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Abstract: We consider a magnetic Schrödinger operator with magnetic field concen-
trated at one point (the pole) of a domain and half integer circulation, and we focus on
the behavior of Dirichlet eigenvalues as functions of the pole. Although the magnetic
field vanishes almost everywhere, it is well known that it affects the operator at the spec-
tral level (the Aharonov–Bohm effect, Phys Rev (2) 115:485–491, 1959). Moreover,
the numerical computations performed in (Bonnaillie-Noël et al., Anal PDE 7(6):1365–
1395, 2014; Noris and Terracini, Indiana Univ Math J 59(4):1361–1403, 2010) show
a rather complex behavior of the eigenvalues as the pole varies in a planar domain. In
this paper, in continuation of the analysis started in (Bonnaillie-Noël et al., Anal PDE
7(6):1365–1395, 2014; Noris and Terracini, Indiana Univ Math J 59(4):1361–1403,
2010), we analyze the relation between the variation of the eigenvalue and the nodal
structure of the associated eigenfunctions. We deal with planar domains with Dirichlet
boundary conditions and we focus on the case when the singular pole approaches the
boundary of the domain: then, the operator loses its singular character and the k-th mag-
netic eigenvalue converges to that of the standard Laplacian. We can predict both the
rate of convergence and whether the convergence happens from above or from below, in
relation with the number of nodal lines of the k-th eigenfunction of the Laplacian. The
proof relies on the variational characterization of eigenvalues, together with a detailed
asymptotic analysis of the eigenfunctions, based on an Almgren-type frequency formula
for magnetic eigenfunctions and on the blow-up technique.
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1. Introduction

In this paper we continue the analysis started in [11,31] concerning the behavior of the
eigenvalues of the magnetic Schrödinger operator

(i∇ + Aa)2 = −� + i∇ · Aa + 2i Aa · ∇ + |Aa |2 (1.1)

as the pole a ∈ �moves inside of� and eventually hits the boundary ∂�. Here� ⊂ R
2

is open, bounded and simply connected, and we impose zero boundary conditions on
∂�. The magnetic potential Aa has the form

Aa(x) = 1

2

(
− x2 − a2

(x1 − a1)2 + (x2 − a2)2
,

x1 − a1
(x1 − a1)2 + (x2 − a2)2

)
, (1.2)

for a = (a1, a2) ∈ � and x = (x1, x2) ∈ �\{a}. Such magnetic vector potential is
generated by an infinitesimally thin solenoid orthogonal to the plane, and the associated
magnetic field is a π -multiple of the Dirac delta orthogonal to the plane. The result-
ing magnetic Schrödinger equation describes the motion of a non relativistic, spinless
charged quantum particle constrained in a potential well and interacting with the point
magnetic field ∇ × Aa .

Though the magnetic field vanishes almost everywhere, its presence affects the spec-
trum of the operator, giving rise to the Aharonov–Bohm effect [3]. At first, as a con-
sequence of the diamagnetic inequality, the first eigenvalue is raised by the presence
of the magnetic potential (see [26,28,29]). This is not the case for higher eigenvalues,
which show a more complex behavior. This has been numerically detected and depicted
in [11, Figure 2]. In these figures, which are shown below, the angular sector of aperture
π/4, �π/4, is represented in dark thick line. Outside the angular sector are represented
the eigenvalues λ j of the Dirichlet-Laplacian on �π/4 (which do not depend on a). We
observe the convergence proved in Theorem 1.3:

∀ j ≥ 1, λa
j → λ j as a → ∂�π/4.

Figure 1 also illustrates the boundary behavior of the eigenvalues for a domain with a
piecewise C∞ boundary; note that the functions a 	→ λa

j are regular except at points
where the eigenvalue λa

j is not simple.
Such a rich structure calls for some theoretical explanation. The study of the behavior

of the eigenvalues in connection with the nodal domains of the corresponding eigen-
functions is motivated by its relation to spectral minimal partitions, see [10,17,19–23].
It has been proved in [21] that, in dimension 2, if all the clustering points of a minimal
partition have an even multiplicity, then the partition is nodal, i.e., it is the nodal par-
tition of an eigenfunction. The results in [7–9,31] establish a strong relation between
the minimal partitions having points with odd multiplicity and the nodal domains of
Aharonov–Bohm eigenfunctions.

Two natural spaces to study the operator (1.1) are given by D1,2
Aa

(�) and H1
Aa

(�),
respectively with and without vanishing boundary conditions on ∂�. The first space
D1,2

Aa
(�) is defined as the completion of C∞

0 (�\{a},C) with respect to the norm

‖u‖D1,2
Aa

(�)
:= ‖(i∇ + Aa)u‖L2(�),

while the second space H1
Aa

(�) is defined as the completion of the set
{
u ∈ C∞(�,C) , u vanishes in a neighborhood of a

}
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(d) (e) (f)

(g) (h) (i)
Fig. 1. First nine eigenvalues of (i∇ + Aa)2 for a varying in �π/4

with respect to the norm

‖u‖H1
Aa

(�) :=
(
‖(i∇ + Aa)u‖2L2(�)

+ ‖u‖2L2(�)

)1/2
.

We recall several properties of those spaces in Sect. 2.
The domain of the operator (1.1) will be one of the two previously defined function

spaces, the operator, with values into its dual space, is the Riesz one and is obviously

self-adjoint: for any pair of functions u, v ∈ D1,2
Aa

(�), (i∇ + Aa)2u ∈
(
D1,2

Aa
(�)
)′

(or

respectively for H1
Aa

(�)) and

〈
(i∇ + Aa)2u, v

〉
:=
∫

�

(i∇ + Aa)u · (i∇ + Aa)v.

We study the following weighted eigenvalue problem

(i∇ + Aa)2ϕa
k = λa

k p(x)ϕa
k , with ϕa

k ∈ D1,2
Aa

(�), (1.3)

with p satisfying
p ∈ C∞(�), p(x) > 0, x ∈ �. (1.4)
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The weight has the role of incorporating the curvature of the domain when the boundary
is locally flattened by a conformal change of variables. A bounded potential could be
added as well. Throughout the paper, we will denote by λa

k , k ∈ N0 = {1, 2, . . .},
the eigenvalues in (1.3) arranged in a real increasing sequence and counted with their
multiplicity. We will reserve the notation λk, ϕk for the eigenvalues and eigenfunctions
of the Laplacian with weight p(x) in � and with zero boundary conditions (again
increasing and counted with their multiplicity).

The main results obtained in [11] and [31] in connection with this topic concern the
critical points of the map

a ∈ � 	→ λa
k .

In particular, in [11] the authors have analyzed the relation between such critical points
and the nodal properties of the corresponding eigenfunctions. To this aim, let us recall
the definition of order of vanishing of a function u at an interior point b.

Definition 1.1. (Interior zero of order h/2). Let u : � ⊂ R
2 → C, b ∈ � and h ∈ N.

(i) If h is even, we say that u has a zero of order h/2 at b if it is of class at least Ch/2

in a neighborhood of b and u(b) = · · · = Dh/2−1u(b) = 0, while Dh/2u(b) �= 0.
(ii) If h is odd, we say that u has a zero of order h/2 at b if u(x2 + b) has a zero of

order h at x = 0 (here x2 is the complex square).

Then, a link between the order of vanishing of the function a 	→ |λa
k − λb

k | can be
established: indeed, the following result holds in case p(x) ≡ 1 (but it is valid for any
p satisfying (1.4)).

Theorem 1.2. ([11,31]). Let � ⊂ R
2 open, bounded and simply connected. Let b ∈ �

and λb
k simple. ϕb

k has a zero of order h/2 at b, with h ≥ 3 odd, if and only if b is a
critical point of the map a 	→ λa

k . Moreover, in this case we have

|λa
k − λb

k | ≤ C |a − b|(h+1)/2 as a → b, (1.5)

for a constant C > 0 independent of a.

In this paper we address the study of the behavior of the magnetic eigenvalues as the
pole approaches the boundary of the domain, starting from the observation that, since
simply connectedness is restored when the pole lies on the boundary, there holds.

Theorem 1.3. ([11,27]). Let � ⊂ R
2 open, bounded and simply connected. For every

k ∈ N0 we have that λa
k → λk as a → ∂�.

Our first aim is to obtain an expansion similar to (1.5) when the point b is on the
boundary ∂�. It is worthwhile to notice that the techniques that were developed in [11],
based on the application of local inversion methods, hardly extend to the study of the
behavior at the boundary. For this reason, we propose here a different and more efficient
approach, based on the variational characterization of the eigenvalues.

Another phenomenon enlightened by the numerical simulations in [11] attracted our
attention. The convergence λa

k → λk described in Theorem 1.3 can take place either
from above or from below, depending on the value of k and on the position of the pole,
see Fig. 4. Of course, by the diamagnetic inequality, λa

1 > λ1 for every a ∈ �. A more
detailed analysis suggests that the different behaviors are related to the position of the
pole with respect to the nodal lines of ϕk . If the pole a moves from ∂� along a nodal
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(a) (b) (c) (d)
Fig. 2. Nodal lines of second and third eigenfunctions in �π/4

Fig. 3. 3-D Representation of the map a 	→ λa
j in �π/4, for j = 2, 3

line of ϕk , then the nodal line of ϕa
k is shorter than the one of ϕk , locally for a close to

the boundary, see Fig. 2c, d. This determines a decrease of the energy: we can observe
in Figs. 3b, 4 that λa

3 < λ3 for a approaching the point (1, 0) ∈ ∂� along the symmetry
axis of the angular sector. Conversely, if a moves from ∂� not on a nodal line of ϕk as in
Figs. 2a, b, this creates a new nodal line in the magnetic eigenfunction and consequently
an increase of the energy, as we can see in Figs. 3a, 4.

The second aim of this paper is to provide a theoretical justification of these facts.
Before stating our main results, let us give the definition of order of vanishing at a
boundary point b ∈ ∂� of a function u, with u = 0 on ∂�. As we will see, this definition
makes sense only if ∂� is sufficiently regular (see the case of conical singularities in
Appendix A).

Definition 1.4. (Boundary zero of order h/2). Let � ⊂ R
2 open, bounded and of class

C∞. Let u : � → C, u = 0 on ∂�, b ∈ ∂� and h even.
We say that u has a zero of order h/2 at b if there exists a neighborhood U (b) such

that u ∈ Ch/2(U (b) ∩ �) and u(b) = · · · = Dh/2−1u(b) = 0 while Dh/2u(b) �= 0 in
U (b) ∩ �.

Note that, whereas for b ∈ � a zero of order h/2 corresponds to h arcs of nodal lines
meeting at b, for b ∈ ∂� a zero of order h/2 corresponds to h/2− 1 arcs of nodal lines
meeting at b. This is due to the fact that we are considering zero boundary conditions.
Our first main result is the following.

Theorem 1.5. Let � ⊂ R
2 open, bounded, simply connected and of class C∞. Let p

satisfy (1.4). Suppose that λk−1 < λk and that there exists an eigenfunction ϕk associated
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Fig. 4. a 	→ λa
j , a belonging to the symmetry axis of �π/4, for j = 1, . . . , 9

to λk having a zero of order h/2 ≥ 2 at b ∈ ∂�, i.e., at least one piece of nodal line
ending at b. Denote by 	 any such piece of nodal line. Then there exists C > 0, not
depending on a, such that

λa
k ≤ λk − C |a − b|h for a ∈ 	, a → b. (1.6)

The study of the case when the pole approaches ∂� at a point where no nodal lines
of ϕk end, requires additional work. The difficulty is that, in order to prove the opposite
inequalitywith respect to (1.6), we need some information about the behavior ofϕa

k when
a is close to the boundary. In this direction, we prove the uniqueness of the following
limit profile.

Proposition 1.6. Let e = (1, 0) and let ψ be a solution in H1
Ae,loc(R

2
+) to

{
(i∇ + Ae)

2ψ = 0 R
2
+

ψ = 0 {x1 = 0}, (1.7)

satisfying the normalization condition

lim
r→+∞

r‖(i∇ + Ae)ψ‖2
L2(D+

r (0))

‖ψ‖2
L2(∂ D+

r (0))

= 1, (1.8)

where D+
r (0) := Dr (0) ∩ {x1 > 0}. Then

(i) ψ is unique up to a multiplicative constant;

(ii) for r > 1we haveψ(r, θ) = Ceiθe/2

⎛
⎝r cos θ − β

π

cos θ

r
+
∑

n≥3,n odd

bn

rn
cos(nθ)

⎞
⎠,

where β > 0 is explicitly characterized in (6.7) and bn ∈ R.
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Once the uniqueness is established, we can prove that this limit profile provides a
good description of the asymptotic behavior of ϕa

k . In the following theorem, we locally
flatten the boundary of � near the boundary point through a conformal transformation
(see Sect. 3 for more details), which allows us to work on half-balls. Then we perform
a normalized blow up, which converges to the previous profile on the half-space in the
limit.

Theorem 1.7. Let � ⊂ R
2 open, bounded, simply connected and of class C∞. Let p

satisfy (1.4). Suppose that ϕk has a zero of order 1 at b ∈ ∂� (no nodal lines ending at
b).

Let  be a conformal map such that −1 ∈ C∞(�), −1(b) = 0 and, for some
small r > 0,

−1(�) ∩ Dr (0) = {x ∈ Dr (0) : x1 > 0} =: D+
r (0).

Then there exists K > 1 such that, denoting by

a′ = (a′
1, a′

2) = −1(a), ψa
k (y) =

√
K a′

1

‖ϕa
k ◦ ‖L2(∂ D+

K a′
1
(0,a′

2))

ϕa
k ((a′

1y1, a′
1y2 + a′

2))

we have

ψa
k → ψ in H1

Ae,loc(R
2
+) as a → b,

where e = (1, 0) and ψ is the unique solution to (1.7)–(1.8) with multiplicative constant
C given explicitly in (7.34).

The previous two results are obtained by exploiting an Almgren-type frequency for-
mula [5,6] formagnetic eigenfunctions, see Definition 5.1. This tool has been introduced
in the context of magnetic operators in [13] to obtain, among other results, sharp regu-
larity results for Aharonov–Bohm eigenfunctions.

The asymptotic analysis above allows us to prove the last main result of the paper.

Theorem 1.8. Let � ⊂ R
2 open, bounded, simply connected and of class C∞. Let p

satisfy (1.4). Suppose that λk is simple and that ϕk has a zero of order 1 at b ∈ ∂� (no
nodal lines ending at b). Then there exists C > 0, not depending on a, such that

λa
k ≥ λk + C (dist(a, ∂�))2 as a → b. (1.9)

Remark 1.9. (i) Theorem 1.8 establishes a local diamagnetic spectral inequality when
the pole approaches the boundary away from the nodal lines of the eigenfunction.

(ii) The exact behavior as a → b ∈ ∂�, b being the endpoint of one or more nodal
lines of ϕk , but a not belonging to any such nodal line, remains an open problem.

