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Abstract: We consider the quantum ferromagnetic Heisenberg model in three dimen-
sions, for all spins S > 1/2. We rigorously prove the validity of the spin-wave approxi-
mation for the excitation spectrum, at the level of the first non-trivial contribution to the
free energy at low temperatures. Our proof comes with explicit, constructive upper and
lower bounds on the error term. It uses in an essential way the bosonic formulation of the
model in terms of the Holstein—Primakoff representation. In this language, the model
describes interacting bosons with a hard-core on-site repulsion and a nearest-neighbor
attraction. This attractive interaction makes the lower bound on the free energy partic-
ularly tricky: the key idea there is to prove a differential inequality for the two-particle
density, which is thereby shown to be smaller than the probability density of a suitably
weighted two-particle random process on the lattice.

1. Introduction

The spontaneous breaking of a continuous symmetry in statistical mechanics and field
theory, even if well understood from a physical point of view, is still elusive in many
respects as far as a rigorous mathematical treatment is concerned. The case of an abelian
continuous symmetry is the easiest to handle, and for that a number of rigorous results
are available, based on reflection positivity [18—20], possibly combined with a spin-wave
expansion [7], or cluster expansion combined with a vortex loop representation [21,27].
The non-abelian case is more subtle, and the few results available are mostly based on
reflection positivity:' see [20] for the classical Heisenberg and [18,19] for the quantum
Heisenberg anti-ferromagnet.

1 An exception is the work by Balaban on spontaneous symmetry breaking in classical N-vector models
[2—4], which is based on rigorous renormalization group methods.
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The “standard” quantum model for the phenomenon of interest is the three-dim-
ensional quantum Heisenberg ferromagnet (QHFM), which is not reflection positive
and has eluded any rigorous treatment so far. At a heuristic level, its low-temperature
thermodynamics, including a (formal) low temperature expansion for the free energy
and the spontaneous magnetization, can be deduced from spin-wave theory [5,6,16,17,
25,26], but to date any attempt to put it on solid grounds failed. The only partial results
available on the subject are, to the best of our knowledge: the upper bounds on the free
energy of the S = 1/2 QHFM by Conlon and Solovej [10] and by Toth [36], which are of
the correct order at low temperatures, but off by a constant prefactor; the asymptotically
correct upper and lower bounds on the free energy for large S by two of us [13] (see also
[9,11,12] for earlier work). At large S, the effective attractive interaction in the bosonic
picture (reviewed in Sect. 3 below) is weak, of order 1/, simplifying the problem. The
problem for finite S is significantly harder; quite surprisingly, not even a sharp upper
bound at low temperature was known so far.

In this paper we give the first proof of asymptotic correctness of spin-wave theory for
the QHFM for any fixed S > 1/2 in three dimension at zero external field, in the sense
that we prove upper and lower bounds on the free energy that are asymptotically matching
as f — oo, with explicit estimates on the error (see [14] for a sketch of the proof in the
case S = 1/2). The method of proof uses an exact mapping of the model into a system of
interacting bosons, via the well known Holstein—Primakoff representation [26]. Under
this mapping, the Heisenberg model takes the form of an interacting system of bosons, the
interaction including a hard-core term, which prevents more than 2.5 bosons to occupy
a single site, as well as an attractive nearest neighbor contribution. Low temperatures
correspond to low density in the boson language; therefore, the attractive interaction,
even if not small, is expected to give a subleading contribution to the free energy at
low temperatures, as compared to the kinetic energy term. A subtlety to keep in mind,
which plays a role in the following proof, is that the bosonic representation apparently
breaks the rotational invariance of the model. More precisely, the degenerate states in the
quantum spin language are not obviously so in the bosonic one (rotational invariance is
a hidden, rather than apparent, global symmetry of the model in the bosonic language).

Our problem is reminiscent of the asymptotic computation of the ground state energy
[28,29] and free energy [34,39] of the low density Bose gas, but new ideas are needed in
order to deal with the attractive nature of the interaction, as well as with the non-abelian
continuous symmetry of the problem.

The rest of the paper is organized as follows: we first define the model and state
the main results more precisely (Sect. 2). The representation of the Heisenberg model
in terms of interacting bosons will be reviewed in Sect. 3, where we also present a key
result concerning the two-point function of low-energy eigenfunctions of the Heisenberg
Hamiltonian in Theorem 3.1. The proofs of the upper bound (Sect. 4) and the lower bound
(Sect. 5) to the free energy are given subsequently. Finally, Sect. 6 contains the proof of
Theorem 3.1. The proofs of auxiliary lemmas needed there are collected in an appendix.

Throughout the proofs, C stands for unspecified universal constants. Constants with
specific values will be denoted by Cy, Cy, ... instead.

2. Model and Main Result

We consider the ferromagnetic Heisenberg model with nearest neighbor interactions on
the cubic lattice Z>. It is defined in terms of the Hamiltonian
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Hy = > ($7=5 -5y @2.1)
(x,y)CA

where A is a finite subset of Z3, the sum is over all (unordered) nearest neighbor pairs
(x,y)in A, and S = (S 1 §2, S3) denote the three components of the spin operators
corresponding to spin S, i.e., they are the generators of the rotations in a 25 + 1 di-
mensional representation of SU(2). The Hamiltonian H, acts on the Hilbert space
T = Qren C?5*!. We added a constant S? for every site in order to normalize the
ground state energy of H to zero.

Our main object of interest is the free energy per site

1
f(S,B,A) = —m InTr 7, exp (—=BHp), 2.2)

where B denotes the inverse temperature, and its value in the thermodynamic limit
f(S,B):= lim f(S, B, A). (2.3)
A—73

The limit has to be understood via a suitable sequence of increasing domains, e.g., cubes
of side length L with L — oo. We are interested in the behavior of f (S, 8) in the low
temperature limit § — oo for fixed S. A related question was addressed in [13], where
the large spin regime § — oo with 8 oc S~! was investigated.

We shall show that the free energy at low temperature can be well approximated by
non-interacting spin-waves or magnons, i.e., free bosons. Our main result is as follows.

Theorem 2.1. Forany S > 1/2,

. 1 2 ¢(5/2)
5/2¢3/2 . _ = —
ﬂhm f(S,B)B°S* =Cy:= )3 /]1{3 In (1 e P )dp =3 (2.4)

where ¢ denotes the Riemann zeta function.

The convergence in (2.4) is uniform as S — oo, provided S > S§¢, for some
a > 0. The proof of Theorem 2.1 will be given in Sects. 4 and 5. It comes with explicit
upper and lower bounds on f (S, ) which agree to leading order as S — oo. The
proof can be easily generalized to lattice dimensions larger than 3, but we restrict our
attention to the three-dimensional case for simplicity.

We note that the low-temperature asymptotics of the free energy of the Heisenberg
ferromagnet for S = 1/2 has been studied previously by Conlon and Solovej [10,
Theorem 1.1], where an upper bound on f(1/2, 8) of the form (%)_3/2C1,3_5/2(1 +
o(1)) was derived by means of a random walk representation of the Heisenberg model.

