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Abstract: We consider random Schrödinger operators of the form Δ + ξ , where Δ

is the lattice Laplacian on Z
d and ξ is an i.i.d. random field, and study the extreme

order statistics of the Dirichlet eigenvalues for this operator restricted to large but finite
subsets ofZ

d . We show that, for ξ with a doubly-exponential type of upper tail, the upper
extreme order statistics of the eigenvalues falls into the Gumbel max-order class, and
the corresponding eigenfunctions are exponentially localized in regions where ξ takes
large, and properly arranged, values. The picture we prove is thus closely connected with
the phenomenon of Anderson localization at the spectral edge. Notwithstanding, our
approach is largely independent of existing methods for proofs of Anderson localization
and it is based on studying individual eigenvalue/eigenfunction pairs and characterizing
the regions where the leading eigenfunctions put most of their mass.

1. Introduction and Results

Random Schrödinger operators have been a focus of interest among mathematicians
and mathematical physicists for several decades. A good representative is the Anderson
Hamiltonian Hξ that acts on f : Z

d → C as

(Hξ f )(x) :=
∑

y : |y−x |=1

[
f (y)− f (x)

]
+ ξ(x) f (x), x ∈ Z

d , (1.1)

with the potentials {ξ(x)}x∈Zd sampled independently from a common law on R. The
first term on the right is the lattice Laplacian; so we may also write Hξ = Δ + ξ .

Much is known (and unknown) about the spectral properties of Hξ ; see Sect. 3 and
the introduction to Sect. 2 for some pointers to the literature and further connections. Our
principal goal here is a description of the spectral extreme order statistics for Hξ over
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large finite subsets of Z
d , i.e., the limiting joint distribution of its largest eigenvalues.

More precisely, for a finite set D ⊂ Z
d , let HD,ξ denote the operator Hξ restricted to

functions with Dirichlet boundary condition outside D. This is a self-adjoint operator (a
matrix) with real eigenvalues that we will label in decreasing order as

λ
(1)
D (ξ) ≥ λ

(2)
D (ξ) ≥ · · · ≥ λ

(|D|)
D (ξ). (1.2)

As is common in the theory of extreme-value statistics (see, e.g., de Haan and Fer-
reira [21] for a comprehensive account of this theory), given a sequence DL of finite
subsets of Z

d with DL ↑ Z
d , we wish to identify sequences aL and bL so that, as

L → ∞, the maximal eigenvalue λ
(1)
DL

(ξ) behaves in law as aL + bLG, where G is a
non-degenerate random variable. A more ambitious goal would be to show that the set
of points {

1

bL

(
λ

(k)
DL

(ξ)− aL
) : k = 1, . . . , |DL |

}
(1.3)

tends in law to a non-degenerate point process on R. (This still concerns only a finite
number of top rescaled eigenvalues; i.e., the behavior at the top edge of the spectrum.)

Of course we cannot hope to do this just for any sequence of domains DL , so we will
content ourselves with domains that arise as scaled-up lattice versions,

DL := {x ∈ Z
d : x/L ∈ D} = (LD) ∩ Z

d , (1.4)

of bounded open sets D ⊂ R
d with a piece-wise smooth (and thus rectifiable) bound-

ary ∂D. We will use D to denote the collection of all such sets. For reasons to be
explained later, we will also limit ourselves to potentials whose upper tails are close to
the doubly-exponential distribution,

Prob
(
ξ(0) > r

) = exp
{−er/ρ}, (1.5)

where ρ ∈ (0,∞). The specific class of potentials we will consider is determined by:

Assumption 1.1. Suppose esssup ξ(0) = ∞ and let

F(r) := log log
(
P(ξ(0) > r)−1

)
, r > essinf ξ(0). (1.6)

We assume that F is continuously differentiable on its domain and there is ρ ∈ (0,∞)

such that

lim
r→∞ F ′(r) = 1

ρ
. (1.7)

Our results will address not only the eigenvalues but also the associated eigenfunctions.
For this, let {ψ(k)

D,ξ : k = 1, . . . , |D|} denote an orthonormal basis of eigenfunctions

of HD,ξ in a (finite) set D ⊂ Z
d , which are labeled such that

HD,ξψ
(k)
D,ξ = λ

(k)
D (ξ)ψ

(k)
D,ξ , k = 1, . . . , |D|. (1.8)

Although the eigenfunctions are not uniquely determined when two or more of the
eigenvalues coincide, we can and will take these to be real-valued measurable functions
of ξ . The principal eigenfunction ψ

(1)
D,ξ is known to be of one sign. We then define

Xk = Xk(ξ) by
∣∣ψ(k)

D,ξ (Xk)
∣∣ = max

x∈D
∣∣ψ(k)

D,ξ (x)
∣∣, k = 1, . . . , |D|, (1.9)
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resolving ties using the lexicographic order on Z
d . Again, this can be done so that

each Xk is a measurable function of ξ .
The family {(λ(k)

DL
(ξ), ψ

(k)
DL ,ξ ) : k = 1, . . . , |DL |} thus identifies a random sequence

of points a1, . . . , a|DL | ∈ R
d+1 defined by

ak :=
(

Xk(ξ)

L
,
1

bL

(
λ

(k)
DL

(ξ)− aL
))

, k = 1, . . . , |DL |. (1.10)

These are ordered by their last coordinate. This sequence induces a randommeasureXL
on R

d+1 by setting, for any Borel set B ⊂ R
d+1,

XL(B) :=
|DL |∑

k=1
1{ak∈B}. (1.11)

Note that XL(B) takes values in N0 := {0, 1, 2, . . . }, and XL is supported on D × R.
We will interpretXL as a point process, so let us take a moment to recall some basic

facts about point processes. First, by a point processX on R
d+1 we will generally mean

a random N0 ∪ {∞}-valued measure on Borel sets in R
d+1 such that X (C) < ∞ a.s.

for any compact C ⊂ R
d+1. The space of such measures, endowed with the topology of

vague convergence, is a Polish space so convergence in law can be defined accordingly.
Explicitly,XL converges in law toX if (and only if) for any continuous and compactly-
supported function f : R

d+1 → R, the integral of f againstXL converges in law to the
integral of f against X .

A process X is called a Poisson point process with intensity measure μ if X (B)

is, for any Borel set B, a Poisson random variable with parameter μ(B) and if the
random variables X (B1), . . . ,X (Bn) are independent for any pairwise disjoint Borel
sets B1, . . . , Bn . The principal result of the present paper is then:

Theorem 1.2 (Poisson convergence; eigenfunction localization). Fix d ≥ 1 and let
(ξ(x))x∈Zd be i.i.d. random variables satisfying Assumption 1.1 with some ρ ∈ (0,∞).
Then there is a sequence aL with asymptotic growth

aL =
(
ρ + o(1)

)
log log L , L →∞, (1.12)

such that, for any D ∈ Dwith scaled lattice version DL and any choice of the normalized
eigenfunctions {ψ(k)

DL ,ξ } as above, we have:
(1) (Eigenfunction localization) For any k ∈ N and any rL →∞,

∑

z : |z−Xk (ξ)|≤rL

∣∣ψ(k)
DL ,ξ (z)

∣∣2 −→
L→∞ 1 in P-probability. (1.13)

(2) (Poisson convergence) The process XL , defined via (1.11) by the points
{( Xk(ξ)

L
,
1

ρ

(
λ

(k)
DL

(ξ)− aL
)
log |DL |

)
: k = 1, . . . , |DL |

}
, (1.14)

converges in law to the Poisson point process on D × R with intensity measure
dx ⊗ e−λdλ.

Restricting the points inXL to the last coordinate shows that the set (1.3) converges
in law to a Poisson process provided aL is as above and bL ∼ log L . The limit law can
be described concisely and explicitly as follows:
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Corollary 1.3 (Eigenvalue order-statistics). Assume the setting of Theorem 1.2 and
let DL be as in (1.4). Then the (upper) order statistics of the eigenvalues lies in the
domain of attraction of the Gumbel universality class. In particular, for each k ∈ N,

(
e
− 1

ρ
(λ

(1)
DL

(ξ)−aL ) log |DL |, . . . , e−
1
ρ
(λ

(k)
DL

(ξ)−aL ) log |DL |)

law−→
L→∞

(
Z1, Z1 + Z2, . . . , Z1 + · · · + Zk), (1.15)

where Z1, Z2, . . . are i.i.d. exponential with parameter one. Equivalently, the vector
on the left tends in law to the first k points of a Poisson point process on [0,∞) with
intensity one.

We remind the reader that the Gumbel universality class is one out of three possible
non-degenerate limit distributions for order statistics of i.i.d. random variables; see e.g.
de Haan and Ferreira [21]. Gumbel is also the extreme-order class associated with the
doubly exponential tails (see Sect. 6.1). However, as many values of the field need
to “cooperate” to create conditions for an extremal eigenvalue, the shift aL required
for the ξ ’s differs from the one above by a non-vanishing amount. Explicitly, under
Assumption 1.1 and for any D ∈ D,

max
x∈DL

ξ(x)− λ
(1)
DL

(ξ) −→
L→∞ χ in P-probability, (1.16)

where χ = χ(ρ, d) is the quantity in (0, 2d] given by

χ := − sup
{
λ(1)(ϕ) : ϕ ∈ R

Z
d
, L(ϕ) ≤ 1

}
, (1.17)

with the quantities entering this expression given as follows: L : R
Z
d → (0,∞] is the

function defined by

L(ϕ) :=
∑

x∈Zd

eϕ(x)/ρ (1.18)

while λ(1)(ϕ) is the supremum of the spectrum of Δ + ϕ on Z
d ,

λ(1)(ϕ) := sup
{〈

f, (Δ + ϕ) f
〉 : f ∈ �2(Zd), ‖ f ‖2 = 1

}
, (1.19)

where 〈·, ·〉, resp., ‖ · ‖2 is the canonical inner product, resp., norm in �2(Z2). We note
that λ(1)(ϕ) is an isolated simple eigenvalue for all potentials ϕ with L(ϕ) <∞.

The limit (1.16) is actually well known (albeit under different assumptions) from
earlier studies of Hξ with ξ having doubly-exponential tails; see our discussion in Sect. 3.
The function ϕ �→ L(ϕ) is encountered in these studies as well; it is the large-deviation
rate function for the field ξ and so it plays an important role in estimating the probability
that ξ exceeds a given function in a given domain; see (2.12) for an explicit statement
in this vain.

The proof of the limiting Poisson statistics (1.15) is based on constructing a coupling
to i.i.d. random variables; cf Theorem 2.3 for a precise formulation. This coupling
applies to a whole non-degenerate interval at the top of the spectrum. The statement
(1.13) implies exponential localization of leading eigenfunctions at the lattice scale. We
state a quantitative decay bound that concerns the leading eigenfunctions:



Random Schrödinger Operators 183

Theorem 1.4. For each k ≥ 1 and Xk(ξ) as in Theorem 1.2, the following holds with
probability tending to one as L →∞: There exist (deterministic) constants c1, c2 > 0
such that ∣∣ψ(k)

DL ,ξ (z)
∣∣ ≤ c1e

−c2|z−Xk (ξ)|, z ∈ DL . (1.20)

Moreover, for larger separations from Xk(ξ) we in fact get
∣∣ψ(k)

DL ,ξ (z)
∣∣ ≤ c′1e−c

′
2(log log log L)|z−Xk (ξ)|,

∣∣z − Xk(ξ)
∣∣ ≥ log L . (1.21)

for some non-random constants c′1, c′2 > 0.

The methods of the present paper are largely independent of the existing techniques
for proving Anderson localization. In particular, our approach permits a rather explicit
characterization of the location, size and shape of the potential and the corresponding
eigenfunction for eigenvalues at and near the top of the spectrum. However, we make
no attempt to prove Anderson localization in the usual sense, i.e., for the operator Δ + ξ

on the entire space Z
d .

We note that our paper serves as an important input to a forthcoming article by
Biskup, König and dos Santos [8] where it used to prove “one-island” localization in the
parabolic version of the above (elliptic) problem.

2. Road Map to Proofs

We proceed to discuss the key ideas of the proofs. We break the main argument into a
sequence of stand-alone steps, which, we believe, are of independent interest. But before
we do so, we will make a brief link to the mathematical theory of Anderson localization.
This will give us a chance to compare our approach with the methods used there. Further
links and connections to literature will be given in Sect. 3.

In 1958, Anderson [3] observed that conducting materials may become insulators
when impurities are doped in at a sufficiently high density. Anderson’s non-rigorous
derivations were later picked up by mathematicians and the subject has been intensely
studied for over five decades. In the context of the model (1.1), the word “localiza-
tion” thus nowadays refers to the fact that, when the fields ξ are non-degenerate i.i.d.
random variables, the spectrum of the Hamiltonian Hξ in (1.1) will contain a band of
proper eigenvalues with exponentially localized eigenfunctions. This is in contrast with
the situation when ξ is periodic, where the spectrum has a band structure but remains
continuous, by the classic Bloch theory. (As already stated, in our class of models we
do not address “localization” in this strong sense but only give a version that holds
asymptotically in large-enough boxes.)

The texts of Pastur and Figotin [30], Stollmann [33], Carmona and Lacroix [9] and
Hundertmark [24] can be consulted for most known details and explanations about
Anderson localization. The important technical aspect is that all existing proofs seem to
be based on controlling the Green function—or, more precisely, the kernel of the Green
operator—associated with HD,ξ ,

GD,ξ (x, y; z) :=
〈
δx , (z − HD,ξ )

−1δy
〉
, �m z > 0, (2.1)

in the limit as z “radially” approaches the real line from the upper half plane in C. The
aim is to show that GD,ξ (x, y; z) exhibits exponential decay in |x − y| in the said limit;
a key challenge is to avoid z hitting an eigenvalue where the constant in front of the
exponentially decaying term becomes divergent.
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Various averaging methods have been developed with this purpose in mind. For
instance, the fractional-moment method of Aizenman and Molchanov [1] generally
yields bounds of the form

E
(|GD,ξ (x, y; z)|s

) ≤ c1e
−c2|x−y| (2.2)

uniformly in D and �m(z) > 0, where c1, c2 ∈ (0,∞) are constants while the exponent
s ∈ (0, 1) is tied to Hölder continuity of the probability density of ξ(0). Arguments
from spectral theory for infinite-volume operators (perfected into the so called Simon-
Wolff criteria [32]) then permit one to infer from (2.2) the existence of eigenvalues with
exponentially decaying eigenfunctions. Approaches based on “finite-volume criteria”
also exist (Aizenman, Schenker, Friedrich andHundertmark [2]), but they are still versed
in the language of Green functions.

