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Abstract: We prove uniqueness in the inverse conductivity problem for uniformly el-
liptic conductivities in W*7(€2), where 2 C R" is Lipschitz, 3 < n < 6, and s and p
are such that W52 (Q) ¢ W*(Q). In particular, we obtain uniqueness for conductiv-
ities in W' () (n = 3, 4). This improves on the result of the author and Tataru, who
assumed that the conductivity is Lipschitz.

1. Introduction

Let @ C R" be a bounded domain with Lipschitz boundary. To a positive real-valued
function y on Q with 0 < ¢ < y < ¢! we associate an elliptic operator L, in
divergence form:

Lyu :=div(y Vu).
Given f € H'/?>(3Q), there exists a unique solution u 7 to the Dirichlet problem
Lyuy=0 inQ
uplyg =1,
and we define the Dirichlet-to-Neumann map A, : H'/2(3Q) — H~'/2(3Q) formally
by
dus
Ay(f) =y 3 )
v laq
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where 9/, is the outward normal derivative at the boundary. By identifying H'/2(32)
with the quotient H L) / HO1 (£2), we can interpret this definition in a weak sense as
follows: if v € H' () satisfies V]yq = g, then

(Ay () 8) 1=/QVVMf~V_vdx,

where the notation (-, -) indicates the pairing between H “12(3Q) and H'/2(8Q). Our
main theorem is that the map y — A, is injective for certain y:

Theorem 1.1. The map y — A, is injective for y € WP (Q2), where

[ n=234
CP=1a+a-0d -2), L) n=56
and 6 € [0, 1).

This problem was introduced by Calderén, who proved uniqueness in [Cal80] for
the linearized problem. The basic approach to this problem in this paper is the method
introduced by Sylvester and Uhlmann [SU87], where they proved uniqueness for n >
3and y € C 2 based on ideas in [Cal80]. It is of interest to determine how much
of this regularity condition can be relaxed. Uniqueness is known to fail (at least in
the anistropic problem) for conductivities that are sufficiently singular, as was shown
in [GLUO3,KSVWO08].

For n > 3, the regularity assumption in [SU87] was relaxed to y € C3/** by
Brown [Bro96], to C3/2 by [PPUO3], to W3/2.2n+ i [Bro03], and to C! conductivities or
Lipschitz conductivities close to the identity in [HT13]. Recently, the smallness condition
for Lipschitz conductivities was removed in [CR14]. In [NS14], uniqueness was shown
in three dimensions for conductivities in W3/2+2,

In two dimensions, the low-regularity theory is fairly well-understood. There are
essentially sharp results, even for anisotropic conductivities. In particular, uniqueness
holds for y in L°°, which is invariant under the scaling associated to the Dirichlet
problem. The methods in the plane are somewhat different, and we refer the reader
to [ALP11] and references therein.

There are some reasons to doubt that uniqueness holds in higher dimensions for con-
ductivities with less than one derivative. Calderén’s problem seems to be closely related
to unique continuation; in particular, most of the progress in both of these problems
involves Carleman estimates. Unique continuation in the plane holds for elliptic oper-
ators in divergence form when the coefficients are merely bounded [Ale92]; in higher
dimensions, however, this is only known for Lipschitz coefficients [AKS62]. Further-
more, there are counterexamples to unique continuation for elliptic equations where the
coefficients are C* with any o < 1 [P1i63,Mil73,Man98§].

The conductivity equation div(y Vu) = 0 is equivalent to

(A+A-Vyu=0,

where A = Vlogy. Unique continuation holds for this equation as long as A €
L" [Wo0l92,KTO1]. Brown [Bro0O3] conjectured uniqueness in the inverse conductiv-
ity problem for y € W', We verify that this conjecture holds in dimensions three and
four.

One can also study the closely-related problem of determining a Schrédinger potential
q from the Cauchy data associated with the operator —A + ¢. In this setting Lavine and
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Nachman used the L? Carleman estimates of [KRS87] to show that the Cauchy data
determine g € L2 (see also [Cha90,DSFKSU09,NS14] for similar results). These L”
Carleman estimates are the starting point for our analysis.

It was shown in [SU87] that the inverse conductivity problem reduces to the inverse
problem for —A + ¢, where g = y~1/2Ay /2. One step in this reduction is to show that
the map A, determines y and its normal derivatives at the boundary. In [KV84], Kohn
and Vogelius established that for smooth conductivities, the map y — A, determines
the values of y and all of its derivatives on d€2. This boundary determination result holds
in much greater generality [Ale90,SUS88]. In particular, Brown [Bro13] showed that the
boundary values of a W' conductivity are determined by the Dirichlet-to-Neumann
map. This improvement will be a crucial ingredient in this paper.

