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Abstract: We consider the quantum ferromagnetic Heisenberg model in three dimen-
sions, for all spins S ≥ 1/2. We rigorously prove the validity of the spin-wave approxi-
mation for the excitation spectrum, at the level of the first non-trivial contribution to the
free energy at low temperatures. Our proof comes with explicit, constructive upper and
lower bounds on the error term. It uses in an essential way the bosonic formulation of the
model in terms of the Holstein–Primakoff representation. In this language, the model
describes interacting bosons with a hard-core on-site repulsion and a nearest-neighbor
attraction. This attractive interaction makes the lower bound on the free energy partic-
ularly tricky: the key idea there is to prove a differential inequality for the two-particle
density, which is thereby shown to be smaller than the probability density of a suitably
weighted two-particle random process on the lattice.

1. Introduction

The spontaneous breaking of a continuous symmetry in statistical mechanics and field
theory, even if well understood from a physical point of view, is still elusive in many
respects as far as a rigorous mathematical treatment is concerned. The case of an abelian
continuous symmetry is the easiest to handle, and for that a number of rigorous results
are available, based on reflection positivity [18–20], possibly combinedwith a spin-wave
expansion [7], or cluster expansion combined with a vortex loop representation [21,27].
The non-abelian case is more subtle, and the few results available are mostly based on
reflection positivity:1 see [20] for the classical Heisenberg and [18,19] for the quantum
Heisenberg anti-ferromagnet.

1 An exception is the work by Balaban on spontaneous symmetry breaking in classical N -vector models
[2–4], which is based on rigorous renormalization group methods.

Copyright © 2015 by the authors. This paper may be reproduced, in its entirety, for non-commercial
purposes.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-015-2402-0&domain=pdf


280 M. Correggi, A. Giuliani, R. Seiringer

The “standard” quantum model for the phenomenon of interest is the three-dim-
ensional quantum Heisenberg ferromagnet (QHFM), which is not reflection positive
and has eluded any rigorous treatment so far. At a heuristic level, its low-temperature
thermodynamics, including a (formal) low temperature expansion for the free energy
and the spontaneous magnetization, can be deduced from spin-wave theory [5,6,16,17,
25,26], but to date any attempt to put it on solid grounds failed. The only partial results
available on the subject are, to the best of our knowledge: the upper bounds on the free
energy of the S = 1/2 QHFMbyConlon and Solovej [10] and by Toth [36], which are of
the correct order at low temperatures, but off by a constant prefactor; the asymptotically
correct upper and lower bounds on the free energy for large S by two of us [13] (see also
[9,11,12] for earlier work). At large S, the effective attractive interaction in the bosonic
picture (reviewed in Sect. 3 below) is weak, of order 1/S, simplifying the problem. The
problem for finite S is significantly harder; quite surprisingly, not even a sharp upper
bound at low temperature was known so far.

In this paper we give the first proof of asymptotic correctness of spin-wave theory for
the QHFM for any fixed S ≥ 1/2 in three dimension at zero external field, in the sense
thatwe prove upper and lower bounds on the free energy that are asymptoticallymatching
as β → ∞, with explicit estimates on the error (see [14] for a sketch of the proof in the
case S = 1/2). The method of proof uses an exact mapping of the model into a system of
interacting bosons, via the well known Holstein–Primakoff representation [26]. Under
thismapping, theHeisenbergmodel takes the formof an interacting systemof bosons, the
interaction including a hard-core term, which prevents more than 2S bosons to occupy
a single site, as well as an attractive nearest neighbor contribution. Low temperatures
correspond to low density in the boson language; therefore, the attractive interaction,
even if not small, is expected to give a subleading contribution to the free energy at
low temperatures, as compared to the kinetic energy term. A subtlety to keep in mind,
which plays a role in the following proof, is that the bosonic representation apparently
breaks the rotational invariance of the model. More precisely, the degenerate states in the
quantum spin language are not obviously so in the bosonic one (rotational invariance is
a hidden, rather than apparent, global symmetry of the model in the bosonic language).

