
Digital Object Identifier (DOI) 10.1007/s00220-015-2460-3
Commun. Math. Phys. 340:639–659 (2015) Communications in

Mathematical
Physics

Uniqueness in Calderón’s Problem for Conductivities
with Unbounded Gradient

Boaz Haberman

University of Chicago, Chicago, IL, USA. E-mail: boaz@math.uchicago.edu

Received: 1 December 2014 / Accepted: 28 June 2015
Published online: 7 September 2015 – © Springer-Verlag Berlin Heidelberg 2015

Abstract: We prove uniqueness in the inverse conductivity problem for uniformly el-
liptic conductivities in Ws,p(�), where � ⊂ R

n is Lipschitz, 3 ≤ n ≤ 6, and s and p
are such that Ws,p(�) �⊂ W 1,∞(�). In particular, we obtain uniqueness for conductiv-
ities in W 1,n(�) (n = 3, 4). This improves on the result of the author and Tataru, who
assumed that the conductivity is Lipschitz.

1. Introduction

Let � ⊂ R
n be a bounded domain with Lipschitz boundary. To a positive real-valued

function γ on � with 0 < c < γ < c−1 we associate an elliptic operator Lγ in
divergence form:

Lγ u := div(γ∇u).

Given f ∈ H1/2(∂�), there exists a unique solution u f to the Dirichlet problem

Lγ u f = 0 in �

u f
∣
∣
∂�

= f,

and we define the Dirichlet-to-Neumann map �γ : H1/2(∂�) → H−1/2(∂�) formally
by

�γ ( f ) := γ
∂u f

∂ν

∣
∣
∣
∣
∂�

,
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where ∂/∂ν is the outward normal derivative at the boundary. By identifying H1/2(∂�)

with the quotient H1(�)/H1
0 (�), we can interpret this definition in a weak sense as

follows: if v ∈ H1(�) satisfies v|∂� = g, then

〈�γ ( f ), g〉 :=
∫

�

γ∇u f · ∇v dx,

where the notation 〈·, ·〉 indicates the pairing between H−1/2(∂�) and H1/2(∂�). Our
main theorem is that the map γ �→ �γ is injective for certain γ :

Theorem 1.1. The map γ �→ �γ is injective for γ ∈ Ws,p(�), where

(s, p) =
{

(1, n) n = 3, 4
(1 + (1 − θ)( 12 − 2

n ), n
1−θ

) n = 5, 6

and θ ∈ [0, 1).
This problem was introduced by Calderón, who proved uniqueness in [Cal80] for

the linearized problem. The basic approach to this problem in this paper is the method
introduced by Sylvester and Uhlmann [SU87], where they proved uniqueness for n ≥
3 and γ ∈ C2 based on ideas in [Cal80]. It is of interest to determine how much
of this regularity condition can be relaxed. Uniqueness is known to fail (at least in
the anistropic problem) for conductivities that are sufficiently singular, as was shown
in [GLU03,KSVW08].

For n ≥ 3, the regularity assumption in [SU87] was relaxed to γ ∈ C3/2+ by
Brown [Bro96], toC3/2 by [PPU03], toW 3/2,2n+ in [Bro03], and toC1 conductivities or
Lipschitz conductivities close to the identity in [HT13].Recently, the smallness condition
for Lipschitz conductivities was removed in [CR14]. In [NS14], uniqueness was shown
in three dimensions for conductivities in W 3/2+,2.

In two dimensions, the low-regularity theory is fairly well-understood. There are
essentially sharp results, even for anisotropic conductivities. In particular, uniqueness
holds for γ in L∞, which is invariant under the scaling associated to the Dirichlet
problem. The methods in the plane are somewhat different, and we refer the reader
to [ALP11] and references therein.

There are some reasons to doubt that uniqueness holds in higher dimensions for con-
ductivities with less than one derivative. Calderón’s problem seems to be closely related
to unique continuation; in particular, most of the progress in both of these problems
involves Carleman estimates. Unique continuation in the plane holds for elliptic oper-
ators in divergence form when the coefficients are merely bounded [Ale92]; in higher
dimensions, however, this is only known for Lipschitz coefficients [AKS62]. Further-
more, there are counterexamples to unique continuation for elliptic equations where the
coefficients are Cα with any α < 1 [Pli63,Mil73,Man98].

The conductivity equation div(γ∇u) = 0 is equivalent to

(	 + A · ∇)u = 0,

where A = ∇ log γ . Unique continuation holds for this equation as long as A ∈
Ln [Wol92,KT01]. Brown [Bro03] conjectured uniqueness in the inverse conductiv-
ity problem for γ ∈ W 1,n . We verify that this conjecture holds in dimensions three and
four.

One can also study the closely-related problemof determining aSchrödinger potential
q from the Cauchy data associated with the operator −	 + q. In this setting Lavine and
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Nachman used the L p Carleman estimates of [KRS87] to show that the Cauchy data
determine q ∈ Ln/2 (see also [Cha90,DSFKSU09,NS14] for similar results). These L p

Carleman estimates are the starting point for our analysis.
It was shown in [SU87] that the inverse conductivity problem reduces to the inverse

problem for −	 + q, where q = γ −1/2	γ 1/2. One step in this reduction is to show that
the map �γ determines γ and its normal derivatives at the boundary. In [KV84], Kohn
and Vogelius established that for smooth conductivities, the map γ → �γ determines
the values of γ and all of its derivatives on ∂�. This boundary determination result holds
in much greater generality [Ale90,SU88]. In particular, Brown [Bro13] showed that the
boundary values of a W 1,1 conductivity are determined by the Dirichlet-to-Neumann
map. This improvement will be a crucial ingredient in this paper.

The key idea in [SU87] is that if γi are such that �γ1 = �γ2 , then
∫

�

(q1 − q2) u1 u2 dx = 0,

where the ui are arbitrary solutions to the Schrödinger equation (−	+q)ui = 0 in�. It
follows that one way to show that the potentials q1 and q2 coincide is to produce enough
solutions to the corresponding Schrödinger equations that their products are dense in
some sense. This idea goes back to the original paper of Calderón [Cal80]. In [SU87],
Sylvester and Uhlmann proved a uniqueness result forC2 conductivities by constructing
complex geometrical optics (CGO) solutions of the form ui = ex ·ζi (1 + ψi ). Here the
ζi ∈ C

n are chosen so that ζi · ζi = 0, so that ex ·ζi is harmonic, and ex ·ζ1ex ·ζ2 = eix ·k
for some fixed frequency k ∈ R

n . In three or more dimensions, these conditions allow
for an infinite family of pairs ζ1, ζ2 with |ζi | → ∞. The remainders ψi decay to zero
in a suitable sense as |ζi | → ∞, so that the product u1u2 converges to eix ·k . Since k is
arbitrary, uniqueness follows from Fourier inversion.

To construct these CGO solutions, fix ζ ∈ C
n such that ζ · ζ = 0, and note that

e−x ·ζ 	(ex ·ζ ψ) = (	 + 2ζ · ∇)ψ . Then u = ex ·ζ (1 + ψ) solves 	u = qu if

	ζ ψ := 	ψ + 2ζ · ∇ψ = q(1 + ψ). (1)

Let mq be the map sending ψ to qψ . We will treat this equation perturbatively, by
viewing 	ζ − mq as a perturbation of 	ζ . The operator 	ζ has a right inverse defined
by

̂
	−1

ζ f (ξ) = pζ (ξ)−1 f̂ (ξ),

where

pζ (ξ) = −|ξ |2 + 2iζ · ξ.