The key idea in [SU87] is that if y; are such that A, = A,,, then

/(ql —q)uiuzdx =0,
Q

where the u; are arbitrary solutions to the Schrodinger equation (—A +q)u; = 0in Q. It
follows that one way to show that the potentials g1 and g» coincide is to produce enough
solutions to the corresponding Schrodinger equations that their products are dense in
some sense. This idea goes back to the original paper of Calderén [Cal80]. In [SU87],
Sylvester and Uhlmann proved a uniqueness result for C? conductivities by constructing
complex geometrical optics (CGO) solutions of the form u; = e*% (1 + ;). Here the
i € C" are chosen so that ¢; - & = 0, so that e¥'% is harmonic, and ¢¥¢1e¥'%2 = ¥k
for some fixed frequency k € R”". In three or more dimensions, these conditions allow
for an infinite family of pairs ¢, ¢» with |¢;| — oo. The remainders ; decay to zero
in a suitable sense as |{;| — 00, so that the product ujus converges to ek Since k is
arbitrary, uniqueness follows from Fourier inversion.

To construct these CGO solutions, fix ¢ € C" such that ¢ - ¢ = 0, and note that
e EAESY) = (A+2¢ - V). Then u = e* ¥ (1 + ) solves Au = qu if

A=Ay +20 -V =q(1+ ). e))

Let m, be the map sending ¥ to gvr. We will treat this equation perturbatively, by
viewing A; — my as a perturbation of A,. The operator A, has a right inverse defined
by

AL E) = pe@®) 7 f®),

where
pe(&) = —[E1* +2i¢ - &.

We take ¢ of the form 7 (e; — ie;), where e, e, are orthogonal unit vectors. Then A; is
characteristic on a codimension-2 sphere X, with

Ye={:§-e1=0,§ —ter| =1}

To construct a solution to (1), we show that m,, is a perturbation of A, with respect
to an appropriate norm.

It was observed in [PPUO3] that it is possible to construct CGO solutions for C 1
conductivities using Picard iteration in Sobolev spaces. However, because the inhomo-
geneity in (1) is not bounded in the correct space, one cannot control these solutions.
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A simplified explanation of the problem is as follows: in problems involving Carleman
estimates, it is most natural to work with Sobolev spaces depending on a large parameter
7 (or a small parameter in the semiclassical notation). In our problem 7 is proportional
to |¢|. The quantity 7 is thought of as equivalent to a derivative V. In view of this
correspondence, we define the Sobolev space H (R") by

lullas = I1(=A + 32| 2.

For the operator A;l the following Carleman estimate holds [ST09]:
”M”H,[1 S.z T”Aé'u”].];l ’

where u is supported in some fixed compact set. This means that once we account for
the physical space localization in the problem, the operator Ac_l (heuristically speaking)

maps Ht_1 to Htl with constant . On the other hand, we have g = A% logy +1.0.1.

[(mgu, v) 2] S IV (og )V D)1 +Lo.t. )
Sy lwree (IVull g2 vl 2 + lull 21 VOl 2) + - 3)
Sty oo lluel g 1ol )

By duality, this implies that m, maps Ht1 back to H~ ! with constant 7 ~!. This means

that the composition m, A7 ! is bounded, and there is some hope of construction CGO
solutions perturbatively (see [KU14] for this type of analysis). We are trying to solve
(A¢y —mg)u = g, and we certainly have g € H_ I However, because we lost a factor of
7 in the Carleman estimate, our solution only satisfies an estimate of the form ||y || i 1<
Tllg ”Hr‘l‘ This is bad, because 1 is supposed to be small in Htl.

In [NS14], this problem with Sobolev spaces is circumvented by showing that the
first iterate in the solution procedure is bounded on average. This avoids the use of
specialized spaces at the expense of requiring slightly more differentiability.

In [HT13], Tataru and the author dealt with this problem using specialised function
spaces. These are inspired by the X*? spaces of Bourgain [Bou93], and were used in
the context of Carleman estimates by [Tat96]. Define the space X b by the norm

leell o = 1pe E)1PAE) 2,

where p;(§) = —&? + 2i¢ - & is the symbol of A;. In this paper, we take b = £1/2. It
is easy to see that | A ¢ || _1 2% /2 = 1. We will also make use of the inhomogeneous

spaces X ? with norm

llelle = NCIET+ |pe GNPl 2.

The map m satisfies
”quXé/Z_)X;l/Z S 1y lILips (5)

and we may solve (1) perturbatively as before. This bound follows from (4), the easy
estimate

1/2
luell gy S < a2, (6)
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and the fact that for localized u, the X ;/ 2 and X ;/ 2 norms are equivalent.
Solving in this way gives a CGO solution v with ||/ || %12 < lqll g2 Unfortunately,
¢

the best bound on ||q||X;1/z is ‘[1/2||]/||H1. This means that the X;/z norm of CGO

solutions might grow like 7!/ as T — oo.

By an averaging argument, however, [|¢|| -1/ is bounded for a large set of ¢ (which
¢

may depend on ¢) as long as y € H'. This is because the X~!/2 norm is only large

when § concentrates near X;. As we vary ¢, the characteristic set X; varies through a

family of growing codimension 2 spheres, and ¢ cannot concentrate near all of them. In

particular, the estimate ||g/|| -2 < |7 |l g1 holds on average. Once this is established,
¢

uniqueness for y € C! follows from the standard arguments.

