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Abstract: Decoupling has become a central concept in quantum information theory,
with applications including proving coding theorems, randomness extraction and the
study of conditions for reaching thermal equilibrium. However, our understanding of
the dynamics that lead to decoupling is limited. In fact, the only families of transfor-
mations that are known to lead to decoupling are (approximate) unitary two-designs,
i.e., measures over the unitary group that behave like the Haar measure as far as the
first two moments are concerned. Such families include for example random quantum
circuits with O(n2) gates, where n is the number of qubits in the system under consider-
ation. In fact, all known constructions of decoupling circuits use �(n2) gates. Here, we
prove that random quantum circuits with O(n log2 n) gates satisfy an essentially optimal
decoupling theorem. In addition, these circuits can be implemented in depth O(log3 n).
This proves that decoupling can happen in a time that scales polylogarithmically in the
number of particles in the system, provided all the particles are allowed to interact. Our
proof does not proceed by showing that such circuits are approximate two-designs in
the usual sense, but rather we directly analyze the decoupling property.

1. Introduction

Consider an observer E that holds some information about a large system A, modelled
by a joint state ρAE . In many settings, one wants this information to be mapped to
global properties of the system A. This allows the information not to be affected by
transformations (such as noise), provided they act on a small enough subsystem B. Such
a condition is described formally by saying that the systems B and E are decoupled, i.e.,
ρBE = ρB ⊗ ρE . In other words, this describes the absence of correlations between B
and E . This condition naturally arises in the context of quantum error correcting codes,
where information about which state was encoded must be unavailable on any corrupted
subsystem, and in the notion of topological order, where information becomes stored in
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a topological degree of freedom and is inaccessible to measurements on a topologically
trivial region.

A decoupling statement generally has the following form: applying a typical unitary
transform chosen from some specified set to the system A leads to a state ρBE ≈
ρB ⊗ ρE , provided B is small enough compared to the initial correlations between A
and E . A statement of this form is essential in proving a coding theorem for many
information processing tasks. But taking the point of view of decoupling for proving
coding theorems is especially useful in quantum information, mainly because of the
notion of purification. Decoupling appears now as the most successful technique for
analyzing quantum information processing tasks. Such an approach was used to study
very general quantum information processing tasks like state merging [2,20,21] and
fully quantum Slepian–Wolf [1], but also in many other settings [15]. For each of these
tasks, a specific decoupling statementwas proved, but recentlyDupuis et al. [10] proved a
very general essentially tight decoupling theorem from which the previously mentioned
results can be derived.

The notion of decouplingwhen A is classical is also studied under the name of privacy
amplification. The maps that are applied in order to obtain decoupling are known as
randomness extractors, a combinatorial object that is extensively studied in the context
of complexity theory and cryptography; see [36] for a survey on this topic. Quantum
uncertainty relations can also be viewed as decoupling statements [4].

Ideas from quantum information related to decoupling have also been used in the
context of thermodynamics. For example, del Rio et al. [13] used the decoupling theorem
of [10] to study the work cost of an erasure in a fully quantum context. Also, general
conditions under which thermal equilibrium is reached are analyzed in [14,24,25]. In
a different area, Hayden and Preskill [22] argue that an m-qubit quantum state that is
dropped into a black hole could be recovered with high fidelity from an amount of
Hawking radiation containing slightly more than m qubits of quantum information, as
long as the dynamics of the black hole approximates a unitary two-design sufficiently
well. The speed at which decoupling occurs is particularly important for this question
and it motivated the study of fast scramblers [28,34].

1.1. Decoupling with Random Quantum Circuits. In this paper, we are interested in
understanding the dynamics that lead to decoupling. For example, in a system with n
particles with only pairwise interactions, how long does it take for the correlations with
some observer E to become global? The time required by the dynamics generated by
pairwise interactions is roughly equivalent to the depth of a corresponding quantum
circuit. Thus, in terms of computational complexity, we want to determine what is the
minimum size, and particularly, depth for a family of quantum circuits that leads to a
decoupled state.

We consider the simple but natural model of random quantum circuits, in which t
random gates are applied to randomly chosen pairs of qubits. Random quantum circuits
of polynomial size are efficient implementations that are meant to inherit many prop-
erties of completely random unitary transformations, which typically require a circuit
decomposition which is exponentially large in system size. An important property of
interest is that a random unitary maps product states into highly entangled states [19].
As Haar random states are not physical in the sense of computational complexity, it is
interesting to determine whether such generic entanglement can be achieved by efficient
random quantum circuits. A lot of work has been done in analyzing convergence prop-
erties of the distribution defined by random quantum circuits to the Haar measure on the
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full unitary group acting on n qubits [6,8,16–18,23,26,30,35,38] especially properties
related to the second moment. Specifically, Harrow and Low [18] proved that random
quantum circuits are approximate two-designswith O(n2) gates. Using the result of [32],
it follows that such random circuits satisfy a decoupling theorem provided the number
of gates is �(n2). Such a circuit has at least depth �(n).

Another, arguably less natural random circuit model defined in [11] was shown to
decouple a constant-size observer E from any macroscopic size subsystem in depth
O(log n). However, it requires a depth proportional to the size of E in general, and thus
requires a circuit with depth that is linear in the system size [7].

1.2. Results. Weprove that randomquantumcircuitswith t = O(n log2 n)gates achieve
near-optimal decoupling, improving on the results of [18] combined with [32], which
proved this result for t = O(n2). Then, by applying gates that act on disjoint qubits in
parallel, we show that this circuit runs in time O(log3 n).

Subsequent work: Very recently, Cleve et al. [9] gave a very efficient explicit con-
struction of exact two-designs with circuits of size O(n log2 n log log n) and depth
O(log2 n). As these are exact two-designs, this family of unitaries satisfies the decou-
pling theorem (Theorem 3.1) with the exact same parameters as the Haar measure over
the full unitary group acting on the n-qubit space.

1.2.1. Proof technique. The first step of the proof is to relate the property of interest to
the second moment operator of the random quantum circuit. For the random quantum
circuitswe consider the relevantmatrix elements of themoment operator,when evaluated
in the Pauli basis, can be seen as the transitionmatrix of aMarkov chain on the Pauli basis
elements. The property of decoupling can be formulated in terms of this Markov chain.
The convergence times of such Markov chains arising from the second order moments
have been previously studied in [18,30,38]. However, these convergence times are not
sufficient to prove the result we are aiming for and can only give useful bounds when
�(n2) gates are applied, because they rely first on bounding the spectral gap of the
moment operator [26]. Instead, we analyze the Markov chain in a finer way by bounding
the probabilities of going from an initial Pauli string ofweight � to a Pauli string ofweight
k within O(n log2 n) steps. This is proved by building on the techniques used in [18].

1.3. Applications. Our results show that many information processing tasks in the quan-
tum setting can have very efficient encoding circuits with almost linear size and poly-
logarithmic depth in the system size. In particular, we can asymptotically approach the
quantum capacity of the erasure channel using such an encoding circuit. This means
that for sufficiently large n and any δ > 0, we can encode k = (1 − 2p − δ)n qubits of
information into n qubits using this circuit, in such away that even if every qubit is erased
independently with probability p ∈ [0, 1/2), the encoded information can be decoded.
The measurements for optimal quantum state merging can also be implemented using
such circuits. Our main technical result can also be used to show that almost-linear sized
random quantum circuits define codes with distances that achieve the quantum Gilbert–
Varshamov bound; see [3] for details. To our knowledge capacity approaching codes
of such short depth are only known for the quantum polar codes [31,33,37], which for
some special channels can even be efficiently decoded.We note that though inefficient to
decode, a code defined by a short depth random quantum circuit is insensitive to which
qubits the information to be encoded is initially located.
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From a thermodynamics viewpoint, decoupling can be seen as a strong form of
thermalization [14].We refer the reader to recent works that used decoupling theorems in
order to derive general conditions under which thermal equilibrium is achieved [24,25].
Our results imply that thermalization can be reached by sufficiently generic two-body
dynamics in a time that scales polylogarithmically in the number of particles.

The time scale atwhich decoupling can be accomplished is relevant to the study of fast
scramblers [34], which was motivated by questions pertaining to quantum information
processing in a black hole [22,27]. Our results imply that random quantum circuits
are (pretty) fast scramblers in a strong sense, i.e., scramble a message of linear size in
O(log3 n) time.

1.4. Organization. Section 2 introduces some basic notation and the model of random
quantum circuits we consider here. In Sect. 3 we state our main result on decoupling
with random circuits and reduce the problem to the study of a Markov chain Q. This
Markov chain Q is studied in Sect. 4, which contains the main technical result of this
paper. The fact that the circuits can be parallelized is proved in Sect. 3.1. The appendix
contains various technical results that are used in the proofs, such as a generalization of
the gambler’s ruin lemma and simple estimates for binomial coefficients.

2. Preliminaries

2.1. Generalities. A quantum state for a system A is described by a density operator
ρ ∈ S(A) acting on the Hilbert space A associated with the system A. A density
operator on A lives in the set S(A) of positive semidefinite operator with unit trace. If
ρAE describes the joint state on AE , the state on the system A is described by the partial

trace ρA
def= trE ρAE . A pure state is a state of rank 1 and is denoted by ρA = |ρ〉〈ρ|A

where |ρ〉 ∈ A. A quantum operation with input system A and output system C is given
by a completely positive trace-preserving map T that maps operators on A to operators
on C . A map T is said to be completely positive if for any system B and X ∈ S(A⊗ B)

we have (T ⊗ id)(X) � 0. The system A in this paper is always composed on n qubits,
and we denote by �AA′ = 1

2n
∑

a,a′∈{0,1}n |a〉〈a′|A ⊗ |a〉〈a′|A′ a maximally entangled
state between A and A′. Here {|a〉} is the standard basis for A.

Throughout the paper, we use the Pauli basis, which is an orthogonal basis for 2× 2
matrices:

σ0 =
(
1 0
0 1

)

σ1 =
(
0 1
1 0

)

σ2 =
(
0 −i
i 0

)

σ3 =
(
1 0
0 −1

)

.

For a string ν ∈ {0, 1, 2, 3}n , we define σν = σν1⊗· · ·⊗σνn . Observe that tr[σνσν′ ] = 2n

if ν = ν′ and 0 otherwise. The support supp(ν) of ν is simply the subset {i ∈ [n] : νi �= 0}
and theweight |ν| = |supp(ν)|.We also need to introduce an entropic quantity to quantify
the decoupling accuracy. In particular, for a state ρAE , define

H2(A|E)ρ = − log2

[

tr

[(
ρ

−1/4
E ρAEρ

−1/4
E

)2
]]

. (1)

In order to simplify the statement of the results we use the notation poly(n) for a
number that could be chosen as any polynomial in n and the power of the polynomial can
be made large by appropriately choosing the related constants. The set of permutations
of {1, . . . , n} is denoted by Sn .
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2.2. Randomquantumcircuits. In a sequential randomquantumcircuit rqc(t), t random
two-qubit gates are applied to randomly chosen pairs of qubits sequentially. Here the
random two-qubit gate is chosen from the Haar measure on the unitary group acting on
two qubits. In fact, our results apply equally well to any gate set whose second-order
moment operator is the same as the one for the Haar measure on two qubits. This means
that our results would also work if the gates are Clifford unitaries on two qubits. The
number of gates of the circuit is one complexity measure but we are also interested in
the depth. In this setting, multiple gates can be applied in the same time step as long as
they act on disjoint qubits.