We take ζ of the form τ(e1 − ie2), where e1, e2 are orthogonal unit vectors. Then 	ζ is
characteristic on a codimension-2 sphere �ζ , with

�ζ = {ξ : ξ · e1 = 0, |ξ − τe2| = τ }.
To construct a solution to (1), we show that mq is a perturbation of 	ζ with respect

to an appropriate norm.
It was observed in [PPU03] that it is possible to construct CGO solutions for C1

conductivities using Picard iteration in Sobolev spaces. However, because the inhomo-
geneity in (1) is not bounded in the correct space, one cannot control these solutions.
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A simplified explanation of the problem is as follows: in problems involvingCarleman
estimates, it is most natural to work with Sobolev spaces depending on a large parameter
τ (or a small parameter in the semiclassical notation). In our problem τ is proportional
to |ζ |. The quantity τ is thought of as equivalent to a derivative ∇. In view of this
correspondence, we define the Sobolev space Hs

τ (Rn) by

‖u‖Hs
τ

:= ‖(−	 + τ 2)s/2u‖L2 .

For the operator 	−1
ζ the following Carleman estimate holds [ST09]:

‖u‖H1
τ

� τ‖	ζu‖H−1
τ

,

where u is supported in some fixed compact set. This means that once we account for
the physical space localization in the problem, the operator	−1

ζ (heuristically speaking)

maps H−1
τ to H1

τ with constant τ . On the other hand, we have q = 	 1
2 log γ + l.o.t.

|〈mqu, v〉L2 | � ‖∇(log γ )∇(uv)‖L1 + l.o.t. (2)

� ‖γ ‖W 1,∞(‖∇u‖L2‖v‖L2 + ‖u‖L2‖∇v‖L2) + · · · (3)

� τ−1‖γ ‖W 1,∞‖u‖H1
τ
‖v‖H1

τ
. (4)

By duality, this implies that mq maps H1
τ back to H−1

τ with constant τ−1. This means
that the composition mq	

−1
ζ is bounded, and there is some hope of construction CGO

solutions perturbatively (see [KU14] for this type of analysis). We are trying to solve
(	ζ −mq)u = q, and we certainly have q ∈ H−1

τ . However, because we lost a factor of
τ in the Carleman estimate, our solution only satisfies an estimate of the form ‖ψ‖H1

τ
≤

τ‖q‖H−1
τ
. This is bad, because ψ is supposed to be small in H1

τ .
In [NS14], this problem with Sobolev spaces is circumvented by showing that the

first iterate in the solution procedure is bounded on average. This avoids the use of
specialized spaces at the expense of requiring slightly more differentiability.

In [HT13], Tataru and the author dealt with this problem using specialised function
spaces. These are inspired by the Xs,b spaces of Bourgain [Bou93], and were used in
the context of Carleman estimates by [Tat96]. Define the space Ẋb

ζ by the norm

‖u‖Ẋb
ζ

= ‖|pζ (ξ)|bû(ξ)‖L2 ,

where pζ (ξ) = −|ξ |2 + 2iζ · ξ is the symbol of 	ζ . In this paper, we take b = ±1/2. It
is easy to see that ‖	−1

ζ ‖
Ẋ−1/2

ζ →Ẋ1/2
ζ

= 1. We will also make use of the inhomogeneous

spaces Xb
ζ with norm

‖u‖Xb
ζ

= ‖(|ζ | + |pζ (ξ)|)bû(ξ)‖L2 .

The map mq satisfies
‖mq‖Ẋ1/2

ζ →Ẋ−1/2
ζ

� ‖γ ‖Lip, (5)

and we may solve (1) perturbatively as before. This bound follows from (4), the easy
estimate

‖u‖H1
τ

� τ 1/2‖u‖
X1/2

ζ

, (6)
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and the fact that for localized u, the X1/2
ζ and Ẋ1/2

ζ norms are equivalent.
Solving in thiswaygives aCGOsolutionψ with‖ψ‖

Ẋ1/2
ζ

� ‖q‖
Ẋ−1/2

ζ

. Unfortunately,

the best bound on ‖q‖
Ẋ−1/2

ζ

is τ 1/2‖γ ‖H1 . This means that the Ẋ1/2
ζ norm of CGO

solutions might grow like τ 1/2 as τ → ∞.
By an averaging argument, however, ‖q‖

Ẋ−1/2
ζ

is bounded for a large set of ζ (which

may depend on q) as long as γ ∈ H1. This is because the Ẋ−1/2 norm is only large
when q̂ concentrates near �ζ . As we vary ζ , the characteristic set �ζ varies through a
family of growing codimension 2 spheres, and q̂ cannot concentrate near all of them. In
particular, the estimate ‖q‖

Ẋ−1/2
ζ

� ‖γ ‖H1 holds on average. Once this is established,

uniqueness for γ ∈ C1 follows from the standard arguments.
If∇γ is unbounded, then we need to replace the H1

τ norm on the left hand side of (6)
with an L p norm, where p > 2. We can obtain such an estimate using the methods
of [KRS87], which essentially give1

‖u‖2n/(n−2) � ‖u‖
Ẋ1/2

ζ

. (7)

This puts u in a better L p space, but at the cost of a factor of τ . Since there is no such
room in (5), it seems that such a bound does not hold for γ ∈ W 1,p if p < ∞.

To do better, we need a refined version of (7). If ûμ is supported in the region
{ξ : d(ξ,�ζ ) ∼ μ}, then we can replace (7) by

‖uμ‖2n/(n−2) � (μ/τ)1/n‖uμ‖
Ẋ1/2

ζ

. (8)

and (6) by
‖uμ‖2 � (μτ)−1/2‖uμ‖

X1/2
ζ

. (9)

Assume we are given vν satisfying a similar condition, withμ ≤ ν. Define f = ∇ log γ .
Then

|
∫

(∇ f )uμvν | � ‖∇ f ‖n(μ/τ)1/n(ντ)−1/2‖uμ‖
X1/2

ζ

‖vν‖X1/2
ζ

.

Now we exploit the fact that the Fourier transform of uμvν is supported in {ξ : |ξ | �
τ, |ξ · e1| � ν}. By orthogonality, we may restrict f to this region, so that the above
becomes

|
∫

(∇ f )uμvν | � ‖D1/2−1/nD1/n−1/2
1 f ‖n‖uμ‖

X1/2
ζ

‖vν‖X1/2
ζ

.

where D and D1 are operators with symbols |ξ | and |ξ · e1|, respectively. An argument
along these lines gives an estimate of the form

‖m∇ f ‖X1/2
ζ →X−1/2

ζ

� ‖D1/2−1/nD1/n−1/2
1 f ‖n .

Although we have lost 1/2 − 1/n derivatives in this estimate, this is counterbalanced
by a gain of 1/2− 1/n derivatives in the e1 direction. This gain is useless if the Fourier
support of f concentrates near the plane perpendicular to e1. However, we expect that

1 The author would like to thank Russell Brown for pointing this out.
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this behavior does not occur on average, and we can take advantage of this by exploiting
our freedom in choosing ζ .