(iii) The assumption of regularity of� can beweakened: it is enough to have ∂� ∈ C2,γ

for some γ > 0, see Remark 3.2.
(iv) If� presents a conical singularity, estimates (1.6) and (1.9) do not hold at the vertex

of the cone. This can be observed in the numerical simulations: we see in Fig. 4
that the curve a 	→ λa

k is flat as a approaches the acute angle of the angular sector.
Concerning for example λa

2, we see that relation (1.9) does not hold, despite the
absence of nodal lines of ϕ2. We treat this topic in Appendix A. If we particularize
Theorem A.1 to the case of the second eigenvalue in �π/4, we obtain for example

λa
2 ≥ λ2 + C |a|8,

as a moves along the angle bisector.
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The paper is organized as follows. In Sect. 2 we define two function spaces related
with the magnetic operator, D1,2

Aa
(�) and H1

Aa
(�), respectively of functions with and

without zero boundary conditions on ∂�. We also recall a Hardy-type inequality and
the asymptotic behavior of the eigenfunctions ϕk and ϕa

k around zeros of order h/2.
In Sect. 3 we use a Riemann mapping theorem in order to flatten locally the boundary
∂� around the point 0. By doing this, we recover an equation similar to (1.3), the new
weight verifying the same assumptions as the old one, see (1.4), thanks to the regularity
hypothesis on ∂�. Then, we prove some Poincaré-type inequalities in half-balls. In
Sect. 4 we prove Theorem 1.5. In Sect. 5 we introduce the Almgren’s function for the
eigenfunctions ϕa

k and we study some properties of this object. In Sect. 6 we prove
Proposition 1.6, and in Sect. 7 we prove Theorem 1.8. In Appendix A we treat the case
of a Lipschitz domain with isolated conical singularities. Finally, in Appendix B we
prove an estimate on the Green’s function for a perturbed Laplace operator.

2. Preliminaries

We recall here some properties of the two functional spaces defined in the Introduction.
As proved for example in [31, Lemma 2.1], we have the equivalent characterizations

D1,2
Aa

(�) =
{

u ∈ H1
0 (�) : u

|x − a| ∈ L2(�)

}

and

H1
Aa

(�) =
{

u ∈ H1(�) : u

|x − a| ∈ L2(�)

}
,

and moreover we have that D1,2
Aa

(�) (respectively H1
Aa

(�)) is continuously embedded

in H1
0 (�) (respectively H1(�)) : there exists a constant C > 0 such that for every

u ∈ D1,2
Aa

(�) and u ∈ H1
Aa

(�) we have

‖u‖H1
0 (�) ≤ C‖u‖D1,2

Aa
(�)

and ‖u‖H1(�) ≤ C‖u‖H1
Aa

(�). (2.1)

This is proved by making use of a Hardy-type inequality, which was obtained by Laptev
and Weidl [26] for functions in D1,2

Aa
(�) and has been extended to functions in H1

Aa
(�)

in [28, Lemma 7.4] (see also [29]). If � is simply connected and of class C∞, there
exists a constant C > 0 such that for every u ∈ H1

Aa
(�) the following holds

∥∥∥∥ u

|x − a|
∥∥∥∥

L2(�)

≤ C‖(i∇ + Aa)u‖L2(�). (2.2)

The constantC in (2.1) and (2.2) depends only on the circulation of themagnetic potential
Aa and remains finite whenever the circulation is not an integer.

As a consequence of the continuous embedding, we have the following.

Lemma 2.1. Let I m be the compact immersion of D1,2
Aa

(�) into (D1,2
Aa

(�))′. Then, the

operator ((i∇ + Aa)2)−1 ◦ I m : D1,2
Aa

(�) → D1,2
Aa

(�) is compact.
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As ((i∇ + Aa)2)−1 is also self-adjoint and positive in (D1,2
Aa

(�))′, we deduce that the
spectrum of (i∇ + Aa)2 in D1,2

Aa
(�) consists of a diverging sequences of real positive

eigenvalues, having finite multiplicity.
We now recall a result proved in [18] concerning the magnetic operator (1.1) with

half-integer circulation, which is fundamental for our analysis. The eigenfunctions of
such operator coincide, up to a complex phase, with the antisymmetric eigenfunctions
of the Laplace–Beltrami operator (real valued) on the twofold covering manifold of �.
The complex phase is more precisely eiθa/2, θa being the angle of the polar coordinates
centered at a. Notice that this is a multivalued function in �. The twofold covering
manifold is the Riemann surface associated to the complex square root, so that eiθa/2

is continuous therein. We prefer to state the result in the following form, taken from
[31], where a projection is applied from the twofold covering manifold into some flat,
bounded domain of R2.

Lemma 2.2. ([18, Lemma 3.3], [31, Lemma 3.14]). Suppose that Aa has the form (1.2).
Then the function

e−iθ(y)ϕa
j (y2 + a) defined in {y ∈ C : y2 + a ∈ �},

(here θ is the angle of the polar coordinates around 0) is real valued and solves the
following equation on its domain

−�(e−iθ(y)ϕa
j (y2 + a)) = λa

j p′(y)e−iθ(y)ϕa
j (y2 + a), p′(y) = 4|y|2 p(y2 + a).

The projection allows us to recover the continuity of the phase thanks to the rela-
tion eiθa(y2+a)/2 = eiθ(y). As a consequence of this result, the magnetic eigenfunctions
behave, up to a complex phase, as the real laplacian eigenfunctions far from the singular
point a. The behavior near the singularity is, up to a complex phase, that of the square
root of an elliptic eigenfunction.

Since we are interested in the shape of the nodal lines, let us first recall the known
results concerning the elliptic eigenfunctions in the plane (see also [4]).

Proposition 2.3. ([16, equation (5”)], [21, Theorem 2.1]). Let � ⊂ R
2 open, bounded,

simply connected and of class C∞. Let p satisfy (1.4). If ϕ j has a zero of order h/2 at
0 ∈ �, then h is even and we have

ϕ j (r, θ) = rh/2
[

ch cos

(
h

2
θ

)
+ dh sin

(
h

2
θ

)]
+ g(r, θ),

with x = reiθ ∈ �, c2h + d2
h �= 0 and

lim
r→0

‖g(r, ·)‖C1(∂ Dr )

rh/2 = 0. (2.3)

In addition, there is a positive radius R such that

(i) if 0 ∈ � then (ϕ j )
−1({0}) ∩ DR(0) consists of h arcs of class C∞, whose tangent

lines divide the disk into h equal sectors;
(ii) if 0 ∈ ∂� then (ϕ j )

−1({0}) ∩ DR(0) ∩ � consists of h/2 − 1 arcs of class C∞,
whose tangent lines divide the half disk into h/2 equal sectors.
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The behavior near the boundary at point (ii) above can be deduced from point (i).
Indeed, since the boundary is regular, it can be locally rectified as described inLemma3.1
below. By performing an odd extension, we transform the boundary point into an interior
point of type (i).

We summarize below the local properties of themagnetic eigenfunction near the pole.
The proofs can be found in [13, Theorem 1.3], [18, Theorem 2.1] and [31, Theorem 1.5].

Proposition 2.4. There exists an odd integer h ≥ 1 such that ϕa
j has a zero of order h/2

at a. Moreover, the following asymptotic expansion holds near a

ϕa
j (|x −a|, θa) = ei θa

2 |x −a|h/2
[

ch(a) cos

(
h

θa

2

)
+ dh(a) sin

(
h

θa

2

)]
+g(|x −a|, θa)

(2.4)
where x − a = |x − a|eiθa , ch(a)2 + dh(a)2 �= 0 and g satisfies (2.3). In addition, there
is a positive radius R such that (ϕa

j )
−1({0}) ∩ DR(a) consists of h arcs of class C∞. If

h ≥ 3 then the tangent lines to the arcs at the point a divide the disk into h equal sectors.

3. Equation on a Domain with Locally Rectified Boundary

The local analysis near 0 ∈ ∂� is easier if the boundary is locally flat at 0, i.e. if there
exists r > 0 such that

� ∩ Dr (0) = {x ∈ Dr (0) : x1 > 0} =: D+
r (0). (3.1)

If ∂� is sufficiently regular, we can locally rectify it without altering the nature of the
problem, as we show in the following lemma. This is not the case when ∂� presents an
angle, as for the angular sector presented in the Introduction, see Appendix A.

Lemma 3.1. Let �,�′ ⊂ C be open, bounded and simply connected domains with C∞
boundary. There exist a conformal transformation  : �′ → �,  ∈ C∞(�′) and a
function χ ∈ C∞(�′) such that, letting wa′

k = e−iχ (ϕa
k ◦ ), we have

(i∇ + Aa′)2wa′
k = λa

k p′(x)wa′
k , wa′

k ∈ D1,2
Aa′ (�

′),

where (a′) = a and p′ satisfies (1.4).

Proof. The existence of a regular conformal map is ensured by the Riemann Mapping
Theorem. We note that  is regular up to the boundary thanks to the assumption that
�,�′ have C∞ boundary.

First define va′
k = ϕa

k ◦ . This function solves

(i∇ + Ba′)2va′
k = λa

k p′(x)va′
k ,

where the weight is given by p′(x) = |′|2 p◦(x), Ba′ = (′ t · Aa)◦ and where′
is the matrix of the derivatives of . Indeed, remember that the magnetic potential Aa is
defined as Aa = ∇θa/2 almost everywhere in �. Under the conformal transformation,
the magnetic potential will transform as

Ba′ = ∇(θa ◦ )

2
= (′ t · Aa) ◦ .
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Next, we can verify explicitly that this new magnetic potential Ba′ has the same
circulation than Aa . Indeed, if we consider a closed path γ , winding once around the
point a′ in �′, we obtain

1

2π

∮
x≡γ

Bt
a′(x)|x=γ (t) · γ ′(t) dt = 1

2π

∮
x≡γ

(At
a · ′)((x))|x=γ (t) · γ ′(t) dt

= 1

2π

∮
y≡σ

(At
a · ′)(y)|y=σ(t) · ′ −1σ ′(t) dt

= 1

2π

∮
y≡σ

At
a(y)|y=σ(t) · σ ′(t) dt = 1

2
,

where we used the change of variable y = (x). The new path σ =  ◦ γ is a closed
path winding once around a in � and its derivative is γ ′ = ′ −1 · σ ′. Moreover, we can
verify that ∇ × Ba′ = 0 everywhere in �′\{a′}. Then, there exists χ ∈ C∞(�′) such
that Ba′ = Aa′ + ∇χ , where Aa′ has the form given in (1.2).

Finally, we can gauge away the term ∇χ by letting wa′
k = e−iχva′

k . ��
As a consequence, by simply renaming the weight p(x) in Eq. (1.3), we will work

in a new domain satisfying (3.1).

Remark 3.2. In fact, in what follows, it will be enough to have a weight p of class C1.
Thanks to [25, Theorem 5.2.4], to this aim it is sufficient to assume ∂� ∈ C2,γ for some
positive γ . This ensures that  in the previous lemma is C2(�′), so that the transformed
weight p′(x) = |′|2 p ◦ (x) is C1(�′).

In Sects. 5 and 7, we will study the behavior of the eigenfunctions ϕa
j as a = (a1, a2)

approaches 0 ∈ ∂�. As we will see later, the significant parameter will be the distance
of a from the boundary ∂�. Such distance is a1 if ∂� is locally flat at 0 and |a| is
sufficiently small. We will perform the analysis in half balls centered at (0, a2); all the
future estimates will be independent from a2. To this aim, it will be useful to have some
general inequalities for functions u ∈ H1

Aa
(D+

r (0, a2)) with u = 0 on {x1 = 0}, a ∈
D+

r (0, a2). To simplify the notation, we write

π(a) = (0, a2),

π corresponding then to the projection onto the x2-axis, so that

D+
r (π(a)) = {(x1, x2) ∈ R

2 : x21 + (x2 − a2)
2 < r2, x1 > 0}.

Lemma 3.3. (Poincaré inequality). Let a ∈ D+
r (π(a)). For all u ∈ H1

Aa
(D+

r (π(a))),
with u = 0 on {x1 = 0}, the following inequality is verified

1

r2

∫
D+

r (π(a))

|u|2 dx ≤ 1

r

∫
∂ D+

r (π(a))

|u|2 dσ +
∫

D+
r (π(a))

|(i∇ + Aa)u|2 dx . (3.2)

Proof. By explicit calculation we see that, for every u ∈ H1
Aa

(D+
r (π(a))), we have

∇·(|u|2(x−π(a))) = 2Re
(

iu (i∇ + Ab)u · (x − π(a))
)
+2|u|2 a.e. x ∈ D+

r (π(a)).

(3.3)
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Then

∫
D+

r (π(a))

|u|2 dx = −Re

(
i
∫

D+
r

u (i∇ + Aa)u · (x − π(a)) dx

)
+

r

2

∫
∂ D+

r (π(a))

|u|2 dσ

≤ 1

2

∫
D+

r (π(a))

|u|2 dx +
r2

2

∫
D+

r (π(a))

|(i∇ + Aa)u|2 dx

+
r

2

∫
∂ D+

r (π(a))

|u|2 dσ,

where we used the Young inequalities and the fact that (x −π(a)) = rν on ∂ D+
r (π(a)).

This proves the statement. ��
Similarly, we can prove the similar Poincaré inequality for all functions v in

H1(D+
r (0),R) with zero boundary conditions on {x1 = 0},

1

r2

∫
D+

r (0)
|v|2 dx ≤ 1

r

∫
∂ D+

r (0)
|v|2 dσ +

∫
D+

r (0)
|∇v|2 dx . (3.4)

Lemma 3.4. Let a ∈ D+
r (π(a)). For u ∈ H1

Aa
(D+

r (π(a))), with u = 0 on {x1 = 0}, the
following holds

1

r

∫
∂ D+

r (π(a))

|u|2 dσ ≤
∫

D+
r (π(a))

|(i∇ + Aa)u|2 dx . (3.5)

Proof. Wewill prove the following statement: for all v ∈ H1(D+
r (π(a)),R), with v = 0

on {x1 = 0}, we have
1

r

∫
∂ D+

r (π(a))

|v|2 dσ ≤
∫

D+
r (π(a))

|∇v|2 dx . (3.6)

The lemma follows from it by taking v = |u| and by applying the diamagnetic inequality.
It is sufficient to prove (3.6) in the ball D+

1 (0) since the general case can be recovered
by performing a translation and a dilation. Let

β = inf

{∫
D+
1 (0)

|∇w|2 dx :
∫

∂ D+
1 (0)

w2 dσ =1, w ∈ H1(D+
1 (0),R), w=0 on {x1 = 0}

}
.

