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Abstract: This paper is the second part of a trilogy dedicated to the following problem:
given spherically symmetric characteristic initial data for the Einstein–Maxwell-scalar
field system with a cosmological constant �, with the data on the outgoing initial null
hypersurface given by a subextremal Reissner–Nordström black hole event horizon,
study the future extendibility of the corresponding maximal globally hyperbolic devel-
opment as a “suitably regular” Lorentzian manifold. In the first paper of this sequence
(Costa et al., Class Quantum Gravity 32:015017, 2015), we established well posedness
of the characteristic problemwith general initial data. In this second paper, we generalize
the results of Dafermos (Ann Math 158:875–928, 2003) on the stability of the radius
function at the Cauchy horizon by including a cosmological constant. This requires a
considerable deviation from the strategy followed in Dafermos (Ann Math 158:875–
928, 2003), focusing on the level sets of the radius function instead of the red-shift and
blue-shift regions. We also present new results on the global structure of the solution
when the free data is not identically zero in a neighborhood of the origin. In the third
and final paper (Costa et al., On the global uniqueness for the Einstein–Maxwell-scalar
field system with a cosmological constant. Part 3. Mass inflation and extendibility of
the solutions. arXiv:1406.7261, 2015), we will consider the issue of mass inflation and
extendibility of solutions beyond the Cauchy horizon.
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4. The Region J−(�ř+) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912

Partially funded by FCT/Portugal through Project PEst-OE/EEI/LA0009/2013. P. Girão and
J. Silva were also partially funded by FCT/Portugal through Grants PTDC/MAT114397/2009 and
UTA CMU/MAT/0007/2009.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-015-2433-6&domain=pdf
http://orcid.org/0000-0003-0885-9867
http://arxiv.org/abs/1406.7261


904 J. L. Costa, P. M. Girão, J. Natário, J. D. Silva
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1. Introduction

This paper is the second part of a trilogy dedicated to the following problem: given spher-
ically symmetric characteristic initial data for the Einstein–Maxwell-scalar field system
with a cosmological constant �, with the data on the outgoing initial null hypersurface
given by a subextremal Reissner–Nordström black hole event horizon, and the remain-
ing data otherwise free, study the future extendibility of the corresponding maximal
globally hyperbolic development as a “suitably regular” Lorentzian manifold. We are
motivated by the strong cosmic censorship conjecture and the question of determinism
in general relativity. As explained in detail in the Introduction of Part 1, strong cosmic
censorship is one of the most fundamental open problems in general relativity (see the
classic monographs [3,10] and the discussions in [1,6,9] for the general context of this
problem). Although significant developments have been achieved in the last five decades
(from the initial heuristic works [14,15] to rigorous mathematical results [6–8]), includ-
ing some recent encouraging progress (see [9,11,13] and references therein), a complete
resolution of the conjecture at hand still seems out of reach. Nonetheless, the spherically
symmetric self-gravitating scalar field model has provided considerable insight into the
harder problem of vacuum collapse without symmetries [2]; this was explored in [12] to
obtain the first promising steps towards understanding the stability of Cauchy horizons
without symmetry assumptions.

In Part 1, we established the equivalence (under appropriate regularity conditions for
the initial data) between the Einstein Eqs. (1)–(5) and the system of first order PDE (14)–
(23).We proved existence, uniqueness and identified a breakdown criterion for solutions
of this system (see Sect. 2).

In the current paper we are concerned with the structure of the solutions of the
characteristic problem, and wish to address the question of existence and stability of
the Cauchy horizon when the initial data is as above. This is intimately related to the
issue of global uniqueness for the Einstein equations: it is the possibility of extension of
solutions across this horizon that leads to the breakdown of global uniqueness and, in
case the phenomenon persists for generic initial data, to the failure of the strong cosmic
censorship conjecture.

As in [6], we introduce a certain generic element in the formulation of our problem
by perturbing a subextremal Reissner–Nordström black hole (whose Cauchy horizon
formation is archetypal) by arbitrary characteristic data along the ingoing null direction.
The study of the conditions under which the solutions can be extended across the Cauchy
horizon is left to Part 3.

We take many ideas from [6,7] and build on these works. In particular, we borrow the
following three very important techniques. (i) The partition of the spacetime domain of
the solution into four regions and the construction of a carefully chosen spacelike curve
to separate the last two. (ii) The use of the Raychaudhuri equation in v to estimate ν

1−μ

at a larger v from its value at a smaller v. (iii) The use of BV estimates for the field.
Nonetheless, the introduction of a cosmological constant � causes a significant dif-

ference that requires deviation from the original strategies developed in [6,7]. Moreover,
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we introduce some technical simplifications and obtain sharper and more detailed esti-
mates. These improvements will be crucial for our arguments in Part 3.

Our approach therefore has three main departures from the one of Dafermos:

(i) First, due to the presence of the cosmological constant �, the curves of constant
shift, which are used in [6,7], are no longer necessarily spacelike for � > 0 large.
This forces us to find an alternative approach; we have chosen to work with curves
of constant r coordinate instead of working with curves of constant shift, which
turns out to be a simpler approach. Furthermore, it allows us to treat the cases
� < 0, � = 0 and � > 0 in a unified framework.

(ii) Second, we show that the Bondi coordinates (r, v) are the ones most adapted to
estimating the growth of the fields as we progress away from the event horizon.
Our approach starts by controlling the field ζ

ν
using (54). Although this is similar

to (53), there is one distinction which makes all the difference. It consists of the
fact that in the double integral in (53) the field ζ

ν
is multiplied by the function

ν. When we pass to Bondi coordinates this function disappears, making a simple
application of Gronwall’s inequality, such as the one we present, possible. This
would not work in the double null coordinate system (u, v).

(iii) Third, our estimates are not subordinate to the division of the solution spacetime
into red shift, no shift and blue shift regions. Instead, we consider the regions
{r ≥ ř+}, {ř− ≤ r ≤ ř+} and {r ≤ ř−}, where ř+ is smaller than but sufficiently
close to the radius r+ of the Reissner–Nordström event horizon, and ř− is bigger
than but sufficiently close to the radius r− of the Reissner–Nordström Cauchy
horizon. Thesemay be loosely thought of as red shift, no shift and blue shift regions
of the background Reissner–Nordström solution, even though the shift factor is not
small and indeed changes significantly from red to blue in the intermediate region.

Our first objective is to obtain good upper bounds for −λ in the different regions of
spacetime. These will enable us to show that the radius function r is bounded below by
a positive constant. However, good estimates for −ν and the fields θ and ζ will also be
essential in Part 3.

The main result of this paper is therefore

Theorem 1.1. Consider the characteristic initial value problem for the first order system
of PDE (14)–(23) with initial data (24)–(25) (so that {0} × [0,∞[ is the event horizon
of a subextremal Reissner–Nordström solution with mass M > 0). Assume that ζ0 is
continuous and ζ0(0) = 0. Then there exists U > 0 such that the domain P of the
(future) maximal development contains [0,U ] × [0,∞[. Moreover,

inf[0,U ]×[0,∞[ r > 0,

the limit

r(u,∞) := lim
v→∞ r(u, v)

exists for all u ∈ ]0,U ] and

lim
u↘0

r(u,∞) = r−.
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So, under the hypotheses of Theorem 1.1, the argument in [7, Section 11], shows that,
as in the case when � = 0, the spacetime is extendible across the Cauchy horizon with
a C0 metric.

We also prove that only in the case of the Reissner–Nordström solution does the
curve {r = r−} coincide with the Cauchy horizon. As soon as the initial data field is not
identically zero, the curve {r = r−} is contained inP (Theorem8.1). This is an interesting
geometrical condition and it is conceptually relevant given the importance that we confer
to the curves of constant r . We also prove that, in contrast with what happens with the
Reissner–Nordström solution, the presence of any nonzero field immediately causes the
integral

∫ ∞
0 κ(u, v) dv to be finite for any u > 0 (Lemma 8.2). As a consequence, the

affine parameter of any outgoing null geodesic inside the event horizon is finite at the
Cauchy horizon (Corollary 8.3).

2. Framework and Some Results from Part 1

The spherically symmetric Einstein–Maxwell-scalar field system with a cosmological
constant. Consider a spherically symmetric spacetime with metric

g = −
2(u, v) dudv + r2(u, v) σS2 ,

where σS2 is the roundmetric on the 2-sphere. The Einstein–Maxwell-scalar field system
with a cosmological constant � and total electric charge 4πe reduces to the following
system of equations: the wave equation for r ,

∂u∂vr = 
2

2

1

r2

(
e2

r
+

�

3
r3 − �

)

, (1)

the wave equation for φ,

∂u∂vφ = − ∂ur ∂vφ + ∂vr ∂uφ

r
, (2)

the Raychaudhuri equation in the u direction,

∂u

(
∂ur


2

)

= −r
(∂uφ)2


2 , (3)

the Raychaudhuri equation in the v direction,

∂v

(
∂vr


2

)

= −r
(∂vφ)2


2 , (4)

and the wave equation for ln
,

∂v∂u ln
 = −∂uφ ∂vφ − 
2e2

2r4
+


2

4r2
+

∂ur ∂vr

r2
. (5)
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The first order system. Given r , φ and 
, solutions of the Einstein equations, let

ν := ∂ur (6)

λ := ∂vr, (7)

� := e2

2r
+
r

2
− �

6
r3 +

2r


2 νλ, (8)

μ := 2�

r
− e2

r2
+

�

3
r2, (9)

θ := r∂vφ, (10)

ζ := r∂uφ (11)

and

κ := λ

1 − μ
. (12)

Notice that we may rewrite (8) as


2 = − 4νλ

1 − μ
= −4νκ. (13)

The Einstein equations imply the first order system for (r, ν, λ,�, θ, ζ, κ)

∂ur = ν, (14)

∂vr = λ, (15)

∂uλ = νκ∂r (1 − μ), (16)

∂vν = νκ∂r (1 − μ), (17)

∂u� = 1

2
(1 − μ)

(
ζ

ν

)2

ν, (18)

∂v� = 1

2

θ2

κ
, (19)

∂uθ = − ζλ

r
, (20)

∂vζ = − θν

r
, (21)

∂uκ = κν
1

r

(
ζ

ν

)2

, (22)

with the restriction

λ = κ(1 − μ). (23)

Under appropriate regularity conditions for the initial data, the system of first order
PDE (14)–(23) also implies the Einstein Eqs. (1)–(5).
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Initial data. In Part 1 we studywell posedness of the first order system for general initial
data. In this paper we take the initial data on the outgoing null direction v to be the data
on the event horizon of a subextremal Reissner–Nordström solution with mass M . The
initial data on the ingoing null direction u is free. More precisely, we choose

⎧
⎨

⎩

r(u, 0) = r0(u) = r+ − u,

ν(u, 0) = ν0(u) = −1,
ζ(u, 0) = ζ0(u),

for u ∈ [0,U ], (24)

⎧
⎪⎨

⎪⎩

λ(0, v) = λ0(v) = 0,
�(0, v) = �0(v) = M,

θ(0, v) = θ0(v) = 0,
κ(0, v) = κ0(v) = 1,

for v ∈ [0,∞[. (25)

Here r+ > 0 is the radius of the event horizon.We assume ζ0 is continuous and ζ0(0) = 0.

Well posedness of the first order system. Theorem 4.4 of Part 1, for the initial data above,
reads:

Theorem 2.1. The characteristic initial value problem (14)–(23), with initial condi-
tions (24) and (25), where ζ0 is continuous and ζ0(0) = 0, has a unique solution defined
on a maximal past set P containing a neighborhood of [0,U ] × {0} ∪ {0} × [0,∞[.
Remark 2.2. Notice that the initial data (24) and (25) satisfies the regularity condition
(h4) in Part 1 (that is, ν0, λ0 and κ0 are C1). Therefore the solution of the characteristic
initial value problem (14)–(23) corresponds to a classical solution of the Einstein Eqs.
(1)–(5).

Breakdown criterion. Theorem 5.4 of Part 1, for the initial data above, reads:

Theorem 2.3. Suppose that (r, ν, λ,�, θ, ζ, κ) is the maximal solution of the charac-
teristic initial value problem (14)–(23), with initial conditions (24) and (25). If (U ′, V ′)
is a point on the boundary of P with 0 < U ′ < U and V ′ > 0, then for all sequences
(un, vn) in P converging to (U ′, V ′), we have

r(un, vn) → 0 and �(un, vn) → ∞.

Reissner–Nordström solution. For comparison purposes, we notice that the Reissner–
Nordström solution (with a cosmological constant), obtained from the initial data
ζ0(u) = 0, corresponds to

λ = 1 − μ, (26)

ν = − 1 − μ

(1 − μ)( · , 0) , (27)

� = �0, (28)

κ = 1, (29)

ζ = θ = 0. (30)
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3. Preliminaries on the Analysis of the Solution

We now take the initial data on the v axis to be the data on the event horizon of a
subextremal Reissner–Nordström solution with mass M > 0. So, we choose initial data
as in (24)–(25) with ζ0(0) = 0. Moreover, we assume ζ0 to be continuous. Since in this
case the function �0 is constant equal to M , we also denote M by �0. In particular,
when � < 0, which corresponds to the Reissner–Nordström anti-de Sitter solution, and
when � = 0, which corresponds to the Reissner–Nordström solution, we assume that

r �→ (1 − μ)(r,�0) = 1 − 2�0

r
+
e2

r2
− �

3
r2

has two zeros r−(�0) = r− < r+ = r+(�0). When � > 0, which corresponds to the
Reissner–Nordström de Sitter solution, we assume that r �→ (1 − μ)(r,�0) has three
zeros r−(�0) = r− < r+ = r+(�0) < rc = rc(�0).

