional
translation-invariant systems with finite-range interaction do not exhibit finite tempera-
ture phase transitions.

The numerical experiments begin by drawing a random Hamiltonian H p
�n

for a fixed
value of β and energy window δ. The first step is to compute the energy density u using

u = 1
|�n |Tr

(
γ
p
�n

H p
�n

)
where γ

p
�n

= exp(−βH p
�n

)/Z is the thermal state that results

from the choice of β. The Hamiltonian is then diagonalized and all energy eigenvectors
within the window (u−δ, u) are found. A random state |ψ〉 is then constructed out of the
span of these vectors, and then we compute

∥
∥
∥
∥Tr�n\�m |ψ〉〈ψ | − Tr�n\�m

exp(−βH p
�n

)

Z

∥
∥
∥
∥
1
,

as per Theorem 25. We take the subsystem to consist of a single qubit, i.e. m = 1, and
the bath contain n − 1 qubits in all these examples. This process is repeated for many
such randomHamiltonians and we compute themean and the standard deviation of these
distances, which allows us to see whether the correspondence predicted by Theorem 25
is typical for this ensemble of random local Hamiltonians.

The data in Fig. 6 shows that the distance between the reduced density matrix of the
pure state and the Gibbs state shrinks as n increases, roughly asO(1/n). The error bars
(representing the standard deviation of the discrepancy with the canonical state) also
shrink as n increases, illustrating that almost all such random translationally invariant
2–local Hamiltonians agree with the predictions of Theorem 25 and in turn that there
is a strong correspondence between the subsystem traces of the global Gibbs state and
|ψ〉〈ψ |.
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Fig. 6. 1-norm difference between the reduced density operator and the reduced global Gibbs state for a
system of n qubits. The squares represent the ensemble means and the error bars give the standard deviations
of the differences between the Gibbs state and the subsystem trace. The data was collected for β = 0.1 and
δ = 0.02n and 400 random Hamiltonians were considered for each n
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Fig. 7. 1-norm difference between the reduced density operator and the reduced local Gibbs state for a system
of n qubits. The squares and error bars are defined identically to those in Fig. 6. The data was collected for
β = 0.1 and δ = 0.02n and 400 random Hamiltonians were considered for each n

On the other hand, Fig. 7 shows that substituting the local Gibbs state for the sub-
system trace of the global Gibbs state causes this correspondence to break down. In
particular, we see no clear evidence that the ensemble mean of the differences between
Tr�n\�m |ψ〉〈ψ | and the local Gibbs state approaches zero as n increases; more tellingly,
the standard deviation of the differences does not seem to decrease with n. These results
suggest that even as n increases, Tr�n\�m |ψ〉〈ψ | remains distinct from the local Gibbs
state. Thus the correspondence suggested by Theorem 25 is correct and the naïve corre-
spondence between the local Gibbs state and Tr�n\�m |ψ〉〈ψ | is incorrect.

Regarding dynamical thermalization, there are two caveats that we need to check in
order to justify the applicability of Theorem 31. First, we need to ensure that almost all
Hamiltonians drawn from this random ensemble are non-degenerate, in order to ensure
thermalization for arbitrary initial states with maximal population entropy. Figure 8
shows that the probability of small eigenvalue gaps is suppressed, hence Hamiltoni-
ans that are typical of the random local Hamiltonian ensemble will be non-degenerate.
Second, we need to show that the gap degeneracy DG(H p

�n
) is not too large. Figure 9

shows that, with high probability, the eigenvalue gaps between any two energy levels
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Fig. 8. Probability density of eigenvalue gaps for random Hamiltonians with n = 5, 7, 9 and 11 qubits. The
x-axis is log10(gap) for 100 random Hamiltonians. No degenerate eigenvalues were ever detected in this
sample within numerical error

Fig. 9. Probability density of for the eigenvalue gap spacings for random Hamiltonians with n = 5, 7, 9 and
11 qubits. The x-axis is log10(gap(gap)) for 100 random Hamiltonians. No degenerate eigenvalue gaps were
ever detected in this sample within numerical error

will be distinct from any other such gap in the system, hence DG(H p
�n

) = 1 with high
probability.

These results illustrate the application of our results to a wide range of physically
realistic random2-localHamiltonians. It is further reasonable to expect that broad classes
of physically realistic closed quantum systemswill agree with the canonical distribution,
illuminating the mechanism by which thermodynamics emerges for macroscopic closed
quantum systems.
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Fig. 10. Subdivision of the whole lattice, �lattice = �n , into regions as used in this subsection. We have
�′ = � ∩ �shell

3.6. Local diagonality of energy eigenstates. A strong sense in which the eigenstates of
a local Hamiltonian H could thermalize is that their reduced density matrix of a region
� (much smaller than the full lattice �lattice = �n) is approximately equal to a thermal
state in that region,

Tr�̄|E〉〈E | ≈ e−βH�

tr e−βH�
, (58)

where Tr�̄ denotes trace on the Hilbert space associated to the complementary region
�̄ = �lattice\�, and H� is the sum of all terms of H which are fully contained in
the region �. The inverse temperature β should be chosen such that 〈E |H�|E〉 =
tr(H�e−βH�)/tr e−βH� holds.