If Vy is unbounded, then we need to replace the HT1 norm on the left hand side of (6)
with an L? norm, where p > 2. We can obtain such an estimate using the methods
of [KRS87], which essentially give'

lullon/m—2) S el 172 (M

This puts u in a better L? space, but at the cost of a factor of t. Since there is no such
room in (5), it seems that such a bound does not hold for y € W7 if p < oco.

To do better, we need a refined version of (7). If #, is supported in the region
{6:d(&, Z;) ~ u}, then we can replace (7) by

ltsllznson—2) S /O gl g1 ®)
and (6) by i
lutyella < (ur)~" el 12 ©)

Assume we are given v, satisfying a similar condition, with u < v. Define f = Vlogy.
Then

| / (V Hu vl S ||Vf||n(u/r)”"<vr)—”2||uu||X;/z||vv||X;/z.

Now we exploit the fact that the Fourier transform of u,v, is supported in {&: |§| <
7, |€ - e1| < v}. By orthogonality, we may restrict f to this region, so that the above
becomes

— — 1/n—1/2
|/<Vf)uuvv| S UDYED T Fll a2 vy
where D and D are operators with symbols || and |§ - e1], respectively. An argument

along these lines gives an estimate of the form

1/2—1 1/n—1/2
v sl g1 S IDVE DY gy

Although we have lost 1/2 — 1/n derivatives in this estimate, this is counterbalanced
by a gain of 1/2 — 1/n derivatives in the e; direction. This gain is useless if the Fourier
support of f concentrates near the plane perpendicular to e;. However, we expect that

1 The author would like to thank Russell Brown for pointing this out.
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this behavior does not occur on average, and we can take advantage of this by exploiting
our freedom in choosing ¢.
It is easiest to average over all choices of ¢; € S"~!. In L? we have

/ DD fl3do(e) S If -
e esS"—

for « < 1/2. Heuristically, we can interpolate this with the trivial observation that
sup,,esn-1 | flloo < 11 f lloo to obtain

1/p
([ oot sihaoten)  <ir,.
e €S

when f < 1/p. In three dimensions, we have 1/2 — 1/3 < 1/3, and we find that
lmv ¢ ”X'/2—>X’1/2 is bounded on average. In four dimensions, we have 1/2—1/4 = 1/4.
¢ ¢

This causes alogarithmic divergence, which turns out to be harmless. Forn > 5, however,
we do not have a way to avoid losing derivatives.

The averaging argument in this paper is somewhat different from the argument
in [HT13]. There, k was taken to be fixed, and g (k) was determined by testing against
CGO solutions with ¢ ~ (11 — in2), where n; and n, are perpendicular to the fre-

quency k. This approach does not give control of D’f Dfﬁ f, since averaging only over

n1 perpendicular to k is useless if f is concentrated along the k direction.

Instead of fixing k, we vary the triple {k, n1, n2} over an small open set of triples of
orthonormal vectors. This set is essentially parameterized by {Ue;, Ues, Uez}, where
the e; denote fixed orthonormal vectors, and U is an orthogonal transformation. The
idea is then to average the relevant quantities (which depend on U) with respect to
the Haar measure on O (n). Using all of the degrees of freedom in this way allows
for an improvement in the estimate for m, and clarifies the estimate for ||g|| X{—l/z.

This idea comes from [NS14], where uniqueness is established in three dimensions
for conductivities in W3/2*2, Remarkably, they showed that under this assumption the
boundedness of m, on average can be proven without taking advantage of the curvature
of ¥;. Using our framework, this corresponds (roughly speaking) to applying Bernstein’s
inequality to u,, in the e; direction and Sobolev embedding to f in the other directions,
to obtain

[ Pl IV g . Wz, ol

2 1/2
S DY Fllz ! w2 llvyll2

—1/2_~1y 2
Sv 2D +fllzllbmllxg/zIIMVIIX;/Z-

Taking f supported in {|£| < 7, |&1| < v}, we obtain

— —-1/2
| / (Vu,v| S 1DV2D)" DY Fllalell i ol i,

and we can estimate ||D1/2Df]/2D1/2+f||2 on average as before.

When n > 7, the situation is essentially the same, but there is a new technical
difficulty. Since our methods are global in space, we need to extend the conductivities
y; € WP (Q) to some y; € WP (R") which agree outside of 2. Whens < 1+ 1/p,
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we can do this as long as y; = y» on the boundary. However, when s > 1 + 1/p, we
also need d,y; = 9,2 on the boundary, and there does not seem to be such a boundary
identification result in the literature.

It is possible that one can relax the uniform ellipticity condition on y. The natural
condition to impose is then Vlogy € L", in which case log y is only in BMO, which
would correspond to the results of [ALP11] in the plane. We will not address this issue,
as it introduces numerous technical difficulties. We note, however, that the assumption
in Theorem 5.3 is of this type.

2. Notation

Let¢ = t(e;—iep), whereey, ex € R” are orthogonal unit vectors. Define the conjugated
Laplacian

Api=e " E A,
a differential operator whose symbol is

pe () == —[&]* +2i¢ - &.