Our approach is different from the above in a number of aspects. We work directly
with individual eigenvalues in a finite volume and control their dependence on the
configuration of random fields. This permits us to characterize geometrically the regions
where the eigenfunctions are localized. On the technical side, we manage to avoid
working with complex weights and the Green function. Large-deviation theory naturally
lurks in the background, although, for the most part, we proceed by direct estimates.
Although our method is, in its present form, tailored to the study of the upper edge of the
spectrum for operators HD,ξ in finite D with unbounded i.i.d. random fields, we believe
that an extension for bounded fields is possible.

We note that ours is not the first paper marking a shift away from the Green func-
tion in the study of random Schrödinger operators. For instance, the work of Germinet
and Klopp [17] analyzes eigenvalue distribution functions, including information about
localization centers, in the bulk of the spectrum by way of spatial decompositions akin
to those used in the present paper. Such spatial decompositions (and coarse-graining
ideas in general) of course go back to the early proofs of Anderson localization based
on multiscale analysis (Fröhlich and Spencer [11]).

We will now proceed to describe the main steps of our approach formulating the key
parts thereof as separate theorems.

STEP 1: Domain truncation and component trimming. A good deal of our proof of
Theorem 1.2 focuses on individual eigenvalues. The starting observation is that the field
configuration ξ in regions where ξ is smaller than an eigenvalue λ is of little relevance
for λ. For A > 0 and R ∈ N, consider the set

DR,A(ξ) :=
⋃

z∈D : ξ(z)≥λ
(1)
D (ξ)−2A

B(z, R) ∩ D, (2.3)

where here and henceforth

B(z, r) := {x ∈ Z
d : |z − x |1 < r} (2.4)

denotes the open ball in �1-metric on Z
d . (A key point is that every x �∈ DR,A(ξ) will be

at least R steps of a simple-random walk path away from all vertices where ξ exceeds
λ

(1)
D (ξ) − 2A; note that this applies to even to R = 1.) We will occasionally refer to

the field values in DR,A as “large” while those not in this set as “small.” Deterministic
arguments show:
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Theorem 2.1 (Domain truncation). Let A > 0 and R ∈ N obey 2d(1 + A
2d )1−2R ≤ A

2 .
Then for any ξ , any U with DR,A(ξ) ⊂ U ⊂ D and any k ∈ {1, 2, . . . , |U |} such that

λ
(k)
D (ξ) ≥ λ

(1)
D (ξ)− A

2
(2.5)

we have
∣∣λ(k)

D (ξ)− λ
(k)
U (ξ)

∣∣ ≤ 2d
(
1 +

A

2d

)1−2R
. (2.6)

The vehicle that brings us to this conclusion is, not surprisingly, analysis of rank-one
perturbations of HD,ξ . However, unlike for the corresponding arguments in the proofs
of, e.g., (2.2), where the perturbation occurs at a single vertex, here we address single
eigenvalues (rather than the Green function) and we perturb the configuration in all
of D � U .

In the specific context of doubly-exponential tails, we will use the conclusion in (2.6)
for D replaced by DL , the cutoff A fixed to a small number (less thanχ from (1.17)) and R
growing slowly to infinity with L . Under such conditions, the components ofU := DR,A
become very sparse and their geometry can be analyzed by straightforward probabilistic
estimates. In particular, due to Dirichlet boundary conditions, the spectrum of HU,ξ is
the union of the spectra in the connected components of U .

If C is such a component and λ
(1)
C (ξ) < λ

(1)
D (ξ)− A, then C cannot contribute to the

set of eigenvalues covered by (2.6). We can thus remove C from U and still maintain
the control provided by Theorem 2.1. This permits systematic component “trimming”
that helps significantly reduce the number of connected components of concern.

STEP 2: Reduction to one eigenvalue per component. The removal of irrelevant compo-
nents of DR,A reduces, quite considerably, the geometric complexity of the underlying
field configuration. An issue that comes up next is what part of the spectrum in each
component needs to be taken into account. Here we will observe that in components that
have a chance to contribute, all but the leading eigenvalue can safely be disregarded.
This effectively couples the top of the spectrum in D to the set of principal eigenvalues
in the connected components of DR,A.

As a starter, for C ⊂ Z
d finite, consider the finite-volume version of (1.18),

LC (ϕ) :=
∑

x∈C
eϕ(x)/ρ. (2.7)

Similarly, we introduce the finite-volume analogue of (1.17),

χC := − sup
{
λ

(1)
C (ξ) : ξ ∈ R

Z
d
, LC (ξ) ≤ 1

}
. (2.8)

Then we have the following deterministic estimate:

Proposition 2.2 (Spectral gap). Let C ⊂ Z
d be finite. If for some K ≥ 0,

λ
(1)
C (ξ)− λ

(2)
C (ξ) ≤ K , (2.9)

then also
λ

(1)
C (ξ)− ρ logLC (ξ) ≤ −χC + K − ρ log 2. (2.10)
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Our use of this proposition requires observations from large-deviation theory of
double-exponential i.i.d. random fields: First, for potentials satisfying Assumption 1.1,
LC acts as a large-deviation rate function for finding a specific potential profile in C .
More explicitly, in Sect. 6.1 we will show that, for some âL →∞,

P(ξ(0) ≥ âL + s) = 1

Ldθ(1+o(1))
where θ := es/ρ, (2.11)

with o(1) → 0 as L →∞ uniformly in compact sets of s. Thus, for any given ϕ : C →
R,

P
(
ξ ≥ âL + ϕ in C

) = L−dLC (ϕ)[1+o(1)], L →∞. (2.12)

The set inclusion
{
ξ : λ(1)

C (ξ) ≥ a
} ⊆

⋃

ϕ : LC (ϕ)≥1

{
ξ : ξ ≥ a + χC + ϕ on C

}
, (2.13)

which is derived readily from the alternative formula for χC ,

χC = − sup
ξ

[
λ

(1)
C (ξ)− ρ logLC (ξ)

]
, (2.14)

and a union bound then show that large eigenvalues in DL will thus come only with
potential profiles for which ϕ := ξ − âL − χC obeys LC (ϕ) ≈ 1.

Returning to the role of Proposition 2.2 in our proofs, we note that its main conclusion
can be used to derive

λ
(1)
C (ξ) ≥ a′ AND λ

(1)
C (ξ)− λ

(2)
C (ξ) ≤ 1

2ρ log 2

�⇒ ξ ≥ ϕ + a + χC in C for some ϕ satisfying LC (ϕ) ≥ u, (2.15)

where u is defined by

log u := a′ − a

ρ
+
1

2
log 2. (2.16)

Since u > 0 for a′ > âL − χ − ρ
2 log 2, the event that a connected set C satisfies the

conditions on the left of (2.15) has probability L−d−ε for some ε > 0; a union bound
shows that for R = Lo(1) no connected component of DR,A will have this property once L
is sufficiently large. It follows that, whenever λ

(1)
C (ξ) for some component C in DR,A

is close to its optimal value, λ(2)
C (ξ) is at least a deterministic constant below λ

(1)
C (ξ). In

short, only the top eigenvalue in each connected component of DR,A need be considered.

STEP 3: Coupling to i.i.d. variables. Our previous observations permit us to design a
coupling between the eigenvalues in a small interval near the top the spectrum of HD,ξ

and a family of i.i.d. random variables. There is a number of ways how such a coupling
can be formulated; we will present one that is based on a regular partition of Z

d into
square boxes.

As we will work, from now on, with L-dependent objects, we need to fix two se-
quences that determine themain scales of the problem: a sequence of positive integers RL
satisfying

RL

log log L
−→
L→∞ ∞ but RL = (log L)o(1), (2.17)
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which will govern the size of the connected components and spatial range of the pertur-
bation arguments described above, and a sequence of integers NL such that

NL

RL
−→
L→∞ ∞ and lim sup

L→∞
log NL

log L
< 1 (2.18)

which determines the size of the boxes in the partition.
Using a natural partition of Z

d into square boxes of side NL + 1, for each such box
BNL+1, consider the sub-box of side NL induced by the natural embedding BNL ⊂
BNL+1. We will call these NL -boxes. Note that distinct NL -boxes are thus disjoint while
“neighboring” NL -boxes share part of their external boundary. For D ∈ D, let DL be its
scaled lattice version (1.4) and let B(i)

NL
, i = 1, . . . ,mL , denote the collection of those

NL -boxes that are entirely contained in DL . From the fact that ∂D is smooth we get
|∂DL | = o(|DL |) and so

|DL | = mL Nd
L

(|D| + o(1)
)
, L →∞, (2.19)

where |D| denotes the Lebesgue volume of D. By (2.18), mL →∞ as L →∞.
Given a configuration ξ , let λi (ξ) be a shorthand for the principal eigenvalue in B(i)

NL
,

λi (ξ) := λ
(1)

B(i)
NL

(ξ), i = 1, . . . ,mL . (2.20)

Since these eigenvalues depend on disjoint parts of the ξ field (the Dirichlet boundary
condition plays a role here), the random variables {λi (ξ) : i = 1, . . . ,mL} are i.i.d.
Theorem 2.3 (Coupling to i.i.d. process). Let D ∈ D. For sequences (RL), (NL) and
DL as above, let λ̂1(ξ), . . . , λ̂mL (ξ) be the sequence λ1(ξ), . . . , λmL (ξ) from (2.20)
listed in decreasing order. Under Assumption 1.1, there is an A > 0 such that the event

∀k ∈ {1, . . . ,mL} : λ̂1(ξ)− λ̂k(ξ) < A ⇒ ∣∣λ(k)
DL

(ξ)− λ̂k(ξ)
∣∣ < 4d

(
1+

A

2d

)1−2RL

(2.21)
occurs with probability tending to one as L →∞.

The proof is based on Theorem 2.1 and estimates of the probability that a component
with an appreciable principal eigenvalue intersects the boundary of a partition box, or lies
within NL of the boundary of DL . (These are the reasons for the restrictions in (2.18).)

STEP4: Identifyingmax-order class. Theorem2.3 brings the proof of the Poisson statis-
tics in Theorem 1.2 and Corollary 1.3 to the realm of standard extreme-order limit theory
(see again de Haan and Ferreira [21]). Naturally, one starts by defining the centering
sequence aL as

P
(
λ

(1)
BNL

≥ aL
) =

(NL

L

)d
. (2.22)

(Such an aL exists because the ξ ’s, and also the λ
(1)
BNL

(ξ)’s, are continuously distributed.)
In order to determine the correct scaling of the spacings between the eigenvalues, and
generally place the limit distribution in the Gumbel max-order class, it remains to prove:
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Theorem 2.4 (Max-order class of local eigenvalues). Suppose Assumption 1.1 and let bL
obey

bL log L −→
L→∞

ρ

d
. (2.23)

Then for each s ∈ R,

P
(
λ

(1)
BNL

≥ aL + sbL
) = e−s

(NL

L

)d(
1 + o(1)

)
, (2.24)

with o(1) → 0 as L →∞ uniformly on compact sets of s.

The proof is based on regularity of the probability density of ξ supplied by Assump-
tion 1.1. In simple terms, the change of the eigenvalue by sbL can be achieved by shifting
the whole ξ configuration by the same amount. A catch is that this would be too costly
(i.e., inefficient) to perform in the entire NL -box; rather one has to do this only in those
parts of the box where the relevant contribution comes from.

Before we proceed to the next step, note that, on the basis of Theorems 2.3 and 2.4,
we are already able to conclude the limit statement (1.15). (The condition on the left
of (2.17) ensures that the error in (2.21) is much smaller than the spacing between
eigenvalues.)

STEP 5: Eigenfunction localization. The final task before us is a control of the spatial
localization of the eigenfunctions. As is well known, the main obstruction to localization
is degeneracy of eigenvalues. Two techniques exist for dealing with this problem: aver-
aging and multiscale analysis. In our context, we are able to address the problem directly
by developing a deterministic link between the spatial decay of an eigenfunction and the
distance of the associated eigenvalue to other eigenvalues. A key novel fact is that the
(still needed) non-degeneracy of the eigenvalues will be supplied by the already-proved
extreme-order limit theorem.

Let CR,A := CR,A(ξ) denote the set of connected components of DR,A(ξ) and,
for V ⊂ Z

d , let ∂V mark the set of vertices outside V that have an edge into V . We
will measure the decay of the eigenfunctions in terms of a distance-like object d(x,C),
indexed by vertices x ∈ Z

d and components C ∈ CR,A, on which we impose the
following requirements:

(D0) d(z,C) ≥ 0 for all z and C with d(z,C) = 0 whenever z ∈ C.
(D1) For all z ∈ D � DR,A(ξ), all y ∈ ∂B(z, R) and all C ∈ CR,A, we have

d(z,C) ≤ d(y,C) + R.
(D2) For all C′ �= C, all z ∈ C′ and all y ∈ ∂C′ we have d(z,C) ≤ d(y,C) + 1.

An example of such d(·, ·) is constructed as follows: Define a graph by contracting all
components in CR,A to a single vertex while keeping the edges between the (new) vertex
corresponding to component C and all (old) vertices on ∂C—which, by the fact that C is
in CR,A do not lie in another component in CR,A. Then set d(z,C) to the corresponding
graph-theoretical distance from z to the (vertex corresponding to) component C.

Theorem 2.5 (Eigenfunction decay). Assume R ≥ 1 and A > 0 are such that we
have εR := 2d(1 + A

2d )1−2R < A/2. Let λ, resp., ψ be a Dirichlet eigenvalue, resp., a
corresponding eigenfunction of HD,ξ such that

λ ≥ λ
(1)
D (ξ)− A

2
+ εR . (2.25)

Assume the following:
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(1) gap(λ), the distance of λ to the nearest eigenvalue of HD,ξ , obeys gap(λ) > 10εR,
(2) there is h > 0 such that, for any self-avoiding (nearest-neighbor) path x1, . . . , xR

in D,

ξ(x j ) < λ for all j = 1, . . . , R ⇒
R∏

j=1

2d

2d + λ− ξ(x j )
≤ e−hR, (2.26)

(3) for some δ ∈ (0, 1),

gap(λ)− 2εR
12d

∧ 1 > 4e−(1−δ)hR+δh
√|∂C′|, C′ ∈ CR,A. (2.27)

Then there is C ∈ CR,A such that
∣∣ψ(z)

∣∣ ≤ e−δh d(z,C), z ∈ D. (2.28)

In order to appreciate this general result, we again place ourselves in an L-dependent
setting of domains D := DL , with R := RL satisfying (2.17). Under Assumption 1.1
on the upper tail of ξ(0), we then have (2.11), which readily yields (2.26) for any given
(fixed) h > 0. Since the component sizes are at most polylogarithmic in RL , conditions
(1) and (3) are satisfied as soon as gap(λ) is larger than exponentially-small in RL .
For the leading eigenvalues, the gap is typically order (log L)−1; thanks to (2.17), the
bound (2.28) thus applies to ψ := ψ

(k)
DL ,ξ for all k ≥ 1. A straightforward comparison

between d(z,C) and the Euclidean distance (see Lemma 8.2) then proves the decay
estimate (1.21).