Letwk be a minimizing sequence. Then supk

∫
D+
1 (0) |∇wk |2 dx ≤ C and by the Poincaré

inequality (3.4) we have supk ‖wk‖H1(D+
1 (0),R) ≤ C ′. Hence there exists a function

w̄ ∈ H1(D+
1 (0),R) such that, up to a subsequence,

wk ⇀ w̄ in H1(D+
1 (0),R) and wk → w̄ in L2(D+

1 (0),R)

by the compact injection. Using the lower semi-continuity of the H1-norm we obtain
∫

D+
1 (0)

|∇w̄|2 dx ≤ lim inf
k→+∞

∫
D+
1 (0)

|∇wk |2 dx = β.
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By the compact embedding H1(�) ↪→ L2(∂�) (see e.g. [2])wealsohave
∫
∂ D+

1 (0) |w̄|2 dσ
= 1. Therefore w̄ is a minimizer and solves the associated Euler-Lagrange equation

⎧⎪⎪⎨
⎪⎪⎩

−�w̄ = 0 D+
1 (0)

∂w̄

∂ν
= βw̄ ∂ D+

1 (0)

w̄ = 0 x1 = 0.

If we decompose the boundary trace in Fourier series w̄(1, θ) =∑k odd αk cos(kθ), θ ∈
[−π

2 , π
2 ], then w̄(r, θ) = ∑k odd αkrk cos(kθ). The boundary conditions imply kαk =

βαk for every k ≥ 1. We deduce that w̄(r, θ) = αβrβeiβθ for some integer β ≥ 0.
Since w̄ can not vanish because of the constraint, the infimum is assumed by β = 1 and

w̄ =
√

2
π

x1. ��

4. Pole Approaching the Boundary on a Nodal Line of ϕk

In this section we prove Theorem 1.5. We use some of the ideas introduced in [11,
Section 6]. As we already mentioned, we modify the argument therein both in order
to avoid the use of local inversion methods and in order to prove that the convergence
λa

k → λk takes place from below.
We adopt the standard notation f (x) = o(g(x)) as x → x0 if limx→x0 f (x)/g(x) is

zero, f (x) = O(g(x)) as x → x0 if lim supx→x0 | f (x)/g(x)| is finite, f (x) ∼ g(x) as
x → x0 if limx→x0 f (x)/g(x) is finite and different from zero.

Lemma 4.1. Let λ > 0 and p satisfy (1.4). Let a → 0 so that a
|a| → e /∈ {x1 = 0}.

Consider the following set of equations in the parameter a

⎧⎪⎨
⎪⎩

(i∇ + Aa)2v = λp(x)v in D+
2|a|(0)

v = 0 on {x1 = 0}
v = ei θa

2
{|a|1+n f + g(2|a|, ·)} on ∂ D+

2|a|(0) ∩ R
2
+,

(4.1)

where f, g(2|a|, ·) ∈ H1(∂ D+
2|a|(0) ∩ R

2
+) are real valued, vanish at −π/2 and at

π/2, f �≡ 0 and, for some n ∈ N0,

lim|a|→0

‖g(2|a|, ·)‖H1(∂ D+
2|a|(0)∩R2

+)

|a|1+n
= 0.

Then for |a| sufficiently small there exists a unique solution of (4.1) in H1
Aa

(D+
2|a|(0) ∩

R
2
+), which moreover satisfies

‖v‖L2(∂ D+
2|a|(0)) ∼ |a| 32 +n, ‖v‖L2(D+

2|a|(0)) ∼ |a|2+n,

‖(i∇ + Aa)v · ν‖L2(∂ D+
2|a|(0)∩R2

+)
∼ |a| 12 +n,

∣∣∣∣∣
∫

∂ D+
2|a|(0)

(i∇ + Aa)v · νv dσ

∣∣∣∣∣ ∼ |a|2n+2.
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Proof. Notice that the boundary trace is continuous on ∂ D+
2|a|(0). Indeed, we can choose

θa to be discontinuous on the segment joining a with the origin, so that eiθa/2 restricted to
the boundary is discontinuous only at the origin, where the boundary trace vanishes. The
existence and uniqueness of the minimizer follow plainly by the fact that the quadratic
form ∫

D+
2|a|(0)

[
|(i∇ + Aa)v|2 − λp(x)|v|2

]
dx (4.2)

is coercive for |a| sufficiently small.
The estimate on the L2(∂ D+

2|a|(0))-norm is immediate. In order to prove the remaining
estimates we will make use of some computations contained in the proof of [11, Lemma
6.1].

Let a be a family of conformal transformations in the parameter a satisfying the
properties

−1
a ∈ C(D+

2 (0)), −1
a (D+

2 (0)) = D+
2 (0), and −1

a

(
a

|a|
)

= e.

Since a/|a| → e, we have that a is a small perturbation of the identity. Moreover,
thanks to the fact that e /∈ {x1 = 0}, we obtain that

|′
a | ≤ C uniformly in a. (4.3)

Making use of such maps a , we decompose v into the sum of two functions

v(x) = |a|1+nz1

(
−1

a

(
x

|a|
))

+ |a|1+nz2

(
−1

a

(
x

|a|
))

,

where

(i∇ + Ae)
2z1 = 0 in D+

2 (0), z1 = |a|−(1+n)v(|a|a) on ∂ D+
2 (0),

(i∇ + Ae)
2z2 = λ |a|2 p(|a|a) |′

a |2 (z1 + z2) in D+
2 (0), z2 = 0 on ∂ D+

2 (0).

These transformed equations have the advantage that both the domain of validity, D+
2 (0),

and the position of the singularity, e, are fixed. The dependence on the parameter a has
been transferred to the coefficients of the equation (and is still visible on the boundary
trace).

Notice that eiθa(|a|a)/2 = eiχ eiθe/2 for some regular function χ and let

�̃ =
{

y ∈ C : y2 + e ∈ D+
2 (0)
}

be the double covering, which does not depend on a. By applying Lemma 2.2 we see
that the new functions

z̃i (y) = e−i θe
2 −iχ zi (y2 + e)

are real valued and solve the following elliptic equations in �̃:

−�z̃1 = 0 in �̃, z̃1 = e−i θe
2 −iχ |a|−(1+n)v(|a|a(y2 + e)) on ∂�̃,

which is the same as the relation above (6.3) in [11], and

−�z̃2 = λ |a|2 p(|a|a(y2 + e)) |′
a(y2 + e)|2 (z̃1 + z̃2) in �̃, z̃2 = 0 on ∂�̃,



On the Aharonov–Bohm Operators with Varying Poles: The Boundary Behavior of Eigenvalues 1115

which is the same as (6.4) in [11]. Thanks to the bound (4.3), one can proceed exactly
as in the proof of [11, Lemma 6.1] and show that z̃2 provides a negligible contribution
in the sense that

‖z̃2‖H1(�̃) + ‖∇ z̃2 · ν‖L2(∂�̃) ≤ C |a|2,

while the contribution of z̃1 is the following

c1 ≤ ‖z̃1‖H1(�̃) ≤ c2, c1 ≤ ‖∇ z̃1 · ν‖L2(∂�̃) ≤ c2,

for positive constants c1, c2 not depending on a. This also provides

c1 ≤
∣∣∣∣
∫

∂�̃

∇(z̃1 + z̃2) · ν(z̃1 + z̃2) dσ

∣∣∣∣ ≤ c2.

By performing all the inverse changes of variables and going back to the original domain
D+
2|a|(0), we obtain the statement. ��

Lemma 4.2. Let k ≥ 2 and let M = M(|a|) = (mi j ) be a k × k hermitian matrix
depending in a smooth way on the parameter |a|. Suppose that there exist n ∈ N0 and
Ck > 0 such that, as |a| → 0, we have

mii = λi + O(|a|2), i = 1, . . . , k − 1, mkk = λk − Ck |a|2n+2 + o(|a|2n+2),

mi j = O(|a|2), i �= j, i, j =1, . . . , k−1, mi j = O(|a|n+2), i �= j and i = k or j =k.

If λk−1 < λk , then the greatest eigenvalue of M satisfies

λmax (M) = λk − Ck |a|2n+2 + o(|a|2n+2) as a → 0.

Proof. In order to estimate the eigenvalues of M , we compute the determinant of the
matrix B = M − t I d = (bi j ). We have

det(B) =
∑
σ∈Pk

sgn(σ )

k∏
i=1

biσ(i), (4.4)

where σ is a permutation of the set {1, . . . , k}, Pk is the set of all such permutations,
sgn(σ ) is the sign of σ and σ(i) is the image of the element i ∈ {1, . . . , k} under the
action of σ . We recall that a fixed point of σ is an element i such that σ(i) = i . We
define, for r = 0, . . . , k,

Pk,r = {σ ∈ Pk : σ has exactly r fixed points}.
Notice that Pk,k = {I d} and Pk,k−1 = ∅. We split the sum in (4.4) in the following way:

det(B) =
k∏

i=1

bii +
k−2∑
r=1

∑
σ∈Pk,r
σ(k)=k

sgn(σ )

k∏
i=1

biσ(i) +
k−2∑
r=0

∑
σ∈Pk,r
σ(k) �=k

sgn(σ )

k∏
i=1

biσ(i).
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Due to the specific form of M we can estimate each piece as follows

k∏
i=1

bii = (λk − Ck |a|2n+2 + o(|a|2n+2) − t)
k−1∏
i=1

(λi + O(|a|2) − t),

∑
σ∈Pk,r
σ(k)=k

sgn(σ )

k∏
i=1

biσ(i) = (λk − Ck |a|2n+2 − t)O
(
|a|2(k−r)

)
Qr−1(t, |a|2),

r = 1, . . . , k − 2,

∑
σ∈Pk,r
σ(k) �=k

sgn(σ )

k∏
i=1

biσ(i) = O
(
|a|2(n+2)

)
O
(
|a|2(k−r−2)

)
Qr (t, |a|2), r =0, . . . , k−2,

where Qr (t, |a|2) denotes a polynomial of degree r in the variable t , which depends
on |a| with terms of order O(|a|2). More explicitly, Qr (t, |a|2) is given by the sum
over any possible choice of r numbers in the set {1, . . . , k − 1} of a product of r terms
of the form (λi + O(|a|2) − t), for some i �= k. We can also define Qk−1(t, |a|2) =∏k−1

i=1 (λi + O(|a|2) − t) and remark that

Qk−1(λk, 0) =
k−1∏
i=1

(λi − λk) �= 0, (4.5)

where we used the assumption that λk−1 < λk .
Let ε = |a|2. We rewrite the determinant in terms of ε, obtaining

det(B) = (λk − Ckε
n+1 + o(εn+1) − t)

{
Qk−1(t, ε) +

k−2∑
r=1

O
(
εk−r
)

Qr−1(t, ε)

}

+
k−2∑
r=0

O
(
εn+k−r

)
Qr (t, ε) =: f (t, ε).

The assumptions of the implicit function theorem hold for f (t, ε) at the point (λk, 0).
Indeed, f (λk, 0) = 0, f is at least Cn+1 in a neighbourhood of (λk, 0), and

∂ f
∂t (λk, 0) =

−Qk−1(λk, 0) �= 0 thanks to (4.5). Then there exists a function λ(ε) ∈ Cn+1, defined in
a neighbourhood of ε = 0, such that f (λ(ε), ε) = 0.

Let us first differentiate this relation with respect to ε and estimate it in (λk, 0)

∂ f

∂t
(λk, 0) λ′(0) + ∂ f

∂ε
(λk, 0) = 0.

Since n ≥ 1, ∂ f
∂ε

(λk, 0) = 0 and we conclude that λ′(0) = 0. We can differentiate n + 1
times the identity f (λ(ε), ε) = 0 and each time use the relations obtained in the previous
step. We have

∂ f

∂t
(λk, 0) λ( j)(0) +

∂ j f

∂ε j
(λk, 0) = 0, j = 1, . . . , n + 1.
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Thanks to the fact that n + k − r > n + 1 for all r = 0, . . . , k − 2, and using (4.5), we
deduce

∂ j f

∂ε j
(λk, 0) = 0, j = 1, . . . , n,

∂n+1 f

∂εn+1 (λk, 0) = −Ck(n + 1)!Qk−1(λk, 0) �= 0.

Then

λ( j)(0) = 0, j = 1, . . . , n, λ(n+1)(0) = −Ck(n + 1)!
and we conclude that λ(ε) = λk − Ckε

n+1 + o(εn+1) as ε → 0. ��
Proof of Theorem 1.5. We can assume without loss of generality that b = 0 and more-
over, by Lemma 3.1, that � satisfies (3.1). Let ϕk have a zero of order h/2 ≥ 2 at 0,
corresponding to

n = h

2
− 1 ≥ 1 (4.6)

arcs of nodal line ending at 0. Denote by 	 any such piece of nodal line and let a ∈ 	.
We shall take advantage of the min-max characterization of the eigenvalues, which we
exploit by constructing suitable finite dimensional spaces of competitor functions.

Step 1. Construction of the space of competitors. As shown in [11, Lemma 4.1], we
can choose the discontinuity of θa on the piece of 	 connecting a with the origin, so that

∇θa

2
= Aa globally in �\D+|a|(0).

For i = 1, . . . , k we define

vext
i (x) = ei θa

2 (x)ϕi (x), x ∈ �\D+
2|a|(0). (4.7)

Since ei θa
2 is univalued and regular in �\D+|a|(0), the gauge invariance implies

(i∇ + Aa)2vext
i = λi p(x)vext

i in �\D+
2|a|(0). (4.8)

In the interior of the small disk we take the solution of the magnetic equation in
H1

Aa
(D+

2|a|(0)), having the same boundary trace, that is, for i = 1, . . . , k,

(i∇ + Aa)2vint
i = λi p(x)vint

i in D+
2|a|(0), vint

i = ei θa
2 ϕi on ∂ D+

2|a|(0). (4.9)

By uniqueness, vint
i can also be characterized as the function which achieves

inf

{∫
D+
2|a|(0)

[
|(i∇ + Aa)v|2 − λi p(x)|v|2

]
dx : v ∈ H1

Aa
(D+

2|a|(0)),

v = ei θa
2 ϕi on ∂ D+

2|a|(0)
}

. (4.10)

Though vint
i and vext

i solve the same equation on the respective domains, the com-
petitor functions defined as

vi =
{

vint
i D+

2|a|(0)
vext

i �\D+
2|a|(0)

(4.11)
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do not solve the equation in �. Indeed, we have, for all φ ∈ D1,2
Aa

(�),
∫

�

[
(i∇ + Aa)vi · (i∇ + Aa)φ − λi p(x)viφ

]
dx

= i
∫

∂ D+
2|a|(0)

(i∇ + Aa)(vext
i − vint

i ) · νφ dσ, (4.12)

where we used the formula of integration by parts, (4.8) and (4.9).
Step 2. Estimates on the single competitor functions. By Proposition 2.3, ϕi has the

following behavior on ∂ D+
2|a|(0), for i < k,

ϕi |∂ D+
2|a|(0) = |a|c1 cos θ + o(|a|), as a → 0,

with c1 eventually 0, whereas for ϕk we have

ϕk |∂ D+
2|a|(0) = |a|1+n (c1+n cos[(1 + n)θ ] + d1+n sin[(1 + n)θ ]) + o(|a|1+n), as a → 0,

with c1+n �= 0, d1+n = 0 if n is even and c1+n = 0, d1+n �= 0 if n is odd. Since a belongs
to one of the nodal lines of ϕk, 	, and the tangents to the nodal lines divide π into equal
angles, we have that a/|a| → e �∈ {x1 = 0} and we recover the property (4.3). Hence
Lemma 4.1 applies providing the following estimates

‖vint
i ‖L2(∂ D+

2|a|(0)) = O(|a| 32 ), ‖vint
i ‖L2(D+

2|a|(0)) = O(|a|2),
‖(i∇ + Aa)vint

i · ν‖L2(∂ D+
2|a|(0)∩�) = O(|a| 12 ),

(4.13)

for i = 1, . . . , k − 1, and

‖vint
k ‖L2(∂ D+

2|a|(0)) ∼ |a| 32 +n, ‖vint
k ‖L2(D+

2|a|(0)) ∼ |a|2+n, (4.14)

‖(i∇ + Aa)vint
k · ν‖L2(∂ D+

2|a|(0)∩�) ∼|a| 12 +n,

∫
∂ D+

2|a|(0)
(i∇ + Aa)vint

k · νvint
k dσ ∼|a|2n+2.