This symbol vanishes simply on the characteristic set
Yo ={5:p(§)=01=1{§:6=0,1§ —te2| = 7},

which is a sphere of codimension two. In fact, it is not hard to check that

td(§, %) d(§, %) =1/8

|pe (E)] ~ 242 dE S > /8

(10)

where d (&, X;) ~ |§1] + || — Tez| — 7| is the distance from & to X;. We will refer to
this distance as the modulation.

Define the Banach spaces X ? and X ? with norms
"

lllge = Wl ps (§)7atll 2

lell o = 11C1pe (E)1 + )il 2.

We will use the Greek letters A, (., v to represent dyadic integers of the form 2k where
k > 0. For & > 1 we define E, to be the set of & with modulation comparable to A:

E, :={§:d(&,Z¢) € (A/2,A]}.
Similarly, for any A we write
E<y :={§:d(§, X)) = A}

Since our problem is localized to a fixed compact set, the uncertainty principle implies
that we need not distinguish frequencies which are separated on the unit scale. Therefore,
by abuse of notation we will define £y := E<;.Letm; denote the characteristic function
of E;, and similarly for m<;.

Let O, O<; be the Fourier multipliers with symbols m;, m<;. We will wish to
distinguish the cases A < t/8 and A 2 t/8, so we define projections onto low and high
modulation by
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Q= > O

1<ir<t/8
On= Y O,
r>1/8

where the A vary over dyadic integers. By (10), we have
IQnullgy < IIuIIX;/z- 1n

We will also need the standard Littlewood—Paley projections. For these we choose a
smooth dyadic partition of unity, i.e. a function x € C3°(R) supported on [1/2, 2] such
that

oo
1= > x@*p)
k=—00
for any p > 0. For a dyadic integer A > 1, we set x;(§) = x(|€]/A), and by abuse
of notation we again set y; = ngl x». The Littlewood—Paley projections P, are

defined as the Fourier multipliers with symbols x; . Given a direction w € "1, we can
also define the Littlewood—Paley projections P;” in the w direction using the Fourier
multipliers x (|€ - w|/}).

3. Strichartz Estimates

Our goal in this section is to prove L7 estimates for functions in X ;/ 2. We follow [KRS87].
Since the symbol p; (§) is characteristic on a sphere X, we begin with the Stein—Tomas
restriction theorem.

Theorem 3.1 [Ste93, Tom75]. Suppose p > (2d +2)/(d — 1). Let o denote the surface
measure on 4=, Then

17 doll Loy S 1 12esiny.
Let 59~ denote the sphere of radius 7. Given a set E we define its A-neighborhood
Nu(E) :={§:d(§, E) < A}
We use the following rescaled and localized variant of the restriction theorem:

Corollary 3.2. Let p be as above. Suppose that § is supported in N; (tS?~"), where
A < 1/8. Then

Iglize S AM2@=DR=AP |8y 5y si1y)

Proof. By Fourier inversion, we have

g(0) = ca / 8(E)e™t di

T+A . |
= Cd/ /d lg(pw)ezpoc,w) pd— d,OdO'
T—A J ST

;+k 4
iy / =1 (§(pw) do) (px) dp.
T—A

By Minkowski’s inequality, the restriction theorem, Cauchy—Schwarz, and Plancherel
this implies that
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T+A
lgler < / 1 (pw) do)" (px) Lo ray P~ dp
T—A
T+A i i1
S/ PP N(§(pw) do)Y () Lo way ¥ dp
T—A

A
< —d/p s d_ld
~T ||8(Pw)||L2(sd—1) Jol 0
T—A

T4 1/2
St ordThiz ( / 1 (p) 172 ga1y 07! dp)
T

= 2D p gy

(Na(z§4=1))-
0
We deduce the following Strichartz-type estimates
Lemma 3.3. Let p = 2n/(n — 2), A < t/8. Then?
10:fllp < ()\/f)””llfllxé/z. (12)
11y < IIfIIX;/L (13)
Proof. By a change of coordinates, we may assume e; = (1,0, ...,0). We use the

notation & = (&1, £').
For (12), write g = Q. f. Note that

E, CH&: |61l < cr |IE' —téh| — 7] < cA).
We can write g = ¢y *y, g, where ¢, (x1) = A¢(Axy) for some Schwartz ¢ and the

convolution is taken in the xj variable only. By Minkowski’s inequality and Young’s
inequality, we have

lgl, = H/du(xl —yDg, x)dy

p

S H/|¢A(x1 =YDl GlLr, dyi

LY,
1/2—-1
SR Igl 2 g

If we regard g as a function in the x’ variable, we see that its Fourier transform lies in
Nex (rS"‘2 + re’z). By Corollary 3.2 and translation invariance, we have [|g(x1)[l;» <
X/

A2 m=2/@n) 5 (x 1) ll 2, for each x;. It follows that
lglly S A2A 2Pl g1y S Al et 1 £l