The remainder of this paper consists of proofs of the above claims in full technical
detail. In particular, Sect. 4 dealswith various deterministic spectral estimates underlying
Steps 1 and 2 in the above scheme. Deterministic bounds underpinning eigenfunction
localization (Step 5 above) appear in Sect. 5. Coupling to i.i.d. random variables (Step 3)
is performed in Sect. 6. Step 4 is the subject of Sect. 7, where we also conclude the
proofs of eigenvalue order statistics. In Sect. 8 this feeds into the proof of eigenfunction
localization (the probabilistic part of Step 5) and concludes the proof of Theorems 1.2(2)
and 1.4.

3. Connections and Remarks

Before wemove to actual proofs, let us pause to discuss some connections to the existing
literature. References have so far been largely suppressed in order not to disturb the flow
of explanations of results and ideas for proofs. We will not attempt to review all context
of Anderson localization (some of it was done already in Sect. 2) but rather focus only
on results dealing with spectral statistics.

Attempts to describe the statistics of the spectrum of random Schrödinger operators
are as old as the subject itself. In the localization regime, the statistics was expected to
be Poisson-like. In the Anderson model, this was proved by Molchanov [29] in dimen-
sion one and by Minami [28] in general dimension, based on techniques developed in
Aizenman and Molchanov [1] and Wegner [35]. Killip and Nakano [25] later included
also the localization centers of the eigenfunctions in the Poisson-process convergence.
All these results are derived at parameter values where the fractional moment bound
on the resolvent, one of the two main known methods for proving Anderson localiza-
tion, applies.
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Avery appealing formulationhas later been found in termsof convergenceofunfolded
eigenvalues to a homogeneous Poisson process. Here an unfolded eigenvalue is the
quantity I (λ(k)

D ) where I is the integrated density of states (see Carmona and Lacroix [9]
or Veselić [34] for detailed definitions). The currently most complete result of this kind
seems to have been derived byGerminet andKloppwith statements that apply both in the
bulk of the spectrum [17] and, in d = 1, also close to the spectral edge [18] (extensions
to arbitrary d require a modified kinetic term). We refer to the original papers for more
details. Incidentally, our formulation of Corollary 1.3 can be thought of as a result in this
vain, although, to keep the paper reasonably short, we do not link this to the integrated
density of states for our class of potentials.

Our work is focused on unbounded potentials and is thus closer in spirit to the
studies of the potential tails that are heavier than doubly exponential; e.g., Grenkova,
Molchanov and Sudarev [19,20], Astrauskas [4,5], van der Hofstad, Mörters and Sido-
rova [23], König, Lacoin, Mörters and Sidorova [27], Sidorova and Twarowski [31] and
Fiodorov andMuirhead [10]. Astrauskas’ paper [5] includes also a discussion of doubly-
exponential tails (1.5)—despite his vigorous insistence on the contrary throughout the
abstract and introduction—but only for ρ very large. A common feature of all of these
works is the corresponding eigenfunctions are localized more or less at a single lattice
site; namely, a high excess value of the random potential. For the doubly exponential
tails with general value of ρ this is no longer the case and this is exactly what makes
these tails a challenge.

We note that in Gärtner, König and Molchanov [14], the asymptotic shape of the
potential in the localization regions in a large box D was identified as the one of the
maximizers in (1.17). Furthermore, an explicit form of exponential localization was
proved for the principal eigenfunctions of HD,ξ , after removing the top values of ξ in all
the other localization regions; the shape of these eigenfunctions was identified as well.
However, the method there was based on a tedious randomwalk enumeration technique,
which we do not follow here. To keep the present paper self-contained, we also do not
use any partial results from [14].

The class of doubly exponential tails was identified rather early in the studies of
the parabolic Anderson problem (Gärtner and Molchanov [15,16], Gärtner and den
Hollander [12], Gärtner and König [13] and Gärtner, König and Molchanov [14]) as that
for which the leading eigenfunctions spread beyond a single point but no scaling with
the size of the underlying set is necessary. Other “universal” classes of potential upper
tails have been identified later (Biskup and König [6,7], van der Hofstad, König and
Mörters [22]; see also the forthcoming book by König [26]). In contrast with doubly-
exponential tails, in these cases the mass of the leading eigenfunctions in a set of side L
spreads over regions whose size grows to infinity with L . Although the present paper
deals only with doubly-exponential tails, we believe that the bulk of our method can be
adapted to the other cases as well.

As already mentioned, our results are now being used to deal with the parabolic
version of the problem as well (Biskup, König and dos Santos [8]).

4. Domain Truncation and Spectral Gap

The goal of this section is to establish Theorem 2.1 that underpins all subsequent deriva-
tions in this paper. In addition, we will prove bounds on the distance between the first
and second leading eigenvalue, i.e., the spectral gap, as stated in Proposition 2.2.
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4.1. Martingale argument. The proof of Theorem 2.1 is based on the fact that eigen-
functions decay rapidly away from DR,A(ξ). We will control the rate of this decay by
a martingale argument. Let Y := (Yk)k∈N0 denote a discrete-time simple symmetric
random walk on Z

d . We will write Px , resp., Ex for the law, resp., expectation for the
walk started from x ∈ Z

d and let Fn := σ(Y0, . . . ,Yn) denote the canonical filtration
associated with Y .

Lemma 4.1. Let λ := λD(ξ), resp., ψ := ψD,ξ be a Dirichlet eigenvalue, resp., a
corresponding eigenfunction of HD,ξ . Define

τ := inf
{
k ∈ N0 : ξ(Yk) ≥ λ OR Yk �∈ D

}
(4.1)

and denote M0 := ψ(Y0) and, for 1 ≤ n ≤ τ ,

Mn := ψ(Yn)
n−1∏

k=0

2d

2d + λ− ξ(Yk)
. (4.2)

Then, under Px for any x ∈ Z
d , the process Mτ = (Mτ∧n)n∈N0 is a martingale for the

canonical filtration (Fn)n∈N0 .

Proof. If x �∈ D, then τ = 0 and Mτ∧n = 0 for any n, Px -a.s. For x ∈ D the
following holds Px -a.s.: On {τ ≥ n} we have λ − ξ(Yk) ≥ 0 for k ≤ n − 1 and hence
|Mn| ≤ |ψ(Yn)| ≤ maxx |ψ(x)|; i.e., Mn is bounded. On {τ > n}, the conditional
expectation of ψ(Yn+1) given Y0, . . . ,Yn equals ψ(Yn) + 1

2d (Δψ)(Yn). Writing this
using (Δ + ξ)ψ = λψ shows that, on {τ > n},

Ex (Mn+1|Y0, . . . ,Yn) = Ex (ψ(Yn+1)|Y0, . . . ,Yn)
n∏

k=0

2d

2d + λ− ξ(Yk)

=
[
ψ(Yn) +

1

2d
(Δψ)(Yn)

] n∏

k=0

2d

2d + λ− ξ(Yk)

= ψ(Yn)
[
1 +

1

2d

(
λ− ξ(Yn)

)] n∏

k=0

2d

2d + λ− ξ(Yk)
= Mn .

(4.3)
It follows that Mτ is a martingale. ��

The next lemma expresses the desired consequence of the martingale property. (The
set D′ will later be taken to be D � U with U as in Theorem 2.1. Note that for λ being
the principal eigenvalue λ

(1)
D (ξ), (4.4) below reads alternatively as D′ ∩ DR,A/2 = ∅.)

Lemma 4.2. Letλ andψ be as in Lemma 4.1. Given A′ ≥ A > 0 and R ∈ N, let D′ ⊂ D
be such that ξ ≤ λ− A′ on D′ and

x ∈ D AND ξ(x) ≥ λ− A �⇒ dist(x, D′) ≥ R, (4.4)

where “dist” denotes the �1-distance on Z
d . Then

∑

x∈D′

∣∣ψ(x)
∣∣2 ≤

(
1 +

A

2d

)2−2R(
1 +

A′

2d

)−2‖ψ‖22. (4.5)
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Proof. As the square of a bounded martingale is a submartingale, we have

∣∣ψ(x)
∣∣2 = Ex |Mτ∧0|2 ≤ Ex |Mτ∧R |2, x ∈ D′. (4.6)

By our assumptions on D′, any path of the simple random walk started at x ∈ D′ will
either leave D or stay in the region where ξ < λ− A for at least R−1 steps. This implies
that, on the event {τ < R}, we necessarily have Yτ∧R = Yτ �∈ D with Px -probability
one. Hence, Mτ∧R = 0 on {τ < R} and so Ex (1{τ < R}|Mτ∧R |2) = 0.

On the other hand, on {τ ≥ R}, each term in the product in (4.2) is bounded by
(1 + A

2d )−1 with that for k = 0 bounded even by (1 + A′
2d )−1. From (4.6), we thus get

∣∣ψ(x)
∣∣2 ≤

(
1 +

A

2d

)2−2R(
1 +

A′

2d

)−2
Ex(1{τ ≥ R}|ψ(YR)|2), x ∈ D′. (4.7)

The reversibility of the simple random walk implies
∑

x∈Zd Px (YR = y) = 1 and so

∑

x∈D′
Ex(1{τ ≥ R}|ψ(YR)|2) ≤

∑

x∈D′

∑

y∈D
Px (YR = y)|ψ(y)|2 ≤ ‖ψ‖22, (4.8)

whereby the claim follows. ��

4.2. Rank-one perturbations. To apply the above a priori bounds in the proof of Theo-
rem 2.1, we also need to tie this with rank-one perturbation arguments. First we prove a
continuity statement:

Lemma 4.3. For U ⊂ D, let ξs := ξ − s 1D�U . For any k ∈ {1, . . . , |U |}, the map
s �→ λ

(k)
D (ξs) is non-increasing, Lipschitz continuous (with Lipschitz constant one) and

λ
(k)
D (ξs) −→

s→∞ λ
(k)
U (ξ). (4.9)

Proof. Since the eigenvalues are labeled in a decreasing order, the Minimax Theo-
rem reads

λ
(k)
D (ξ) = inf

Hk : Hk⊂C
|D|

dim(Hk )=k−1
sup

φ∈H⊥
k‖φ‖2=1

〈
φ, HD,ξ φ

〉
, (4.10)

where the supremum goes over all (k − 1)-dimensional linear subspaces of C
|D| and,

here and henceforth, 〈ψ, φ〉 := ∑
x∈D ψ(x)�φ(x) denotes the inner product in C

|D|.
From

HD,ξs′ = HD,ξs + (s − s′)1D�U , (4.11)

we thus immediately get

0 ≤ λ
(k)
D (ξs′)− λ

(k)
D (ξs) ≤ s − s′, 0 ≤ s′ < s. (4.12)

This proves the stated monotonicity and continuity.
Before we address the limit (4.9), we observe

λ
(k)
D (ξs) ≥ λ

(k)
U (ξ), k = 1, . . . , |U |. (4.13)
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Obviously, it suffices to prove this for s := 0. To see why this holds we recall that the
infimum in (4.10) is achieved byHk being the span of the first k−1 eigenvalues of HD,ξ .
This and the fact that 〈φ, HD,ξ φ〉 = 〈φ, HU,ξ φ〉 whenever φ vanishes outside U yield

λ
(k)
D (ξ) = sup

φ⊥ψ
(1)
D,ξ ,...,ψ

(k−1)
D,ξ

‖φ‖2=1

〈
φ, HD,ξ φ

〉 ≥ sup
φ⊥ψ

(1)
D,ξ ,...,ψ

(k−1)
D,ξ

‖φ‖2=1, φ=0 on D�U

〈
φ, HD,ξ φ

〉

= sup
φ⊥ψ

(1)
D,ξ ,...,ψ

(k−1)
D,ξ

‖φ‖2=1, φ=0 on D�U

〈
φ, HU,ξ φ

〉 ≥ inf
Hk : Hk⊂C

|U |
dim(Hk )≤k−1

sup
φ∈H⊥

k‖φ‖2=1

〈
φ, HU,ξ φ

〉
,

(4.14)

where the inequalities follow from the fact that the projection of the linear span of the
vectorsψ

(1)
D,ξ , . . . , ψ

(k−1)
D,ξ ontoC

|U | has dimension atmost k−1 (in the first inequality this
ensures that the supremum is over a non-empty set). By (4.10) again, the last infimum is
actually achieved by someHk with dim(Hk) = k − 1 and so we get (4.13) as desired.

To prove the limit (4.9), consider a sequence sn → ∞ such that λ
(k)
D (ξsn ) → λk as

well as ψ
(k)
D,ξsn

(x) → ψk(x) exist. Since λk , with k = 1, . . . , |U |, are finite by the above
reasoning, we can immediately conclude that (Δ+ ξ)ψk = λkψk onU whileψk(x) = 0
for x ∈ D �U . As k �→ λk is non-increasing, we must have λ

(k)
U (ξ) = λk , regardless of

the sequence sn . ��
The use of Lemma 4.2 will be aided by the following observation:

Lemma 4.4. Fix A > 0, R ∈ N and, for U as in Theorem 2.1 and s ≥ 0, let ξs :=
ξ − s 1D�U . Fix k ∈ {1, . . . , |D|} and let s > 0 be such that λ

(k)
D (ξs) ≥ λ

(1)
D (ξ) − A.

Then

0 ≤ λ
(k)
D (ξ)− λ

(k)
D (ξs) ≤

∫ s

0
ds′
(
1 +

A

2d

)2−2R(
1 +

A + s′

2d

)−2
. (4.15)

Proof. The left inequality follows from Lemma 4.3. The right inequality would be a
simple consequence of the fact that d

ds λ
(k)
D (ξs) = −‖ψ(k)

D,ξs
1D�U‖22 holds whenever the

eigenvalue is non-degenerate. However, to get around the issue of degeneracy, we need
to work a bit harder.