Our problem is reminiscent of the asymptotic computation of the ground state energy
[28,29] and free energy [34,39] of the low density Bose gas, but new ideas are needed in
order to deal with the attractive nature of the interaction, as well as with the non-abelian
continuous symmetry of the problem.

The rest of the paper is organized as follows: we first define the model and state
the main results more precisely (Sect. 2). The representation of the Heisenberg model
in terms of interacting bosons will be reviewed in Sect. 3, where we also present a key
result concerning the two-point function of low-energy eigenfunctions of the Heisenberg
Hamiltonian inTheorem3.1. The proofs of the upper bound (Sect. 4) and the lower bound
(Sect. 5) to the free energy are given subsequently. Finally, Sect. 6 contains the proof of
Theorem 3.1. The proofs of auxiliary lemmas needed there are collected in an appendix.

Throughout the proofs, C stands for unspecified universal constants. Constants with
specific values will be denoted by C0, C1, . . . instead.

2. Model and Main Result

We consider the ferromagnetic Heisenberg model with nearest neighbor interactions on
the cubic lattice Z3. It is defined in terms of the Hamiltonian



Heisenberg Ferromagnet 281

H� :=
∑

〈x,y〉⊂�

(S2 − �Sx · �Sy), (2.1)

where � is a finite subset of Z3, the sum is over all (unordered) nearest neighbor pairs
〈x, y〉 in �, and �S = (S1, S2, S3) denote the three components of the spin operators
corresponding to spin S, i.e., they are the generators of the rotations in a 2S + 1 di-
mensional representation of SU (2). The Hamiltonian H� acts on the Hilbert space
H� = ⊗

x∈� C
2S+1. We added a constant S2 for every site in order to normalize the

ground state energy of H� to zero.
Our main object of interest is the free energy per site

f (S, β,�) := − 1

β|�| ln TrH�
exp (−βH�) , (2.2)

where β denotes the inverse temperature, and its value in the thermodynamic limit

f (S, β) := lim
�→Z3

f (S, β,�). (2.3)

The limit has to be understood via a suitable sequence of increasing domains, e.g., cubes
of side length L with L → ∞. We are interested in the behavior of f (S, β) in the low
temperature limit β → ∞ for fixed S. A related question was addressed in [13], where
the large spin regime S → ∞ with β ∝ S−1 was investigated.

We shall show that the free energy at low temperature can be well approximated by
non-interacting spin-waves or magnons, i.e., free bosons. Our main result is as follows.

Theorem 2.1. For any S ≥ 1/2,

lim
β→∞ f (S, β)β5/2S3/2 = C0 := 1

(2π)3

∫

R3
ln
(
1 − e−p2

)
dp = −ζ(5/2)

8π3/2 , (2.4)

where ζ denotes the Riemann zeta function.

The convergence in (2.4) is uniform as βS → ∞, provided βS ≥ Sα , for some
α > 0. The proof of Theorem 2.1 will be given in Sects. 4 and 5. It comes with explicit
upper and lower bounds on f (S, β) which agree to leading order as βS → ∞. The
proof can be easily generalized to lattice dimensions larger than 3, but we restrict our
attention to the three-dimensional case for simplicity.

We note that the low-temperature asymptotics of the free energy of the Heisenberg
ferromagnet for S = 1/2 has been studied previously by Conlon and Solovej [10,
Theorem 1.1], where an upper bound on f (1/2, β) of the form ( 12 )

−3/2C1β
−5/2(1 +

o(1)) was derived by means of a random walk representation of the Heisenberg model.
However their coefficient C1 in front of β−5/2 was not the optimal one,

C1 = −1

2

1

(2π)3

∫

R3
e−p2dp = − 1

16π3/2 . (2.5)