(4.15)

Step 3. We claim that there exists a constant Ck > 0 such that

i
∫

∂ D+
2|a|(0)

(i∇ + Aa)(vext
k − vint

k ) · νvk dσ = −Ck |a|2n+2 + o(|a|2n+2). (4.16)

The asymptotic behavior is consequence of (4.15). Let us prove that the quantity we

want to estimate is negative. To this aim, we extend the function vext
k = ei θa

2 ϕk to all
�. Such extension is continuous in D+

2|a|(0), since ϕk vanishes on 	 and θa is regular
outside 	, and solves {

(i∇ + Aa)2vext
k = λk p(x)vext

k �\	
vext

k = 0 ∂�.

Since vext
k = 0 on 	, we can test this equation by vext

k itself in D+
2|a|(0) and apply the

formula of integration by parts to obtain

i
∫

∂ D+
2|a|(0)

(i∇ + Aa)vext
k · νvk dσ = −

∫
D+
2|a|(0)

[
|(i∇ + Aa)vext

k |2−λk p(x)|vext
k |2
]
dx .
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On the other hand, by testing (4.9) by vint
k we obtain the same expression for vint

k . By
subtracting the two equalities, and recalling the characterization of vint

k in (4.10), we
obtain that the boundary integral in (4.16) is negative.

Step 4. Estimate of the eigenvalue. Let

Fk =
{

 =
k∑

i=1

αivi : α = (α1, . . . , αk) ∈ C
k

}
⊂ D1,2

Aa
(�),

where vi are the competitor functions defined in (4.11). By (4.13), (4.14) we have, for
i �= j ,

∣∣∣∣
∫

�

p(x)vi v̄ j dx

∣∣∣∣ =
∣∣∣∣∣
∫

�

p(x)ϕi ϕ̄ j dx +
∫

D+
2|a|(0)

p(x)(vint
i v̄int

j − ϕi ϕ̄ j ) dx

∣∣∣∣∣ ≤ C |a|4

(the last estimate improves to |a|4+n in case i = k or j = k ). Therefore Fk is a
k-dimensional subspace of D1,2

Aa
(�) for |a| sufficiently small and we have

λa
k ≤ sup

∈Fk

‖‖2
D1,2

Aa
(�)∫

�
p(x)||2 dx

.

Relation (4.12) provides

‖‖2D1,2
Aa

(�)

=
k∑

i, j=1

αiα j

{
λi

∫
�

p(x) vi v̄ j dx + i
∫

∂ D+
2|a|(0)

(i∇ + Aa)(vext
i − vint

i ) · νv̄ j dσ

}
.

Thus we can write

λa
k ≤ sup

α∈Ck

αT Mα

αT Nα
= λmax (N−1M),

where αT denotes the transposed and the complex conjugation of the vector α, λmax (·)
is the largest eigenvalue of a matrix and M, N are by construction k × k hermitian
matrices with entries

mi j = λi

∫
�

p(x) vi v̄ j dx + i
∫

∂ D+
2|a|(0)

(i∇ + Aa)(vext
i − vint

i ) · νv̄ j dσ,

ni j =
∫

�

p(x)vi v̄ j dx .

By exploiting (4.13)–(4.15), we see that M has the form in Lemma 4.2 and

N =

⎛
⎜⎜⎜⎝
1 + O(|a|4) O(|a|4) O(|a|n+4)

O(|a|4) . . .
...

1 + O(|a|4) O(|a|n+4)
O(|a|n+4) . . . O(|a|n+4) 1 + O(|a|2n+4)

⎞
⎟⎟⎟⎠ .
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By writing N = I d + E(|a|) we have N−1 = ∑∞
j=0(−1) jE(|a|) j ∼ I d − E(|a|) as

a → 0, so that N−1 has the same form as N . Therefore N−1M has the same form as M
and we can apply Lemma 4.2 obtaining

λa
k ≤ λk − Ck |a|2n+2 + o(|a|2n+2).

The result follows recalling that 2n + 2 = h. ��

5. Frequency Formula for Magnetic Eigenfunctions at Boundary Points

Throughout this section we assume that � is regular and that p(x) satisfies (1.4). Given
a pole b = (b1, b2) ∈ R

2, we recall the following notation from Sect. 3

π(b) = (0, b2), D+
r (π(b)) = {(x1, x2) ∈ R

2 : x21 + (x2 − b2)
2 < r2, x1 > 0}.

We define a Almgren-type frequency function in D+
r (π(b)) as follows.

Definition 5.1. Let b ∈ C, r > 0 such that b ∈ D+
r (π(b)) and u ∈ H1

Ab
(D+

r (π(b)))

with u = 0 on {x1 = 0}. Let λ ∈ R, and p(x) satisfy (1.4) in D+
r (π(b)). We define

E(u, r, π(b), λ, Ab) =
∫

D+
r (π(b))

(
|(i∇ + Ab)u|2 − λp(x)|u|2

)
dx, (5.1)

H(u, r, π(b)) = 1

r

∫
∂ D+

r (π(b))

|u|2 dσ, (5.2)

and the frequency function

N (u, r, π(b), λ, Ab) = E(u, r, π(b), λ, Ab)

H(u, r, π(b))
. (5.3)

In the notation above we keep track of all the parameters involved, apart from the
weight p, since we will need to let them change from section to section. The weight is
not explicitly mentioned because it does not play a significant role, as long as it satisfies
(1.4).

In particular, in this section we will estimate the frequency function for u = ϕa
k and

λ = λa
k . We shall omit the index k since we will work with a fixed k from now up to

Sect. 7.4. By Lemma 3.1, we can assume that ∂� is locally flat near the origin, so that
we consider the following equation

⎧⎪⎨
⎪⎩

(i∇ + Aa)2ϕa = λa p(x)ϕa D+
2r0(0)

ϕa = 0 {x1 = 0}
ϕa ∈ H1

Aa
(D+

2r0(0)).

(5.4)

Here r0 is chosen such that

r0 < (2λa‖p‖L∞)−1/2 for |a| sufficiently small, (5.5)

which is possible due to the fact that p is bounded and that λa → λ as a → 0, as recalled
in Theorem 1.3. For r < r0 and |a| < r we have that D+

r (π(a)) ⊂ D+
2r0

(0) so that, for
such r and a, the frequency function for solutions of (5.4) is well defined.
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5.1. Estimates on H(ϕa, r, π(a)). We can compute the derivative of H with respect to
r similarly to the standard frequency function for non-magnetic eigenfunctions. In the
following a = (a1, a2).

Lemma 5.2. If ϕa is a solution of (5.4), for a1 < r < r0 we have

d

dr
H(ϕa, r, π(a))=−2i

r

∫
∂ D+

r (π(a))

(i∇+Aa)ϕa · νϕa dσ = 2

r
E(ϕa, r, π(a), λa, Aa).

(5.6)

Proof. By the change of variables y = (x − π(a))/r we have

H(ϕa, r, π(a)) = 1

r

∫
∂ D+

r (π(a))

|ϕa |2(x) dσ(x) =
∫

∂ D+
1 (0)

|ϕa |2(r y + π(a)) dσ(y).

By taking the derivative with respect to r we obtain

d

dr
H(ϕa, r, π(a)) = 2Re

∫
∂ D+

1 (0)
∇ϕa(r y + π(a)) · y ϕa(r y + π(a)) dσ(y)

= 2

r
Re
∫

∂ D+
r (π(a))

∇ϕa · ν ϕa dσ(x)

= 2

r
Re

{
−i
∫

∂ D+
r (π(a))

(i∇ + Aa)ϕa · νϕa dσ

}
,

where we used the fact that Re(−i |ϕa |2Aa · ν) = 0. On the other hand, by testing
Eq. (5.4) by ϕa and integrating by parts, we see that

E(ϕa, r, π(a), λa, Aa) = −i
∫

∂ D+
r (π(a))

(i∇ + Aa)ϕa · ν ϕa dσ ∈ R, (5.7)

which concludes the proof. ��
We can prove the following estimate.

Lemma 5.3. Let ϕa be a solution of (5.4) and r0 be as in (5.5). If a1 < r1 < r2 < r0
then

H(ϕa, r2, π(a))

H(ϕa, r1, π(a))
≥ e−Cr20

(
r2
r1

)2
. (5.8)

If |a| is sufficiently small, we can choose C = 4λ‖p‖L∞ , where λ is the limit of λa as
a → 0.

Proof. By combining Lemmas 3.3 and 3.4 we see that

1

r2

∫
D+

r (π(a))

|ϕa |2 dx ≤ 2
∫

D+
r (π(a))

|(i∇ + Aa)ϕa |2 dx . (5.9)
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Next we apply Lemma 5.2 and, in order, the inequalities (5.9) and (3.5) in the following
way

d

dr
H(ϕa, r, π(a)) = 2

r

∫
D+

r (π(a))

(|(i∇ + Aa)ϕa |2 − λa p(x)|ϕa |2) dx

≥ 2

r
(1 − 2λa‖p‖L∞r2)

∫
D+

r (π(a))

|(i∇ + Aa)ϕa |2dx

≥ 2

r
(1 − 2λa‖p‖L∞r2)H(ϕa, r, π(a))).

Integrating the last inequality between r1 and r2 we obtain

log

(
H(ϕa, r2, π(a))

H(ϕa, r1, π(a))

)
≥ log

(
r2
r1

)2
− 2λa‖p‖L∞(r22 − r21 )

≥ log

(
r2
r1

)2
− 2λa‖p‖L∞r20 .

Taking the exponential of both sides and recalling that λa → λ we obtain the statement.
��
Remark 5.4. Relation (5.9) in the previous proof shows that E(ϕa, r, π(a), λa, Aa) ≥ 0
for r < r0.

5.2. Estimates on E(ϕa, r, π(a), λa, Aa). We will need the following Pohozaev-type
identity for the solution ϕa of (5.4). Also compare with [13, Section 4].

Lemma 5.5. (Pohozaev-type identity). Ifϕa is the solution of (5.4), the following identity
is valid for a1 < r < r0

r

2

∫
∂ D+

r (π(a))

{
|(i∇ + Aa)ϕa |2 − 2|(i∇ + Aa)ϕa · ν|2 − λa p|ϕa |2

}
dσ

+ λa
∫

D+
r (π(a))

|ϕa |2
(

p +
∇ p · (x − π(a))

2

)
dx + Ma = 0,

(5.10)

where

Ma = lim
ε→0

∫
∂ Dε(a)

{
Re
[
(i∇ + Aa)ϕa · ν (i∇ + Aa)ϕa · (x − π(a))

]

−1

2
|(i∇ + Aa)ϕa |2(x − π(a)) · ν

}
dσ.

(5.11)

Proof. We test the Eq. (5.4) with the vector field ξ = (i∇ + Aa)ϕa · (x − π(a)) in
D+

r (π(a))\Dε(a). We need to remove a small ball around the singularity because ∇ϕa

may be singular at a (it is singular in the case that ϕa has a zero of order 1/2 at a).
Multiplying by i and taking the real part we obtain

Re

{
i
∫

D+
r (π(a))\Dε(a)

(i∇ + Aa)2ϕa ξ dx

}
= Re

{
iλa
∫

D+
r (π(a))\Dε(a)

ϕa p(x) ξ dx

}
.

(5.12)
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Similarly to (3.3), the following identity with the weight holds

1

2
∇ ·
(

p|ϕa |2(x − π(a))
)

= |ϕa |2
(

p +
∇ p · (x − π(a))

2

)
+ Re

(
i pϕaξ

)
.

It allows to rewrite the right hand side of (5.12) as

λa

2

∫
∂(D+

r (π(a))\Dε(a))

p|ϕa |2 (x − π(a)) · ν dσ

−λa
∫

D+
r (π(a))\Dε(a)

|ϕa |2
(

p +
∇ p · (x − π(a))

2

)
dx .

Taking the limit as ε → 0, we obtain

λar

2

∫
∂ D+

r (π(a))

p|ϕa |2 dσ − λa
∫

D+
r (π(a))

|ϕa |2
(

p +
∇ p · (x − π(a))

2

)
dx .

The integral on ∂ Dε(a) vanishes as ε → 0 because |ϕa | behaves at least like ε1/2 on
∂ Dε(a) by (2.4). Next we look at the left-hand side of (5.12). Integrating by parts and
using the identity

Re
(

i(i∇ + Aa)ϕa · (i∇ + Aa)ξ
)

= 1

2
∇ · (|(i∇ + Aa)ϕa |2(x − π(a))) a.e. x ∈ D+

r ,

we rewrite it as

Re

{
i
∫

D+
r (π(a))\Dε(a)

(i∇ + Aa)ϕa · (i∇ + Aa)ξ dx −
∫

∂(D+
r (π(a))\Dε(a))

(i∇ + Aa)ϕa · ν ξ dσ

}

=
∫

∂(D+
r (π(a))\Dε(a))

{
1

2
|(i∇ + Aa)ϕa |2(x − π(a)) · ν − Re[(i∇ + Aa)ϕa · ν ξ ]

}
dσ

= r
∫

∂ D+
r (π(a))

{
1

2
|(i∇ + Aa)ϕa |2 − |(i∇ + Aa)ϕa · ν|2

}
dσ

+
∫

∂ Dε(a)

{
Re[(i∇ + Aa)ϕa · νξ ] − 1

2
|(i∇ + Aa)ϕa |2(x − π(a)) · ν

}
dσ.

