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Abstract: In 2012, Gamayun, Iorgov, and Lisovyy conjectured an explicit expression
for the Painlevé VI τ function in terms of the Liouville conformal blocks with central
charge c = 1. We prove that the proposed expression satisfies Painlevé VI τ function
bilinear equations (and therefore prove the conjecture). The proof reduces to the proof of
bilinear relations on conformal blocks. These relationswere studied using the embedding
of a direct sum of two Virasoro algebras into a sum of Majorana fermion and Super
Virasoro algebra. In the framework of the AGT correspondence, the bilinear equations
on the conformal blocks can be interpreted in terms of instanton counting on theminimal
resolution of C

2/Z2 (similarly to Nakajima–Yoshioka blow-up equations).
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1. Introduction

Painlevé equations were introduced more than 100 years ago. Solutions of these equa-
tions (Painlevé transcendents) are important special functions with many applications,
including integrable models and random matrix theory. Maybe the most natural math-
ematical framework for the Painlevé equations is the theory of monodromy preserving
deformations. The Painlevé VI equation is equivalent to the simplest nontrivial example,
namely isomonodromic deformation of rank 2 linear system on CP

1 with four regular
singular points.

In 2012, Gamayun, Iorgov, Lisovyy conjectured in [16] an explicit expression for
the expansion near t = 0 of the Painlevé VI τ function. This expression is an infinite
sum of four-point CP

1 conformal blocks for c = 1 conformal field theory (CFT). In the
next paper, [17], Gamayun, Iorgov, Lisovyy found the analogous expressions for the τ

functions of the Painlevé V, III’s equations in terms of certain limits of conformal blocks
for c = 1. See also [22,23] for further developments of this conjecture.

In this paper we prove the Gamayun–Iorgov–Lisovyy conjecture. Note that a com-
pletely different proof of this conjecture (together with a generalization to any number of
points on CP

1) was given in [21]. We explain the main idea of our proof in the simplest
Painlevé III′3 case. This equation has the form

d2q

dt2
= 1

q

(
dq

dt

)2
− 1

t

dq

dt
+
2q2

t2
+
2

t
. (1.1)

Our proof is based on another form of Painlevé III′3 equation, namely on a bilinear
equation on the Painlevé III′3τ function (see Sect. 4.1 or the paper [20] for the relation
between different forms of Painlevé III′3 equations). It is convenient to write the bilinear
equation by use of Hirota differential operators with respect to log t . Then the τ form of
the Painlevé III′3 equation can be written as

DI I I (τ (t), τ (t)) = 0, where DI I I = 1

2
D4[log t] − t

d

dt
D2[log t] +

1

2
D2[log t] + 2t D0[log t],

(1.2)
and Dk[x] is the k-th Hirota operator with respect to the variable x , see Eq. (4.6). For this
Painlevé III′3 case our main result is the following

Theorem 1.1. The expansion of the Painlevé I I I ′
3 τ function near t = 0 can be written

as
τ(t) =

∑
n∈Z

snC(σ + n)F((σ + n)2|t). (1.3)

In this theorem F(σ 2|t) = F1(σ
2|t) denotes the irregular limit of the Virasoro (Vir)

conformal block for the central charge c = 1. This function is defined in terms of
representation theory of the Virasoro algebra (see Sect. 3.1). The coefficients C(σ ) are

defined byC(σ ) = 1/
(
G(1−2σ)G(1+2σ)

)
,whereG(z) is the BarnesG function. The

parameters s and σ in (1.3) are integration constants of Eq. (1.1). Note that Theorem 1.1
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means that the formula (1.3) specifies 2 parametric sets of τ functions but there could
be τ functions which are not given by (1.3).

We substitute (1.3) to (1.2) and collect terms with the same powers of s. A vanishing
condition of a sm coefficient reads∑

n∈Z

(
C(σ + n + m)C(σ − n)DI I I

(
F((σ + n + m)2|t),F((σ − n)2|t

))
= 0. (1.4)

Each summand looks similar to a conformal block for the sum of two Virasoro algebras
Vir ⊕ Vir. Therefore, it is natural to expect that the whole sum is a conformal block
of an extension of Vir ⊕ Vir. And we prove that the required extension is Vir ⊕ Vir ⊂
F ⊕ NSR, where F is the Majorana fermion algebra and NSR is the Neveu–Schwarz–
Ramond algebra, N = 1 superanalogue of the Virasoro algebra (to be more precise
Vir ⊕ Vir ⊂ F ⊕ NSR is an extension on vertex operator algebras).

The idea to use this extension comes from geometry. Recall that the AGT corre-
spondence [2] for the Virasoro algebra states that the conformal block in the irregular
limit coincides with the Nekrasov partition function for pure N = 2 supersymmetric
U (2) gauge theory on C

2. Therefore, Eq. (1.4) is equivalent to a bilinear equation on
the Nekrasov partition function.

These equations resemble Nakajima–Yoshioka bilinear equations [26], which relate
the Nekrasov partition function on the blow-up of C

2 with the Nekrasov partition func-
tion on C

2. Due to the AGT correspondence the Nakajima–Yoshioka bilinear equations
are equivalent to equations which relate conformal blocks of two theories with central
charges c(1)

NY and c(2)
NY . The CFT meaning of this relation was explained in [8] and the

explanation is based on the embeddingVir⊕Vir ⊂ Vir×U , where U is a certain rational
vertex operator algebra.

We use an analogue of the Nakajima–Yoshioka equations. Geometrically this ana-
logue corresponds to the instanton counting on the minimal resolution of C

2/Z2. The
CFT interpretation of this instanton counting was given in [3] and it was based on the
above mentioned embedding, Vir⊕Vir ⊂ F⊕NSR. It is convenient to write the central
charges ofNSR andVir algebras in terms of a parameter b ∈ C. To be precise the central
charges of the two Virasoro algebras are equal to

c(1) = 1 + 6
(b + b−1)2

2b(b−1 − b)
, c(2) = 1 + 6

(b + b−1)2

2b−1(b − b−1)
.

Therefore, in the b + b−1 = 0 case we get c(1) = c(2) = 1, just as we want for Eq. (1.4).
It was proved in [3] that the F⊕NSR Verma module π�NS

F⊕NSR is decomposed into a
direct sum of Vir ⊕ Vir Verma modules⊕

2n∈Z
πn
Vir⊕Vir

∼= π�NS

F⊕NSR.

Therefore, we get similar relation for the conformal blocks
∑
2n∈Z

(
l2n(P, b)Fc(1) (�

(1)
n |β(1)q),Fc(2) (�

(2)
n |β(2)q)

)
= FcNS,

where Fc(1) and Fc(2) denote conformal blocks for the first and second Virasoro in
Vir ⊕ Vir, and FcNS denotes an NSR conformal block. The coefficients ln(P, b) are
called blow-up factors in [3] due to their geometric origin. In the language of conformal
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field theory, these coefficients are closely related to the structure constants of the theory
with Vir ⊕ Vir symmetry.

In Sect. 4 we consider more general conformal blocks (following [8]) and prove the
relation ∑

2n∈Z
l2n(P, b) DI I I

b

(
Fc(1) (�

(1)
n |β(1)q),Fc(2) (�

(2)
n |β(2)q)

)
= 0, (1.5)

where the operator DI I I
b is written in terms of b-deformed Hirota differential operators.

If we set b = i , we get the relation (1.4) and therefore prove the Gamayun–Iorgov–
Lisovyy conjecture.

More precisely, for the relation (1.4) with m = 0 we need to show that the coeffi-
cients l2n(2iσ, i) are proportional to C(σ+n)C(σ−n)

C(σ )2
as functions on n. The expressions for

ln(P, b) were given in [3] without proof. They were computed in the recent paper [18]
by use of Dotsenko–Fateev type integrals.

We calculate ln(P, b) in Sect. 3 using a completely different approach. Namely, we
imitate the computation of structure constants in the Liouville CFT [28,31], based on
the associativity of OPE and properties of degenerate fields φ1,2. It is interesting to note
that in [28,31] a monodromy of correlation functions is trivial due to the coupling of the
chiral and antichiral CFT, in contrast to our case where we have only chiral CFT and
monodromy is trivial due to the relation between the central charges c(1) and c(2).

As was explained above, the calculation of ln(P, b) and the Proof of relation (1.5)
leads to a Proof of Theorem 1.1. The Painlevé VI case is studied in a similar way.

The paper is organized as follows. In Sect. 2 we recall the main properties of the
embedding of algebras Vir⊕Vir ⊂ F⊕NSR. In Sect. 2.2 we prove Theorem 2.1, which
describes the F⊕NSR vacuummodule as a module over the vertex operator subalgebra
Vir ⊕ Vir. We do not use this theorem in the rest of the paper so the reader can safely
skip it.

Section 3 is devoted to conformal blocks, in Sect. 3.2 we recall the relation between
Vir ⊕ Vir and F ⊕ NSR vertex operators, and in Sect. 3.3 we calculate the blow-up
factors ln(P, b).

Section 4 is devoted to bilinear relations. In Sect. 4.1 we recall the necessary back-
ground on the Painlevé equations and the isomonodromic τ functions, in Sects. 4.2 and
4.3 we prove the Painlevé III and Painlevé VI τ functions conjectures. In Sect. 4.4 we
show that the bilinear relations on conformal blocks provide an efficient method for the
calculation of the conformal block expansion.

In Sect. 5 we discuss the AGT meaning of our results. In particular we recall the
arguments of [3], which reduces the proof of AGT relation for the NSR algebra to the
calculation of blow-up factors ln(P, b) calculated in Sect. 3.3 (and also in [18]).

Finally, in Sect. 6 we formulate some questions to study.

2. Algebras and Representations

2.1. Verma modules. The Virasoro algebra (which we denote by Vir) is generated by
Ln , n ∈ Z with relations

[Ln, Lm] = (n − m)Ln+m +
n3 − n

12
cδn+m,0.

Here c is an additional central generator, which acts on representations below as multi-
plication by a complex number. Therefore we consider c as a complex number, which
we call central charge.
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Denote the Verma module of Vir by π�
Vir. This module is generated by a highest

weight vector |�〉
L0|�〉 = �|�〉, Ln|�〉 = 0, n > 0,

where� ∈ C is called the weight of |�〉. The representation space is spanned by vectors,
obtained by the action of the operators L−n, n > 0 on |�〉.

The F ⊕ NSR algebra is a direct sum of the free-fermion algebra F with generators
fr (r ∈ Z + 1

2 ) and NSR (Neveu–Schwarz–Ramond or Super Virasoro) algebra with
generators Ln, Gr (n ∈ Z, r ∈ Z + 1

2 ). These generators satisfy commutation relations

{ fr , fs} = δr+s,0,

{ fr , Gs} = [ fr , Ln] = 0

[Ln, Lm] = (n − m)Ln+m +
(n3 − n)

8
cNSδn+m,0

{Gr , Gs} = 2Lr+s +
1

2
cNS

(
r2 − 1

4

)
δr+s,0

[Ln, Gr ] =
(
1

2
n − r

)
Gn+r .

(2.1)

It is convenient to express the central charge by

cNS = 1 + 2Q2, where Q = b−1 + b

Here and below we choose the indices r of Gr and fr to be half-integer, i.e. we work in
the so-called NS sector of our algebras.

We denote by π�NS

F⊕NSR a Verma module of the F ⊕ NSR algebra. This module is

isomorphic to a tensor product of Verma modules πF and π�NS

NSR which are generated by
the highest weight vectors |1〉 and |�NS〉 correspondingly defined by

fr |1〉 = 0, r > 0,

and

L0|�NS〉 = �NS|�NS〉, Ln|�NS〉 = 0, Gr |�NS〉 = 0, n, r > 0.

The representation space is spanned by vectors obtained by the action of generators
with negative indices on the highest weight vector. We denote the highest weight vector
|1〉 ⊗ |�NS〉 as |�NS〉.

Recall the free-field realization of the NSR algebra. Consider the algebra generated
by cn, n ∈ Z and ψr , r ∈ Z + 1

2 (free boson and free fermion) with relations

[cn, cm] = nδn+m,0, [cn, ψr ] = 0, {ψr , ψs} = δr+s,0.

We denote by P̂ the operator c0. Then a Fock representation of this algebra is generated
by a vacuum vector |P〉 such that ψr |P〉 = cn|P〉 = 0, P̂|P〉 = P|P〉 for r, n > 0. On
this Fock module we can define an action of the NSR algebra by formulae



1026 M. A. Bershtein, A. I. Shchechkin

Ln = 1

2

∑
k 
=0,n

ckcn−k +
1

2

∑
r

(
r − n

2

)
ψn−rψr +

i

2

(
Qn ∓ 2 P̂

)
cn, n 
= 0,

L0 =
∑
k>0

c−kck +
∑
r>0

rψ−rψr +
1

2

(
Q2

4
− P̂2

)
,

Gr =
∑
n 
=0

cnψr−n + i(Qr ∓ P̂)ψr .

(2.2)

We say that P is generic if P 
∈ { 12 (mb−1 + nb)|m, n ∈ Z, mn > 0}. For generic P the

NSRmodule defined by (2.2) is irreducible and isomorphic to the Verma module π�NS

NSR,
where

�NS = �NS(P, b) = 1

2

(
Q2

4
− P2

)
, |P〉 = |�NS〉

The sign ∓ in (2.2) refers to the existence of two free-field representations of the same
Verma module. We denote the corresponding operators by c+n , ψ+

r and c−
n , ψ−

r . These

operators are conjugated by some unitary operator acting on π�NS

NSR (the so-called super
Liouville reflection operator).