Later this result was improved by Toth [36, Theorem 1] where it was shown that C1 can
be replaced C2 = C0 ln 2 in the upper bound. Here we not only improve these results by
showing the optimal constant in the upper bound is C0 for general S, we also provide a
corresponding lower bound.
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An interesting consequence of our bounds is an instance of quasi long-range order, in
the sense that, if 〈·〉β is a translation invariant infinite volume Gibbs state for the system
at inverse temperature β,

〈S2 − �Sx · �Sy〉β ≤ 9
8‖x − y‖21e(S, β), (2.6)

where e(S, β) = ∂β(β f (S, β)) is the energy per site. By concavity of the free energy,
our upper and lower bounds on f (S, β) imply similar bounds on e(S, β), via

λe(S, β) ≤ f (S, β) − (1 − λ) f (S, (1 − λ)β), λ ∈ (−∞, 1). (2.7)

If we use (4.1) and (5.1) below, and optimize over λ, we get

e(S, β) = −3

2
C0S

−3/2β−5/2(1 +O((Sβ)−κ)), κ < 1
80 . (2.8)

Therefore, (2.6) implies that spin order persists up to length scales of the order β5/4, in
the sense that 〈�Sx · �Sy〉β is bounded away from zero as long as |x − y| ≤ (const.)β5/4.
Spin wave theory predicts equality in (2.6), without the factor 9

8 and with the 
1 distance
replaced by the euclidean one, asymptotically for |x− y| 
 √

β. Of course, one expects
infinite range order at low temperatures, but in absence of a proof Eq. (2.6) is the best
result to date. We shall prove (2.6) in Appendix B.

We conclude this sectionwith a brief outline of the proof of Theorem 2.1. To obtain an
upper bound, we utilize theGibbs variational principle. The natural trial state to use is the
one of non-interacting bosons, projected to the subspace where each site has occupation
number at most 1; for convenience the trial state is localized into boxes of suitable
(temperature-dependent) size. A localization procedure is also used in the lower bound,
whose proof is more sophisticated and roughly proceeds as follows: we first derive a
“rough” lower bound, off by logarithmic factors from the correct one, by localizing
into boxes of side length 
 
 β1/2 and by using a basic lower bound on the excitation
spectrum, scaling like 
−2(Smax − ST ), where ST is the total-spin quantum number, and
Smax its maximal allowed value. This lower bound on the excitation spectrum has some
interest in itself, and complements the sharp formula for the gap proved in [8] in the
spin 1/2 case. Its method of proof is the key ingredient to get (2.6). Next, we move to a
larger scale (
 ∼ β1/2+ε for some small ε > 0): the preliminary rough bound allows us
to discard states with large energy; by using rotational invariance, we can also restrict
ourselves to computing the trace of interest in the subspace of lowest 3-component
of the total spin. On the corresponding subspace we then utilize the representation in
terms of interacting bosons, and we use the Gibbs–Peierls–Bogoliubov inequality to
estimate − ln Tr e−βH from below by the non-interacting expression, minus the average
of the interaction term. A bound on the latter will be presented in Theorem 3.1 in the
next section, whose proof requires two key ideas: (1) we use the eigenvalue equation
to derive a suitable differential inequality for the two-particle density ρ2, of the form
−
ρ2 ≤ (const.)Eρ2, with E the energy, which is a small number, and 
 a (modified)
Laplacian on � × �; in this way we reduce the many-body problem to a two-body one;
(2) we iterate the inequality, thus obtaining an upper bound on ‖ρ2‖∞ in terms of the
long-time probability density of a modified random walk on Z6.
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3. Boson Representation

It is well known that the Heisenberg Hamiltonian can be rewritten in terms of bosonic
creation and annihilation operators [26]. For any x ∈ � we set

S+x = √
2S a†x

[
1 − a†xax

2S

]1/2

+

, S−
x = √

2S

[
1 − a†xax

2S

]1/2

+

ax , S3x = a†xax − S,

(3.1)
where a†x , ax are bosonic creation and annihilation operators, S± = S1±i S2, and [ · ]+ =
max{0, · } denotes the positive part. The operators a† and a act on the space 
2(N0) via
(a f )(n) = √

n + 1 f (n + 1) and (a† f )(n) = √
n f (n − 1), and satisfy the canonical

commutation relations [a, a†] = 1. One readily checks that (3.1) defines a representation
of SU (2) of spin S, and the operators �Sx leave the space