By taking the limit as ε → 0 and by combining the two contributions in (5.12) we obtain
the result. ��

This identity allows to compute the derivative of E(ϕa, r, π(a), λa, Aa) with respect
to r .

Lemma 5.6. If ϕa is a solution of (5.4), then for a1 < r < r0 we have

d

dr
E(ϕa, r, π(a), λa, Aa) = 2

∫
∂ D+

r (π(a))

|(i∇ + Aa)ϕa · ν|2 dσ

− λa

r

∫
D+

r (π(a))

|ϕa |2(2p + ∇ p · (x − π(a))) dx − 2

r
Ma,

(5.13)

where Ma is defined in (5.11).
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Proof. We have

d

dr
E(ϕa, r, π(a), λa, Aa) =

∫
∂ D+

r (π(a))

(
|(i∇ + Aa)ϕa |2 − λa p|ϕa |2

)
dσ.

Then we use the Pohozaev identity (5.10) to conclude. ��
In what follows we will estimate the remainder Ma which appears in the derivative

of E in Eq. (5.13).

Lemma 5.7. Let v(y) = e−iθ(y)ϕa(a1y2+a), defined in the set {y : a1y2+a ∈ D+
2r0

(0)}.
Then

Ma = π Re

{(
∂v(0)

∂y

)2}
. (5.14)

Proof. First we shall prove that

Ma = lim
ε→0

∫
∂ Dε(a)

Re[(i∇ + Aa)ϕa · ν (i∇ + Aa)ϕa · (x − π(a))] dσ = a1π

4
(c21 − d2

1 ),

(5.15)

where c1 = c1(a), d1 = d1(a) are the coefficients appearing in the asymptotic expansion
(2.4) of ϕa , and a = (a1, a2). Indeed, by differentiating (2.4) we obtain a.e.

(i∇ + Aa)ϕa = ieiθa/2

2
√

ra

(
c1 cos

θa

2
− d1 sin

θa

2
, c1 sin

θa

2
+ d1 cos

θa

2

)

+ o(r−1/2
a ) as ra → 0,

and hence

|(i∇ + Aa)ϕa |2 = 1

4ra
(c21 + d2

1 ) + o(r−1
a ) as ra → 0.

Moreover notice that x − π(a) = (a1, 0) + ε(cos θa, sin θa) and ν = (cos θa, sin θa) on
∂ Dε(a). Therefore

lim
ε→0

∫
∂ Dε(a)

|(i∇ + Aa)ϕa |2(x − π(a)) · ν dσ

= lim
ε→0

ε

∫ 2π

0

[
1

4ε
(c21 + d2

1 ) + o(ε−1)

]
[a1 cos θa + ε] dθa = 0,

and we have estimated the second term in (5.11). By a direct calculation one estimates
the first term in (5.11) and obtains (5.15).

Now, by changing variables in (2.4), we obtain the following expansion for v

v(r, θ) = √
a1r (c1 cos θ + d1 sin θ) + o(r) as r → 0.

Hence we have ∂v(0)
∂y =

√
a1
2 (c1 − id1) and (5.14) follows by combining with (5.15).

��
From (5.15), we remark that the constant Ma is identically zero if the eigenfunction

ϕa has a zero of order strictly greater than 1 at a.
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Lemma 5.8. There exists C > 0 not depending on a1 such that

|Ma |
H(ϕa, 2a1, π(a))

≤ C.

Proof. The quantity Ma is expressed in terms of v in Lemma 5.7. We also rewrite

H(ϕa, 2a1, π(a)) =
∫

γ

v2|y| dσ, (5.16)

where, letting � = {y : a1y2 + a ∈ D+
2a1

(π(a))}, we have γ = ∂�. By Lemma 2.2, v

solves −�v = 4a2
1 |y|2 p̃λav in �, where p̃(y) = p(a1y2 + a) has the same properties

as p(x). Since γ does not depend on a, Lemma B.1 applies, providing for a1 sufficiently
small the representation formula

v(x) = −
∫

γ

v(y) ∂νG(x, y) dσ(y),

for x ∈ � and moreover,

‖∂xi G(x, ·) − ∂xi (x, ·)‖W 2,q (�) ≤ Ca2
1 for 1 ≤ q < 2.

Therefore we have, by the Hölder and traces inequalities (for the trace embedding, see
for example [2, Theorem 5.36]) and the estimate above, taking for example q = 4/3,
we have

|∂xi v(0)|2 =
(∫

γ

v∂ν∂xi G(0, y) dσ(y)

)2

≤
∫

γ

v2 dσ
∫

γ

|∂ν∂xi G(0, y)|2 dy ≤ C
∫

γ

v2|y| dσ.

Hence, by Lemma 5.7 and by (5.16), we have

|Ma |
H(ϕa, 2a1, π(a))

≤ C
|∇v(0)|2

H(ϕa, 2a1, π(a))
≤ C.

��
Lemma 5.9. There exists C > 0 independent of a1 such that

|Ma |
H(ϕa, ka1, π(a))

≤ C

k2
for every k > 2.

Proof. It is a straightforward consequence of Lemmas 5.3 and 5.8:

|Ma |
H(ϕa, ka1, π(a))

= |Ma |
H(ϕa, 2a1, π(a))

· H(ϕa, 2a1, π(a))

H(ϕa, ka1, π(a))
≤ C

k2
.

��
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5.3. Estimates on N (ϕa, r, π(a), λa, Aa). The function N maynot be increasing, because
of the remainder Ma which appears in the derivative of E in (5.13). Nonetheless, we can
use the estimates proved in the previous paragraph to obtain a bound from below on the
derivative of N .

Lemma 5.10. Let ϕa be a solution of (5.4) and r0 be as in (5.5). For a1 < r < r0 we
have

1

r2

∫
D+

r (π(a))

|ϕa |2 dx ≤ E(ϕa, r, π(a), λa, Aa) + H(ϕa, r, π(a))

1 − Cr20
. (5.17)

If |a| is sufficiently small, we can choose C = 2λ‖p‖L∞ , where λ is the limit of λa as
a → 0.

Proof. On the one hand, the Poincaré inequality (3.2) provides

1

r2

∫
D+

r (π(a))

|ϕa |2 dx − λa
∫

D+
r (π(a))

p(x)|ϕa |2 dx

≤ E(ϕa, r, π(a), λa, Aa) + H(ϕa, r, π(a)).

On the other hand, if we take r < r0, we obtain that

1 − r20λa‖p‖L∞

r2

∫
D+

r (π(a))

|ϕa |2 dx ≤ 1

r2

×
∫

D+
r (π(a))

|ϕa |2 dx − λa
∫

D+
r (π(a))

p(x)|ϕa |2 dx .

The result follows by combining the previous two inequalities. ��
Lemma 5.11. Let ϕa be a solution of (5.4) and r0 be as in (5.5). For every k > 1, a1 <

r0/k and ka1 < r < r0 we have

N (ϕa, r, π(a), λa, Aa) ≤ [N (ϕa, r0, π(a), λa, Aa) + 1] exp
(

CeCr20

k2
+

Cr20
1 − Cr20

)
− 1,

(5.18)

with C > 0 independent from a1, k, r, r0.

Proof. Let for the moment N = N (ϕa, r, π(a), λa, Aa) and analogously for H and E .
We use Lemmas 5.2 and 5.6 to obtain, for r > a1,

dN

dr
= 1

H2

{
2

r

∫
∂ D+

r (π(a))

|(i∇ + Aa)ϕa · ν|2 dσ
∫

∂ D+
r (π(a))

|ϕa |2 dσ

−2

r

(
i
∫

∂ D+
r (π(a))

(i∇ + Aa)ϕa · ν ϕa dσ

)2⎫⎬
⎭

− 1

r2H2

{
2Ma+λa

∫
D+

r (π(a))

|ϕa |2(2p+∇ p · (x − π(a)))dx

}∫
∂ D+

r (π(a))

|ϕa |2 dσ

≥ − 1

r H

{
2|Ma | + λa‖2p + ∇ p · (x − π(a))‖L∞

∫
D+

r (π(a))

|ϕa |2 dx

}
. (5.19)



On the Aharonov–Bohm Operators with Varying Poles: The Boundary Behavior of Eigenvalues 1127

In the last step we used the Schwarz inequality and the regularity assumption on p (1.4).
Therefore we have

d

dr
log(N + 1)

≥ − 1

r(E + H)

{
2|Ma | + λa‖2p + ∇ p · (x − π(a))‖L∞

∫
D+

r (π(a))

|ϕa |2 dx

}
.

(5.20)

We look at the first term in the right hand side of (5.20). By Lemma 5.3 we have

H(ϕa, r, π(a))

H(ϕa, ka1, π(a))
≥ e−Cr20

r2

(ka1)2
, ka1 < r < r0.

This together with Remark 5.4 and Lemma 5.9 provides

− |Ma |
r(E + H)

≥ −|Ma |
r H

≥ −eCr20

r3
|Ma |(ka1)2

H(ϕa, ka1, π(a))
≥ −CeCr20

a2
1

r3
, ka1 < r < r0.

Concerning the second term in the right hand side of (5.20), we apply Lemma 5.10 to
obtain

− 1

r(E + H)

∫
D+

r (π(a))

|ϕa |2 dx ≥ − r

1 − Cr20
, ka1 < r < r0.

Thus we have obtained

d

dr
log(N + 1) ≥ −CeCr20 a2

1

r3
− Cr

1 − Cr20
, ka1 < r < r0.

By integrating between r and r0 we arrive at

log
N (ϕa, r0, π(a), λa, Aa) + 1

N (ϕa, r, π(a), λa, Aa) + 1
≥ Ca2

1

(
eCr20

r20
− eCr20

r2

)
− C

1 − Cr20
(r20 − r2)

≥ −CeCr20
a2
1

r2
− Cr20

1 − Cr20
≥ −CeCr20

k2
− Cr20

1 − Cr20
,

for ka1 < r < r0. The statement follows by exponentiating both terms. ��

6. Proof of Proposition 1.6

Proof of Proposition 1.6. Step 1. Suppose by contradiction that there are two solutions
ψ and ψ̃ to (1.7) in H1

Ae,loc
(R2

+), which do not differ by a multiplicative constant. By
Proposition 2.4 we have

ψ(|x − e|, θe) = ei θe
2
√|x − e|

(
c1 cos

θe

2
+ d1 sin

θe

2

)
+ o(
√|x − e|),

ψ̃(|x − e|, θe) = ei θe
2
√|x − e|

(
c̃1 cos

θe

2
+ d̃1 sin

θe

2

)
+ o(
√|x − e|),
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as |x − e| → 0, e = (1, 0). Suppose first that c21 + d2
1 �= 0. We consider the linear

combination tψ + ψ̃ that we can write, thanks to the expressions above,

(tψ + ψ̃)(|x − e|, θe) = ei θe
2
√|x − e|

[
(tc1 + c̃1) cos

θe

2
+ (td1 + d̃1) sin

θe

2

]

+ o(
√|x − e|). (6.1)

The parameter t is chosen in such a way that

M := π
(tc1 + c̃1)2 − (td1 + d̃1)2

4
= 0,

where M is the constant associated to tψ + ψ̃ , see (5.15). More explicitly we have
t = (d̃1 − c̃1)/(c1 − d1) if c1 �= d1 and t = −(c̃1 + d̃1)/(c1 + d1) if c1 �= −d1. Exactly
as in (5.19) we have for r > 1

d

dr
N (tψ + ψ̃, r, 0, 0, Ae) ≥ − 2M

r H(tψ + ψ̃, r, 0)
= 0, (6.2)

thanks to our choice of t , so that N (tψ + ψ̃, ·, 0, 0, Ae) is increasing.
We claim that

lim
r→∞ N (tψ + ψ̃, r, 0, 0, Ae) ≤ 1. (6.3)

Suppose by contradiction that there exist δ, Rδ > 0 such that N (tψ + ψ̃, r, 0, 0, Ae) ≥
1 + δ for every r > Rδ . Then, since tψ + ψ̃ solves the equation, proceeding as in (5.6),
we find

d

dr
log H(tψ + ψ̃, r, 0) = 2

r
N (tψ + ψ̃, r, 0, 0, Ae) ≥ 2

r
(1 + δ), r > Rδ. (6.4)

Integrating between Rδ and r we obtain

H(tψ + ψ̃, r, 0) ≥ Cr2(1+δ), r > Rδ. (6.5)

On the other hand, by assumption (1.8) we have (by eventually taking a larger Rδ)

N (ψ, r, 0, 0, Ae) < 1 +
δ

2
, N (ψ̃, r, 0, 0, Ae) < 1 +

δ

2
r > Rδ.

Proceeding as above, this implies H(ψ, r, 0) + H(ψ̃, r, 0) ≤ Cr2(1+δ/2) for r > Rδ .
Hence, by the Young inequality, we obtain

H(tψ + ψ̃, r, 0) ≤ 2
[

H(tψ, r, 0) + H(ψ̃, r, 0)
]

≤ Cr2(1+δ/2), r > Rδ,

which contradicts (6.5). Hence (6.3) is proved.
On the other hand, it is not difficult to see that, since tψ + ψ̃ vanishes on {x1 = 0}

but is not identically zero, we must have

N (tψ + ψ̃, 0, 0, 0, Ae) ≥ 1. (6.6)

Indeed, suppose by contradiction that there exist ε > 0, rε < 1 such that

N (tψ + ψ̃, r, 0, 0, Ae) < 1 − ε, r < rε.
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Using this inequality as we did in (6.4), and then integrating between r and rε, we arrive
at

H(tψ + ψ̃, rε, 0)

H(tψ + ψ̃, r, 0)
≤
(rε

r

)2−2ε
.

Conversely, Lemmas 5.2 and 3.4 provide

d

dr
H(tψ + ψ̃, r, 0) = 2

r

∫
D+

r (0)
|(i∇ + Ae)(tψ + ψ̃)|2 dx ≥ 2

r
H(tψ + ψ̃, r, 0),

and hence

H(tψ + ψ̃, rε, 0)

H(tψ + ψ̃, r, 0)
≥
(rε

r

)2
,

which contradicts the previous inequality for r < rε.
We conclude from (6.2), (6.3) and (6.6) that N (tψ + ψ̃, r, 0, 0, Ae) ≡ 1 and, in

turn, that tψ + ψ̃ = eiθe/2rg(θ), for some function g depending only on the angle. This
contradicts the asymptotic behavior (6.1) of tψ + ψ̃ at e. We have obtained uniqueness
up to a multiplicative constant in case c21 + d2

1 �= 0. If c1 = d1 = 0 then all the previous
considerations apply with ψ̃ in place of tψ + ψ̃ and we still obtain a contradiction.

Step 2.Wewill use some ideas in [14], in particular Lemmas 2.4 and 2.9 (see also [1]).
Let Q1 = {(x1, x2) ∈ R

2 : x1 > 0, x2 > 0} and let 	1 = {(x1, 0) ∈ R
2 : 0 < x1 < 1}.