However their coefficient C; in front of /3_5/ 2 was not the optimal one,
1 1 2 1
Cl=——— Pdp = —————.. 2.5
L= T2 n)? /R3 R P PE Y 2:5)

Later this result was improved by Toth [36, Theorem 1] where it was shown that C; can
be replaced C2» = Cy In 2 in the upper bound. Here we not only improve these results by
showing the optimal constant in the upper bound is Cy for general S, we also provide a
corresponding lower bound.
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An interesting consequence of our bounds is an instance of quasi long-range order, in
the sense that, if (-)g is a translation invariant infinite volume Gibbs state for the system
at inverse temperature B,

($% =S¢ - Sy)p < 2llx — ylfecs, B), (2.6)

where e(S, B) = 9g(Bf (S, B)) is the energy per site. By concavity of the free energy,
our upper and lower bounds on f (S, ) imply similar bounds on e(S, B), via

re(S,B) = f(S.B) = =MfES. A=1P), *e(—0c0, ). 2.7)

If we use (4.1) and (5.1) below, and optimize over A, we get
3
e(S, B) = —§c05—3/2ﬁ—5/2(1 +O(SB) ™). k < g (2.8)

Therefore, (2.6) implies that spin order persists up to length scales of the order /4, in
the sense that (S, - Sy)g is bounded away from zero as long as |x — y| < (const.)B/4.
Spin wave theory predicts equality in (2.6), without the factor % and with the £ distance

replaced by the euclidean one, asymptotically for |x — y| < +/B. Of course, one expects
infinite range order at low temperatures, but in absence of a proof Eq. (2.6) is the best
result to date. We shall prove (2.6) in Appendix B.

We conclude this section with a brief outline of the proof of Theorem 2.1. To obtain an
upper bound, we utilize the Gibbs variational principle. The natural trial state to use is the
one of non-interacting bosons, projected to the subspace where each site has occupation
number at most 1; for convenience the trial state is localized into boxes of suitable
(temperature-dependent) size. A localization procedure is also used in the lower bound,
whose proof is more sophisticated and roughly proceeds as follows: we first derive a
“rough” lower bound, off by logarithmic factors from the correct one, by localizing
into boxes of side length £ < B'/? and by using a basic lower bound on the excitation
spectrum, scaling like £72(Smax — ST), where ST is the total-spin quantum number, and
Smax its maximal allowed value. This lower bound on the excitation spectrum has some
interest in itself, and complements the sharp formula for the gap proved in [8] in the
spin 1/2 case. Its method of proof is the key ingredient to get (2.6). Next, we move to a
larger scale (¢ ~ B'/2*¢ for some small ¢ > 0): the preliminary rough bound allows us
to discard states with large energy; by using rotational invariance, we can also restrict
ourselves to computing the trace of interest in the subspace of lowest 3-component
of the total spin. On the corresponding subspace we then utilize the representation in
terms of interacting bosons, and we use the Gibbs—Peierls—Bogoliubov inequality to
estimate — In Tr e " from below by the non-interacting expression, minus the average
of the interaction term. A bound on the latter will be presented in Theorem 3.1 in the
next section, whose proof requires two key ideas: (1) we use the eigenvalue equation
to derive a suitable differential inequality for the two-particle density pp, of the form
—Ap> < (const.) Epo, with E the energy, which is a small number, and A a (modified)
Laplacian on A x Aj;in this way we reduce the many-body problem to a two-body one;
(2) we iterate the inequality, thus obtaining an upper bound on || 02|l in terms of the
long-time probability density of a modified random walk on Z°.
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3. Boson Representation

It is well known that the Heisenberg Hamiltonian can be rewritten in terms of bosonic
creation and annihilation operators [26]. For any x € A we set

1/2 1/2
a;ax a;ax 3
St=+2Sal -2 ST =425 == @ 3 =ala, -8,

+ +

3.1
where aI, a, are bosonic creation and annihilation operators, St =814i8% and[ 14 =
max{0, -} denotes the positive part. The operators a’ and a act on the space EZ(NO) via
(a fY(n) = /n+1f(n+1) and (an)(n) = /nf(n — 1), and satisfy the canonical
commutation relations [a, a’] = 1. One readily checks that (3.1) defines a representation
of SU(2) of spin S, and the operators S’x leave the space ®X€A £2([0,28) & s =
Ryen C?5*!, which can be naturally identified with a subspace of the Fock space F :=
Ryen £2(Np), invariant.

The Hamiltonian Hy in (2.1) can be expressed in terms of the bosonic creation and
annihilation operators as

+ / ny |/ ny + ny / Ny
Z) (—ax 1—§ 1-&61);—&}, l_ﬁ 1—ﬁdx
1

Hy =S
(x,y)CA
+ny +ny — gnxny) , (3.2)

where we denote the number of particles at site x by n, = a;ax. It describes a system
of bosons hopping on the lattice A, with nearest neighbor attractive interactions and
a hard-core condition preventing more than 2§ particles to occupy the same site. Also
the hopping amplitude depends on the number of particles on neighboring sites, via the
square root factors in the first line in (3.2). Note that the resulting interaction terms are
not purely two-body (i.e., they involve interactions between two or more particles; in
other words, they are not just quartic in the creation-annihilation operators, but involve
terms with 6, 8, etc., operators).

In the bosonic representation (3.2), the vacuum is a ground state of the Hamiltonian,
and the excitations of the model can be described as bosonic particles in the same
way as phonons in crystals. There exists a zero-energy ground state for any particle
number less or equal to 2S|A|, in fact. While this may not be immediately apparent
from the representation (3.2), it is a result of the SU(2) symmetry of the model. The
total spin is maximal in the ground state, which is therefore (2S|A |+ 1)-fold degenerate,
corresponding to the different values of the 3-component of the total spin. The latter, in
turn, corresponds to the total particle number (minus S|A]) in the bosonic language.

One of the key ingredients of our proof of the lower bound on f is the following
theorem, which shows that the two-particle density of a low-energy eigenfunction of Hx
is approximately constant. Since this result may be of independent interest, we display
it already at this point.

Theorem 3.1. There exists a constant C > 0 such that, if V is an eigenfunction of the
Heisenberg Hamiltonian on Ay = [0, £)3 N Z3 with energy E > 0, and

p(x1, x2) = (Wlal al ay,ay V) (3.3)

X1 7X2
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is its two-particle density, then

lolle < CST3E|Ipll1. (3.4)

The proof of Theorem 3.1 will be given in Sect. 6. It will allow us to conclude that
all terms in (3.2) higher than quadratic in the creation and annihilation operators can be
neglected at low energy, and the same is true for the constraint n, < 2S§. One is thus left
with free bosons at zero chemical potential, whose free energy equals CoS™>/2p73/2
[compare, e.g., with (4.28) below].

The bound (3.4) can also be interpreted as absence of bound states of the bosons for
small enough energy. It is well-known that due to the attractive nature of the nearest
neighbor interaction bound states do exist at higher energy, see [23,24,31,37,38].

4. Proof of Theorem 2.1; Upper Bound
In this section we will prove the following.

Proposition 4.1. Let Cy be the constant given in (2.4). As S — 00, we have

F(S.B) = Cos™2p752 (1 - 0((BS) ). (.1

By the Gibbs variational principle,

1
f(Saﬂv A) S _TrHAF+

Tr'InT 4.2)
IA] BIA|

for any positive I' with Tr ' = 1. We can use this to confine particle into boxes, with
Dirichlet boundary conditions. To be precise, let

HP =Hy+ > (52 + ssﬁ) 4.3)
xelA,yeA¢
[x—y|=1
be the Heisenberg Hamiltonian on A C Z3 with S; = —S§ boundary conditions. Note

that HI’\D > H,. Wetake A to be the cube A := [0, L)3 NZ3 with L3 sites, and assume
that L = k(€ + 1) for some integers k and £. By letting all the spins point maximally in
the negative 3-direction on the boundary of the smaller cubes of side length ¢, we obtain
the upper bound

-3
FS A = (1467) PS8 AD. SPSBA) =g InTre Py,
4.4)
In particular, by letting k — oo for fixed ¢, we have
-1\ 4p
F8p = (1+67) 7288 A0) (45)

in the thermodynamic limit.
To obtain an upper bound on £, we can use the variational principle (4.2), with

Pe=PTP

el (4.6)
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Here, P projects onto n, < 1 for every site x € Ay, and T is the Hamiltonian on Fock
space F describing free bosons on A, with Dirichlet boundary conditions,

T=5> (—AD) (x.y)ala,

x,yelAy
=S z (—aiay —a;ax+nx+ny) +S Z Ny, 4.7
(x,y)CAy xeAy,yeA]

fe—yl=1

where AP denotes the Dirichlet Laplacian on Ag. The eigenvalues of —AP are given
by

T

1.2 } 48
il ,...,E}) (4.8)

3
e(p) =D 2(1—cos(p’): p e AP = (
j=1

with corresponding eigenfunctions ¢, (x) = [2/(€ + 1)]3/2 Hif:l sin((x/ + 1) p/).