⊗
x∈� 
2([0, 2S]) ∼= H� =⊗

x∈� C
2S+1, which can be naturally identified with a subspace of the Fock space F :=⊗

x∈� 
2(N0), invariant.
The Hamiltonian H� in (2.1) can be expressed in terms of the bosonic creation and

annihilation operators as

H� = S
∑

〈x,y〉⊂�

(
−a†x

√
1 − nx

2S

√
1 − ny

2S
ay − a†y

√
1 − ny

2S

√
1 − nx

2S
ax

+ nx + ny − 1

S
nxny

)
, (3.2)

where we denote the number of particles at site x by nx = a†xax . It describes a system
of bosons hopping on the lattice �, with nearest neighbor attractive interactions and
a hard-core condition preventing more than 2S particles to occupy the same site. Also
the hopping amplitude depends on the number of particles on neighboring sites, via the
square root factors in the first line in (3.2). Note that the resulting interaction terms are
not purely two-body (i.e., they involve interactions between two or more particles; in
other words, they are not just quartic in the creation-annihilation operators, but involve
terms with 6, 8, etc., operators).

In the bosonic representation (3.2), the vacuum is a ground state of the Hamiltonian,
and the excitations of the model can be described as bosonic particles in the same
way as phonons in crystals. There exists a zero-energy ground state for any particle
number less or equal to 2S|�|, in fact. While this may not be immediately apparent
from the representation (3.2), it is a result of the SU (2) symmetry of the model. The
total spin is maximal in the ground state, which is therefore (2S|�|+1)-fold degenerate,
corresponding to the different values of the 3-component of the total spin. The latter, in
turn, corresponds to the total particle number (minus S|�|) in the bosonic language.

One of the key ingredients of our proof of the lower bound on f is the following
theorem, which shows that the two-particle density of a low-energy eigenfunction of H�

is approximately constant. Since this result may be of independent interest, we display
it already at this point.

Theorem 3.1. There exists a constant C > 0 such that, if � is an eigenfunction of the
Heisenberg Hamiltonian on �
 := [0, 
)3 ∩ Z

3 with energy E > 0, and

ρ(x1, x2) = 〈�|a†x1a†x2ax2ax1 |�〉 (3.3)
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is its two-particle density, then

‖ρ‖∞ ≤ CS−3E3‖ρ‖1. (3.4)

The proof of Theorem 3.1 will be given in Sect. 6. It will allow us to conclude that
all terms in (3.2) higher than quadratic in the creation and annihilation operators can be
neglected at low energy, and the same is true for the constraint nx ≤ 2S. One is thus left
with free bosons at zero chemical potential, whose free energy equals C0S−3/2β−5/2

[compare, e.g., with (4.28) below].
The bound (3.4) can also be interpreted as absence of bound states of the bosons for

small enough energy. It is well-known that due to the attractive nature of the nearest
neighbor interaction bound states do exist at higher energy, see [23,24,31,37,38].

4. Proof of Theorem 2.1; Upper Bound

In this section we will prove the following.

Proposition 4.1. Let C0 be the constant given in (2.4). As βS → ∞, we have

f (S, β) ≤ C0S
−3/2β−5/2

(
1 − O((βS)−3/8)

)
. (4.1)

By the Gibbs variational principle,

f (S, β,�) ≤ 1

|�| Tr H�� +
1

β|�| Tr � ln� (4.2)

for any positive � with Tr � = 1. We can use this to confine particle into boxes, with
Dirichlet boundary conditions. To be precise, let

HD
� = H� +

∑

x∈�,y∈�c

|x−y|=1

(
S2 + SS3x

)
(4.3)

be the Heisenberg Hamiltonian on � ⊂ Z
3 with S3x = −S boundary conditions. Note

that HD
� ≥ H�. We take� to be the cube�L := [0, L)3 ∩Z

3 with L3 sites, and assume
that L = k(
 + 1) for some integers k and 
. By letting all the spins point maximally in
the negative 3-direction on the boundary of the smaller cubes of side length 
, we obtain
the upper bound

f (S, β,�L) ≤
(
1 + 
−1

)−3
f D(S, β,�
), f D(S, β,�) := − 1

β|�| ln Tr e
−βHD

� .