A possible concern is that the Hamiltonian H� has open boundary conditions, hence
we expect boundary effects in the eigenstates of H� which are not present in Tr�̄|E〉〈E |;
and this makes unlikely that relation (58) holds. A way to get rid of the boundary effects
is by defining a slightly larger region �′ which includes a shell of width l around �, cf.
Fig. 10; that is

�′ := {x ∈ �lattice : ∃y ∈ � : dist(x, y) ≤ l}. (59)

If instead of (58) we consider the thermal state in �′ and trace out the shell �shell :=
�′ \ �, then the approximate equality

Tr�̄|E〉〈E | ≈ Tr�shell

(
e−βH�′

tr e−βH�′

)

(60)

is more likely to hold in generic systems, because by tracing out the shell we may
eliminate the boundary effects of the eigenvectors of H�′ . (As before, we denote by H�′
the sum of all terms in H which are fully contained in �′.)

It is expected that the relation (60) holds for generic local Hamiltonians, but not
for all local Hamiltonians. For example, consider the translational-invariant quantum
Ising Hamiltonian in one dimension that we analyzed in Sect. 3.4. This is a Hamiltonian
without interaction terms, such as H�shell =

∑n
i=1 hi for �shell = [1, n], with constant

single-site terms hi . If, for example, hi =
(
1 0
0 −1

)

, the computational basis vectors

|E〉 = |x1x2 . . . xn〉 with xi ∈ {0, 1} are energy eigenstates. Even for those eigenstates
that correspond to finite energies E > 0with corresponding inverse temperatureβ < ∞,
the local reduced state on � = [1,m], m � n, is Tr�̄ |E〉〈E | = |x1 . . . xm〉〈x1 . . . xm |.
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This is a pure state, far away from any thermal state of temperature β. Thus, (60) does
not hold for the Ising model.

In summary, extra conditions are necessary for (60) to hold. Folk wisdom tells us
that such conditions could be along the lines of non-integrability, although this is not yet
a clear and mathematically well-defined concept within quantum theory. In this work,
we follow a different approach: instead of looking for additional conditions, we relax
the statement (60). One way to do this is by noticing that the state e−βH�′ /tr e−βH�′ is
diagonal in the eigenbasis of H�′ . Our weakened statement is informally the following:

For any eigenvalue E of H there is a density matrix ωE defined in the extended
region �′ which is weakly diagonal in the eigenbasis of H�′ and satisfies

Tr�̄|E〉〈E | ≈ Tr�shellωE .

The meaning of weakly diagonal will be made precise in the statement of the theorem
below. But before, let us specify the type of systems that we are considering. Exactly
as explained at the beginning of Sect. 3.1, we consider local Hamiltonians on a cubic
lattice, with a finite-dimensional Hilbert space at each site. By local we mean that the
Hamiltonian H has finite interaction range r . This means that if we write it as

H =
∑

X⊆�lattice

�(X ),

where �(X ) has only support on the region X , then for any region X ⊆ �lattice such
that diamX := maxx,x ′∈X dist(x, x ′) > r we have �(X ) = 0 (the definition of dist
is given in (15)). However, in contrast to the previous subsection, we do not need to
assume that the interaction is translation-invariant. This type of Hamiltonian satisfies a
Lieb-Robinson bound [30,31] (see [32] for a simpler proof). That is, let X,Y be two
matrices acting non-trivially in the regions X ,Y ⊆ �lattice which are separated by a
distance dist(X ,Y), and let X (t) = eiHt Xe−i Ht . There are positive constants C, c, v
such that

‖[X (t),Y ]‖∞ ≤ C ‖X‖∞‖Y‖∞ min{|X |, |Y|} e−c[dist(X ,Y)−v|t |]. (61)

The constants C, c, v only depend on coarse features of the lattice and the Hamiltonian,
like the interaction length, and the ‖ · ‖∞-norm of the local terms in the Hamiltonian.
The constant v is called the Lieb-Robinson velocity, and it is an upper-bound for the
speed at which information travels through the lattice.