It is easiest to average over all choices of e1 ∈ Sn−1. In L2 we have
∫

e1∈Sn−1
‖DαD−α

1 f ‖22 dσ(e1) � ‖ f ‖2.

for α < 1/2. Heuristically, we can interpolate this with the trivial observation that
supe1∈Sn−1‖ f ‖∞ � ‖ f ‖∞ to obtain

(∫

e1∈Sn−1
‖DβD−β

1 f ‖p
p dσ(e1)

)1/p

� ‖ f ‖p,

when β < 1/p. In three dimensions, we have 1/2 − 1/3 < 1/3, and we find that
‖m∇ f ‖X1/2

ζ →X−1/2
ζ

is bounded on average. In four dimensions, we have 1/2−1/4 = 1/4.

This causes a logarithmic divergence,which turns out to be harmless. Forn ≥ 5, however,
we do not have a way to avoid losing derivatives.

The averaging argument in this paper is somewhat different from the argument
in [HT13]. There, k was taken to be fixed, and q̂(k) was determined by testing against
CGO solutions with ζ ∼ τ(η1 − iη2), where η1 and η2 are perpendicular to the fre-
quency k. This approach does not give control of Dβ

1 D
−β
1 f , since averaging only over

η1 perpendicular to k is useless if f̂ is concentrated along the k direction.
Instead of fixing k, we vary the triple {k, η1, η2} over an small open set of triples of

orthonormal vectors. This set is essentially parameterized by {Ue1,Ue2,Ue3}, where
the ei denote fixed orthonormal vectors, and U is an orthogonal transformation. The
idea is then to average the relevant quantities (which depend on U ) with respect to
the Haar measure on O(n). Using all of the degrees of freedom in this way allows
for an improvement in the estimate for mq and clarifies the estimate for ‖q‖

X−1/2
ζ

.

This idea comes from [NS14], where uniqueness is established in three dimensions
for conductivities in W 3/2+,2. Remarkably, they showed that under this assumption the
boundedness of mq on average can be proven without taking advantage of the curvature
of�ζ . Using our framework, this corresponds (roughly speaking) to applyingBernstein’s
inequality to uμ in the e1 direction and Sobolev embedding to f in the other directions,
to obtain

|
∫

(∇ f )uμvν | � ‖∇ f ‖L2
e1
L∞
e2,e3

‖uμ‖L∞
e1
L2
e2,e3

‖vν‖L2

� ‖〈D〉2+ f ‖2 μ1/2‖uμ‖2‖vν‖2
� ν−1/2τ−1‖D2+ f ‖2‖uμ‖

X1/2
ζ

‖uν‖X1/2
ζ

.

Taking f supported in {|ξ | � τ, |ξ1| � ν}, we obtain

|
∫

(∇ f )uμvν | � ‖D1/2D−1/2
1 D1/2+ f ‖2‖uμ‖

X1/2
ζ

‖vν‖X1/2
ζ

,

and we can estimate ‖D1/2D−1/2
1 D1/2+ f ‖2 on average as before.

When n ≥ 7, the situation is essentially the same, but there is a new technical
difficulty. Since our methods are global in space, we need to extend the conductivities
γi ∈ Ws,p(�) to some γi ∈ Ws,p(Rn) which agree outside of �. When s ≤ 1 + 1/p,
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we can do this as long as γ1 = γ2 on the boundary. However, when s > 1 + 1/p, we
also need ∂νγ1 = ∂νγ2 on the boundary, and there does not seem to be such a boundary
identification result in the literature.

It is possible that one can relax the uniform ellipticity condition on γ . The natural
condition to impose is then ∇ log γ ∈ Ln , in which case log γ is only in BMO, which
would correspond to the results of [ALP11] in the plane. We will not address this issue,
as it introduces numerous technical difficulties. We note, however, that the assumption
in Theorem 5.3 is of this type.

2. Notation

Let ζ = τ(e1−ie2),where e1, e2 ∈ R
n are orthogonal unit vectors.Define the conjugated

Laplacian

	ζ := e−x ·ζ 	ex ·ζ ,

a differential operator whose symbol is

pζ (ξ) := −|ξ |2 + 2iζ · ξ.

This symbol vanishes simply on the characteristic set

�ζ := {ξ : pζ (ξ) = 0} = {ξ : ξ1 = 0, |ξ − τe2| = τ },
which is a sphere of codimension two. In fact, it is not hard to check that

|pζ (ξ)| ∼
{

τd(ξ,�ζ ) d(ξ,�ζ ) ≤ τ/8
τ 2 + |ξ |2 d(ξ,�ζ ) > τ/8

(10)

where d(ξ,�ζ ) ∼ |ξ1| + ||ξ − τe2| − τ | is the distance from ξ to �ζ . We will refer to
this distance as the modulation.

Define the Banach spaces Ẋb
ζ and Xb

ζ with norms

‖u‖Ẋb
ζ

= ‖|pζ (ξ)|bû‖L2

‖u‖Xb
ζ

= ‖(|pζ (ξ)| + τ)bû‖L2 .

We will use the Greek letters λ,μ, ν to represent dyadic integers of the form 2k , where
k ≥ 0. For λ > 1 we define Eλ to be the set of ξ with modulation comparable to λ:

Eλ := {ξ : d(ξ,�ζ ) ∈ (λ/2, λ]}.
Similarly, for any λ we write

E≤λ := {ξ : d(ξ,�ζ ) ≤ λ}.
Since our problem is localized to a fixed compact set, the uncertainty principle implies
that we need not distinguish frequencies which are separated on the unit scale. Therefore,
by abuse of notation wewill define E1 := E≤1. Letmλ denote the characteristic function
of Eλ, and similarly for m≤λ.

Let Qλ, Q≤λ be the Fourier multipliers with symbols mλ,m≤λ. We will wish to
distinguish the cases λ ≤ τ/8 and λ � τ/8, so we define projections onto low and high
modulation by
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Ql =
∑

1≤λ≤τ/8

Qλ

Qh =
∑

λ>τ/8

Qλ,

where the λ vary over dyadic integers. By (10), we have

‖Qhu‖H1
τ

� ‖u‖
Ẋ1/2

ζ

. (11)

We will also need the standard Littlewood–Paley projections. For these we choose a
smooth dyadic partition of unity, i.e. a function χ ∈ C∞

0 (R) supported on [1/2, 2] such
that

1 =
∞
∑

k=−∞
χ(2−kρ)

for any ρ > 0. For a dyadic integer λ > 1, we set χλ(ξ) = χ(|ξ |/λ), and by abuse
of notation we again set χ1 = ∑

λ≤1 χλ. The Littlewood–Paley projections Pλ are
defined as the Fourier multipliers with symbols χλ. Given a direction ω ∈ Sn−1, we can
also define the Littlewood–Paley projections Pω

λ in the ω direction using the Fourier
multipliers χ(|ξ · ω|/λ).

3. Strichartz Estimates

Ourgoal in this section is to prove L p estimates for functions in Ẋ1/2
ζ .We follow [KRS87].

Since the symbol pζ (ξ) is characteristic on a sphere�ζ , we begin with the Stein–Tomas
restriction theorem.

Theorem 3.1 [Ste93,Tom75]. Suppose p ≥ (2d + 2)/(d − 1). Let σ denote the surface
measure on Sd−1. Then

‖ f̂ dσ‖L p(Rd ) � ‖ f ‖L2(Sd−1).