(4.4)
In particular, by letting k → ∞ for fixed 
, we have

f (S, β) ≤
(
1 + 
−1

)−3
f D(S, β,�
) (4.5)

in the thermodynamic limit.
To obtain an upper bound on f D , we can use the variational principle (4.2), with

� = Pe−βTP
TrF Pe−βT

. (4.6)
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Here, P projects onto nx ≤ 1 for every site x ∈ �
, and T is the Hamiltonian on Fock
space F describing free bosons on �
 with Dirichlet boundary conditions,

T = S
∑

x,y∈�


(
−
D

)
(x, y)a†xay

= S
∑

〈x,y〉⊂�


(
−a†xay − a†yax + nx + ny

)
+ S

∑

x∈�
,y∈�c

|x−y|=1

nx , (4.7)

where 
D denotes the Dirichlet Laplacian on �
. The eigenvalues of −
D are given
by ⎧

⎨

⎩ε(p) =
3∑

j=1

2(1 − cos(p j )) : p ∈ �∗D

 :=

( π


 + 1
{1, 2, . . . , 
}

)3
⎫
⎬

⎭ (4.8)

with corresponding eigenfunctions ϕp(x) = [2/(
 + 1)]3/2∏3
j=1 sin((x

j + 1)p j ).

Lemma 4.2. On the Fock space F = ⊗
x∈� 
2(N0),

PHD
� P ≤ T + (2S − 1)

∑

〈x,y〉⊂�

nxny . (4.9)

Note that for S = 1/2 the second term on the right side vanishes.

Proof. WewriteP = ∏
x∈� px , where px projects onto the subspace ofF with nx ≤ 1.

We have

px pya
†
x

√
1 − nx

2S

√
1 − ny

2S
ay px py = px pya

†
xay px py = a†x px (1 − nx )(1 − ny)pyay .

(4.10)
In particular,

P
(

−a†x

√
1 − nx

2S

√
1 − ny

2S
ay − a†y

√
1 − ny

2S

√
1 − nx

2S
ax + nx + ny − 1

S
nxny

)
P

= (a†x − a†y)P(1 − nx )(1 − ny)(ax − ay) + P
(
2 − 1

S

)
nxny . (4.11)

If we bound P(1−nx )(1−ny) ≤ 1 in the first term, and P ≤ 1 in the second, we arrive
at (4.9). ��

As a next step, we will show that TrF Pe−βT is close to TrF e−βT for βS � 
.

Lemma 4.3. With C3 := 8π−3ζ(3/2)2, we have

TrF Pe−βT

TrF e−βT
≥ 1 − C3


3

(βS)3
. (4.12)
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Proof. As in the proof of Lemma 4.2, we write P = ∏
x∈�


px . Then

1 − P ≤
∑

x

(1 − px ) ≤ 1

2

∑

x

nx (nx − 1) = 1

2

∑

x

a†xa
†
xaxax . (4.13)

Wick’s rule for Gaussian states therefore implies that

TrF Pe−βT

TrF e−βT
≥ 1 − 1

2

∑

x∈�


TrF a†xa
†
xaxaxe−βT

TrF e−βT
= 1 −

∑

x∈�


(
TrF nxe−βT

TrF e−βT

)2

.