We construct a parallelized version of the sequential model in a natural way. Gates
are sequentially added to the current level until it is not possible, i.e., there is a gate
that shares a qubit with a previously added gate in that level. In this case, a new level
is created and the process continues. We then define the parallelized model rqc(t ,d) as
follows. Choose a random rqc(t) circuit then parallelize it using the method describe
above. If the circuit has depth at most d, then we return this circuit, otherwise the circuit
is discarded and we restart the procedure.

A model of random circuits of a certain size defines a measure over unitary transfor-
mations on n qubits that we call pcirc.

The second-order moment operator will play an important role in all our proofs. The
second-order moment operator is a super-operator acting on two copies of the space of
operators acting on the ambient Hilbert space, which is an n-qubit space in our setting.
For a measure p over the unitary group, we can define the second moment operator Mp
as

Mp[X ⊗ Y ] = E
U∼p

{
UXU † ⊗UYU †

}
.

In particularMhaar = E
U∼phaar

{
UXU † ⊗UYU †

}
. Any distribution forwhichM = Mhaar

is referred to as a two-design.Wedenote byMcirc themoment operator for the distribution
obtained by applying one step of the random circuit. For the case of a random unitary
distributed according to the Haar measure applied to a randomly chosen pair i, j of
qubits, we have

Mcirc = 1

n(n − 1)

∑

i �= j

mi j ,

where mi j only acts on qubits i and j and is defined by

mi j [σμ ⊗ σμ′ ] =

⎧
⎪⎨

⎪⎩

0 if μ �= μ′
σ0 ⊗ σ0 if μ = μ′ = 0
1
15

∑

ν∈{0,1,2,3}2,ν �=0
σν ⊗ σν if μ = μ′ �= 0

for all μ,μ′ ∈ {0, 1, 2, 3}2; see e.g., [18, Section 3.2]. We can write the operator Mcirc
using the Pauli basis, which would give a matrix indexed by pairs of Pauli strings, but
for our purposes it is sufficient to consider the following 4n × 4n submatrix

Q(μ, ν) = 1

4n
tr
[
σν ⊗ σν Mcirc[σμ ⊗ σμ]] . (2)
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In fact, it is simple to verify that
∑

ν∈{0,1,2,3}n Q(μ, ν) = 1 for all μ and so Q can
be seen as a transition matrix for a Markov chain over the Pauli strings {0, 1, 2, 3}n of
length n; see [18, Section 3] for a detailed treatment of the moments of random circuits.

Now for a random circuit with t independent random gates applied sequentially, the
second moment operator is simply Mt

circ and the corresponding submatrix is also Qt .
The properties we are interested in can be expressed as certain quadratic functions of the
entries of the unitary transformation defined by the circuit and thus can be computed from
the second moment operator. Specifically, these properties can be completely reduced
to studying the evolution of the Markov chain defined by Q.

3. Decoupling with Random Quantum Circuits

We start by describing the setting for the general decoupling theorem of [10]. Consider
a state ρAE on AE and a quantum channel, i.e., a completely positive trace preserving
map T from operators on A to operators on B. For example, T might be the partial trace
map keeping only the qubits in some subsystem B. See Fig. 1 for an illustration. The
theorem gives a sufficient condition for approximate decoupling depending on entropic
quantities evaluated on the state ρAE and the state τA′B = T ⊗ idA′(�AA′) where
�AA′ = 1

2n
∑

a,a′ |a〉〈a′|A ⊗ |a〉〈a′|A′ is a maximally entangled state on AA′. The
definition of the entropy H2 is given in (1).

Theorem 3.1 (General one-shot decoupling [10]).With the notation above,

E
U

{
‖T (UρAEU

†) − τB ⊗ ρE‖1
}

≤ 2− 1
2 (H2(A|E)ρ+H2(A|B)τ ), (3)

where U is distributed according to the Haar measure over unitaries acting on A.

In this section, we prove the main result of this paper which is a result analogous
to Theorem 3.1 but where U is a unitary defined by applying a random circuit with
t = O(n log2 n) gates. Before proving the theorem, we provide a brief overview of the
proof. Consider for simplicity that T is a partial trace map. We start by relating the trace
distance of (3) to the purity tr[T (U ρ̃AEU †)2] of the operator ρ̃AE = ρ

−1/4
E ρAEρ

−1/4
E .

This step is standard and used in basically all decoupling theorems. Decomposing ρ̃AE
using the Pauli basis on A, we can write

ρ̃AE = 1

2n
∑

ν∈{0,1,2,3}n
σν ⊗ trA[σνρ̃AE ] and

tr[ρ̃2
AE ] = 1

2n
∑

ν∈{0,1,2,3}n
tr
[
trA[σνρ̃AE ]2

]
. (4)

A

E

U T
ρAE

B

≈ε

τB

⊗
ρE

Fig. 1. A unitary U (which is going to be a random circuit in this paper) is applied to system A followed by
a map T
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Note that tr[ρ̃2
AE ] does not change when a unitary is applied on the system A. However,

if we apply a unitary U and then keep a subset S of the qubits of A, the purity of the
reduced state tr[trSc [U ρ̃AEU †]2] = 1

2|S|
∑

ν∈{0,1,2,3}|S| tr
[
trA[σνU ρ̃AEU †]2] in general

depends on U . Observe for example that we only have terms tr
[
trA[σνU ρ̃AEU †]2]

where the weight of ν is at most |S|. It then becomes clear that in order to prove that
tr[trSc [U ρ̃AEU †]2] is small when the subsystem S is sufficiently small, we should obtain
bounds on tr

[
trA[σνU ρ̃AEU ]2]when ν is small. In particular, ifU is a random quantum

circuit with t gates, E
{
tr
[
trA[σνU ρ̃AEU ]2]} can be written as a function of Qt (., ν)

where Q is the transition matrix of the Markov chain introduced in (2) and using the
decomposition of the initial state ρ̃AE . The stationary distribution is given by the uniform
distribution over all Pauli strings excluding the identity, pQ(ν) = 1

4n−1 . The main
technical result is then to prove that starting at a Pauli string, σμ of weight �, we have
that
∑

ν |Qt (μ, ν) − p(ν)| ≤ 1
3�(n�)

where p(ν) � pQ(ν) provided t > cn log2 n. Note

that when computing a mixing time, the worst case over all μ is considered. Note that
the claimed bound on the distance improves with the weight � = |μ|. For the result we
aim to prove, obtaining this explicit dependence on � is crucial.

Theorem 3.2. LetρAE ∈ S(AE) be an initial arbitrarymixed state andUtρAEU
†
t be the

corresponding state after the application of t random two-qubit gates on the A system,
which is composed of n qubits. Let T : S(A) → S(B) be a completely positive trace pre-
serving map. Define τA′B = T ⊗ idA′(�AA′), where |�〉AA′ = 1

2n/2

∑
a∈{0,1}n |a〉A|a〉A′ .

Then we have for any δ > 0, there exists a constant c such that for all n and all
t ≥ cn log2 n

E
Ut

{∥
∥
∥T (UtρAEU

†
t ) − τB ⊗ ρE

∥
∥
∥
1

}
≤
√

1

poly(n)
+ 4δn · 2−H2(A|B)τ · 2−H2(A|E)ρ , (5)

where the expectation is taken over the choice of random circuit of size t .

Proof. As in [32], we use the following Hölder-type inequality for operators ‖αβγ ‖1 ≤
‖|α|4‖1/41 ‖|β|2‖1/21 ‖|γ |4‖1/41 , see e.g., [5, Corollary IV.2.6].

∥
∥
∥T (UtρAEU

†
t ) − τB ⊗ ρE

∥
∥
∥
2

1
≤ ‖(τ 1/4B ⊗ ρ

1/4
E )4‖1 · tr

[ (
τ

−1/4
B ⊗ ρ

−1/4
E (T (ρAE (t))

− τB ⊗ ρE ) τ
−1/4
B ⊗ ρ

−1/4
E

)2 ]
.

Taking the expectation, we have

E
{∥
∥
∥T (UtρAEU

†
t ) − τA ⊗ ρE

∥
∥
∥
2

1

}

≤ E
{
tr[T̃ (Ut ρ̃AEU

†
t )2]
}

−2E
{
tr[T̃ (Ut ρ̃AEU

†
t ) · τ̃B ⊗ ρ̃E ]

}
+ tr[(τ̃B ⊗ ρ̃E )2]

≤ E
{
tr
[
T̃ (Ut ρ̃AEU

†
t )2
]}

− tr[τ̃ 2B] tr[ρ̃2
E ] + 1

poly(n)
, (6)
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where we defined ρ̃AE = ρ
−1/4
E ρAEρ

−1/4
E and T̃ (.) = τ

−1/4
B T (.)τ

−1/4
B . If the map

T is such that T (id) is a multiple of the identity then the last line follows directly
without using any properties of Ut . If this is not the case, we explicitly bound the
expectation and obtain the additional 1/ poly(n) term, which captures the fact that {Ut }
form an approximate 1-design; see Appendix B for a proof of this fact. We also use
the fact that tr[τ̃ 2B] = tr[ρ̃2

E ] = 1. To avoid complicating the expressions, we drop the
1/ poly(n) term in the remainder of the proof, as it is taken into account in the final
desired statement.

Note that by definition tr[ρ̃2
AE ] = 2−H2(A|E)ρ . Moreover, since �AA′ = 1

4n
∑

ν σν ⊗
σν , we have 2−H2(A|B)τ = 1

8n
∑

ν tr[T̃ (σν)
2]. To compute tr[T̃ (Ut ρ̃AEU

†
t )2], we decom-

pose Ut ρ̃AEU
†
t in the Pauli basis on A as follows:

Ut ρ̃AEU
†
t = 1

2n
∑

ν∈{0,1,2,3}n
σν ⊗ trA[σνUt ρ̃AEU

†
t ]. (7)

Applying T̃ , we get

T̃ (Ut ρ̃AEU
†
t ) = 1

2n
∑

ν∈{0,1,2,3}n
T̃ (σν) ⊗ trA[σνUt ρ̃AEU

†
t ]

= 1

4n
∑

ν,ξ∈{0,1,2,3}n
tr[σξ T̃ (σν)]σξ ⊗ trA[σνUt ρ̃AEU

†
t ].