Λ = 0

r0
r

1 − μ( 0)

r+r−

Λ < 0

r0
r

1 − μ( 0)

r+r−

Λ > 0

r0
r

1 − μ( 0)

r+r− rc

We define η to be the function

η = e2

r
+

�

3
r3 − �.

The functions (r,�) �→ η(r,�) and (r,�) �→ (1 − μ)(r,�) are related by

η = − r2

2
∂r (1 − μ). (31)

We define the function η0 : R+ → R by

η0(r) = e2

r
+

�

3
r3 − �0.

We will repeatedly use the fact that η(r,�) ≤ η0(r) (see Lemma 3.1). If � ≤ 0, then
η′
0 < 0. So η0 is strictly decreasing and has precisely one zero. The zero is located

between r− and r+. If � > 0, then η′′
0 is positive, so η0 is strictly convex and has
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precisely two zeros: one zero is located between r− and r+ and the other zero is located
between r+ and rc. We denote by r0 the zero of η0 between r− and r+ in both cases.

Λ = 0

η0

r0
r

Λ < 0

η0

r0
r Λ > 0

η0

r0
r

According to (16), we have ∂uλ(0, 0) = −∂r (1−μ)(r+,�0) < 0. Since λ(0, 0) = 0,
we may choose U small enough so that λ(u, 0) is negative for u ∈ ]0,U ]. Again we
denote by P the maximal past set where the solution of the characteristic initial value
problem is defined. In Part 1 we saw that λ is negative on P\{0} × [0,∞[, and so, as κ

is positive (from (22) and (25)), then 1 − μ is negative on P\{0} × [0,∞[.
Using the above, we can thus particularize the result of Part 1 on signs andmonotonic-

ities to the case where the initial data is (24) and (25) as follows.

Lemma 3.1 (Sign and monotonicity). Suppose that (r, ν, λ,�, θ, ζ, κ) is the maximal
solution of the characteristic initial value problem (14)–(23), with initial conditions (24)
and (25). Then:

• κ is positive;
• ν is negative;
• λ is negative on P\{0} × [0,∞[;
• 1 − μ is negative on P\{0} × [0,∞[;
• r is decreasing with both u and v;
• � is nondecreasing with both u and v.

Using (16) and (20), we obtain

∂u
θ

λ
= − ζ

r
− θ

λ

ν

1 − μ
∂r (1 − μ), (32)

and analogously, using (17) and (21),

∂v

ζ

ν
= − θ

r
− ζ

ν

λ

1 − μ
∂r (1 − μ). (33)
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Given 0 < ř < r+, let us denote by �ř the level set of the radius function

�ř := {(u, v) ∈ P : r(u, v) = ř}.
If nonempty, �ř is a connected C1 spacelike curve, since both ν and λ are negative
on P\{0} × [0,∞[. Using the Implicit Function Theorem, the facts that r(0, v) = r+,
r(u, 0) = r+−u, the signs of ν and λ, and the breakdown criterion given in Theorem 2.3,
one can show that �ř can be parametrized by a C1 function

v �→ (uř (v), v),

whose domain is [0,∞[ if ř ≥ r+ −U , or an interval of the form [vř (U ),∞[, for some
vř (U ) > 0, if ř < r+ −U . Alternatively, �ř can also be parametrized by a C1 function

u �→ (u, vř (u)),

whose domain is always an interval of the form ]uř (∞),min{r+ − ř ,U }], for some
uř (∞) ≥ 0. We prove below that if ř > r−, then uř (∞) = 0.

vř(U)

u

v

U

Γř

u

uř(∞)

v

(u, vř(u)) (uř(v), v)

To analyze the solution we partition the domain into four regions (see figure below).
We start by choosing ř− and ř+ such that r− < ř− < r0 < ř+ < r+. In Sect. 4 we treat
the region ř+ ≤ r ≤ r+. In Sect. 5 we consider the region ř− ≤ r ≤ ř+. In Sect. 6 we
treat the region where (u, v) is such that

vř−(u) ≤ v ≤ (1 + β) vř−(u),

with β > 0 appropriately chosen (we will denote the curve v = (1 + β) vř−(u) by γ ).
Finally, in Sect. 7 we consider the region where (u, v) is such that

v ≥ (1 + β) vř−(u).
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The reader should regard ř−, ř+ and β as fixed. Later, they will have to be carefully
chosen for our arguments to go through.

u

v

Γř+

Γř−

γ

U

The crucial step consists in estimating the fields θ
λ
and ζ

ν
. Once this is done, the other

estimates follow easily. By integrating (32) and (33), we obtain

θ

λ
(u, v) = θ

λ
(uř (v), v)e

− ∫ u
uř (v)

[
ν

1−μ
∂r (1−μ)

]
(ũ,v) dũ

−
∫ u

uř (v)

ζ

r
(ũ, v)e− ∫ u

ũ

[
ν

1−μ
∂r (1−μ)

]
(ū,v) dū dũ, (34)

ζ

ν
(u, v) = ζ

ν
(u, vř (u))e

− ∫ v
vř (u)

[
λ

1−μ
∂r (1−μ)

]
(u,ṽ) d ṽ

−
∫ v

vř (u)

θ

r
(u, ṽ)e− ∫ v

ṽ

[
λ

1−μ
∂r (1−μ)

]
(u,v̄) d v̄ d ṽ. (35)

Formula (34) is valid provided that uř (v) is defined and uř (v) ≤ u, since the domain
P is a past set; it also holds if we replace uř (v) by 0. Similarly, formula (35) is valid
provided that vř (u) is defined and vř (u) ≤ v; again it holds if we replace vř (u) by 0.

4. The Region J−(�ř+)

Recall that r0 < ř+ < r+. In this section, we treat the region ř+ ≤ r ≤ r+, that is,
J−(�ř+).

1 Our first goal is to estimate (42) for ζ
ν
. This will allow us to obtain the

lower bound (43) for κ , which will then be used to improve estimate (42)–(46). Finally,

1 Throughout this paper we follow the usual notations for the causal structure of the quotient Lorentzian
manifold with coordinates (u, v) and time orientation such that ∂

∂u and ∂
∂v

are future-pointing.
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we successively bound θ
λ
, θ , � , and use this to prove that the domain of vř+( · ) is

]0,min{r+ − ř+,U }].
In this region, the solution with general ζ0 can then be considered as a small pertur-

bation of the Reissner–Nordström solution (26)–(30): � is close to �0, κ is close to 1
and ζ, θ are close to 0. Besides, the smaller U is, the closer the approximation.

Substituting (34) in (35) [with both uř (v) and vř (u) replaced by 0], we get

ζ

ν
(u, v) = ζ

ν
(u, 0)e− ∫ v

0

[
λ

1−μ
∂r (1−μ)

]
(u,ṽ) d ṽ (36)

+
∫ v

0

θ

λ
(0, ṽ)e− ∫ u

0

[
ν

1−μ
∂r (1−μ)

]
(ũ,ṽ) dũ

×
[ (−λ)

r

]
(u, ṽ)e− ∫ v

ṽ

[
λ

1−μ
∂r (1−μ)

]
(u,v̄) d v̄ d ṽ

+
∫ v

0

(∫ u

0

[ζ

ν

(−ν)

r

]
(ũ, ṽ)e− ∫ u

ũ

[
ν

1−μ
∂r (1−μ)

]
(ū,ṽ) dū dũ

)

×
[ (−λ)

r

]
(u, ṽ)e− ∫ v

ṽ

[
λ

1−μ
∂r (1−μ)

]
(u,v̄) d v̄ d ṽ.

We make the change of coordinates

(u, v) �→ (r(u, v), v) ⇔ (r, v) �→ (ur (v), v). (37)

The coordinates (r, v) are called Bondi coordinates. We denote by ζ̂
ν
the function ζ

ν
written in these new coordinates, so that

ζ

ν
(u, v) = ζ̂

ν
(r(u, v), v) ⇔ ζ̂

ν
(r, v) = ζ

ν
(ur (v), v).

The same notation will be used for other functions. In the new coordinates, Eq. (36) may
be written

ζ̂

ν
(r, v) = ζ

ν
(ur (v), 0)e− ∫ v

0

[
λ

1−μ
∂r (1−μ)

]
(ur (v),ṽ) d ṽ (38)

+
∫ v

0

θ̂

λ
(r+, ṽ)e

∫ r+
r(ur (v),ṽ)

[
1

1̂−μ
̂∂r (1−μ)

]
(s̃,ṽ) ds̃

×
[ (−λ)(ur (v), ṽ)

r(ur (v), ṽ)

]
e− ∫ v

ṽ

[
λ

1−μ
∂r (1−μ)

]
(ur (v),v̄) d v̄ d ṽ

+
∫ v

0

(∫ r+

r(ur (v),ṽ)

1

s̃

[ ζ̂

ν

]
(s̃, ṽ)e

∫ s̃
r(ur (v),ṽ)

[
1

1̂−μ
̂∂r (1−μ)

]
(s̄,ṽ) ds̄

ds̃

)

×
[ (−λ)(ur (v), ṽ)

r(ur (v), ṽ)

]
e− ∫ v

ṽ

[
λ

1−μ
∂r (1−μ)

]
(ur (v),v̄) d v̄ d ṽ.
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ṽ

(ur(v), ṽ)

v

ur(v)

U

u

v

0

(ur(v), v)

We have θ(0, v) = 0 and, from (20), ∂uθ(0, v) = 0, whereas λ(0, v) = 0 and,
from (16), ∂uλ(0, v) < 0. Writing

θ

λ
(u, v) =

∫ u
0 ∂uθ(ũ, v)dũ

∫ u
0 ∂uλ(ũ, v)dũ

,

it is easy to show that the function θ
λ
can be extended as a continuous function to

{0} × [0,∞[, with θ
λ
(0, v) = 0. Substituting this into (34) [again with uř (v) replaced

by 0] yields

θ

λ
(u, v) = −

∫ u

0

ζ

r
(ũ, v)e− ∫ u

ũ

[
ν

1−μ
∂r (1−μ)

]
(ū,v) dū dũ.

We can rewrite this in the new coordinates as

θ̂

λ
(r, v) =

∫ r+

r

1

s̃

[ ζ̂

ν

]
(s̃, v)e

∫ s̃
r

[
1

1̂−μ
̂∂r (1−μ)

]
(s̄,v) ds̄

ds̃. (39)

A key point is to bound the exponentials that appear in (38) and (39). As we go on,
this will be done several times in different ways.

Lemma 4.1. Assume that there exists α ≥ 0 such that, for 0 ≤ ṽ ≤ v, the following
bounds hold:

e− ∫ v
ṽ

[
λ

1−μ
∂r (1−μ)

]
(ur (v),v̄) d v̄ ≤ e−α(v−ṽ)
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and

e
∫ s̃
r(ur (v),ṽ)

[
1

1̂−μ
̂∂r (1−μ)

]
(s̄,ṽ) ds̄ ≤ 1.

Then (38) implies
∣
∣
∣
ζ̂

ν

∣
∣
∣(r, v) ≤ e

(r+−r)2
rr+ max

u∈[0,ur (v)] |ζ0|(u)e−αv. (40)

Proof. Combining (38) with θ̂
λ
(r+, v) ≡ 0 and the bounds on the exponentials, we have

∣
∣
∣
ζ̂

ν

∣
∣
∣(r, v) ≤ |ζ0|(ur (v))e−αv +

∫ v

0

∫ r+

r(ur (v),ṽ)

1

s̃

[ ζ̂

ν

]
(s̃, ṽ) ds̃ (41)

×
[ (−λ)(ur (v), ṽ)

r(ur (v), ṽ)

]
e−α(v−ṽ) d ṽ.

For r ≤ s < r+, define

Zα
(r,v)(s) =

⎧
⎨

⎩

maxṽ∈[0,v]
{
eαṽ

∣
∣
∣ ζ̂
ν

∣
∣
∣(s, ṽ)

}
if r+ − ur (v) ≤ s < r+,

maxṽ∈[vs (ur (v)),v]
{
eαṽ

∣
∣
∣ ζ̂
ν

∣
∣
∣(s, ṽ)

}
if r ≤ s ≤ r+ − ur (v).

Here the maximum is taken over the projection of J−(ur (v), v) ∩ �s on the v-axis (see
the figure below).

vs2 (ur(v))

(ur(v), vs2 (ur(v)))

v

r+ − s1

ur(v)

U

Γs2

Γs1

u

v

(ur(v), v)

Note that Zα
(r,v)(r) = eαv

∣
∣ ζ̂
ν

∣
∣(r, v). Inequality (41) implies
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Zα
(r,v)(r) ≤ |ζ0|(ur (v)) +

∫ v

0

∫ r+

r(ur (v),ṽ)

Zα
(r,v)(s̃) ds̃

[ (−λ)(ur (v), ṽ)

[r(ur (v), ṽ)]2
]
d ṽ

≤ max
s∈[r,r+]

|ζ0|(us(v)) +
∫ r+

r
Zα

(r,v)(s̃) ds̃
∫ v

0

[ (−λ)(ur (v), ṽ)

[r(ur (v), ṽ)]2
]
d ṽ

≤ max
u∈[0,ur (v)] |ζ0|(u) +

(1

r
− 1

r+ − ur (v)

) ∫ r+

r
Zα

(r,v)(s̃) ds̃.