Let τ Sd−1 denote the sphere of radius τ . Given a set E we define its λ-neighborhood

Nλ(E) := {ξ : d(ξ, E) ≤ λ}.
We use the following rescaled and localized variant of the restriction theorem:

Corollary 3.2. Let p be as above. Suppose that ĝ is supported in Nλ(τ Sd−1), where
λ ≤ τ/8. Then

‖g‖L p � λ1/2τ (d−1)/2−d/p‖ĝ‖L2(Nλ(τ Sd−1))

Proof. By Fourier inversion, we have

g(x) = cd

∫

ĝ(ξ)eix ·ξ dξ

= cd

∫ τ+λ

τ−λ

∫

Sd−1
ĝ(ρω)eiρ〈x,ω〉 ρd−1 dρ dσ

= cd

∫ τ+λ

τ−λ

ρd−1(ĝ(ρω) dσ)∨(ρx) dρ.

By Minkowski’s inequality, the restriction theorem, Cauchy–Schwarz, and Plancherel
this implies that
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‖g‖L p �
∫ τ+λ

τ−λ

‖(ĝ(ρω) dσ)∨(ρx)‖L p(Rd ) ρd−1 dρ

�
∫ τ+λ

τ−λ

ρ−d/p‖(ĝ(ρω) dσ)∨(x)‖L p(Rd ) ρd−1 dρ

� τ−d/p
∫ τ+λ

τ−λ

‖ĝ(ρω)‖L2(Sd−1) ρd−1 dρ

� τ−d/p(λτ d−1)1/2
(∫ τ+λ

τ−λ

‖ĝ(ρω)‖2L2(Sd−1)
ρd−1 dρ

)1/2

= λ1/2τ (d−1)/2−d/p‖ĝ‖L2(Nλ(τ Sd−1)).

��
We deduce the following Strichartz-type estimates

Lemma 3.3. Let p = 2n/(n − 2), λ ≤ τ/8. Then2

‖Qλ f ‖p � (λ/τ)1/n‖ f ‖
X1/2

ζ

. (12)

‖ f ‖p � ‖ f ‖
X1/2

ζ

. (13)

Proof. By a change of coordinates, we may assume e1 = (1, 0, . . . , 0). We use the
notation ξ = (ξ1, ξ

′).
For (12), write g = Qλ f . Note that

Eλ ⊂ {ξ : |ξ1| ≤ cλ, ||ξ ′ − τe′
2| − τ | ≤ cλ}.

We can write g = φλ ∗x1 g, where φλ(x1) = λφ(λx1) for some Schwartz φ and the
convolution is taken in the x1 variable only. By Minkowski’s inequality and Young’s
inequality, we have

‖g‖p =
∥
∥
∥
∥

∫

φλ(x1 − y1)g(y1, x
′) dy1

∥
∥
∥
∥
p

�
∥
∥
∥
∥

∫

|φλ(x1 − y1)|‖g(y1)‖L p
x ′
dy1

∥
∥
∥
∥
L p
x1

� λ1/2−1/p‖g‖L2
x1
L p
x ′
.

If we regard g as a function in the x ′ variable, we see that its Fourier transform lies in
Ncλ(τ Sn−2 + τe′

2). By Corollary 3.2 and translation invariance, we have ‖g(x1)‖L p
x ′

�
λ1/2τ (n−2)/(2n)‖ĝ(x1)‖L2

x ′
for each x1. It follows that

‖g‖p � λ1/2λ1/2−1/pτ 1/2−1/n‖ĝ‖2 � λ1/nτ−1/n‖ f ‖
X1/2

ζ

.

For (13), we apply (12) near �ζ and Sobolev embedding away from �ζ . On E we
have

2 Strictly speaking, the X1/2
ζ norm should be replaced with Ẋ1/2

ζ , but this will not be important.
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‖Ql f ‖p �
∑

1≤λ≤τ/8

‖Qλ f ‖p

�
∑

1≤λ≤τ/8

(λ/τ)1/n‖Qλ f ‖X1/2
ζ

�

⎛

⎝
∑

1≤λ≤τ/8

‖Qλ f ‖2
X1/2

ζ

⎞

⎠

1/2

≤ ‖ f ‖
X1/2

ζ

.

Away from E we have

‖Qh f ‖p � ‖Qh f ‖H1 � ‖ f ‖
X1/2

ζ

by (11). Combining these estimates gives the claimed inequality. ��

4. Bilinear Estimates

Given a tempered distribution f ∈ S ′(Rn), define the map m f : S(Rn) → S ′(Rn) by
m f φ := f φ. We would like to control ‖m f ‖X1/2

ζ →X−1/2
ζ

. By duality, this is equivalent

to establishing a bilinear estimate of the form

|m f (u, v)| � ‖u‖
X1/2

ζ

‖v‖
X1/2

ζ

,

where

m f (u, v) = 〈m f u, v〉.
Suppose that f ∈ Ln/2. By (13), we have

|m f (u, v)| � ‖ f ‖n/2‖u‖2n/(n−2)‖v‖2n/(n−2) (14)

� ‖ f ‖n/2‖u‖
X1/2

ζ

‖v‖
X1/2

ζ

. (15)

We also have

|m f (u, v)| � ‖ f ‖∞‖u‖2‖v‖2 � τ−1‖ f ‖∞‖u‖
X1/2

ζ

‖v‖
X1/2

ζ

. (16)

Amore difficult task is to controlm∇ f . We record the main computation in the following
lemma:

Lemma 4.1. Let s, p, θ be as in Theorem 1.1. Let 1/q = 1/2 − 1/p. There is some
α > 0 such for fixed λ ≤ 100τ , we have

∑

μ≤ν≤τ/8
ν<λ

(ν/λ)(1−θ)/n‖Qμu‖q‖Qνv‖2 � (λ/τ)αλs−2‖u‖
X1/2

ζ

‖v‖
X1/2

ζ

, (17)

and
∑

μ≤ν≤τ/8
λ≤ν<τ/8

‖Qμu‖q‖Qνv‖2 � λ−1(λ/τ)α‖u‖
X1/2

ζ

‖v‖
X1/2

ζ

. (18)
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Proof. Wemay interpolate (12)with the trivial estimate‖Qμu‖2 � (μτ)−1/2‖Qμu‖
X1/2

ζ

to obtain

‖Qμu‖q � (μ/τ)(1−θ)/n(μτ)−θ/2‖Qμu‖
X1/2

ζ

where 1/q = 1/2 − 1/p and θ is such that p = n/(1 − θ). Combining this with the
trivial L2 estimate for v, we obtain

‖Qμu‖q‖Qνv‖2 � Bμ,ν‖Qμu‖
X1/2

ζ

‖Qνv‖
X1/2

ζ

where

Bμ,ν := τ−(1−θ)/n−θ/2−1/2μ(1−θ)/n−θ/2ν−1/2.

Set

β := 1 − θ

n
− θ

2
.

Suppose first that β > 0. When ν ≥ λ we have

Bμ,ν � τ−(1−θ)/n−θ/2−1/2λ(1−θ)/n−θ/2−1/2(μ/ν)β

= λ−θ−1(λ/τ)(1−θ)/n+θ/2+1/2(μ/ν)β.

We takeα ≤ (1−θ)/n+(1+θ)/2 anduse the discreteYoung’s inequality to establish (18).
Suppose now that ν < λ. When n = 3, we set θ = 0,

(ν/λ)1/3Bμ,ν = (ν/λ)1/3τ−5/6μ1/3ν−1/2

= (μ/ν)1/3(ν/τ)1/6(λ/τ)2/3λ−1.