As a result, we have

tr[T̃ (Ut ρ̃AEU
†
t )2] = 1

2n
∑

ξ∈{0,1,2,3}n
tr

⎡

⎣

(
1

2n
∑

ν

tr[σξ T̃ (σν)] trA[σνUt ρ̃AEU
†
t ]
)2
⎤

⎦

= 1

2n
∑

ξ∈{0,1,2,3}n
1

4n
tr[σξ T̃ (idA)]2 tr[ρ̃2

E ]

+
1

8n
∑

ξ,ν,ν′∈{0,1,2,3}n ,ν or ν′ �=0

tr[σξ T̃ (σν)] tr[σξ T̃ (σν′)]

· tr
[
trA[σνUt ρ̃AEU

†
t ] trA[σν′Ut ρ̃AEU

†
t ]
]

= tr[τ̃ 2B] tr[ρ̃2
E ] + 1

8n
∑

ν,ν′∈{0,1,2,3}n ,ν or ν′ �=0

Tν,ν′

· tr
[
trA[σνUt ρ̃AEU

†
t ] trA[σν′Ut ρ̃AEU

†
t ]
]
,

where we defined Tν,ν′ = ∑ξ tr[σξ T̃ (σν)] tr[σξ T̃ (σν′)]. Getting back to Eq. (6) and
using the concavity of the square root function, we have
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E
{∥
∥
∥T (UtρAEU

†
t ) − τB ⊗ ρE

∥
∥
∥
1

}

≤

√
√
√
√
√E

⎧
⎨

⎩

1

8n
∑

ν,ν′∈{0,1,2,3}n ,ν or ν′ �=0

Tν,ν′ · tr
[
trA[σνUt ρ̃AEU

†
t ]
]
tr
[
trA[σν′Ut ρ̃AEU

†
t ]
]
⎫
⎬

⎭
.

(8)

Observe that this term is a quadratic function ofUt and thus only depends on the second
moment operator M of our distribution over unitary transformations on A. Recall that
the second moment operator is a super operator acting on operators acting on two copies
of A. For a random quantum circuit with t gates, the second moment operator is Mt

circ.
We have for any ν, ν′,

E
{
tr
[
trA[σνUt ρ̃AEU

†
t ] trA[σν′Ut ρ̃AEU

†
t ]
]}

= E
{
tr
[
trA[σνUt ρ̃AEU

†
t ] ⊗ trA′ [σν′Ut ρ̃A′E ′U †

t ]FEE ′
]}

= tr
[
trAA′ [σν ⊗ σν′(Mt

circ ⊗ idEE ′)[ρ̃AE ⊗ ρ̃A′E ′ ]FEE ′
]
, (9)

where we used in the first equality the fact that tr[ωEω′
E ] = tr[ωE ⊗ ω′

E ′FEE ′ ] with
FEE ′ being the swap operator. By expanding the initial state ρ̃AE in the Pauli basis, we
obtain

(Mt
circ ⊗ idEE ′)[ρ̃AE ⊗ ρ̃A′E ′ ] = 1

4n
∑

μ,μ′∈{0,1,2,3}n
(Mt

circ ⊗ idEE ′)
[
σμ ⊗ trA[σμρ̃AE ]

⊗σμ′ ⊗ trA′ [σμ′ ρ̃A′E ′ ]]

= 1

4n
∑

μ,μ′∈{0,1,2,3}n
Mt

circ[σμ ⊗ σμ′ ] ⊗ trA[σμρ̃AE ]

⊗ trA′ [σμ′ ρ̃A′E ′ ].
Continuing, we get

E
{
tr
[
trA[σνρ̃AE (t)] trA[σν′ ρ̃AE (t)]]} = 1

4n
∑

μ,μ′∈{0,1,2,3}n
tr
[
σν ⊗ σν′Mt

circ[σμ ⊗ σμ′ ]]

⊗ tr
[
trA[σμρ̃AE ] trA[σμ′ ρ̃AE ]] .

Recall that 1
4n tr
[
σν ⊗ σν′Mt

circ[σμ ⊗ σμ′ ]] = Qt (μ, ν) if μ′ = μ and ν = ν′ and 0
otherwise. The expectation in Eq. (8) then becomes

1

8n
∑

ν∈{0,1,2,3}n ,ν �=0

Tν,ν

∑

μ∈{0,1,2,3}n
Qt (μ, ν) tr[trA[σμρ̃AE ]2]

= 1

4n
∑

ν∈{0,1,2,3}n ,ν �=0

tr[T̃ (σν)
2]

∑

μ∈{0,1,2,3}n ,μ�=0

Qt (μ, ν) tr[trA[σμρ̃AE ]2]

= 1

4n
∑

μ∈{0,1,2,3}n ,μ�=0

tr[trA[σμρ̃AE ]2]
∑

ν∈{0,1,2,3}n ,ν �=0

tr[T̃ (σν)
2]Qt (μ, ν). (10)
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The main technical result in this proof is in Theorem 4.1 (which we defer to Sect. 4),
where we obtain a bound of

∑

ν∈{0,1,2,3}n ,ν �=0

∣
∣Qt (μ, ν) − pδ(ν)

∣
∣ ≤ 1

(3 − η)�
(n
�

)
poly(n)

, (11)

where pδ(ν) ≤ 4δn

4n−1 and |μ| = � and for any positive constants δ and η and t ≥ cn log2 n
for some constant c depending on δ and η and the desired polynomial. We have by plug-
ging Eq. (11) into (10), we obtain

E

⎧
⎨

⎩

1

8n
∑

ν,ν′∈{0,1,2,3}n ,ν or ν′ �=0

Tν,ν′ · tr
[
trA[σνUt ρ̃AEU

†
t ]
]
tr
[
trA[σν′Ut ρ̃AEU

†
t ]
]
⎫
⎬

⎭

= 1

4n

n∑

�=1

∑

μ:|μ|=�

tr[trA[σμρ̃AE ]2]

×
∑

ν∈{0,1,2,3}n ,ν �=0

tr[T̃ (σν)
2] (pδ(ν)+Qt (μ, ν)− pδ(ν)

)

≤ 1

4n
∑

μ�=0

tr[trA[σμρ̃AE ]2]
∑

ν �=0

tr[T̃ (σν)
2] 4δn

4n − 1

+
1

4n

n∑

�=1

∑

μ:|μ|=�

tr[trA[σμρ̃AE ]2] 1

(3 − η)�
(n
�

)
poly(n)

max
ν

tr[T̃ (σν)
2]. (12)

Let us start by considering the first term. Recall that
∑

μ tr[trA[σμρ̃AE ]2] = 2n tr[ρ̃2
AE ]

and 1
8n
∑

ν tr[T̃ (σν)
2] = 2−H2(A|B)τ . As a result,

1

4n
∑

μ�=0

tr[trA[σμρ̃AE ]2]
∑

ν �=0

tr[T̃ (σν)
2] 4δn

4n − 1

= 4δn 1

4n
∑

ν �=0

tr[T̃ (σν)
2]2

n tr[ρ̃2
AE ] − tr[ρ̃2

E ]
4n − 1

≤ 4δn 1

8n
∑

ν

tr[T̃ (σν)
2]2

n tr[ρ̃2
AE ] − tr[ρ̃2

E ]
2n − 1

≤ 4δn2−H2(A|B)τ 2−H2(A|E)ρ .

To prove that the second term can be bounded by an inverse polynomial, we use
Lemma C.1 which is proven in the appendix. It states that

∑

ν:|ν|=�

tr
[
trA[σνρ̃AE ]2

]
≤ 12n4 · (3 − η)�

(
n

�

)

(13)

provided tr[ρ̃2
AE ] ≤ 2(1−δ)n . Also, we have for any ν ∈ {0, 1, 2, 3}n ,

tr[T̃ (σν)
2] = tr

[
T (id/2n)−1/2T (σν)T (id/2n)−1/2T (σν)

]
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≤ tr[id√2nσν id
√
2nσν]

= 4n,

using the monotonicity of the relative entropy of order 2; see e.g., [12]. Plugging the
value of η from (13) into the second term of (12), we obtain

1

4n

n∑

�=1

∑

μ:|μ|=�

tr[trA[σμρ̃AE ]2] 1

(3 − η)�
(n
�

)
poly(n)

max
ν

tr[T̃ (σν)
2]

≤ 1

4n
max

ν
tr[T̃ (σν)

2] · 12n5

poly(n)

≤ 1

poly(n)
,

by choosing a large enough c. Note that in the casewhere tr[ρ̃2
AE ] > 2(1−δ)n , the theorem

clearly holds because the upper bound is greater than 2. ��
An important example for the map T is the partial trace map.

Corollary 3.3. Let ρAE be an initial arbitrary mixed state on n qubits and UtρAEU
†
t

be the corresponding state after the application of t random two-qubit gates on the A
system. Then let S be a subset of the qubits {1, . . . , n} of size s.

Thenwe have for any constant δ > 0, there exists a constant c such that t ≥ cn log2 n,
we have:

E
Ut

{∥
∥
∥
∥trASc

[
UtρAEU

†
t

]
− idAS

2s
⊗ ρE

∥
∥
∥
∥
1

}

≤
√

1

poly(n)
+ 4δn · 22s−n · 2−H2(A|E)ρ .

(14)

Proof. It suffices to compute the entropic quantity for T . If T is the erasure map for all
but s qubits, we have 2−H2(A|B)τ = 22s−n . ��

3.1. Depth. We proved in the last section that decoupling can be accomplished using
O(n log2 n) gates. In this section, we study another complexity measure which is closely
related to time: the depth. Gates acting on disjoint qubits are allowed to be executed in
parallel. The depth of a circuit with t gates is at most t but it could be much smaller than
t . In particular, for a random quantum circuit we expect many gates to act on disjoint
qubits so that they can be implemented in a number of time steps that can be much
smaller than t . As mentioned in the preliminaries, to construct the parallelized circuit,
one keeps adding gates to the current level until there is a gate that shares a qubit with
a previously added gate in that level. In this case, a new level is created and the process
continues. In the following proposition, we prove that by parallelizing a random circuit
on n qubits having t gates we obtain with high probability a circuit of depth O( t

n log n).
For the purpose of parallelization, the gates can simply be labelled by the two qubits

the gate acts upon.

Proposition 3.4. Consider a random sequential circuit composed of t gates where t is
a polynomial in n. Then parallelize the circuit as described above. Except with prob-
ability 1

poly(n)
, the resulting circuit has depth at most O

( t
n log n

)
. In other words, in

the model rqc(cn log2 n, c′ log3 n), discarding a circuit only happens with probability
1

poly(n)
provided the constants c and c′ are appropriately chosen. ��
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In order to prove this lemma, we use the following calculation:

Lemma 3.5. Let G1, . . . ,Gk be a sequence of independent and random gates Gi ∈ (n2
)
,

then the probability that G1, . . . ,Gk form a circuit of depth k is at most
( 2
n

)k−1 · k!
Proof. We prove this by induction on k. For k = 2, we may assume G1 = (1, 2), in
which case P {G2 ∩ {1, 2} �= ∅} ≤ 4/n. Now the probability that G1, . . . ,Gk+1 form a
circuit of depth k + 1 can be bounded by

P {G1, . . . ,Gk form a circuit of depth k} · {Gk+1 ∩ (G1 ∪ · ∪ Gk) �= ∅|G1, . . . ,Gk

form a circuit of depth k}.
Now it suffices to see that, conditioned on

[
G1, . . . ,Gk form a circuit of depth k

]
, the

number of nodes occupied by G1, . . . ,Gk is at most k + 1. Thus, using this fact and the
induction hypothesis, we obtain a bound of

(
2

n

)k−1

k! · 2 · k + 1

n
=
(
2

n

)k
(k + 1)! ,

which conclude the proof. ��
Proof of Proposition 3.4. Suppose we apply m gates for some m to be chosen later.

P {G1, . . . ,Gm form a circuit of depth at least d}
= P
{
∃(i1, . . . , id) ∈ [m]d : Gi1 , · · · ,Gid form a circuit of depth d

}

≤
(
m

d

)(
2

n

)d−1

· d!

≤ md ·
(
2

n

)d−1

.