Abbreviate the integrand in (4.15) as

g(s) :=
(
1 +

A

2d

)2−2R(
1 +

A + s

2d

)−2
. (4.16)

We claim that it suffices to prove

λ
(k)
D (ξs) ≥ λ

(1)
D (ξ)− A ⇒ lim sup

s′↑s
λ

(k)
D (ξs′)− λ

(k)
D (ξs)

s − s′
≤ g(s). (4.17)

This follows by the following general observation: If f : R → R is non-increasing and
Lipschitz continuous, and a < b, then the Fundamental Theorem of Calculus applies
to f on [a, b]. Explicitly, we have
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f (a)− f (b) = lim
h↓0

1

h

(∫ a

a−h
f (x) dx −

∫ b

b−h
f (x) dx

)

= lim
h↓0

1

h

(∫ b−h

a−h
f (x) dx −

∫ b

a
f (x) dx

)

= lim
h↓0

∫ b

a

f (x − h)− f (x)

h
dx ≤

∫ b

a
lim sup

h↓0
f (x − h)− f (x)

h
dx,

(4.18)
where the last step follows by Fatou’s Lemma and the boundedness of the integrand
and the integration domain. So if (4.17) holds on an interval of s, the difference of the
eigenvalues at the endpoints of this interval is bounded by the corresponding integral
of g, as claimed in (4.15).

To establish (4.17), consider a sequence s′n ↑ s saturating the limes superior and
such that the limits

λk := lim
n→∞ λ

(k)
D (ξs′n ) and ψk(x) := lim

n→∞ψ
(k)
D,ξs′n

(x) (4.19)

exist for all k ∈ {1, . . . , |D|} and all x ∈ D. Passing to the limit in the eigenfunc-
tion equation shows that (λk, ψk) is an eigenvalue/eigenfunction pair for the field ξs
and, in light of the eigenvalues being ordered, λk = λ

(k)
D (ξs). Both ψk and ψ

(k)
D,ξs′ are

eigenfunctions and so, by (4.11),

λk
〈
ψk, ψ

(k)
D,ξs′

〉 = 〈ψk, HD,ξsψ
(k)
D,ξs′

〉

= λ
(k)
D (ξs′)

〈
ψk, ψ

(k)
D,ξs′

〉
+ (s′ − s)

〈
ψk,1D�Uψ

(k)
D,ξs′

〉
. (4.20)

It follows that

lim sup
s′↑s

λ
(k)
D (ξs′)− λ

(k)
D (ξs)

s − s′
= 〈ψk,1D�Uψk〉

〈ψk, ψk〉 (4.21)

and so, to get (4.17), it suffices to verify (4.5) forψ := ψk , D′ := D�U and A′ := A+s.
First note that λ

(k)
D (ξs) ≥ λ

(1)
D (ξ) − A and U ⊃ DR,A(ξ) force ξ < λ

(1)
D (ξ) − 2A ≤

λ
(k)
D (ξs)− A on D � U . Hence, ξs ≤ λk − A′ on D′. Similarly, ξs(x) ≥ λk − A forces

ξ(x) ≥ λ
(1)
D (ξ)− 2A which by U ⊃ DR,A(ξ) implies dist(x, D′) ≥ R. The conditions

of Lemma 4.2 are thus met for the field ξ := ξs and eigenvalue λ := λk , and so (4.5)
holds for ψ := ψk as desired. ��

The above facts are now assembled into the control of truncation from D to U :

Proof of Theorem 2.1. Pick A > 0 and R ∈ N such that the right-hand side of (2.6)
is ≤ A/2. Fix a k ∈ {1, . . . , |U |} such that (2.5) holds, i.e., λ

(k)
D (ξ) ≥ λ

(1)
D (ξ) − A

2 .
For s ≥ 0, introduce the shifted field ξs := ξ − s 1D�U and define

s̃ := inf
{
s ≥ 0 : λ(k)

D (ξs) < λ
(1)
D (ξ)− A

}
. (4.22)

By continuity of s �→ λ
(k)
D (ξs), we have s̃ ∈ (0,∞]. Our aim is to show that s̃ = ∞.

Suppose on the contrary that s̃ < ∞. The bound (4.15) then shows that λ
(k)
D (ξ) −

λ
(k)
D (ξs̃) is strictly less than the right-hand side of (2.6) which by our assumption is≤ A/2.

Therefore,

s̃ <∞ �⇒ λ
(k)
D (ξs̃) > λ

(k)
D (ξ)− A

2
≥ λ

(1)
D (ξ)− A. (4.23)
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This contradicts (4.22) because by continuity and monotonicity of s �→ λ
(k)
D (ξs) we

would have λ
(k)
D (ξs′) ≥ λ

(1)
D (ξ)− A also for an interval of s′ slightly larger than s̃. Hence

s̃ = ∞ as claimed.
To complete the proof we note that, in light of (4.9), the difference |λ(k)

D (ξ)−λ
(k)
U (ξ)|

is bounded by the integral in (4.15) with s := ∞. A calculation then yields (2.6). ��

4.3. Spectral gap and potential profiles. As an aside of the general arguments above,
we will give a proof of Proposition 2.2 and establish versions of the inclusions (2.13)
and (2.15) that link local eigenvalues with potential profiles.

Let us first address Proposition 2.2. A main tool of the proof is an inequality between
the second eigenvalue and the principal eigenvalues in nodal domains of the second
eigenfunction.Note thatψ(2)

C,ξ , the second eigenfunction of HC,ξ , has at least one negative
and one positive value, since it is assumed orthogonal to the principal eigenfunction
which is known to be of one sign.

Lemma 4.5. Let C ⊂ Z
d be finite and define

B := {x ∈ C : ψ(2)
C,ξ (x) ≥ 0

}
. (4.24)

Then
λ

(2)
C (ξ) ≤ min

{
λ

(1)
B (ξ), λ

(1)
C�B(ξ)

}
. (4.25)

Proof. Abbreviate ψ := ψ
(2)
C,ξ . As ψ is orthogonal to the first eigenfunction, both B

and C � B are non-empty. The eigenvalue equation (Δ + ξ)ψ = λ
(2)
C (ξ)ψ implies

λ
(2)
C (ξ)

∥∥ψ 1B
∥∥2
2 =

∑

x∈B
ψ(x)(Δ + ξ)ψ(x)

=
∑

x∈B

(
ξ(x)ψ(x)2 +

∑

y : |y−x |=1
ψ(x)

(
ψ(y)− ψ(x)

))
. (4.26)

Let ψ̂ be equal to ψ on B and zero on C � B. Then

ψ(x)
(
ψ(y)− ψ(x)

) ≤ ψ̂(x)
(
ψ̂(y)− ψ̂(x)

)
(4.27)

for all pairs x ∈ B and y with |y− x | = 1. By the Minimax Theorem, the sum in (4.26)
with ψ̂ instead of ψ is bounded by λ

(1)
B (ξ)‖ψ̂‖22 and since ‖ψ̂‖22 = ‖ψ 1B‖22 > 0, we

thus get
λ

(2)
C (ξ) ≤ λ

(1)
B (ξ). (4.28)

The bound in terms of λ
(1)
C�B(ξ) is completely analogous. ��

Proof of Proposition 2.2. Let B be as in (4.24). As LC (ξ) = LB(ξ) + LC�B(ξ), we
may assume without loss of generality that LB(ξ) ≤ 1

2LC (ξ). Then

λ
(2)
C (ξ)− ρ logLC (ξ) ≤ λ

(1)
B (ξ)− ρ logLB(ξ)− ρ log 2 ≤ −χB − ρ log 2. (4.29)

Invoking (2.9) and χB ≥ χC , which follows from (2.8) by way of Lemma 4.3, we
get (2.10). ��
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Next let us move to the inclusion (2.13). We will in fact derive a stronger version by
relating local eigenvalues to the quantity

LC,A(ϕ) :=
∑

x∈C
eϕ(x)/ρ 1{ϕ(x)≥−2A}, (4.30)

which is better suited for our later needs. Clearly, for A := ∞ this degenerates toLC (ϕ).

Lemma 4.6. For all a ∈ R, all finite C ⊂ Z
d and all A ≥ χC satisfying A(1+ A

4d ) ≥ 4d,

{
ξ : λ(1)

C (ξ) ≥ a
} ⊆ {ξ : LC,A(ξ − a − χC ) ≥ e−η(A)/ρ

}
, (4.31)

where η(A) := 2d(1 + A
4d )−1.

Proof. Suppose λ
(1)
C (ξ) ≥ a, let ϕ := ξ − a − χC and note that λ(1)

C (ϕ) ≥ −χC . Let us
first address the case A := ∞. We claim that LC (ϕ) ≥ 1. Indeed, if we had LC (ϕ) < 1
then we could find an ε > 0 such that ϕ̃ := ϕ + ε would obey LC (ϕ̃) ≤ 1 and yet
λ

(1)
C (ϕ̃) > −χC . This would contradict (2.8). Hence (4.31) holds for A := ∞.
Now take A ≥ χC , let ϕ := ξ − a − χC and set C ′ := {x ∈ C : ϕ(x) ≥ −2A}.

As A(1 + A
4d ) ≥ 4d holds and λ

(1)
C (ϕ) ≥ −χC implies ϕ ≤ λ

(1)
C (ϕ) − A on C � C ′,

Theorem 2.1 can be applied for the choices D := C , U := C ′, R := 1 and A replaced
by A/2 to show λ

(1)
C ′(ϕ) ≥ λ

(1)
C (ϕ)−η(A). Therefore, λ(1)

C (ξ) ≥ a gives λ
(1)
C ′(ξ) ≥ a−η(A)

and so, by the A := ∞ part of the claim, we have LC ′(ξ − a − χC ′ + η(A)) ≥ 1. In
conjunction with χC ′ ≥ χC , this yields

LC,A(ξ − a − χC ) = LC ′(ξ − a − χC )

≥ LC ′
(
ξ − a − χ ′C + η(A)

)
e−η(A)/ρ ≥ e−η(A)/ρ, (4.32)

as desired. ��
As an aside we recall from, e.g., Gärtner and den Hollander [12], that (2.8) implies

that, for any finite C ⊂ Z
d , there is ϕC : C → R such that LC (ϕC ) ≤ 1 and λ

(1)
C (ϕC ) =

−χC . Therefore, {
ξ : λ(1)

C (ξ) ≥ a
} ⊇ {ξ : ξ ≥ a + χC + ϕC

}
. (4.33)

This provides a bound that is in a sense opposite to (4.31).
Moving to the inclusion (2.15), similarly to (4.31) we will restate this using the

truncated functional LC,A as follows:

Lemma 4.7. For C ⊂ Z
d finite, all a, a′ ∈ R and all A ≥ 0 sufficiently large,

λ
(1)
C (ξ) ≥ a′ AND λ

(1)
C (ξ)− λ

(2)
C (ξ) ≤ 1

2
ρ log 2 �⇒ LC,A(ξ − a − χC ) ≥ u,

(4.34)
where u is defined by

log u := a′ − a − η(A)

ρ
+
1

2
log 2 (4.35)

with η(A) := 2d(1 + A
4d )−1.
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Proof. Let ξ be such that the conditions on the left of (2.15) apply and, similarly as in
the proof of Lemma 4.6, let ϕ := ξ − a − χC and set C ′ := {x ∈ C : ϕ(x) ≥ −2A}.
For A large Theorem 2.1 can be used; which then implies |λ(2)

C (ξ) − λ
(2)
C ′(ξ)| ≤ η(A).

With the help of (4.29), this yields

a′ ≤ λ
(1)
C (ξ) ≤ λ

(2)
C (ξ) +

1

2
ρ log 2

≤ λ
(2)
C ′(ξ) + η(A) +

1

2
ρ log 2

≤ ρ logLC ′(ξ)− χC ′ + η(A)− 1

2
ρ log 2. (4.36)

Using χC ′ ≥ χC and LC ′(ξ) = e(a+χC )/ρLC,A(ϕ), we get the claim. ��
By a variant of estimates used in Lemma 4.6, we will now control the spatial concen-

tration of the fields that are near optimizers of (2.14). This will be useful in the derivation
of spatial decay of the corresponding eigenfunctions.

Lemma 4.8. Define A0 by A0(1 + A0
4d ) = 4d and suppose the quantities A, δ > 0

and A′ := − 1
2ρ log(2 sinh δ) satisfy A ≥ A′ ≥ d + A0 and η(A)/ρ ≤ δ. There is

c = c(A, δ) ∈ (0,∞) such that for any C ⊂ Z
d finite, any a ∈ R, any r ≥ 1 and any

ξ : C → R with

LC,A(ξ − a − χC ) ≤ eδ and λ
(1)
C (ξ) ≥ a + 2d

(
1 +

A′ − d

2d

)1−2r
, (4.37)

there is x ∈ C with the property

z ∈ C |z − x | ≥ cr ⇒ ξ(z) ≤ λ
(1)
C (ϕ)− A′ + χC . (4.38)

Proof. Abbreviate ϕ(z) := ξ(z) − a − χC and set S := {z ∈ C : ϕ(z) > −2A′}. As
A′ ≤ A, every point of S contributes to LC,A(ϕ). Hence, eδ ≥ LC,A(ϕ) ≥ e−2A/ρ |S|
and so |S| ≤ eδ+2A/ρ . Our goal is to use this to show that S also has a bounded diameter.

Given r ≥ 1 as above, suppose, for the sake of contradiction, that S has diameter larger
than 2|S|r . Then S can be split into two parts, S = S1 ∪ S2, such that dist(S1, S2) > 2r .
Pick x ∈ S1 and setC ′ := {z ∈ C : dist(z, S2) ≤ r}. Since 0 < dist(z, S2) ≤ 2r implies

ξ(z) ≤ a + χC − 2A′ ≤ λ
(1)
C (ξ) + χC − 2A′ ≤ λ

(1)
C (ξ)− 2(A′ − d), (4.39)

and A′ − d ≥ A0, we may use Theorem 2.1 to conclude

λ
(1)
C ′(ξ) ≥ λ

(1)
C (ξ)− 2d

(
1 +

A′ − d

2d

)1−2r
. (4.40)

By (4.37) the right-hand side is at least a and so LC ′,A(ϕ) ≥ e−η(A)/ρ ≥ e−δ thanks to
Lemma4.6,where the second bound comes from δ ≥ η(A)/ρ. But (4.37) and x ∈ C�C ′
also yield

LC ′,A(ϕ) ≤ LC,A(ϕ)− eϕ(x)/ρ ≤ eδ − eϕ(x)/ρ, (4.41)

wherebywegetϕ(x) ≤ ρ log(2 sinh δ) = −2A′. This contradicts x ∈ S and so diam S ≤
2|S|r must hold after all. Setting c := 2eδ+2A/ρ , the claim follows. ��
Remark 4.9. We note that considerable effort has been devoted to the study of the mini-
mizers in the variational problem (1.17); cf Gärtner and den Hollander [12]. In spite of
that, uniqueness of the minimizer remains open for small ρ. In the same study, decay
estimates for the eigenfunctions associated with the minimizing potential are provided.
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5. Eigenvector Localization: Deterministic Estimates

Our discussion of deterministic estimates proceeds by giving the proof of Theorem 2.5.
We will rely heavily on Theorem 2.1 so, given A > 0 and R ∈ N, let us write

εR := 2d
(
1 +

A

2d

)1−2R
(5.1)

for the error bound in (2.6). There are two main inputs into our proof of Theorem 2.5.
The first of these is an inequality between the distance to the nearest eigenvalue and the
ratio of masses that the eigenfunction puts on the boundary of a set relative to what it
puts inside.