By Young’s inequality we have (17) for α ≤ 2/3. When n = 4 we take θ to be zero and
obtain

(ν/λ)1/4Bμ,ν = (ν/λ)1/4τ−3/4μ1/4ν−1/2

= (μ/ν)1/4(λ/τ)3/4λ−1.

Applying Young’s inequality we have (17) for α ≤ 3/4.
When n > 4, we have

(ν/λ)(1−θ)/n Bμ,ν = (μ/ν)βν−1/2+2(1−θ)/n−θ/2λs−2(λ/τ)(1−θ)/n+θ/2+1/2.

In this case we have (17) for α ≤ (1 − θ)/n + θ/2 + 1/2
In higher dimensions, we also want to consider the case (1 − θ)/n − θ/2 ≤ 0. For

ν ≥ λ we have

Bμ,ν ≤ μβλ−1/2τ−(1−θ)/n−θ/2−1/2

� λ−1τ−(1−θ)/n−θ/2.

Then we have (18) for α < (1−θ)/n +θ/2, since there are only∼ log τ possible values
of μ, ν.

For λ ≥ ν we have

(ν/λ)(1−θ)/n Bμ,ν � ν(1−θ)/n−1/2λ−2(1−θ)/n−θ/2−1/2(λ/τ)(1−θ)/n+θ/2+1/2.

Thus we have (17) for α ≤ (1 − θ)/n + θ/2 + 1/2. ��
Let Pλ denote the Littlewood–Paley projections, and let P1

μ denote the Littlewood–
Paley projections in the e1 direction. Then
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Lemma 4.2. Let s, p be as in Theorem 1.1. Then for any f ∈ Ws−1,p(Rn) ∩ Ln(Rn),

‖m∇ f ‖X1/2
ζ →X−1/2

ζ

� ‖ f ‖n + sup
ν≤λ≤100τ

(λ/τ)β(λ/ν)1/pλs−1‖PλP
1≤8ν f ‖p,

where β > 0.

Proof. Write

m∇ f (u, v)=m∇ f (Qhu, Qhv)+ m∇ f (Qhu, Qlv)+ m∇ f (Qlu, Qhv)+ m∇ f (Qlu, Qlv).

We can treat all but the last term using (11) and (13). Integrating by parts,

|m∇ f (Qhu, Qhv)| � ‖ f ‖n‖Qh∇u‖2‖Qhv‖2n/(n−2) + ‖ f ‖n‖Qhu‖2n/(n−2)‖Qh∇v‖2
� ‖ f ‖n‖u‖

X1/2
ζ

‖v‖
X1/2

ζ

.

Since Qlv is supported in |ξ | � τ ,

|m∇ f (Qhu, Qlv)| � ‖ f ‖n‖Qh∇u‖2‖Qlv‖2n/(n−2) + ‖ f ‖n‖Qhu‖2‖Ql∇v‖2n/(n−2)

� ‖ f ‖n‖Qhu‖H1
τ
‖Qlv‖2n/(n−2)

� ‖ f ‖n‖u‖
X1/2

ζ

‖v‖
X1/2

ζ

.

It remains to estimate m∇ f (Qlu, Qlv). We have

m∇ f (Qlu, Qlv) =
∑

μ,ν,λ

∫

(∇Pλ f ) Qμu Qνv dx . (19)

Suppose μ ≤ ν (the case μ > ν is identical). Because Qμu Qνv has Fourier support in
{ξ : |ξ1| ≤ 2ν}, Plancherel’s theorem and Hölder’s inequality give

∣
∣
∣
∣

∫

(∇Pλ f ) Qμu Qνv dx

∣
∣
∣
∣
=

∣
∣
∣
∣

∫

P1≤8ν(∇Pλ f ) Qμu Qνv dx

∣
∣
∣
∣

� ‖P1≤8ν∇Pλ f ‖p‖Qμu‖q‖Qνv‖2.
Furthermore, since Qμu Qνv has Fourier support in {|ξ | � 100τ }, we can assume
λ ≤ 100τ in this sum. Applying Lemma 4.1, we get

|m∇ f (Qlu, Qlv)| �
∑

ν≥λ
μ≤ν

‖∇Pλ f ‖p‖Qμu‖q‖Qνv‖2

+
∑

ν<λ≤100τ
μ≤ν

(λ/ν)1/p(ν/λ)1/p‖∇PλP
1≤8ν f ‖p‖Qμu‖q‖Qνv‖2

�
∑

λ≤100τ

{(λ/τ)αλ−1‖∇Pλ f ‖p

+ sup
ν≤λ

(λ/τ)α(λ/ν)1/pλs−2‖∇PλP
1≤8ν f ‖p}

× ‖u‖
X1/2

ζ

‖v‖
X1/2

ζ

� (‖ f ‖p + sup
ν≤λ≤100τ

(λ/τ)α/2(λ/ν)1/pλs−1‖PλP
1≤8ν f ‖p)

× ‖u‖
X1/2

ζ

‖v‖
X1/2

ζ

.

��
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5. Averaging

Given any vector ω ∈ Sn−1, we define Pω
μ to be Littlewood–Paley projection in ω

direction. Let μ denote Haar measure on O(n), normalized so that if σ is the usual
spherical measure on Sn−1 and f : Sn−1 → R is integrable, then for any θ ∈ Sn−1 we
have ∫

O(n)

f (Uθ) dμ(U ) =
∫

Sn−1
f (ω) dσ(ω). (20)

Lemma 5.1. Suppose p ∈ [2,∞]. Let f ∈ L p(Rn). For U ∈ O(n) and ν ≤ λ, define

Aλ,ν(U ) = (λ/ν)1/p‖PλP
Ue1≤ν f ‖p.

Then

‖Aλ,ν‖L p(O(n)) � ‖ f ‖p.

Proof. We define an operator T mapping functions on R
n to functions on O(n) × R

n

by

T f (U, x) = PλP
Ue1≤ν f (x).

The lemma asserts that this operator is bounded from L p(Rn) to L p(O(n) × R
n). By

interpolation, it suffices to establish this at the endpoints p = 2 and p = ∞.
When p = ∞ this is just the fact that the Littlewood–Paley projections are bounded

on L∞.
When p = 2 we use Plancherel’s theorem and Fubini.

‖T f ‖2L2 ∼
∫

O(n)

∫

Rn
|φ(ξ/λ)χ(ξ · (Ue1)/ν) f̂ (ξ)|2 dξ dμ(U )

≤
(

sup
ξ

∫

O(n)

|φ(ξ/λ)χ(ξ · (Ue1)/ν)|2 dμ(U )

)

‖ f ‖22.

Here φ is supported on an annulus, and χ is supported on an interval. We estimate the
last integral using (20) and spherical coordinates:

∫

O(n)

|φ(ξ/λ)χ(ξ · (Ue1)/ν)|2 dμ(U ) � sup
|ξ |∼λ

∫

Sn−1
|χ(|ξ |ω · e1/ν)|2 dσ(ω)

� sup
|ξ |∼λ

∫ π

0
|χ(|ξ | cos θ/ν)|2 sin(θ)n−2 dθ

� sup
|ξ |∼λ

∫ 1

−1
χ(|ξ |u/ν) du

� sup
|ξ |∼λ

ν

|ξ |
� ν

λ
.