For (13), we apply (12) near X; and Sobolev embedding away from X.. On E we
have

2 Strictly speaking, the X;/z norm should be replaced with )'(;/2, but this will not be important.
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10l S D 1Qxflp

1<ir<t/8

S D oM e
l<i<t/8 g
1/2

2
20 108 Ve

1<ir<t/8

< ||f||X;/2-
Away from E we have

1Onfllp SNQnfllgt S ||f||X;/z

by (11). Combining these estimates gives the claimed inequality. O

4. Bilinear Estimates

Given a tempered distribution f € S'(R"), define the map m s : S(R") — S'(R") by
my¢ = f¢. We would like to control ||m ¢ ||X1/2%X71/z. By duality, this is equivalent
¢ ¢

to establishing a bilinear estimate of the form
<
I @t 0 S el ol e,
where
my(u,v) = (mysu, v).

Suppose that f € L"/?. By (13), we have

[m g (u, ) SN fllag2lellonm—2) 1V l20/(—2) (14)
S ||f||n/2||u||X;/2“U”X;/Z- (15)

We also have
Im g (u, )| S 1 fllsollull2llvf, < 77 ||f||oo||u||X;/2||U||X;/2o (16)

A more difficult task is to control my y. We record the main computation in the following
lemma:

Lemma 4.1. Let s, p, 0 be as in Theorem 1.1. Let 1/q = 1/2 — 1/p. There is some
o > 0 such for fixed .. < 1007, we have

> (V/k)(l_g)/"llQuMIIqIIvillz5()»/T)a?ns_zllullxg/zIIUIIX;/z, (17)

n<v<t/8
V<A

and

> 1Quttllg1Qvvll2 S 271G/l 12101l g2 (18)

u=<v<t/8
r<v<rt/8
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Proof. We may interpolate (12) with the trivial estimate || @ ull2 S (wt) ™" /2[ Qpuull 112
¢

to obtain
1Quully S (u/r>“—9)/"(m>—9/2||Qﬂuuxyz

where 1/g = 1/2 — 1/p and 0 is such that p = n/(1 — 6). Combining this with the
trivial L2 estimate for v, we obtain

1QuullgllQuvll2 < B,LL,I)”Qﬂu”X{l/z”QUU”X;/Z

where
By, = r=(=0)/n=0/2=1/2 | (1=0)/n=0/2,,~1/2
Set
= 1-6 B g
n 2

Suppose first that 8§ > 0. When v > X we have
By, < = (1=0)/n=0/2=1/25 (1=6)/n=0/2=1/2(, /,,\B
— )\._0_1()\./T)(1_9)/’1+0/2+1/2(M/U)ﬂ.

Wetakeo < (1—60)/n+(1+60)/2 and use the discrete Young’s inequality to establish (18).
Suppose now that v < A. When n = 3, we set 6 = 0,

(‘)//\)1/31%1U _ (v/k)1/3r_5/ﬁul/3v_l/2
= (/WP

By Young’s inequality we have (17) for « < 2/3. When n = 4 we take 6 to be zero and
obtain

(v/)»)l/4Bu,v — (/2 VAg =304 14, =12
= (u/w)'"* oo
Applying Young’s inequality we have (17) for o < 3/4.
When n > 4, we have
(v/k)(l’(’)/”BM,u = (u/v)Po=1/2H2=0)/n=0/255=2 () 11y (1=60)/n+0/241/2
In this case we have (17) fora < (1 —0)/n+6/2+1/2

In higher dimensions, we also want to consider the case (1 —6)/n — 6/2 < 0. For
v > A we have

By, < pba /2= (=0)/n=0/2-1/2
<y ~lp—(=0)/n—0/2
Then we have (18) for oz < (1 —6)/n+6/2, since there are only ~ log T possible values

of w, v.
For A > v we have

(U/A)(l_e)/"BM , < v(l—0)/n—1/2)\'—2(1—9)/n—9/2—1/2(A/r)(l—O)/n+9/2+l/2'
Thus we have (17) fora < (1 —-60)/n+6/2+1/2. O

Let P, denote the Littlewood—Paley projections, and let Pli denote the Littlewood—
Paley projections in the e direction. Then
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Lemma 4.2. Let s, p be as in Theorem 1.1. Then for any f € WS~1LP(R") N L"(R™),

lmvpllgin -2 SUflIa+ sup - /PO PR P PLg, £l
¢ ¢ v<A<100t

where 8 > 0.

Proof. Write

my r(u, v)=my(Qpu, Qpv)+my (Qpu, Qv)+mv(Qu, Qpv)+myr(Qu, Qrv).
We can treat all but the last term using (11) and (13). Integrating by parts,

Imy ¢ (Qnit, Qn) S 1f 1nll CaVatll2ll Qv llansn—2) + £ nll Qa2 /n-2) 1 Q1 Vll2
S AR

Since Qv is supported in |§| < T,

Imv r(Qnu, Q) SN fIlallQnVull2l Qivlion/m—2) + I flall Qruell2| Qi V20 (n—2)
S Il Qnull g 1 Qrvllan/(m—2)

S 1 Nl 2 N0l 172

It remains to estimate mv ¢ (Qu, Q;v). We have

my ;(Quu, Qrv) = Y /(VPAf) Quu Qyvdx. (19)

oV, A

Suppose v < v (the case i > v is identical). Because Q,u Q,v has Fourier support in
{€:]&1] < 2v}, Plancherel’s theorem and Holder’s inequality give

= ’/ Ple, (VP f) Quu Qyvdx

SIPL, VP LIl Quutlly | Quulla.