Proposition 5.1 (Boundary mass vs gap). For the setting of Theorem 2.5 and “dist”
denoting the �1-distance on Z

d , suppose that U ⊂ D is such that

z ∈ D AND dist(z, ∂U ) ≤ R �⇒ ξ(z) ≤ λ
(1)
D (ξ)− 2A, (5.2)

Put U ′ := D � (U ∪ ∂U ) (hence ∂U = ∂U ′). Then

max

{‖ψ 1∂U‖2
‖ψ 1U‖2 ,

‖ψ 1∂U ′ ‖2
‖ψ 1U ′ ‖2

}
≥ gap(λ)− 2εR

12d
∧ 1. (5.3)

The proof will require a specific comparison of the eigenvalues of Δ + ξ in U with
different boundary conditions on ∂U .

Lemma 5.2 (Removing boundary condition). Let U ⊂ Z
d be finite and let ψ̃ : ∂U → R

obey for simplicity ‖ψ̃ 1∂U‖2 ≤ 1. Recall that λ
(k)
U (ξ) is the k-th largest eigenvalue for

operator Δ + ξ in U with zero boundary condition, and let λ̃
(k)
U (ξ) be the k-th largest

eigenvalue for the same operator with boundary condition ψ̃ . Then
∣∣λ(k)

U (ξ)− λ̃
(k)
U (ξ)

∣∣ ≤ 6d‖ψ̃ 1∂U‖2, k = 1, . . . , |U |. (5.4)

Proof. Let Δ̃ denote the Laplace operator on U with boundary condition ψ̃ on ∂U .
Then, for any function ψ : U → R,

〈
ψ, (Δ̃ + ξ)ψ

〉− 〈ψ, (Δ + ξ)ψ
〉 =

∑

x∈U, y∈∂U
|x−y|=1

(
ψ̃(y)2 − 2ψ(x)ψ̃(y)

)
.

(5.5)

Assuming ‖ψ‖2 = 1, the Cauchy–Schwarz inequality and ‖ψ̃ 1∂U‖2 ≤ 1 tell us
∣∣∣
〈
ψ, (Δ̃ + ξ)ψ

〉− 〈ψ, (Δ + ξ)ψ
〉∣∣∣

≤ 2d‖ψ̃ 1∂U‖22 + 4d‖ψ‖2‖ψ̃ 1∂U‖2 ≤ 6d‖ψ̃ 1∂U‖2. (5.6)

By the Minimax Theorem (see (4.10)), 6d‖ψ̃ 1∂U‖2 bounds the difference between the
k-th largest eigenvalue of operators Δ̃ + ξ and Δ + ξ . Hence, (5.4) follows. ��
Proof of Proposition 5.1. Let k ∈ N be such that λ = λ

(k)
D (ξ). Then the following

facts hold:
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(1) By (5.2), the set ∂U is at least R steps of the simple random walk from any point
where ξ exceeds λ

(k)
D (ξ)− 2A. Since (2.25) holds, Theorem 2.1 implies

|λ(k)
D (ξ)− λ

(k)
D�∂U (ξ)| ≤ εR . (5.7)

(2) Restricting the eigenvalue relation on D to U , resp., U ′, there are �1, �2 ∈ N such
that

λ
(k)
D (ξ) = λ̃

(�1)

U (ξ) = λ̃
(�2)

U ′ (ξ), (5.8)

where λ̃
(�1)

U (ξ), resp., λ̃
(�2)

U ′ (ξ) is the �1-th, resp., �2-th eigenvalue of Δ + ξ in U ,
resp., U ′ with boundary condition ψ̃ := ψ/‖ψ 1U‖2, resp., ψ̃ ′ := ψ/‖ψ 1U ′ ‖2 on
∂U = ∂U ′.

(3) If the left-hand side of (5.3) is ≥ 1, then there is nothing to prove, so let us assume
that it is < 1. Lemma 5.2 then tells us

|λ̃(�1)

U (ξ)− λ
(�1)

U (ξ)| ≤ 6d
‖ψ 1∂U‖2
‖ψ 1U‖2 (5.9)

and

|λ̃(�2)

U (ξ)− λ
(�2)

U (ξ)| ≤ 6d
‖ψ 1∂U‖2
‖ψ 1U ′ ‖2 . (5.10)

(4) The Dirichlet eigenvalues in D � ∂U consist of the union of Dirichlet eigenvalues
in U and U ′. It follows that there are k1, k2 ∈ N such that

λ
(�1)

U (ξ) = λ
(k1)

D�U (ξ) and λ
(�2)

U ′ (ξ) = λ
(k2)

D�U (ξ). (5.11)

Our goal is to show that k ∈ {k1, k2} and k1 �= k2.
First, Lemma 4.2 tells us ‖ψ 1∂U‖2 ≤ εR/2d and so ‖ψ 1U‖2 ∨ ‖ψ 1U ′ ‖2 ≥ 1

2 (1−
εR/2d) ≥ 1/4. A calculation now shows that at least one of the right-hand sides in
(5.9–5.10) is ≤ 8εR—say the first one. But then

∣∣λ(k)
D (ξ)− λ

(k1)

D�U (ξ)
∣∣ = ∣∣λ̃(�1)

U (ξ)− λ
(�1)

U (ξ)
∣∣ ≤ 8εR < gap(λ)− 2εR . (5.12)

Since by (5.7) s �→ λ
(k)
D (ξs) stays at least gap(λ)− 2εR away from other eigenvalues as

s slides off to infinity, we must have k1 = k. But if also k2 = k, then HD�∂U would
have two (degenerate) eigenvalues equal to λ

(k)
D�∂U (ξ) and so, by (5.7), HD,ξ would have

another eigenvaluewithin 2εR of λ(k)
D (ξ). This is again impossible because gap(λ) > 2εR

and so k1 �= k2.
The rest of the proof now boils down to the estimates:

gap(λ)− 2εR ≤
∣∣λ(k)

D�∂U (ξ)− λ
(k2)

D�∂U (ξ)
∣∣ = ∣∣λ(�1)

U (ξ)− λ
(�2)

U (ξ)
∣∣

≤ ∣∣λ̃(�1)

U (ξ)− λ
(�1)

U (ξ)
∣∣ +
∣∣λ̃(�2)

U (ξ)− λ
(�2)

U (ξ)
∣∣

≤ 6d
‖ψ 1∂U‖2
‖ψ 1U‖2 + 6d

‖ψ 1∂U‖2
‖ψ 1U ′ ‖2

≤ 12d × l.h.s. of (5.3), (5.13)

whereby (5.3) is finally proved. ��
The second main input into the proof of Theorem 2.5 is a continuity argument which

we again state in general terms as follows:



200 M. Biskup, W. König

Proposition 5.3 (Continuity argument). Fix δ ∈ (0, 1) and h > 0 so that the condi-
tions expressed in (2.26–2.27) hold. Fix d(x,C) satisfying (D0–D2) and suppose that
a normalized eigenfunction ψ corresponding to eigenvalue λ of HD,ξ is such that, for
some C ∈ CR,A, ∣∣ψ(z)

∣∣ ≤ e−δh d(z,C), z ∈ D � C, (5.14)

and, in addition, ‖ψ 1C‖2 ≥ 1/4. Then we have ‖ψ 1C‖2 > 1/2 and

∣∣ψ(z)
∣∣ < e−δh d(z,C), z ∈ D � C. (5.15)

Proof. Let us first consider z ∈ D � DR,A(ξ) and set U := B(z, R) ∩ D. For a
path (Y j ) j∈N0 of the simple random walk started at z, let τR denote the hitting time
of ∂U . Recall the martingale Mτ = (Mτ∧n)n∈N0 from Lemma 4.1; we will consider
it at time n := τR . Note that if Yτ∧τR ∈ ∂D, then ψ(YτR ) = 0; otherwise, the path
Y := (Y0,Y1, . . . ,Yτ∧τR−1) stays inside the set where ξ < λ. Since the loop-erasure
of Y is an R-step self-avoiding nearest-neighbor path from z to ∂B(z, R), the product of
the terms in (4.2) is at most e−hR , by (2.26). (All the terms that we drop by loop-erasing
are ≤ 1.) The Optional Stopping Theorem implies

∣∣ψ(z)
∣∣ ≤ Ez(|Mτ∧τR |) ≤ e−hR max

y∈∂B(z,R)

∣∣ψ(z)
∣∣. (5.16)

The assumption (5.14) and (D1) allow us to bound the maximum by e−δh[d(z,C)−R].
(Note that we can seamlessly extend themaximum to all of ∂B(z, R) becauseψ vanishes
outside D.) Rearranging terms we thus get

∣∣ψ(z)
∣∣ ≤ e−(1−δ)hRe−δh d(z,C), z ∈ D � DR,A(ξ). (5.17)

As 1− δ > 0 and h > 0, this is even stronger than (5.15).
Our next goal is to boost the lower bound on ‖ψ 1C‖2 from (non-strict) 1/4 to (strict)

1/2. To this end let κ abbreviate the right-hand side of (5.3) and note that, by (5.3) with
U := C and U ′ := D � (C ∪ ∂C),

min
{‖ψ 1C‖2, ‖ψ 1D�(C∪∂C)‖2

} ≤ 1

κ
‖ψ 1∂C‖2. (5.18)

Since (5.17) applies to all z ∈ ∂C, we can estimate ‖ψ 1∂C‖2 as
1

κ
‖ψ 1∂C‖2 ≤ 1

κ

√|∂C′| max
y∈∂C

∣∣ψ(y)
∣∣ ≤ 1

κ

√|∂C| e−(1−δ)hR . (5.19)

Invoking (2.27), this is less than 1
4 . By our assumption ‖ψ 1C‖2 ≥ 1

4 , we thus conclude
from (5.18) that ‖ψ 1D�(C∪∂C)‖2 ≤ 1

4 . But the same bound and κ ≤ 1 yield

‖ψ 1D�C‖22 = ‖ψ 1D�(C∪∂C)‖22 + ‖ψ 1∂C‖22 ≤
1

8
, (5.20)

which implies ‖ψ 1C‖2 ≥
√

7/8 > 1/2, as desired.
We are now ready to prove (5.15) for z ∈ DR,A(ξ)�C. Let C′ denote the component

that z belongs to. We will apply Proposition 5.1 withU := C′ andU ′ := D� (C′ ∪∂C′).
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Since we already know ‖ψ 1C‖2 > 1/2, we have ‖ψ 1U‖2 < ‖ψ 1U ′ ‖2 and so the
maximum in (5.3) is achieved by the term corresponding to U . Therefore

∣∣ψ(z)
∣∣ ≤ ‖ψ 1C′ ‖2 ≤ 1

κ
‖ψ 1∂C′ ‖2 ≤ 1

κ

√|∂C′| max
y∈∂C′

∣∣ψ(y)
∣∣. (5.21)

By (5.17) we have |ψ(y)| ≤ e−(1−δ)hR−δh d(y,C) for each y ∈ ∂C′ and invoking con-
dition (D2) we can estimate d(y,C) ≥ d(z,C) − 1. Putting the terms together, we get

∣∣ψ(z)
∣∣ ≤

( 1

κ

√|∂C′|eδh−(1−δ)hR
)
e−δh d(z,C). (5.22)

By (2.27) the prefactor in the large parentheses is ≤ 1
4 for all C′. The claim follows. ��

Proof of Theorem 2.5. We begin by identifying the component C. Let k be such that
λ = λ

(k)
D (ξ), let U := D � DR,A(ξ) and consider the deformation ξs := ξ − s 1U

with s ∈ (−∞,∞]. By the assumption that gap(λ) > 2εR , the eigenvalue λ
(k)
D (ξs) stays

non-degenerate for all s ∈ [0,∞], since this eigenvalue and its two neighbors λ
(k+1)
D (ξs)

and λ
(k−1)
D (ξs) change by less than εR as s slides from s := 0 to s := ∞. In other words,

there is no eigenvalue crossing along the path.
It follows that also the corresponding eigenfunction ψs changes continuously with s

and its limit as s → ∞ exists and defines an eigenfunction ψ̄ for Δ + ξ in D � U
corresponding to λ

(k)
D�U (ξ). Clearly, there is a unique component of D � U where ψ̄

puts all of its mass, because otherwise λ
(k)
D�U (ξ) would be at least two-fold degenerate.

We let C denote this component.
The bounds (5.14) for ψ replaced by ψs and ‖ψs 1C‖2 ≥ 1/4 are satisfied at s :=

∞; thanks to continuity in s they also hold for all s sufficiently large. Let s0 be the
supremum of s ∈ R where any of these bounds fails. We claim that s0 < 0. Indeed,
(assuming s0 > −∞) the bounds still hold (by continuity) at s = s0, and if s0 ≥ 0, then
Proposition 5.3 would imply even the stronger bound ‖ψs0 1C‖2 ≥ 1/2. By continuity
again, one could find ε > 0 such that at least the bound ‖ψs 1C‖2 ≥ 1/4 would hold for
all s ∈ [s0 − ε, s0], in contradiction with the definition of s0. In particular, (5.14) and
‖ψ 1C‖2 ≥ 1/4 hold. As the eigenfunction is normalized and d(z,C) = 0 for z ∈ C, we
have (2.28), as desired. ��

6. Coupling to i.i.d. Random Variables

Havingdealtwith the deterministic estimates that underly the proof of ourmain theorems,
we now move on to the corresponding set of probabilistic arguments. Our specific task
here is to establish a coupling to i.i.d. random variables as stated in Theorem 2.3. We
assume throughout that ξ = (ξ(x) : x ∈ Z

d) are i.i.d. random variables satisfying
Assumption 1.1.