This shows that

‖T f ‖2 � (ν/λ)1/2‖ f ‖2,
which completes the proof. ��
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Define ζ(τ,U ) = τU (e1 − ie2). Our next lemma establishes that ‖q‖
X−1/2

ζ(τ,U )

is small on

average. This is implied by [HT13, Lemma 3.1], but we give a simpler proof here, based
on [NS14]:

Lemma 5.2. If f ∈ Ḣ−1, then

M−1
∫ 2M

M

∫

O(n)

‖ f ‖2
Ẋ−1/2

ζ(τ,U )

dμ(U ) dτ � ‖P≥100M f ‖2
Ḣ−1 + M−1‖P<100M f ‖2

Ḣ−1/2 .

Proof. This is true if f is supported at frequencies |ξ | ≥ 100M , because there we have
|pζ (ξ)| ≥ |ξ |2. Thus we may assume that f is supported at frequencies |ξ | � M , where
we have |pζ (ξ)| � 2τ |ξ · (Ue1)| + |−|ξ |2 + 2τξ · (Ue2)|. Here we use Plancherel and
the identity UT = U−1 and estimate as in Lemma 5.1 by

‖|∇|−1/2 f ‖22 sup
|ξ |≤100M

|ξ |
M

∫ 2M

M

∫

O(n)

(2τ |(U−1ξ) · e1| + |−|ξ |2

+ 2τ(U−1ξ) · e2|)−1 dμ(U ) dτ.

By (20), the quantity inside the supremum is given by

1

M

∫ 2M

M

∫

Sn−1
(2τ |ω · e1| + |−|ξ | + 2τω · e2|)−1 dσ(ω) dτ.

We view (τ, ω) as polar coordinates and change variables to u = τω. Then in the region
τ ∈ [M, 2M] the volume element du is bounded below by Mn−1 dσ(ω) dτ , so this
integral is bounded by

1

Mn

∫

|u|∈[M,2M]
(2|u1| + |−|ξ | + 2u2|)−1 du.

Writing v = (u1, u2), and integrating over the remaining variables, we bound by

1

Mn
Mn−2

∫

B(0,2M)

(2|v1| + |−|ξ | + 2v2|)−1 dv ≤ 1

M2

∫

B(0,2M)

|v|−1 dv

∼ 1

M
.

��
We summarize our estimates so far in the following

Theorem 5.3. Let s, p be as in Theorem 1.1, and let γ be a positive real-valued function
on R

n such that ∇ log γ ∈ Ws−1,p and γ = 1 outside of a large ball B. For q =
γ −1/2	γ 1/2, we have

M−1
∫ 2M

M/2

∫

O(n)

‖q‖2
X−1/2

ζ(τ,U )

dμ(U ) dτ → 0. (21)

Furthermore,

sup
τ∈[M/2,2M]

‖mq‖X1/2
ζ(τ,U )

→X−1/2
ζ(τ,U )

≤ CM + AM (U ), (22)

where CM → 0 as M → ∞ and
∑

k>2

k−1‖A2k‖p
L p(O(n)) < ∞. (23)
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Proof. First, we write

γ −1/2	γ 1/2 = 1
2	 log γ + 1

4 |∇ log γ |2 =
∑

i

∇i fi + h,

where fi ∈ Ws−1,p and h ∈ L p/2.
We decompose each term into a good part and a bad part. Let φε = ε−nφ(x/ε),

where φ is a C∞
0 function supported on the unit ball and

∫

φ = 1. Define fε = f ∗ φε .
By (16), we have

‖m∇ fε‖X1/2
ζ →X−1/2

ζ

+ ‖mhε‖X1/2
ζ →X−1/2

ζ

� τ−1(‖∇ fε‖∞ + ‖hε‖∞)

� τ−1ε−2(‖ f ‖n + ‖h‖n/2).

We also have

‖∇ fε‖X−1/2
ζ

� τ−1/2‖∇ fε‖2
� τ−1/2ε−1‖ f ‖2
� τ−1/2ε−1‖ f ‖n,

since n > 2 and f is compactly supported. For n ≥ 4 we have

‖h‖
X−1/2

ζ

� τ−1/2‖h‖2
� τ−1/2‖h‖n/2,

(24)

and for n = 3 we have

‖hε‖X−1/2
ζ

� τ−1/2‖hε‖2
� τ−1/2ε−1/2‖h‖3/2.

Taking ε = M−1/4, we find that if we replace q with qε then the left hand sides of (21)
and (22) vanish as τ → ∞.

It remains to treat the bad part q − qε . Let g = f − fε , and define

A(τ,U ) = ‖m∇g‖X1/2
ζ(τ,U )

→X−1/2
ζ(τ,U )

.

Using Lemma 4.2, we have

sup
τ∈[M/2,2M]

A(τ,U ) � ‖g‖L p +

⎛

⎝
∑

1≤ν≤λ≤4M

[(λ/M)βλs−1Aλ,ν(U )]p
⎞

⎠

1/p

,

where Aλ,ν(U ) = (λ/ν)1/p‖PλP
Ue1≤8ν g‖L p . As M → ∞, we have ε = M−1/4 → 0,

so ‖g‖L p → 0. We take AM (U ) to be the second term on the right hand side of this
inequality, which is clearly ameasurable function on O(n). Now, Pλg = PλP∼λg, where
P∼λg = ∑

λ/16≤μ≤16λ Pμg. Applying Lemma 5.1, we have
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‖AM (U )‖p
L p(O(n)) �

∑

1≤ν≤λ≤M/4

[(λ/M)βλs−1‖P∼λg‖L p ]p

� logM
∑

1≤λ≤M/4

[(λ/M)βλs−1‖P∼λ f ‖L p ]p.

We control this quantity by taking a weighted sum over dyadic integers M , as in [NS14].
Namely, we have

∑

M≥2

(logM)−1‖AM (U )‖p
L p(O(n)) �

∑

λ

∑

M≥4λ

(λ/M)βp[λs−1‖P∼λ f ‖L p ]p

�
∑

λ

[λs−1‖P∼λ f ‖L p ]p.

The last term is controlled by ‖ f ‖Ws−1,p as a consequence of the Littlewood–Paley
square function estimate. Thus we obtain (23).

By Lemma 5.2, we have

M−1
∫ 2M

M/2

∫

O(n)

‖∇g‖2 dμ(U ) dτ � ‖g‖2L2 � ‖g‖2L p → 0.

Next we treat h−hε . When n ≥ 4 we have ‖h−hε‖X−1/2
ζ

→ 0 by (24). When n = 3,

we have

‖h − hε‖X−1/2
ζ

� ‖h − hε‖H−1/2

� ‖h − hε‖3/2
→ 0

by Sobolev embedding. Finally, by (15) we have

‖mh−hε‖X1/2
ζ →X−1/2

ζ

� ‖h − hε‖n/2 → 0.

��

6. Localization

Because our problem is localized to a compact set, the uncertainty principle implies
that the X1/2

ζ norm is equivalent to the Ẋ1/2
ζ norm. To make this precise, we state the

following

Lemma 6.1 [HT13]. Let φ be a fixed Schwartz function. Then

‖φu‖
Ẋ−1/2

ζ

�φ ‖u‖
X−1/2

ζ

(25)

‖φu‖
X1/2

ζ

�φ ‖u‖
Ẋ1/2

ζ

, (26)

where the constants depend on the seminorms ‖xα∇βφ‖∞.