Lemma 4.2. On the Fock space F = @), 5 2(Np),

PHPP <T+Q2S—1) > nny. (4.9)
(x,y)CA

Note that for S = 1/2 the second term on the right side vanishes.

Proof. We write P = [[,c px, Where p, projects onto the subspace of F withn, < 1.
We have

Pxpyajc 1— ﬁﬂ 1- ﬁaypxpy = Pxpyajcaypxpy = alpx(l —ny)(1 —ny)pyay.
(4.10)
In particular,

.. n n N n n 1
P(—a; /1 —ﬁ ll—ﬁay—ay /1 —ﬁ ll—ﬁax+nx+ny—§nxny)73
1
= (a] —a))P(1 —n)(1 —ny)(ax —ay) + P (2 - E) yny. (4.11)

If we bound P(1 —n,)(1 —ny) < 1in the first term, and P < 1 in the second, we arrive
at (4.9). O

As a next step, we will show that Trz PeP7 is close to Trz e A7 for BS > £.
Lemma 4.3. With C3 := 8773¢(3/2)%, we have

Trr Pe AT - C303

T 21" G 4.12)
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Proof. As in the proof of Lemma 4.2, we write P =[], .4 , Px- Then
1
1-P< 1— < - ny(ny — 1 aaaa. 4.13
_Zj( px)_zgxu Z 2y (4.13)

Wick’s rule for Gaussian states therefore implies that

Tr]:Pe’ﬁT 1 Z Tr]:axaxaxax —AT B Z (Tr}-nxe 57)
Trre T — xeAl Trre FT N = Trre FT
(4.14)
Moreover,
Tipnee T _ L o= > A (1, ). (4.15)

Trre BT~ o—BSAD _

n>1

It is well known that the heat kernel of the Dirichlet Laplacian AP is pointwise bounded
from above by the one of the Laplacian Ay3 on all of 73; this follows, e.g., from the
Feynman-Kac formula. The latter equals (see, e.g., [15])

e (x, x) = e Ip(21)3 (4.16)

on the diagonal, with Iy a modified Bessel function (see [22] or Eq. (A.14) below for a
definition). As explained in (A.15) below, Iy(t) < 2e'/+/mt, and thus

1
S8 () < o )3/2 Gyt G2, (4.17)

n>1
In particular, we obtain the bound (4.12). O

By using Wick’s rule in the same way as in the proof of Lemma 4.3, and following
the same estimates, we have, for x # y,

2
Tr]:nxnye*ﬂT _ Trrnye AT Tr}-nye’ﬂT Tr]:a;aye’ﬁT
Trre BT~ Trre BT  Tre AT Trre AT
Tr}-nxe_ﬂT Tr}-nye_ﬂT - 2C;
Trre T  Trre T — (BS)3’

(4.18)

where we used the Cauchy—Schwarz inequality in the second step. In combination with
Lemmas 4.2 and 4.3, we have thus shown that

Trg Te PT

3\ C33
= Teppe T 1

BS)  (BHY

where we bounded the number of nearest neighbor pairs in A by 6£3.
It remains to give a bound on the entropy of T.

TeHLT < +1228 — 1) (1 -

Lemma 4.4. For some constant C > 0 and £ > (B S)l/ 2

Trr Te AT . C 0 Trrpe FT
TrrPe BT~ (BS)/2 B TrpPe FT’

1 1
BTrrlnr < —ElnTry: Pe AT — (4.20)
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Proof. We have

TrlInl = —InTrg Pe PT 4+ Trr Pe PTPInPe PTP. 4.21)

Tr]: 'Pe_ﬁT
Using the operator monotonicity of the logarithm, as well as the fact that the spectra of
Pe PTP and e PT/>Pe=PT/2 agree, we can bound
Trr Pe PTPInPe PTP = Trre PT12Pe P12 1n e PT/2pe=FT/2
<Trr e PT2pe=PT/21n¢=PT = —BTrr PePTT.
(4.22)

Hence

TrrTe T TrrpT(1 —Pe PT

TrTInT < —InTrr Pe PT — +
pmb = 'BTr}-Pe_ﬂT Trr Pe AT

(4.23)

In the last term, we can bound 1 — P as in (4.13), and evaluate the resulting expression
using Wick’s rule. With ¢, the eigenfunctions of the Dirichlet Laplacian, displayed
below Eq. (4.8), we obtain

Trr Ty (ny — e T (Tr]:nxe_ﬂT)z 5 28e(p)

Trre AT - Trre AT eBSe(p) — 1
peAZfD

,Tir noe BT Se(p)lep(x)]?

. (4.24)
—BT . 2
Trre B peAD (slnh %ﬂSS(P))

The expectation value of 1, can be bounded independently of x by /C3(8S)~>/2,
as in the proof of Lemma 4.3. When summing over x, we can use the normalization
> lep (x)]*> = 1. The sums over p can be bounded by the corresponding integrals,
which leads to the bound (4.20). O

In combination, Lemmas 4.2—4.4 imply that

1 1 C 63
f’)(S,ﬁ,Ae)s——lnTrfe—ﬁT__ln(l_ 3 )

B Be (BS)?
-1

(YA e 28— 1
+C(1—-—— + . 4.25
( (ﬂS)3) (/9(ﬁ5)9/2 (BS)? ) (*:29

The first term on the right side equals
1 1

_Wlnnf e BT — e Z In(1 — e PSeW)y, (4.26)

D
PEA}

By viewing the sum as a Riemann sum for the corresponding integral, it is not difficult
to see that

1
50 > In(l — e PP <

D
PEA]

C
/ In(1 —e PSPy 4 — (4.27)
,3(277)3 [—m,7]? SIBZZ
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for some constant C > 0 (compare, e.g., with [33, Lemma 4]). We can further use that
e(p) < |p|? and find that

1 1 2 C
- _ ,—BSe(p) _ ,—BSIpl -
B2r) /[_ms il —e )= By /R Il = e+ g g5

= CoS3?2p73% + WLS)Q (4.28)

for some C > 0, Cy defined in (2.4), and « > O arbitrary. For S > ¢ > (B2,
all the error terms are small compared to the main term. The optimal choice of £ is
L~ (B $)7/3, which leads to the desired upper bound stated in (4.1).

5. Proof of Theorem 2.1; Lower Bound

In this section we will prove the following lower bound on the free energy of the Heisen-
berg ferromagnet.

Proposition 5.1. Let Cy be the constant given in (2.4). Given o > 0, if BS — oo with
BS > 8% we have

F(S,B) = CoST2 B2 (1+0((BS) ™)) (5.1)
for any k < 1/40.