Nowwe can fixm = n/4 and d = c log n+1 for some constant c to be chosen depending
on the desired probability bound, then we have

P {G1, . . . ,Gm form a circuit of depth at least d} ≤ m ·
(
2m

n

)d−1

≤ n−c+1.

This proves that every set of n/4 gates generates a circuit of depth at most c log n + 1
with probability at least 1− 1/n−c+1, and so if we have 4t/n such sets, we get depth at
most 4t/n(c log n + 1) with probability at least 1 − 4t/nc. ��

The next corollary follows directly from Theorem 3.2 and Proposition 3.4.

Corollary 3.6. In the setting of Theorem 3.2 and if Ut is the unitary computed by a
random quantum circuit chosen according to the model rqc(cn log2 n, c′ log3 n), then

E
{∥
∥
∥T (UtρAEU

†
t ) − τB ⊗ ρE

∥
∥
∥
1

}
≤
√

1

poly(n)
+ 4δn · 2−H2(A|B)τ · 2−H2(A|E)ρ . (15)
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Proof. We write depth(Ut ) for the depth of the circuit obtained by parallelizing the
circuit defining Ut . Let t = cn log2 n and d = c′ log3 n. We have

E
rqc(t,d)

{∥
∥
∥T (UtρAEU

†
t ) − τB ⊗ ρE

∥
∥
∥
1

}

= E
rqc(t)

{∥
∥
∥T (UtρAEU

†
t ) − τB ⊗ ρE

∥
∥
∥
1

∣
∣
∣ depth(Ut ) ≤ d

}

≤ 1

P {depth(Ut ) ≤ d} · E
rqc(t)

{∥
∥
∥T (UtρAEU

†
t ) − τB ⊗ ρE

∥
∥
∥
1

}

≤ E
rqc(t)

{∥
∥
∥T (UtρAEU

†
t ) − τB ⊗ ρE

∥
∥
∥
1

}
+

1

poly(n)
.

��

4. Analysis of the Random Walk Over Pauli Operators

This section is devoted to the analysis of the Markov chain Q over strings {0, 1, 2, 3}n
introduced in (2). The property we study is similar to the mixing time but differing in
two ways. First, instead of considering the distance between the distribution Qt (μ, .)

obtained after t steps of the Markov chain and the stationary distribution pQ , we can
replace pQ by any distribution that has the property p ≤ 2δn pQ . In other words, we can
compute the distance to any distribution p that has a small max-entropy relative to pQ ,
i.e., Dmax(p, pQ) ≤ δn. Second, the bound we obtain on the distance depends on the
initial state μ.

Theorem 4.1. Let Q be the Markov chain over Pauli strings defined in (2).
For any constants δ ∈ (0, 1/16), η ∈ (0, 1), there exists a constant c such that for

t ≥ cn log2 n, and all Pauli strings σμ of weight �, and large enough n, there exists a
possible subnormalized distribution pδ on strings {0, 1, 2, 3}n such that for all ν,

pδ(ν) ≤ 16δn

4n − 1

and
∑

ν∈{0,1,2,3}n ,ν �=0

∣
∣Qt (μ, ν) − pδ(ν)

∣
∣ ≤ 1

(3 − η)�
(n
�

)
1

poly(n)
.

We first prove a similar result for a Markov chain which acts only on the weights of
the Pauli strings. More precisely, we define P(�, k) =∑ν:|ν|=k Q(μ, ν) where μ is an
arbitrary string with weight �. Note that this definition is independent of the choice ofμ.
This follows from the fact that Q(π(μ), π(ν)) = Q(μ, ν) for any permutation π ∈ Sn
of the n qubits, and also Q(γ (μ), γ (ν)) = Q(μ, ν), where γ ∈ S×n

3 is a relabeling of
the operators {1, 2, 3}. We have

P(�, k) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 − 2�(3n−2�−1)
5n(n−1) if k = �

2�(�−1)
5n(n−1) if k = � − 1

6�(n−�)
5n(n−1) if k = � + 1

0 otherwise.

(16)
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We refer the reader to [18] for more details on how to derive the parameters of this
Markov chain. In fact, [18] study the mixing time of this Markov chain. Here, we need
to analyze a slightly different property: starting at some point �, what is the probability
that after t steps the random walk ends up in a point k? One can obtain bounds on this
probability using the mixing time but these bounds only give something useful for our
setting if t = �(n2). So we need to improve the analysis of [18] and compute the desired
probability directly.

Theorem 4.2. Let P be the Markov chain transition matrix defined in (16). For any
constants δ ∈ (0, 1/16), η ∈ (0, 1), there exists a constant c such that for t ≥ cn log2 n
and all integers 1 ≤ � ≤ n and 1 ≤ k ≤ n, we have for large enough n

Pt (�, k) ≤ 4δn ·
(n
k

)
3k

4n − 1
+

1

(3 − η)�
(n
�

)
1

poly(n)
.

Proof. It is convenient for the proof to define variables X0, X1, . . . , Xt , . . . for the
Markov chain with transition probabilities P . We write Xt (�) for a chain with X0 = �.
With this notation, Pt (�, k) = P {Xt (�) = k}. The stationary distribution of P is given

by π(k) = 3k(nk)
4n−1 (see [18, Lemma 5.3]) and satisfies by definition

n∑

�=1

π(�)P(�, k) = π(k)

As a result, we have for any t ≥ 1,

1

4n − 1

n∑

�=1

3�

(
n

�

)

P {Xt (�) = k} = 3k
(n
k

)

4n − 1
. (17)

The general strategy of the proof is as follows. First we choose two reference points
r− and r+ with r− ≤ 3n/4 ≤ r+. The states r− and r+ are chosen for two properties: they
should have a significant probability in the stationary distribution of P and moreover
they should be bounded away from 3n/4 so that the probability of reaching r− starting
below can be bounded and similarly for the probability of reaching r+ starting above it.
This divides the state space of the chain into three parts: [1, r−), [r−, r+] and (r+, n].
When � ∈ [r−, r+], it is simple to prove the desired result. Whenever the starting point
of the chain � ∈ [1, r−) or � ∈ (r+, n], we prove that the interval [r−, r+] is reached with
high probability (that depends on �) if the chain is run for sufficiently long. We then
conclude by using the first case. We note that most of the difficulty is in handling the
case � ∈ [1, r−).

We start by picking specifically r− and r+. We choose r− = (3/4 − δ)n and r+ =
(3/4 + δ)n. They satisfy the following properties. The first one is

(
n

r−

)

3r− ≥ 4(1−δ)n and

(
n

r+

)

3r+ ≥ 4(1−δ)n, (18)

for sufficiently large n. To see the second inequality, write

(
n

r+

)

= n(n − 1) · · · (n/4 + 1) · n/4 · · · ((1/4 − δ)n + 1)

(3/4n)! · (3/4n + 1) · · · (3/4 + δ)n
≥
(

n

3n/4

)(
1 − 4δ

3

)δn

.
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The second property is that for all x < r− and y > r+,

P(x, x + 1)

P(x, x − 1)
= 3 · n − x

x − 1
≥ 1 + 2δ and

P(y, y − 1)

P(y, y + 1)
≥ 1 + 2δ. (19)

We now start with the case � ∈ [r−, r+]. For this, we simply use (17). For any t ≥ 1,
any r ∈ [r−, r+] and k ∈ {1, . . . , n},

P {Xt (r) = k} = 4n − 1
(n
r

)
3r

·
(n
r

)
3r

4n − 1
P {Xt (r) = k}

≤ 4n − 1
(n
r

)
3r

· 1

4n − 1

n∑

�=1

3�

(
n

�

)

P {Xt (�) = k}

≤ 4n − 1
(n
r

)
3r

·
(n
k

)
3k

4n − 1

≤ 4δn ·
(n
k

)
3k

4n − 1
. (20)

In the last line, we used the inequalities in (18). This proves the case � ∈ [r−, r+], and
in fact for any t ≥ 1.

We now handle the case � ∈ [1, r−). Introduce Tr−(�) = min{t ≥ 1 : Xt (�) ≥ r−}.
Note that we have for any t

P {Xt (�) = k} ≤ P
{
Tr−(�) < t, Xt (�) = k

}
+ P
{
Tr−(�) ≥ t

}

= P
{
Tr−(�) < t, Xt−T (r−) = k

}
+ P
{
Tr−(�) ≥ t

}

≤ max
1≤s≤t

P {Xs(r) = k} + P
{
Tr−(�) ≥ t

}
. (21)

Using (20), we can bound the first term. The objective of the remainder of the proof is to
bound the probability P

{
Tr− ≥ t

}
when t = cn log2 n. This is done in Proposition 4.3

below and it concludes the case � ∈ [1, r−).
The case � ∈ (r+, n] is analogous, except that we use Lemma 4.6 instead, which has

a similar proof but is significantly simpler. We note that in this case, it is possible to
obtain a better probability bound without the dependence on the starting point �. ��
Proposition 4.3. Let δ ∈ (0, 1/16) and η ∈ (0, 1) be constants and r− satisfying condi-
tion (19). Then for a large enough constant c (depending on δ and η) and large enough
n, we have for all � ≤ r−,

P
{
Tr−(�) > cn log2 n

}
≤ 2−2n +

1

(3 − η)�
(n
�

) · 1

poly(n)
.

Proof. As this proof does not involve r+, we write r instead of r− to make the notation
lighter. To prove this result, we start by defining an accelerated walk {Yi } as in [18] and
the corresponding stopping time S = min{s : Ys ≥ r}. More formally, let N0 = 0 and
Ni+1 = min{k ≥ Ni : Xk �= XNi } and then Yi = XNi . It is not hard to see that {Yi } is
a Markov chain and the transition probabilities are given by the transition probabilities
for {Xk} conditioned on moving.

We also define the waiting time Wi = Ni+1 − Ni − 1 to be the number of steps it
takes the walk to change states. Conditioned on Yi ,Wi has a geometric distribution with
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parameter 2Yi (3n−2Yi−1)
5n(n−1) . As 3n − 2Yi − 1 ≥ n − 1, this distribution is stochastically

dominated by a geometric distribution with parameter 2Yi
5n , which we sometimes use

instead (we are only interested in upper bounds on the waiting times). We say that the
distribution of A is stochastically dominated by the distribution of B if P {A ≥ x} ≤
P {B ≥ x} for all x ∈ R.

Getting back to Tr denoted simply T in the following, notice that T = S +W1 +W2 +
· · · +WS . So we have for all s

P {T > t + s} ≤ P {S > s} + P {S ≤ s,W1 + · · · +WS > t} . (22)

We will choose s later so that both terms are small. We start by bounding the first term,
which can be done using a simple application of a Chernoff-type bound.

Lemma 4.4. If s > n
3δ , we have

P {S > s} ≤ exp

(

− δ2

18
· s
)

.