As the main tool we shall use the Vir ⊕ Vir subalgebra in the F ⊕ NSR algebra
(following [12,24]). The embedding of the Vir ⊕ Vir algebra is defined by formulae

L (1)
n = b−1

b−1 − b
Ln − b−1 + 2b

2(b−1 − b)

∑
r∈Z−1/2

r : fn−r fr : + 1

b−1 − b

∑
r∈Z−1/2

fn−r Gr

L (2)
n = b

b − b−1 Ln − b + 2b−1

2(b − b−1)

∑
r∈Z−1/2

r : fn−r fr : + 1

b − b−1

∑
r∈Z−1/2

fn−r Gr

(2.3)
Note that the expressions for L(η)

n , η = 1, 2 contain infinite sums and belong to certain
completion of the universal enveloping algebra of F ⊕ NSR. The operators L(η)

n act on
any highest weight representation of F ⊕ NSR. One can say that Vir ⊕ Vir is a vertex
operator subalgebra of F ⊕ NSR (see the next subsection).

It is convenient to express the central charge of the Virasoro algebra and the highest
weights of the Verma module by

�(P, b) = Q2

4
− P2, c(b) = 1 + 6Q2, where Q = b + b−1 (2.4)

Then the central charges of these Vir(1) and Vir(2) subalgebras are equal to

c(η) = c(b(η)), η = 1, 2, where (b(1))2 = 2b2

1 − b2
, (b(2))−2 = 2b−2

1 − b−2 . (2.5)

Note that the symmetry b ↔ b−1 permutes Vir(1) and Vir(2). Here and below b2 
= 0, 1.
Now consider the space π�NS

F⊕NSR as a module over Vir ⊕ Vir. Clearly, the vector

|�NS〉 = |1〉 ⊗ |�NS〉 is a highest weight vector with respect to Vir ⊕ Vir. This vector

generates a Verma module π
�(1),�(2)

Vir⊕Vir . The highest weight (�(1), �(2)) can be found from
(2.3), namely

�(1) = b−1

b−1 − b
�NS, �(2) = b

b − b−1�NS (2.6)
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But the whole space π�NS

F⊕NSR is larger than π
�(1),�(2)

Vir⊕Vir . The following decomposition was
proved in [3].

Proposition 2.1. For generic P the space π�NS

F⊕NSR is isomorphic to the sum of Vir⊕Vir
modules

π�NS

F⊕NSR
∼=
⊕
2n∈Z

πn
Vir⊕Vir. (2.7)

The highest weight (�
(1)
n ,�

(2)
n ) of the Verma module πn

Vir⊕Vir is defined by �
(η)
n =

�(P(η)
n , b(η)), η = 1, 2, where

P (1)
n = P (1) + nb(1), P (2)

n = P (2) + n
(
b(2)
)−1

, P (1) = P√
2 − 2b2

, P (2) = P√
2 − 2b−2

.

(2.8)

Graphically this decomposition is shown in Fig. 1.
The proof is based on an explicit construction of the highest weight vectors of the

representations πn
Vir⊕Vir. We will use operators of free field realization ψ±

r , which anti-

commute with fs . Let us introduce another fermion operators acting on π�NS

F⊕NSR

χ∓
r = fr − iψ∓

r

Then it can be checked that the vectors |P, n〉, 2n ∈ Z defined by the formulae

|P, n〉 = �n(P)

(4n−1)/2∏
r=1/2

χ−−r |�NS〉, n > 0,

|P, n〉 = �n(P)

(−4n−1)/2∏
r=1/2

χ+−r |�NS〉, n < 0,

|P, 0〉 = |P〉 = |�NS〉. (2.9)

−2 −1 0 1 2
n

L0

0

0.5

1

1.5

2

2.5

Fig. 1. Decomposition of π�NS

F⊕NSR into direct sum of representations of the algebra Vir ⊕ Vir. Each interior
angle corresponds to the Verma module πn

Vir⊕Vir
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satisfy highest weight vector equations

L(η)
0 |P, n〉 = �(η)

n |P, n〉, L(η)
k |P, n〉 = 0, k > 0, 2n ∈ Z, η = 1, 2.

Since P ←→ −P symmetry permutes χ+
r and χ−

r we have |P, n〉 ≡ | − P,−n〉.
Remark that here �n(P) are arbitrary normalization constants. We shall specify them
below.

We can write that |P, n〉 = |�(1)
n 〉 ⊗ |�(2)

n 〉. Note that the highest weights of |P, n〉
satisfy the relation

�(1)
n + �(2)

n = �NS + 2n2.

This relation follows from (2.8). For generic P the vectors |P, n〉 are linear independent
and generate the Verma modules over the algebra Vir ⊕ Vir.

The isomorphism fromProposition 2.1 follows from the coincidence of the characters
of the l.h.s. and the r.h.s. of (2.7). The character of the module V is ch(V ) = Tr|V q L0 .
The characters of Verma modules equal

ch(π�
Vir) = q�

∞∏
k=1

1

1 − qk
, ch(π�NS

F⊕NSR) = q�NS
∞∏

k=1

(1 + qk− 1
2 )2

1 − qk
.

Using the Jacobi triple product identity

∞∏
k=1

(1 − q2k)(1 + q2k−1y2)(1 + q2k−1y−2) =
∞∑

k=−∞
qk2 y2k (2.10)

in the case y �→ 1, q �→ q1/2 we have the necessary equality of characters

ch(π�NS

F⊕NSR) = q�NS
∞∏

k=1

(1 + qk− 1
2 )2

(1 − qk)
=
∑
2n∈Z

q�NS+2n2
∞∏

k=1

1

(1 − qk)2

=
∑
2n∈Z

ch(πn
Vir⊕Vir)

2.2. Vacuum module. In this subsection we revisit the relation between the F ⊕ NSR
and the Vir ⊕ Vir algebras for generic central charges (in terms of the parameter b it
means that b2 
∈ Q). Some formulas for unitary minimal model case (b2 = −(n + 2)/n)
were given in [12]. We do not use the results of this subsection in the rest of the paper.

We use the language of vertex operator algebras, (VOA for short), see e.g. [14]. Recall
that a vector space V is called a vacuummodule of VOA if any vector v ∈ V corresponds
to a current i.e. a power series of operators Y (v; q) =∑ Ynq−n , where Yn ∈ End(V ).
This correspondence v ←→ Y (v; z) is called the operator-state correspondence. In
the definition of the vertex operator algebra the correspondence v ←→ Y (v; q) should
satisfy certain conditions, namely vacuum axiom, translation axiom and locality axiom.

The vacuum module Vac for the F ⊕ NSR algebra is generated by the vector |∅〉
defined by

fr |∅〉 = 0, for r ≥ 1

2
; Gr |∅〉 = 0, for r ≥ −1

2
; Ln|∅〉 = 0 for n ≥ −1.
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The simplest examples of the operator-state correspondence are

f−1/2|∅〉 ←→ f (q) =
∑

r∈Z+ 1
2

fr q−r−1/2,

G−3/2|∅〉 ←→ G(q) =
∑

r∈Z+ 1
2

Gr q−r−3/2,

L−2|∅〉 ←→ T (q) =
∑

n∈Z Lnq−n−2.

Other currents in F ⊕ NSR vertex operator algebra can be obtained by use of normal
ordered products from f (q), G(q), T (q) and its derivatives (see [14, Th. 4.4.1]). The
current T (q) is called the stress-energy tensor.

Formulae (2.3) defines two currents T (1)(q) and T (2)(q) i.e. define the vertex operator
subalgebra Vir⊕Vir in the vertex operator algebra F⊕NSR. We consider F⊕NSR as
an extension of Vir ⊕ Vir.

Lemma 2.1. The vertex operator algebra F ⊕ NSR is generated by currents T (1)(q),
T (2)(q) and f (q)

Proof. It is enough to express currents G(q) and T (q). It follows from (2.3) that

T (q) = T (1)(q) + T (2)(q) − 1

2
: f ′(q) f (q) :

G(q) = b + 2b−1

2π i

∮
q

dzT (1)(q) f (z) +
b−1 + 2b

2π i

∮
q

dzT (2)(q) f (z)

Here we used that : f (q) f (z):= 1
q−z + reg and T (q) f (z) = reg. ��

Note that the current T f (q) = 1
2 : f ′(q) f (q) : is the standard fermion stress-energy

tensor.
We want to describe the structure of Vac as a module over the Vir ⊕ Vir algebra.

Recall that for � = �m,n(b) = ((b−1 + b)2 − (mb−1 + nb)2)/4, m, n ∈ N the Verma
module π�

Vir contains the singular vector of the level mn (see e.g. [13]). Denote by L
b
m,n

an irreducible quotient of the π
�m,n
Vir . The superscript b stresses the dependence on the

central charge.

Lemma 2.2. The vector f−1/2|∅〉 is the highest weight vector of the Vir ⊕ Vir module

L
b(1)

1,2 ⊗ L
b(2)

2,1 .

Proof. This fact is equivalent to the relations

L (1)
k f−1/2|∅〉 = 0, L (2)

k f−1/2|∅〉 = 0, for k > 0,

L (1)
0 f−1/2|∅〉 = �1,2(b

(1)) f−1/2|∅〉,
L (2)
0 f−1/2|∅〉 = �2,1(b

(2)) f−1/2|∅〉,(
(L (1)

−1)
2 + (b(1))2L (1)

−2

)
f−1/2|∅〉 = 0,

(
(L (2)

−1)
2 + (b(2))−2L (2)

−2

)
f−1/2|∅〉 = 0.

The relations can be checked directly by use of (2.3). ��
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Therefore the current f (q) can be considered as a product φ
(1)
12φ

(2)
21 (notations from

[4]). This fact will be discussed below in Remark 3.3.
The character of the module L

b
m,n equals to ch(Lb

m,n) = (1 − qmn)ch(π
�m,n
Vir ) since

it is a quotient of the Verma module by the submodule generated by the singular vector
on the level mn.

Theorem 2.1. The module Vac is isomorphic to the sum of Vir ⊕ Vir modules

Vac ∼=
⊕
m∈N

L
b(1)

1,m ⊗ L
b(2)

m,1.

Proof. The vector |∅〉 has the highest weight 0 = �1,1(b(1)) = �1,1(b(2)) for the both

Virasoro subalgebras. Therefore this vector generates Vir⊕Vir submodule L
b(1)

1,1 ⊗L
b(2)

1,1 .

It was proved above that the vector f−1/2|∅〉 generates the module L
b(1)

1,2 ⊗ L
b(2)

2,1 .

The vacuum module Vac is a quotient of the Verma module π0
F⊕NSR. This Verma

module has only one free field realization, namely we put P = Q/2 and use upper
sign in formulae (2.2). Therefore the vectors |P, n〉 for n ≥ 0 are well defined in the
Verma module π0

F⊕NSR. It follows from formula (2.9) that the vector |P, n〉 contains the
product

∏(4n−1)/2
r=1/2 f−r |P〉 with non-zero coefficient. Then the vectors |P, n〉 for n ≥ 0,

2n ∈ Z are non-zero in the quotient module Vac. Since P = Q/2 then P(η) = Q(η)/2,
η = 1, 2. Using (2.8) we get P (1)

n = P1,2n+1(b(1)), P (2)
n = P2n+1,1(b(2)).

So we proved that the vector |P, n〉 ∈ Vac generates the Vir ⊕ Vir submodule of
the highest weight (�1,m(b(1)),�m,1(b(2))), where m = 2n + 1. The irreducible module

L
b(1)

1,m ⊗L
b(2)

m,1 is the smallest module of this highest weight. Therefore we get an inequality
of characters

ch(Vac) ≥
∑
m∈N

ch
(
L

b(1)

1,m ⊗ L
b(2)

m,1

)
. (2.11)

Now our theorem is equivalent to equality in (2.11). So it remains to prove an identity

(1 − q1/2)

∞∏
k=1

(1 + qk− 1
2 )2

1 − qk
=
∑
m∈N

q
(m−1)2

2 (1 − qm)2
∞∏

k=1

1

(1 − qk)2

Equivalently

(1 − q1/2)

∞∏
k=1

(1 + qk− 1
2 )2(1 − qk) =

∑
m∈N

q
(m−1)2

2 (1 − qm)2.

And the last identity is a (1 − q1/2) multiple of the Jacobi triple product identity (2.10)
for y = 1, q �→ q1/2

(1 − q1/2)

∞∏
k=1

(1 + qk− 1
2 )2(1 − qk) =

∑
m∈Z

q
m2
2 (1 − q1/2) =

∑
m∈N

q
(m−1)2

2 (1 − qm)2.

��
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3. Vertex Operators and Conformal Blocks

3.1. Conformal blocks and chain vectors. We use non hermitian, but a complex sym-
metric scalar product. Operators are conjugated as

L+
n = L−n, G+

r = G−r , f +r = − f−r ⇒ (L(η)
n )+ = L(η)

−n, η = 1, 2. (3.1)

We normalize the highest highest weight vectors of Verma modules by 〈�|�〉 = 1,
〈|�NS||�NS〉 = 1. The coefficients �n(P) are determined by the similar condition
〈P, n|P, n〉 = 1.