Let again denote A = [0, L)3 N Z3 a cube with L sites, and let L = k¢ for some
positive integers k and £. We can decompose Az into k3 disjoint cubes, all of which are
translations of Ay. By simply dropping the terms in the Hamiltonian (2.1) corresponding
to pairs of nearest neighbor sites in different cubes, we obtain the lower bound

F(S, B, AL) = f(S. B, Ao). (5.2)
By sending k — oo at fixed ¢, we thus have
f(S.B) = f(S, B, Ae) (5.3)

for the free energy in the thermodynamic limit.

The Hamiltonian (2.1) commutes with the total spin operators >, cA S +» and hence
we can label all eigenstates by the value of the corresponding square of the total spin,
i.e., by the integer or half-integer eigenvalues of S, where

5

xeA

2

ST +1) = (5.4)

The following proposition shows that S7 is close to its maximal value S¢° at low energy.

Proposition 5.2. There exists a positive constant C > 0 such that

Hy, > c% (se-s7). (5.5)
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Note that the lower bound (5.5) implies, in particular, that the gap in the spectrum of
Hp, above zerois atleastas bigas C S¢~2. Except for the value of the constant, this bound
is sharp, since one can easily obtain an upper bound of the form 25(1 — cos(rr/¢)) ~
72S5¢~2. This latter expression is actually known to be the exact gap in the spin 1/2 case
[8] (see also [30,32,35] for related results).

Proof. The starting point is the simple inequality
s 3 2 s 3 2 1/, = =
(s2=5.-5)+(s —sy-sz)zi(s - 5:-5.) (5.6)

for distinct sites x, y and z. To prove it, it is convenient to use the equivalent formulation

s 1 > - o 1 /o =1\2
s —ES—Sy-(Sx+SZ)+Z(Sx+SZ) > 0. (5.7)
Thf: eigenvalues of (S'x + S’Z)z are given by #(r+ 1), with ¢ € {0, 1, ..., 2S5}, and we have

-8y - (8¢ + ;) = — S5t in the subspace corresponding to ¢. It is thus sufficient to prove
that

1 1
SZ—ES—SI+Zt(t+1)20 Vi e{0,1,...,2S). (5.8)

The expression on the left side of this inequality vanishes for t = 2S and t = 25 — 1,
and since it is quadratic in 7 this implies non-negativity for all the relevant ¢. This proves
(5.6).

We claim that if we have a number n + 1 of distinct sites x, inequality (5.6) implies

that
n
s o = 1y = =

Z% (S -3, -SXM) > 5 (s ~ 5 -Sxm) . (5.9)

Jj=
If n = 2F for some k > 1, this follows immediately from a repeated application of (5.6),
even without the factor 2 in the denominator on the right side. The result in the general
case can then easily be obtained by induction, writing a general n as asumn = ZT:] 2Kj
with) < ki <ky < - < ky,.

For any pair of distinct sites (x, y) € Ay x Ay, we choose a path xg, xq, ..., x, in
Ag,suchthat xo = x, x, = y, [xj_1 —xj| = 1 forall 1 < j < n,and x; # x; for
k # j. Then (5.9) implies that

n
=58 =2m ) (82 8o 8y) (5.10)
j=1

We shall choose the path as short as possible, i.e., n = ||x — y||; < 3¢. There are many
such paths, and we take one that is closest to the straight line connecting x and y. Let
us denote such a path by C, ,. We have

S (se+1)=sTsT+ = > ($-5-5,)

x,yelAy
x#y
=2 > =yl > ($2-5.50)
X, yENg (xi,xi41)€Cx y
X#y
<6t > (52 ~5, - §y) Nyy. (5.11)

X, yeNy

e =yl=1
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where N, , denotes the number of paths among all the C; ., z, 2’ € Ay, that contain the
step x — y. By construction, the edge from x to y can be part of C, s only if either x or
y is within a distance O(1) from the line connecting z and z’. For a given z # x, this will
be the case for at most C¢3 |x — z|’2 values of z’, which leads to the bound Nyy < cet
for some C > 0 for all nearest neighbor pairs (x, y). By inserting this bound in (5.11),
we thus obtain

Se3 (5133 - ST) < 563 (5153 + 1) —ST(sT +1)

<6ct5 > (52 Y §y) = 12C03Hy,. (5.12)
x,yeNy
[x—yl|=1

This completes the proof of (5.5). O

With the aid of the bound (5.5) we shall now prove the following preliminary lower
bound on the free energy.

Lemma 5.3. For £ > (,BS)U2 and BS > S with o > 0, we have

In SB\>/?
)

f(S, B, Ap) > —CS( (5.13)

for some constant C= C(«) > 0.

Proof. The dimension of the subspace of 53, = Q) C25+! corresponding to ST =

€3S — s is bounded from above by
286
(2z3s+1)( ) (5.14)
s

The factor 23S + 1 is a bound on the number of different values of the 3-component of
the total spin, and the binomial factor comes from distributing the s particles over 25¢3
slots, 2§ for each site. Hence, from (5.5),

xely

SE) 2503
Tre #Hn < TrefCST7ST-09 < s 4+1) > ( )eﬁcs‘zs
- o s
5s=0

o\ 28563
<QBs+1) (1+e—/~“cs‘z 2) . (5.15)

The free energy is thus bounded from below as

28 -2 1
_ —BCSt _ 3
f(S.B. M)z~ In (1 +e ) Tk (2z S+ 1)
28 -2 1
_ —-pCSt™ _ 3
> 5 e _,353 In (ZZ S+1). (5.16)
For L1
€=ty := (BCS)'/? (1n (5(505)3/2)) (5.17)

this yields an expression of the desired form (5.13). For larger ¢, we can use the subad-
ditivity (5.2) to obtain the result in general. O
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We now come to the main part of our lower bound on the free energy. The preliminary
estimate (5.13) allows us to restrict the computation of the partition function to the
subspace of states with not too large energy. Let Pr be the spectral projection of Hp,
corresponding to energy < E. Then

Te(l — Ppye PHr < e PEI2Tr(1 — Pp)ePHA? < o=BE/2,—=BL [(S.B/2.00)/2

(5.18)
In particular, with
E = Eg:=—0f(S, B/2, Ay), (5.19)
we have
Tr(l — Pgye PHr < 1. (5.20)
Note that Lemma 5.3 implies that
Eo < CS™32(B~ ' InSB)>/? for ¢ > (BS)'/2. (5.21)

For the part of the spectrum corresponding to energy < E(, we decompose the Hilbert
space into sectors of total spin S”, defined in (5.4). For given ST, every eigenvalue of H,

is (287 + 1)-fold degenerate, corresponding to the different values —S7, ST +1,..., ST
the third component of the total spin, er A Si, can take. We can thus restrict our

xeh, S 3 = —S7, taking the degeneracy factor

into account. That is, with P3 denoting the projection onto the subspace of our Hilbert

attention to the eigenstates for which >

space corresponding to erAé S;’ = —ST, we have
Trg(Hp,) =Tr @sT + 1)P3g(HAZ) (5.22)

for any function g. In particular,
Tr Pgye PHae = Tr Pg, (2ST + 1) P3e ™ PHae < (2803 + 1) Tr Py, P3e PHAc. (5.23)

Note the total particle number in any eigenstate of Hy, in the range of Pg, P3 is bounded
by €2 Eq/(CS), according to Proposition 5.2.
Let us denote Pg, p3 by QE, for short. By combining (5.20) and (5.23), we obtain

Tre PHne <14 (2803 + 1) Tr Qe PHre < 2863 +2) Tr Qg e PHre,  (5.24)

where we have used that Tr Q Eo(f‘8 Hay > 1 in the last step (which follows from the
fact that Hp, has a zero eigenvalue with eigenvector in the range of Qp,). If we write
Hp, = T — K for two hermitian operators 7" and K, the Peierls—Bogoliubov inequality
implies that