6.1. Extreme values of the fields. We begin by discussing the extreme order statistics of
the potential field. Since ξ(0) is continuously distributed, there is a unique âL such that

P(ξ(0) ≥ âL) = 1

Ld
. (6.1)
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Assumption 1.1 forces F(s) := log log[P(ξ(0) > s)−1] to grow, in the leading order, as
a linear function with slope 1/ρ. Simple estimates then show

âL =
(
ρ + o(1)

)
log log L , L →∞. (6.2)

The quantity âL plays the role of a centering sequence for the extreme order statistics
of the field ξ in boxes of volume Ld . Indeed, since eF (̂aL ) = d log L , setting

bL := ρ

d log L
(6.3)

and using that F (̂aL + sbL) = F (̂aL) + 1
ρ
sbL(1 + o(1)) (by Assumption 1.1), we get

(for D ∈ D and DL its scaled-up lattice version from (1.4))

P
(
max
x∈DL

ξ(x) ≤ âL + sbL
) = (1− exp{−eF (̂aL+sbL )})|DL |

= exp
{−|DL | exp{−eF (̂aL+sbL )}(1 + o(1))

}

= exp
{
−|DL | exp

{−eF (̂aL )+ 1
ρ
sbL (1+o(1))}

(1 + o(1))
}

−→
L→∞ exp

{−|D|es}. (6.4)

It follows that the extreme-order law of ξ lies in the Gumbel universality class.
Our ultimate goal is to arrive at a similar conclusion also for the statistics of the

maximal eigenvalues in DL . However, this requires more regularity than the above
estimates, for two reasons: First, to make a (local) eigenvalue relevant requires arranging
a whole “profile” of ξ values. Second, none of these ξ values will reach into the extreme-
order range—i.e., within O(bL) of âL—rather, they will all lie a positive deterministic
constant below âL ; cf (1.16). It turns out that we will need:

Lemma 6.1. Suppose Assumption 1.1. Then

(1) For any ε > 0 there is r0 <∞ such that for all r, r ′ with r ′ ≥ r ≥ r0,

e( 1
ρ
−ε)(r ′−r) ≤ logP(ξ(0) > r ′)

logP(ξ(0) > r)
≤ e( 1

ρ
+ε)(r ′−r)

. (6.5)

(2) The law of ξ(0) has a density f with respect to the Lebesgue measure which then
satisfies

lim
r→∞

f
(
r + se−F(r)

)

f (r)
= e−s/ρ (6.6)

locally uniformly in s ∈ R.

Proof. For (6.5), the ratio of the logs equals the exponential of F(r ′)− F(r). Using the
Fundamental Theorem of Calculus and Assumption 1.1, once r ′, r are sufficiently large
and r ′ > r , ( 1

ρ
− ε
)
(r ′ − r) ≤ F(r ′)− F(r) ≤

( 1
ρ
+ ε
)
(r ′ − r). (6.7)

This implies part (1) of the claim. For part (2), a calculation shows that

f (r) := F ′(r) P
(
ξ(0) > r

)
logP

(
ξ(0) > r

)
(6.8)
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is the probability density of ξ(0), and so

f
(
r + se−F(r)

)

f (r)

= F ′(r + se−F(r))

F ′(r)
P
(
ξ(0) > r + se−F(r)

)

P
(
ξ(0) > r

)
logP

(
ξ(0) > r + se−F(r)

)

logP
(
ξ(0) > r

) . (6.9)

As limr→∞ F(r) = ∞ for r →∞ by (1.7), the first ratio on the right tends to one by
(1.7) and the same applies to the third ratio by (6.7). As for the middle ratio, we note

P
(
ξ(0) > r + se−F(r)

)

P
(
ξ(0) > r

) = exp
{
−eF(r)(eF(r+se−F(r))−F(r) − 1

)}
. (6.10)

The claim follows by invoking F(r + se−F(r))− F(r) = 1
ρ
se−F(r)(1 + o(1)). ��

With the help of (6.5) we now get the asymptotic formula (2.11). This yields the
identity in (2.12)which implies that the only “profiles” of thefield thatwecan realistically
expect to see in DL are those for which ϕ := ξ − âL obeys L(ϕ) � 1.

6.2. Local eigenvalue estimates. Many of our arguments that are to follow will require
the following (rather crude) bounds for the principal eigenvalues in rectangular boxes
of sublogarithmic size in L .

Proposition 6.2. Let RL → ∞ with RL = o(log L). Then for each δ > 0 sufficiently
small there is ε > 0 such that

P
(
λ

(1)
BRL

(ξ) ≥ âL − χ + δ
) ≤ L−d−ε (6.11)

and
P
(
λ

(1)
BRL

(ξ) ≥ âL − χ − δ
) ≥ L−d+ε (6.12)

for all L sufficiently large.

For the regime in (6.12), we will also need a statement with the quantifiers inter-
changed:

Proposition 6.3. Let RL →∞ with RL = o(log L). Then for each ε > 0 there is δ > 0
such that

P
(
λ

(1)
BRL

(ξ) ≥ âL − χ − δ
) ≤ L−d+ε (6.13)

Let us start with the upper bounds (6.11) and (6.13). Their proof will be based on the
set inclusion (4.31) established in Lemma 4.6. For that we will need to show that the
event on the right of (4.31) is dominated by configurations with nearly minimal value
of LC,A(ξ − a − χC ).

Lemma 6.4. Let ρ > 0 and A > 0 be given. There is a constant cA,ρ such that for allα ∈
(0, 1/2), all u ≥ 2/3, all finite C ⊂ Z

d , all L large enough and d ′ := d2−2α/3e−Aα/(3ρ),

P
(
LC,A(ξ − âL) ≥ u

) ≤ cA,ρ

(
4

α

A + ρ log(4/3)

ρ log(4/3)

)|C|
L−d ′u1−α

. (6.14)
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Proof. Fix ρ > 0, A > 0 and ε > 0. For u > 0, define

Fu :=
{
ξ : LC,A(ξ − âL) ∈ [u, 2u)

}
. (6.15)

The event in (6.14) is covered by
⋃

n≥0 F2nu so it suffices to derive a good estimate
on P(Fu). Note that 2u > 1 because we assumed u ≥ 2/3.

Our first task is to derive a version of (2.11) without the o(1)-term. For this, let r0 be
such that (6.5) holds. We will also assume that L is so large that âL − A ≥ r0. We claim
that then

−A ≤ s ≤ ρ log(2u) ⇒ P
(
ξ(0) ≥ âL + s

) ≤ (L−d(2u)−2ρεe−Aε)es/ρ
. (6.16)

Indeed, let ρ′ be defined by 1/ρ′ := 1/ρ + ε. Then (6.5) bounds the probability by L−dθ

with θ := es/ρ−ε|s|. Since s ≤ ρ log(2u) implies |s| ≤ 2ρ log(2u) − s, this is further
bounded by L−dθ ′ where θ ′ := (2u)−2ρεes/ρ

′
. As es/ρ

′ ≥ e−Aε+s/ρ , (6.16) follows.
Nextwewill discretize the set of possible potential values to cover Fu by a finite union

of sets. Let δ := ερ2 log(2u) and SA,u := {−A + mδ : m ∈ N0} ∩ (−∞, ρ log(2u)].
Define

ϕξ (x) := −A + δ
⌊
(ξ(x) + A)/δ

⌋
. (6.17)

Then ϕ takes values in SA,u and

LC,A(ξ − âL) ≥ u ⇒ LC,A(ϕξ ) ≥ ue−δ/ρ ≥ u1−ρε. (6.18)

Let {Ck : k = 1, . . . , 2|C| − 1} be an enumeration of all non-empty subsets of C and let
{ϕk, j } be an enumeration of all functions ϕk, j : Ck → SA,u . (6.18) then gives

Fu ⊆
⋃

k

⋃

j : LCk (ϕk, j )≥ue−δ/ρ

{
ξ : ξ ≥ âL + ϕk, j on Ck

}
. (6.19)

Denoting d ′′ := d2−2ρεe−Aε, the condition LC,A(ϕk, j ) ≥ u1−ρε implies

P
(
ξ : ξ ≥ âL + ϕk, j on Ck

) ≤ L−d ′′u1−3ρε

. (6.20)

The total number of pairs (k, j) contributing to the union is at most

(
1 +

A + ρ log(2u)

δ

)|C| =
(
1 +

A + ρ log(4/3)

ρ2ε log(4/3)

)|C|
. (6.21)

So if ε (so far arbitrary) is linked to α via α := 3ρε, we get

P(Fu) ≤
(
4

α

A + ρ log(4/3)

ρ log(4/3)

)|C|
L−d ′u1−α

(6.22)

with d ′ related to α as in the claim. Since the prefactor is independent of u, the desired
bound follows by summing (6.22) over u taking values in {2nu : n ≥ 0}. (Note that the
restriction on L was independent of u and α.) ��

We can now prove the upper bounds in Propositions 6.2 and 6.3:
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Proof of (6.11) and (6.13). For A ≥ χC and δ ∈ R, the inclusion (4.31) and χC ≥
χ show

{
λ

(1)
C (ξ) ≥ âL − χ + δ

} ⊆ {ξ : LC,A(ξ − âL) ≥ u
}

for u := e(δ−η(A))/ρ. (6.23)

Applying (6.14) with C := BRL , and noting that the term exponential in |C | is Lo(1), the

desired probability is at most Ld ′u1−α+o(1), for any α ∈ (0, 1/2), provided δ is small and
A large so that u ≥ 2/3. Now for A large and α > 0 small, d− d ′ can be made arbitrary
small (positive) while u, which satisfies u > 1 for δ > 0 and u < 1 for δ < 0, can be
made as close to 1 as desired by choosing δ small. This proves the desired bounds. ��

Concerning the lower bound in (6.12), we first state:

Lemma 6.5. For each ρ′ > ρ there is Kρ′ < ∞ such that for any finite C ⊂ Z
d , any

δ ∈ [0, 1) and any L, we have

P
(
λ

(1)
C ≥ âL − χC − δ

) ≥ L−dθ for θ := e−δ/ρ′(1 + K ′ρ |C |ρ/ρ′e−âL/ρ′). (6.24)

Proof. Recall (4.33) and the notation used therein. Fix ρ′ > ρ and let r0 be such that
the bound on the right (6.5) holds for all r, r ′ ≥ r0 with 1/ρ − ε equal to 1/ρ′. Setting
ϕ′C := ϕC ∨ (r0 − âL + δ) and noting that ϕ′C ≥ ϕC , we get

P
(
λ

(1)
C ≥ âL − χC − δ

) ≥ P
(
ξ ≥ âL − δ + ϕ′C

)

≥ exp
{
− log(Ld)e−δ/ρ′∑

x∈C
eϕ′C (x)/ρ′

}
(6.25)

But ρ′ > ρ implies
∑

x∈C eϕ(x)/ρ′ ≤ LC (ϕ)ρ/ρ′ and for LC (ϕ′C ) we get

LC (ϕ′C ) ≤ LC (ϕC ) + |C |e(r0+δ−âL )/ρ.. (6.26)

In light of LC (ϕC ) ≤ 1 and a simple convexity estimate, we get (6.24) with the choice
Kρ′ := e(r0+1)/ρ′ . ��

Proof of (6.12). Since χBRL
↓ χ and |BRL | = (log L)o(1) while âL $ log log L , the

bound (6.24) with C := BRL yields (6.12) for L large as soon as d − ε > de−δ/ρ . ��

6.3. Approximation by i.i.d. process. We are now ready to assemble the arguments
needed for the proof of Theorem 2.3. Let RL be a sequence of integers subject to (2.17).
As before, let CRL ,A denote the set of connected components of DRL ,A(ξ) for D := DL .

Lemma 6.6. For any A > 0 there is an integer nA <∞ such that

diam C ≤ nARL , ∀C ∈ CRL ,A, (6.27)

occurs with probability tending to one as L →∞.
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Proof. This is a consequence of (2.11) and a straightforward union bound. Indeed, let
FL ,n(x) denote the event that the box BnRL (x) contains at least n vertices z for which
ξ(z) ≥ âL − χ − 2A. Then

{∃C ∈ CRL ,A : diam C > nRL
} ⊆

⋃

x∈BnL (0)

FL ,n(x). (6.28)

By (2.11) and a union bound we obtain

P
(
FL ,n(x)

) ≤ ∣∣BnrL

∣∣nL−dnθ+o(1) where θ := e−(χ+2A)/ρ . (6.29)

Since RL = Lo(1), as soon as n is so large that nθ > 1, the probability of the union on
the right of (6.28) will tend to zero as L →∞. ��

Next we will focus attention on components where the eigenvalue is close to the
optimal threshold âL − χ . For these components we get:

Lemma 6.7. Given A > 0 sufficiently large, there is δ > 0 such that the following
holds with probability tending to one as L → ∞: For any C ∈ CRL ,A that obeys
λ

(1)

C
(ξ) ≥ âL − χ − δ,

(1) λ
(1)

C
(ξ)− λ

(2)

C
(ξ) ≥ 1

2ρ log 2,
(2) C ⊂ BNL (x) for some x ∈

(
(NL + 1)Z)d and, in addition, dist(C, Dc

L) > NL.

If, in addition, λ(1)

C′ (ξ) ≥ âL − χ − δ for some C′ ∈ CRL ,A then

(3) either C′ = C or dist(C′,C) > NL.

Proof. Assume that A is large and pick C ∈ CRL ,A that obeys λ
(1)

C
(ξ) ≥ âL − χ − δ.

By Lemma 6.6, we may also assume diam C ≤ nARL . For the claim in (1), if we had
λ

(1)

C
(ξ)− λ

(2)

C
(ξ) ≤ 1

2ρ log 2, then Lemma 4.7 with the choices

a := âL − χC and a′ := âL − χ − δ (6.30)

would yield LC,A(ξ − âL) ≥ √
2e−η(A)/ρ =: u. By Lemma 6.4 and the fact that

|C| = O(Rd
L) = o(log L), the probability that a given set C is a component with these

properties is at most L−d
√
u+o(1). But there are at most LdeO(Rd ) = Ld+o(1) ways to

choose such a connected component in DL and so (1) follows by a union bound and
u > 1.