/(VPm 0,1 0yvdx

Furthermore, since Q,u Q,v has Fourier support in {|] < 1007}, we can assume
A < 1007 in this sum. Applying Lemma 4.1, we get

imy £ (Quu, Q)| S D IVP LIl Quitllg | Quvlla

V>A
n=v

+ > 0PIV P PL, FlplQuullg | Quvll2

V<A=<1007 B
=

S D AGO TIPS
A<1001
+sup(A/T)* A/ PATIV P PL F )

V<A

X IIMIIX§/2 IIUIIX§/2

SAfllp+ sup /D2 PP Fllp)

v<A<1001

X ||M||X;/2||U||X;/2.
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5. Averaging

Given any vector € S"~!, we define P}? to be Littlewood-Paley projection in w
direction. Let n denote Haar measure on O (n), normalized so that if o is the usual
spherical measure on $” ! and f : §"~! — R is integrable, then for any 6 € §"~! we
have

JWo)dulU) = /S}H f(@)do (). (20)

O(n)
Lemma 5.1. Suppose p € [2, o0]. Let f € LP(R"). For U € O(n) and v < A, define

As o (U) = )PP PLE F1 .
Then

IAxllLrcomy S I Np-

Proof. We define an operator 7 mapping functions on R” to functions on O (n) x R”"
by

Tf(WU,x) = PP f(x).

The lemma asserts that this operator is bounded from L” (R") to L?(O(n) x R™). By
interpolation, it suffices to establish this at the endpoints p = 2 and p = oo.

When p = oo this is just the fact that the Littlewood—Paley projections are bounded
on L.

When p = 2 we use Plancherel’s theorem and Fubini.

ITFI2, ~ /0 . /R 1BEMXE - Wen/v) fE)P de duU)

=< (Sé'p/m )I¢(§/X)X(§ : (Ue1)/V)|2dM(U)) I1£113.

Here ¢ is supported on an annulus, and x is supported on an interval. We estimate the
last integral using (20) and spherical coordinates:

/0 ( )|¢<s/x>x<s-(Ue1>/v>|2du<U>5|§up /S X (gl er/v)I* do (@)
< sup/ |X(|§|cosé)/v)| sin(0)" 2 do

1
< sup /1 x(1§lu/v)du

This shows that
ITFll2 S /MDY £l

which completes the proof. O
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Define ¢(t, U) = tU(e; —iep). Our next lemma establishes that ||q|| _1/2 is small on
Xe(d

average. This is implied by [HT13, Lemma 3.1], but we give a simpler proof here, based

on [NS14]:

Lemma 5.2. If f € H™', then

2M
M7 [ PR e @) de S P 1+ M oo £y
M O(n) Xe@w)

Proof. This is true if f is supported at frequencies |£] > 100M, because there we have
Ipc () > | |>. Thus we may assume that f is supported at frequencies |£] < M, where
we have |p:(§)] 2 271§ - (Uep)| + |—|€|> + 27& - (Uey)|. Here we use Plancherel and
the identity U7 = U~! and estimate as in Lemma 5.1 by

HiE

VI~ 13 sup = / QTiUT'e) e +|—Ig?
M O (n)

lg|<toom M
+ 21’(U7 &) ez|)7 duU)dr.
By (20), the quantity inside the supremum is given by

1 2M
M/ / 1(2t|w~el|+|—|§|+21w-ez|)_1 do(w)dr.
M n—

We view (7, w) as polar coordinates and change variables to # = tw. Then in the region
T € [M,2M] the volume element du is bounded below by M1 do (w)dt, so this
integral is bounded by

1

QCluy| +—I&] +2uz]) ' du
3 lu|le[M,2M]

Writing v = (u1, u), and integrating over the remaining variables, we bound by
LMH/ Qlvr] + |15 + 202D dv < i/ ol dv
mr B(0,2M) M? Jo.2m)

1

~ —

R

We summarize our estimates so far in the following

Theorem 5.3. Let s, p be as in Theorem 1.1, and let y be a positive real-valued function
on R" such that Vlogy € W*™'P and y = 1 outside of a large ball B. For ¢ =
y~1V2Ap12 we have

/ llgll® 12 dul)dr — 0. 21
M/2 JO(n) (f U)
Furthermore,

sup ||mq||X1/2 - <Cu+Au), (22)

Te[M/2,2M] X,

where Cpy — 0as M — oo and

D AR o < 0°- (23)
k>2
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Proof. First, we write

y 1Pay'? = LAlogy + {IViogy | =D Vifi +h,
i

where f; € WS='P and h e LP/2.
We decompose each term into a good part and a bad part. Let ¢ = € "¢ (x/€),
where ¢ is a C§® function supported on the unit ball and f ¢ = 1. Define fe = f * ¢e.
By (16), we have