The vertex operator V �
�1,�2

: π
�2
Vir �→ π

�1
Vir is defined by the commutation relations

[Lk, V�(q)] =
(

qk+1∂q + (k + 1)�qk
)

V�(q), (3.2)

Here and below we simplify the notation V �
�1,�2

to V�(q). It follows from (3.2) that

V�(q) can bewritten as a power series V�(q) =∑m∈Z V�,mq−m+�1−�2−�. The opera-
tor V�(q) is completely determined by the relation (3.2) and normalization
〈�2|V �

�2,�1
(1)|�1〉 = 1. We express the conformal weight of the vertex operator in

terms of the parameter α (cf. (2.4))

� = �(α − Q/2, b) = α(Q − α),

and abbreviate V� to Vα . The n-point conformal block on CP
1 of the primary fields

located in the points zn = ∞, zn−1, . . . , z2 ∈ C\{0}, z1 = 0; zi 
= z j , i 
= j is defined
as the matrix element

Fc({�i− j }, {�k}|{zk}) = 〈�n|V �n−1
�n ,�(n−1)−(n−2)

(zn−1) . . . V �2
�3−2,�1

(z2)|�1〉 (3.3)

Here �i are the highest weights of Verma modules corresponding to the points zi ,
�(i+1)−i are the highest weights of intermediate Verma modules. The expression (3.3)
defines the conformal block as amultivariable formal power series in zi

zi+1
. This conformal

block can be represented by use of the diagram in Fig. 2. It has been argued in [29] that
this power series converges in a region zi

zi+1
<< 1. In this paper (except Sect. 3.3) we

do not use analytical properties of conformal blocks (see also Remark 4.3). We will
consider variables zi

zi+1
as a formal variables. Due to convergence mentioned above it is

equivalent to the study of vicinity of 0.
For the 4-point conformal block one can set the point z3 to 1, using the conformal

transformation z �→ z/z3. We define the 4-point conformal block by the formula

Fc(
−→
�,�|q) = q�1+�2〈�4|V �3

�4,�
(1)V �2

�,�1
(q)|�1〉, (3.4)

0,Δ1

z2,Δ2z3,Δ3zn−2,Δn−2zn−1,Δn−1

∞,Δn
Δ3−2Δ(n−1)(n−2)

. . .

Fig. 2. Diagram representing conformal block as a matrix element
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where
−→
� stands for the set of external weights �i , i = 1, 4. Note that the function Fc

differs from the function defined in equation (3.3) by a factor q�1+�2 .

It is convenient for calculations to rewrite the definition of Fc(
−→
�,�|q) in terms of

the chain vectors |W (q)〉21 defined as

|W (q2)〉21 = q�1+�2V �2
�,�1

(q)|�1〉 = q�
∑
λ∈Y

c21λ L−λq |λ||�〉,

where λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0) is a partition, L−λ|�〉 ≡ L−λ1 . . . L−λk |�〉. If
we decompose |W (q)〉21 = q�/2∑∞

N=0 q
N
2 |N 〉21, then the commutation relation (3.2)

implies

Lk |N 〉21 =
(

k�2 − �1 + � + N − k
)

|N − k〉21, k > 0. (3.5)

Here and below we assume that |N 〉 = 0, for N < 0. These equations coupled to the
normalization |0〉21 = |�〉 determine the chain vector.

It is easy to see that the conjugate vertex operator satisfies (3.2) V +
�(1/q)q−2� =

V�(q). Therefore we define the conjugate chain vector as 34〈W (1)| = 〈�4|V �3
�4,�

(1)
and the conformal block Fc can be written as

Fc(
−→
�,�|q) =34 〈W (1)|W (q2)〉21 = q�

∞∑
N=0

q N
34〈N |N 〉21 = 34〈W (q)|W (q)〉21,

We also use so-called irregular limit (other names Whittaker limit and Gaiotto limit)
of the conformal blocks and chain vectors [15]. Namely one can rescale the chain vector
|W (q)〉21

|N 〉21 = (−�1)
N |N 〉′21, (3.6)

and tend �1 to ∞. Then the equations (3.5) simplify to (we omit ′ symbol in |N 〉′21
below)

L1|N 〉 = |N − 1〉, N > 0, Lk |N 〉 = 0, k > 1,

or equivalently, in terms of the Whittaker vector (the limit of chain vector) |W (q)〉
L1|W (q)〉 = q1/2|W (q)〉, Lk |W (q)〉 = 0, k > 1.

Note that it is enough to impose L1 and L2 relations since the action of the other Lk ,
k > 2 follows from the Virasoro commutation relations. The irregular (or Whittaker, or
Gaiotto) limit of conformal block is defined by

Fc(�|q) = 〈W (q)|W (q)〉 = q�
∞∑

N=0

q N 〈N |N 〉. (3.7)

Now we consider N = 1 superconformal field theory (SCFT) with the NSR sym-
metry [5,6,19]. In this case we have a multiplet of two vertex operators: even ��NS(q)

and odd ��NS(q) = [G−1/2,��NS(q)]. These operators act from a Verma module to a
Verma module

��NS

�NS
2 ,�NS

1
, ��NS

�NS
2 ,�NS

1
: π

�NS
1

NSR �→ π
�NS

2
NSR
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and are determined by the commutation relations

[Lk,��NS(q)] = (qk+1∂q + (k + 1)�NSqk)��NS(q),

[Lk, ��NS(q)] = (qk+1∂q + (k + 1)(�NS + 1/2)qk)��NS(q),

[Gr ,��NS(q)] = qr+1/2��NS(q),

{Gr , ��NS(q)} = (qr+1/2∂q + (2r + 1)�NSqr−1/2)��NS(q),

(3.8)

We use the normalization 〈P2|��NS

�NS
2 ,�NS

1
(1)|P1〉 = 〈P2|��NS

�NS
2 ,�NS

1
(1)|P1〉 = 1. We

express the conformal weight of the vertex operator in terms of the parameter α

�NS = �NS(α − Q/2, b) = 1

2
α(Q − α) (3.9)

and abbreviate notation for vertex operators to �α , �α .
As in the previous case one can define the n-point CP

1 conformal blocks by the
formulae

FcNS({�NS
i− j }|{�NS

k }, {zk}) = 〈�NS
n ||��NS

n−1

�NS
n ,�NS

(n−1)−(n−2)
(zn−1) . . . �

�NS
2

�NS
3−2,�

NS
1

(z2)|�NS
1 〉

(3.10)
for the 〈�� . . . �〉 conformal blocks and similarly for conformal blocks containing �

fields. The 4-point conformal block can be defined also by use of the chain vectors

|WNS(q
2)〉21 = q�NS

1 +�NS
2

(
�

�NS
2

�NS,�NS
1

(q)|�NS
1 〉
)

= q�NS

( ∞∑
2N=0

q N |N 〉NS21
)

|W̃NS(q2)〉21 = q�NS
1 +�NS

2 + 1
2

(
�

�NS
2

�NS,�NS
1

(q)|�NS
1 〉
)

= q�NS

( ∞∑
2N=0

q N |̃N 〉NS21
)

,

(3.11)
where the index N runs over integer and half-integer values. These chain vectors are
determined by the recursion relations (which follow from (3.8))

Lk |N 〉NS21 = (k�NS
2 − �NS

1 + �NS + N − k)|N − k〉NS21
Lk |̃N 〉NS21 = (k�NS

2 − �NS
1 + �NS + N − k/2)|Ñ − k〉NS21

Gr |̃N 〉NS21 = (2r�NS
2 − �NS

1 + �NS + N − r)|N − r〉NS21
Gr |N 〉NS21 = |Ñ − r〉NS21 , 2N ∈ Z, N > k > 0

(3.12)

combined with the normalization |0〉NS21 = |0̃〉NS21 = |�NS〉. In terms of the chain vectors
we have

Lk |WNS(q)〉21 =
(

k�NS
2 − �NS

1 + L0

)
q

k
2 |WNS(q)〉21,

Lk |̃WNS(q)〉21 =
(

k�NS
2 − �NS

1 + L0 +
k

2

)
q

k
2 |̃WNS(q)〉21,

Gr |WNS(q)〉21 = q
r
2 |̃WNS(q)〉21

Gr |̃WNS(q)〉21 =
(
2r�NS

2 − �NS
1 + L0

)
q

r
2 |WNS(q)〉21

(3.13)
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It follows from (3.8) that operators �+
�NS(1/q)q−2�NS

and −q−2�NS−1�+(1/q)

have the same commutation relation as ��NS(q) and ��NS(q). But their normalization
differs due to the minus sign at �+. Therefore we have the equality of matrix elements

〈w2|�α(q)|w1〉 = q−2�NS
(−1)2(n1+n2)〈w1|�α(1/q)|w2〉 (3.14)

where w1 ∈ π
�NS

1
NSR, w2 ∈ π

�NS
1

NSR, L0w1 = (�NS
1 + n1)w1, L0w2 = (�NS

2 + n2)w2.
Therefore conjugate chain differs from the by signs and we can define two NSR

4-point conformal blocks (namely the 〈����〉 and the 〈����〉 conformal blocks)

FcNS(
−−→
�NS,�NS|q) =34 〈WNS(q)|WNS(q)〉21,

F̃cNS(
−−→
�NS,�NS|q) =34 〈̃WNS(q)|̃WNS(q)〉21 (3.15)

Similarly to the Virasoro case the functions FcNS and F̃cNS differ from the conformal

blocks defined in (3.10) by factors q�NS
1 +�NS

2 and q�NS
1 +�NS

2 + 1
2 correspondingly.

Remark 3.1. The vectors |N 〉NS with integer and half-integer N do not interact in rela-
tion (3.12). In particular if we change the normalization of |0〉NS21 then we change the

coefficients at the integer powers of q (more precisely q�N S+N , N ∈ Z) in FcNS but the
coefficients at the half-integer powers of q remain unchanged. Conversely if we rescale
|̃N 〉NS21 then we rescale the coefficients at the half integer powers of q in FcNS but the
coefficients at the integer powers of q remain unchanged.

Irregular (or Whittaker) limit of the NSR conformal blocks and chain vectors is
defined as follows. One can rescale the NSR chains

|N 〉NS21 = (−�NS
1 )N |N 〉′NS

21 , N ∈ Z, |N 〉NS21 = (−�NS
1 )N−1/2|N 〉′NS

21 , N ∈ Z +
1

2
,

|̃N 〉NS21 = (−�NS
1 )N |̃N 〉′NS

21 , N ∈ Z, |̃N 〉NS21 = (−�NS
1 )N+1/2 |̃N 〉′NS

21 , N ∈ Z +
1

2
,

(3.16)

and tend �NS
1 to ∞. In the limit both tilded and non-tilded chain vectors coincide and

obey the relation

G1/2|N 〉NS = |N − 1/2〉NS, G3/2|N 〉NS = 0.

The formulae for action of Lk , k > 0 and Gr , r > 3/2 follows from theNSR commuta-

tion relations (2.1). In termsof theWhittaker vector |WNS(q)〉 = q�NS/2∑∞
N=0 q

N
2 |N 〉NS

the action of G1/2, G3/2 can be written as

G1/2|WNS(q)〉 = q1/4|WNS(q)〉, G3/2|WNS(q)〉 = 0.

The irregular limit of conformal block is defined by the formula

FcNS(�NS|q) = 〈WNS(q)|WNS(q)〉
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3.2. Vir ⊕ Vir decomposition of chain vectors and vertex operators. The F ⊕ NSR
Whittaker vector is defined as a tensor product of the F vacuum 1 ∈ πF and the NSR
Whittaker vector |WNS(q)〉 ∈ πNSR. The decomposition of the F ⊕ NSR module (2.7)
provides a decomposition of the corresponding Whittaker vector

|1 ⊗ WNS(q)〉 =
∑
2n∈Z

|vn(q)〉,

where |vn(q)〉 ∈ πn
Vir⊕Vir. It turns out that |v(q)〉n is the Whittaker vector for the algebra

Vir ⊕ Vir

Proposition 3.1. The Whittaker vector for the F ⊕ NSR algebra equals to the sum of
Vir ⊕ Vir Whittaker vectors

|1 ⊗ WNS(q)〉 =
∑
2n∈Z

(
ln(P, b)

(
|W (1)

n (β(1)q)〉 ⊗ |W (2)
n (β(2)q)〉

))
. (3.17)

Here |W (1)
n 〉 ⊗ |W (2)

n 〉 denotes the tensor product of Whittaker vectors in πn
Vir⊕Vir , and

the coefficients ln(P, b) do not depend on q. The parameters β(η), η = 1, 2 are defined
by the formulae

β(1) =
(

b−1

b−1 − b

)2
, β(2) =

(
b

b − b−1

)2
. (3.18)

The values of ln(P, b) will be computed in the next subsection.

Proof. Let us act L(η)
1 , L(η)

2 , η = 1, 2 on |1 ⊗ WNS(q)〉. Using expressions (2.3) and
linear independence of vectors from different πn

Vir⊕Vir we have

L (1)
1 |vn(q)〉 = (β(1)q)1/2|vn(q)〉, L (2)

1 |vn(q)〉 = (β(2)q)1/2|vn(q)〉,
L (1)
2 |vn(q)〉 = 0, L (2)

2 |vn(q)〉 = 0.

Therefore the vector |vn(q)〉 is proportional to the tensor products of Whittaker vectors.
Hence we proved (3.17). ��

There is an analogous decomposition of the chain vector.