We still consider r ≤ s < r+. Let ṽ ∈ [0, v] if r+ − ur (v) ≤ s < r+, and ṽ ∈
[vs(ur (v)), v] if r ≤ s ≤ r+ −ur (v). In this way (us(ṽ), ṽ) ∈ J−(ur (v), v). In the same
way one can show that

eαṽ
∣
∣
∣
ζ̂

ν

∣
∣
∣(s, ṽ) ≤ max

u∈[0,us (v)] |ζ0|(u) +
(1

s
− 1

r+ − us(v)

) ∫ r+

s
Zα

(r,v)(s̃) ds̃

because J−(us(ṽ), ṽ) ∩ �s̃ ⊂ J−(ur (v), v) ∩ �s̃ , for s ≤ s̃ < r+, and so Zα
(s,ṽ)

(s̃) ≤
Zα

(r,v)(s̃). Since us(v) ≤ ur (v) for r ≤ s < r+, we have

Zα
(r,v)(s) ≤ max

u∈[0,ur (v)] |ζ0|(u) +
(1

r
− 1

r+

) ∫ r+

s
Zα

(r,v)(s̃) ds̃.

Using Gronwall’s inequality, we get

Zα
(r,v)(r) ≤ e

(r+−r)2
rr+ max

u∈[0,ur (v)] |ζ0|(u).

This establishes (40). ��
Lemma 4.2. Let r0 ≤ r < r+ and v > 0. Then

∣
∣
∣
ζ̂

ν

∣
∣
∣(r, v) ≤ e

(r+−r)2
rr+ max

u∈[0,ur (v)] |ζ0|(u). (42)

Proof. We bound the exponentials in (38). From (31), the definition of η and � ≥ �0,

−∂r (1 − μ) = 2η

r2
≤ 2η0

r2
= −∂r (1 − μ)(r,�0) ≤ 0.

Therefore in the region J−(�r0) the exponentials are bounded by 1.ApplyingLemma4.1
with α = 0 we obtain (40) with α = 0, which is precisely (42). ��

According to (42), the function ζ
ν
is bounded in the region J−(�r0), say by δ̂.

From (22),

κ(u, v) = e
∫ u
0

(
ζ2

rν

)
(ũ,v) dũ

≥ eδ̂2
∫ u
0 ( ν

r )(ũ,v) dũ

≥
(
r0
r+

)δ̂2

. (43)

We recall from Part 1 that Eqs. (15), (17), (19) and (23) imply

∂v

(
1 − μ

ν

)

= − θ2

νrκ
, (44)



Global Uniqueness with a Cosmological Constant: Part 2 917

which is the Raychaudhuri equation in the v direction. We also recall that the integrated
form of (18) is

�(u, v) = �0(v)e− ∫ u
0

(
ζ2

rν

)
(u′,v) du′

+
∫ u

0
e− ∫ u

s
ζ2

rν (u′,v) du′
(
1

2

(

1 +
e2

r2
− �

3
r2

)
ζ 2

ν

)

(s, v) ds. (45)

These will be used in the proof of the following result.

Proposition 4.3. Let r0 < ř+ ≤ r < r+ and v > 0. Then there exists α > 0 (given
by (50) below) such that

∣
∣
∣
ζ̂

ν

∣
∣
∣(r, v) ≤ e

(r+−r)2
rr+ max

u∈[0,ur (v)] |ζ0|(u)e−αv, (46)

∣
∣
∣
θ̂

λ

∣
∣
∣(r, v) ≤ Ĉr max

u∈[0,ur (v)] |ζ0|(u)e−αv, (47)

|θ̂ |(r, v) ≤ C max
u∈[0,ur (v)] |ζ0|(u)e−αv. (48)

For (u, v) ∈ J−(�ř+), and U sufficiently small, we have

�0 ≤ �(u, v) ≤ �0 + C

(

sup
ũ∈[0,u]

|ζ0|(ũ)

)2

. (49)

Moreover, the curve �ř+ intersects every line of constant u provided that 0 < u ≤
min{r+ − ř+,U }. Therefore, uř+(∞) = 0.

Proof. In J−(�ř+), we have ∂r (1− μ)(r,�0) ≥ minr∈[ř+,r+] ∂r (1− μ)(r,�0) > 0 and

− λ

1 − μ
∂r (1 − μ) ≤ −κ ∂r (1 − μ)(r,�0)

≤ − inf
J−(�ř+ )

κ × ∂r (1 − μ)(r,�0)

≤ −
( ř+
r+

)δ̂2

min
r∈[ř+,r+]

∂r (1 − μ)(r,�0)

=: −α < 0, (50)

where we have used (43) (with ř+ instead of r0). Thus, we can improve the bounds on
the exponentials in (38) that involve integrals in v as follows:

e− ∫ v
ṽ

[
λ

1−μ
∂r (1−μ)

]
(ur (v),v̄) d v̄ ≤ e−α(v−ṽ).

Since

1
̂1 − μ

̂∂r (1 − μ) ≤ 0,

as before, we have

e
∫ s̃
r(ur (v),ṽ)

[
1

1̂−μ
̂∂r (1−μ)

]
(s̄,ṽ) ds̄ ≤ 1.
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We apply Lemma 4.1 again, this time with a positive α, to get (46).
Now we may use (39) and (46) to obtain

∣
∣
∣
θ̂

λ

∣
∣
∣(r, v) ≤ e

(r+−r)2
rr+ ln

(r+
r

)
max

u∈[0,ur (v)] |ζ0|(u)e−αv

= Ĉr max
u∈[0,ur (v)] |ζ0|(u)e−αv.

In order to bound � in J−(�ř+), we note that

−
∫ u

0

(
ζ 2

rν

)

(ũ, v) dũ ≤ C2

(

sup
ũ∈[0,u]

|ζ0|(ũ)

)2

ln

(
r+
ř+

)

,

∣
∣
∣
∣1 +

e2

r2
− �

3
r2

∣
∣
∣
∣ ≤ 1 +

e2

ř2+
+

|�|
3

r2+

and

−
∫ u

0
ν(ũ, v) dũ = r+ − r(u, v) ≤ r+ − ř+.

From (45), we conclude that

�(u, v) ≤ �0e
C

(
supũ∈[0,u] |ζ0|(ũ)

)2
+ C

(

sup
ũ∈[0,u]

|ζ0|(ũ)

)2

.

Inequality (49) follows from ex ≤ 1 + 2x , for small x , since ζ0 is continuous and
ζ0(0) = 0.

Given that κ ≤ 1, we have (1− μ) ≤ λ. Moreover, since � is bounded in the region
J−(�ř+), 1−μ is bounded from below, and so λ is also bounded from below. Hence (47)
implies (48).

Let 0 < u ≤ min{r+ − ř+,U }. We claim that

sup
{
v ∈ [0,∞[: (u, v) ∈ J−(�ř+)

}
< ∞. (51)

To see this, first note that (17) shows that v �→ ν(u, v) is decreasing in J−(�ř+), as
∂r (1 − μ) ≥ 0 for r0 ≤ r ≤ r+ (recall that η(r,�) ≤ η0(r)). Then (44) shows
v �→ (1 − μ)(u, v) is also decreasing in J−(�ř+). Thus, as long as v is such that
(u, v) ∈ J−(�ř+), we have (1−μ)(u, v) ≤ (1−μ)(u, 0) < 0. Combining the previous
inequalities with (43), we get

λ(u, v) ≤
(
ř+
r+

)δ̂2

(1 − μ)(u, 0) < 0.

Finally, if (51) did not hold for a given u, we would have

r(u, v) = r(u, 0) +
∫ v

0
λ(u, v′) dv′

≤ r(u, 0) +

(
ř+
r+

)δ̂2

(1 − μ)(u, 0) v → −∞,

as v → ∞, which is a contradiction. This establishes the claim. ��
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5. The Region J−(�ř−) ∩ J+(�ř+)

In this section, we treat the region ř− ≤ r ≤ ř+. Recall that we assume that r− < ř− <

r0 < ř+ < r+. By decreasing ř−, if necessary, we will also assume that

−(1 − μ)(ř−,�0) ≤ −(1 − μ)(ř+,�0). (52)

In Sect. (5.1), we obtain estimates (55) and (56) for ζ
ν
and θ

λ
, which will allow us to

obtain the lower bound (66) for κ , the upper bound (67) for � , and to prove that the
domain of vř−( · ) is ]0,min{r+ − ř−,U }]. In Sect. (5.2), we obtain upper and lower
bounds for λ and ν, as well as more information about the region ř− ≤ r ≤ ř+. In
Sect. (5.3), we use the results from the previous subsection to improve the estimates on
ζ
ν
and θ

λ
to (86) and (91). We also obtain the bound (92) for θ .

As in the previous section, the solution with general ζ0 is qualitatively still a small
perturbation of theReissner–Nordström solution (26)–(30):� , κ , ζ and θ remain close to
�0, 1 and 0, respectively.Moreover, λ is bounded from below by a negative constant, and
away from zero by a constant depending on ř+ and ř−, as is also the case in the Reissner–
Nordström solution (see Eq. (26)). Likewise, ν has a similar behavior to its Reissner–
Nordström counterpart (see Eq. (27)): whenmultiplied by u, ν behaves essentially like λ.

5.1. First estimates. By reducing U > 0, if necessary, we can assume U ≤ r+ − ř+.
We turn our attention to the region J−(�ř−) ∩ J+(�ř+). Substituting (34) in (35) with
ř = ř+, we get

ζ

ν
(u, v) = ζ

ν
(u, vř+(u))e

− ∫ v
vř+ (u)

[
λ

1−μ
∂r (1−μ)

]
(u,ṽ) d ṽ

(53)

+
∫ v

vř+ (u)

θ

λ
(uř+(ṽ), ṽ)e

− ∫ u
uř+ (ṽ)

[
ν

1−μ
∂r (1−μ)

]
(ũ,ṽ) dũ

×
[ (−λ)

r

]
(u, ṽ)e− ∫ v

ṽ

[
λ

1−μ
∂r (1−μ)

]
(u,v̄) d v̄ d ṽ

+
∫ v

vř+ (u)

(∫ u

uř+ (ṽ)

[ζ

ν

(−ν)

r

]
(ũ, ṽ)e− ∫ u

ũ

[
ν

1−μ
∂r (1−μ)

]
(ū,ṽ) dū dũ

)

×
[ (−λ)

r

]
(u, ṽ)e− ∫ v

ṽ

[
λ

1−μ
∂r (1−μ)

]
(u,v̄) d v̄ d ṽ.

We make the change of coordinates (37). Then, Eq. (53) may be written

ζ̂

ν
(r, v) = ζ̂

ν
(ř+, vř+(ur (v)))e

− ∫ v
vř+ (ur (v))

[
λ

1−μ
∂r (1−μ)

]
(ur (v),ṽ) d ṽ

(54)

+
∫ v

vř+ (ur (v))

θ̂

λ
(ř+, ṽ)e

∫ ř+
r(ur (v),ṽ)

[
1

1̂−μ
̂∂r (1−μ)

]
(s̃,ṽ) ds̃

×
[ (−λ)(ur (v), ṽ)

r(ur (v), ṽ)

]
e− ∫ v

ṽ

[
λ

1−μ
∂r (1−μ)

]
(ur (v),v̄) d v̄ d ṽ
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+
∫ v

vř+ (ur (v))

(∫ ř+

r(ur (v),ṽ)

[ ζ̂

ν

1

s̃

]
(s̃, ṽ)e

∫ s̃
r(ur (v),ṽ)

[
1

1̂−μ
̂∂r (1−μ)

]
(s̄,ṽ) ds̄

ds̃

)

×
[ (−λ)(ur (v), ṽ)

r(ur (v), ṽ)

]
e− ∫ v

ṽ

[
λ

1−μ
∂r (1−μ)

]
(ur (v),v̄) d v̄ d ṽ.

For (r, v) such that (ur (v), v) ∈ J−(�ř−)∩ J+(�ř+), vř+(ur (v)) is well defined because
U ≤ r+ − ř+.

ṽ

(ur(v), ṽ)

vř+ (ur(v))

v

ur(v)

U = r+ − ř+
Γř+

u

v

(ur(v), v)

Lemma 5.1. Let ř− ≤ r ≤ ř+. Then

∣
∣
∣
ζ̂

ν

∣
∣
∣(r, v) ≤ C̃ max

u∈[0,ur (v)] |ζ0|(u), (55)

∣
∣
∣
θ̂

λ

∣
∣
∣(r, v) ≤ C max

u∈[0,ur (v)] |ζ0|(u). (56)

Proof. From (52) we have

(1 − μ)(r,�) ≤ (1 − μ)(r,�0)

≤ max
{
(1 − μ)(ř−,�0), (1 − μ)(ř+,�0)

}
(57)

= (1 − μ)(ř−,�0)
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and
∂r (1 − μ)

1 − μ
= 2η/r2

−(1 − μ)
≤ 2η0/r2

−(1 − μ)
≤ 2η0(ř−)/ř2−

−(1 − μ)

≤ 2η0(ř−)/ř2−
−(1 − μ)(r,�0)

≤ 2η0(ř−)/ř2−
−(1 − μ)(ř−, �0)

=: cř− .