(4.14)

Moreover,
TrF nxe−βT

TrF e−βT
= 1

e−βS
D − 1
(x, x) =

∑

n≥1

enβS
D
(x, x). (4.15)

It is well known that the heat kernel of the Dirichlet Laplacian 
D is pointwise bounded
from above by the one of the Laplacian 
Z3 on all of Z3; this follows, e.g., from the
Feynman-Kac formula. The latter equals (see, e.g., [15])

et
Z3 (x, x) = e−6t I0(2t)
3 (4.16)

on the diagonal, with I0 a modified Bessel function (see [22] or Eq. (A.14) below for a
definition). As explained in (A.15) below, I0(t) ≤ 2et/

√
π t , and thus

∑

n≥1

enβS
D
(x, x) ≤ 8

(2π)3/2

1

(βS)3/2
ζ(3/2). (4.17)

In particular, we obtain the bound (4.12). ��
By using Wick’s rule in the same way as in the proof of Lemma 4.3, and following

the same estimates, we have, for x �= y,

TrF nxnye−βT

TrF e−βT
= TrF nxe−βT

TrF e−βT

TrF nye−βT

Tr e−βT
+

(
TrF a†xaye−βT

TrF e−βT

)2

≤ 2
TrF nxe−βT

TrF e−βT

TrF nye−βT

TrF e−βT
≤ 2C3

(βS)3
, (4.18)

where we used the Cauchy–Schwarz inequality in the second step. In combination with
Lemmas 4.2 and 4.3, we have thus shown that

Tr HD
�


� ≤ TrF T e−βT

TrF Pe−βT
+ 12(2S − 1)

(
1 − C3


3

(βS)3

)−1
C3


3

(βS)3
, (4.19)

where we bounded the number of nearest neighbor pairs in �
 by 6
3.
It remains to give a bound on the entropy of �.

Lemma 4.4. For some constant C > 0 and 
 ≥ (βS)1/2

1

β
Tr � ln� ≤ − 1

β
ln TrF Pe−βT − TrF T e−βT

TrF Pe−βT
+

C

(βS)9/2


6

β

TrF e−βT

TrF Pe−βT
. (4.20)
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Proof. We have

Tr � ln� = − ln TrF Pe−βT +
1

TrF Pe−βT
TrF Pe−βTP lnPe−βTP. (4.21)

Using the operator monotonicity of the logarithm, as well as the fact that the spectra of
Pe−βTP and e−βT/2Pe−βT/2 agree, we can bound

TrF Pe−βTP lnPe−βTP = TrF e−βT/2Pe−βT/2 ln e−βT/2Pe−βT/2

≤ TrF e−βT/2Pe−βT/2 ln e−βT = −β TrF Pe−βT T .

(4.22)

Hence

Tr � ln� ≤ − ln TrF Pe−βT − β
TrF T e−βT

TrF Pe−βT
+ β

TrF T (1 − P)e−βT

TrF Pe−βT
. (4.23)

In the last term, we can bound 1 − P as in (4.13), and evaluate the resulting expression
using Wick’s rule. With ϕp the eigenfunctions of the Dirichlet Laplacian, displayed
below Eq. (4.8), we obtain

TrF Tnx (nx − 1)e−βT

TrF e−βT
=
(
TrF nxe−βT

TrF e−βT

)2 ∑

p∈�∗D



2Sε(p)

eβSε(p) − 1

+
TrF nxe−βT

TrF e−βT

∑

p∈�∗D



Sε(p)|ϕp(x)|2
(
sinh 1

2βSε(p)
)2 . (4.24)

The expectation value of nx can be bounded independently of x by
√
C3(βS)−3/2,

as in the proof of Lemma 4.3. When summing over x , we can use the normalization∑
x |ϕp(x)|2 = 1. The sums over p can be bounded by the corresponding integrals,

which leads to the bound (4.20). ��
In combination, Lemmas 4.2–4.4 imply that

f D(S, β,�
) ≤ − 1

β
3
ln TrF e−βT − 1

β
3
ln

(
1 − C3


3

(βS)3

)

+ C

(
1 − C3


3

(βS)3

)−1 (

3

β(βS)9/2
+
2S − 1

(βS)3

)
. (4.25)