< -1
Imv f. IIX;/z_)X;—l/z + lmp, IIX;/z_)Xg—l/z ST UV felloo + llhelloo)
—1_-2
ST€ U S lln + 1Allny2)-

‘We also have

IV fellg-1 S 772V fellz

St 2 i f I
StV £,

since n > 2 and f is compactly supported. For n > 4 we have

hll 12 S 7720
g (24)
—1/2|

St [ llny2,

and for n = 3 we have

—1/2
el S @ Plhell2

S 2 23

Taking € = M~/4, we find that if we replace ¢ with g, then the left hand sides of (21)
and (22) vanish as T — o0.
It remains to treat the bad part ¢ — g.. Let g = f — fc, and define
A(t,U) =

—12 .

lmvgll 12
WX > X

Using Lemma 4.2, we have

1/p

sup AU Slgller+ | D [0/MPR A7 |,
T€[M/2,2M] | <v<r<dM

where A, ,(U) = ()L/v)l/l’||P;LngeU‘gI|Lp. As M — oo, we have ¢ = M—1/4 — 0,

so |lgllLr — 0. We take Ap;(U) to be the second term on the right hand side of this
inequality, which is clearly a measurable function on O (n). Now, P, g = P; P~) g, where
P g = ZA/IGSMSW\ P, g. Applying Lemma 5.1, we have



654 B. Haberman

AN b0y S 2, TO/MPRHIPgllLe]?
l<v<i<M/4

SlogM > (/MR Py fliLe]?
1<A<M/4

We control this quantity by taking a weighted sum over dyadic integers M, as in [NS14].
Namely, we have

> Aog M) M NAMI Y p oy S D2 D G/MPPLETH P fllLe)?

M=2 A M>4

SO TP el
A

The last term is controlled by || f|lys-1.» as a consequence of the Littlewood—Paley
square function estimate. Thus we obtain (23).
By Lemma 5.2, we have

2M
M / IVgl? du)dr < gl < llglzs — O
M2 Jom)
Next we treat h —h.. When n > 4 we have ||h—h€||X_1/z — Oby (24). Whenn = 3,
¢

we have
h — heIIX;m Sh—hellyg-12

S h = hell32

-0
by Sobolev embedding. Finally, by (15) we have

lm—ncllxa, yo1r2 S I = helln2 — 0.

6. Localization

Because our problem is localized to a compact set, the uncertainty principle implies

that the X ;/ % norm is equivalent to the X ;/ 2 norm. To make this precise, we state the
following

Lemma 6.1 [HT13]. Let ¢ be a fixed Schwartz function. Then
Igullg-vz S lull -1 (25)

”‘1’””)(;/2 S |IMIIX;/2, (26)

where the constants depend on the seminorms || x* VP $|| s.

In particular, we have
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Lemma 6.2. Suppose that q is compactly supported. Then
gl iz, v S llmg iy 27
Proof. Let ¢ be a Schwartz function that it equal to one on the support of g. Then

l{mqu, v)| = [(mgpu, pv)|

S IIquIX;/zﬁxl—l/z|I¢MIIX;/2||¢>UIIX;/2

S ”mq”X;ﬂ_)X;—'ﬂ||“||X;/2||v”}‘(;/2~

We record the following useful fact:
Lemma 6.3. Suppose ¢, € C" satisfy ¢ - ¢ = .- =0.Then
lullxr S (+1¢ = E|)""||u||x§.
Proof. We have
pel < Ipzl +21(6 = ©) - €]
< Ipzl+2l = ClI&]
S A+1¢ =Ehpgl+0)

by (10). O

7. Proof of the Main Theorem

We summarize some known results which allow us to extend the y; to all of R”. First
we transfer the problem to the interior, as in [SU87].

Lemma 7.1. Suppose n > 3. Let y1, y» € WV (R™) be functions such that 0 < ¢ <

vi < ¢! for some c. If y1 = y» outside Q and Ay, = Ay, thenforqj = A Jvi/ Vi
we have

(g1, viv2) = (g2, v1v2)
when each vj is a solution in H,\ (R") to Av; — q;v; = 0.
Proof. See [Bro03]. O

The following argument is apparently due to Alessandrini. It amounts to the fact
that g = g implies that the function logy; — logy; solves the Dirichlet problem
div ./g1g2Vu = 0 with u = 0 at infinity. See [SU87,Bro96, Bro03].