For (2) and (3), let us abbreviate rL := nARL . Given ε > 0 let δ > 0 be as in
Proposition 6.2. Since C ⊂ BrL implies λ

(1)
BrL

(ξ) ≥ λ
(1)

C
(ξ), from (6.13) we immediately

have

P

(
∃C ∈ CRL ,A : x ∈ C, diam(C) ≤ rL , λ

(1)

C
(ξ) ≥ âL − χ − δ

)
≤ |BrL |L−d+ε (6.31)

for any x ∈ BnL(0). Now if (2) fails for some component C ∈ CRL ,A, then C contains
a vertex either in DL �

⋃
x∈((NL+1)Z)d BNL (x) or in {x ∈ DL : dist(x, Dc

L) ≤ NL}.
The former set has cardinality of order Ld N−1L while the latter has cardinality of order
NL Ld−1 (indeed, thanks to the smoothness of ∂D we have |∂DL | = O(Ld−1)). Hence,
for some constant c1,

P
(
(2) fails

) ≤ c1
(
Ld N−1L + NL L

d−1)Rd
L L

−d+ε, (6.32)
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For (3) a similar argument yields

P(
(
(3) fails

) ≤ c2L
d Nd

L (Rd
L L

−d+ε)2. (6.33)

Using (2.17–2.18), both of these tend to zero as L →∞ once ε is small enough. ��
Finally, we also need a (slightly more explicit) version of (1.16):

Lemma 6.8. We have

λ
(1)
DL

(ξ)− âL −→
L→∞ −χ, in P-probability. (6.34)

Proof. Fix ε > 0 and consider the event that λ
(1)
DL

(ξ) ≥ âL − χ − ε. Cover DL by

order (L/RL)d disjoint translates of BRL . By (6.12) and RL = Lo(1), with probability
tending to one as L →∞, at least in one of these boxes the principal Dirichlet eigenvalue
exceeds âL − χ − δ. Since λ

(1)
DL

dominates all these eigenvalues, we get a lower bound
in (6.34).

Next let us examine the event F := {λ(1)
DL

(ξ) ≥ âL − χ + ε}. Let A > 0 and
fix RL → ∞ with RL = o(log L). Assume, with the help of Lemma 6.6, that all
components of CRL ,A have diameter less than nARL . Theorem 2.1 thus implies

λ
(1)
DL

(ξ) ≤ max
x∈DL

λ
(1)
BnARL (x)(ξ) +

ε

2
(6.35)

with probability tending to one as L →∞. So on F , at least one of the boxes BnARL (x),
with x ∈ DL , has λ

(1)
BnARL (x)(ξ) ≥ âL + ε/2. By Proposition 6.2, this has probability

o(L−d) and, since DL = O(Ld), also an upper bound in (6.34) holds. ��
We are now finally ready to establish the coupling of the top part of the spectrum

in DL to a collection of i.i.d. random variables.

Proof of Theorem 2.3. Fix A > 0 large and let δ > 0 be such that the conclusions
of Lemmas 6.6, 6.7 and 6.8 hold. Let U denote the set DRL ,A for D := DL . Take
δ′ < min{δ/2, A/2}. Theorem 2.1 then implies, for all k = 1, . . . , |DL |,

λ
(k)
DL

(ξ) ≥ âL − χ − δ′ ⇒ ∣∣λ(k)
DL

(ξ)− λ
(k)
U (ξ)

∣∣ ≤ 2d
(
1 +

A

2d

)1−2RL
. (6.36)

But the spectrum in U is the union of the spectra in the components in CRL ,A and,
once conclusions (2–3) in Lemma 6.7 are in place, we only need to pay attention to
components that are entirely contained, and single of that kind, in one of the boxes
B(i)
NL

, i = 1, . . . ,mL . Since Lemma 6.7(1) tells us that we can also disregard all but the

principal eigenvalue, if C ⊂ B(i)
NL

is such a component, Theorem 2.1 yields

∣∣λ(1)

C
(ξ)− λk(ξ)

∣∣ ≤ 2d
(
1 +

A

2d

)1−2RL
. (6.37)

Combining (6.36–6.37), the claim follows. ��
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7. Eigenvalue Order Statistics

Our next item of business is a proof of extreme order statistics for eigenvalues in DL
as L → ∞. Having coupled the eigenvalues at the top of the spectrum of HDL ,ξ to
a collection of i.i.d. random variables—namely the principal eigenvalues in disjoint
subboxes of side NL—the argument is reduced to identifying the max-order class that
these variables fall into.

7.1. Determining the max-order class. Our strategy is to first identify the max-order
class for eigenvalues in boxes of side RL and only then relate this to the eigenvalues in
boxes of side NL . The bulk of proof of Theorem 2.4 will be supplied by:

Proposition 7.1. SupposeAssumption1.1holds and, for RL →∞with RL = (log L)o(1),
let aL be as defined in (2.22). Let bL obey (2.23), i.e.,

bL log L −→
n→∞

ρ

d
. (7.1)

Then, with o(1) → 0 as L →∞ uniformly on compact set of s, r ∈ R,

P
(
λ

(1)
BRL

≥ aL + rbL
) = e−s+o(1) P

(
λ

(1)
BRL

≥ aL + (r − s)bL
)
. (7.2)

Remark 7.2. It is the proof of this proposition that requires us to assume that the law
of ξ(0) has a density with respect to the Lebesgue measure. Although this restriction
can be overcome to some extent, we have not succeeded in formulating a more general
condition that would yield a comparably easy proof of the asymptotic (7.2). A natural
idea how to deal with discontinuous laws would be to first approximate the spectrum by
that of a continuously-distributed field and then apply the present approach.

The main idea of the proof of Proposition 7.1 is to compensate for a shift in the
eigenvalue by way of a rigid shift of the field configuration. In order to keep the action
confined to the asymptotic regime, we will only shift the values of ξ that are close to âL .
Given A > 0 and L ≥ 1, consider the continuous function gL ,A : R×R → R given by

gL ,A(ξ, s) :=

⎧
⎪⎨

⎪⎩

ξ − s, if ξ ≥ âL − A,

ξ, if ξ ≤ âL − 2A,

linear, else.
(7.3)

Clearly, for s < A, the map ξ �→ gL ,A(ξ, s) is strictly increasing. The deterministic part
of the change-of-measure argument is provided by:

Lemma 7.3. Given a finite C ⊂ Z
d , a configuration (ξ(x))x∈C and A > 0, abbreviate

ξ̃s(x) := gL ,A
(
ξ(x), s

)
. (7.4)

Then for all a ∈ R and s ≥ 0,
{
λ

(1)
C (ξ) ≥ a + s

} ⊆ {λ(1)
C (ξ̃s) ≥ a

}
(7.5)

and, for all a ≥ âL − A/2 and all s ≥ 0,
{
λ

(1)
C (ξ) ≥ a + s

} ⊇ {λ(1)
C (ξ̃s′) ≥ a

}
, (7.6)

where s′ := s/[1− 2d(1 + A
4d )−2].
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Proof. Abbreviate O := {x ∈ C : ξ(x) ≥ âL−A} and note that ξ̃s = ξ(x)−s for x ∈ O .
Since s ≥ 0, the variational characterization of the principal eigenvalue tells us

λ
(1)
C (ξ̃s) + s ≥ λ

(1)
C (ξ) ≥ λ

(1)
C (ξ̃s) + s

∑

x∈O

∣∣ψ(1)

C,ξ̃s
(x)
∣∣2. (7.7)

The inequality on the left then immediately yields (7.5).
For (7.6), let s′ be as given and let us assume λ

(1)
C (ξ̃s′) ≥ a. Then a ≥ âL − A/2 and

ξ̃s′ ≤ âL − A on C � O imply ξ̃s′ ≤ a − A/2 ≤ λ
(1)
C (ξ̃s′)− A/2 on C � O and thus by

Lemma 4.2 with D′ := C � O , A′ := A and R := 1 and A replaced by A/2,

∑

x∈O

∣∣ψ(1)

C,ξ̃s′
(x)
∣∣2 ≥ 1− 2d

(
1 +

A

4d

)−2
. (7.8)

The inequality on the right of (7.7) with s replaced by s′ yields the sequence of bounds
λ

(1)
C (ξ) ≥ λ

(1)
C (ξ̃s′) + s ≥ a + s. ��

The shift of the field will give rise to a term reflecting the change in the underlying
measure. This termcan be evaluated rather explicitly.As already pointed out, the function
ξ �→ gL ,A(ξ, s) is strictly increasing for s < A so we can define its inverse, hL ,A(ξ, s),
by

gL ,A
(
hL ,A(ξ, s), s

) = ξ. (7.9)

Then we have:

Lemma 7.4. Let f be the probability density of ξ(0). For any event G depending only
on {ξ(x)}x∈C , any A > 0, any s ∈ [0, A) and all L sufficiently large,

P
(
ξ̃s ∈ G

) = E

(
1G
( A

A − s

)KL ,A(ξ,s) ∏

x∈C

f (hL ,A(ξ(x), s))

f (ξ(x))

)
, (7.10)

where KL ,A(ξ, s) := #{x ∈ C : A < âL − hL ,A(ξ(x), s) < 2A}.
Proof. Let L be so large that the probability density f is well defined and positive for
all arguments larger than âL − 2A. Notice the change of variables ξ �→ ξ̃s , with explicit
form ξ = hL ,A(ξ̃s, s), incurs the Radon–Nikodym derivative

dξ

dξ̃s
=
( A

A − s

)1âL−ξ∈(A,2A)

(7.11)

for the corresponding Lebesguemeasures.Multiplying this by the ratio of the probability
densities, f (ξ)/ f (ξ̃s) gives us the Radon–Nikodym derivative of the law of ξ with
respect to the law of ξ̃s . The result thus follows by writing P(ξ̃s ∈ G) as an integral
with respect to the Lebesgue measure

∏
x∈C dξ(x) and changing variables using ξ(x) =

hL ,A(ξ̃s(x), s) for each x . ��
We will now proceed to deal with the Radon–Nikodym terms in (7.10). The ratios of

the probability densities will be controlled using (6.6) as follows:
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Lemma 7.5. Let f denote the probability density of ξ(0). For any finite C ⊂ Z
d , any

ϕ = (ϕ(x))x∈C and α = (α(x))x∈C with α ≥ 0, there exists a quantity o(1) such that

∏

x∈C

f (̂aL + ϕ(x)− bLα(x))

f (̂aL + ϕ(x))
= exp

{(
1 + o(1)

)∑

x∈C
α(x)eϕ(x)/ρ

}
. (7.12)

Moreover, o(1) → 0 as L →∞ uniformly in C and ϕ, α ∈ I C , α ≥ 0, for any compact
set I ⊂ R.

Proof. For F be as in Assumption 1.1 and t ∈ R such that âL + t lies in the domain
of F , let hL(t) be defined by

ρ
(
1 + hL(t)

)
et/ρ := bLe

F (̂aL+t). (7.13)

Thanks to (2.23), Assumption 1.1 and the Mean-Value Theorem for F , we have that
hL(t)→ 0 as L →∞ locally uniformly in t . Next, for u ≥ 0 such that f (̂aL + t−bLu)

and f (̂aL + t) are well-defined and positive, let qL(t, u) be defined by

f (̂aL + t − bLu)

f (̂aL + t)
=: exp

{(
1 + qL(t, u)

)
u et/ρ

}
. (7.14)

Using (6.6) with r := âL + t and s := bLu eF (̂aL+t), and applying (7.13), we get that
qL(t, u) → 0 locally uniformly in t and u ≥ 0.

Thanks to u ≥ 0, (7.14) can be written as upper/lower bounds valid for L large once
t, u are confined to compact sets in R. Setting t := ϕ(x) and u := α(x) and applying
this bound to the product in (7.12), the claim follows. ��

We are now ready to prove the main claim of this subsection:

Proof of Proposition 7.1. Fix ε > 0 and A > 0 and set

G := {ξ : λ(1)
BRL

(ξ) ≥ aL + rbL
} ∩ {ξ : LBRL ,A(ξ − âL) ≥ 1− ε

}

∩{ξ : LBRL ,2A(ξ − âL) ≤ 1 + ε} ∩ {ξ : max
x∈BRL

ξ(x) ≤ âL + A
}
. (7.15)

Our ultimate goal is to show that the right hand side of (7.10) with this G and s replaced
by sbL is asymptotically equal to e−s+o(1)P(ξ ∈ G).

The first term in the expectation in (7.10) is bounded directly: Since s ≥ 0 we have,
for L sufficiently large and all ξ , that

1 ≤
( A

A − s

)KL ,A(ξ,s) ≤ eO(1)sbL Rd
L , (7.16)

where we estimated KL ,A(ξ, s) by the total volume of BRL . Since RL = o(log L) while
bL = O(1/ log L), the right-hand side tends to one uniformly on compact sets of s.

For the product of ratios of probability densities, we will apply Lemma 7.5. Given a
configuration ξ , let us abbreviate ϕ(x) := ξ(x) − A and define α(x) implicitly by the
formula ξ(x)− sbLα(x) := hL ,A(ξ(x), sbL). As is easy to check, α(x) ∈ [0, 1] while
ϕ(x) ∈ [−2A, A] for all ξ ∈ G where hL(ξ(x), sbL) �= ξ(x). Lemma 7.5 thus implies

∏

x∈BRL

f (hL ,A(ξ(x), sbL))

f (ξ(x))
= exp

{
s
(
1 + o(1)

) ∑

x∈BRL

α(x) eϕ(x)/ρ
}
, (7.17)
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where o(1) → 0 as L → ∞ uniformly on G. Concerning the sum in the exponential
on the right, here we note that α(x) = 1 when ξ(x) ≥ âL − A while α(x) = 0 when
ξ(x) < âL − 2A. Hence,

LBRL ,A(ξ − âL) ≤
∑

x∈BRL

α(x)eϕ(x)/ρ ≤ LBRL ,2A(ξ − âL). (7.18)

On G the left-hand side is at least 1 − ε while the right-hand side is at most 1 + ε. We
conclude

P
(
ξ̃sbL ∈ G

) = e−s+O(ε)
P(ξ ∈ G), (7.19)

whereO(ε) is boundedby a constant times ε uniformly on compact sets of s, for all A > 0
sufficiently large (and larger than s).