Theorem 38 (Weak local diagonality). Let � be any finite-range interaction (not nec-
essarily translation-invariant), let � ⊆ �lattice be any region of the lattice, and let
�′ ⊆ �lattice be the set of points at distance not larger than l from �, as defined
in (59). Define the regions �shell = �′ \ � and the complements �̄ = �lattice \ � and
�̄′ = �lattice \�′. Let H be a local Hamiltonian as defined above, with finite interaction
range r ≤ l. For each eigenvector |E〉 of the Hamiltonian H we define the state ωE in
the region �′ as

ωE :=
∫ ∞

−∞
dt g(t) e−i H�′ t Tr�̄′(|E〉〈E |) eiH�′ t ,

where g(t) = (2πσ 2)−1/2 e−t2/(2σ 2) and σ 2 = (l − r)/(4cv2). The state ωE is weakly
diagonal in the eigenbasis of H�′ , denoted |e〉, in the sense that

|〈e1|ωE |e2〉| ≤ e−(l−r)(e1−e2)2/(8cv2). (62)
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The state ωE is almost indistinguishable from |E〉〈E | inside the region �, that is

∥
∥Tr�shell(ωE ) − Tr�̄(|E〉〈E |)∥∥1 ≤ 2√

2π
AJσ(CA + 2)e−c(l−r)/2, (63)

where A is the number of subsets X with �(X) �= 0 that have non-empty intersection
with both �′ and �̄′.

Note that the number A quantifies the size of the boundary of �′; so for a three-
dimensional lattice, A is an area. Also, we stress the fact that closeness in ‖ · ‖1-norm is
a very strong feature, and it really implies that the two states in the left-hand side of (63)
are almost indistinguishable. The right-hand side of (63) can be made small by choosing
the thickness of the shell to be

l � 6

c
log A + r.

Still, for large regions �, the relative volume of the shell l A/|�| vanishes.
If the local dimension is d, then the dimension of the Hilbert space associated to

the region �′ is d |�′|. Hence, the expected size of the entries of ωE is of the order of
d−|�′|, which is very small. This may rise the concern that bound (62) is trivial. To see
that this is not the case, we note that the largest entry of ωE is at least d−|�′|. Also,
since H�′ is a local Hamiltonian, the range of energies is 
e ∼ J |�′|. This implies
that the exponent of (62) is proportional to |�′|2, while the exponent of the largest entry
is proportional to |�′|, which is much smaller. In summary, for large enough regions
|�|, the bound (62) is non-trivial. It is a consequence of the locality of interactions as
expressed by the Lieb-Robinson bound.

Proof. Using the fact that the |e〉 are the eigenvectors of H�′ we obtain

〈e1|ωE |e2〉 =
∫

dt g(t) e−i(e1−e2)t 〈e1|Tr�̄′(|E〉〈E |)|e2〉

= e−(e1−e2)2σ 2/2〈e1|Tr�̄′(|E〉〈E |)|e2〉,
which implies (62). Using the triangle inequality for the norm ‖ · ‖1 we obtain

∥
∥Tr�shell(ωE ) − Tr�̄(|E〉〈E |)∥∥1
=

∥
∥
∥
∥

∫

dt g(t)Tr�̄
(
e−i H�′ t |E〉〈E |eiH�′ t − |E〉〈E |

)∥∥
∥
∥
1

≤
∫

dt g(t)
∥
∥
∥Tr�̄

(
e−i H�′ t |E〉〈E |eiH�′ t − |E〉〈E |

)∥
∥
∥
1
. (64)

Next, we use the identity ‖Y‖1 = maxX |Tr(XY )|, where the maximum is over all
Hermitianmatrices X which satisfy−1 ≤ X ≤ 1. Sincewe apply this to an observable on
�, it follows that X is fully supported on�. We also use the fact that eiHt |E〉〈E |e−i Ht =
|E〉〈E | for any t , obtaining

∥
∥
∥Tr�̄

(
e−i H�′ t |E〉〈E |eiH�′ t − |E〉〈E |

)∥
∥
∥
1

= max
X

∣
∣
∣Tr

[
X
(
e−i H�′ t ei Ht |E〉〈E |e−i Ht ei H�′ t − |E〉〈E |

)]∣
∣
∣

= max
X

∣
∣
∣〈E |e−i Ht ei H�′ t Xe−i H�′ t ei Ht − X |E〉

∣
∣
∣ . (65)
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Nowwe use the inequality |〈α|Y |β〉| ≤ ‖Y‖∞ for any pair of unit vectors |α〉, |β〉. Also,
we use the fact that [X, H�̄′ ] = [H�′, H�̄′ ] = 0, and define HA := H − H�̄′ − H�′ .
We obtain
∣
∣
∣〈E |e−i Ht ei H�′ t Xe−i H�′ t ei Ht − X |E〉

∣
∣
∣≤

∥
∥
∥e−i Ht ei(H−HA)t Xe−i(H−HA)t ei Ht−X

∥
∥
∥∞
(66)

Next, we use the matrix identity M(t)−M(0) = ∫ t
0 dt1

∂
∂t1

M(t1), the triangle inequality,

and the unitary invariance of the operator norm, ‖e−i Ht1YeiHt1‖∞ = ‖Y‖∞. If t ≥ 0
then

∥
∥
∥e−i Ht ei(H−HA)t Xe−i(H−HA)t ei Ht − X

∥
∥
∥∞

=
∥
∥
∥
∥

∫ t

0
dt1

∂

∂t1

(
e−i Ht1ei(H−HA)t1Xe−i(H−HA)t1eiHt1

)∥∥
∥
∥∞

≤
∫ |t |

0
dt1

∥
∥
∥
[
HA, eiH�′ t1Xe−i H�′ t1

]∥
∥
∥∞ .