(For the second inequality, see the graph of η0 in Sect. 3.) Each of the five exponentials
in (54) is bounded by

ecř− (ř+−ř−) =: C. (58)
Hence, for (r, v) such that (ur (v), v) ∈ J−(�ř−) ∩ J+(�ř+), we have from (54)

∣
∣
∣
ζ̂

ν

∣
∣
∣(r, v) ≤ C

∣
∣
∣
ζ̂

ν

∣
∣
∣(ř+, vř+(ur (v))) (59)

+C2
∫ v

vř+ (ur (v))

∣
∣
∣
θ̂

λ

∣
∣
∣(ř+, ṽ)

[ (−λ)(ur (v), ṽ)

r(ur (v), ṽ)

]
d ṽ

+C2
∫ v

vř+ (ur (v))

∫ ř+

r(ur (v),ṽ)

∣
∣
∣
ζ̂

ν

∣
∣
∣(s̃, ṽ) ds̃

[ (−λ)(ur (v), ṽ)

[r(ur (v), ṽ)]2
]
d ṽ.

For r ≤ s ≤ ř+, define
Z(r,v)(s) = max

ṽ∈[vs (ur (v)),v]

∣
∣
∣
ζ̂

ν

∣
∣
∣(s, ṽ) (60)

and

T(r,v)(ř+) = max
ṽ∈[vř+ (ur (v)),v]

∣
∣
∣
θ̂

λ

∣
∣
∣(ř+, ṽ). (61)

vs(ur(v))

(ur(v), vs(ur(v)))

v

ur(v)

U = r+ − ř+

Γs

Γř+

u

v

(ur(v), v)
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Recall that [vs(ur (v)), v] is the projection of J−(ur (v), v) ∩ �s on the v-axis.

Note that Z(r,v)(r) = ∣
∣ ζ̂
ν

∣
∣(r, v). Inequality (59) implies

Z(r,v)(r) ≤ CZ(r,v)(ř+)

+C2
∫ v

vř+ (ur (v))

T(r,v)(ř+)
[ (−λ)(ur (v), ṽ)

r(ur (v), ṽ)

]
d ṽ

+C2
∫ v

vř+ (ur (v))

∫ ř+

r(ur (v),ṽ)

Z(r,v)(s̃) ds̃
[ (−λ)(ur (v), ṽ)

[r(ur (v), ṽ)]2
]
d ṽ

≤ CZ(r,v)(ř+) + C2 ln
( ř+
r

)
T(r,v)(ř+) + C2

(1

r
− 1

ř+

) ∫ ř+

r
Z(r,v)(s̃) ds̃.

Again consider r ≤ s ≤ ř+ and let ṽ ∈ [vs(ur (v)), v], so that (us(ṽ), ṽ) ∈
J−(ur (v), v) ∩ J+(�ř+). In the same way one can show that

∣
∣
∣
ζ̂

ν

∣
∣
∣(s, ṽ) ≤ CZ(r,v)(ř+) + C2 ln

( ř+
s

)
T(r,v)(ř+) + C2

(1

s
− 1

ř+

) ∫ ř+

s
Z(r,v)(s̃) ds̃,

because J−(us(ṽ), ṽ) ∩ �ř+ ⊂ J−(ur (v), v) ∩ �ř+ . Therefore,

Z(r,v)(s) ≤ CZ(r,v)(ř+) + C2 ln
( ř+
r

)
T(r,v)(ř+) + C2

(1

r
− 1

ř+

) ∫ ř+

s
Z(r,v)(s̃) ds̃.

Using Gronwall’s inequality, we get

Z(r,v)(r) ≤ C
[
Z(r,v)(ř+) + C ln

( ř+
r

)
T(r,v)(ř+)

]
e
C2(ř+−r)2

rř+ . (62)

To bound Z(r,v) and T(r,v), it is convenient at this point to use (42) and
∣
∣
∣
θ̂

λ

∣
∣
∣(r, v) ≤ Ĉr max

u∈[0,ur (v)] |ζ0|(u) (63)

(valid for ř+ ≤ r < r+), in spite of having the better estimates (46) and (47). Indeed, if
these better estimates are used, the improvement is just e−αvř+ (ur (v)) (that is, an expo-
nential factor computed over�ř+ for the same value of u); to turn this into an exponential
decay in v we must first obtain a more accurate control of the various quantities in the
region ř− ≤ r ≤ ř+. Applying first the definition (60) and then (42), we have

Z(r,v)(ř+) = max
ṽ∈[vř+ (ur (v)),v]

∣
∣
∣
ζ̂

ν

∣
∣
∣(ř+, ṽ)

≤ e
(r+−ř+)2

ř+r+ max
ṽ∈[vř+ (ur (v)),v]

max
u∈[0,uř+ (ṽ)]

|ζ0|(u)

≤ e
(r+−ř+)2

ř+r+ max
u∈[0,ur (v)] |ζ0|(u), (64)

because uř+(ṽ) ≤ ur (v). Applying first the definition (61) and then (63), we have

T(r,v)(ř+) ≤ e
(r+−ř+)2

ř+r+ ln
(r+
ř+

)
max

ṽ∈[vř+ (ur (v)),v]
max

u∈[0,uř+ (ṽ)]
|ζ0|(u)

≤ Ĉř+ max
u∈[0,ur (v)] |ζ0|(u). (65)
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We use (64) and (65) in (62). This yields (55).
Finally, writing (34) in the (r, v) coordinates (with ř = ř+) gives

θ̂

λ
(r, v) = θ̂

λ
(ř+, v)e

∫ ř+
r

[
1

1̂−μ
̂∂r (1−μ)

]
(s̃,v) ds̃

+
∫ ř+

r

[ ζ̂

ν

1

s̃

]
(s̃, v)e

∫ s̃
r

[
1

1̂−μ
̂∂r (1−μ)

]
(s̄,v) ds̄

ds̃.

The exponentials are bounded by the constant C in (58). We use the estimates (63)
and (55) to obtain

∣
∣
∣
θ̂

λ

∣
∣
∣(r, v) ≤ C

∣
∣
∣
θ̂

λ

∣
∣
∣(ř+, v) + C

∫ ř+

r

[∣∣
∣
ζ̂

ν

∣
∣
∣
1

s̃

]
(s̃, v) ds̃

≤ CĈř+ max
u∈[0,uř+ (v)] |ζ0|(u)

+CC̃ ln
( ř+
r

)
max

u∈[0,ur (v)] |ζ0|(u)

= C max
u∈[0,ur (v)] |ζ0|(u),

which is (56). ��
According to (42) and (55), the function ζ

ν
is bounded in the region J−(�ř−), let us

say by δ̂. Arguing as in the deduction of (43), we obtain

κ(u, v) ≥
(
ř−
r+

)δ̂2

. (66)

Lemma 5.2. For (u, v) ∈ J−(�ř−), and U ≤ r+ − ř+ sufficiently small, we have

�0 ≤ �(u, v) ≤ �0 + C

(

sup
ũ∈[0,u]

|ζ0|(ũ)

)2

. (67)

The curve �ř− intersects every line of constant u. Therefore, uř−(∞) = 0.

Proof. The proof of (67) is identical to the proof of (49).
Because � is bounded, the function 1 − μ is bounded below in J−(�ř−). Also,

by (57), the function 1−μ is bounded above in J−(�ř−)∩ J+(�ř+) by (1−μ)(ř−,�0).
We claim that for each 0 < u ≤ U

sup
{
v ∈ [0,∞[ : (u, v) ∈ J−(�ř−)

}
< ∞. (68)

The proof is similar to the proof of (51): since κ is bounded below by a positive constant
and 1 − μ is bounded above by a negative constant, λ is bounded above by a negative
constant in J−(�ř−) ∩ J+(�ř+), say −cλ. Then, as long as (u, v) belongs to J−(�ř−),
we have the upper bound for r(u, v) given by

r(u, v) ≤ r+ − u − cλv,

since 0 < u ≤ U ≤ r+ − ř+). Finally, if (68) did not hold for a given u, we would have
r(u, v) → −∞ as v → ∞, which is a contradiction. This proves the claim. ��
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5.2. Estimates for ν, λ and the region J−(�ř−) ∩ J+(�ř+).

Lemma 5.3. In the region J−(�ř−) ∩ J+(�ř+), we have the following estimates from
above and from below on λ and ν:

−C̃ ≤ λ ≤ −c̃ (69)

and

− C̃

u
≤ ν ≤ − c̃

u
, (70)

where the constants c̃ and C̃ depend on ř+ and ř−.
Furthermore, if 0 < δ < r+ − r0 and (u, v) ∈ �r+−δ then

−C ∂r (1 − μ)(r+,�0) δ ≤ λ(u, v) ≤ −c ∂r (1 − μ)(r+,�0) δ (71)

and

−C
δ

u
≤ ν(u, v) ≤ −c

δ

u
, (72)

where the constants 0 < c < 1 < C may be chosen independently of δ. Given ε > 0
then 1 − ε < c < 1 and 1 < C < 1 + ε for small enough δ.

Proof. From (22) we obtain (the Raychaudhuri equation)

∂u

(
λ

1 − μ

)

= λ

1 − μ

(
ζ

ν

)2
ν

r
,

and from (44) we obtain (the Raychaudhuri equation)

∂v

(
ν

1 − μ

)

= ν

1 − μ

(
θ

λ

)2
λ

r
. (73)

Let δ̂ > 0. By decreasingU , if necessary, using (46), (47), (55) and (56), we have
∣
∣ θ
λ

∣
∣ < δ̂

and
∣
∣ ζ
ν

∣
∣ < δ̂ in J−(�ř−). Since

∫ u
0

ν
r (ũ, v) dũ = ln

(
r(u,v)
r+

)
,
∫ v

0
λ
r (u, ṽ) d ṽ = ln

(
r(u,v)
r+−u

)
,

ř−
r+

≤ r(u,v)
r+

≤ 1 and ř−
r+

≤ r(u,v)
r+−u ≤ 1, for (u, v) ∈ J−(�ř−) we have

( ř−
r+

)δ̂2 ≤ e
∫ u
0

(
(

ζ
ν
)2 ν

r

)
(ũ,v) dũ ≤ 1, (74)

( ř−
r+

)δ̂2 ≤ e
∫ v
0

(
( θ

λ
)2 λ

r

)
(u,ṽ) d ṽ ≤ 1. (75)

So, integrating the Raychaudhuri equations, we get

( ř−
r+

)δ̂2 =
( ř−
r+

)δ̂2 λ

1 − μ
(0, v) ≤ λ

1 − μ
(u, v) ≤ λ

1 − μ
(0, v) = 1 (76)

[as κ(0, v) = 1], and

−
( ř−
r+

)δ̂2 1

1 − μ
(u, 0) ≤ ν

1 − μ
(u, v) ≤ ν

1 − μ
(u, 0) = − 1

1 − μ
(u, 0). (77)
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To bound (1 − μ)(u, 0), using (16) and (22), we compute

∂u(1 − μ) = ∂u

(λ

κ

)
= ν∂r (1 − μ) − (1 − μ)

ν

r

(ζ

ν

)2
. (78)

At the point (u, v) = (0, 0) this yields

∂u(1 − μ)(0, 0) = −∂r (1 − μ)(r+,�0).

Fix 0 < ε < 1. Since the function u �→ (1−μ)(u, 0) isC1, by decreasingU if necessary,
we have

−∂r (1 − μ)(r+,�0)

1 − ε
< ∂u(1 − μ)(u, 0) < −∂r (1 − μ)(r+,�0)

1 + ε

for 0 ≤ u ≤ U , and so

−∂r (1 − μ)(r+,�0)

1 − ε
u < (1 − μ)(u, 0) < −∂r (1 − μ)(r+,�0)

1 + ε
u.

Using these inequalities in (77) immediately gives

( ř−
r+

)δ̂2 1 − ε

∂r (1 − μ)(r+,�0) u
≤ ν

1 − μ
(u, v) ≤ 1 + ε

∂r (1 − μ)(r+,�0) u
. (79)

To obtain bounds on λ and ν from (76) and (79), recall that, in accordance with (57),
in the region J−(�ř−) ∩ J+(�ř+) the function 1 − μ is bounded above by a negative
constant. On the other hand, the bounds we obtained earlier on� in J−(�ř−) imply that
1 − μ is bounded below in J−(�ř−). In summary, there exist c and C such that

−C ≤ 1 − μ ≤ −c.

Therefore, from (76) and (79), in the region J−(�ř−) ∩ J+(�ř+), we get (69) and (70):

−C ≤ λ ≤ −c
( ř−
r+

)δ̂2

,

−C
1 + ε

∂r (1 − μ)(r+,�0)

1

u
≤ ν ≤ −c

( ř−
r+

)δ̂2 1 − ε

∂r (1 − μ)(r+,�0)

1

u
.

By decreasing c and increasing C , if necessary, we can guarantee (69) and (70) hold,
without having to further decrease U .

Now suppose that (u, v) ∈ �r+−δ . Then

(1 − μ)(u, v) = (1 − μ)(r+ − δ,�)

≤ (1 − μ)(r+ − δ,�0)

≤ −∂r (1 − μ)(r+,�0)

1 + ε
δ, (80)

where ε is any fixed positive number, provided that δ is sufficiently small. If δ is not
small, then (80) also holds but with 1 + ε replaced by a larger constant.