We consider the following minimization problem

β

2
= inf

{∫
Q1

|∇u|2 dx : u ∈ D1,2(Q1), u = 0 on {x1 = 0}, u = −x1 on 	1

}
,

(6.7)
where we denote by D1,2(Q1) the closure of C∞

0 (Q1) with respect to ‖∇u‖L2(Q1)
. By

standardvariationalmethods the infimumis achievedbyaunique functionw ∈ D1,2(Q1)

(see for example [32, Theorem 8.4]). Due to the symmetries of the problem, we can
extend w to R

2
+ in such a way that w(x1,−x2) = w(x1, x2) and moreover w satisfies

the following properties

−�w = 0 in R2
+\	1, w = 0 on {x1 = 0}, w=−x1 on 	1,

∫
R
2
+

|∇w|2 dx = β < ∞.

By the maximum principle we have w < 0 in R2
+. One can check that

ψ̃ = eiθe/2(x1 + w)

solves (1.7), by passing to the double covering as in Lemma 2.2. We aim at showing
that ψ = ψ̃ ; thanks to step 1, it will be sufficient to prove that ψ̃ satisfies (1.8). Let
w̃ be the Kelvin transform of w, that is w̃(y) = w(y/|y|2) for |y| < 1. Because w

is harmonic outside of D+
1 (0), w̃ is harmonic in D+

1 (0) with zero boundary conditions
on {y1 = 0}. Moreover,

∫
D+
1 (0) |∇w̃|2 dx = ∫

R
2
+\D+

1 (0) |∇w|2 dx < β, then w̃ has finite

energy. Therefore w̃ is analytic in D+
1 (0) and admits the following expansion in D+

1 (0)

w̃(y) =
∞∑

n=1

Re(b̃n yn), b̃n ∈ C, so that w(x) =
∞∑

n=1

Re

(
b̃n

xn

|x |2n

)
for |x | > 1.
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By passing to polar coordinates and taking into account the symmetries of w, we find

w(r, θ) =
∑
n odd

bn

rn
cos(nθ), r > 1, bn ∈ R, with b1 < 0. (6.8)

Hence w(r, θ) = b1 cos θ/r + O(r−3) as r → ∞, and an explicit calculation provides

lim
r→∞ N (ψ̃, r, 0, 0, Ae) = 1 and hence ψ = ψ̃ = eiθe/2(x1 + w).

To conclude the proof of point (ii) it remains to show that b1 = −β/π . By testing the
equation −�w = 0 in R2

+\	1 by w we deduce

β =
∫
R
2
+

|∇w|2 dx = −2
∫

	1

x1∇w · ν dσ. (6.9)

On the other hand, by testing the equation forw by x1 in D+
R(0), R > 1, and the equation

�x1 = 0 by w in D+
R(0) and subtracting we obtain

∫
∂ D+

R(0)
(w∇x1 − x1∇w) · ν dσ − 2

∫
	1

x1∇w · ν dσ = 0. (6.10)

By combining (6.8)–(6.10) we obtain

β = lim
R→∞

∫
∂ D+

R(0)
(x1∇w − w∇x1) · ν dσ

= lim
R→∞

{
−
∑
n odd

(n + 1)bn

Rn−1

∫ π/2

−π/2
cos(nθ) cos θ dθ

}

= −2b1

∫ π/2

−π/2
cos2 θ dθ = −πb1

which concludes the proof. ��
We can interpret β as the cost, in terms of energy, needed to impose that w vanishes

on 	1, or equivalently as the energy cost of the nodal line of ψ .

7. Pole Approaching the Boundary not on a Nodal Line of ϕk

Let ϕa be a solution of (5.4). In this section we treat the case when a → 0 and ϕ has
a zero of order 1 at 0 (no nodal lines). In this case, if π(a) = (0, a2) is sufficiently
close to 0, then ϕ has a zero of order 1 also at π(a): there exists ā2 > 0 such that, for
|π(a)| < ā2, we have

ϕ(|x − π(a)|, θπ(a)) = |x − π(a)|(
c1(π(a)) cos θπ(a) + d1(π(a)) sin θπ(a)

)
+ O(|x − π(a)|2), (7.1)

as |x−π(a)| → 0,with c1(π(a))2+d1(π(a))2 �= 0 and x−π(a) = |x−π(a)|(cos θπ(a),

sin θπ(a)). In the following, we keep the notation used in Sect. 5.
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7.1. Estimates on the frequency function.

Lemma 7.1. Let ϕa be a solution of (5.4) and suppose that ϕ has a zero of order 1 at
0. Let |π(a)| = |a2| < ā2 so that (7.1) holds. For every ε > 0, there exists r̃ε > 0 such
that for all rε ≤ r̃ε there exists ā1,ε,rε > 0 such that

1 ≤ N (ϕa, rε, π(a), λa, Aa) ≤ 1 +
ε

2
for all a1 < ā1,ε,rε . (7.2)

Proof. The bound from below can be proved as in (6.6). Let us concentrate on the bound
fromabove.Relation (7.1) implies that 1 ≤ N (ϕ, r, π(a), λ, 0) ≤ 1+O(r) as r → 0 (see
for example [15, Corollary 2.2.4]). Let r̃ε be such that N (ϕ, r̃ε, π(a), λ, 0) ≤ 1 + ε/8.
By the monotonicity property of the Almgren function for the eigenfunctions of the
Laplacian (see for example [15, Corollary 3.1.2]), we have that N (ϕ, r, π(a), λ, 0) ≤
1 + ε/4 for every r ≤ r̃ε. Fix 0 < rε < r̃ε. Since we know from [11, Remark 4.4] that

λa → λ and ‖e−iθa/2ϕa − ϕ‖H1(�) → 0, as a → 0,

we deduce |N (ϕa, rε, π(a), λa, Aa) − N (ϕ, rε, π(a), λ, 0)| ≤ ε/4 for |π(a)| < ā2 and
a1 < ā1,ε,rε . ��

So far we have obtained an estimate on N for a fixed radius rε. Since N is not
increasing, this is not sufficient to obtain the estimate for r → 0. Nonetheless, we can
provide a bound on N for r sufficiently far from the singularity. This is done by exploiting
the estimates proved in the Sect. 5.

Lemma 7.2. Let ϕa be a solution of (5.4) and suppose that ϕ has a zero of order 1 at 0.
Let |π(a)| < ā2 so that (7.1) holds. For every ε > 0 there exist rε, ā1,ε > 0 and kε > 1
such that

N (ϕa, r, π(a), λa, Aa) ≤ 1 + ε (7.3)

for every a1 < ā1,ε and for every kεa1 < r < rε, and

H(ϕa, r2, π(a))

H(ϕa, r1, π(a))
≤
(

r2
r1

)2(1+ε)

. (7.4)

for every a1 < ā1,ε and kεa1 < r1 < r2 < rε.

Proof. To prove the first inequality we combine the previous lemma with Lemma 5.11.
In Lemma 5.11 we choose r0 = rε < r̃ε. For every k > 1, a1 < min{rε/k, ā1,ε,rε } and
ka1 < r < rε we have

N (ϕa, r, π(a), λa, Aa) ≤
(
2 +

ε

2

)
exp

(
CeCr2ε

k2
+

2λar2ε
1 − λar2ε

)
− 1.

We can impose that the right hand side above is less than 1+ε by choosing rε sufficiently
small and k = kε sufficiently large. Then we let ā1,ε < min{rε/kε, ā1,ε,rε }.

Let us look at the second inequality. We deduce from Lemma 5.2 and from (7.3) that

d

dr
log H(ϕa, r, π(a)) = 2

r
N (ϕa, r, π(a), λa, Aa) ≤ 2(1 + ε)

r

for a1 < ā1,ε and kεa1 < r < rε. Integrating between r1 and r2 we obtain the result. ��
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In Lemma 5.3, we obtained a superior bound on the function H(ϕa, r, π(a)). In the
case where r is sufficiently far from the singularity, we can obtain an inferior bound on
H(ϕa, r, π(a)), which can be improved with respect to (7.4). This is the object of the
following lemma.

Lemma 7.3. Let ϕa be a solution of (5.4) and suppose that ϕ has a zero of order 1 at 0.
Let |π(a)| < ā2 so that (7.1) holds.

For every K >
√

β/π (β defined in (6.7)) there exists ā1 > 0 (depending on K ) and
C > 0 such that

H(ϕa, K a1, π(a)) ≥ C(K a1)
2 for every a1 < ā1.

Proof. We consider the functionψ which has been introduced in the statement of Propo-
sition 1.6 (with abuse of notation we divide by the multiplicative constant C which is
not relevant in this context). The rescaled function

(x) = a1ψ

(
x − π(a)

a1

)

satisfies
{

(i∇ + Aa)2 = 0 R
2
+

 = 0 {x1 = 0},
and the following expansion, where x − π(a) = ρ (cos θπ(a), sin θπ(a)):

(ρ, θπ(a))

= ei θa
2

⎛
⎜⎝ρ cos θπ(a) − β

π
a2
1
cos θπ(a)

ρ
+
∑
n≥3
n odd

bnan+1
1

cos(nθπ(a))

ρn

⎞
⎟⎠ for ρ > a1.

(7.5)

By testing the equation satisfied by ϕa by  in D+
r (π(a)) (r > a1), we obtain:

λa
∫

D+
r (π(a))

p(x)ϕa dx = i
∫

∂ D+
r (π(a))

{
(i∇ + Aa)ϕa · ν  + ϕa (i∇ + Aa) · ν

}
dσ.

(7.6)
Fix K >

√
β/π . For ρ > a1 we also define

	(ρ, θπ(a)) = ei θa
2

⎧⎪⎨
⎪⎩
(

K 2 − β

π

)
a2
1
cos θπ(a)

ρ
+
∑
n≥3
n odd

bnan+1
1

cos(nθπ(a))

ρn

⎫⎪⎬
⎪⎭ , (7.7)

so that ⎧⎨
⎩

(i∇ + Aa)2	 = 0 R
2
+\D+

a1(π(a))

	 = 0 {x1 = 0}
	 =  ∂ D+

K a1
(π(a)).
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By testing the equation satisfied byϕa by	 in an annulus (D+
R\D+

r )(π(a)) (R > r > a1),
we obtain:

λa
∫

(D+
R\D+

r )(π(a))

p(x)ϕa	 dx

= i
∫

∂(D+
R\D+

r )(π(a))

{
(i∇ + Aa)ϕa · ν 	 + ϕa (i∇ + Aa)	 · ν

}
dσ. (7.8)

In Eqs. (7.6) and (7.8) we choose r = K a1 and R > K a1 to be fixed later. Adding the
two equations we obtain

i
∫

∂ D+
K a1

(π(a))

ϕa
{
(i∇ + Aa) · ν − (i∇ + Aa)	 · ν

}
dσ

= λa
∫

D+
K a1

(π(a))

p(x)ϕa dx + λa
∫

(D+
R\D+

K a1
)(π(a))

p(x)ϕa	 dx

−i
∫

∂ D+
R(π(a))

{
(i∇ + Aa)ϕa · ν	 + ϕa(i∇ + Aa)	 · ν

}
dσ. (7.9)

Noticing that

(i∇ + Aa) · ν |∂ D+
K a1(π(a))

= iei θa
2

{(
1 +

β

π K 2

)
cos θπ(a) −

∑
n≥3
n odd

nbn

K n+1 cos(nθπ(a))
}
,

(i∇ + Aa)	 · ν |∂ D+
K a1(π(a))

= −iei θa
2

{(
1 − β

π K 2

)
cos θπ(a)+

∑
n≥3
n odd

nbn

K n+1 cos(nθπ(a))
}
,

we can estimate the left hand side of (7.9) from above as follows
∣∣∣∣∣i
∫

∂ D+
K a1

(π(a))

ϕa
{
(i∇ + Aa) · ν − (i∇ + Aa)	 · ν

}
dσ

∣∣∣∣∣
=
∣∣∣∣∣
∫

∂ D+
K a1

(π(a))

ϕae−i θa
2 2 cos θπ(a) dσ

∣∣∣∣∣
≤ 2‖ϕa‖L2(∂ D+

K a1
(π(a)))‖ cos θπ(a)‖L2(∂ D+

K a1
(π(a))) = K a1

√
2π H(ϕa, K a1, π(a)).

(7.10)

In what follows we will estimate the right hand side of (7.9). To this aim, recall that for
every r > 0 it holds

‖e−i θa
2 ϕa − ϕ‖C∞(�\D+

r (0)) → 0 as a → 0.

Moreover, ϕ satisfies (7.1). Hence we have

ϕa |∂ D+
ρ(π(a))= ei θa

2 cρ cos θπ(a) + h(ρ, θπ(a)) + oa1(1), for every ρ > a1, (7.11)
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where c ∈ R and h satisfies (see (2.3))

lim
ρ→0

‖h(ρ, ·)‖C1(∂ D+
ρ (π(a)))

ρ
= 0. (7.12)

Let’s first look at the boundary term in the right hand side of (7.9). Taking into account
that R is fixed and a1 → 0, we have

(i∇ + Aa)ϕa · ν 	 |∂ D+
R(π(a))

= i

(
K 2 − β

π

)
a2
1

R

{
c cos2 θπ(a) +

∂h

∂ρ
(R, θπ(a)) cos θπ(a)

}
+ o(a2

1),

ϕa (i∇ + Aa)	 · ν |∂ D+
R(π(a))

= i

(
K 2 − β

π

)
a2
1

R

{
c cos2 θπ(a) +

h(R, θπ(a))

R
cos θπ(a)

}
+ o(a2

1),

so that

−i
∫

∂ D+
R(π(a))

{
(i∇ + Aa)ϕa · ν	 + ϕa(i∇ + Aa)	 · ν

}
dσ = c(π K 2 − β)a2

1

+

(
K 2 − β

π

)
a2
1

R

∫
∂ D+

R(π(a))

(
h(R, θπ(a))

R
+

∂h

∂ρ
(R, θπ(a))

)
cos θπ(a) dσ + o(a2

1)

≥ c(π K 2 − β)a2
1 − Ca2

1

∥∥∥∥h(R, ·)
R

+
∂h

∂ρ
(R, ·)

∥∥∥∥
L∞(∂ D+

R(π(a)))

+ o(a2
1) ≥ C ′K 2a2

1,

(7.13)

for suitable C ′, R > 0 and a1 sufficiently small, thanks to (7.12).
Concerning the integral in the annulus in (7.9), we replace (7.7) and (7.11) to obtain∣∣∣∣∣
∫

(D+
R\D+

K a1
)(π(a))

p(x)ϕa	 dx

∣∣∣∣∣ ≤ ‖p‖L∞
∣∣∣∣cπ

4

(
K 2 − β

π

)
a2
1 R2
∣∣∣∣

+ ‖p‖L∞‖h‖L∞
∫ R

K a1

∫
∂ D+

ρ (π(a))

∣∣∣∣∣∣∣
∑
n≥3
n odd

bnan+1
1

cos(nθπ(a))

ρn

∣∣∣∣∣∣∣
dσ dρ + o(a2

1)

≤ C

⎧⎪⎨
⎪⎩a2

1 K 2R2+
∑
n≥3
n odd

|bn|an+1
1

∣∣∣∣ 1

Rn−2 − 1

(K a1)n−2

∣∣∣∣
⎫⎪⎬
⎪⎭+o(a2

1)≤Ca2
1 K 2R2+o(a2

1),

(7.14)

since R, K are fixed while a1 → 0.
In order to estimate the last term, we apply Lemma 3.3, the equation satisfied by 

and the expansion (7.5) with ρ = K a1 > a1, as follows

‖‖2L2(D+
K a1

(π(a)))
≤ K a1

∫
∂ D+

K a1
(π(a))

||2 dσ + (K a1)
2
∫

D+
K a1

(π(a))

|(i∇ + Aa)|2 dx

= K a1

∫
∂ D+

K a1
(π(a))

||2 dσ − i(K a1)
2
∫

∂ D+
K a1

(π(a))

(i∇ + Aa) · ν dσ = O(a4
1).
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In a similar way

‖ϕa‖2L2(D+
K a1

(π(a)))

≤ K a1

∫
∂ D+

K a1
(π(a))

|ϕa |2 dσ + (K a1)
2

{
λa
∫

D+
K a1

(π(a))

p(x)|ϕa |2 dx

−i
∫

∂ D+
K a1

(π(a))

(i∇ + Aa)ϕa · νϕa dσ

}
,

so that, using (7.11),

(1 − λa‖p‖L∞(K a1)
2)‖ϕa‖2L2(D+

K a1
(π(a)))

= O(a4
1).