Proof. For this we just use a concentration bound on the position of a random walk
relative to its expectation. Recall that the probability of moving forward when Yi = r
is 6r(n−r)

6r(n−r)+2r(r+1) . Then, using the property (19) the probability of moving forward is
at most 1/2 + δ/3 for Yi provided Yi ≤ r . Define a random walk Y ′

i with Y ′
0 = 0

and it moves to the right with probability 1/2 + δ/3 and to the left with probability
1/2 − δ/3. For i ≤ S, we can assume that Y ′

i ≤ Yi . In other words, we have S′ ≥ S
where S′ = min{i : Y ′

i ≥ r}. Thus,
P {S > s} ≤ P

{
S′ > s

}

≤ P
{
Y ′
s < r

}

= P
{
Y ′
s − � < 2 · δ/3 · s − (2δ/3 · s + � − r)

}

≤ exp

(

− (2δ/3s + � − r)2

2s

)

where we used the fact that E
{
Y ′
s

} = � + 2δ/3s and a Chernoff-type bound, see for
example [18, Lemma A.4]. ��

We now move to the second step of the proof where we analyze the waiting times
W1 + · · · + WS . Recall this is the total waiting time before the node r = (3/4 − δ)n is
reached.

Lemma 4.5. We have

P
{
S ≤ s,W1 + · · · +WS > cn log2 n

}
≤ 1

(3(1 − 8η))�
(n
�

) · 1

poly(n)

Proof. The techniques we use are similar to the techniques in [18], but we need to
improve the analysis in several places.We try to use notation of [18] as much as possible.

As in the proof of [18, Lemma A.11], we start by defining the good event

H =
n⋂

x=1

[
S∑

k=1

1(Yk ≤ x) ≤ γ x/μ

]

,
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where μ = 2c′δ.1 The parameter γ is going to be chosen later. This event is saying that
states with small labels are not visited too many times. Later in the proof, we show that
the P

{
Hc} is small.

Define the random variable M = min1≤i≤S Yi . We have

P {W1 + · · · +WS > t, S ≤ s,H} =
�∑

m=1

P {M = m, S ≤ s,W1 + · · · +WS > t,H}

=
�∑

m=1

P {M = m}

{S ≤ s,W1 + · · · +WS > t, H|M = m}

≤
�∑

m=1

P {M ≤ m} max
{yi } satisfying M=m and H and S≤s

P {W (y1) + · · · +W (ys) ≥ t} , (23)

where the maximum is taken over all sequences y1, . . . , ys of possible walks and W (y)
is the waiting time at state y.

We bound P {M ≤ m} using LemmaA.1. Recall that the randomwalk we are consid-
ering has transition probabilities that depend on the state we are in. More precisely, the
probabilities of going from state � to state � + 1 is a decreasing function of � for � ≤ r .
This makes it difficult to obtain a useful bound on P {M ≤ m} and so we are going to
consider simplified walks for which P {M ≤ m} can only be greater. Note that at state
r , the probability of moving to r + 1 is p+(r) ≥ 1/2 + δ/3 (see (19)).

Define q
def=
⌈
log(n/η)
log(1+δ)

⌉
. We handle the cases � < q/η+1 and � ≥ q/η+1 separately.

We start with � ≥ q/η + 1.
We consider the following chain: the probabilities of moving forward between � + 1

and � + q are all set to p+(� + q), the value of this probability at state � + q. Moreover,
for all states larger than � + q, we assign an equal probability of moving forward and
backward. This defines a new walk to which we can apply Lemma A.1. Assume for now
that �+q < r . Using the same notation as in LemmaA.1, wewriteα− = p−

1−p− = 3· n−�
�−1 ,

and αq = α+(� + q) = p+(�+q)
1−p+(�+q)

, we obtain

P {M ≤ � − 1} ≤ 1

1 + α−
α
q
q

1+α
q
q+···+αq+1+···+1

= 1

1 + α−
α
q
q

α
q+1
q −1
αq−1 +(r−�−q−1)

.

1 We use this notation to apply [18, Lemma A.5] later. μ corresponds to the probability of going forward
minus the probability of going backward for a simplified walk that moves forward at most as fast as Yk . In our
case, we have μ > 2δ/3 because we stop after reaching state r = (3/4 − δ)n, and the probability of moving
forward at r is at least 1/2 + δ/3.
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We focus on the term involving αq :

α
q
q

α
q+1
q −1
αq−1 + (r − � − q − 1)

= α
q
q (αq − 1)

α
q+1
q − 1 + (αq − 1)(r − � − q − 1)

≥ αq − 1

αq
· 1

1 + (αq − 1) r−�−q−1

α
q+1
q

.

We know that αq ≥ α+(r) ≥ 1 + 2δ using property (19) and as a result the previous
expression is lower bounded by (1 − 1/αq)(1 − η). Continuing, we get

P {M ≤ � − 1} ≤ 1

1 + (1 − η) · α− · (1 − 1
αq

)

= 1

1 + (1 − η)α− − (1 − η)
α−
αq

.

We now bound the quotient α−/αq .

α−
αq

= n − �

� − 1

� + q − 1

n − (� + q)

=
(

1 +
q

� − 1

)(

1 +
q

n − � − q

)

.

We have q
n−�−q ≤ q

n/4−q ≤ η for large enough n. Moreover, by the assumption that
� ≥ q/η + 1, we have

P {M ≤ � − 1} ≤ 1

1 + (1 − η)α− − (1 − η)(1 − η)2

≤ 1

(1 − 8η)α−
.

This means that provided q/η + 1 ≤ � < r − q, we have

P {M ≤ � − 1} ≤ 1

(1 − 8η)
· 1
3

� − 1

n − �
.

Observe that if we have �+q ≥ r , thenwe simply replace in the previous calculation �+q
with r and the previous bound still holds in this case. To obtain a bound on P {M ≤ m}
form < �−1, note that reaching �−2 before r means reaching �−1 before r starting at �
and reaching �−2 before r starting at �−1, and these parts of the walk are independent.
As a result, by induction, we have for m ≥ q/η + 1,

P {M ≤ m} ≤ 1

(1 − 8η)�−m3�−m
· (� − 1)(� − 2) · · ·m
(n − �)(n − � + 1) · · · (n − m − 1)

≤ 1

((1 − 8η)3)�
· �!
n(n − 1) · · · (n − � + 1)

· 3m

�(n − �)
· n(n − 1) · (n − m)

(m − 1)!
≤ 1

(3(1 − 8η))�
(n
�

) · (3n)m . (24)
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Note that whenever m ≤ q/η + 1, we can use the bound

P {M ≤ m} ≤ P {M ≤ q/η + 1} ≤ 1

(3(1 − 8η))�
(n
�

) · (3n)q/η+1.

We now look at the term max{yi } satisfying M=m and H and S≤s P {W (y1) + · · · +W (ys)}
≥ t . We argue that the maximum is achieved when we make the walk visit as many
times as possible the states with smaller labels. First, note that as the waiting times
W (y1), . . . ,W (ys) are independent, P {W (y1) + · · · +W (ys) ≥ t} only depends on the
set of distributions of W (y1), . . . ,W (ys). Recall also that the distribution of W (y) is
stochastically dominated by a geometric distribution with parameter 2y

5n . As we are
upper bounding the waiting times, we can in fact assume for this argument that W (y)
has a geometric distribution with parameter 2y

5n . This means that W (y) is stochastically
dominated by W (y′) if y′ ≤ y. Thus in order to make P {W (y1) + · · · +W (ys) ≥ t} as
large as possible, one should choose y1, . . . , ys as small as possible. As the sequence
y1, . . . , ys needs to satisfy the conditions M = m andH, this means that wemay assume
that statem is visited γm/μ times, and states i > m are visited γ /μ times until we reach
a total of s visited states. To avoid making the notation heavy, we assume that γ /μ is an
integer. So we can write

W (y1) + · · · +W (ys) ≤
γm/μ∑

i=1

Gm,i +
γ /μ∑

i=1

n∑

k=m+1

Gk,i ,

where Gk,i has a geometric distribution with parameter 2k
5n and the random variables

{Gk,i } are independent. We are going to give upper tail bounds on the right hand side by
computing the moment generating function. For any λ ≥ 0, we have, using the moment
generating function of a geometric distribution and the independence of the random
variables:

E

⎧
⎨

⎩
exp

⎛

⎝λ

⎛

⎝
γm/μ∑

i=1

Gm,i +
γ /μ∑

i=1

n∑

k=m+1

Gk,i

⎞

⎠

⎞

⎠

⎫
⎬

⎭

=
(

2m/5n

e−λ − 1 + 2m/5n

)γm/2 n∏

k=m+1

(
2k/5n

e−λ − 1 + 2k/5n

)γ /μ

.

Now take λ so that eλ = 1
1−m/(5n)

. This leads to

E

⎧
⎨

⎩
exp

⎛

⎝λ

⎛

⎝
γm/μ∑

i=1

Gm,i +
γ /μ∑

i=1

n∑

k=m+1

Gk,i

⎞

⎠

⎞

⎠

⎫
⎬

⎭
=
(

2m

2m − m

)γm/μ

·
n∏

k=m+1

(
2k

2k − m

)γ /μ

≤ 2γm/μ

(
n∏

k=m+1

e
m/2

k−m/2

)γ /μ

≤ 2γm/μ
(
em/2·ln n)γ /μ

.

As a result, using Markov’s inequality, we obtain

P

⎧
⎨

⎩

γm/μ∑

i=1

Gm,i +
γ /μ∑

i=1

r∑

k=m+1

Gk,i > t

⎫
⎬

⎭
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= P

⎧
⎨

⎩
exp

⎛

⎝λ

⎛

⎝
γm/μ∑

i=1

Gm,i +
γ /μ∑

i=1

r∑

k=m+1

Gk,i

⎞

⎠

⎞

⎠ > eλt

⎫
⎬

⎭

≤ 2γm/μeγm/(2μ)·ln n · (1 − m/(5n))t

≤ 2γm/μeγm/(2μ)·ln n · e−tm/(5n).

Getting back to Eq. (23), we have using (24):

P {W1 + · · ·WS > t, S ≤ s,H}

≤
�∑

m=1

P {M ≤ m} 2γm/μeγm/(2μ)·ln n · e−tm/(5n)

≤ 1

(1 − 8η)�3�
(n
�

) · (3n)q/η+1
q/η∑

m=1

2γm/μeγm/(2μ)·ln n · e−tm/(5n)

+
1

(1 − 8η)�3�
(n
�

) ·
�∑

m=q/η+1

(3n)m2γm/μeγm/(2μ)·ln n · e−tm/(5n)

≤ 1

(1 − 8η)�3�
(n
�

) · (1 + (3n)q/η) ·
�∑

m=1

(
3n2γ /μeγ /(2μ)·ln n · e−t/(5n)

)m
.

Recall that q = O(log n) and thus if t > cn log2 n with sufficiently large c, this proba-

bility is bounded by O
(

1
((1−8η)3)�(n�)

· 1
poly(n)

)
.

It now remains to bound P
{
Hc, S ≤ s

}
. Fix x ∈ {1, . . . , n}, we have

P

{
S∑

k=1

1(Yk ≤ x) > γ x/μ, S ≤ s

}

≤
s∑

j=1

P

{

Y j = x, [∀i < j,Yi > x] , j < S,

S∑

k=1

1(Yk ≤ x) > γ x/μ

}

≤
s∑

j=1

P

⎧
⎨

⎩
Y j = x, [∀i < j,Yi > x] , j < S,

S j∑

k= j+1

1(Yk ≤ x) ≥ γ x/μ

⎫
⎬

⎭

≤
s∑

j=1

P {M ≤ x} · P

⎧
⎨

⎩

S j∑

k= j+1

1(Yk ≤ x) ≥ γ x/μ|Y j = x, j < S

⎫
⎬

⎭
,

where we defined S j = min{s ≥ j +1 : Ys ≥ r}. To obtain the last inequality, we simply
used the fact that

[
Y j = x, j < S

] ⊆ [M ≤ x]. Moreover, [ j < S] can be determined
by looking at Y1, . . . ,Y j and thus conditioned on

[
Y j = x

]
, Yk for k ≥ j +1 and also S j

are independent of [ j < S]. This means that we can drop [ j < S] from the conditioning.
To bound P {M ≤ x}, we use (24). We can also bound Yk by a simpler random walk

Y ′
k that moves forward with probability 1/2 + δ/3, as we did in the proof of Lemma 4.4.