Using again (78),

(1 − μ)(u, v) = −
∫ u

0
e− ∫ u

ũ

(
ν
r

(
ζ
ν

)2)
(ū,v) dū

(2ν

r2
η
)
(ũ, v) dũ.
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We take into account that

e− ∫ u
ũ

(
ν
r

(
ζ
ν

)2)
(ū,v) dū ≤

( r+
r+ − δ

)δ̂2

and

− 2ν

r2
η ≥ 2ν

(

− e2

r3
− �

3
r +

�0

r2

)

+ 2ν
δ̃

r2

= ν∂r (1 − μ)(r,�0) + 2ν
δ̃

r2

provided U is chosen small enough so that � ≤ �0 + δ̃ in J−(�r+−δ). We get

(1 − μ)(u, v) ≥
( r+
r+ − δ

)δ̂2
(

(1 − μ)(r+ − δ,�0) − 2δ̃δ

r+(r+ − δ)

)

≥ −
( r+
r+ − δ

)δ̂2
(

∂r (1 − μ)(r+,�0)

1 − ε
+
4δ̃

r2+

)

δ, (81)

where 0 < ε < 1, provided δ is sufficiently small. We notice that in the case under
consideration the integration is done between r+ and r+ − δ and so the left hand sides

of (74) and (75) can be improved to
( r+−δ

r+

)δ̂2 . Estimates (76), (80) and (81) yield, for

δ̂ ≤ 1,

−
( r+
r+ − δ

)
(

∂r (1 − μ)(r+,�0)

1 − ε
+
4δ̃

r2+

)

δ ≤ λ (82)

≤ −
(r+ − δ

r+

)∂r (1 − μ)(r+,�0)

1 + ε
δ,

whereas estimates (79), (80) and (81) yield, again for δ̂ ≤ 1,

−
( r+
r+ − δ

)
(
1 + ε

1 − ε
+

4δ̃(1 + ε)

r2+∂r (1 − μ)(r+,�0)

)
δ

u
≤ ν (83)

≤ −
(r+ − δ

r+

)1 − ε

1 + ε

δ

u
.

Estimates (71) and (72) are established. Note that u ≤ δ when (u, v) ∈ �r+−δ . Since

c = c(δ, ε, δ̃) = c(δ, ε(U, δ), δ̃(U )) = c(δ, ε(U (δ), δ), δ̃(U (δ))),

and analogously for C , we see that c and C can be chosen arbitrarily close to one,
provided that δ is sufficiently small. ��
Lemma 5.4. Let ε > 0. If δ is sufficiently small, then for any point (u, v) ∈ �r+−δ we
have

δ e−[∂r (1−μ)(r+,�0)+ε] v ≤ u ≤ δ e−[∂r (1−μ)(r+,�0)−ε] v. (84)

For any point (u, v) ∈ J−(�ř−) ∩ J+(�r+−δ) we have

δ e−[∂r (1−μ)(r+,�0)+ε] v ≤ u ≤ δ e
r+
c̃ e−[∂r (1−μ)(r+,�0)−ε] v. (85)
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Proof. Obviously, we have

r(ur+−δ(v), v) = r+ − δ.

Since r is C1 and ν does not vanish, v �→ ur+−δ(v) is C1. Differentiating both sides of
the last equality with respect to v we obtain

u′
r+−δ(v) = − λ(ur+−δ(v), v)

ν(ur+−δ(v), v)
.

Using (71) and (72), we have

− C

c
∂r (1 − μ)(r+,�0)ur+−δ(v) ≤ u′

r+−δ(v) ≤ − c

C
∂r (1 − μ)(r+,�0)ur+−δ(v).

Integrating the last inequalities between 0 and v, as ur+−δ(0) = δ, we have

δe− C
c ∂r (1−μ)(r+,�0)v ≤ ur+−δ(v) ≤ δe− c

C ∂r (1−μ)(r+,�0)v.

This proves (84).
Let (u, v) ∈ J−(�ř−) ∩ J+(�r+−δ). Integrating (70) between ur+−δ(v) and u, we get

1 ≤ u

ur+−δ(v)
≤ e

r+
c̃ .

Combiningvr+−δ(u)≤vwith thefirst inequality in (84) applied at the point (u, vr+−δ(u)),

u ≥ δ e−[∂r (1−μ)(r+,�0)+ε] vr+−δ(u)

≥ δ e−[∂r (1−μ)(r+,�0)+ε] v,

and combining u ≤ e
r+
c̃ ur+−δ(v) with the second inequality in (84) applied at the point

(ur+−δ(v), v),

u ≤ e
r+
c̃ ur+−δ(v) ≤ δ e

r+
c̃ e−[∂r (1−μ)(r+,�0)−ε] v.

��

5.3. Improved estimates.

Lemma 5.5. Let ř− ≤ r ≤ ř+. Then

∣
∣
∣
ζ̂

ν

∣
∣
∣(r, v) ≤ C̃ř− max

u∈[0,ur (v)] |ζ0|(u)e−αv. (86)

Proof. Applying first the definition (60) and then (46),

Z(r,v)(ř+) = max
ṽ∈[vř+ (ur (v)),v]

∣
∣
∣
ζ̂

ν

∣
∣
∣(ř+, ṽ)

≤ e
(r+−ř+)2

ř+r+ max
ṽ∈[vř+ (ur (v)),v]

max
u∈[0,uř+ (ṽ)]

|ζ0|(u)e−αṽ
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≤ e
(r+−ř+)2

ř+r+ max
u∈[0,uř+ (vř+ (ur (v)))] |ζ0|(u)e−αvř+ (ur (v))

= e
(r+−ř+)2

ř+r+ max
u∈[0,ur (v)] |ζ0|(u)e−αvř+ (ur (v)) (87)

because uř+(ṽ) ≥ uř+(v). Integrating (69) between vř+(ur (v)) and v, we get

v − vř+(ur (v)) ≤ ř+−r
c̃ =: cr,ř+ ≤ cř−,ř+ . (88)

This allows us to continue the estimate (87), to obtain

Z(r,v)(ř+) ≤ e
(r+−ř+)2

ř+r+ eαcř−,ř+ max
u∈[0,ur (v)] |ζ0|(u)e−αv. (89)

Applying first the definition (61) and then (47), and repeating the computations that lead
to (87) and (88),

T(r,v)(ř+) ≤ e
(r+−ř+)2

ř+r+ ln
(r+
ř+

)
max

ṽ∈[vř+ (ur (v)),v]
max

u∈[0,uř+ (ṽ)]
|ζ0|(u)e−αṽ

≤ e
(r+−ř+)2

ř+r+ eαcř−,ř+ ln
(r+
ř+

)
max

u∈[0,ur (v)] |ζ0|(u)e−αv. (90)

We use (89) and (90) in (62). This yields (86). ��
Lemma 5.6. Let ř− ≤ r ≤ ř+. Then

∣
∣
∣
θ̂

λ

∣
∣
∣(r, v) ≤ C max

u∈[0,ur (v)] |ζ0|(u)e−αv, (91)

|θ̂ |(r, v) ≤ Č max
u∈[0,ur (v)] |ζ0|(u)e−αv. (92)

Proof. Just like inequality (56) was obtained from (63) (that is, Eq. (47) with α = 0)
and (55), inequality (91) will be obtained from (47) and (86). Writing (34) in the (r, v)

coordinates,

θ̂

λ
(r, v) = θ̂

λ
(ř+, v)e

∫ ř+
r

[
1

1̂−μ
̂∂r (1−μ)

]
(s̃,v) ds̃

+
∫ ř+

r

[ ζ̂

ν

1

s̃

]
(s̃, v)e

∫ s̃
r

[
1

1̂−μ
̂∂r (1−μ)

]
(s̄,v) ds̄

ds̃.

The exponentials are bounded by the constant C in (58). We use the estimates (47)
and (86) to obtain

∣
∣
∣
θ̂

λ

∣
∣
∣(r, v) ≤ C

∣
∣
∣
θ̂

λ

∣
∣
∣(ř+, v) + C

∫ ř+

r

[∣∣
∣
ζ̂

ν

∣
∣
∣
1

s̃

]
(s̃, v) ds̃

≤ CĈř+ max
u∈[0,uř+ (v)] |ζ0|(u)e−αv

+CC̃ř− ln
( ř+
r

)
max

u∈[0,ur (v)] |ζ0|(u)e−αv
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= C max
u∈[0,ur (v)] |ζ0|(u)e−αv.

Using (69), the function λ is bounded from below in J−(�ř−)∩ J+(�ř+). Hence (91)
implies (92). ��
Remark 5.7. For use in Part 3, we observe that (47) and (91) imply

lim
(u,v)→(0,∞)

(u, v) ∈ J−(�ř− )

∣
∣
∣
θ

λ

∣
∣
∣(u, v) = 0. (93)

6. The Region J−(γ ) ∩ J+(�ř−)

In this section, we define a curve γ to the future of �ř− . Our first aim is to obtain
the bounds in Corollary 6.2, r(u, v) ≥ r− − ε

2 and �(u, v) ≤ �0 + ε
2 , for (u, v) ∈

J−(γ ) ∩ J+(�ř−) with u ≤ Uε. In the process, we will bound
∫ u
uř− (v)

[∣∣ ζ
ν

∣
∣|ζ |](ũ, v) dũ

(this is inequality (102)). Then we will obtain a lower bound on κ , as well as upper and
lower bounds on λ and ν. Therefore this region, where r may already be below r−, is
still a small perturbation of the Reissner–Nordström solution.

We choose a positive number2

0 < β < 1
2

(√
1 − 8 ∂r (1−μ)(r+,�0)

∂r (1−μ)(r−,�0)
− 1

)
, (94)

and define γ = γř−,β to be the curve parametrized by

u �→ (
u, (1 + β) vř−(u)), (95)

for u ∈ [0,U ]. Since the curve �ř− is spacelike, so is γ [u �→ vř−(u) is strictly
decreasing].

Lemma 6.1. For each β satisfying (94) there exist r− < ř− < r0 and 0 < ε0 < r−
for which, whenever ř− and ε are chosen satisfying r− < ř− ≤ ř− and 0 < ε ≤ ε0,
the following holds: there exists Uε (depending on ř− and ε) such that if (u, v) ∈
J−(γ ) ∩ J+(�ř−), with 0 < u ≤ Uε, and

r(u, v) ≥ r− − ε, (96)

then
r(u, v) ≥ r− − ε

2 and �(u, v) ≤ �0 + ε
2 . (97)

Corollary 6.2. Suppose that β is given satisfying (94), and let ř− and ε0 be as in the
previous lemma. Fix r− < ř− ≤ ř− and 0 < ε < ε0. If (u, v) ∈ J−(γ ) ∩ J+(�ř−) with
0 < u ≤ Uε, then

r(u, v) ≥ r− − ε
2 and �(u, v) ≤ �0 + ε

2 . (98)

2 We always have −∂r (1−μ)(r−, �0) > ∂r (1−μ)(r+, �0) (see Appendix A of Part 3). So, in particular,

we may choose β = − ∂r (1−μ)(r+,�0)
∂r (1−μ)(r−,�0)

.
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Proof. On �ř− we have r = ř− > r− > r− − ε
2 . Suppose that there exists a point

(u, v) ∈ J−(γ ) ∩ J+(�ř−), with 0 < u ≤ Uε, such that r(u, v) < r− − ε
2 . Then there

exists a point (ũ, v), with 0 < ũ < u ≤ Uε, such that r− − ε ≤ r(ũ, v) < r− − ε
2 . The

point (ũ, v) belongs to J−(γ ) ∩ J+(�ř−). Applying Lemma 6.1 at the point (ũ, v), we
reach a contradiction. The rest of the argument is immediate. ��
Proof of Lemma 6.1. Let (u, v) ∈ J−(γ ) ∩ J+(�ř−) such that (96) holds. Because of
the monotonicity properties of r ,

min
J−(u,v)∩J+(�ř− )

r ≥ r− − ε.

According to Proposition 13.2 of [7] (this result depends only on Eqs. (20) and (21),
and so does not depend on the presence of �), there exists a constant C (depending on
r− − ε0) such that

∫ v

vř− (u)

|θ |(u, ṽ) d ṽ +
∫ u

uř− (v)

|ζ |(ũ, v) dũ (99)

≤ C

(∫ v

vř− (u)

|θ |(uř−(v), ṽ) d ṽ +
∫ u

uř− (v)

|ζ |(ũ, vř−(u)) dũ

)

.

vř− (u)

vΓř−

U

u

u

uř− (v)

v

(u, v)

The first integral on the right hand side of (99) can be estimated using (48), (92)
and (95):
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∫ v

vř− (u)

|θ |(uř−(v), ṽ) d ṽ ≤ C sup
[0,u]

|ζ0|
∫ v

vř− (u)

e−αṽ d ṽ

≤ C sup
[0,u]

|ζ0|e−αvř− (u)
βvř−(u)

≤ C sup
[0,u]

|ζ0|e− α
1+β

v
βv

≤ C̃ sup
[0,u]

|ζ0|e− α
1+β+

v
,

where we have used vř−(u) = vγ (u)

1+β
≥ v

1+β
and vř−(u) ≤ v, and denoted by β+ a fixed

number strictly greater than β. The second integral on the right hand side of (99) can be
estimated using (46), (86) and (95):

∫ u

uř− (v)

|ζ |(ũ, vř−(u)) dũ =
∫ u

uř− (v)

∣
∣
∣
ζ

ν

∣
∣
∣(−ν)(ũ, vř−(u)) dũ

≤ C(r+ − ř−) sup
[0,u]

|ζ0|e−αvř− (u)

≤ C̃ sup
[0,u]

|ζ0|e− α
1+β

v
.