Proposition 3.2. The F⊕NSR chain vector equals to the sum of Vir⊕Vir chain vectors

|1 ⊗ WNS〉21 =
∑
2n∈Z

(
l21n (P, b, |�NS

2 ,�NS
1 )
(
|W (1)

n 〉21(q) ⊗ |W (2)
n 〉21(q)

))
. (3.19)

The external weights of the Vir chain vectors |W (1)
n 〉21, |W (2)

n 〉21 are related to �NS
1 ,�NS

2
by (2.6)

�
(1)
i = b−1

b−1 − b
�NS

i , �
(2)
i = b

b − b−1�NS
i .
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Proof. The proof is similar to the previous one but the computations are more cumber-
some. We act L (1)

k on |1 ⊗ WNS〉21 using (2.3) and (3.13)

L (1)
k |1 ⊗ WNS〉21 = b−1

b−1 − b
qk/2|1〉 ⊗ (k�NS

2 − �NS
1 + L0)|WNS〉21

+
1

b−1 − b

∑
r∈Z≥0+

1
2

f−r Gr+k |1 ⊗ WNS〉21

= qk/2

⎛
⎜⎝ b−1

b−1 − b
(k�NS

2 − �NS
1 + L0)|1 ⊗ WNS〉21

+
1

b−1 − b

∑
r∈Z≥0+

1
2

f−r Gr |1 ⊗ WNS〉21

⎞
⎟⎠

= qk/2
(

k�
(1)
2 − �

(1)
1 + L(1)

0

)
|1 ⊗ WNS〉21,

On the other hand the relations (3.5) are equivalent to

L (1)
k |W (1)

n 〉21 = qk/2 (k�
(1)
2 − �

(1)
1 + L (1)

0

) |W (1)
n 〉21.

The calculation for L (2)
k is similar. ��

Remark 3.2. Note that the additional factors β(η), η = 1, 2 in (3.17) do not appear in
(3.19). These factors are an artefact of the irregular limit.

Consider now the vertex operator �α = 1 ⊗ �α acting from one F ⊕ NSR Verma
module π�′NS

F⊕NSR to another one π�NS

F⊕NSR. Due to decomposition (2.7) one can restrict�α

to a map between submodules πn′
Vir⊕Vir and πn

Vir⊕Vir for each n′, n, such that 2n′, 2n ∈ Z.

Theorem 3.1. The restriction F⊕NSR vertex operator in terms of the Vir⊕Vir subal-
gebra has the form

�α(q)|
πn′
Vir⊕Vir→πn

Vir⊕Vir
= lnn′(P, α, P ′)

(
Vα(1) (q) ⊗ Vα(2) (q)

)
, (3.20)

where

α(1) = α√
2 − 2b2

, α(2) = α√
2 − 2b−2

;

and |
πn′
Vir⊕Vir→πn

Vir⊕Vir
means the restriction to the map between these submodules.

It follows from the definition of the chain vector (3.11) that Proposition 3.1 follows
from this theorem.

The Theorem 3.1 was stated in [3] without proof. Our proof here is standard and
similar to the one in [18].
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Proof. Define lnn′(P, α, P ′) as a quotient

lnn′(P, α, P ′) = 〈P, n|�α(q)|P ′, n′〉
〈P, n|Vα(1) (q)Vα(2) (q)|P ′, n′〉 . (3.21)

First we prove that lnn′(P, α, P ′) does not depend on q. Recall that T f (q) = 1
2 :

f ′(q) f (q) := ∑ L f
n q−n−2 is the fermion stress-energy tensor. We act by operator

L (1)
0 + L (2)

0 = L0 + L f
0 and get the equation

(
�NS(P) + 2n2

)
〈P, n|�α(q)|P ′, n′〉

= 〈P, n|
(

L0 + L f
0

)
�α(q)|P ′, n′〉

= q
d

dq
〈P, n|�α(q)|P ′, n′〉

+
(
�NS(α − Q/2) + �NS(P ′) + 2n′2)〈P, n|�α(q)|P ′, n′〉.

Therefore 〈P, n|�α(q)|P ′, n′〉 ∼ q�NS(P)+2n2−�NS(α−Q/2)−�NS(P ′)−2n′2
. Similarly we

have

(�NS(P) + 2n2)〈P, n|(Vα(1) Vα(2) )(q)|P ′, n′〉
= 〈P, n| (L (1)

0 + L (2)
0

)
(Vα(1) Vα(2) )(q)|P ′, n′〉

= q
d

dq
〈P, n|(Vα(1) Vα(2) )(q)|P ′, n′〉

+
(
�(α(1) − Q(1)/2) + �(α(2) − Q(2)/2)

+�NS(P ′) + 2n′2)〈P, n|(Vα(1) Vα(2) )(q)|P ′, n′〉.
Since�(α(1) − Q(1)/2)+�(α(2) − Q(2)/2) = �NS(α − Q/2)we have 〈P, n|(V�(1) V�(2) )

(q)|P ′, n′〉 ∼ q�NS(P)+2n2−�NS(α−Q/2)−�NS(P ′)−2n′2
. Therefore lnn′(P, α, P ′) does not

depend on q.
Using the normalization of the vertex operators V�(1) , V�(2) we have lnn′(P, α, P ′) =

〈P, n|�α(1)|P ′, n′〉.
Relation (3.20) is equivalent to a relation for matrix elements〈

P, n
∣∣∣L (1)

λ2
L (2)

μ2

∣∣�α(q)
∣∣ L (2)

−μ1
L (1)

−λ1

∣∣∣ P ′, n′〉

= lnn′ ·
〈
P, n
∣∣∣L (1)

λ2
L (2)

μ2

∣∣Vα(1) (q)Vα(2) (q)
∣∣ L (2)

−μ1
L (1)

−λ1

∣∣∣ P ′, n′〉 , (3.22)

for any partitions λ1, λ2, μ1, μ2. Here we omit arguments P, α, P ′ in lnn′ .
We reshuffle the operators L (1) and L (2) to other sides of these matrix elements. Let

us define the operators �kl , Vkl(q) as commutators with L (1)
0 and L (2)

0

�kl(q) = adl
L(2)
0
adk

L(1)
0

(
�α(q)

)
, Vkl(q) = adl

L(2)
0
adk

L(1)
0

(
Vα(1) Vα(2)

)
,

where k, l ≥ 0. Due to commutation relations (3.8) the commutators [L(η)
m ,�kl(q)], η =

1, 2 turns out to be a sum of operators �kl , �k+1 l , �k l+1 and similarly for Vkl(q).
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Moreover, the commutation relations between Virasoro generators L(η)
m and operators

�kl(q) are equivalent to the commutation relations between L(η)
m and operators Vkl(q).

The last statement can be easily checked for �00 and V00

[L (1)
m ,�00(q)] = b−1

b−1 − b

(
qm+1∂q + (m + 1)�NS(α − Q/2)qm

)
�α(q)

+
1

b−1 − b

∑
r∈Z+1/2

fm−r qr+1/2�α(q)

= qm�10(q) + m�(1)qm�00(q)

[L (1)
m , V00(q)] = qm V10(q) + m�(1)qm V00(q),

and similarly for L (2)
m . The commutation relations between the other �kl(q), Vkl(q) and

L(η)
m follow from previous relations and the commutation relations between L(η)

m and
L(η)
0 .
Therefore the relation (3.22) can be rewritten as

∑
gkl〈P, n|�kl(q)|P ′, n′〉 = lnn′ ·

∑
gkl〈P, n|Vkl(q)|P ′, n′〉,

where the coefficients gkl on the left hand side and right hand side are equal. It remains
to show that

〈P, n|�kl(q)|P ′, n′〉 = lnn′ · 〈P, n|Vkl(q)|P ′, n′〉,
for any k, l ≥ 0. Since 〈P, n| and |P ′, n′〉 are eigenvectors for L(η)

0 , η = 1, 2, the last
equation follows from the k = 0, l = 0 case, i.e. from the definition of lnn′ (3.21). ��

We will calculate lnn′ in the next subsection. Now we note that the coefficients l21n in
(3.19) are equal to ln0

l21n (P, b|�NS
2 ,�NS

1 ) = 〈P, n|�α2(1)|P1〉 = ln0(P, α2, P1),

where α2 = P2 + Q/2. The coefficients ln(P, b) of decomposition (3.17) are given by
the irregular limit of (3.19)

ln(P, b) = (β(1))−�
(1)
n /2(β(2))−�

(2)
n /2 lim

�NS
1 →∞

l21n (P, b|�2,�1)

(−�NS
1 )�2n2� , (3.23)

where we used (3.16) and (3.6).

Remark 3.3. Recall that φm,n(q), m, n ∈ N denotes [4] the degenerate vertex operator
for Virasoro CFT with

αmn = 1

2
((m − 1)b−1 + (n − 1)b),

which satisfies an additional differential equation of ordermn. For the operators φ1,1(q),

φ2,1(q), φ1,2(q) the corresponding equations read

∂qφ1,1(q) = 0, ∂2q φ1,2(q)+b2 :T (q)φ1,2(q) := 0, ∂2q φ2,1(q)+b−2 :T (q)φ1,2(q) := 0.
(3.24)
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The conformal weight of the operator φm,n(q) is denoted by �m,n(b) = �(αm,n −
Q/2, b).

Similarly to Theorem 3.1 one can prove, that the matrix elements of f (q) are propor-
tional to the matrix elements of the product of φ

(1)
1,2(q)φ

(2)
2,1(q). This fact is the operator

analogue of the Lemma 2.2.
Moreover, due to the operator-state correspondence the highest weight vectors

|Q/2, n〉 ∈ Vac correspond to the currents φ
(1)
1,mφ

(2)
m,1, m = 2n + 1. From the fusion

rules [4] follow that the action of this current on the vector |P〉 shifts its momentum

(P1, P2) →
(

P1 +
k1
2 b(1), P2 +

k2
2 (b(2))−1

)
, where |k1|, |k2| < m and m − k1, m − k2

are odd. Proposition 2.1 states that only shifts with k1 = k2 are allowed in our represen-
tations.

3.3. Matrix elements 〈P, n|�α(1)|P ′, n′〉. In this subsection we calculate the matrix
elements lnn′(P, α, P ′) = 〈P, n|�α(1)|P ′, n′〉. Introduce the functions seven(x, n) for
n ∈ Z and sodd(x, n) for n ∈ Z + 1

2 by the formulae

seven(x, n) =
∏

i, j≥0, i+ j<2n
i+ j≡0 mod 2

(x + ib + jb−1), sodd(x, n) = 21/8
∏

i, j≥0, i+ j<2n
i+ j≡1 mod 2

(x + ib + jb−1),

for n ≥ 0 and

seven(x, n) = (−1)nseven(Q − x,−n), sodd(x, n) = sodd(Q − x,−n)

for n < 0.
Recall that the vectors |P, n〉 were fixed in (2.9). The factors �n were defined by

the normalization condition. In the following theorem we give explicit expressions for
them.

Theorem 3.2. The matrix elements lnn′(P, α, P ′) have the form

lnn′(P, α, P ′) = (−1)sg2n+n′
�n(P)�n′(P ′)

seven(2P + Q|2n)seven(2P ′ + Q|2n′)

×
{∏

ε,ε′=± seven(α + εP ′ + ε′ P, εn′ + ε′n), n + n′ ∈ Z∏
ε,ε′=± sodd(α + εP ′ + ε′ P, εn′ + ε′n), n + n′ ∈ Z + 1/2

(3.25)

where the factors �n(P) are given by the expressions

�2
n(P) =

(−1)2n ∏
i, j≥1, i+ j=4n

(2P + ib + jb−1)

22n · 2P
2n−1∏
i=1

(2P + 2ib)
2n−1∏
j=1

(2P + 2 jb−1)

, (3.26)

and the sign factors are equal

(−1)sg =
{

−1, n′ ∈ Z + 1/2, n ∈ Z

1, otherwise
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These expressions were given in [3] without proof (see also Remark 3.5). The argu-
ments in [3] were partially based on the conjectural expression of l2nn′ in terms of the
Liouville and super Liouville three point correlation functions. Here we find lnn′ mim-
icking the standard approach to the Liouville three point function [28,31] based on the
associativity property and the properties of degenerate vertex operators φ12. Note that
contrary to Liouville theory which is the coupling of chiral and antichiral CFT, here we
use the product of two chiral CFT with the central charges c(1) and c(2).

As was already mentioned in the Introduction the formula (3.25) was also proven in
[18] by a different method based on the Dotsenko–Fateev integral representation of the
conformal blocks.

Remark that the explicit expressions (3.25) have the geometric meaning in the frame-
work of the instanton counting. We recall this in Sect. 5.

Proof. Due to the symmetry |P, n〉 = | − P,−n〉 it is sufficient to consider only a case
when n, n′ ≥ 0.

In the proof we consider the matrix element 〈P, n|�α(1) f (q)|P ′, n′〉. This matrix
element is a Laurent polynomial since [�α, fr ] = 0 and fr |P ′, n′〉 = 0 for r � 0, and
〈P, n| fr = 0 for r � 0. Therefore we can consider this matrix element as an analytic
function on q ∈ CP

1\{0,∞}.
We decompose the proof into several steps.

Step 1. First we consider 〈P, n|�α(1) f (q)|P ′, n′〉 as a function on |q| � 1.
Using the decomposition (2.7) we can write f (q)|P ′, n′〉 = ∑s∈Z |us(q)〉, where

|us(q)〉 ∈ π
n′+s/2
Vir⊕Vir. Then we have a decomposition

〈P, n|�α(1) f (q)|P ′, n′〉 =
∑
s∈Z

〈P, n|�α(1)|us(q)〉.

Due to Theorem 3.1 andRemark 3.3 thematrix elements 〈P, n|�α(1)|us(q)〉 are propor-
tional to conformal blocks of the CFT with Vir⊕Vir symmetry. The Vir⊕Vir conformal
blocks factors to the product of the two Vir conformal blocks (3.4)

〈P, n|�α(1)|us(q)〉 ∼ Fc(1) (
−→
�(1), �

(1)
n′+s/2|q)) · Fc(1) (

−→
�(2), �

(2)
n′+s/2|q)),

where the intermediateweight (�(1)
n′+s/2,�

(2)
n′+s/2) is theweight of the vector |P ′, n′+s/2〉,

and the external weights are equal to

−→
�(1) =

(
�(P ′(1)

n′ , b(1)),�1,2(b
(1)),�(α(1) − Q(1)/2, b(1)),�(P (1)

n , b(1))
)
,

−→
�(2) =

(
�(P ′(2)

n′ , b(2)),�2,1(b
(2)),�(α(2) − Q(2)/2, b(2)),�(P (2)

n , b(2))
)
.