The first term on the right side equals

− 1

β
3
ln TrF e−βT = 1

β
3

∑

p∈�∗D



ln(1 − e−βSε(p)). (4.26)

By viewing the sum as a Riemann sum for the corresponding integral, it is not difficult
to see that

1

β
3

∑

p∈�∗D



ln(1 − e−βSε(p)) ≤ 1

β(2π)3

∫

[−π,π ]3
ln(1 − e−βSε(p)) +

C

Sβ2

(4.27)
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for some constant C > 0 (compare, e.g., with [33, Lemma 4]). We can further use that
ε(p) ≤ |p|2 and find that

1

β(2π)3

∫

[−π,π ]3
ln(1 − e−βSε(p)) ≤ 1

β(2π)3

∫

R3
ln(1 − e−βS|p|2) + C

β(βS)α

= C0S
−3/2β−5/2 +

C

β(βS)α
(4.28)

for some C > 0, C0 defined in (2.4), and α > 0 arbitrary. For βS � 
 � (βS)1/2,
all the error terms are small compared to the main term. The optimal choice of 
 is

 ∼ (βS)7/8, which leads to the desired upper bound stated in (4.1).

5. Proof of Theorem 2.1; Lower Bound

In this section we will prove the following lower bound on the free energy of the Heisen-
berg ferromagnet.

Proposition 5.1. Let C0 be the constant given in (2.4). Given α > 0, if βS → ∞ with
βS ≥ Sα , we have

f (S, β) ≥ C0S
−3/2β−5/2 (1 +O((βS)−κ )

)
(5.1)

for any κ < 1/40.

Let again denote �L = [0, L)3 ∩ Z
3 a cube with L3 sites, and let L = k
 for some

positive integers k and 
. We can decompose �L into k3 disjoint cubes, all of which are
translations of�
. By simply dropping the terms in the Hamiltonian (2.1) corresponding
to pairs of nearest neighbor sites in different cubes, we obtain the lower bound

f (S, β,�L) ≥ f (S, β,�
). (5.2)

By sending k → ∞ at fixed 
, we thus have

f (S, β) ≥ f (S, β,�
) (5.3)

for the free energy in the thermodynamic limit.
The Hamiltonian (2.1) commutes with the total spin operators

∑
x∈�

�Sx , and hence
we can label all eigenstates by the value of the corresponding square of the total spin,
i.e., by the integer or half-integer eigenvalues of ST , where

ST (ST + 1) =
∣∣∣∣∣
∑

x∈�

�Sx
∣∣∣∣∣

2

. (5.4)

The following proposition shows that ST is close to its maximal value S
3 at low energy.

Proposition 5.2. There exists a positive constant C > 0 such that

H�

≥ C

S


2

(
S
3 − ST

)
. (5.5)
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Note that the lower bound (5.5) implies, in particular, that the gap in the spectrum of
H�


above zero is at least as big asCS
−2. Except for the value of the constant, this bound
is sharp, since one can easily obtain an upper bound of the form 2S(1 − cos(π/
)) ≈
π2S
−2. This latter expression is actually known to be the exact gap in the spin 1/2 case
[8] (see also [30,32,35] for related results).

Proof. The starting point is the simple inequality
(
S2 − �Sx · �Sy

)
+
(
S2 − �Sy · �Sz

)
≥ 1

2

(
S2 − �Sx · �Sz

)
(5.6)

for distinct sites x , y and z. To prove it, it is convenient to use the equivalent formulation

S2 − 1

2
S − �Sy ·

(�Sx + �Sz
)
+
1

4

(�Sx + �Sz
)2 ≥ 0. (5.7)

The eigenvalues of (�Sx + �Sz)2 are given by t (t +1), with t ∈ {0, 1, . . . , 2S}, and we have
−�Sy · (�Sx + �Sz) ≥ −St in the subspace corresponding to t . It is thus sufficient to prove
that

S2 − 1

2
S − St +

1

4
t (t + 1) ≥ 0 ∀t ∈ {0, 1, . . . , 2S}. (5.8)

The expression on the left side of this inequality vanishes for t = 2S and t = 2S − 1,
and since it is quadratic in t this implies non-negativity for all the relevant t . This proves
(5.6).