These lead to the following estimate for the left hand side of (99):
∫ v

vř− (u)

|θ |(u, ṽ) d ṽ +
∫ u

uř− (v)

|ζ |(ũ, v) dũ ≤ C sup
[0,u]

|ζ0|e− α
1+β+

v
. (100)

In order to use (35), note that, using η(r,�) ≤ η0(r),

e
− ∫ v

vř− (u)

[
λ

1−μ
∂r (1−μ)

]
(u,ṽ) d ṽ ≤ e−∂r (1−μ)(r−−ε0,�0)βvř− (u)

≤ e−∂r (1−μ)(r−−ε0,�0)βv.

Thus,
∣
∣
∣
ζ

ν

∣
∣
∣(u, v) ≤

∣
∣
∣
ζ

ν

∣
∣
∣(u, vř−(u))e

− ∫ v
vř− (u)

[
λ

1−μ
∂r (1−μ)

]
(u,ṽ) d ṽ

+
∫ v

vř− (u)

|θ |
r

(u, v̄)e− ∫ v
v̄

[
λ

1−μ
∂r (1−μ)

]
(u,ṽ) d ṽ d v̄

≤ C sup
[0,u]

|ζ0|e−αvř− (u)e−∂r (1−μ)(r−−ε0,�0)βv

+
e−∂r (1−μ)(r−−ε0,�0)βv

r− − ε0

∫ v

vř− (u)

|θ |(u, v̄) d v̄

≤ C sup
[0,u]

|ζ0|e− α
1+β

ve−∂r (1−μ)(r−−ε0,�0)βv

+
e−∂r (1−μ)(r−−ε0,�0)βv

r− − ε0
C sup

[0,u]
|ζ0|e− α

1+β+
v

≤ C sup
[0,u]

|ζ0|e−
(

α
1+β+

+∂r (1−μ)(r−−ε0,�0)β
)
v
. (101)
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Clearly, the right hand side of the last inequality also bounds maxũ∈[uř− (v),u]
∣
∣ ζ
ν

∣
∣(ũ, v).

In order to bound �(u, v), note that
∫ u

uř− (v)

[∣∣
∣
ζ

ν

∣
∣
∣|ζ |

]
(ũ, v) dũ

≤ C sup
[0,u]

|ζ0|e−
(

α
1+β+

+∂r (1−μ)(r−−ε0,�0)β

)
v
∫ u

uř− (v)

|ζ |(ũ, v) dũ

≤ C
(
sup
[0,u]

|ζ0|
)2
e
−
(

2α
1+β+

+∂r (1−μ)(r−−ε0,�0)β

)
v
. (102)

Using (45) and the last estimate, we get

�(u, v) ≤ �(uř−(v), v)e
1

r−−ε0

∫ u
uř− (v)

[∣∣ ζ
ν

∣
∣|ζ |

]
(ũ,v) dũ

+C
∫ u

uř− (v)

e
1

r−−ε0

∫ u
s

[∣∣ ζ
ν

∣
∣|ζ |

]
(ũ,v) dũ

[∣∣
∣
ζ

ν

∣
∣
∣|ζ |

]
(s, v) ds

≤ �(uř−(v), v)eC
(
sup[0,u] |ζ0|

)2
e
−
(

2α
1+β+

+∂r (1−μ)(r−−ε0,�0)β

)
v

+CeC
(
sup[0,u] |ζ0|

)2
e
−
(

2α
1+β+

+∂r (1−μ)(r−−ε0,�0)β

)
v

×(
sup
[0,u]

|ζ0|
)2
e
−
(

2α
1+β+

+∂r (1−μ)(r−−ε0,�0)β

)
v
.

Let δ > 0. Using the definition of α in (50), the constant in the exponent

2α

1 + β + δ
+ ∂r (1 − μ)(r− − ε0,�0)β (103)

is positive for

β < 1
2

(√

(1 + δ)2 − 8
(
ř+
r+ )δ̂

2
minr∈[ř+,r+] ∂r (1−μ)(r,�0)

∂r (1−μ)(r−−ε0,�0)
− (1 + δ)

)

. (104)

Now, the right hand side tends to

1
2

(√
1 − 8 ∂r (1−μ)(r+,�0)

∂r (1−μ)(r−,�0)
− 1

)

as (ř+, ε0, δ) → (r+, 0, 0). So, if β satisfies (94), we may choose ř+, ε0 and δ such
that (104) holds. Having done this, Eqs. (67) and (85) now imply that for each 0 < ε̄ < ε0
there exists Ūε̄ > 0 such that

�(u, v) ≤ �0 + ε̄
2 ,

provided that u ≤ Ūε̄. Since 1−μ is nonpositive and 1−μ = (1−μ)(r,�0)− 2(�−�0)
r ,

we have

(1 − μ)(r(u, v),�0) ≤ 2(�(u,v)−�0)
r ≤ ε̄

r−−ε0
.
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Hence, by inspection of the graph of (1−μ)(r,�0), there exists ε̄0 such that for 0 < ε̄ ≤
ε̄0, we have r(u, v) > r− − ε

2 provided that u ≤ Ūε̄. For 0 < u ≤ Uε := min{Ūε̄0 , Ūε},
both inequalities (97) hold. ��
Remark 6.3. Given ε > 0, we may choose U sufficiently small so that if (u, v) ∈
J−(γ ) ∩ J+(�ř−), then

κ(u, v) ≥ 1 − ε. (105)

This is a consequence of (66) and (102), since r is bounded away from zero.

Consider the reference subextremal Reissner–Nordström black hole with renormal-
ized mass �0, charge parameter e and cosmological constant �. The next remark will
turn out to be crucial in Part 3.

Remark 6.4. Suppose that there exist positive constantsC and s such that |ζ0(u)| ≤ Cus .
Then, instead of choosing β according to (94), in Lemma 6.1 we may choose

0 < β < 1
2

(√
1 − 8 (1+s)∂r (1−μ)(r+,�0)

∂r (1−μ)(r−,�0)
− 1

)
. (106)

Proof. Let (u, v) ∈ J−(γ ) ∩ J+(�ř−). According to (85), we have

u ≤ Ce−[∂r (1−μ)(r+,�0)−ε]vř− (u)

≤ Ce−[∂r (1−μ)(r+,�0)−ε] v
1+β

≤ Ce
−∂r (1−μ)(r+,�0)

v
1+β+ . (107)

Thus, the exponent in the upper bound for � in (103) may be replaced by

2s∂r (1 − μ)(r+,�0)

1 + β + δ
+

2α

1 + β + δ
+ ∂r (1 − μ)(r− − ε0,�0)β.

This is positive for

β < 1
2

(√

(1 + δ)2 − 8
[( ř+r+ )δ̂

2
+s]minr∈[ř+,r+] ∂r (1−μ)(r,�0)

∂r (1−μ)(r−−ε0,�0)
− (1 + δ)

)

. (108)

Given β satisfying (106), we can guarantee that it satisfies the condition above by
choosing (ř+, ε0, δ) sufficiently close to (r+, 0, 0). ��
Corollary 6.5. If, for example, |ζ0|(u) ≤ e−1/u2 , then instead of choosing β according
to (94), in Lemma 6.1 we may choose any positive β.

Lemma 6.6. Suppose thatβ is given satisfying (94). Choose ř− and ε0 as in the statement
of Lemma 6.1. Let γ be the curve parametrized by (95). Let also δ > 0, β− < β and
β+ > β. There exist constants, c̃, C̃ , c and C, such that for (u, v) ∈ γ , with 0 < u ≤ Uε0 ,
we have

c̃e(1+δ)∂r (1−μ)(r−−ε0,�0)
β

1+β
v (109)

≤ −λ(u, v) ≤
C̃e

(1−δ)∂r (1−μ)(ř−,�0)
β

1+β
v

(110)

and

cu
− 1+β+

1+β−
∂r (1−μ)(r−−ε0,�0)

∂r (1−μ)(r+,�0)
β −1 ≤ −ν(u, v) ≤ Cu

− 1+β−
1+β+

∂r (1−μ)(ř−,�0)

∂r (1−μ)(r+,�0)
β −1

. (111)
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Proof. Let us first outline the proof. According to (16) and (17),

− λ(u, v) = −λ(uř−(v), v)e

∫ u
uř− (v)

[
ν

1−μ
∂r (1−μ)

]
(ũ,v) dũ

, (112)

−ν(u, v) = −ν(u, vř−(u))e

∫ v
vř− (u)

[
κ∂r (1−μ)

]
(u,ṽ) d ṽ

. (113)

In this region we cannot proceed as was done in the previous section because we cannot
guarantee 1−μ is bounded away from zero. The idea now is to use these two equations
to estimate λ and ν. For this we need to obtain lower and upper bounds for

∫ u

uř− (v)

ν

1 − μ
(ũ, v) dũ (114)

and ∫ v

vř− (u)

κ(u, ṽ) d ṽ, (115)

when (u, v) ∈ J−(γ ) ∩ J+(�ř−). The estimates for (115), and thus for ν, are easy to
obtain. We estimate (114) by comparing it with

∫ u

uř− (v)

ν

1 − μ
(ũ, vř−(ũ)) dũ. (116)

Using (73), we see that (114) is bounded above by (116). We can also bound (114) from
below by (116), divided by 1 + ε, once we show that

e

∫ v
vř− (ū)

[∣∣ θ
λ

∣
∣ |θ |

r

]
(ū,ṽ) d ṽ ≤ 1 + ε.

The estimates for θ
λ

are obtained via (34) and via upper estimates for (114). To
bound (116) we use the fact that the integrals of ν and λ along �ř− coincide.

We start the proof by differentiating the equation

r(ũ, vř−(ũ)) = ř−

with respect to ũ, obtaining

ν(ũ, vř−(ũ)) + λ(ũ, vř−(ũ))v′
ř−(ũ) = 0. (117)

For (u, v) ∈ J+(�ř−), integrating (117) between uř−(v) and u, we get

∫ u

uř− (v)

ν(ũ, vř−(ũ)) dũ +
∫ u

uř− (v)

λ(ũ, vř−(ũ))v′
ř−(ũ) dũ = 0.

By making the change of variables ṽ = vř−(ũ), this last equation can be rewritten as

∫ u

uř− (v)

ν(ũ, vř−(ũ)) dũ −
∫ v

vř− (u)

λ(uř−(ṽ), ṽ) d ṽ = 0, (118)

as vř−(uř−(v)) = v and d ṽ
dũ = v′

ř−(ũ).



Global Uniqueness with a Cosmological Constant: Part 2 935

We may bound the integral of λ along �ř− in terms of the integral of κ along �ř− in
the following way:

−max
�ř−

(1 − μ)

∫ v

vř− (u)

κ(uř−(ṽ), ṽ) d ṽ (119)

≤ −
∫ v

vř− (u)

λ(uř−(ṽ), ṽ) d ṽ ≤

−min
�ř−

(1 − μ)

∫ v

vř− (u)

κ(uř−(ṽ), ṽ) d ṽ. (120)

Analogously, we may bound the integral of ν along �ř− in terms of the integral of ν
1−μ

along �ř− in the following way:

−max
�ř−

(1 − μ)

∫ u

uř− (v)

ν

1 − μ
(ũ, vř−(ũ)) dũ (121)

≤ −
∫ u

uř− (v)

ν(ũ, vř−(ũ)) dũ ≤

−min
�ř−

(1 − μ)

∫ u

uř− (v)

ν

1 − μ
(ũ, vř−(ũ)) dũ. (122)

Let now (u, v) ∈ J−(γ )∩ J+(�ř−). Using successively (73), (121), (118) and (120),
we get

∫ u

uř− (v)

ν

1 − μ
(ũ, v) dũ

≤
∫ u

uř− (v)

ν

1 − μ
(ũ, vř−(ũ)) dũ

≤ 1−max�ř− (1−μ)

∫ u

uř− (v)

−ν(ũ, vř−(ũ)) dũ

= 1−max�ř− (1−μ)

∫ v

vř− (u)

−λ(uř−(ṽ), ṽ) d ṽ

≤ min�ř− (1−μ)

max�ř− (1−μ)

∫ v

vř− (u)

κ(uř−(ṽ), ṽ) d ṽ (123)

≤ min�ř− (1−μ)

max�ř− (1−μ)
βvř−(u) (124)

≤ min�ř− (1−μ)

max�ř− (1−μ)
βv.

We can now bound the field θ
λ
for (u, v) ∈ J−(γ ) ∩ J+(�ř−). Using (34),

∣
∣
∣
θ

λ

∣
∣
∣(u, v) ≤

∣
∣
∣
θ

λ

∣
∣
∣(uř−(v), v)e

− ∫ u
uř− (v)

[
ν

1−μ
∂r (1−μ)

]
(ũ,v) dũ

+
∫ u

uř− (v)

|ζ |
r

(ū, v)e− ∫ u
ū

[
ν

1−μ
∂r (1−μ)

]
(ũ,v) dũ dū. (125)
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We can bound the exponentials in (125) by

e− ∫ u
ū

[
ν

1−μ
∂r (1−μ)

]
(ũ,v) dũ

≤ e−∂r (1−μ)(r−−ε0,�0)
∫ u
ū

[
ν

1−μ

]
(ũ,v) dũ

≤ e
−∂r (1−μ)(r−−ε0,�0)

∫ u
uř− (v)

[
ν

1−μ

]
(ũ,v) dũ

≤ e
−∂r (1−μ)(r−−ε0,�0)

min�ř− (1−μ)

max�ř− (1−μ)
βv

.