We are ready to put all the above together and extract the desired claim. First, Lem-
mas 6.4, 6.8 and 4.6 and the bound P(maxx∈BRL

ξ(x) > âL + A) = o(L−d) yield

P(ξ ∈ G) = P
(
λ

(1)
BRL

(ξ) ≥ aL + rbL
)
+ o(L−d), L →∞. (7.20)

Since ξ ≥ ξ̃s ≥ ξ − sbL , we similarly get

P
(
ξ̃sbL ∈ G

) = P
(
λ

(1)
BRL

(ξ̃sbL ) ≥ aL + rbL
)
+ o(L−d), L →∞. (7.21)

Plugging these into (7.19), invoking the inclusions (7.5–7.6) and noting that s′ in (7.6)
can be made arbitrarily close to s by increasing A, we conclude the claim for s ≥ 0. For
s < 0 the claim follows by symmetry. ��

7.2. Stability with respect to partition size. In order to conclude the proof of Theo-
rem 2.4, we need to relate the upper tails of the law of the principal eigenvalues in BRL

and BNL . Related to this is the question on how much does aL , defined in (2.22), depend
on the (rather arbitrary) choice of the sequence NL . As attested by the next lemma, one
direction is quite easy:

Lemma 7.6. There exists a constant c = c(d) ∈ (0,∞) such that or any N ≥ R and
any a ∈ R,

− log
(
1− P(λ

(1)
BN
≥ a)

) ≥ (1− cR/N
)(N

R

)d
P
(
λ

(1)
BR
≥ a
)
. (7.22)

Proof. Let us cover Z
d by disjoint translates of BR and let B(i)

R , i = 1, . . . , n, denote
those translates that are contained in the box BN . Then λ

(1)
BN

(ξ) ≥ λ
(1)

B(i)
R

(ξ) for every i

and since λ
(1)

B(i)
R

(ξ) are independent and equidistributed to λ
(1)
BR

(ξ), we thus have

P
(
λ

(1)
BN
≥ a
) ≥ 1− P

(
λ

(1)
BR

< a
)n

≥ 1− exp
{−n P(λ

(1)
BR

< a)
}
. (7.23)

The claim follows by taking a log and using that n ≥ (1 − cR/N )(N/R)d for some
constant c > 0. ��
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Notice that (7.22) implies that onceP(λ
(1)
BNL

≥ tL)→ 0 and RL/NL → 0 as L →∞,

for some sequences RL , NL and tL , then also

P(λ
(1)
BNL

≥ tL) ≥ (1 + o(1)
)(NL

RL

)d
P
(
λ

(1)
BRL

≥ tL
)
, L →∞. (7.24)

(Indeed, just expand the log into a power series and dominate it by the first-order term.)
The bound in the opposite direction will require introducing an auxiliary scale R′L

as follows: Suppose, for the sake of present section, that RL and NL are sequences of
integers such that

lim
L→∞

RL

log log L
= ∞, lim

L→∞
RL

NL
= 0 and lim

L→∞
NL

L
= 0 (7.25)

and let R′L be a sequence of integers satisfying

lim
L→∞

R′L
RL

= 0. (7.26)

Then we have:

Lemma 7.7. For any A > 0 and any sequence tL ≥ −A there is c > 0 such that

P
(
λ

(1)
BNL

≥ âL + tL
) ≤ o(L−d)+

(
1+ o(1)

)(NL

RL

)d
P
(
λ

(1)
BRL

≥ âL + tL − e−cR′L
)
, (7.27)

as L →∞.

Proof. Pick A > 0 such that tL ≥ −A and consider the set C of connected components
of the union of balls BR′L (x) for x ∈ BNL such that ξ(x) ≥ âL − 3A. By Lemma 6.6
(with RL replaced by R′L ) and NL ≤ L , there is an integer nA > 0 such that

P
(
max
C∈C

diamC > nAR
′
L

) = o(L−d). (7.28)

Nowconsider a partition ofZd into disjoint translates of BRL and let B
(i)
RL
, i = 1, . . . ,mL ,

denote those boxes in the covering that have at least one vertex in common with BNL .

Considering the set S of all vertices on the inner boundary of these boxes, let B( j)
2nAR′L

,

j = 1, . . . , kL , denote a covering thereof by translates of B2nAR′L centered at these
vertices such that no vertex in S lies in more than two boxes from these. The key point
is that, on the event

G := {ξ : max
C∈C

diamC ≤ nAR
′
L

}
, (7.29)

each component C ∈ C is entirely contained in one of the above boxes B(i)
RL

or B( j)
2nAR′L

.

Since ξ(x) ≥ λ
(1)
BNL

(ξ) − 2A and λ
(1)
BNL

(ξ) ≥ âL + tL imply ξ(x) ≥ âL − 3A,

Theorem 2.1 can be used for the set U :=⋃C∈CC. Thereby we get

λ
(1)
BNL

(ξ) ≤ max
C∈C

λ
(1)

C
(ξ) + εR′L , (7.30)
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where εR′L := 2d(1 + A
2d )1−2R′L . The monotonicity of C �→ λ

(1)
C (ξ) then shows that

λ
(1)
BNL

(ξ) ≤ εR′L + max

{
max

i=1,...,mL
λ

(1)

B(i)
RL

(ξ), max
j=1,...,kL

λ
(1)

B( j)
2nA R′L

(ξ)

}
(7.31)

holds on G ∩ {λ(1)
BNL

(ξ) ≥ âL + tL}.
Applying the union bound (7.31) and (7.28) yield

P
(
λ

(1)
BNL

≥ âL + tL
) ≤ mL P

(
λ

(1)
BRL

≥ âL + tL − εR′L
)

+ kL P
(
λ

(1)
B2nA R′L

≥ âL + tL − εR′L
)
+ o(L−d)

≤ (mL + kL) P
(
λ

(1)
BRL

≥ âL + tL − εR′L
)
+ o(L−d), (7.32)

where the last inequality holds because 2nAR′L ≤ RL . Since R′L ' RL ,

mL =
(
1 + o(1)

)(NL

RL

)d
and kL ≤ O(1)

NL

RL

(NL

R′L

)d−1 = o(mL) (7.33)

the claim follows by noting that εR′L ≤ e−cR′L for some c > 0. ��

7.3. Proof of eigenvalue order statistics. First we establish the Gumbel max-order tail
for the principal eigenvalues:

Proof of Theorem 2.4. Choose rL so that rL/ log log L → ∞ and (7.26) hold. Then
e−crL = o(bL) as L →∞, for any c > 0. Combining Lemma 7.7 and Proposition 7.1,
the desired claim follows. ��

This then implies the extreme order law for eigenvalues:

Proof of Corollary 1.3. This is a direct consequence of Theorems 2.3 and 2.4, the stan-
dard results about max-order statistics and the facts that RL/ log log L → ∞ and
log |DL | = (d + o(1)) log L as L →∞ for any D ∈ D. ��

8. Eigenfunction Decay

In this short section we will provide the arguments needed in the proof of eigenfunction
localization. Recall our notation εR := 2d(1 + A

2d )1−2R . A key observation is:

Lemma 8.1. Let RL/ log log L →∞. Then for each A > 0 and each k ≥ 2,

1

εRL

min
�=1,...,k−1

(
λ

(�)

DL
(ξ)− λ

(�+1)
DL

(ξ)
) −→

L→∞ ∞ (8.1)

in probability.

Proof. By the convergence to the Poisson point process established in Corollary 1.3,

[
λ

(�)

DL
(ξ)− λ

(�+1)
DL

(ξ)
]
log L �⇒

L→∞
ρ

d
log

Z1 + · · · + Z�+1

Z1 + · · · + Z�

, (8.2)

where Z1, Z2, . . . are i.i.d. exponentials with parameter one. Since the right-hand side
is positive with probability one, and εRL log L → 0, the result follows. ��
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Next let us consider the distance d(x,C) defined, as an example, right before The-
orem 2.5 and let dist(x, y) stand for the �1-distance between x and y on Z

d . Clearly,
d(x,C) ≤ dist(x,C). Our next item of business is to show:

Lemma 8.2 (Comparison of distances). For each A > 0 there are c0, c1, c2 ∈ (0,∞)

such that for any RL →∞ that satisfies RL ≤ c0 log L, we have

d(x,C) ≥ c1 dist(x,C)− c2RL , x ∈ DL , C ∈ CRL ,A, (8.3)

holds with probability tending to one as L →∞.

Proof. By its definition, d(x, y) is the (graph-theoretical) distance on the graph obtained
by contracting each connected components C to a single vertex. So it suffices to prove

d(x, y) ≥ c1 dist(x, y)− c2RL , x, y ∈ DL . (8.4)

Let G := {ξ : diam C ≤ nARL ∀C}, where the diameter is in the �1-distance on Z
d .

Given x and y, consider a path π on this contracted graph achieving d(x, y). This can
be extended into a path on DL by concatenating with paths inside the components,
which yields

dist(x, y) ≤ d(x, y) + YnARL , on G, (8.5)

where Y denotes the number of connected connected components encountered by π .
To estimate Y , consider any vertex self-avoiding path from x to y and letK denote the

union of BRL (z) for all z on this path. Clearly, |K| ≤ c dist(x, y)Rd
L for some constant

c > 0. By a union bound and (2.11),

P
(
Y ≥ n) ≤ |K|L−nθ ≤ c dist(x, y)Rd

L L
−ndθ ≤ L−nθ ′ (8.6)

for some θ, θ ′ > 0 and all n ≥ 1, where we used that dist(x, y)Rd
L ≤ L1+o(1). Hence,

for any η > 0,

P

(
Y ≥ η

dist(x, y)

RL

)
≤ exp

{
−θ ′η log L

RL
dist(x, y)

}
. (8.7)

Summing this over x, y ∈ DL with dist(x, y) ≥ RL/η2, the result will tend to zero
with L → ∞ provided η is sufficiently small. As also G has probability tending to
one, we get

dist(x, y) ≤ d(x, y) + η
dist(x, y)

RL
nARL , (8.8)

implying d(x, y) ≥ (1−ηnA) dist(x, y) as soon as dist(x, y) > RL/η2, with probability
tending to one as L →∞. As η can be chosen so that ηnA < 1, we are done. ��

We are now ready to establish the eigenfunction decay starting first with decay over
long distances:

Proof of Theorem 1.4, large distances. We will prove (1.21) at distances in excess of
log L/ log log L . Our aim is to apply Theorem 2.5 for λ := λ

(k)
DL

(ξ), any A > 0 and
R := RL , where

RL := (log L/ log log L). (8.9)

We will now check the conditions (1–3) of Theorem 2.5.
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First, since εRL = o(1/ log L), condition (1) holds thanks to Lemma 8.1. Concerning
condition (2), we note that as soon as

RL
log
(
P(ξ(0) > tL)−1

)

log L
−→
L→∞ ∞ (8.10)

for some sequence tL , then the following holds with probability tending to one as L →
∞: For any self-avoiding path (x1, . . . , xn) in DL of length n ≥ RL ,

#
{
i = 1, . . . , n : ξ(xi ) ≥ tL

} ≤ n

2
. (8.11)

Assumption 1.1 tells us that log(P(ξ(0) > a)−1) = eF(a) with F(a) = (1/ρ + o(1))a
as a →∞, we easily check that (8.10) holds for, say, tL := âL/2. Since λ = âL −o(1),
the condition in (2.26) is valid with h := c log log log L for some c > 0.

Concerning (3), by Lemma 6.6 (which holds as soon as RL = o(L)) all components
of CRL ,A have diameter at most nARL , with probability tending to one as L → ∞.
Condition (3) is then readily checked for any δ ∈ (0, 1).

Since the premises of Theorem2.5 hold,we know that there is a connected component
C ∈ CRL ,A such that ψ := ψ

(k)
DL ,ξ obeys

∣∣ψ(z)
∣∣ ≤ e−cδ(log log log L)d(z,C), z ∈ DL . (8.12)

In particular, Xk , defined by (1.9), must satisfy dist(Xk,C) ≤ RL . As Lemma 8.2 is at
our disposal, we further conclude

d(z,C) ≥ c1 dist(z,C)− c2RL

≥ c1|z − Xk | − (c1nA + c2 + 1)RL , (8.13)

where we used that, by Lemma 6.6, diam C ≤ nARL with probability tending to one
as L →∞. Hereby we get

|z − Xk | ≥ c1nA + c2 + 1

2c1
RL ⇒ ∣∣ψ(z)

∣∣ ≤ e−c′(log log log L) dist(z,C), (8.14)

for c′ given by c′ := cδc1/2. In particular, (1.21) is true. ��
Before we move on to the short distances, let us abbreviate R′L := c1nA+c2+1

2c1
RL

for RL as in the previous proof and notice that (8.14) yields

∑

|z−Xk |≥R′L

ξ(z)
∣∣ψ(z)

∣∣2 = o(1), (8.15)

with probability tending to one as L → ∞ because ξ(z) is at most a constant times
log log L in this limit. In particular, we have

λ
(1)

B(Xk ,R′L )
(ξ) = λ− o(1) (8.16)

by the variational characterization of the principal eigenvalue.
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Proof of Theorem 1.4, short distances. It remains to prove exponential decay for dis-
tances less than order RL . Set R′L as right before this proof. Our aim is to use Lemma 4.8
to show that all but a finite number of values in B(Xk, R′L) are more than a positive
constant below λ. We will now proceed to verify the premises of Lemma 4.8.

Pick ε > 0. Thanks to Lemmas 6.4 and 6.8, and χB(Xk ,R′L ) ↓ χ , the following holds
with probability one as L →∞: Once A is sufficiently large,

LC,A
(
ξ − (aL − ε)− χC

) ≤ eε/(2ρ) (8.17)

holds for C ranging over all translates of B(Xk, R′L) that intersect DL . Set δ := ε/(2ρ)

and abbreviate C := B(Xk, R′L). Next observe that for A′ := − 1
2ρ log(2 sinh δ) and ε

small, there is r ≥ 1 so that

2d
(
1 +

A′ − d

2d

)1−2r ≤ ε

2
. (8.18)

(Indeed, A′ = 1
2 log(2δ) + O(1) so setting r to be proportional to a constant times

log(1/ε) will do once ε is small enough.) As λ = aL + o(1), the bound (8.16) tells us

λ
(1)
C (ξ) ≥ aL − ε

2
≥ aL − ε + 2d

(
1 +

A′ − d

2d

)1−2r
. (8.19)

By taking δ small and A large, and setting A′′ := A− d (which is less than A−χC ) the
premises of Lemma 4.8 are thus satisfied and so we conclude that ξ(z) ≤ λ

(1)
C (ϕ)− A′′

for all z ∈ C that are at least cr away from Xk . As A′′ > 0, Lemma 4.2 then shows

∑

|z−Xk |≥a

∣∣ψ(z)
∣∣2 ≤

(
1 +

A′′

2d

)−2a‖ψ‖22 (8.20)

for all a > cr . In particular, ψ(z) decays exponentially with distance from Xk . ��
Finally, we will supply a formal proof of our principal result:

Proof of Theorem 1.2. Part (1) is a direct consequence of the bounds in Theorem 1.4.
For part (2) notice that argument producing the coupling to i.i.d. random variables in
Theorem 2.3 is such that λ

(k)
DL

is coupled exactly to λ
B(i)
NL

(ξ) for i such that Xk ∈
B(i)
NL

. In the notation of this theorem, since NL = o(L), the collection (1.14) is well
approximated by

{( zi
L

,
1

ρ

(
λi (ξ)− aL

)
log |DL |

)
: i = 1, . . . ,mL

}
, (8.21)

where zi denotes the point at the center of B
(i)
NL

. AsmL →∞while the number of points
with the second coordinate above a given value is with high probability bounded, this
is in turn well approximated by sampling the first coordinate uniformly from {zi : i =
1, . . . ,mL}, independently of the second coordinate. The last approximating process
converges to a Poisson point process with intensity measure 1Ddx ⊗ e−λdλ. ��
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