In particular, we have
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Lemma 6.2. Suppose that q is compactly supported. Then

‖mq‖Ẋ1/2
ζ →Ẋ−1/2

ζ

� ‖mq‖X1/2
ζ →X−1/2

ζ

. (27)

Proof. Let φ be a Schwartz function that it equal to one on the support of q. Then

|〈mqu, v〉| = |〈mqφu, φv〉|
� ‖mq‖X1/2

ζ →X−1/2
ζ

‖φu‖
X1/2

ζ

‖φv‖
X1/2

ζ

� ‖mq‖X1/2
ζ →X−1/2

ζ

‖u‖
Ẋ1/2

ζ

‖v‖
Ẋ1/2

ζ

.

��
We record the following useful fact:

Lemma 6.3. Suppose ζ, ζ̃ ∈ C
n satisfy ζ · ζ = ζ̃ · ζ̃ = 0. Then

‖u‖Xb
ζ

� (1 + |ζ − ζ̃ |)|b|‖u‖Xb
ζ̃

.

Proof. We have

|pζ | ≤ |pζ̃ | + 2|(ζ − ζ̃ ) · ξ |
≤ |pζ̃ | + 2|ζ − ζ̃ ||ξ |
� (1 + |ζ − ζ̃ |)(|pζ̃ | + τ)

by (10). ��

7. Proof of the Main Theorem

We summarize some known results which allow us to extend the γi to all of R
n . First

we transfer the problem to the interior, as in [SU87].

Lemma 7.1. Suppose n ≥ 3. Let γ1, γ2 ∈ W 1,n(Rn) be functions such that 0 < c ≤
γi ≤ c−1 for some c. If γ1 = γ2 outside � and �γ1 = �γ2 , then for q j = 	

√
γ j/

√
γ j ,

we have

〈q1, v1v2〉 = 〈q2, v1v2〉
when each v j is a solution in H1

loc(R
n) to 	v j − q jv j = 0.

Proof. See [Bro03]. ��
The following argument is apparently due to Alessandrini. It amounts to the fact

that q1 = q2 implies that the function log γ1 − log γ2 solves the Dirichlet problem
div

√
g1g2∇u = 0 with u = 0 at infinity. See [SU87,Bro96,Bro03].

Lemma 7.2. Let γi , qi be as in Lemma 7.1, and suppose that q1 = q2 in the sense of
distributions. Then γ1 = γ2.
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Proof. First, have qi ∈ H−1(Rn) for each i . To see this we note that

‖q‖H−1 = ‖ 1
2	 log γ + 1

2 |∇ log γ |2‖H−1

� ‖∇ log γ ‖2 + ‖|∇ log γ |2‖H−1

� ‖∇ log γ ‖n + ‖∇ log γ ‖24n/(n+2)

� ‖∇ log γ ‖n + ‖∇ log γ ‖n
by Sobolev embedding and Hölder’s inequality. It follows that we may test q1 − q2
against the function g1g2(log g1 − log g2) ∈ H1(Rn), where gi = √

γi . This gives

0 =
∫

[∇g1 · ∇(g2(log g1 − log g2)) − ∇g2 · ∇(g1(log g1 − log g2))] dx

=
∫

(g2∇g1 − g1∇g2) · ∇(log g1 − log g2) dx

=
∫

g1g2|∇(log g1 − log g2)|2 dx,

which implies that g1 = g2. ��
Now we apply the boundary determination result of [Bro13], which implies

Theorem 7.3. Suppose that 0 < c < γi < c−1. If γi ∈ W 1,1(�) and �γ1 = �γ2 , then
γ1 = γ2 on ∂�.

Proof of Theorem 1.1. By Theorem 7.3, we have γ1 = γ2 on ∂�. Our assumptions
imply that s − 1/p ≤ 1. Thus by [Mar87] we may extend the γi to functions in Ws,p

such that γ1 = γ2 outside of �. By Lemma 7.1, this implies that

〈q1, v1v2〉 = 〈q2, v1v2〉 (28)

when each v j is a solution in H1
loc(R

n) to 	v j − q jv j = 0.
Fix r > 0 and three orthonormal vectors {e1, e2, e3}, and define

ζ1(τ,U ) = τU (e1 − ie2)

ζ2(τ,U ) = −ζ1(τ,U )

ζ̃1(τ,U ) := τUe1 + i(rUe3 −
√

τ 2 − r2Ue2)

ζ̃2(τ,U ) := −τUe1 + i(rUe3 +
√

τ 2 − r2Ue2).

In what follows, all of inequalities will implicitly depend on r . For example, we have
|ζi − ζ̃i | � 1. In particular, by Lemma 6.3, the spaces Xb

ζi
and Xb

ζ̃i
have equivalent norms.

Now let

F(τ,U ) =
∑

i

‖mqi ‖p

X1/2
ζi (τ,U )

→X−1/2
ζi (τ,U )

+
∑

i, j

‖qi‖2
X−1/2

ζ j (τ,U )

.

By Theorem 5.3 and the fact that
∑

k>1 k
−1 = ∞, we have

lim inf
M→∞ M−1

∫ 2M

M

∫

O(n)

F(τ,U ) dμ(U ) dτ = 0. (29)
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Nowwe use an argument from [NS14, Section 3.3] to select τ andU . Their first observa-
tion is that if ε > 0 and Bε = {U ∈ O(n) : ‖U− I‖ < ε}, then by simply restricting (29)
we have

lim inf
M→∞ M−1μ(Bε)

−1
∫ 2M

M

∫

Bε

F(τ,U ) dμ(U ) dτ = 0.

Thus we may choose, for a sequence of M = Ml such that Ml → ∞, some τ = τε,l ∈
[Ml , 2Ml ],U = Uε,l ∈ Bε and δ = δε,l > 0 such that

∑

i

‖mqi ‖X1/2
ζi (τ,U )

→X−1/2
ζi (τ,U )

+
∑

i, j

‖qi‖X−1/2
ζ j (τ,U )

≤ δ (30)

where δε,l → 0 as l → ∞.
By (27), we have

‖mqi ‖Ẋ1/2
ζ̃i (τ,U )

→Ẋ−1/2
ζ̃i (τ,U )

� ‖mqi ‖X1/2
ζ̃i (τ,U )

→X−1/2
ζ̃i (τ,U )

.

It follows that,

‖mqi ‖Ẋ1/2
ζ̃i (τ,U )

→Ẋ−1/2
ζ̃i (τ,U )

� δε,l .

Since δε,l → 0 as l → ∞, we can choose l large enough that the left hand side is less
than 1/2. Since ‖	−1

ζ ‖
Ẋ−1/2

ζ →Ẋ1/2
ζ

= 1 for any ζ , we can use the contraction mapping

principle to construct solutions ψi ∈ Ẋ1/2
ζ̃i (τ,U )

to the equations (	ζ̃i (τ,U ) −mqi )ψi = qi ,

satisfying

‖ψi‖Ẋ1/2
ζ̃i (τ,U )

� ‖q‖
Ẋ−1/2

ζ̃i (τ,U )

.

Note that by (6), such a solution lies in H1
loc(R

n). This implies that the corresponding

solution vi = ex ·ζ̃i (τ,U )(1 +ψi ) to the Schrödinger equation (	 − qi )vi lies in H1
loc(R

n)

as well.
Let k = 2rUe3. By (28),

0 = 〈q1 − q2, e
ik·x (1 + ψ1)(1 + ψ2)〉

= 〈q1 − q2, e
ik·x 〉 + 〈q1 − q2, e

ik·xψ1ψ2〉 + 〈q1 − q2, e
ik·x (ψ1 + ψ2)〉.