_ _ Tr Qo K Qe P
Tr Qg e P < Tr Qg e PLET QR ex . (5.25)
0 0 p IB Tr QEOe_ﬂHA[’

We choose T to be the Hamiltonian of free bosons, projected to our Hilbert space where
ny <28 forevery x € Ay. That is,

T=S Z 735( aay aax+nx+ny)735 (5.26)
(x,y)CA¢

with Pg the projection onto n, < 2.5 for every site. The operator K is then simply defined
via Hy, = T — K. We have the following bound on K, similar to [13, Prop. 2.3].
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Lemma 5.4. The operator K defined above satisfies the bound

K= Z (4nxn)' +nc(ne — 1) +ny(ny — 1)) . (5.27)

(x,y)CA¢

| =

Proof. The operator K can be written as a sum of two terms, K = K| + K», with

= > nay. (5.28)

(x,y)CAg

Hence it only remains to look at Ky, given by

Ki==S > Ps(ajkeyay+ajke,ar)Ps. (5.29)
(x,y)CA¢

key=1— 1= 125 (5.30)
e 28 28 = :

The Cauchy—Schwarz inequality and the fact that k, , < (ny +n,)/(2S) imply that

where

Ki<S Z Ps (aikx,yax +a;kx,yay) Ps
(x,y)CA¢

> Ps(nelnge — 1) +ny(ny — 1) +2n,ny) Ps. (5.31)
(x,y)CA¢

=

| =

The projections Ps can be dropped in the last expression, since 73, = PsF is left
invariant by the operators ny. O

Let now W be an eigenstate of Hj, in the range of QF,, and let p(x1, x2) =
(W |ax aya} ,ax| W) denote its two-particle density. From Lemma 5.4 we have

1 1
(WIKW) < > (2p<x,y)+§p<x,x)+5p<y,y))518@3||p||oo. (5.32)
(x,y)CA¢

Theorem 3.1 states that ||p]lcc < CS™ 3E3||,o||1 Moreover, ||p|1 is bounded by the

square of the particle number, i.e.,

2

2E,
<{—) . 5.33
Ilplll_(cs) (5.33)
In particular, we conclude that
Tr Qg K Qg e PHre  C 2 ree\"
1OsR0me " &g ot (—) Insp?  (5.34)
Tr Qg e PHAe N (SB)3/2 \ SB

for some constant C > 0 and £ > (ﬂS)l/z.
We are left with deriving an upper bound on

Tr Qg e PP T Cko, (5.35)
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with T defined in (5.26) above. As already noted, the total number of particles in the range
of QE, is bounded by Ny := £2E0/(CS), and hence Qfg, < Qy,, the projection onto
the subspace corresponding to particle number < Np. Let again F = Q). A L?*(Np)

denote the bosonic Fock space. The operator T in (5.26) is of the form PsTyPs, with
Ty the Hamiltonian for free bosons on F. We can thus write

Tr QEOe*ﬂQEO TQky — Trr Ps QEoeiﬁ QkyPsToPs Qk, (5.36)
where we denote by Trr the trace on the Fock space F. By the Gibbs variational
principle,

_ % InTr 7 Ps QEoe—ﬁQEOPsToPs 0k,

1
= min TrTop+ETr}-plnp: 0<p=<PsQkg,, Trrp= 1]. (5.37)

Since PsQfg, < 9n, (viewed as an operator on F), this implies that
Trr Ps QEoeiﬂ 0k PsToPsQry < Tr QNoeiﬁ OngToCQNy — Trr QNOe*ﬁTo . (5.38)

where we used that Qp, commutes with Tj in the last step.
The eigenvalues of the Laplacian on A, are given by

3
[s(p) = > 201 —cos(p): p e AN = %Ag] : (5.39)

i=1

For p # 0, we can simply ignore the restriction on the particle number, and bound

1
Ty Quoe PP < o+ ) [T 5 (5.40)

L T— e BSe)”
PEA}

p#0

By viewing the sum over p is a Riemann approximation to the corresponding integral,
it is not difficult to see that

1 _ —BSe(p) 1 / s g, _C
503 Zln(l e gp)2(271)3,3 [_n’npln(l e SP)dP B

N
PeEN;
P#0

(5.41)
for some constant C > 0. (Compare with the corresponding bound (4.27) in the previous
section.) Finally, for some C > 0

1 _ Co C
In(1—e PSP — 1+ = 42
Q21038 Ji—np n( ¢ )d” = g\ s (542)

with Cy given in (2.4). To see (5.42), note that Cy B/2573/2 is the result of the integral
if e(p) is replaced by |p|? and the region of integration [—7, 7]? is replaced by R3.
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Using that e(p) > |p|?> max{1 — |p|?/12,4/7?} for p € [—m, w]*, we have

1

In (1 — 67’358(1’)) dp — o

@1)B Jioap prs2
o 1_e—ﬂS|p|2(1—|p\2/12)d
—_— n
= @18 Jipi<2 1 —e sz P
1
o In (1 - e—4ﬂ5|1"2/”2) dp. (5.43)
2m)°B Jipi=2

The last term is exponentially small in 8S. In the integrand of the first term, we can
bound

In

| — o=BSIPPA=1pP/12) BSIpl*/12 ] BS|pl* 1
_ - > —
[ — e PSInP /o ePSIPP= 1T T 12 Q2BSIPP
(5.44)

for | p| < 2, which leads to the desired estimate (5.42).
Collecting all the bounds, we have

Co cy ¢ 1 oe\" 252
r65.0.00 2 g (1455) - T (55) o9
C

1 3
T [(No +1)(2863 + 2)] . (5.45)

We are still free to choose £. For the choice £ = (85)21/40 we obtain an error term
smaller than CS(BS)~>/>~1/40(In £5)>/2, implying (5.1).

6. Proof of Theorem 3.1

In this section we will give the proof of Theorem 3.1. Note that since ||pllco < |lo|1
holds trivially, it suffices to prove the theorem when the parameter £/S is suitably small.
Thanks to Proposition 5.2, all non-zero eigenvalues of Hy, are bounded from below by
CS¢~2. Hence E/S small implies that ¢ is large.

We shall divide the proof into several steps. In Step 1, we shall prove a differential in-
equality satisfied by the two-particle density of an eigenstate of H . It involves a suitable
weighted Laplacian on A x A. In Step 2, we shall use the method of reflections to extend
the inequality from A, x A to the whole of Z. By iterating the resulting inequality,
we obtain a bound on the two-particle density in terms of the probability density of a
random walk on Z°. The necessary bounds on this probability density are derived in
Step 3. With their aid, we can show that the desired bound on the two-particle density
holds at least a certain finite distance away from the boundary of A, x Ay. To extend
this result to the whole space, we shall show in Step 4 that our differential inequality
also implies that the two-particle density is very flat near its maximum, implying that
its maximal value in the smaller cube a finite distance away from the boundary is very
close to its global maximum.
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6.1. Step 1. The first step in the proof is to derive a differential inequality for the two-
particle density of an eigenstate of Hy. We state it in the following lemma.