It follows fromEq. (3.24) that the conformal blockwith the degenerate vertex operator
φ1,2(q) satisfies a second order differential equation. This equation reduces to hyperge-
ometric equation [4]. Therefore the conformal blocks written above are nonzero only
for s = ±1 and become proportional to the 1F2 hypergeometric function

F (η)
s (q) = qa(η)

s (1 − q)d(η)

1F2(A(η)
s , B(η)

s |C (η)
s |q), η = 1, 2, (3.27)
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where

a(1)
s = �(P ′(1)

n′+s/2, b(1)) − �1,2(b
(1)) − �(P ′(1)

n′ , b(1)),

d (1) = �(α(1) − Q(1)/2 − α
(1)
1,2, b(1)) − �(α(1) − Q(1)/2, b(1)) − �1,2(b

(1))

A(1)
s = 1/2 + 2α(1)

1,2

(
s P ′(1) − α(1) − P (1) + Q(1)/2

)
B(1)

s = 1/2 + 2α(1)
1,2

(
s P ′(1) − α(1) + P (1) + Q(1)/2

)
C (1)

s = 1 + 4sα(1)
1,2P ′(1),

(3.28)

and similarly for a(2)
s , d (2), A(2)

s , B(2)
s , C (2)

s with the replacement (1) ↔ (2) in the super-
script and α

(1)
1,2 ↔ α

(2)
2,1. Therefore we can write

〈P, n|�α(1) f (q)|P ′, n′〉
=
∑

s=±1

〈P ′, n′ + s/2| f (1)|P ′, n′〉 · 〈P, n|�α(1)|P ′, n′ + s/2〉 · F (1)
s (q)F (2)

s (q)

(3.29)

The first two factors in the sum appear due to the chosen above normalization of

the conformal block F(q) = q�
(
1 + q(. . . )

)
. By the definition ln n′+s/2(P, α, P ′) =

〈P, n|�α(1)|P ′, n′ + s/2〉. Using the definition of the vectors |P, n′〉 (2.9) and the nor-
malization 〈P, n′|P, n′〉 = 1 we have

〈P ′, n′ + 1/2| f (1)|P ′, n′〉 = 〈P ′, n′+1/2| f− 4(n′+1/2)−1
2

|P ′, n′〉=�n′+1/2(P ′)/�n′(P ′)

〈P ′, n′ − 1/2| f (1)|P ′, n′〉 = 〈P ′, n′ − 1/2| f 4n′−1
2

|P ′, n′〉 = �n′(P ′)/�n′−1/2(P ′)
(3.30)

Here we used that n′ > 0. Substituting these expressions into (3.29) we get

〈P, n|�α(1) f (q)|P ′, n′〉 =
∑

s=±1

(
ln n′+s/2(P, α, P ′)

(
�n′+s/2(P ′)

�n′(P ′)

)s

F (1)
s (q)F (2)

s (q)

)

(3.31)
Step 2. Now we want to consider expression (3.31) at the region |q| � 1.

For the left hand side we can use [�α(1), f (q)] = 0 and write

〈P, n|�α(1) f (q)|P ′, n′〉 = 〈P, n| f (q)�α(1)|P ′, n′〉 = 〈P ′, n′|�+
α(1) f +(q)|P, n〉.

It follows from (3.1) that f (q)+ = −1/q f (1/q). Conjugation of�α was given in (3.14).
Therefore we have

〈P, n|�α(1) f (q)|P ′, n′〉 = (−1)2(n+n′)

q
〈P ′, n′|�α(1) f (1/q)|P, n〉 (3.32)

We can substitute (3.31) to the right hand side of (3.32) and see that 〈P, n|�α(1) f (q)

|P ′, n′〉 is a linear combination of F (1)
1 (1/q)F (2)

1 (1/q) and F (1)
−1(1/q)F (2)

−1(1/q).
On the other hand the hypergeometric functions on q and 1/q are connected by

F(A, B, C |q) = �(C)�(B − A)

�(B)�(C − A)
(−q)−A F(A, 1 − C + A, 1 − B + A, 1/q)

+
�(C)�(A − B)

�(A)�(C − B)
(−q)−B F(B, 1 − C + B, 1 − A + B, 1/q).

(3.33)
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Therefore we have the relation for functions F (η)
s (q) (η = 1, 2) defined as (3.27)

F (η)
s (q) = q−2�(η)

2
∑

t=±1
B(η)

st F (η)
t (1/q), (3.34)

The transformation matrix B(η)
st do not depend on q.

We substitute (3.34) into (3.31) and get the linear combination ofF (1)
s F (2)

s′ , for s, s′ =
±1. But it was proven above that only the terms s = s′ can appear. Therefore the
coefficient of the term F (1)

1 F (2)
−1 should vanish. This is equivalent to the equation (for

n′ > 0)
ln n′+1/2(P, α, P ′)
ln n′−1/2(P, α, P ′)

= − �2
n′(P ′)

�n′+1/2(P ′)�n′−1/2(P ′)
B(1)

−+B(2)
−−

B(1)
++B(2)

+−
. (3.35)

Step 3. Due to the relation between �(q) and �+(1/q) we have

lnn′(P, α, P ′) = (−1)2(n+n′)ln′n(P ′, α, P). (3.36)

Therefore we can find ln+ 1
2 n′(P, α, P ′)/ln− 1

2 n′(P, α, P ′) from (3.35). Using these rela-
tions we reduce lnn′ to l{n}{n′}, where {n} denotes fractional part of n.

Due to (3.36) it is enough to consider only the case n ≥ n′. In this case we use (3.33),
(3.34) and rewrite the ratio of the gamma functions as

B(1)
−+B(2)

−−
B(1)
++B(2)

+−

=

∏
i, j≥1, i+ j=2n′+2n+1

(α − P − P ′ − ib − jb−1)
∏

i, j≥0, i+ j=2n′−2n−1
(α − P + P ′ + ib + jb−1)

∏
i≥0, j≥1 i+ j=4n′

(2P ′ + ib + jb−1)

×

∏
i, j≥1, i+ j=2n′−2n+1

(α + P − P ′ − ib − jb−1)
∏

i, j≥0, i+ j=2n+2n′−1
(α + P + P ′ + ib + jb−1)

4n′−1∏
i≥1, j≥0, i+ j=4n′

(2P ′ + ib + jb−1)

Using this expression we get

lnn′ (P, α, P ′) = (−1)�n�+�n′�l{n}{n′ }(P, α, P ′) ·
n′−1∏

i ′={n′ }

�2
i ′+1/2(P ′)

�i ′ (P ′)�i ′+1(P ′)

n−1∏
i={n}

�2
i+1/2(P)

�i (P)�i+1(P)
·

·

∏
ε=±1

∏
i, j≥1, i+j≡2(n+n′) mod 2

2+2({n}+{n′ }≤i+ j≤2(n′+εn))

(α − εP − P ′ − ib − jb−1)(α + εP + P ′ − Q + ib + jb−1)

∏
i ′>0, j ′≥1, i ′+ j ′≤4n′−2
i ′+j ′≡(2−4{n′ }) mod 4

(2P ′+ j ′b−1 + i ′b)(2P ′ + i ′b−1 + j ′b)
∏

i>0, j≥1, i+ j≤4n−2
i+ j≡(2−4{n}) mod 4

(2P + jb−1+ib))(2P+ib−1 + jb))
.

(3.37)

The values of l{n}{n′}(P, α, P ′) can be calculated explicitly using the expressions

|P, 0〉 = |P〉, |P, 1/2〉 = �1/2(P)

(
f−1/2 +

1

Q/2 + P
G−1/2

)
|P〉,

�2
1/2(P) = − Q/2 + P

2P
.
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The answer reads

l00(P, α, P ′) = 1, l 1
2
1
2
(P, α, P ′) = (Q + P + P ′ − α)(P + P ′ + α)√

4P P ′(Q + 2P)(Q + 2P ′)
,

l0 1
2
(P, α, P ′) = −i√

(Q + 2P ′)P ′ , l 1
2 0

(P, α, P ′) = i√
(Q + 2P)P

.

Step 4. In order to finish the proof we should calculate the coefficients�n(P). Belowwe
used the generic values for α. But the matrix elements (3.37) are defined in algebraically
and this formula should hold for any α.

If we put α = 0 and then P = P ′ then the operator �α defined by (3.8) and normal-
ization is the identity operator. Therefore lnn(P, 0, P) = 〈P, n|P, n〉 = 1. Substituting
this into (3.37) we have for (n ≥ 1/2)

�2
n+1/2(P)�2

n−1/2(P)

�4
n(P)

=
∏

i, j≥0, i+ j=4n−2(2P + ib + jb−1)
∏

i, j≥0,i+ j=4n(2P + Q + ib + jb−1)∏
i≥0, j≥1 i+ j=4n(2P + ib + jb−1)(2P + ib−1 + jb)

.

(3.38)

Using the initial date �0(P) = 1, �2
1/2(P) = − Q/2+P

2P we get the answer (3.26).
Substituting this to (3.37) we get the answer (3.25). ��

Several remarks are in order.

Remark 3.4. The main point of the proof was the Eq. (3.35) which follows from the
vanishing of the coefficient of the F (1)

1 F (2)
−1 term. A similar vanishing of the F (1)

−1F
(2)
1

term imposes the relation, which differs from (3.35) by the replacement b ↔ b−1. But
the final answers (3.25) and (3.26) are symmetric under the b ↔ b−1 replacement.
Therefore this new relation does ont impose new constraint.

Remark 3.5. In this paper we fix�n(P) by the relation 〈P, n|P, n〉 = 1. But the expres-
sion for matrix elements (3.25) should be valid for any �n(P) since they appear only as
factors.

In [3] another normalization was used1

�̃n = 2−nseven(2P + Q, 2n).

Substituting this into (3.25) we get the formula for the matrix elements proposed in [3]
(up to a sign factor).

Aswas explained in the end of the previous subsection formula (3.25) gives an explicit
expression for l21n . Substituting �n from (3.26) and putting n′ = 0, we get

l21n (P, b|�NS
1 ,�NS

2 ) = (−1)n

√
seven(2P, 2n)seven(2P + Q, 2n)

×
{∏

ε,ε′=± seven(P2 + εP1 + ε′ P + Q
2 , ε′n), n + n′ ∈ Z∏

ε,ε′=± sodd(P2 + εP1 + ε′ P + Q
2 , ε′n), n + n′ ∈ Z + 1

2

1 More precisely this is a corrected formula, it looks like there is a misprint in [3].
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Then we have from (3.23)

ln(P, b) = (−1)n22n2(β(1))−�
(1)
n /2(β(2))−�

(2)
n /2

√
seven(2P, 2n)seven(2P + Q, 2n)

(3.39)

Remark 3.6. There exist another method to find �n(P). Consider the function defined
in the region |q| < 1 by the formula

Hn(q) = 〈P, n| f (1) f (q)|P, n〉.
We see that

Hn(q) = 1

1 − q
+
∑
s>0

〈P, n| f−s fs |P, n〉(q−s−1/2 − qs−1/2) (3.40)

and the sum is actually finite for any n. Therefore Hn(q) is a sum of Laurent polynomial
and 1

1−q . Therefore Hn(q) can be analytically continued on the CP
1\{0, 1,∞}. In the

|q| > 1 region we have Hn(q) = −〈P, n| f (q) f (1)|P, n〉 i.e. Hn(q) is a radial ordered
conformal block. It follows from (3.40) that

Hn(q) = −q−1Hn(1/q)

similarly to (3.32).
Using the second order differential equations we can write the function Hn(q) as a

sum of two products of hypergeometric functions similarly to (3.31). The parameters
of the hypergeometric functions are given by (3.28) for P ′ = P , n′ = n, α(1) = α

(1)
1,2,

α(2) = α
(2)
2,1. We have 〈P, n| f (1)|P, n′〉 instead of lnn′ in the coefficients of analogue of

(3.31). Recall that 〈P, n| f (1)|P, n′〉 are given in terms of �n (see (3.30)). Therefore
the vanishing of the coefficient of F (1)

1 F (2)
−1 term gives an equation on � in terms of the

transformation matrix B(η)
st

�2
n+1/2�

2
n−1/2

�4
n

= − B(1)
−+B(2)

−−
B(1)
++B(2)

+−
.

As expected, this relation coincides with (3.38).

4. Bilinear Relations on Conformal Blocks

4.1. Painlevé equations and isomonodromic problem. Painlevé equations are second-
order differential equations with no movable brunching points except poles. We recall
several facts about them following [17,20].

The Painlevé VI equation has the form

d2q

dt2
= 1

2

(
1

q
+

1

q − 1
+

1

q − t

)(
dq

dt

)2
−
(
1

t
+

1

t − 1
+

1

q − t

)
dq

dt

+
2q(q − 1)(q − t)

t2(t − 1)2

((
θ∞ − 1

2

)2 − θ20 t

q2 +
θ21 (t − 1)

(q − 1)2
−
(
θ2t − 1

4

)
t (t − 1)

(q − t)2

)
,

Here θ0, θ1, θt , θ∞ are the parameters of the equation. All other Painlevé equations can
be obtained from Painlevé VI by a confluence



Bilinear Equations on Painlevé τ Functions from CFT 1045

PVI PV PIII1 PIII2 PIII3

PIV PII PI
The Painlevé III′3 equation has the form

d2q

dt2
= 1

q

(
dq

dt

)2
− 1

t

dq

dt
+
2q2

t2
+
2

t
, (4.1)

Remark that the Painlevé III′3 equation differs from standard Painlevé III3 equation by
the change of variables t

III′ = t2
III
, q

III′ = tIIIqIII .
We now proceed to the Hamiltonian (or ζ ) form of Painlevé VI and III′3 and then to

the τ form. For simplicity we present all formulae for the Painlevé III′3 equation and
omit some analogous calculations for the Painlevé VI equation.