Lemma 7.2. Let y;, g; be as in Lemma 7.1, and suppose that g1 = g3 in the sense of
distributions. Then y| = 3.
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Proof. First, have g; € H —L(R™) for each i. To see this we note that
Igll-1 = 3 Alogy + 3 Viogy |*|l 4
S IVIogylla + 1V Iogy Pl -

SIVIogylln + V102 ¥ 13, /2y
S AIVIogylly + IV1og y

by Sobolev embedding and Hdolder’s inequality. It follows that we may test g1 — q2
against the function g1 g>(log g1 — log g») € H' (R"), where g; = J/vi- This gives

0= /[Vgl - V(g2(log g1 —log g2)) — Vga - V(g1(log g1 —log g2))]1dx
= /(82V81 —g1Vg2) - V(loggi —log g2) dx

= / g182|V(log g1 — log g2)|* dx,

which implies that g1 = g>. O

Now we apply the boundary determination result of [Bro13], which implies

Theorem 7.3. Suppose that 0 < ¢ < y; < ¢~ L Ify; € WHI(Q) and Ay = Ay,, then
Y1 = Y2 on 02

Proof of Theorem 1.1. By Theorem 7.3, we have y; = y, on d2. Our assumptions
imply that s — 1/p < 1. Thus by [Mar87] we may extend the y; to functions in W*?
such that y; = y» outside of 2. By Lemma 7.1, this implies that

(q1, viv2) = (g2, V1V2) (28)

when each v; is a solution in H)\ (R") to Av; —gjv; = 0.
Fix r > 0 and three orthonormal vectors {e|, ¢, e3}, and define

Ci(r, U) =tU(e1 —iea)

G, U) = —4(7, U)

Cl("—' U):=tUei +i(rUezs — 12 —r2Ue)
O, U):=—tUe  +i(rUes + V12 — r2Ue).

In what follows, all of inequalities will implicitly depend on r. For example, we have
|¢; —¢i| < 1.1In particular, by Lemma 6.3, the spaces X Z and X ? have equivalent norms.

Now let

F(r,U) = an%u e ¥ 4l

§(TU) {(IU) ij C](fU)

By Theorem 5.3 and the fact that >_,_, k~! = 0o, we have

M—00

2M
liminf M~! / F(zr,U)du(U)dr = 0. (29)
O (n)
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Now we use an argument from [NS14, Section 3.3] to select T and U . Their first observa-
tionis thatife > Oand B = {U € O(n): ||[U —1I| < €}, then by simply restricting (29)
we have

2M
lim inf M_l,u,(Bé)_l/ / F(zr,U)du(U)dt = 0.
M—o00 M Be

Thus we may choose, for a sequence of M = M; such that M; — oo, some 7 = 1. €
[M;,2M;],U = U¢; € Be and § = §.; > 0 such that

Dlimgliyie 1n + > lgilly-12 <8 (30)
- "X e~ X ¥ Xe o)

where 6. ; — Oasl — oo.
By (27), we have

Imgllyi2 =12 Slimgllyir -1 .
¢ (T,U) ¢ (r,U) & (r,U) & (T,U)

It follows that,
Img i 12 S e

G@U) ")

Since é.; — 0 as [ — oo, we can choose / large enough that the left hand side is less

than 1/2. Since ||A{_1 ll4-172_ 12 = 1 for any ¢, we can use the contraction mapping
¢

principle to construct solutions y; € X% tothe equations (A E(eU) — mg )i = qi,

Lo Gi(r,U)
satisfying

Wil 12 Sligly-12 .
e ™ e

Note that by (6), such a solution lies in thc (R™). This implies that the corresponding

solution v; = e¥4®U) (1 + ;) to the Schrédinger equation (A — g;)v; lies in H! ®R")
as well.
Let k = 2rUez. By (28),

0={q1 —q2, A+ Y1)+ 1))
= (q1 — q2, €Y + (g1 — q2, X Y1) + (g1 — 2, €FF (W + Y)).

We need to show that the second and third terms are small. Let ¢ be a Schwartz function
that is equal to one on the support of g. Then

g1, X 1yn)| = [img, e Yy, 1)

—ik- -
S e ™ ¢Pall e ldwile
£ (x.U) @)
.
=1 pvall 12 lI$¥ill e
o (TU) ¢ (z.U)

Sl2ligz llye
& (TU) g (. U)

<
Sllglly-12 lgilly-12
7 IIXQ(LU)H!I ”er,w
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since the seminorms of e ~/** ¢ are bounded with a bound depending only on r. We can
bound the g, term in the same way. On the other hand, we have

N
i @yl S lailly-e vl g
¢ (@ U) & (@)

< il v—1/2 1l v=12
S laillve, larlve

bg d}lality of X ;1/ (ZT’U) and X ;ZZU) The terms with ¥, are the same. In summary, we
obtain

G —d)@rUe)l S D lgilly-12 llglly-1e S8 31
l<i ikd<2 {j(r,U) ¢ (T,U)
=1L,k 0=

by (30).

To finish the proof, we again follow [NS14]. Since B, is compact, we may pass to a
subsequence such that U, ; — U, for some Uc € Be. Since the g; are continuous, we
may pass to the limit in (31) to obtain

g1 — §21Q2rUces) < lim 62, = 0.
=00

Note that by construction, we have U, — [ as € — 0. Thus, by taking limits again,
we obtain (§; — §2)(2res) = 0. Since e3 € §"~! and r were arbitrary, this means that

41— g2 =0.
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