If t < 0, then the substitution t2 := −t1 in the integral yields
∥
∥
∥e−i Ht ei(H−HA)t Xe−i(H−HA)t ei Ht − X

∥
∥
∥∞

=
∥
∥
∥
∥

∫ |t |

0
dt2

∂

∂t2

(
eiHt2e−i(H−HA)t2Xei(H−HA)t2e−i Ht2

)∥∥
∥
∥∞

≤
∫ |t |

0
dt2

∥
∥
∥
[
HA, e−i H�′ t2XeiH�′ t2

]∥
∥
∥∞ .

In both cases, we can apply the Lieb-Robinson bound to the two regions X = � and Y
the support region of HA (covering the boundary of �′ and of �̄′). For all t ∈ R, we get

∥
∥
∥
[
HA, eiH�′ t Xe−i H�′ t

]∥
∥
∥∞ ≤ ‖HA‖∞ min

{
2,CA e−c(l−r)+cv|t |} ,

which implies
∥
∥
∥e−i Ht ei(H−HA)t Xe−i(H−HA)t ei Ht − X

∥
∥
∥∞

≤ ‖HA‖∞ min

{∫ |t |

0
dt1 · 2,

∫ |t |

0
dt1 CAe−c(l−r)+cv|t1|

}

≤ ‖HA‖∞ min
{
2|t |, CA|t |e−c(l−r)+cv|t |} .

Combining this with (64)–(66), and dividing the integration (64) into two intervals, we
get for t0 ≥ 0

∥
∥Tr�shell(ωE ) − Tr�̄(|E〉〈E |)∥∥1
≤ 2‖HA‖∞

∫ ∞

0
dt g(t)min{2t, CAt e−c(l−r)+cvt }

≤ 2‖HA‖∞
(∫ t0

0
dt g(t)CAt e−c(l−r)+cvt +

∫ ∞

t0
dt g(t) 2t

)
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≤ 2‖HA‖∞
(

CA e−c(l−r)+cvt0

∫ ∞

0
dt g(t)t +

σ√
2π

2 e−t20 /(2σ 2)

)

≤ 2‖HA‖∞
(

σ√
2π

CAe−c(l−r)+cvt0 +
σ√
2π

2 e−t20 /(2σ 2)

)

.

Now choose t0 := (l − r)/(2v) such that −c(l − r) + cvt0 = −t20 /(2σ 2), and use
σ 2 = (l − r)/(4cv2). Furthermore,

HA = H�lattice − H�̄′ − H�′ =
∑

X⊂�lattice: X∩�′ �=∅ and X∩�̄′ �=∅
�(X),

such that ‖HA‖∞ ≤ A J , where J = maxX⊂Zν ‖�(X)‖∞, and A is the number of
subsets X with �(X) �= 0 that have non-empty intersection with both �′ and �̄′. ��

4. Conclusions

Our work provides a significant step towards a rigorous understanding of how closed
quantum systems thermalize. Our key innovations come from combining methods from
quantum information theory and frommore traditional mathematical physics techniques
to address the problem. Through this approach, we find that small subsystems of closed
translation-invariant quantum systems with finite-range interaction thermalize, in the
sense that they relax towards the reduction of the global Gibbs state. In doing so, we not
only provide a rigorous explanation for how awide class of physically significant Hamil-
tonians thermalize, but also show that the correct correspondence is with a reduction of
the global system’s Gibbs state, not its local Gibbs state.

This work opens a number of interesting avenues for future work. One open problem
is to obtain more explicit finite-size bounds, but these may well depend on details of
the specific model or interaction. Similarly, an interesting open question is whether ωE
in Theorem 4 has Boltzmann weights on its diagonal. However, rigorously answering
this question in the affirmative, and thus proving a complete version of the eigenstate
thermalization hypothesis, seems to require additional assumptions along the lines of
nonintegrability. Thus, one may hope that attempts to prove the ETH for quantum lattice
systems will also lead to a better understanding and rigorous mathematical definition of
the notion of integrability in the quantum case. We further believe that the methodology
we provide will lead to further applications to be discovered in the future. In particular,
it may turn out that giving finite versions of asymptotic mathematical physics results
will prove to be as promising as using asymptotic results to prove statements on finite
systems, which was the approach taken in this paper.
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