The Painlevé equations can be rewritten as non-autonomous Hamiltonian systems. It
means that they can be obtained by eliminating an auxiliary momentum p(t) from the
equations

dq

dt
= ∂ HJ

∂p
,

dp

dt
= −∂ HJ

∂q
, J = VI, III′3 and others.

The corresponding Hamiltonians are given by the expressions

t (t − 1)HVI = q (q − 1) (q − t) p

(
p − 2θ0

q
− 2θ1

q − 1
− 2θt − 1

q − t

)

+ (θ0 + θt + θ1 + θ∞) (θ0 + θt + θ1 − θ∞ − 1) q, (4.2)

t H
III′3

= p2q2 − q − t

q
. (4.3)

It is convenient to pass from the Hamiltonians to closely related functions ζ(t) by the
formulae

ζVI(t) = t (t − 1)HVI(t) − q(q − 1)p + (θ0+θt + θ1+θ∞)q − 2θ0θt − 2θ20 t − 2θ0θ1t

ζIII′3(t) = t HIII′3(t).

Remark that if we know the functions ζ(t) on trajectories of motion then we can find
q(t) and p(t). For the Painlevé III′3 equation we have

q(t) = − 1

ζ ′(t)
, p(t) = tζ ′′(t)/2.

See [17] for the analogous expression of q(t) in terms of ζ(t),ζ ′(t),ζ ′′(t) for the Painlevé
VI equation. Substituting these expressions to (4.3) we get Hamiltonian (or ζ ) form
Painlevé III′3 equation

(tζ ′′(t))2 = 4(ζ ′(t))2(ζ(t) − tζ ′(t)) − 4ζ ′(t). (4.4)
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The Painlevé VI equation in ζ form reads

(t (t − 1)ζ ′′(t))2 = −2

det

⎛
⎝ 2�0 tζ ′(t) − ζ(t) ζ ′(t) + �0 + �t + �1 − �∞

tζ ′(t) − ζ(t) 2�t (t − 1)ζ ′(t) − ζ(t)
ζ ′(t) + �0 + �t + �1 − �∞ (t − 1)ζ ′(t) − ζ(t) 2�1

⎞
⎠

(4.5)

Here �ν = θ2ν , for ν = 0, 1, t,∞.
Now let us differentiate (4.4), (4.5) and divide the result by ζ ′′(t). Substitute ζ(t) =

t (t − 1) d log τ(t)
dt in the Painlevé VI case and ζ(t) = t d log τ(t)

dt in the Painlevé III′3 case.
We obtain bilinear equations on the τ functions. It is convenient to write these equations
by use of Hirota differential operators Dk[x]. In our paper we use only Hirota derivatives
with respect to the logarithm of a variable. These operators are defined by the formula

f (eαt)g(e−αt) =
∞∑

k=0

Dk[log t]( f (t), g(t))
αk

k! . (4.6)

The first examples of Hirota derivatives are

D0[log t]( f (t), g(t)) = f (t)g(t), D1[log t]( f (t), g(t)) = t f ′(t)g(t) − f (t)tg′(t).

Then, the τ form of the Painlevé III′3 equation can be written as follows

DI I I (τ (t), τ (t))=0, where DI I I = 1

2
D4[log t] − t

d

dt
D2[log t] +

1

2
D2[log t] + 2t D0[log t]

(4.7)

This form was found in [27]. For the Painlevé VI case we use τ̃ (t) = t�0+�t τ(t) and
rewrite the equation as DV I (τ̃ (t), τ̃ (t)) = 0, where

DV I = −1

2
(1 − t)3D4[log t] + (1 − t)2(1 + t)

(
t

d

dt

)
D2[log t]

+ (1 − t)
(
2t (�t + �1) − 2(1 − t)t (�0 + �∞) − 1

2
(1 − t + t2)

)
D2[log t]

− 1

2
t (1 − t)

(
t

d

dt

)2
D0[log t] + t

(
(�0 + �∞)(1 − t)

− (�t + �1)(1 + t)
)(

t
d

dt

)
D0[log t]

+ 2t
(
(�0 − �t )(�1 − �∞) + t (�0 + �t )(�1 + �∞)

)
D0[log t]

.

Now let us review some facts about the isomonodromic deformations of linear sys-
tems on CP

1(following [16]). In the simplest non-trivial case this problem leads to the
Painlevé VI equation.

We start from a linear system of rank N with n regular singularities a = {a1, . . . , an}
on CP

1

∂z� = A(z)�, A(z) =
n∑

ν=1

Aν

z − aν

, (4.8)

where {Aν} are sl(N , C) constant matrices.
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We made some assumptions. We assume the constraint
∑n

ν=1 Aν = 0, which is
equivalent to the absence of singularity at ∞. We assume that Aν are diagonalizable so
that Aν = GνTνG−1

ν with some Tν = diag
{
λν,1, . . . , λν,N

}
. And finally we assume that

λν, j − λν,k /∈ Z for j 
= k (a non-resonance assumption).
The fundamental solution is normalized by �(z0) = 1N . Near the singular points,

the fundamental solution has the following expansions

�(z → aν) = Gν(z) (z − aν)
Tν Cν .

Here Gν(z) is holomorphic and invertible in a neighborhood of z = aν and satisfies
Gν(aν) = Gν . The matrix Cν is independent of z and is defined by the position of
z0. Counterclockwise continuation of �(z) around aν leads to a monodromy matrix
Mν = C−1

ν e2π iTν Cν .
Let us now vary the positions of singularities and Aν’s in such way that the mon-

odromy is preserved. A classical result translates this requirement into a system of PDEs

∂aν � = − z0 − z

z0 − aν

Aν

z − aν

�, (4.9)

Schlesinger deformation equations are obtained as compatibility conditions of (4.8) and
(4.9). Explicitly,

∂aμAν = z0 − aν

z0 − aμ

[
Aμ,Aν

]
aμ − aν

, μ 
= ν, ∂aν Aν = −
∑
μ
=ν

[
Aμ,Aν

]
aμ − aν

.

It follows from Schlesinger equations that the form
∑

μ<ν TrAμAν d log
(
aμ − aν

)
is

closed. The isomonodromic τ function τ(a) is locally defined by

d log τ =
∑
μ<ν

TrAμAν d log
(
aμ − aν

)
. (4.10)

The Eq. (4.8) is invariant under fractional linear transformations, i.e. if w = w(z),
then transformed equation have the form:

∂w� =
n∑

ν=1

Aν

z − w(aν)

It can be shown that the isomonodromic τ function of the system with n singularities
transforms under fractional linear transformations identically to n-point chiral correla-
tion function of CFT primaries with conformal weights �ν = 1

2TrA2
ν . The expression

of the Painlevé VI τ function in terms of the Liouville conformal blocks c = 1 from
[16] is a generalisation of this observation.

Now let Aμ ∈ sl(2) and n (number of singular points) equal to 4. We will see that in
this case the isomonodromic τ function coincides with Painlevé τ function. We follow
[20] in the presentation.

Using the fractional-linear transformations we put singular points to 0, t, 1,∞ (we
now drop the constraint

∑n
ν=1 Aν = 0). We move the normalization point z0 to ∞

choosing an appropriate asymptotics of �(z) as normalization condition (or we can
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keep z0 finite and the resulting equation remains the same since the τ function does not
depend on z0). Then the Schlesinger equations have the form

∂tA0 = [At ,A0]
t

, ∂tA1 = [At ,A1]
t − 1

, ∂tAt = −[At ,A0]
t

− [At ,A1]
t − 1

. (4.11)

We introduce ζ(t) = t (t − 1) d log τ(t)
dt . From (4.10) we get the relation

ζ(t) = (t − 1)TrAtA0 + t TrAtA1.

Differentiating and using (4.11) one finds

ζ ′(t) = TrAtA0 + TrAtA1, ζ ′′(t) = Tr(A0[At ,A1])
t (1 − t)

. (4.12)

Now one can use an identity valid for any triple of matrices A0,At ,A1 ∈ sl(2)

Tr([A0,At ]A1)
2 = −2 det

⎛
⎝ TrA2

0 TrA0At TrA0A1
TrAtA0 TrA2

t TrAtA1
TrA1A0 TrA1At TrA2

1

⎞
⎠ .

This identity is equivalent to the well known formula for a triple product of vectors in
R
3. Substituting (4.12) and �ν = 1

2TrAν
2 we get a differential equation on ζ(t) which

coincides with (4.5). Therefore the Painlevé VI τ function and the τ function of given
case of isomonodromic problem coincide.

4.2. Proof of the Painlevé III′3 τ function conjecture. In this subsection we prove The-
orem 1.1. Recall that we want to prove that the τ function defined by the expression

τ(t) =
∑
n∈Z

snC(σ + n)F((σ + n)2|t), (4.13)

satisfy DI I I (τ (t), τ (t)) = 0, see (4.7). Here F(σ 2|t) = F1(σ
2|t) denotes the irregular

limit of conformal block defined in (3.7) for the central charge c = 1. The coefficients
C(σ ) are defined by the formula

C(σ ) = 1

G(1 − 2σ)G(1 + 2σ)
,

where G(z) is the Barnes G function. Of all properties of this function we will use
only a recurrence relation: G(z + 1) = �(z)G(z). The parameters s and σ in (4.13) are
constants of integration of the equation Painlevé III′3 (4.1) (see also Remark 4.4).

Proof. First we substitute the conjectural expression for τ function (4.13) into (4.7) and
collect terms with the same powers of s. The vanishing condition of the sm coefficient
has the form
∑
n∈Z

(
C(σ + n + m)C(σ − n)DI I I

(
F((σ + n + m)2|t),F((σ − n)2|t

))
= 0.



Bilinear Equations on Painlevé τ Functions from CFT 1049

Clearly this sm term coincides with the sm+2 term after the shift σ �→ σ + 1. Therefore
it is sufficient to prove the vanishing of s0 and s1 terms:

∑
n∈Z

(
C(σ + n)C(σ − n)DI I I

(
F((σ + n)2|t),F((σ − n)2|t)

))
= 0, (4.14)

∑
n∈Z

(
C(σ + n + 1)C(σ − n)DI I I

(
F((σ + n + 1)2|t),F((σ − n)2|t)

))
= 0. (4.15)

We prove these relations by use of theWhittaker vector decomposition proved in Propo-
sition 3.1. Taking the scalar square of (3.17) we have

FcNS(�NS|q) =
∑
2n∈Z

l2n(P, b)F (1)
n F (2)

n , (4.16)

where
F (1)

n = Fc(1) (�
(1)
n |β(1)q), F (2)

n = Fc(2) (�
(2)
n |β(2)q).

We will use below the shorten notations F (1)
n , F (2)

n . We want to prove relations that
contain Hirota differential operators. Let us introduce the operator H

H = bL (1)
0 + b−1L (2)

0 , (4.17)

and define F̂NS and F̂k by the formulae

F̂NS = 〈1 ⊗ WNS|eαH |1 ⊗ WNS〉=
∞∑

k=0

〈1 ⊗ WNS|Hk |1 ⊗ WNS〉α
k

k! =
∞∑

k=0

F̂k
αk

k! (4.18)

We can calculate F̂k using right hand side of (3.17)

〈1 ⊗ WNS(q)|eHα|1 ⊗ WNS(q)〉 =
∑
2n∈Z

l2n(P, b)

× 〈W (1)
n (β(1)q)

∣∣ eαbL(1)
0
∣∣W (1)

n (β(1)q)
〉 〈

W (2)
n (β(2)q)

∣∣ eαb−1L(2)
0
∣∣W (2)

n (β(2)q)
〉
.