Lemma 6.1. Let ¥ be an eigenstate of Hx with eigenvalue E, and let p(x1,x2) =
(\I!|cz;la;2amax1 |W) denote its two-particle density. Then

2E 8y s 5t
TP(XI,XZ)Z Z [p(xl,xz)(l— ;S )—,O(y,m) (1_ 2152)]

yeA
ly=xy1=1

th 8)( X
+ > [p(xl,m (1 - 2—;) —p(x1,y) (1 - 7)} . (6.1

yeA
[y—xp|=1

Proof. The Heisenberg Hamiltonian (3.2) can be written as

_ + My _ gt M 1 [1- D
Hy=$ > (ax\/l—ﬁ—ay\/l—ﬁ)(ax I-o5—a 1—§),
(x,y)CA

(6.2)

where n, = a;ax and the sum is over all bonds in the graph. Equivalently,

n n n
HA:SZ(a;/1—%—(1;\/1—%)@\/1—%, (6.3)

(x,y)

where the sum is now over all ordered nearest neighbor pairs in A.
Let W be an eigenfunction of H, with eigenvalue E. Then

Ep(x1,x2) = E(Wl|a! al ay,a, |V) = (¥|Hpa

X1 7X2

T agay V). (6.4)

T
X1 axz

We compute

[ n ny
ay /1 — ﬁ ailaizaxzaxl = (ailaizamaxl + 0y x My, + 8x,x2nxl) ay, /1 — ﬁ (6.5)
Ep(xi,x) =S Z<w

and thus
= ny _ T\/l _
(“"\/ 25~ Y 28
(x,y)
ot [1 My
X (amaxza)(zax1 + 8x,xMxy +8x,x2nxl) ay,/1 — 75

The contribution of the first term a;, a;Z ayx, dy, in the middle parenthesis is non-negative
after summing over all pairs (x, y), and can hence be dropped for a lower bound. For
the remaining two terms, we write the last factor in (6.6) as

1 1
ay 1_;_;*25(a"\/l_;_;'_ay\/l_z_g)+§(a"\/l_%+a«v\/1_;—§)

11/> (6.6)
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and observe that the contribution of the first term yields again a non-negative expression.
Hence we get the lower bound
Ep(x1x2)>— < (Tll———a )
( 2Y)
my n
X (8x 1My + 8y xa0xy) (ax /11— T /11— ﬁ) ‘xp> (6.8)

Since the right side is real, we only have to consider the hermitian part of the operator

involved. This gives
1-— Iy (8xxlnx2+8xx2nxl)ax / _y 7
PANRE ' 28
»s <\_p

—,O(X1,X2) > > <
(x.y)
n
a; [1— ﬁ (SX,X]nx2 +8x’x2nxl) ay ﬁ
(x,)
ny
= Z <\IJ ‘[ a,, xzamax1 (1 25) y xzax2ay ( _

S

Y
Sl

yily—x1l=1
ny
X {v|[alabacan (1-55) -l afaa (1-55)]|¥)
yily—x2|=1
BYsXZ BXI’XZ
= > I:P(Xlaxz)(l—ZS)—P(}HXZ)(l—W
yily—xi|=1
Sx1.y )
+ > [p(xl,m(l— ;‘S’y)—pul,y)(l—xz‘—g‘z)].
yily—x2|=1
(6.9)
O

Instead of looking at p(x1, x7), it will be convenient below to define o (x1, x2) by

8x X
p(x1, x2) = o(x, x2) (1 — 21—52) . (6.10)

For § > 1 this defines o in terms of p for every pair of points; for S = 1/2 we take
o(x,x) =0,1i.e., 0 = p. By plugging this ansatz into (6.1) we obtain

2E 1)
TO'(XIJQ) > Z (o(x1,x2) — o (y, x2)) (1 - %)
yily—xil=1
Oy y
+ — 1——). A1
> (o, x) o(xl,y»( ZS) (6.11)
yily—x2|=1
In particular, o satisfies the inequality
2E 1
(—Ax, — Ax) o) (x1,x2) < ?G(xl,m) + EG(x1,X2)X|xle2\=1, (6.12)

with A denoting the Laplacian on A.
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6.2. Step 2. Consider now a cubic lattice restricted to £3 sites, A, := [0, £)° N Z3.
The inequality (6.12) holds for (x1, x2) € A¢ X Ag. It can be extended to all of 70 via
reflection: Forz € {0, 1,...,£ — 1} and m € 7Z, let

zm:m£+%(£—l)+(—l)m (z—%(@—l)) e{ml,ml+1,...,(m+ 1) —1}

(6.13)
denote the image of z obtained after reflecting m times at the boundary of the interval.
One readily checks that

2= wy = (=" (z_pymety — W), (6.14)

which will be useful below. We extend this to z € Ay x Ay componentwise, and
introduce the corresponding z,, for m € Z°. For any function f on A; x Ay, we define
a corresponding function fX on Z° by

R = f2) (6.15)

for all m € 7% and z € Ay x Ay. With x denoting the characteristic function of the
subset of Ay x Ay with |[x; — x2| = 1, we obtain from (6.12) the bound

(—AZmR) (2) < Z?EO’R(Z) + éaR(z)xR(z) (6.16)

forall z = (x1, x2) € 79, and with A6 now the usual Laplacian on the full space 70.
We bound the o ® in the last term on the right side of (6.16) simply by [|o % =
lo]leo- For E < 68, we can write the resulting inequality equivalently as

oR@z) < - E/@65)™! (<0R>(z) + %nonmx’e(w),

(6.17)

where () means averaging over nearest neighbors in Z°. If we iterate this bound n times,
we further obtain

1

of@=(1=E/6S)™" | X Palz, w)a®w)+cllollo D Onzw)x (w) |,

weZo weZb

(6.18)

where P,(z, w) denotes the probability that a simple symmetric random walk on Z°
starting at z ends up at w in n steps, and Q,, = Z’};(]) P;.

In the next step, we shall derive a simple upper bound on P, which will allow us to
bound the first term on the right side of (6.18) in terms of the 1-norm of o. Moreover,
we shall carefully evaluate the last term in (6.18) in order to show that it is strictly less
than ||o || . It can thus be combined with the term on the left side of (6.18) to obtain the
desired bound on the co-norm in terms of the 1-norm.
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6.3. Step 3. We shall first give a bound on the last term in (6.18). For any F > 0, we
can bound Q,, as

n—1

Qn(z,w) < (1+ F/6)"' D (14 F/6)7/ Pj(z, w)

j=0
<1+ F/6)" "> (1+F/6)7/ Pj(z, w)
j=0
=12(1+ F/6)" (—Ags +2F) "\ (z, w). (6.19)

We are thus left with the task of deriving an upper bound on the quantity

D (a2 M awixRwy = DL D (A +2F) (2 wa)x (w).
weZo meZ0 weAgx Ay
(6.20)
Using detailed properties of the resolvent of the Laplacian on Z°, we can obtain the
following bound. Its proof will be given in the Appendix.

Lemma 6.2. Let

\/5_1 2.1 2,11
Cs = s T2 G (5) ~ 02527 (6.21)

and assume that 7 € Ay x Ay is a distance d away from the complement of Ay x Ay.
Then

3
B . R 1 2 2(1+/F)t3
w%ﬁ( Age +2F)  (z, w)x " (w) < §+(3+F/2) |:C4+7u1(1_(14.w .

(6.22)

The last term on the right side of (6.22) is due to the finite size of A,. It would be
absent in infinite volume, in which case we could set ' = 0. It will be very important
to note that

1 1
3C4 — 3 ~ (0.2582 < 7 <. (6.23)

It implies that, for our choice of F ~ £~2 below, the expression on the right side of
(6.22) is strictly less than S for large enough d.
It remains to derive a bound on P, (z, w). The central limit theorem implies that, for

large n, P,(z, w) behaves like (3/(nn))3e_3”z_w”%/”. In fact, we have the following
explicit bound.