We need to show that the second and third terms are small. Let φ be a Schwartz function
that is equal to one on the support of q. Then

|〈q1, eik·xψ1ψ2〉| = |〈mq1e
−ik·xψ2, ψ1〉|

� ‖e−ik·xφψ2‖X1/2
ζ1(τ,U )

‖φψ1‖X1/2
ζ1(τ,U )

= ‖eik·xφψ2‖X1/2
ζ2(τ,U )

‖φψ1‖X1/2
ζ1(τ,U )

� ‖ψ2‖Ẋ1/2
ζ̃2(τ,U )

‖ψ1‖Ẋ1/2
ζ̃1(τ,U )

� ‖q2‖X−1/2
ζ2(τ,U )

‖q1‖X−1/2
ζ1(τ,U )

,
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since the seminorms of e−ik·xφ are bounded with a bound depending only on r . We can
bound the q2 term in the same way. On the other hand, we have

|〈qi , eik·xψ1〉| � ‖qi‖X−1/2
ζ1(τ,U )

‖ψ1‖Ẋ1/2
ζ̃1(τ,U )

� ‖qi‖X−1/2
ζ1(τ,U )

‖q1‖X−1/2
ζ1(τ,U )

by duality of Ẋ1/2
ζ1(τ,U ) and Ẋ−1/2

ζ1(τ,U ). The terms with ψ2 are the same. In summary, we
obtain

|(q̂1 − q̂2)(2rUe3)| �
∑

1≤i, j,k,l≤2

‖qi‖X−1/2
ζ j (τ,U )

‖qk‖X−1/2
ζl (τ,U )

� δ2 (31)

by (30).
To finish the proof, we again follow [NS14]. Since Bε is compact, we may pass to a

subsequence such that Uε,l → Uε for some Uε ∈ Bε . Since the q̂i are continuous, we
may pass to the limit in (31) to obtain

|q̂1 − q̂2|(2rUεe3) � lim
l→∞ δ2ε,l = 0.

Note that by construction, we have Uε → I as ε → 0. Thus, by taking limits again,
we obtain (q̂1 − q̂2)(2re3) = 0. Since e3 ∈ Sn−1 and r were arbitrary, this means that
q̂1 − q̂2 = 0.

Acknowledgments. The author would like to thank his advisor, Daniel Tataru, for his patient guidance and
encouragement. He would also like to thank Gunther Uhlmann, Russell Brown, Alberto Ruiz and Mikko Salo
for many helpful conversations. Finally, the author would like to thank the anonymous referee for carefully
reading the manuscript and suggesting many corrections and improvements.

References

[AKS62] Aronszajn, N., Krzywicki, A., Szarski, J.: A unique continuation theorem for exterior differ-
ential forms on Riemannian manifolds. Ark. Mat. 4(5), 417–453 (1962)

[Ale90] Alessandrini, G.: Singular solutions of elliptic equations and the determination of conductivity
by boundary measurements. J. Differ. Equ. 84(2), 252–272 (1990)

[Ale92] Alessandrini, G.: A simple proof of the unique continuation property for two dimensional
elliptic equations in divergence form. Quaderni Matematici II Serie, vol. 276. Dipartimento
di Scienze Matematiche, Trieste (1992)

[ALP11] Astala, K., Lassas, M., Päivärinta, L.: The borderlines of the invisibility and visibility for
Calderon’s inverse problem (2011). arXiv:1109.2749 [math-ph]

[Bou93] Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applica-
tions to nonlinear evolution equations. Geom. Funct. Anal. 3(2), 107–156 (1993)

[Bro96] Brown, R.M.: Global uniqueness in the impedance-imaging problem for less regular conduc-
tivities. SIAM J. Math. Anal. 27(4), 1049 (1996)

[Bro03] Brown, B.H.: Electrical impedance tomography (eit): a review. J. Med. Eng. Tech-
nol. 27(3), 97–108 (2003)

[Bro13] Brown, R.M.: Recovering the conductivity at the boundary from the Dirichlet to Neumann
map: a pointwise result. J. Inverse Ill-Posed Probl. 9(6), 567–574 (2013)

[Cal80] Alberto, C.: On an inverse boundary value problem. Comput. Appl. Math. 25(2–3), 133–
138 (1980)

[Cha90] Chanillo, S.: A problem in electrical prospection and a n-dimensional Borg-Levinson theo-
rem. Proc. Am. Math. Soc. 108(3), 761–767 (1990)

[CR14] Caro, P., Rogers,K.:Global uniqueness for theCalderón problemwithLipschitz conductivities
(2014). arXiv:1411.8001 [math]

http://arxiv.org/abs/1109.2749
http://arxiv.org/abs/1411.8001


Uniqueness in Calderón’s Problem 659

[DSFKSU09] Ferreira, D.D.S., Kenig, C.E., Salo, M., Uhlmann, G.: Limiting Carleman weights and
anisotropic inverse problems. Invent. Math. 178(1), 119–171 (2009)

[GLU03] Greenleaf, A., Lassas, M., Uhlmann, G.: On nonuniqueness for Calderón’s inverse prob-
lem. Math. Res. Lett. 10(5), 685–693 (2003)

[HT13] Haberman, B., Tataru, D.: Uniqueness in Calderón’s problem with Lipschitz conductivi-
ties. Duke Math. J. 162(3), 497–516 (2013)

[KRS87] Kenig, C.E., Ruiz, A., Sogge, C.D.: Uniform sobolev inequalities and unique continuation for
second order constant coefficient differential operators. Duke Math. J. 55(2), 329–347 (1987)

[KSVW08] Kohn, R.V., Shen, H., Vogelius, M.S., Weinstein, M.I.: Cloaking via change of variables in
electric impedance tomography. Inverse Probl. 24(1), 015016 (2008)

[KT01] Koch, H., Tataru, D.: Carleman estimates and unique continuation for second-order elliptic
equations with nonsmooth coefficients. Commun. Pure Appl. Math. 54(3), 339–360 (2001)

[KU14] Krupchyk, K., Uhlmann, G.: Uniqueness in an inverse boundary problem for a magnetic
Schrödinger operator with a bounded magnetic potential. Commun. Math. Phys. 327(3), 993–
1009 (2014)

[KV84] Kohn, R., Vogelius,M.:Determining conductivity by boundarymeasurements. Commun. Pure
Appl. Math. 37(3), 289–298 (1984)

[Man98] Mandache, N.: On a counterexample concerning unique continuation for elliptic equations in
divergence form, mathematical physics. Anal. Geom. 1(3), 273–292 (1998)

[Mar87] Marschall, J.: The trace of Sobolev–Slobodeckij spaces on Lipschitz domains. Manuscr.
Math. 58(1–2), 47–65 (1987)

[Mil73] Miller, K.: Nonunique continuation for uniformly parabolic and elliptic equations in selfad-
joint divergence form with hölder continuous coefficients. Bull. Am. Math. Soc. 79(2), 350–
354 (1973)

[NS14] Nguyen, H.-M., Spirn, D.: Recovering a potential from Cauchy data via complex geometrical
optics solutions (2014). arXiv:1403.2255 [math]
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