(4.19)

Generalized Hirota differential operators Dn
ε1,ε2[x] are defined by

f (eε1αq)g(eε2αq) =
∞∑

n=0

Dn
ε1,ε2[log q]( f (q), g(q))

αn

n! ,

where we take derivatives with respect to logarithm of variable as before. Since

〈
W (η)

n (β(η)q)

∣∣∣eαεL(η)
0

∣∣∣W (η)
n (β(η)q)

〉
= F (η)

n ((β(η)q)eαε), η = 1, 2.

we can rewrite (4.19) as

F̂k =
∑
2n∈Z

(
l2n(P, b)Dk

b,b−1[log q](F
(1)
n ,F (2)

n )
)

. (4.20)
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On the other hand we can calculate F̂k using the left hand side of (3.17). Using
the explicit expressions (2.3) we can rewrite the operator H in terms of the F ⊕ NSR
generators

H = Q
∑

r∈Z+1/2
r : f−r fr : −

∑
r∈Z+1/2

f−r Gr , (4.21)

We want to calculate Hk |1 ⊗ WNS〉 and substitute this to (4.18). We do this calculation
for k ≤ 4

H |1 ⊗ WNS〉 = −q1/4 f−1/2|1〉 ⊗ |WNS〉
H2|1 ⊗ WNS〉 = −q1/4|1〉 ⊗ G−1/2|WNS〉 − Qq1/4 f−1/2|1〉 ⊗ |WNS〉
H3|1 ⊗ WNS〉 = −Q2q1/4 f−1/2|1〉 ⊗ |WNS〉 − Qq1/4|1〉 ⊗ G−1/2|WNS〉

+ 2q1/4 f−1/2|1〉 ⊗ L0|WNS〉 + 2q3/4 f−3/2|1〉 ⊗ |WNS〉
− q1/2 f−1/2|1〉 ⊗ G−1/2|WNS〉

H4|1 ⊗ WNS〉 = −Q2q1/4|1〉 ⊗ G−1/2|WNS〉 + 2q1/4|1〉 ⊗ G−1/2L0|WNS〉
− q1/2|1〉 ⊗ L−1|WNS〉 + 2q3/4|1〉 ⊗ G−3/2|WNS〉 + · · ·,

where “· · · ” stands for terms involving f in H4. Then we have the relations

F̂0 = FNS, F̂2 = −q1/2FNS, F̂4 = q1/2(2q
d

dq
FNS − q1/2FNS) − Q2q1/2FNS,

(4.22)
whereFNS denotesFcNS(�NS|q) = 〈WNS|WNS〉 and we used the relation 〈WNS|L0|WNS〉
= q d

dq FNS. Using these formulas we derive the equation for F̂k

F̂4 + 2q
d

dq
F̂2 − (1 + Q2)F̂2 + qF̂0 = 0. (4.23)

Now we can use (4.20) and rewrite (4.23) as a bilinear differential equation. Introduce
the corresponding operator by the formula

DI I I
b = D4

b,b−1[log q]+2q
d

dq
D2

b,b−1[log q] −(1+Q2)D2
b,b−1[log q]+q D0

b,b−1[log q] (4.24)

We proved that

∑
2n∈Z

(
l2n(P, b) · DI I I

b

(
Fc(1) (�

(1)
n |β(1)q),Fc(2) (�

(2)
n |β(2)q)

))
= 0 (4.25)

This sum splits into two, which consist of integer and half integer n (q�NS
times integer

and half integer powers of q correspondingly). Therefore we have

∑
n∈Z

(
l2n(P, b) · DI I I

b

(
Fc(1) (�

(1)
n |β(1)q),Fc(2) (�

(2)
n |β(2)q)

))
= 0 (4.26)

∑
n∈Z+1/2

(
l2n(P, b) · DI I I

b

(
Fc(1) (�

(1)
n |β(1)q),Fc(2) (�

(2)
n |β(2)q)

))
= 0 (4.27)
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We want to compare these relations with (4.14), (4.15), where the central charges
are equal to 1. Therefore it is natural to set b = i . We specify other parameters by
q = 4t; P = 2iσ . Therefore we get

Q = 0, b(η) = i, β(η) = 1

4
; P(η) = iσ, η = 1, 2,

�(1)
n = (σ + n)2, �(2)

n = (σ − n)2.

After this specialization we have DI I I
b �→ 2DI I I , Fc(1) (�

(1)
n |β(1)q) �→ F((σ + n)2|t),

Fc(2) (�
(2)
n |β(2)q) �→ F((σ − n)2|t). In result the specialization of relation (4.26) coin-

cides with (4.14) up to coefficients. But using the recurrence relation for G(σ ) one can
prove that

C(σ + n)C(σ − n)

C(σ )2
= 1∏2|n|−1

k=1 (k2 − 4σ 2)2(2|n|−k)(4σ 2)2|n| =4−�NS
(−1)2nln(2iσ, i)2,

(4.28)

where 2n ∈ Z and the functions ln(2iσ, i) are specified in (3.39). Therefore the special-
ization of relation (4.26) coincide with (4.14).

For the specialization of relation (4.27) we substitute σ �→ σ + 1/2, n �→ n + 1/2.
Then we obtain

∑
n∈Z

(
l2
n+ 1

2
(2iσ + i, i)DI I I

(
F((σ + n + 1)2|t),F((σ − n)2|t)

))
= 0

It remains to compare the coefficients. We can rewrite the coefficients in (4.15)

C(σ + n + 1)C(σ − n)

C(σ + 1/2)2
= C((σ + 1/2) + (n + 1/2))C((σ + 1/2) − (n + 1/2))

C(σ + 1/2)2

and then using (4.28) obtain l2
n+ 1

2
(2iσ + i, i) (with the additional factor −4�NS

). This

concludes the Proof of (4.14), (4.15).

Remark 4.1. Equation (4.22) suggest more simple equation then (4.23), namely F̂2 =
−q−1/2F̂0. But this second order differential equation

−q1/2
∑
2n∈Z

l2n(P, b)F (1)
n F (2)

n =
∑
2n∈Z

l2n(P, b)D2
b,b−1[log q](F

(1)
n ,F (2)

n ), (4.29)

interchangesFn with integer and half-integer n and does not provide analogous equation
on the τ function. Therefore we need F̂4.

Remark 4.2. Using the expressions for Hk |1⊗ WNS〉 we can find the corresponding F̂k .
We have for k = 1, 3 (using (4.20))

∑
2n∈Z

l2n(P, b)D1
b,b−1[log q](F

(1)
n ,F (2)

n ) = F̂1 = 0, (4.30)

∑
2n∈Z

l2n(P, b)D3
b,b−1[log q](F

(1)
n ,F (2)

n ) = F̂3 = −Qq1/2FNS. (4.31)
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In the b2 = −1 specialization we have trivial relations F̂1 = F̂3 = 0, so we did not
use these functions in the proof. But for other central charges we can write additional
equations. For example, using the expression for F̂2 (4.22) we get

∑
2n∈Z

l2n(P, b)D3
b,b−1[log q](F

(1)
n ,F (2)

n ) = Q
∑
2n∈Z

l2n(P, b)D2
b,b−1[log q](F

(1)
n ,F (2)

n ).

(4.32)
We use these relations in Sect. 4.4.

4.3. Proof of the Painlevé VI τ function conjecture. Aswas explained in the Introduction
the initial Gamayun–Iorgov–Lisovyy conjecture was for the Painlevé VI τ function. The
PainlevéVand III conjectures are degenerations of that conjecture.Weprove thePainlevé
VI conjecture below.

Theorem 4.1. The expansion of Painlevé VI τ function near t = 0 can be written as

τ̃ (t,
−→
θ , s, σ ) =

∑
n∈Z

snC(σ + n,
−→
θ )F(

−→
�, (σ + n)2|t), (4.33)

where

−→
θ = (θ0, θt , θ1, θ∞),

−→
� = (�0,�t ,�1,�∞),

F(
−→
�, (σ + n)2, |t) = F1(

−→
�, (σ + n)2, |t) denotes the 4-point conformal block defined

in (3.4) for central charge c = 1. The coefficients C(σ,
−→
θ ) are expressed in terms of

Barnes G function by the formula

C(σ,
−→
θ ) =

∏
ε,ε′=±1G(1 + θt + εθ0 + ε′σ)G(1 + θ1 + εθ∞ + ε′σ)∏

ε=±1G(1 + 2εσ )
.

Remark 4.3. It is natural to ask: do the series (4.13) and (4.33) converge? It was proven
in (4.13) that the series (4.13) converges absolutely and uniformly on every bounded
subset of C. One can similarly prove the convergence of (4.33) on some neighborhood
of t = 0. Convergence radius of (4.33) is non greater than 1, because at the point t = 1
conformal block have singularity. It seems to be that it really equals 1.

Remark 4.4. Note that any general solution of τ form of Painlevé equations depends on
4 integration constants unlike ζ(t)which depend on 2 integration constants as a solution
of the second order differential equation (4.4), (4.5). One of extra constants is a constant
factor since τ(t)was defined by t d log τ(t)

dt . Another constant emerges fromdifferentiation
of ζ form of Painlevé equation.

It is easy to see that the parameters s and σ are defined by the asymptotic behavior
of τ(t) (up to discrete shift σ �→ σ + 1), and are independent on constant factor of τ(t).
Therefore this extra parameter, which correspond to constant factor cannot be expressed
in terms of s, σ .

Comparing the asymptotic behavior of the corresponding ζ(t) one can see that there
is no additional constant in ζ forms of the Painlevé equations (4.4), (4.5). Therefore the
τ function (4.33) corresponds to a solution of these equations.
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Proof. The proof goes in the same way as in the Painlevé III′3 case. We substitute the
conjectural expression (4.33) for τ̃ (t) into DV I (τ̃ (t), τ̃ (t)) = 0 and collect the sm-terms.
It is enough to proof the vanishing of s0, s1 coefficients (similarly to the Painlevé III′3
case). These vanishing conditions have the form
∑
n∈Z

(
C(σ + n,

−→
θ )C(σ − n,

−→
θ )DV I

(
F(

−→
�, (σ + n)2|t),F(

−→
�, (σ − n)2|t

))
= 0,

∑
n∈Z

(
C(σ +n+1,

−→
θ )C(σ −n,

−→
θ )DV I

(
F(

−→
�, (σ + n + 1)2|t),F(

−→
�, (σ −n)2|t

))
=0

(4.34)
We prove these relations using the chain vector decomposition proved in Proposition
3.2. Using rather cumbersome calculations (presented in Appendix A) we prove that

∑
2n∈Z

(
l21n (P, b|�NS

1 ,�NS
2 ) · l34n (P, b|�NS

3 ,�NS
4 )

·DV I
b

(
Fc(1) (

−→
�(1), �(1)

n |q),Fc(2) (
−→
�(2), �(2)

n |q)
))

= 0, (4.35)

where

DV I
b = −1

2
(1 − q)3D4

b,b−1[log q] − (1 + q)(1 − q)2
(

q
d

dq

)
D2

b,b−1[log q]

+ (1 − q)
(−q(�NS

2 + �NS
3 ) + q(1 − q)(�NS

1 + �NS
4 )

+
1

2

(
Q2(1 + 4q + q2) + (1 − q + q2)

))
D2

b,b−1[log q]−

+
1

2
q
(

q(�NS
2 + �NS

1 )(�NS
3 + �NS

4 ) − (�NS
2 − �NS

1 )(�NS
3 − �NS

4 )
)

D0
b,b−1[log q]

+
1

2
q
(
(�NS

1 + �NS
4 )(1 − q) − (�NS

2 + �NS
3 )(1 + q)

)(
q

d

dq

)
D0

b,b−1[log q]

− 1

2
q(1 − q)

(
q

d

dq

)2
D0

b,b−1[log q].

Here the highest weights of Vir(η), η = 1, 2 modules are related to the highest weight
of NSR module by the formula (2.6)

�(1)
κ = b−1

b−1 − b
�NS

κ , �(2)
κ = b

b − b−1�NS
κ , κ = 1, 2, 3, 4.

Similarly to the Painlevé III′3 case the sum (4.35) splits into two sums, which consist
on terms with integer and half-integer n correspondingly. In order to get Painlevé VI
relations we specialize the parameters

q = t, b = i,⇒ Q = 0, cNS = c(η) = 1, �(η)
κ = 1

2
�NS

κ , η = 1, 2, κ = 1, 2, 3, 4.

The relation between � parameters in the Painlevé VI equation and in equation (4.35)
can be written in terms of parameters θ and P

P1 = 2iθ0, P2 = 2iθt , P3 = 2iθ1, P4 = 2iθ∞, P = 2iσ.
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Thenwe have DV I
b �→ DV I and the Eq. (4.35) reduces to (4.34) up to the coefficients.

For these coefficients we have the relations

C(σ + n + 1)C(σ − n)

C(σ + 1/2)2
= C((σ + 1/2) + (n + 1/2))C((σ + 1/2) − (n + 1/2))

C(σ + 1/2)2

and

C(σ + n)C(σ − n)

C(σ )2

=
∏

ε=±
∏|n|−1

i=1−|n|((θt + εθ0 + i)2 − σ 2)|n|−i ∏|n|−1
i=1−|n|((θ1 + εθ∞ + i)2 − σ 2)|n|−i

∏2|n|−1
k=1 (k2 − 4σ 2)2(2|n|−k)(4σ 2)2|n|

= (−1)2n · l21n (2iσ, i |2θ20 , 2θ2t ) · l34n (2iσ, i |2θ21 , 2θ2∞),

where 2n ∈ Z. Here we used the recurrence relation on Barnes G function and explicit
expressions for l21n (P, b|�NS

2 ,�NS
1 ) (3.39). This completes the proof. ��

4.4. Effective algorithm for conformal blocks calculation. Bilinear relations on theVira-
soro conformal blocks provide efficient algorithm for calculation of the power expan-
sions. Analogous algorithm based on Nakajima–Yoshioka relations was given in [26].

We start with c = 1 4 point conformal block defined by its power expansion

F(t) = t�
∞∑

N=0

B(N )t N , B(0) = 1. (4.36)

We consider both irregular and generic cases. Substitute the expansion (4.36) to the
(4.14) in irregular case and (4.34) in generic case. Then the equation that the t�

NS+N

coefficient is 0 gives the relation which expresses B(N )B(0) in terms of ln and B(M)

for M < N . Thus one can compute coefficients B(N ) recursively.
This algorithm has a polynomial complexity in contrast to exponential complexity

of algorithms based on the AGT expressions or on calculation of a Kac–Shapovalov
matrix. Note that a Zamolodchikov recurrence formula [30] also provides an algorithm
of a polynomial complexity.

For instance a calculation of B(n) for n ≤ 50 by use of bilinear relations took 33 s in
the irregular case and 256 s in the generic case (we use Intel Core i3; 2.2 GHz 2 Core and
programWolframMathematica 8.0). Calculation of B(30) in the general case took 30 s.
For comparison a calculation of B(30) using the AGT correspondence (and additional
improvements such a parallelization) took 240 s.

Such terms like B(50) are important for the numerical study of the conformal blocks
for |t | → 1, where series (4.36) converges very slowly. For instance this calculation can
be used to check the formula (5.3) in [22].