Lemma 6.3. Let by &~ 1.942 denote the unique solution of

6b>
(sinh )2

37\’ —w|}
Py(z, w) < (_n) exp (—bow). (6.25)
n 2n

= b. (6.24)

Then
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The proof of Lemma 6.3 is straightforward and we shall give it in the Appendix.
From Lemma 6.3 we have the bound

> Puzwyofw) <ol D sup Pulz,w — ko)

weZb keZb weAex A

37\° lz — w+ke|2
snaul(T) > sup eXP(—boTz

keZ6 Z,WEAr X Ay

6
37\ —w+kl|?
= ol (= sup  exp (—bo ZHETN )
p p
n rez Hwel0, 1. -1} 2n

(6.26)

where ||o]||; = ZweAexAk o (w). We can bound the last exponential by 1 for |k| < 1,
and by exp(—bot> (k| — 1)2/(2n)) for |k| > 2. This gives

3 3 2€2
Z P, (z, w)aR(u)) <ol (Tﬂ) 3+22exp (—bomzn )

weZb m=>1

37\° o0 m2e? 6
<lolh - 3+2/0 exp | —bo > dm
3 6
3 2mn
= o 7 3+ b07 . (6.27)

If we insert the bounds obtained in (6.19), (6.22) and (6.27) into (6.18), we obtain

6
o) < (1~ £/(68) "l (3”)3 34 |22
- n bot?

3
n £/3
+( 1+ F/6 ) ;||U”oo(3c4_l+C4F+6+F|: 2(1 +VF) })

6

1—E/(6S) 272 wd | 1—(1++F)~t/3
(6.28)

forall z = (x1, x2) € Ay x Ay adistance d away from its complement. The bound holds
foralln > 1andall F > 0.
We shall simply choose F' = £72 and, recalling that E/S > Ce~2, we fix

n=|eSE"" (6.29)

with ¢ small enough such that

( 1+ F/6 ) _ 1-46 6.30)

1—E/(6S)) ~ 6Cs—1+Csl2

for some § > 0 and all small enough E/S. Since 6C4 — 1 =~ 0.516 < 1, this condition
can be satisfied for small enough (but strictly positive) §. The resulting bound is then

1
-3 13 _ -1
0(2) = CSTEolli + o (1 5+Cd )||o||oo. (6.31)
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For § large enough, the coefficient in front of the last term in (6.31) is smaller than 1
for all d > 1, hence we obtain the desired result directly from (6.31) in this case, taking
the supremum over z on the left. For smaller S, we need an additional argument, which
is provided in the next and final step.

6.4. Step 4. The following lemma implies that o is very flat near its maximum. In
particular, the maximal value of o in the smaller cube a distance d away from the
boundary of Ay x Ay is close to its global maximum. We shall deduce this property
from the differential inequality (6.11).

Lemma 6.4. Assume that o satisfies (6.11), and let zo € Ay X Ay be such that o (z0) =
llo|lco. Then, for S > 1,

n o= tou (1o 25 (12) 632)
min o (2) > o = )
zillz—zolli=n * 11S\1— %

foranyn > 1. For S = 1/2 we have the bound

. 4E
min  0(z) = [[0]leo (1 - H(12)”) (6.33)

z:d(z,20)=n
instead, where d(z, w) denotes the distance on the graph Ay x Ag\{(x, x): x € Ag}.
Proof. Let us first consider the case S > 1. Let

v =lolld  min  o(2), (6.34)
z:llz—zoll1=n

and choose z,, with ||z, — zo|l1 = n. Let us define the degree of the vertex z € Ay X Ay

as
d.= > (1—8“"—*“’2). (6.35)

28

w:|w—z|=1

The inequality (6.11) can be written as

2FE 1)
0@ zdo(2) - > ow) (1 - “’21—51“2) : (6.36)
w:|lw—z|=1
Hence we have, for z = z,,,
2F 2E
T”U”oo > ?O—(Zn) > d,0(zp) — (dz, — M0 lloc — A0 (Zp+1), (6.37)
where 7,41 is a neighbor of z, such that ||z,+1 — zoll1 = n + 1, and A is either 1 or

(1 —1/(2S)). Equivalently,

1 1 _
0 @nt1) z +dz,0(2n) — - (dz, +2ES "=l oo (6.38)
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Note that d; < 12 for any z. The right side above is decreasing in d;, and increasing in
A, hence we can replace d, by 12 and A by (1 — 1/(2S5)) for a lower bound. Moreover,
we pick z, and z,,+1 in such a way that o (z,+1) = [|0 [|coVn+1. We thus conclude that

12(1 — v,) +2ES™!

1
1= 55

(6.39)

Vel > 1 —

By induction, one easily sees that this implies that

n
12 _1 "
2E 1% 2E [ 12
TP (it S A — ). (6.40)

- S 1+ T 118

1= s
This proves the bound (6.32) inthe case S > 1. The proof of (6.33) works analogously. O

Lemma 6.4 implies that

d—1
. . 2E [ 12
sup{o(z): dist(z, (Ag X Ap)) 2d} > |lofloo [ | — —% i (6.41)
s\ 1- L

for S > 1. Similarly, we can bound for § = 1/2
- di c _ 4_E d+1
sup{o(z): dist(z, (A¢ X Ag)) > d} > |lofloo | 1 11 (12) , (6.42)

noting that because of the hard-core constraint z; # z2 it may take up to two more steps
to go from a point w to a point z. In both cases,

suplo(z): dist(z, (Ae x Ap)) = d} > [0 ]loo (1 - Es—lcd) (6.43)

for a constant C > 1. We plug this into (6.31), taking the maximum over all z a distance
d away from the boundary on the left side. This gives

EC! -1 —313
lolloo (1= = 55 (1=0+Ca™)) =CSTEoln, (644)
and this bound now holds for all d. We choose d large enough such that 1 — 21_S (1—-6+
Cd~") > §/2, and thus obtain, for small enough E /S,
lolloo < CSE o1 (6.45)

Since p(z) < 0(z) < p(z)(1 —1/28))"! for S > 1, and p(z) = o (z) for § = 1/2,
this implies (3.4).
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Appendix A. Proofs of Auxiliary Lemmas

Proof of Lemma 6.2. From the property (6.14) and translation-invariance and parity of
the Laplacian, the expression in (6.20) equals

6200= D" D (=Ags+2F) " (gm. w)x (w) (A1)

meZ0 weAyx Ay

for z € Ay x Ayg. Because of x, the sum is restricted to w = (wy, wy) € Ag X Ap with
|w; — wy| = 1. Since the resolvent of the Laplacian has a positive kernel, we can drop
the condition that wy € A, for an upper bound. This gives

AD< D > D (—Ag+2F) @, (x, x +e)). (A2)

meZb ecZ3:|e|]=1Xx€N¢

The resolvent of the Laplacian can be conveniently written in terms of its Fourier trans-
form as

eiP1-(1=yD+ipa-(x2—y2)

1
Ao +2F) Nzow) = —— dpidps, (A3
(=Azo+2F) (@ w) = 5 /[_m]s s +8(pa) +2F PP (A9

where z = (x1, x2), w = (y1, y2) and e(p) = 6 — ZeeZ3z\e|:1 €'P¢ denotes the disper-
sion relation of the Laplacian on Z3. Hence

1 eipl '(xl.ml _X)+ip2'(x2.mz —x—e)
(A2) = 7/ dpidp>
2 2 X 2T ey sGur e eI

m1€Z3 myel3 ecl3:le|=1 XEAg

et P1- (X1 my =X)+ip2-(x2,my —X)

1
=22 2 W/ 6 () +e(p) +2F (6 —e(p2)) dp1dpa.