Decoupling with Random Quantum Circuits 887

Thus, we obtain

P

{
S∑

k=1

1(Yk ≤ x) > γ x/μ, S ≤ s

}

≤ 1

((1 − 8η)3)�
(n
�

)
(
(3n)x + (3n)q/η

) · s

·P
{ ∞∑

k=1

1(Y ′
k ≤ x) ≥ γ x/μ|Y ′

0 = 0

}

≤ 1

((1 − 8η)3)�
(n
�

)
(
(3n)x + (3n)q/η

) · s

·2 exp
(

−μ(γ − 2)x

2

)

,

where we used [18, Lemma A.5]. As a result, by a union bound,

P
{
Hc, S ≤ s

} ≤ 1

((1 − 8η)3)�
(n
�

) · 2s ·
(

n∑

x=1

exp

(

x

(

log(3n) − μ(γ − 2)

2

))

+ 3nq/η
n∑

x=1

exp

(

−μ(γ − 2)x

2

))

≤ 1

((1 − 8η)3)�
(n
�

) · 1

poly(n)
,

where to get the last inequality, we choose γ = c′ log n for large enough c′ and use the
fact that s will be chosen linear in n. Continuing, we reach

P {W1 + . . .WS > t, S ≤ s} ≤ P {W1 + . . .WS > t, S ≤ s,H} + P
{
Hc, S ≤ s

}

≤ 1

((1 − 8η)3)�
(n
�

)
1

poly(n)
.

We proved the desired bound when � ≥ q/η + 1. It remains to deal with the case
� < q/η + 1. We need to bound P {M ≤ � − 1} in a different way. For this we simply
consider a walk that is even simpler than the one considered to obtain the bound in (24):
let the probabilities of moving forward for all states above � be equal to p+(r) which we
know is at least 1/2 + δ/3. Applying Lemma A.1, we obtain

P {M ≤ � − 1} ≤ 1

3δ
· � − 1

n − �
,

and then using the same argument as before

P {M ≤ m} ≤ 1

(3δ)�
(n
�

) · (3δn)m .

Then we apply the exact same argument to obtain a bound

P {W1 + · · ·WS > t, S ≤ s} ≤ 1

(3δ)�
(n
�

)
1

poly(n)
.

Now recall that � < q/η + 1 = O(log n) and thus for large enough c, we can make the
term 1/ poly(n) be small enough to obtain the desired bound. ��
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To complete the proof of Proposition 4.3, we just plug the bounds obtained from
Lemma 4.4 with s > 12n/δ and from Lemma 4.5 into Eq. (22). ��
Lemma 4.6. Let δ ∈ (0, 1/16) and η ∈ (0, 1) be constants and r+ satisfying condition
(19). Then for a large enough constant c (depending on δ and η) and large enough n,
we have for any � ≥ r+

P
{
Tr+(�) > cn log2 n

}
≤ 2−2n .

Proof. The proof is analogous to Proposition 4.3, except that it is much easier to bound
the waiting time. In fact, when x > r+ we have P(x, x) ≤ 4/5. This means that
the waiting times W1, . . . ,WS can be assumed to have a geometric distribution with
parameter 4/5 and then proving a version of Lemma 4.5 becomes a simple application
of a Chernoff-type bound, and in fact one can obtain a better bound that is independent
of �. ��
Proof of Theorem 4.1. Theorem 4.2 tells us that for |μ| = � and all k ∈ {1, . . . , n},

∑

|ν|=k

Qt (μ, ν) ≤ 4δn

(n
k

)
3k

4n − 1
+

1

(3 − η)�
(n
�

)
1

poly(n)
. (25)

Recall that there are exactly
(n
k

)
3k distinct strings ν ∈ {0, 1, 2, 3}n such that |ν| = k.

The main challenge is to show that all these strings ν have basically the same value of
Qt (μ, ν). In order to prove this, we will write the chain Q as a mixture of a part R̃
that can only mix the sites of the string without increasing its weight and a part Q̃ that
can change the weight of the string (precise definitions given below). We will then use
invariance properties of these chains with respect to permuting the qubits and relabeling
of nonzero elements {1, 2, 3} to get the desired conclusion.

More precisely, Let Zt (μ) ∈ {0, 1, 2, 3}n denote the state of the chain defined by Q
at step t when started in the state μ. From inequality (25), we can find an event EP (in
the notation of the proof of Theorem 4.2, EP = [Tr− < t

]
, see Eq. (21)) such that

P
{
Ec
P

} ≤ 1

(3 − η)�
(n
�

)
poly(n)

and P {|Zt (μ)| = k,EP } ≤ 4δn3k
(n
k

)

4n − 1
,

where Ec denotes the complement of the event E. This gives a natural candidate for the
desired pδ , namely pδ(ν) = P {Zt (μ) = ν,EP }. The distance condition on pδ is clearly
satisfied:

∑

ν∈{0,1,2,3}n−{0}
P {Zt (μ) = ν} − P {Zt (μ) = ν,EP } = P

{
Ec
P

} ≤ 1

(3 − η)�
(n
�

)
poly(n)

.

The objective of the remainder of the proof is to show that we have pδ(ν) ≤ 42δn
4n−1 .

Define Qi j to be the transition matrix of the Markov chain conditioned on having
the gate act on qubits i, j . This chain only affects the Pauli operators at position i and
j . More precisely, Qi j (μ, ν) = 0 whenever μi ′ �= νi ′ for some i ′ /∈ {i, j}. More-
over, Qi j (μ, ν) = 1 if μi = μ j = 0 and νi = ν j = 0 and Qi j (μ, ν) = 1/15 if
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μiμ j �= 00 and νiν j �= 00, and all other entries of Qi j are zero. Thus, Q(μ, ν) =
1

n(n−1)

∑
i �= j Qi j (μ, ν). We now define

Ri j (μ, ν) =

⎧
⎪⎨

⎪⎩

1 if |μiμ j | = |νiν j | = 0
1/3 if |μiμ j | = |νiν j | = 1, μi = νi = 0
1/3 if |μiμ j | = |νiν j | = 1, μ j = ν j = 0
1/9 if |μiμ j | = |νiν j | = 2.

and R̃i j = 1
2 Ri j + 1

2�i j Ri j where �i j simply swaps the operators at position i and j .
Also define

Q̃i j (μ, ν) =

⎧
⎪⎨

⎪⎩

1 if |μiμ j | = |νiν j | = 0
1/9 if |μiμ j | = 1 and |νiν j | = 2
2/3 · 1/6 if |μiμ j | = 2 and |νiν j | = 1
1/3 · 1/9 if |μiμ j | = 2 and |νiν j | = 2.

It is simple to see that Qi j = 2
5 R̃i j + 3

5 Q̃i j . We can then define R̃ = 1
n(n−1)

∑
i �= j R̃i j

and Q̃ = 1
n(n−1)

∑
i �= j Q̃i j so that

Q = 2

5
R̃ +

3

5
Q̃.

Note that R̃ does not change the weight of any strings, but only performs swaps and
locally randomizes 1, 2 and 3. An important observation that will allow us to study
R̃ and Q̃ independently is that R̃ Q̃ = Q̃ R̃. In order to see this, observe first that
R̃i j Q̃i j = Q̃i j = Q̃i j R̃i j . Also R̃i j and Q̃i ′ j ′ clearly commute if {i, j} ∩ {i ′, j ′} = ∅.
Now for j �= j ′, we have Ri j Q̃i j ′ = Q̃i j ′ Ri j . However, �i j Ri j does not commute with
Q̃i j ′ . But we can still write �i j Ri j Q̃i j ′ = Ri j�i j Q̃i j ′ = Ri j Q̃ j j ′�i j = Q̃ j j ′�i j Ri j .
As a result,

R̃ Q̃ = 1

n2(n − 1)2
∑

i �= j,i ′ �= j ′
R̃i j Q̃i ′ j ′

= 1

n2(n − 1)2

⎛

⎝
∑

i �= j,i ′ �= j ′,|{i, j}∩{i ′, j ′}|∈{0,2}
Q̃i ′ j ′ R̃i j + 4

∑

i �= j,i ′ �= j ′, j �= j ′

1

2
Ri j Q̃i j ′

+
1

2
�i j Ri j Q̃i j ′

⎞

⎠

= 1

n2(n − 1)2

⎛

⎝
∑

i �= j,i ′ �= j ′,|{i, j}∩{i ′, j ′}|∈{0,2}
Q̃i j R̃i ′ j ′ + 4

∑

i �= j,i �= j ′, j �= j ′

1

2
Q̃i j ′ Ri j

+
1

2
Q̃ j j ′�i j Ri j

⎞

⎠

= Q̃ R̃.
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The factor 4 in the second line is to take into account the four possibilities i = i ′, i = j ′,
j = i ′ and j = j ′. As a result, for any t ≥ 1, we can write Qt as

Qt =
∑

t1+t2=t

(
3

5

)t1 (2

5

)t2 ( t

t1

)

R̃t2 Q̃t1 . (26)

Using Eq. (26), we see that Zt (μ) can be generated as follows. Choose T1 according to
a binomial distribution with parameters t and 3/5 and run the chain Q̃ on μ for T1 steps.
Let Zw(μ) ∈ {0, 1, 2, 3}n denote the state obtained at this time. Then, in the second
phase, run the chain R̃ for t − T1 steps obtaining the state Zt (μ). Note that we have
|Zw(μ)| = |Zt (μ)|.

We start with the case k ≤ δ0n for some δ0 to be chosen later. Using (33) and (36),
we have

(n
k

) ≤ 2nh(k/n) ≤ 22
√

δ0n and thus

P {Zt (μ) = ν,EP } ≤ P {|Zt (μ)| = |ν|,EP } ≤ 4δn3k
(n
k

)

4n − 1

≤ 4δn3δ0n22
√

δ0n

4n − 1
.

By choosing δ0 appropriately small, we obtain the desired result.
Now we assume that δ0 < k < (1 − δ0)n. We deal with the case k ≥ (1 − δ0)n at

the end of the proof. Note first that we have

∑

|ν|=k

P {Zt (μ) = ν,EP } ≤ 4δn3k
(n
k

)

4n − 1
.

Our objective is to show that this total probability is basically evenly spread among
all the ν’s of weight k. For this, we condition on the value of Zw(μ).

P {Zt (μ)=ν,EP } =
∑

|νw |=k

P
{
Zw(μ)=νw,EP

} · P
{
Zt (μ) = ν|Zw(μ)=νw,EP

}
.