This method can be generalized for calculations of the Virasoro conformal blocks in
case c 
= 1. In this case we use two bilinear relations; (4.30) and (4.32) in the irregular
case and (A.3) and (A.5) in the generic case. In the recursion procedure the q�N S+N term
contains two new terms B(1)(N )B(2)(0) and B(1)(0)B(2)(N ). They can be found using
two bilinear relations.
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5. AGT Relation

The AGT relation states the equality between conformal blocks in certain 2d CFT and a
generating function of certain integrals on instanton moduli spaces (Nekrasov partition
function). It is known [7,9] that conformal field theory withNSR symmetry corresponds
by AGT to the instanton counting on the minimal resolution of C

2/Z2. We denote this
minimal resolution by X2.

Let M(C2; r, N ) be the moduli space of instantons on C
2 with rank r and c2 = N .

Let M(X2; r, N ) be the moduli space of instantons on X2 with rank r , c1 = 0, c2 = N .
By Zpure(ε1, ε2, a; q) and Z X2

pure(ε1, ε2, a; q)we denote the Nekrasov instanton partition
functions for pureU (2) gauge theory onC

2 and X2 correspondingly. These functions are
the generating functions of equivariant volumes of the corresponding instanton moduli
spaces

Zpure(ε1, ε2, a; q) =
∞∑

N=0

q N
∫

M(C2;r,N )

1, Z X2
pure(ε1, ε2, a; q) =

∞∑
N=0

q N
∫

M(X2;r,N )

1,

It was proven in [9] (see also [11]) that

Z X2
pure(ε1, ε2, a; q)

=
∑
2n∈Z

(
q2n2

ln(a, ε1, ε2)
Zpure(2ε1,−ε1+ε2, a + 2nε1; q)Zpure(ε1−ε2, 2ε2, a+2nε2; q)

)
,

(5.1)

where
ln(a, ε1, ε2) = (−1)2nsε(2a, 2n)sε(2a + ε1 + ε2, 2n)

sε(x, n) =
∏

i, j≥0, i+ j<2n
i+ j≡0 mod 2

(x + iε1 + jε2), for n ≥ 0

sε(x, n) = (−1)nsε(ε1 + ε2 − x,−n), for n < 0.

(5.2)

The coefficients ln(a, ε1, ε2) are called the blow-up factors.
The AGT relation for the Virasoro algebra was proved for Virasoro algebra in [1]. In

the Whittaker limit the AGT relation states that

Zpure(ε1, ε2, a; q) =
(

q

ε21ε
2
2

)−�

Fc

(
�| q

ε21ε
2
2

)
,

where� = 4a2 − (ε1 + ε2)
2

4ε1ε2
, c = 1 + 6

(ε1 + ε2)
2

ε1ε2

Then we set ε1 = b, ε2 = b−1, a = P and rewrite the right hand side of (5.1)

RHS =
∑
2n∈Z

q2n2−�
(1)
n −�

(2)
n

(−1)2n22�
(1)
n +2�(2)

n β
−�

(1)
n

1 β
−�

(2)
n

2

seven(2P|2n)seven(2P + Q|2n)

Fc(1)

(
�(1)

n

∣∣∣β1q

4

)
Fc(2)

(
�(2)

n

∣∣∣β2q

4

)
,
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whereβ1, β2 are defined by (3.18), the central charges c(1), c(2) are defined by (2.5) and the
highest weights�

(1)
n ,�

(2)
n are defined at (2.8). Using the equality�

(1)
n +�

(2)
n = �N S+2n2

and formula (3.39) we get

RHS =
(q

4

)−�NS ∑
2n∈Z

l2n(P, b)Fc(1)

(
�(1)

n

∣∣∣β1q

4

)
Fc(2)

(
�(1)

n

∣∣∣β2q

4

)
.

We compare the last equation with (4.16) and get

Z X2
pure(b, b−1, P; q) =

(q

4

)−�NS

FcNS

(
�NS
∣∣∣q
4

)
. (5.3)

This relationwas proposed in [9] (following [7]) as theAGT relation for theNSR algebra
in the Whittaker limit. This Proof of (5.3) follows [3]. This proof is based on the proof
for Virasoro case, Proposition 3.1 and the values of ln found in Sect. 3.3 (which were
given in [3] without proof).

More general spherical (and toric)NSR conformal blocks (3.10) can be expressed in
terms of Vir conformal blocks by use Theorems 3.1, 3.2. On the other hand the Bonelli,
Maruyoshi, Tanzini found expression of the Nekrasov partition function on X2 in terms
of Nekrasov partition function on C

2 [10] (see eq. (2.14) in loc. cit.). But Virasoro
conformal blocks are equal to Nekrasov partition functions on C

2. Using Theorems
3.1, 3.2 (or the corresponding results in [18]) one can see that the coefficients in the
expressions in terms of conformal blocks coincide with the coefficients found in [10].
Therefore the NSR conformal blocks coincide with the Nekrasov partition functions on
X2. This finishes the proof of AGT relation for the NSR algebra in the form proposed
in [10].

6. Concluding Remarks

• The conformal block bilinear equations (4.25), (4.35) were proven for any central
charge. It is natural to ask for the corresponding τ function equations for c 
= 1.
Namely one can introduce b dependent τ function (for irregular limit case)

τ(b, P|q) =
∑
n∈Z

snCb(P + nb)Fc(�(P + nb, b)|q), (6.1)

with the coefficientsCb(P)defined in termsof doubleGamma function�2(P|b, b−1).
Then we define τ (1)(q) = τ(b(1), P1|β1q), τ (1)(q) = τ(−(b(2))−1, P2|β2q) and ask
for equation

DI I I
b (τ (1)(q), τ (2)(q))

?= 0.

However, argumentation from Sect. 4.2 runs into difficulties. First note that in
Sect. 4.2 we used the fact that sm and sm+2 relations are equivalent. For c 
= 1 this
argument works only for special central charges, namely c(1) and c(2) corresponding
to generalized minimal models M(1, k) and M(1, 2− k), k ∈ N. Another obstacle
to study is the convergence of the series (6.1).
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• As was mentioned in the Introduction and Sect. 5, Eq. (4.23) has the geometrical
meaning in the framework of the instanton counting on X2. In would be interesting
to find its geometrical proof similarly to the Nakajima–Yoshioka proof [26].
Probably, a more fundamental question is the geometric interpretation (in terms of
instanton moduli spaces) of the τ functions (4.13), (4.33).

• Our approach is quite general, it seems that bilinear equations for many point con-
formal blocks can be obtained this way. Another possible generalization is bilinear
equations on WN conformal blocks for N > 2. It would be interesting to find bilinear
equations on τ functions in the corresponding isomonodromic problems.

• Recently Litvinov, Lukyanov, Nekrasov, and Zamolodchikov suggested a relation
between classical conformal blocks (c → ∞) and Painlevé VI [25]. It would be
interesting to find any relation between this fact and the Gamayun–Iorgov–Lisovyy
conjecture studied in our paper.
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A. Proof of Relation (4.35)

As we already claimed in the main text the proof of the relation (4.35) is similar to the
proof of its irregular analogue (4.24). In this appendix we will use shorten notations

l21n = l21n (P, b|�NS
2 ,�NS

1 ), l34n = l34n (P, b|�NS
3 ,�NS

4 ),

F (1)
n = Fc(1) (

−→
�(1), �(1)

n |q), F (2)
n = Fc(2) (

−→
�(2), �(2)

n |q).

Similarly to Sect. 4.2 we define the functions F̂k by the formulae

∞∑
k=0

F̂k
αk

k! = 34〈1 ⊗ WNS|eαH |1 ⊗ WNS〉21 =
∞∑

k=0

34〈1 ⊗ WNS|Hk |1 ⊗ WNS〉21αk

k! ,

where the operator H was defined in (4.17). As in irregular case we have

F̂k =
∑
2n∈Z

(
l21n · l34n · Dk

b,b−1[log q](F
(1)
n ,F (2)

n )
)

, (A.1)

where we used decomposition (3.19). On the other side we can use expression (4.21) of
the operator H in terms of F ⊕ NSR generators and calculate

H |1 ⊗ WNS〉21 = −
∑

r∈Z≥0+
1
2

qr/2 f−r |1〉 ⊗ |̃WNS〉21

H2|1 ⊗ WNS〉21 = −Q
∑

r∈Z≥0+
1
2

2rqr/2 f−r |1〉 ⊗ |̃WNS〉21



1058 M. A. Bershtein, A. I. Shchechkin

−
∑

r∈Z≥0+
1
2

qr/2|1〉 ⊗ G−r |̃WNS〉21

−
∑

r,s∈Z≥0+
1
2 ,s 
=r

2r�NS
2 q

r+s
2 f−r f−s |1〉 ⊗ |WNS〉21.

For H3 and H4 we omit terms which do not contribute to F̂k , k ≤ 4

H3|1 ⊗ WNS〉21 = −Q2
∑

r∈Z≥0+
1
2

(2r)2qr/2 f−r |1〉 ⊗ |̃WNS〉21

−Q
∑

r∈Z≥0+
1
2

2rqr/2|1〉 ⊗ G−r |̃WNS〉21

+
∑

r,s∈Z≥0+
1
2

qr/2 f−s |1〉 ⊗ Gs G−r |̃WNS〉21

−
∑

r,s∈Z≥0+
1
2 ,r 
=s

2r�NS
2 q

r+s
2 ( f−r G−s − f−s G−r )|1〉 ⊗ |WNS〉21 + · · ·

×H4|1 ⊗ WNS〉21 = −Q2
∑

r∈Z≥0+
1
2

(2r)2qr/2|1〉 ⊗ G−r |̃WNS〉21

+
∑

r,s∈Z≥0+
1
2

qr/2|1〉 ⊗ G−s

(
2Ls−r +

cNS

2
(r2 − 1

4
)δr,s

)
|̃WNS〉21

−
∑

r,s∈Z≥0+
1
2

qr/2|1〉 ⊗ G−s G−r Gs |̃WNS〉21

+
∑

r,s∈Z≥0+
1
2 ,r 
=s

2r�NS
2 q

r+s
2 |1〉 ⊗

(
G−s G−r − G−r G−s

)
|WNS〉21 + · · ·

Then we multiply these equations by 34〈WNS| and calculate the corresponding F̂k . For
F̂0 and F̂2 one can easily get

F̂0 = FNS, F̂2 = − q1/2

1 − q
F̃NS, (A.2)

where FNS = FcNS(
−−→
�NS,�NS|q), and similarly for F̃NS, see (3.15). For the calculation

of F̂4 we use (3.13) and matrix elements

〈WNS|L0|WNS〉 =
(

q
d

dq

)
FNS, 〈WNS|L2

0|WNS〉 =
(

q
d

dq

)2
FNS,

〈̃WNS|L0 |̃WNS〉 = q
d

dq
F̃NS

and get:

F̂4 = −Q2
∑

r∈Z≥0+
1
2

(2r)2qr F̃NS + 2
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×
⎛
⎜⎝ ∑

r,s∈Z≥0+
1
2 ,r<s

qs
(

(s − r)(�NS
2 +

1

2
) − �NS

1 + q
d

dq

)
F̃NS

+
∑

r,s∈Z≥0+
1
2 ,s<r

qr
(

(r − s)(�NS
3 +

1

2
) − �NS

4 + q
d

dq

)
F̃NS +

∑
r∈Z≥0+

1
2

qr q
d

dq
F̃NS

⎞
⎟⎠

+
cNS

2

∑
r∈Z≥0+

1
2

qr (r2 − 1

4
)F̃NS

−
∑

r,s∈Z≥0+
1
2

qr+s
(
2r�NS

3 − �NS
4 + q

d

dq

)(
2s�NS

2 − �NS
1 + q

d

dq

)
FNS

−
∑

r,s∈Z≥0+ 1
2 ,r 
=s

4qr+sr(s − r)�NS
2 �NS

3 FNS

Substituting F̃NS and FNS from (A.2) and performing the summation we obtain

F̂4 = Q2 1 + 6q + q2

(1 − q)2
F̂2

−q(−�NS
1 + �NS

2 + q(�NS
1 + �NS

2 ))(−�NS
4 + �NS

3 + q(�NS
3 + �NS

4 ))

(1 − q)4
F̂0

−q(−�NS
1 − �NS

4 + �NS
2 + �NS

3 + (�NS
1 + �NS

2 + �NS
3 + �NS

4 )q)

(1 − q)3
q

d

dq
F̂0

− q

(1 − q)2

(
q

d

dq

)2
F̂0

−2
q(�NS

2 + �NS
3 + 1 − (�NS

1 + �NS
4 )(1 − q))

(1 − q)2
F̂2 − 2

1 + q

1 − q
q

d

dq
F̂2

+
(1 + q)2

(1 − q)2
F̂2 − (1 + 2Q2)

q

(1 − q)2
F̂2 + 4�NS

2 �NS
3

q2

(1 − q)4
F̂0

Using (A.1) we finally get (4.35).

Remark A.1. As in the Painlevé III′3 case we can calculate F̂k for k = 1, 3

F̂1 =
∑
2n∈Z

l21n l34n D1
b,b−1[log q](F

(1)
n ,F (2)

n ) = 0 (A.3)

F̂3 =
∑
2n∈Z

l21n l34n D3
b,b−1[log q](F

(1)
n ,F (2)

n ) = −Q
q1/2(1 + q)

(1 − q)2
F̃NS (A.4)

These relations are trivial in case b2 = −1 due to l21n l34n = l21−nl34−n . For b2 
= −1 we can
use (A.2) and get

(1−q)
∑
2n∈Z

l21n l34n D3
b,b−1[log q](F

(1)
n ,F (2)

n ) = Q(1+q)
∑
2n∈Z

l21n l34n D2
b,b−1[log q](F

(1)
n ,F (2)

n ).

(A.5)
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