-7, 7T
myeZ3 myeld XeNy [

(A.4)

With the aid of the identity (6.14), we can rewrite the last expression as

1 e PU- (X1 =X )+iP2- (%2, my =X )
A4d) = —_— 6 — dp1d
AhH= > > > PR /[_n,n]b o0 T 509 TOF (6 — e(p2))dp dps

mi€Z3 myeZ3 XeNAy

_! D % wein(—ﬂﬂzmz)dp, (A.5)
2 i (2m) [—m,7]3 g(p) +F

For (x1, x2) € Ay X Ay, this further equals

_ 1
(AS)=G+F/2) > (=Ap+F)" (1. xom) — s (A.6)

meZ3

At this point, we need some properties of the resolvent of the Laplacian on Z3, which
we collect in the following lemma. Its proof will be given at the end of the proof of
Lemma 6.2.



Heisenberg Ferromagnet 303

. -1 . L.
Lemma A.1. For F > 0, the function 7335 x (—Azz + F) (0, x) is positive and
decreasing in the components x/ for x/ positive, and increasing otherwise. We have the
bounds

-1 1 V3-1
(=Azs+F)" (0,0) < (—Az) (0,0) = s D2 (T2 (5) ~ 0.2527 (A7)
and
1 - V3-1 o vy L
(—Azs+F) (0,x) < (=Ag) (0,¢) = o33 L (27) T (3) — ¢~ 0.0861
' (A.8)
for x # 0 and |e| = 1. Moreover, for x # 0 and ||x|loc = max<;<3 |x/|,
4 ~[1xlloo
—Ap+ F)(0,x) < 1+VF . (A.9)
(=824 F) 7 l1xlloo ( )

With C4 defined in (6.21), Lemma A.1 implies that
_ 1 1
B+ F/2) (—AZ3 + F) ! (x1,x2) — E‘wacz <Cs(3+F/2)— > (A.10)

Moreover, if x; € Ay is at least a distance d from the complement of Ay, we can use
(A.9) to bound the contribution of m # 0 to the sum in (A.6). Since ||x] — x2 1 ]lco >
d + (]lm|lcc — 1)£ in this case, this gives

1 2 — 1 —x2m oo
(A6) < —=+B+F/D) [ Ci+ > ———— (1+ﬁ) e
2 o mllx1 — x2,mlloo
1 2 ~(Imlloo—1)e
<——+@B+F/2) c4+—2(1+ﬁ) " : (A.11)
2 wd 0

Using ||m || > ||m||1/3 in the last sum, we obtain the desired bound (6.22), with d the
distance of x| to the complement of Ay. This distance is greater or equal to the distance
of z = (x1, x2) to the complement of A, x Ay, hence the proof is complete. O

Proof of Lemma A.1. The resolvent of the Laplacian on Z3 can be expressed via the heat
kernel as (see, e.g., [15])

o0
(—AZHF)*‘ (x,y) = / e O I @022 2053 20e” Tt (AL12)
0

for F > 0, with I, denoting the modified Bessel functions, which are positive and
increasing on the positive real axis. (For a definition, see [1] or Eq. (A.14) below.)
The monotonicity property of the resolvent then follows directly from the fact that
I,(t) > I,41(t) forallt € Rand n € N. To see this last property, note that the recursion
relations [1, 9.6.26] imply that R, (¢) = I,(t) — I,+1(¢) satisfies

n n+1 ,
Ru(t) = = In (1) + ——In1 (1) = R, (0). (A.13)
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This further implies that R), is positive whenever R, is zero. Since R, is positive for
small argument, as can be seen from the asymptotic expansion [1, 9.6.10], for instance,
this is impossible. Hence R, is positive.

The values of the integrals corresponding to (A.7) and (A.8) can be found in [22,
6.612(6)]. Finally, to obtain the bound (A.9), we start with the integral representation
[1,9.6.18]

@y SO N
I,(t) = —ﬁl“(n+1/2) /_1(1 57) e 'ds. (A.14)

It implies that

—st 1+ —2(1—=s)t
I()(l):—/ (1 -2 ”ds——/ SR —D

Ze —st 2e! [ e” 2e
< ds < — —ds = . A.15
~ o \/5 7 Jo ﬁ VCT (A1
Hence, with n = ||x — y||~, We further have
o0
(=Agzs+F) " (x, ) 5/ e 20 Ip(20)%e Mt
0
2 (1
<= / —e 2,20 ar
wJo ¢t
2 - 2 -
. (1+F/2+w/F(1+F/4)) o2 (1+ﬁ) "
n n
(A.16)

where we used [22, 6.623(3)] to compute the integral. O

Proof of Lemma 6.3. We start with the integral representation

n

6
1 1 ; (d —wd
Py(z, W) = —— - cos(q; 124D ga  dge. (A7
n(zw) (27‘[)6/[ ,m]0 6 ,Z:; (qj) ‘ n o ( :

The integrand is a Laurent polynomial in the ¢!/, and hence the integral does not change
if the g are replaced by ¢; +ia; for any a; € C. We shall choose a; € R, and bound

n

6
1 ; a2 —wid
P,(z, w) = —— cos(gj +iaj ol 2j@iria@ —wh g g
n (2, W) (271)6/[”]6 ,21 (qj +iaj) qi-..dqs

= ;6/
(2m) [—m,7]0
n

6
- 1
=024 w/)/ —Z’cos(qj+iaj)‘ dq ...dgs.
[~x/2,7/210 \ 0 12

(A.18)

n

6 . .
Z cos(qj +iaj)| | e 2jai@=wDgar . dge

O‘\I'—‘
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We have

a sinh b

| cos(q + ia)|2 = (sinh a)2 + (cos q)2 < (

for |a| < b and |g| < 7/2. In particular,

] ; 1/2
1 1
EZ’cos(qj+iaj)‘ =< EZ|COS(f]j+iaj)‘2
j=1 j=1
1/2
(smhb
= 3712 Z it Z

j=1

1
=P\ T3

~.

Mo -
BN
\‘I\)

, (sinh )2
122 Z
Plugging this bound into (A.18), we obtain

6 . (sinhb)? O
Py (z, w) < exp —zaj(zj—wj)+nTbZZaJ2

1 2,372 6
“ (_/ e )dq)
T J-n/2,7/2]

= (371) xp Za (& —wl)+ (STzhbl;) Z“j

j=l1

To minimize the right side, we choose

(z/ —wl) 6b?
a; = .
/ n (sinh b)2

Keeping in mind that |a | < b is required for all j, we see that if

6b> -
(sinh )2 —

then we obtain the bound

b < (37 3 lz—wl? 362
,w) < (| — ) expl — -
nis n P n (sinh )2

2
) +1—(2q/7)?
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(A.19)

(A.20)

(A21)

(A.22)

(A.23)

(A.24)

for all z and w with ||z — wl||eo < n. But P,(z, w) = 0 for ||z — w||cc > n, hence this

establishes the desired bound for all values of z € Z° and w € Z°. 0O
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Appendix B. Quasi Long-Range Order

Here we prove (2.6). Let us preliminarily observe that taking the expectation of (5.10) in
(-)p we immediately get (2.6) with the factor 9/8 replaced by 2. To improve the factor,
let

fo= sup (S2—S5,-5,)p. (B.1)
lx=ylli=n
Note that f1 = e(S, B). Using (5.6), forn > 1,
o 22(fuzj+ fj), 1=5j<n. (B.2)

We pick j = |n/2], so that in particular

- 4fn)2, if n is even 53
I = 2(f%+f%1), if n is odd. (B-3)
We claim that this implies that f,, < %nz f1. To see this, observe that the solution g, to
the iteration defined by (B.3) with equality sign and initial datum f; = 1 is

gn=n>+2m—m?, ifn=2 +m with0<m <2~ (B.4)

Hence f, < gnfi for all n. Given n = 2¥ + m with 0 < m < 2K, one has g,/n? =
GBx+1)/(x+1)? withx = m27F, Maximizing over x gives g, < %nz, from which (2.6)
follows.
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