The Hölder inequality provides

∣∣∣∣∣
∫

D+
K a1

(π(a))

ϕa dx

∣∣∣∣∣ ≤ ‖ϕa‖L2(D+
K a1

(π(a)))‖‖L2(D+
K a1

(π(a))) = O(a4
1). (7.15)

By combining (7.9), (7.10), (7.13), (7.14) and (7.15), we obtain

K a1
√
2π H(ϕa, K a1, π(a)) ≥ C(K a1)

2 − C ′(K a1R)2 + o(a2
1) ≥ C ′′(K a1)

2,

for a suitable choice of R and for a1 sufficiently small, and hence the thesis. ��
Lemma 5.3 and 7.3 allow us to say that H(ϕa, K a1, π(a)) = O

(
(K a1)2

)
for K >

max{β/π, 1} and a1 < ā1 (ā1 defined in Lemma 7.3).

7.2. Normalized blow-up at the pole. In order to analyze the behavior of ϕa near a (for
|a| close to 0), we perform a normalized blow-up of the function near the pole. For a
fixed ε > 0, let

rε, ā1,ε, kε be as in Lemma 7.2. (7.16)

We define

ψa(y) = ϕa(a1y + π(a))√
H(ϕa, kεa1, π(a))

, y ∈ D+
R0

(0), R0 = r0
a1

. (7.17)

Note that these are the functions which appear in the statement of Theorem 1.7 (with
K = kε) and that they are singular at e = (0, 1), independently of a. We also remark
that ψa solves the problem

{
(i∇ + Ae)

2ψa = λaa2
1 p̂(y)ψa D+

R0
(0)

ψa = 0 {y1 = 0}, (7.18)

where p̂(y) = p(a1y + π(a)).
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A direct calculation provides the following relations between the frequency function
for ϕa and that for ψa

E(ψa, R, 0, λaa2
1, Ae) = E(ϕa, Ra1, π(a), λa, Aa)

H(ϕa, kεa1, π(a))
, (7.19)

H(ψa, R, 0) = H(ϕa, Ra1, π(a))

H(ϕa, kεa1, π(a))
, (7.20)

N (ψa, R, 0, λaa2
1, Ae) = N (ϕa, Ra1, π(a), λa, Aa), (7.21)

for R > 1. Here, with an abuse of notation, the frequency function for ϕa contains the
weight p(x), while in the frequency function for ψa appears p̂(y) due to the change of
variables in the integral. This has no influence in the calculations, since both p and p̂
satisfy (1.4).

Wewill show that the boundedness of theAlmgren’s function implies the convergence
of the blow-up sequence as a1 → 0. To this aim, notice that Lemma 7.2 and relations
(7.19)–(7.21) provide the following bounds.

Lemma 7.4. Given ε > 0, take the same assumptions and notations of Lemma 7.2. Let
ψa be as in (7.17). Then

N (ψa, R, 0, λaa2
1, Ae) ≤ 1 + ε (7.22)

for every a1 < ā1,ε and kε < R < rε/a1, and

H(ψa, R2, 0)

H(ψa, R1, 0)
≤
(

R2

R1

)2(1+ε)

. (7.23)

for every a1 < ā1,ε and kε < R1 < R2 < rε/a1.

Lemma 7.5. Given ε > 0, take the same assumptions and notations of Lemma 7.2. Let
ψa be as in (7.17). For every R > kε, there exists a constant C(ε, R) > 0 such that

‖ψa‖H1
Ae

(D+
R(0)) ≤ C(ε, R) for every a1 < min

{rε

R
, ā1,ε
}

. (7.24)

Proof. Relation (7.23) and our choice of the normalization provide

H(ψa, R, 0) = H(ψa, R, 0)

H(ψa, kε, 0)
≤
(

R

kε

)2(1+ε)

≤ C(ε)R2(1+ε). (7.25)

This, together with the definition of N and (7.22), implies

E(ψa, R, 0, λaa2
1 , Ae) = N (ψa, R, 0, λaa2

1, Ae)H(ψa, R, 0) ≤ C(ε)R2(1+ε).

Both relations hold for R > kε and a1 < min{rε/R, ā1,ε}. Then∫
D+

R(0)
|(i∇ + Ae)ψ

a |2 dy ≤ C(ε)R2(1+ε) + λaa2
1

∫
D+

R(0)
p̂(y)|ψa |2 dy

≤ C(ε)R2(1+ε) + λaa2
1‖p‖L∞ R2

(
H(ψa, R, 0) +

∫
D+

R(0)
|(i∇ + Ae)ψ

a |2 dy

)

≤ C(ε)R2(1+ε) + λa‖p‖L∞r2ε C(ε)R2(1+ε) + λa‖p‖L∞r2ε

∫
D+

R(0)
|(i∇ + Ae)ψ

a |2 dy.
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At the second line we used the Poincaré inequality (3.2), at the third line we used (7.25)
and the fact that R ≤ rε/a1. Then, thanks to (5.5), we have∫

D+
R(0)

|(i∇ + Ae)ψ
a |2 dy ≤ C(ε)R2(1+ε) 1 + λa‖p‖L∞r2ε

1 − λa‖p‖L∞r2ε
.

We look then at the second part of the norm. Using Poincaré inequality (3.2), we obtain∫
D+

R(0)
|ψa |2 dy ≤ R2H(ψa, R, 0) + R2

∫
D+

R(0)
|(i∇ + Ae)ψ

a |2 dy ≤ C(ε, R),

where we used the previous inequality and (7.25). Finally, we combine the two contri-
butions and obtain a constant depending only on R and ε. ��
Lemma 7.6. Given ε > 0, take the same assumptions and notations of Lemma 7.2. Let
ψa be as in (7.17). There exists ψ ∈ H1

Ae,loc(R
2
+), ψ �≡ 0, such that for every R > kε

we have, up to a subsequence, ψa → ψ in H1
Ae

(D+
R(0)) as |a| → 0. Moreover, ψ solves{

(i∇ + Ae)
2ψ = 0 R

2
+

ψ = 0 {y1 = 0}. (7.26)

Proof. By Lemma 7.5, there exists ψ such that, up to a subsequence, ψa ⇀ ψ in
H1

Ae
(D+

R(0)) and ψa → ψ in L2(D+
R(0)) as |a| → 0. Due to the compactness of the

trace embedding, we have
∫
∂ D+

kε
(0) |ψ |2 dσ = kε, so that ψ �≡ 0. For every R > kε and

for every test function φ ∈ C∞
0 (D+

R(0)\{e}), we have∫
D+

R(0)
(i∇ + Ae)ψ

a · (i∇ + Ae)φ dy = λaa2
1

∫
D+

R(0)
p̂(y)ψa φ̄ dy.

By the weak convergence in H1
Ae

(D+
R(0)), the first term converges∫

D+
R(0)

(i∇ + Ae)ψ
a · (i∇ + Ae)φ dy →

∫
D+

R(0)
(i∇ + Ae)ψ · (i∇ + Ae)φ dy.

We estimate the second term as follows by means of Lemma 7.5∣∣∣∣∣λaa2
1

∫
D+

R(0)
p̂(y)ψa φ̄ dy

∣∣∣∣∣ ≤ λaa2
1‖p‖L∞‖φ‖L2(D+

R(0))‖ψa‖L2(D+
R(0))

≤ Ca2
1‖ψa‖H1

Ae
(D+

R(0)) ≤ C(ε, R)a2
1 → 0,

so that ψ solves the limit equation (7.26). In order to prove the strong convergence, we
consider the equation satisfied by ψa − ψ . We have

(i∇ + Ae)
2(ψa − ψ) = λaa2

1 p̂(y)ψa in D+
R(0).

By Lemma 7.5 and the Sobolev embeddings, the right hand side above converges to 0
in L p(D+

R(0)) for every p < ∞ as |a| → 0. The Kato inequality

−�|ψa − ψ | ≤ |(i∇ + Ae)
2(ψa − ψ)|

(see for example [24]) and the standard regularity theory for elliptic equations, imply
that |ψa − ψ | → 0 in W 2,p(D+

R(0)) for every p < ∞ as |a| → 0. This in turn implies

that the convergence is C1,τ
loc (D+

R(0)\{e}) for every τ ∈ (0, 1) and H1(D+
r (0)). ��
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As a consequence of the strong convergence and of Lemma 7.4, we deduce the
following.

Lemma 7.7. Let ψ be defined in Lemma 7.6. We have

N (ψ, R, 0, 0, Ae) ≤ 1 + ε for every R > kε, (7.27)

H(ψ, R2, 0)

H(ψ, R1, 0)
≤
(

R2

R1

)2(1+ε)

for every kε < R1 < R2. (7.28)

Lemma 7.8. Let ψ be defined in Lemma 7.6. There exists d ∈ [0,+∞] such that

lim
R→+∞ N (ψ, R, 0, 0, Ae) = d.

Proof. Reasoning as in (5.19) we find

d

dR
N (ψ, R, 0, 0, Ae) ≥ − 2|M |

RH(ψ, R, 0)
,

where M is now the constant

M = lim
ε→0

Re
∫

∂ Dε(e)
(i∇ + Ae)ψ · ν(i∇ + Ae)ψ · y dσ.

We can prove as in Lemma 5.3 that

H(ψ, R, 0)

H(ψ, kε, 0)
≥
(

R

kε

)2
,

for R > kε. Recalling that H(ψ, kε, 0) = 1, we obtain

d

dR
N (ψ, R, 0, 0, Ae) ≥ −Ck2ε

R3 ,

for a positive constant C . Let us show that this implies the existence of the limit. Let
for the moment N (R) = N (ψ, R, 0, 0, Ae). Integrating the last inequality in (R1, R2),
with kε < R1 < R2, we obtain

N (R2) − N (R1) ≥ Ck2ε

(
1

R2
2

− 1

R2
1

)
. (7.29)

If d = +∞ there is nothing to prove. Otherwise, we claim that N (R) is bounded.
Indeed, d �= ∞ implies the existence of K > 0 and of a sequence Rn → ∞ such that
N (Rn) < K for every n, so that for R sufficiently large and Rn > R we have, by (7.29)

N (R) ≤ N (Rn) − Ck2ε

(
1

R2
n

− 1

R2

)
≤ K + o(1) as R → ∞,

so that N is bounded. Suppose by contradiction that N (R) does not admit limit d ∈
[0,∞). Then for every δ > 0 there exists a sequence Rn → ∞ such that |N (Rn) −
N (Rn+1)| ≥ δ. The case N (Rn) ≥ N (Rn+1)+ δ contradicts (7.29) if Rn is great enough,
the case N (Rn+1) ≥ N (Rn) + δ contradicts the fact that N is bounded. ��

In the next subsection we will prove that d = 1.
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7.3. Proof of Theorem 1.7. In order to study the behavior of the limit function ψ at
infinity, we perform a rescaling (blow-down) on the independent variable by a factor
R. As before, using the boundedness of the Almgren’s frequence of ψ , we prove the
convergence of the blow-down function as R → ∞. Moreover, we will prove that the
limit function is an homogeneous harmonic function of degree 1. Then, this aims us to
conclude that sufficiently far from the singularity ψ behaves like an harmonic function,
up to a complex phase. More specifically, we prove that this function ψ verifies the
conditions of Proposition 1.6.

Lemma 7.9. Let ψ be the function introduced in Lemma 7.6. We define

wR(x) = ψ(Rx)√
H(ψ, R, 0)

. (7.30)

For every r > 0 there exists a constant C(ε, r) such that ‖wR‖H1
Ae/R

(D+
r (0)) ≤ C(ε, r)

for every R > kε.

Proof. For r > 1 and R > kε we have

N (wR, r, 0, 0, Ae/R) = N (ψ, r R, 0, 0, Ae) ≤ 1 + ε and

H(wR, r, 0) = H(ψ, r R, 0)

H(ψ, R, 0)
≤ r2(1+ε),

by Lemma 7.7. By combining the two, we obtain

E(wR, r, 0, 0, Ae/R) ≤ (1 + ε)r2(1+ε)

for every r > 1 and R > kε. As a consequence, using Lemma 3.3 we estimate

‖wR‖H1
Ae/R

(D+
r (0)) ≤ (1 + r2)E(wR, r, 0, 0, Ae/R) + r2H(wR, r, 0) ≤ C(ε, r)

for R > kε. ��
Lemma 7.10. Let wR be defined in (7.30). There exists w ∈ H1

loc(R
2
+), w �≡ 0, such that

e−iθe/R/2wR ⇀ w in H1
loc(R

2
+). In addition, w is harmonic in R

2
+ with zero boundary

conditions and, for almost every r > 0, we have

lim
R→∞ E(wR, r, 0, 0, Ae/R) = E(w, r, 0, 0, 0). (7.31)

Proof. Fix r > 0. By (2.1) and Lemma 7.9, there exists a constant C(ε, r) > 0 (not
depending on R) such that

‖wR‖H1(D+
r (0)) ≤ C‖wR‖H1

Ae/R
(D+

r (0)) ≤ C(ε, r).