(27)

Note that the eventEP only depends on the set ofweights visited by the chain. As a result,
by the Markov property for the second phase, the random variable Zt (μ) is indepen-
dent of EP conditioned on Zw(μ). In other words, P {Zt (μ) = ν|Zw(μ) = νw,EP } =
P {Zt (μ) = ν|Zw(μ) = νw}. In order to evaluate this term, we study the Markov chain
for the second phase which is governed by the matrix R̃.

More precisely, we study the evolution of the support of Zs(μ) for s ≥ T1 relative
to the support of Zw(μ). Define Is = |supp(Zs(μ)) ∩ supp(Zw(μ))| for s ≥ T1. Recall
that we have |Zs(μ)| = |Zw(μ)| = k and thus the expected size for supp(Zs(μ)) ∩
supp(Zw(μ)) if supp(Zs(μ)) were completely random is k2/n.

It is simple to compute the transition probabilities of the chain {Is}s :

P {Is+1 = Is + 1} = (k − Is)2

n(n − 1)

P {Is+1 = Is − 1} = Is(n − 2k + Is)

n(n − 1)
P {Is+1 = Is} = 1 − P {Is+1 = Is + 1} − P {Is+1 = Is − 1} .
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Define pI (k′) = ( k
k′)(

n−k
k−k′)

(nk)
for k′ ∈ {0, . . . , k}. Then we have for 0 ≤ k′ ≤ k − 1,

pI (k
′) · P

{
Is+1 = k′ + 1|Is = k′} =

( k
k′
)(n−k

k−k′
)

(n
k

) · (k − k′)2

n(n − 1)

=
( k
k′+1
) k′+1
k−k′ · ( n−k

k−k′−1

) n−2k+k′+1
k−k′

(n
k

) · (k − k′)2

n(n − 1)

=
( k
k′+1
)( n−k

k−k′−1

)

(n
k

) · (k′ + 1)(n − 2k + k′ + 1)

n(n − 1)

= pI (k
′ + 1) · P

{
Is+1 = k′|Is = k′ + 1

}
.

Thus, the distribution pI satisfies the detailed balance equations for the Markov chain
{Is}s and pI is therefore the stationary distribution for this chain.

This allows us to bound the probability of reaching the state k′ when starting in a
state r ′, as was done for the chain {Xt } in (20). This bound gets closer to the stationary
probability pI (k′) as r ′ gets closer to k2

n . More precisely, if Is(r ′) denotes the size of the
intersection of the supports at step s given that the starting state has an intersection size
of r ′, we have

P
{
Is(r

′) = k′} ≤
(n
k

)

(k
r ′
)(n−k

k−r ′
) ·
( k
k′
)(n−k

k−k′
)

(n
k

) .

We introduce the “good” event that for some s ∈ [T1, t], the walk Is gets close to the state
k2/n: EI =

[
∃s ∈ [T1, t] : k2

n − δ2n ≤ Is ≤ k2
n + δ2n

]
. Note that if |r ′ − k2/n| ≤ δ2n,

then using (33) and
(
k

r ′

)(
n − k

k − r ′

)

≥ 1

n2
2k·h( r

′
k )+(n−k)·h( k−r ′

n−k )

≥ 1

n2
2
n·h( kn )−nh(

δ1
δ0

)

≥ 2
−nh(

δ1
δ0

)

n2

(
n

k

)

.

For the second line, we used inequality (35) which implies that h( r
′
k ) ≥ h( kn )−h( δ2n

k ) ≥
h( kn )−h( δ2

δ0
), and similarly h( k−r ′

n−k ) ≥ h( kn )−h( δ2n
n−k ) ≥ h( kn )−h( δ2

δ0
). This means that

we have

P
{
Is(r

′) = k′} ≤ n22
nh(

δ2
δ0

) ·
( k
k′
)(n−k

k−k′
)

(n
k

) (28)

whenever |r ′ − k2/n| ≤ δ2n. Getting back to Eq. (27), we can write

P
{
Zt (μ) = ν|Zw(μ) = νw

} = P
{
Ec
I

}
+ P
{
Zt (μ) = ν,EI |Zw(μ) = νw

}
.

We start by bounding P
{
Ec
I

}
. For this, observe that for P {Is+1 = Is + 1} − P {Is+1 =}

Is − 1 = k2−Isn
n(n−1) . This means that if Is ≥ k2

n + δ2n, there is a δ2 negative drift,
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and similarly there is a constant positive drift if Is ≤ k2
n − δ2n. Using standard

methods, one can conclude that P
{
Ec
I |t − T1 ≥ n log n

} ≤ 2−10n . In addition for
large enough t , P {t − T1 ≥ n log n} ≥ 1 − 2−10n .2 Then one can directly conclude
P
{
Ec
I

} ≤ P {t − T1 < n log n} + P
{
Ec
I |t − T1 ≥ n log n

} ≤ 2 · 2−10n .
We can write

∑

|ν′|=k:|supp(ν′)∩supp(νw)|=k′
P
{
Zt (μ) = ν′,EI |Zw(μ) = νw

}

≤ max
|r ′−k2/n|≤δ2n

max
s

P
{
Is(r

′) = k′} (29)

≤ n22
nh(

δ2
δ0

) ·
( k
k′
)(n−k

k−k′
)

(n
k

) . (30)

Now it remains to say that many of the terms in this sum are actually the same. For
this, we use invariance properties of R̃.

Under all permutations π ∈ Sn of {1, . . . , n}, and all functions γ ∈ (S3)
×n that

permute the Pauli operators {1, 2, 3} on each qubit, we have

R̃((π ◦ γ )(μ), (π ◦ γ )(ν)) = R̃(μ, ν). (31)

It follows that R̃(μ, (π0 ◦ γ0)(ν)) = R̃((π0 ◦ γ0)(μ), (π0 ◦ γ0)(ν)) = R̃(μ, ν) for
any π0 ∈ Sn and γ0 ∈ (S3)

n such that π0 ◦ γ0(μ) = μ, e.g., if π0 and γ0 act outside
the support of μ.

As a result, we have that P {Zt (μ) = ν|Zw(μ) = νw} = P
{
Zt (μ) = ν′|Zw(μ)

}

= νw if ν′ can be obtained from ν by a permutation and relabeling of the Pauli operators
that act outside the support of νw . If |supp(ν)∩supp(νw)| = k′, then there are 3k−k′(n−k

k−k′
)

distinct ν′ that can be obtained in this way.
Invariance of the transition probabilities under maps that act on the support of νw

is slightly more complicated. For any permutation π of the support of νw, and any
relabeling γπ that satisfies γπ(ν) = π−1(ν), π ◦ γπ keeps νw unchanged. Note that
for any π there is at least one such γπ . This means that also ν′ = π ◦ γπ(ν) obtained
in this way satisfy P

{
Zt (μ) = ν′|Zw(μ) = νw

} = P {Zt (μ) = ν|Zw(μ) = νw}. By
combining with invariants outside the support of νw, we obtain a total of 3k−k′(n−k

k−k′
)·( kk′
)

distinct ν′ for which P
{
Zt (μ) = ν′|Zw(μ) = νw

} = P {Zt (μ) = ν|Zw(μ) = νw}.
The total number of ν′ such that |ν′| = k and |supp(ν′)∩ supp(νw)| = k′ is 3k

(n−k
k−k′
) ·

( k
k′
)
, so our objective is to prove that there are roughly 3k

′
additional relabelings that keep

the transition probability invariant. In particular, we want to show that relabelings acting
on the support of νw keep this probability unchanged. For thiswe argue as inAppendixB,
that with high probability, most of the sites are acted upon at least once in the second
phase. More precisely introduce the event EA that between times T1 and t , a (1 − δ1)

fraction of the sites {1, . . . , n} are acted upon in at least one step. First, let us see that this
event happens with high probability. In fact, by applying a union bound on all the subsets
of size δ1n, we directly get that for sufficiently large n,P

{
Ec
A|t − T1 ≥ n log n

} ≤ 2−10n

and thus P
{
Ec
A

} ≤ 2 · 2−10n .

2 Note that having T1 ≥ c′n for some large enough constant c′ depending on δ would be good enough; we
choose n log n simply to avoid introducing additional constants.
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As argued in Appendix B, we can condition on the set of all sites that are acted upon
in some step between T1 and t . Then any string that is obtained from ν by applying a
relabeling γ that acts on these sites has the same probability as ν. If this set of sites has
size at least (1− δ1)n, i.e., the event EA holds, there are at least k′ − δ1n such sites that
are in supp(ν)∩ supp(νw). This means that under the event EA, there are at least 3k

′−δ1n

strings ν′ obtained from ν by applying a relabeling on some sites of supp(ν)∩supp(νw).
As a result, using (30),

P
{
Zt (μ) = ν|Zw(μ) = νw

}

≤ 1

3k′−δ1n3k−k′(n−k
k−k′
) · ( kk′

) ·
∑

|ν′|=k:|supp(ν′)∩supp(νw)|=k′

P
{
Zt (μ) = ν′,EA|Zw(μ) = νw

}
+ P
{
Ec
A

}

≤ n22
nh(

δ2
δ0

)
3δ1n · 1

3k
(n
k

) + 2 · 2−10n .

Going back to (27), we obtain

P {Zt (μ) = ν,EP } ≤ 2n22
nh(

δ2
δ0

)
3δ1n

3k
(n
k

)
∑

|νw |=k

P
{
Zw = νw,EP

}

= 2n22
nh(

δ2
δ0

)
3δ1n

3k
(n
k

) P {|Zt (μ)| = k,EP }

≤ 2n22
nh(

δ2
δ0

)
3δ1n · 4δn

4n − 1

≤ 16δn

4n − 1
,

for large enough n and where in the last step we choose δ1 > 0 and δ2 > 0 small enough
constants.

Now it only remains to handle the case k ≥ (1 − δ0)n. In this case, the size of the
intersection k′ = |supp(ν) ∩ supp(νw)| ≥ 2k − n. We then observe that on the event
EA, we can obtain at least 3k

′−δ1n distinct ν′ such that P
{
Zt (μ) = ν′|Zw(μ) = νw

} =
P {Zt (μ) = ν|Zw(μ) = νw}. As a result

P
{
Zt (μ) = ν|Zw(μ) = νw

}

≤ 1

3k′−δ1n

∑

|ν′|=k:|supp(ν′)∩supp(νw)|=k′
P
{
Zt (μ) = ν′|Zw(μ) = νw

}

≤ 1

32k−n−δ1n

∑

|ν′|=k

P
{
Zt (μ) = ν′|Zw(μ) = νw

}

≤ 1

3k−δ0n−δ1n

4δn3k
(n
k

)

4n − 1

≤ 3(δ1+δ0)n2h(δ0)n4δn

4n − 1
.

For small enough δ0 and δ1, this leads to the desired result. ��
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5. Conclusion

We proved that decoupling is achieved by typical quantum circuits with an almost linear
number of gates. This implies that information processing tasks that can be achieved via
decoupling can be implemented with most circuits of almost linear size and polyloga-
rithmic depth. For the model of random quantum circuits that we consider here, these
bounds are close to tight; see Appendix E. We leave for future work the question of
whether other circuit models can be more efficient at decoupling.