Combining this inequality with (91), (98) and (100), leads to

∣
∣
∣
θ

λ

∣
∣
∣(u, v) ≤

(

C sup
[0,u]

|ζ0|e−αv + C sup
[0,u]

|ζ0|e− α
1+β+

v

)

×e
−∂r (1−μ)(r−−ε0,�0)

min�ř− (1−μ)

max�ř− (1−μ)
βv

≤ C sup
[0,u]

|ζ0|e
−

(
α

1+β+
+∂r (1−μ)(r−−ε0,�0)

min�ř− (1−μ)

max�ř− (1−μ)
β

)

v

. (126)

We consider the two possible cases. Suppose first that the exponent in (126) is nonpos-
itive. Then, from (100) we get

∫ v

vř− (u)

[∣∣
∣
θ

λ

∣
∣
∣|θ |

]
(u, ṽ) d ṽ ≤ C

∫ v

vř− (u)

|θ |(u, ṽ) d ṽ

≤ C sup
[0,u]

|ζ0|e− α
1+β+

v
.

Suppose now the exponent in (126) is positive. Using (126) and (100) again,

∫ v

vř− (u)

[∣∣
∣
θ

λ

∣
∣
∣|θ |

]
(u, ṽ) d ṽ

≤ C sup
[0,u]

|ζ0|e
−

(
α

1+β+
+∂r (1−μ)(r−−ε0,�0)

min�ř− (1−μ)

max�ř− (1−μ)
β

)

v ∫ v

vř− (u)

|θ |(u, ṽ) d ṽ

≤ C(sup
[0,u]

|ζ0|)2e
−

(
2α

1+β+
+∂r (1−μ)(r−−ε0,�0)

min�ř− (1−μ)

max�ř− (1−μ)
β

)

v

.

Therefore, in either case, given ε > 0 we may choose U sufficiently small so that if
(u, v) ∈ J−(γ ) ∩ J+(�ř−), then

e
1

r−−ε0

∫ v
vř− (ū)

[∣∣ θ
λ

∣
∣|θ |

]
(ū,ṽ) d ṽ ≤ 1 + ε, (127)

for ū ∈ [uř−(v), u].
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Next we use (73), (121), (122) and (127). We may bound the integral of ν along �ř−
in terms of the integral of ν

1−μ
on the segment

[
uř−(v), u

] × {v} in the following way:

−max
�ř−

(1 − μ)

∫ u

uř− (v)

ν

1 − μ
(ũ, v) dũ (128)

≤ −max
�ř−

(1 − μ)

∫ u

uř− (v)

ν

1 − μ
(ũ, vř−(ũ)) dũ

≤ −
∫ u

uř− (v)

ν(ũ, vř−(ũ)) dũ ≤

−min
�ř−

(1 − μ)

∫ u

uř− (v)

ν

1 − μ
(ũ, vř−(ũ)) dũ ≤

−(1 + ε)min
�ř−

(1 − μ)

∫ u

uř− (v)

ν

1 − μ
(ũ, v) dũ. (129)

Now we consider (u, v) ∈ γ . In (124) we obtained an upper bound for∫ u
uř− (v)

ν
1−μ

(ũ, v) dũ. Nowwe use (129) to obtain a lower bound for this quantity. Apply-

ing successively (129), (118), (119), and (105),
∫ u

uř− (v)

ν

1 − μ
(ũ, v) dũ

≥ 1−(1+ε)min�ř− (1−μ)

∫ u

uř− (v)

−ν(ũ, vř−(ũ)) dũ

= 1−(1+ε)min�ř− (1−μ)

∫ v

vř− (u)

−λ(uř−(ṽ), ṽ) d ṽ

≥ max�ř− (1−μ)

(1+ε)min�ř− (1−μ)

∫ v

vř− (u)

κ(uř−(ṽ), ṽ) d ṽ (130)

≥ (1−ε)max�ř− (1−μ)

(1+ε)min�ř− (1−μ)
βvř−(u)

= (1−ε)
(1+ε)

max�ř− (1−μ)

min�ř− (1−μ)

β
1+β

v.

Thus,

e

∫ u
uř− (v)

[
ν

1−μ
∂r (1−μ)

]
(ũ,v) dũ

≤ e

[
maxJ−(γ )∩J+(�ř− ) ∂r (1−μ)

] ∫ u
uř− (v)

ν
1−μ

(ũ,v) dũ

≤ e

[
maxJ−(γ )∩J+(�ř− ) ∂r (1−μ)

]
(1−ε)
(1+ε)

max�ř− (1−μ)

min�ř− (1−μ)
β

1+β
v

≤ e

[
∂r (1−μ)(ř−,�0)+maxJ−(γ )∩J+(�ř− )

2(�−�0)

r2

]
(1−ε)
(1+ε)

max�ř− (1−μ)

min�ř− (1−μ)
β

1+β
v

≤ e

[
∂r (1−μ)(ř−,�0)+ ε

(r−−ε0)2

]
(1−ε)
(1+ε)

max�ř− (1−μ)

min�ř− (1−μ)
β

1+β
v

. (131)
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On the other hand, using (124),

e

∫ u
uř− (v)

[
ν

1−μ
∂r (1−μ)

]
(ũ,v) dũ

≥ e

[
minJ−(γ )∩J+(�ř− ) ∂r (1−μ)

] ∫ u
uř− (v)

ν
1−μ

(ũ,v) dũ

≥ e

[
minJ−(γ )∩J+(�ř− ) ∂r (1−μ)

] min�ř− (1−μ)

max�ř− (1−μ)
β

1+β
v

≥ e
∂r (1−μ)(r−−ε0,�0)

min�ř− (1−μ)

max�ř− (1−μ)
β

1+β
v

. (132)

We continue assuming (u, v) ∈ γ . Taking into account (69), estimate (131) allows
us to obtain an upper bound for −λ(u, v),

−λ(u, v) = −λ(uř−(v), v)e

∫ u
uř− (v)

[
ν

1−μ
∂r (1−μ)

]
(ũ,v) dũ

≤ Ce
(1−ε)
(1+ε)

max�ř− (1−μ)

min�ř− (1−μ)

[
∂r (1−μ)(ř−,�0)+ ε

(r−−ε0)2

]
β

1+β
v

≤ C̃e(1−δ)∂r (1−μ)(ř−,�0)
β

1+β
v
,

and estimate (132) allows us to obtain a lower bound for −λ(u, v),

−λ(u, v) = −λ(uř−(v), v)e

∫ u
uř− (v)

[
ν

1−μ
∂r (1−μ)

]
(ũ,v) dũ

≥ ce

min�ř− (1−μ)

max�ř− (1−μ)
∂r (1 − μ)(r− − ε0, �0)

β
1+β

v

≥ c̃e(1+δ)∂r (1−μ)(r−−ε0,�0)
β

1+β
v
.

Next, we turn to the estimates on ν. Let, again, (u, v) ∈ γ . Using (105),

(1 − ε)
β

1+β
v ≤

∫ v

vř− (u)

κ(u, ṽ) d ṽ ≤ β
1+β

v.

These two inequalities imply

e

∫ v
vř− (u)[κ∂r (1−μ)](u,ṽ) d ṽ

≤ e

[
maxJ−(γ )∩J+(�ř− ) ∂r (1−μ)

] ∫ v
vř− (u) κ(u,ṽ) d ṽ

≤ e
(1−ε)

[
∂r (1−μ)(ř−,�0)+ ε

(r−−ε0)2

]
β

1+β
v

(133)

and

e

∫ v
vř− (u)[κ∂r (1−μ)](u,ṽ) d ṽ

≥ e

[
minJ−(γ )∩J+(�ř− ) ∂r (1−μ)

] ∫ v
vř− (u) κ(u,ṽ) d ṽ

≥ e∂r (1−μ)(r−−ε0,�0)
β

1+β
v
. (134)
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We note that according to (85) we have

ce
−∂r (1−μ)(r+,�0)

v

1+β− ≤ ce−[∂r (1−μ)(r+,�0)+ε̃] v
1+β (135)

= ce−[∂r (1−μ)(r+,�0)+ε̃]vř− (u)

≤ u ≤ Ce−[∂r (1−μ)(r+,�0)−ε̃]vř− (u)

= Ce−[∂r (1−μ)(r+,�0)−ε̃] v
1+β

≤ Ce
−∂r (1−μ)(r+,�0)

v
1+β+ , (136)

as (u, v) ∈ γ . (The bound (136) is actually valid in J−(γ ) ∩ J+(�ř−), see (107).)
Recalling (113) and (70), and using (133) and (135),

−ν(u, v) = −ν(u, vř−(u))e

∫ v
vř− (u)[κ∂r (1−μ)](u,ṽ) d ṽ

≤ C

u
e
(1−ε)

[
∂r (1−μ)(ř−,�0)+ ε

(r−−ε0)2

]
β

1+β
v

≤ C

u
e
∂r (1−μ)(ř−,�0)

β

1+β+
v

≤ Cu
− 1+β−

1+β+
∂r (1−μ)(ř−,�0)

∂r (1−μ)(r+,�0)
β −1

,

whereas using (134) and (136),

−ν(u, v) = −ν(u, vř−(u))e

∫ v
vř− (u)[κ∂r (1−μ)](u,ṽ) d ṽ

≥ c

u
e∂r (1−μ)(r−−ε0,�0)

β
1+β

v

≥ cu
− 1+β+

1+β−
∂r (1−μ)(r−−ε0,�0)

∂r (1−μ)(r+,�0)
β −1

.

��

Remark 6.7. Since−∂r (1−μ)(r−,�0) > ∂r (1−μ)(r+,�0) (seeAppendixAof Part 3),
we can make our choice of β and other parameters (ř−, ε0, U ) so that

− 1+β−
1+β+

∂r (1−μ)(ř−,�0)
∂r (1−μ)(r+,�0)

β − 1 > 0

and

− 1+β+

1+β−
∂r (1−μ)(r−−ε0,�0)

∂r (1−μ)(r+,�0)
β − 1 > 0.

Having done so, for (u, v) on the curve γ , we obtain

cus2 ≤ −ν(u, v) ≤ Cus1 ,

with 0 < s1 < s2.
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7. The Region J+(γ )

Using (112) and (113), we wish to obtain upper bounds for −λ and for −ν in the future
of γ while r is greater than or equal to r− − ε. To do so, we partition this set into two
regions, one where the mass is close to �0 and another one where the mass is not close
to �0. In the former case ∂r (1 − μ) < 0 and in the latter case ∂r (1−μ)

1−μ
is bounded. This

information is used to bound the exponentials that appear in (112) and (113).
Here the solution with general ζ0 departs qualitatively from the Reissner–Nordström

solution (26)–(30), but the radius function remains bounded away from zero, and
approaches r− as u → 0. This shows that the existence of a Cauchy horizon is a
stable property when ζ0 is perturbed away from zero.

Lemma 7.1. Let 0 < ε0 < r−. There exists 0 < ε ≤ ε0 such that for (u, v) ∈ {r >

r− − ε} ∩ J+(γ ) we have

− λ(u, v) ≤ Ce(1−δ)∂r (1−μ)(ř−,�0)
β

1+β
v
, (137)

−ν(u, v) ≤ Cu
− 1+β−

1+β+
∂r (1−μ)(ř−,�0)

∂r (1−μ)(r+,�0)
β −1

. (138)

Proof. We recall that on γ the function r is bounded above by ř− and that

η = η0 + �0 − �.

The minimum of η0 in the interval [r− − ε0, ř−] is positive, since η0(ř−) > 0. If

� < �0 + min
r∈[r−−ε0,ř−]

η0(r) (139)

then clearly
η > 0. (140)

On the other hand, if
� ≥ �0 + min

r∈[r−−ε0,ř−]
η0(r) (141)

then, for r ∈ [r− − ε, ř−],

(1 − μ)(r,�) ≤ (1 − μ)(r,�0) − 2minr∈[r−−ε0,ř−] η0(r)
ř−

,

where we used

(1 − μ)(r,�) = (1 − μ)(r,�0) +
2(�0 − �)

r
.

Choosing 0 < ε ≤ ε0 such that

max
r∈[r−−ε,ř−]

(1 − μ)(r,�0) ≤ minr∈[r−−ε0,ř−] η0(r)
ř−

we have

(1 − μ)(r,�) ≤ − minr∈[r−−ε0,ř−] η0(r)
ř−

< 0. (142)
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In case (139) we have (recall (31))

ν

1 − μ
∂r (1 − μ) < 0 and

λ

1 − μ
∂r (1 − μ) < 0.