In order to check that the constant C in the previous inequality does not depend on the
position of the singularity e/R, one can extend functions in H1

Ae/R
(D+

r (0))which vanish

on {x1 = 0} trivially to functions belonging to H1
Ae/R

(Dr (0)), and then proceed as in

the proof of [28, Lemma 7.4]. Hence there exists w̃ ∈ H1(D+
r (0)) such that wR ⇀ w̃

in H1(D+
r (0)) and wR → w̃ in L2(D+

r (0)), as R → +∞. Since H(wR, 1, 0) = 1 for
every R, the trace embeddings provide w̃ �≡ 0.
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Let w = e−iθ0/2w̃. In order to prove that w is harmonic, notice first that (i∇ +
Ae/R)2wR = 0 in R

2
+ for every R. Given a test function φ ∈ C∞

0 (D+
r (0)), let R be so

large that e/R �∈ supp{φ}. Consequently we have

−�(e−iθe/R/2wR) = 0 (7.32)

in supp{φ}. This implies, using the weak convergence,

0 =
∫

D+
r (0)

∇(e−iθe/R/2wR) · ∇φ dx →
∫

D+
r (0)

∇w · ∇φ dx as R → ∞,

so that w is harmonic in D+
r (0).

To prove the last part of the statement, fix two concentric semi-annuli A1 ⊂ A2,
centered at the origin and having positive distance from it. Let η be a cut-off function
which is 1 in A1 and vanishes outside A2. For R sufficiently large, we have that (7.32)
holds inA2. By testing the equation satisfied by e−iθe/R/2wR −w by (e−iθe/R/2wR −w)η

in A2, we obtain∫
A1

|∇(e−iθe/R/2wR − w)|2 dx

≤
∣∣∣∣
∫
A2

∇(e−iθe/R/2wR − w)∇η(e−iθe/R/2wR − w) dx

∣∣∣∣→ 0,

which tends to 0 as R → ∞ by the weak convergence. This implies that
∫

∂ D+
ρ (0)

(
|∇(e−iθe/R/2wR − w)|2 + |e−iθe/R/2wR − w|2

)
dσ → 0, (7.33)

for almost every ρ such that ∂ D+
ρ(0) ⊂ A1, as R → +∞.

Finally, we use integration by parts as follows (the second equality is well defined
provided for R > 1/r )

|E(wR, r, 0, 0, Ae/R) − E(w, r, 0, 0, 0)|
≤
∫

∂ D+
r (0)

∣∣−i(i∇ + Ae/R)wR · νw̄R − ∇w · νw
∣∣ dσ

=
∫

∂ D+
r (0)

∣∣∣∇(e−iθe/R/2wR) · νe−iθe/R/2wR − ∇w · νw

∣∣∣ dσ → 0,

where the convergence to 0 comes from (7.33) for almost every r > 0. ��
End of the proof of Theorem 1.7. By combining (7.31) and Lemma 7.8 we obtain, for
almost every r > 0,

N (w, r, 0, 0, 0) = lim
R→∞ N (wR, r, 0, 0, Ae/R) = lim

R→∞ N (ψ, r R, 0, 0, Ae) = d

(recall that ψ was introduced in Lemma 7.6). Since N (w, ·, 0, 0, 0) is continuous, it is
constant. Since we proved in the previous lemma that w is harmonic with zero bound-
ary conditions on {x1 = 0}, we deduce from standard arguments (see for example [30,
Proposition 3.9]) that w(r, θ) = Crd cos(dθ), for some d ∈ N0 odd. Comparing with
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(7.27), taking for example ε = 1/2, we conclude that d = 1. In conclusion, by Propo-

sition 1.6, ψ solves (1.7)–(1.8). Then, ψ = Ceiθe/2
(

r cos θ − β
π

cos θ
r + O(r−3)

)
for

r > 1. Moreover, since H(ψ, kε, 0) = 1, the constant C is given by

C2 = 1
k2ε π

2 − β + O( 1
k2ε

)
. (7.34)

��

7.4. Proof of Theorem 1.8. We can assume without loss of generality that b = 0 and
moreover, by Lemma 3.1, that � satisfies (3.1). Let ϕk have a zero of order 1 at 0 ∈ ∂�,
meaning that there are no nodal lines of ϕk ending at 0. Let K >

√
β/π large be such

that the statement of Theorem 1.7 holds. We proceed similarly to the proof of Theorem
1.5.

For i = 1, . . . , k let

vext
i = e−i θa

2 ϕa
i in �\DK a1(π(a)).

For a1 sufficiently small, vint
i is defined as the unique function which achieves

inf

{∫
D+

K a1
(π(a))

(
|∇v|2 − λa

i p(x)|v|2
)
dx : v ∈ H1(D+

K a1(π(a))),

× v = vext
i on ∂ D+

K a1(π(a))

}
.

We let vi = vint
i in D+

K a1
(π(a)), vi = vext

i in �\DK a1(π(a)). Notice that estimate
(4.13) holds in this case for every 1 ≤ i ≤ k since ϕk has no nodal line at 0. We take

Fk =
{

 =
k∑

i=1

αivi : α = (α1, . . . , αk) ∈ R
k

}
⊂ H1

0 (�),

so that

λk ≤ sup
∈Fk

‖∇‖2
L2(�)∫

�
p(x)||2dx

= sup
α∈Rk

αT Mα

αT Nα
= λmax (N−1M). (7.35)

Here λmax (·) is the largest eigenvalue of a matrix and M, N are k × k matrices with
entries

mi j =
∫

�

∇vi · ∇v j dx = λa
i

∫
�

p(x)viv j dx +
∫

∂ D+
K a1

(π(a))

∇(vint
i − vext

i ) · νv j dσ,

ni j =
∫

�

p(x)viv j dx .

Let us estimate mk,k . We perform the following change of variables in order to work
with the function ψa

k defined in (7.17)

f a,ext
k (y)=e−iθe/2ψa

k (y)= vext
k (a1y + π(a))√

H(ϕa
k , K a1, π(a))

, f a,int
k (y)= vint

k (a1y + π(a))√
H(ϕa

k , K a1, π(a))
.
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By Theorem 1.7 we have that f a,ext
k → e−iθe/2ψk in H1(D+

K (0)) as a → 0. Moreover,

we have f a,int
k → f int

k in H1(D+
K (0)) as a → 0 and −� f int

k = 0 in D+
K (0), f int

K =
e−iθe/2ψk on ∂ D+

K (0). From Proposition 1.6 (ii), we deduce the following behavior of
the harmonic extension f int

k

f int
k (r, θ) = C

(
1 − β

π K 2

)
r cos θ + C

∑
n≥3
n odd

bn

K 2n
cos(nθ) rn, r < K ,

for bn as in Proposition 1.6, (ii), and C given by (7.34) with K = kε. Therefore we have∫
∂ D+

K a1
(π(a))

∇(vint
k − vext

k ) · νvk dσ

= H(ϕa
k , K a1, π(a))

∫
∂ D+

K (0)
∇( f a,int

k − f a,ext
k ) · ν f ext

k dσ

= H(ϕa
k , K a1, π(a)) C2

{
−β + O(K −2) + oa1(1)

}
= −Cka2

1

for some Ck > 0 as soon as K is sufficiently large and a1 is sufficiently small, where in
the last step we used Lemma 7.3.

We deduce that the matrices M and N appearing in (7.35) have the following form

M =

⎛
⎜⎜⎜⎝

λa
1 + O(a2

1) O(a2
1)

. . . O(a2
1)

O(a2
1) λa

k−1 + O(a2
1)

O(a2
1) λa

k − Cka2
1 + o(a2

1)

⎞
⎟⎟⎟⎠

N =

⎛
⎜⎜⎜⎝
1 + O(a4

1) O(a4
1)

. . .

O(a4
1)

1 + O(a4
1)

⎞
⎟⎟⎟⎠ .

Since λk is simple, proceeding similarly to Lemma 4.2, we obtain

λk ≤ λa
k − Cka2

1 + o(a2
1), (7.36)

which concludes the proof. Indeed, N−1M has the same form as M . When looking for
the eigenvalues of this matrix we search the t such that

(λa
k − Cka2

1 − t)Qk−1(t, a2
1) + a4

1 Qk−2(t, a2
1) = 0,

where

Qk−1(t, a2
1) =

k−1∏
i=1

(λa
i + O(a2

1) − t)

and Qk−2(t, a2
1) is a polynomial of degree k − 2 in the variable t , which depends on a1

with terms of order O(a2
1). We set ε = a2

1 and we apply the implicit function theorem
to

f (ε, x, t) = (x − t)Qk−1(t, ε) + ε2Qk−2(t, ε)
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at the point (0, λa
k − Cka2

1 , λ
a
k − Cka2

1). We see that at any point (0, x̄, x̄) we have

∂ f

∂t
(0, x̄, x̄) = −Qk−1(x̄, 0) = −

k−1∏
i=1

(λi − x̄),

so that the implicit function theorem applies at any point (0, x̄, x̄) such that x̄ �= λi
for every i = 1, . . . , k − 1, and we have t (ε, x̄) = x̄ + o(ε) in a neighborhood of
(ε, x) = (0, x̄). Taking x̄ = λa

k − Cka2
1 we obtain (7.36).

Appendix A. Domains with Conical Singularities

The proofs of the main theorems can be partially adapted to the case when � presents
isolated conical singularities, as in the numerical simulations which appear in the Intro-
duction. The results are qualitatively the same as for the smooth domain, but the rate of
convergence of the eigenvalues depends on the aperture of the cone. We can interpret
this fact in the following way: the zero boundary conditions on an acute angle of ∂�

play the same role as the nodal lines of the eigenfunction. The tighter is the angle, the
faster is the convergence.

Consider the following conical domain of aperture α, for some 0 < α < π

� =
{
(r, θ) : r ∈ (0, 1), θ ∈

(
−α

2
,
α

2

)}
. (A.1)

The counterpart of Theorem 1.5 holds.

Theorem A.1. Let � be as in (A.1) and let p satisfy (1.4). Suppose that λk−1 < λk and
that there exists an eigenfunction ϕk associated to λk having a zero of order h/2 ≥ 2 at
the origin. Then there exists C > 0, not depending on a, such that

λa
k ≤ λk − C |a|h π

α for a → 0 along a nodal line of ϕk .

As for the analogous of Theorem1.8, we can prescribe the behavior of the eigenvalues
only in case the pole approaches the vertex of the cone along the angle bisector. This
restriction is related to the open problem presented in Remark 1.9 (i).

Theorem A.2. Let � be as in (A.1) and let p satisfy (1.4). Suppose that λk is simple
and that ϕk has a zero of order 1 at the origin. Then there exists C > 0, not depending
on a, such that

λa
k ≥ λk + Ca

2 π
α

1 for a = (a1, 0), a1 → 0.

The strategy of proof consists in applying the conformal map x
π
α , so that the conical

domain is transformed into the regular half ball D+
1 (0). We end up with a singular

equation of the following type

(i∇ + Aa)2ϕa
k = λa

k

(α

π

)2 p(x)

|x |2− 2α
π

ϕa
k in D+

1 (0).
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The singular potential |x |−2+ 2α
π belongs to the Kato class, which allows to adapt the

proofs of the previous sections. In particular, the following Hardy inequality holds: for
every ε > 0 there exists a positive constant C such that

C

rε

∫
Dr (0)

|u|2
|x |2−ε

dx ≤
∫

Dr (0)
|∇|u||2 dx +

1

r

∫
∂ Dr (0)

|u|2 dσ, (A.2)

for every u ∈ H1(Dr (0),C) and for every r > 0 (see [33]). By combining with the
diamagnetic inequality

∫
Dr (0)

|∇|u||2 dx ≤
∫

Dr (0)
|(i∇ + Aa)u|2 dx,

we obtain the counterpart of the Poincaré inequality (3.2).
Concerning Proposition 2.3, its validity in case of a singular potential belonging to

the Kato class is stated in [13, Theorem 1.3].

Appendix B. Green’s Function for a Perturbation of the Laplacian

Lemma B.1. Consider the set of equations (depending on the parameter ε) −� f =
εc(x) f in � ⊂ R

2 bounded, with c ∈ L∞(�). For ε sufficiently small there exists a
Green’s function G(x, y) such that the following representation formula holds for x ∈ �

f (x) = −
∫

∂�

f ∂νG(x, ·) dσ(y).

Moreover, for every 1 ≤ p < ∞ there exists C independent from ε such that we have

‖∂xi G(x, ·) − ∂xi (x, ·)‖W 1,p(∂�) ≤ Cε,

for x ∈ �, where  is the Green function of the Laplacian with homogeneous Dirichlet
boundary conditions in �.

Proof. We define the Green function as G(x, y) = 	(y − x) + L(x, y), where 	(x) =
− 1

2π log |x | is the fundamental solution of the Laplacian in R
2 and L(x, ·) solves, for

x ∈ �,
{−�L(x, y) − εc(y)L(x, y) = εc(y)	(y − x) y ∈ �

L(x, y) = −	(y − x) y ∈ ∂�.

Notice that this equation admits a solution for ε small because the quadratic form
∫

�

(|∇v|2 − εc(x)v2) dx (B.1)

is coercive for v ∈ H1
0 (�), and moreover 	 ∈ L2(�).

The validity of the representation formula is standard. Indeed, the following identity
holds (see for example [12], equation (25) in paragraph 2.2.4)

f (x) = −
∫

�

	(y − x)� f (y) dy +
∫

∂�

(	(y − x)∂ν f (y) − f (y)∂ν	(y − x)) dσ(y).
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By using the Green formula∫
�

(�L f − L� f ) dy =
∫

∂�

(∂ν L f − L∂ν f ) dσ(y)

and the equation satisfied by L(x, ·), we obtain the representation formula for f .
In order to estimate ∂xi (G − ), we write (x, y) = 	(y − x) + H(x, y), with

{−�H(x, y) = 0 y ∈ �

H(x, y) = −	(y − x) y ∈ ∂�,

so that ∂xi (G − ) = ∂xi (L − H) =: u solves
{−�u − εc(y)u = εc(y)∂xi (x, ·) y ∈ �

u = 0 y ∈ ∂�.

We apply Poincaré inequality and the positivity of the quadratic form in (B.1) as follows

‖u‖H1(�) ≤ C‖∇u‖L2(�)

≤ C

(∫
�

(|∇u|2 − εc(y)u2) dy

)1/2

= C

(∫
�

εc(y)∂xi (x, y)u dy

)1/2
.

Since ∂xi (x, ·) ∈ Lq(�) for 1 ≤ q < 2, we can apply the Hölder inequality and the
Sobolev embedding to obtain

‖u‖H1(�) ≤ Cε1/2
(‖∂xi ‖L3/2(�)‖u‖L3(�)

)1/2 ≤ Cε1/2‖u‖1/2
H1(�)

.

Finally, using again the Sobolev embeddings and a bootstrap argument, we obtain that
u ∈ W 2,q(�) for every 1 ≤ q < 2 and

‖u‖W 2,q (�) ≤ Cε. (B.2)

��
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