Our result also shows that a class of random time-dependent Hamiltonians self-
thermalize in a time polylogarithmic in system size. It is an interesting question if a
similar result applies to the decoupling time for broader classes of two-body Hamilto-
nians on the complete graph, and whether decoupling can occur at a time scale close to
O(n1/d) for interactions on d-dimensional lattices.
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A. A Generalisation of the Gambler’s Ruin Lemma

Consider a random walk on a line indexed from −1 to a. At positions i > 0, the proba-
bility of moving forward is p+(i) (depending on i) and for points i ≤ 0, the probability
of moving forward is p−. The following lemma gives a bound on the probability of
hitting the node −1 before hitting a when starting at position 0. In our setting, we are
interested in the case where p− and p+ are (significantly) larger than 1/2 so that the
probability of hitting −1 before a is small.

Lemma A.1. Assume p+(i), p− > 1/2. Then the probability of hitting −1 before a is
exactly

1

1 + α− ·
∏a−1

j=1 α+( j)

1+
∑a−1

i=1
∏a−1

j=i α+( j)

,

where α+(i) = p+(i)
1−p+(i)

and α− = p−
1−p− . In particular, if α+(i) = α+ for all i , this

probability becomes

1

1 + α− · αa
+−αa−1

+
αa
+−1

≤ 1

1 + α− · (1 − 1/α+)
.

Proof. Let Pi be the probability of first reaching −1 when starting at position i . We
can write for any for i ∈ [1, a − 1], Pi = p+(i)Pi+1 + (1 − p+(i))Pi−1, which can be
re-written as

p+(i)

1 − p+(i)
(Pi − Pi+1) = (Pi−1 − Pi ) .
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We now use the boundary condition at node a: Pa = 0. Thus, (Pa−2 − Pa−1) =
p+(a−1)

1−p+(a−1) Pa−1. Moreover, we see by induction that for any i ≥ 1, Pi−1 − Pi =
(∏a−1

j=i
p+( j)

1−p+( j)

)
Pa−1. We can now write a telescoping sum

P0 − Pa−1 =
a−1∑

i=1

Pi−1 − Pi =
a−1∑

i=1

a−1∏

j=i

α+( j) · Pa−1.

As a result,

P0 = Pa−1

⎛

⎝1 +
a−1∑

i=1

a−1∏

j=i

α+( j).

⎞

⎠ .

We can then write P−1 − P0 = p−
1−p− (P0 − P1) = Pa−1 ·∏a−1

j=1 α+( j) · p−
1−p− .

Now, we use our second boundary condition P−1 = 1. We have

1 = P−1 = P0 + Pa−1 · α−
a−1∏

j=1

α+( j)

= P0

(

1 + α−

∏a−1
j=1 α+( j)

∑a−1
i=1
∏a−1

j=i α+( j)

)

,

which leads to the desired result. ��

B. Sequential Random Quantum Circuits are Approximate 1-Designs

The objective of this section is to show that we have for t > cn log n,

E
Ut

{
tr[T̃ (UtρAEU

†
t )τ̃B ⊗ ρ̃E ]

}
≥
(

1 − 1

poly(n)

)

tr[τ̃ 2B] tr[ρ̃2
E ]. (32)

Let us generate the circuitUt byfirst choosing thepair of qubits S = {(i1, j1), . . . , (it , jt )}
on which each of the t gates act and then choosing the two-qubit unitaries V1, . . . , Vt
that are applied in each time step. We then write Ut = Vt (it , jt ) · · · V1(i1, j1). Let G be
the event that {i1, j1, i2, j2, . . . , it , jt } = [n]. It then follows that if we fix such an S and
take the expectation over the choice of V1, . . . , Vt , we have for any S that satisfies G,

E
V1,...,Vt

{
UtσμU

†
t

}
= 0,

for all μ �= 0. As a result we have

E
V1,...,Vt

{
tr[T̃ (UtρAEU

†
t )τ̃B ⊗ ρ̃E ]

}
= tr

[(

T̃
(
id

2n

)

⊗ ρ̃E

)

τ̃B ⊗ ρ̃E

]

= tr[τ̃ 2B] tr[ρ̃2
E ],

for any fixed S that satisfies G.
Now it only remains to bound the probability of the event Gc, which is the complement
of G. The probability that qubit 1 is not affected by any gate is (1 − 2/n)t . Then, by a
union bound, we have P

{
Gc} ≤ n(1 − 2/n)t ≤ ne2t/n ≤ 1

poly(n)
.
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C. Bounding the Total Mass of Coefficients at a Certain Weight

Lemma C.1. Let ρAE be such that H2(A|E)ρ ≥ −(1 − ε)n with ε > 0, i.e.,

tr[ρ̃2
AE ] ≤ 2(1−ε)n,

where ρ̃AE = ρ
−1/4
E ρAEρ

−1/4
E . Then, there exists η > 0 (depending only on ε) such that

for all �,

∑

ν:|ν|=�

tr
[
trA[σνρ̃AE ]2

]
≤ 12n4 · (3 − η)�

(
n

�

)

Proof. Fix m = �4�/3� and apply Theorem C.2, we obtain

E|S|=m

{
tr[ρ̃2

AS E ]
}

≤ (n2 + 1) · 2(1−δ)m .

But we know that
∑

S:|S|=m

tr[ρ̃2
AS E ] =

∑

S:|S|=m

1

2m
∑

ν∈{0,1,2,3}S
tr[trA[σνρ̃AE ]2]

≥ 1

2m
∑

ν∈{0,1,2,3}n :|ν|=�

(
n − �

m − �

)

tr[trA[σνρ̃AE ]2],

by simply forgetting the terms tr[trA[σνρ̃AE ]2] for which |ν| �= �. Note that
(n−�
m−�

)
is the

number of sets S of size m in which the support of ν is included. As a result, we have

∑

ν:|ν|=�

tr[trA[σνρ̃AE ]2] ≤ 2m
(n−�
m−�

) ·
(
n

m

)

(n2 + 1)2(1−δ)m

= (n2 + 1)

(
n

�

)
4m
(m

�

)2−δm .

To conclude, we note that 3�
(m

�

) ≥ 3� 2mh(3/4)

m(m+1) ≥ 33/4m−12mh(3/4)

n(n+1) , where h is the binary
entropy function. We conclude that

∑

ν:|ν|=�

tr[trA[σνρ̃AE ]2] = 3(n2 + 1)3n(n + 1)

(
n

�

)

3�2−δm

≤ 12n4
(
n

�

)

(3 − η)�

for an appropriate choice of constant η > 0. ��
Theorem C.2 (Fully quantumentropy sampling [12]).LetρAE be such thatH2(A|E)ρ ≥
−(1 − ε)n with ε > 0, i.e.,

tr[ρ̃2
AE ] ≤ 2(1−ε)n,

where ρ̃AE = ρ
−1/4
E ρAEρ

−1/4
E . Then, there exists δ > 0 (depending only on ε) such that

for all m, when taking the average over all subsets S of size m,

E|S|=m

{
tr[ρ̃2

AS E ]
}

≤ (n2 + 1) · 2(1−δ)m .
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D. Properties of Binomials

We use h to denote the binary entropy function h(α) = −α log(α)− (1−α) log(1−α).
We use the following simple estimates for binomial coefficients (see [29, Lemma 9.2]).
Let α ∈ [0, 1] such that αn is an integer. Then

αn∑

k=0

(
n

k

)

≤ 2nh(α), (33)

and
2nh(α)

n + 1
≤
(
n

αn

)

. (34)

We also use
|h(α + δ) − h(α)| ≤ h(δ), (35)

for allα, δ ≥ 0withα+δ ≤ 1. To prove this, we observe that f : α �→ h(α+δ)−h(α) is a
decreasing function ofα ∈ [0, 1−δ] and thus |h(α+δ)−h(α)| ≤ max( f (0), f (1−δ)) =
h(δ). Moreover,

h(α) ≤ 2
√

α(1 − α). (36)

E. Lower Bounds on Circuit Depth for Approximate Decoupling

We show that random quantum circuits require at least �(n log n) gates in order to
achieve approximate decoupling. This means that the depth of the circuit would be at
least�(log n). For thiswe consider a simple settingwhere the initial stateρA = |0〉〈0|⊗n

A .
In this case, Theorem3.2 shows thatwhen t > Cn log2 n for sufficiently largeC , the state
Ut |0〉〈0|⊗n

A U †
t obtained after applying t random gates would be such that the marginal on

AS is close to uniform provided |S| ≤ (1− δ)n/2. In contrast, the following proposition
shows that this is not the case if the number of gates applied is less than cn log n for a
sufficiently small constant c.

Proposition E.1. Let S be a subset of qubits of size n/4. There exists a constant c such
that for any n ≥ 4 and t ≤ cn log n

E
Ut

{∥
∥
∥
∥trAc

S
[Ut |0〉〈0|nU †

t ] − idAS

2|S|

∥
∥
∥
∥
1

}

≥ 1

10
. (37)

Proof. For 1 ≤ i ≤ n, let Ni be the random variable representing the number of gates
in the circuit Ut that act on qubit i . We have for all i ,

P {Ni = 0} =
((n

2

)− (n − 1)
(n
2

)

)t

=
(

1 − 2

n

)t
.

We would like to show a lower bound on the probability that there is an i ∈ S such that
Ni = 0. For that, define the random variable Z =∑i∈S 1Ni=0 that counts the number
of qubits i ∈ S for which Ni = 0. We use the second moment method to find a lower
bound

P {Z > 0} ≥ E {Z}2
E
{
Z2
} .
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The numerator is easily computed

E {Z}2 = |S|2
(

1 − 2

n

)2t
= |S|2

(

1 − 2

n

)(n/2−1)4c log n (

1 − 2

n

)4c log n
(38)

≥ |S|2
2

exp (−4c log n) , (39)

using the fact that for x ≥ 2, (1 − 1
x )x−1 ≥ e−1 and that c is chosen small enough.

In order to compute the second moment of Z , we compute the joint probabilities for
i �= j ,

P
{
Ni = 0, N j = 0

} =
((n

2

)− (n − 1 + n − 2)
(n
2

)

)t

=
(

1 − 4n − 6

n(n − 1)

)t
.

As a result, using t ≤ cn log n,

E
{
Z2
}

= E {Z} + |S|(|S| − 1)

(

1 − 4n − 6

n(n − 1)

)t

≤ |S| exp
(

−4t

n

)

+ |S|(|S| − 1) exp

(

− 4n − 6

(n − 1)
c log n

)

.

For sufficiently small c > 0, using the fact that |S| is linear in n, the first term is upper
bounded by the second term, which implies that

E
{
Z2
}

≤ 2|S|(|S| − 1) exp

(

− 4n − 6

(n − 1)
c log n

)

We can now give a lower bound on the probability that one of the qubits in S did not
have any gate applied to it

P {Z > 0} ≥ |S|
4(|S| − 1)

exp

(

−4c log n +
4n − 6

(n − 1)
c log n

)

= 1

4
exp

(−2c log n

n − 1

)

≥ 1

10
, (40)

provided c is chosen small enough.
When the event [Z > 0] happens, then the state of one of the qubits remains |0〉〈0| and
so we can lower bound the trace distance as

∥
∥
∥
∥trAc

S
[Ut |0〉〈0|nU †

t ] − idAS

2|S|

∥
∥
∥
∥
1

≥
∥
∥
∥
∥|0〉〈0| − idA1

2

∥
∥
∥
∥
1

= 1.

Combining this with (40), we obtain the desired result. ��
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