In case (141), the absolute value of

− 1

1 − μ
∂r (1 − μ)

is bounded, say by C . Indeed, this is a consequence of two facts: (i) the denominators
1 − μ and r are bounded away from zero (we recall η also has a denominator equal to
r ); (ii) the equality

lim
�→+∞ − 1

1 − μ
∂r (1 − μ) = 1

r
. (143)

We define

�v =
{

u ∈ ]0,U ] : (u, v) ∈ {r > r− − ε} ∩ J+(γ )

and �(u, v) < �0 + min
r∈[r−−ε0,ř−]

η0(r)

}

,

�v =
{

u ∈ ]0,U ] : (u, v) ∈ {r > r− − ε} ∩ J+(γ )

and �(u, v) ≥ �0 + min
r∈[r−−ε0,ř−]

η0(r)

}

,

�̃u =
{

v ∈ ]0,∞[: (u, v) ∈ {r > r− − ε} ∩ J+(γ )

and �(u, v) < �0 + min
r∈[r−−ε0,ř−]

η0(r)

}

and

�̃u =
{

v ∈ ]0,∞[: (u, v) ∈ {r > r− − ε} ∩ J+(γ )

and �(u, v) ≥ �0 + min
r∈[r−−ε0,ř−]

η0(r)

}

.

In order to estimate λ, we observe that

e
∫ u
uγ (v)

[
ν

1−μ
∂r (1−μ)

]
(ũ,v) dũ

= e
∫
ũ∈[uγ (v),u]∩�v

[
ν

1−μ
∂r (1−μ)

]
(ũ,v) dũ

×e
∫
ũ∈[uγ (v),u]∩�v

[
ν

1−μ
∂r (1−μ)

]
(ũ,v) dũ

≤ 1 × e
C

∫
ũ∈[uγ (v),u]∩�v (−ν)(ũ,v) dũ

≤ 1 × eC(ř−−(r−−ε)) =: Ĉ .
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Similarly, to estimate ν we note that

e
∫ v
vγ (u)

[
λ

1−μ
∂r (1−μ)

]
(u,ṽ) d ṽ

= e
∫
ṽ∈[vγ (u),v]∩�̃u

[
λ

1−μ
∂r (1−μ)

]
(u,ṽ) d ṽ

×e
∫
ṽ∈[vγ (u),v]∩�̃u

[
λ

1−μ
∂r (1−μ)

]
(u,ṽ) d ṽ

≤ 1 × e
C

∫
ṽ∈[vγ (u),v]∩�̃u (−λ)(u,ṽ) d ṽ

≤ 1 × eC(ř−−(r−−ε)) = Ĉ .

In conclusion, let (u, v) ∈ {r > r− − ε} ∩ J+(�ř−). Using (112) and (110), we have

− λ(u, v) = −λ(uγ (v), v)e
∫ u
uγ (v)

[
ν

1−μ
∂r (1−μ)

]
(ũ,v) dũ

(144)

≤ ĈC̃e(1−δ)∂r (1−μ)(ř−,�0)
β

1+β
v
.

Similarly, using (113) and (111), we have

−ν(u, v) = −ν(u, vγ (u))e
∫ v
vγ (u)

[
λ

1−μ
∂r (1−μ)

]
(u,ṽ) d ṽ

≤ ĈCu
− 1+β−

1+β+
∂r (1−μ)(ř−,�0)

∂r (1−μ)(r+,�0)
β −1

.

��
Lemma 7.2. Let δ > 0. There exists Ũδ such that for (u, v) ∈ J+(γ ) with u < Ũδ , we
have

r(u, v) > r− − δ.

Proof. We denote by ε the value of ε that is provided in Lemma 7.1. Let δ > 0. Without
loss of generality, we assume that δ is less than or equal to ε. Choose the value of ε in
Corollary 6.2 equal to δ. This determines anUε as in the statement of that corollary. Let
(u, v) ∈ J+(γ ) with u ≤ Uε. Then

r(u, vγ (u)) ≥ r− − δ

2
and r(uγ (v), v) ≥ r− − δ

2

because uγ (v) ≤ u. Here

u �→ (u, vγ (u)) and v �→ (uγ (v), v)

are parameterizations of the spacelike curve γ . Integrating (138), we obtain

−
∫ u

uγ (v)

∂r

∂u
(s, v) ds ≤

∫ u

uγ (v)

Cs p−1 ds, (145)

for a positive p. This estimate is valid for (u, v) ∈ {r > r− − ε} ∩ J+(γ ). It yields

r(u, v) ≥ r(uγ (v), v) − C

p
(u p − (uγ (v))p)

≥ r− − δ

2
− C

p
u p > r− − δ, (146)
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provided u < min
{
Uε,

p
√

δp
2C

}
=: Ũδ . Since δ is less than or equal to ε and γ ⊂ {r >

r−−ε}, if (u, v) ∈ J+(γ ) and u < Ũδ , then (u, v) ∈ {r > r−−ε} and the estimate (145)
does indeed apply.

Alternatively, we can obtain (146) integrating (137):

−
∫ v

vγ (u)

∂r

∂v
(u, s) ds ≤

∫ v

vγ (u)

Ce−qs ds,

for a positive q. This yields

r(u, v) ≥ r(u, vγ (u)) − C

q

(
e−qvγ (u) − e−qv

)

≥ r− − δ

2
− C

q
e−qvγ (u)

≥ r− − δ

2
− C̃uq̃ ,

for a positive q̃ , according to (135). For u < min
{
Uε,

q̃
√

δ

2C̃

}
we obtain, once more,

r(u, v) > r− − δ.

��
Corollary 7.3. If δ < r− then P contains [0, Ũδ] × [0,∞[. Moreover, estimates (137)
and (138) hold on J+(γ ).

Due to the monotonicity of r(u, · ) for each fixed u, we may define

r(u,∞) = lim
v→∞ r(u, v).

As r(u2, v) < r(u1, v) for u2 > u1, we have that r( · ,∞) is nonincreasing.

Corollary 7.4. We have
lim
u↘0

r(u,∞) = r−. (147)

The previous two corollaries prove Theorem 1.1. The argument in [7, Section 11],
shows that, as in the case when � = 0, the spacetime is then extendible across the
Cauchy horizon with C0 metric.

8. Two Effects of Any Nonzero Field

This section contains two results concerning the structure of the solutions with general
ζ0. Theorem 8.1 asserts that only in the case of the Reissner–Nordström solution does
the curve �r− coincide with the Cauchy horizon: if the field ζ0 is not identically zero,
then the curve �r− is contained in P .

Lemma 8.2 states that, in contrast with what happens with the Reissner–Nordström
solution, and perhaps unexpectedly, the presence of a nonzero field immediately causes
the integral

∫ ∞
0 κ(u, v) dv to be finite for any u > 0. This implies that the affine para-

meter of any outgoing null geodesic inside the event horizon is finite at the Cauchy
horizon.
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For each u > 0, we define

�(u,∞) = lim
v↗+∞ �(u, v).

This limit exists, and u �→ �(u,∞) is an increasing function.

Theorem 8.1. Suppose that there exists a positive sequence (un) converging to 0 such
that ζ0(un) �= 0. Then r(u,∞) < r− for all u ∈ ]0,U ].

Proof. The proof is by contradiction. Assume that r(ū,∞) = r− for some ū ∈ ]0,U ].
Then r(u,∞) = r− for all u ∈ ]0, ū]. Let 0 < δ < u ≤ ū. Clearly,

r(u, v) = r(δ, v) +
∫ u

δ

ν(s, v) ds.

Fatou’s lemma implies that

lim inf
v→∞

∫ u

δ

−ν(s, v) ds ≥
∫ u

δ

lim inf
v→∞ −ν(s, v) ds.

So,

r− = lim
v→∞ r(u, v) = lim

v→∞ r(δ, v) − lim
v→∞

∫ u

δ

−ν(s, v) ds

= r− − lim inf
v→∞

∫ u

δ

−ν(s, v) ds

≤ r− −
∫ u

δ

lim inf
v→∞ −ν(s, v) ds. (148)

Since δ is arbitrary, this inequality implies that lim infv→∞ −ν(u, v) is equal to zero
for almost all u ∈ ]0, ū]. However, we will now show that, under the hypothesis on ζ0,
lim infv→∞ −ν(u, v) cannot be zero for any positive u if r(u,∞) ≡ r−.

First, assume that �(u,∞) = ∞ for a certain u. Then, using (143),

lim
v→∞

∂r (1 − μ)

1 − μ
(u, v) = − 1

r−
< 0.

Wemay choose V = V (u) > 0 such that ∂r (1−μ)
1−μ

(u, v) < 0 for v > V . Integrating (17),
for v > V ,

−ν(u, v) = −ν(u, V )e
∫ v
V

[
∂r (1−μ)
1−μ

λ
]
(u,ṽ) d ṽ

≥ −ν(u, V ) > 0.

Thus, for such a u, it is impossible for lim infv→∞ −ν(u, v) to be equal to zero.
Nowassume�(u,∞) < ∞. The hypothesis on ζ0 and (18) imply that�(u, 0) > �0

for each u > 0, and so �(u,∞) > �0 for each u > 0. Then,

(1 − μ)(u,∞) = (1 − μ)(r−,�(u,∞)) < (1 − μ)(r−,�0) = 0.
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We may choose V = V (u) > 0 such that −(1 − μ)(u, v) ≥ C(u) > 0 for v > V .
Hence, integrating (19), for v > V ,

�(u, v) = �(u, V ) +
1

2

∫ v

V

[
−(1 − μ)

θ2

−λ

]
(u, v) dv

≥ �(u, V ) +
C(u)

2

∫ v

V

[ θ2

−λ

]
(u, v) dv.

Since �(u,∞) < ∞, letting v tend to +∞, we conclude
∫ ∞

V

[ θ2

−λ

]
(u, v) dv < ∞.

Finally, integrating (73) starting from V , we see that ν(u,∞)
(1−μ)(u,∞)

> 0. Since (1 −
μ)(u,∞) < 0, once again we conclude that lim infv→∞ −ν(u, v) = −ν(u,∞) > 0.
��
Lemma 8.2. Suppose that there exists a positive sequence (un) converging to 0 such
that ζ0(un) �= 0. Then

∫ ∞

0
κ(u, v) dv < ∞ for all u > 0. (149)

Proof. We claim that for some decreasing sequence (un) converging to 0,

(1 − μ)(un,∞) < 0.

To prove our claim, we consider three cases.

Case 1. If �(u,∞) = ∞ for each u > 0 then (1 − μ)(u,∞) = −∞.
Case 2. If limu↘0 �(u,∞) > �0 then, using Corollary 7.4,

lim
u↘0

(1 − μ)(u,∞) = (1 − μ)(r−, lim
u↘0

�(u,∞)) < (1 − μ)(r−,�0) = 0.

Case 3. Suppose that limu↘0 �(u,∞) = �0. For sufficiently small u and (u, v) ∈
J+(�ř−), we have

η(u, v) ≥ 0

(see (140)). So, we may define ν(u,∞) = limv↗+∞ ν(u, v). By Lebesgue’s monotone
convergence theorem, we have

r(u,∞) = r(δ,∞) +
∫ u

δ

ν(s,∞) ds. (150)

Note that different convergence theorems have to be used in (148) and (150). If ν(u,∞)

were zero almost everywhere, then r(u,∞)would be a constant. If the constant were r−
we would be contradicting Theorem 8.1. If the constant were smaller than r− we would
be contradicting Lemma 7.2. We conclude there must exist a sequence un ↘ 0 such that
ν(un,∞) < 0. Integrating (73), we get

ν(u,∞)

(1 − μ)(u,∞)
≤ ν(u, 0)

(1 − μ)(u, 0)
< ∞.
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Therefore, (1 − μ)(un,∞) < 0. This proves our claim.
For any fixed index n, there exists a vn such that

(1 − μ)(un, v) <
1

2
(1 − μ)(un,∞) =: − 1

cn
,

for v ≥ vn . It follows that

κ(un, v) ≤ cn(−λ(un, v)), for v ≥ vn .

Using the estimate (137) for −λ, we have
∫ ∞

vn

κ(un, v) dv < ∞.

Hence
∫ ∞
0 κ(un, v) dv < ∞. Recalling that u �→ κ(u, v) is nonincreasing,we get (149).

��
Corollary 8.3. Let u > 0. Consider an outgoing null geodesic t �→ (u, v(t)) for (M, g),
with g given by

g = −
2(u, v) dudv + r2(u, v) σS2 .

Then v−1(∞) < ∞, i.e. the affine parameter is finite at the Cauchy horizon.

Proof. The function v( · ) satisfies
v̈ + �v

vv(u, v) v̇2 = 0, (151)

where the Christoffel symbol �v
vv is given by

�v
vv = ∂v ln
2.

So, we may rewrite (151) as

v̈

v̇
= −∂t (ln
2)(u, v).

We integrate both sides of this equation to obtain

ln v̇ + ln c = − ln
2(u, v),

with c > 0, or

dt

dv
= c
2(u, v).

Integrating both sides of the previous equation once again, the affine parameter t is given
by

t = v−1(0) + c
∫ v

0

2(u, v̄) d v̄ = v−1(0) − 4c

∫ v

0
(νκ)(u, v̄) d v̄.
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If ζ0 vanishes in a neighborhood of the origin, the solution corresponds to the
Reissner–Nordström solution. The function κ is identically 1 and, using (73), ν

1−μ
=

C(u), with C(u) a positive function of u. Thus, ν = C(u)(1 − μ) = C(u)λ and
∫ ∞

0

2(u, v̄) d v̄ = −4cC(u)

∫ ∞

0
λ(u, v̄) d v̄ = 4cC(u)(r+ − u − r−) < ∞.

On the other hand, suppose that there exists a positive sequence (un) converging to 0
such that ζ0(un) �= 0. Then, since ν is continuous, it satisfies the bound (138) for large
v, and (149) holds. So we also have

∫ ∞

0

2(u, v̄) d v̄ < ∞.

��
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