We claim that if we have a number n + 1 of distinct sites x j , inequality (5.6) implies
that

n∑

j=1

(
S2 − �Sx j · �Sx j+1

)
≥ 1

2n

(
S2 − �Sx1 · �Sxn+1

)
. (5.9)

If n = 2k for some k ≥ 1, this follows immediately from a repeated application of (5.6),
even without the factor 2 in the denominator on the right side. The result in the general
case can then easily be obtained by induction, writing a general n as a sum n = ∑m

j=1 2
k j

with 0 ≤ k1 < k2 < · · · < km .
For any pair of distinct sites (x, y) ∈ �
 × �
, we choose a path x0, x1, . . . , xn in

�
, such that x0 = x , xn = y, |x j−1 − x j | = 1 for all 1 ≤ j ≤ n, and x j �= xk for
k �= j . Then (5.9) implies that

S2 − �Sx · �Sy ≤ 2n
n∑

j=1

(
S2 − �Sx j−1 · �Sx j

)
. (5.10)

We shall choose the path as short as possible, i.e., n = ‖x − y‖1 ≤ 3
. There are many
such paths, and we take one that is closest to the straight line connecting x and y. Let
us denote such a path by Cx,y . We have

S
3
(
S
3 + 1

)
− ST (ST + 1) =

∑

x,y∈�

x �=y

(
S2 − �Sx · �Sy

)

≤ 2
∑

x,y∈�

x �=y

‖x − y‖1
∑

(xi ,xi+1)∈Cx,y

(
S2 − �Sxi �Sxi+1

)

≤ 6

∑

x,y∈�

|x−y|=1

(
S2 − �Sx · �Sy

)
Nx,y, (5.11)
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where Nx,y denotes the number of paths among all the Cz,z′ , z, z′ ∈ �
, that contain the
step x → y. By construction, the edge from x to y can be part of Cz,z′ only if either x or
y is within a distanceO(1) from the line connecting z and z′. For a given z �= x , this will
be the case for at most C
3|x − z|−2 values of z′, which leads to the bound Nx,y ≤ C
4

for some C > 0 for all nearest neighbor pairs (x, y). By inserting this bound in (5.11),
we thus obtain

S
3
(
S
3 − ST

)
≤ S
3

(
S
3 + 1

)
− ST (ST + 1)

≤ 6C
5
∑

x,y∈�

|x−y|=1

(
S2 − �Sx · �Sy

)
= 12C
5H�


. (5.12)

This completes the proof of (5.5). ��
With the aid of the bound (5.5) we shall now prove the following preliminary lower

bound on the free energy.

Lemma 5.3. For 
 ≥ (βS)1/2 and βS ≥ Sα , with α > 0, we have

f (S, β,�
) ≥ −CS

(
ln Sβ

Sβ

)5/2

(5.13)

for some constant C= C(α) > 0.

Proof. The dimension of the subspace ofH�

= ⊗

x∈�

C
2S+1 corresponding to ST =


3S − s is bounded from above by

(2
3S + 1)

(
2S
3

s

)
. (5.14)

The factor 2
3S + 1 is a bound on the number of different values of the 3-component of
the total spin, and the binomial factor comes from distributing the s particles over 2S
3

slots, 2S for each site. Hence, from (5.5),

Tr e−βH�
 ≤ Tr eβCS
−2(ST −
3S) ≤ (2
3S + 1)
�S
3�∑

s=0

(
2S
3

s

)
e−βCS
−2s

≤ (2
3S + 1)
(
1 + e−βCS
−2

)2S
3

. (5.15)

The free energy is thus bounded from below as

f (S, β,�
) ≥ −2S

β
ln
(
1 + e−βCS
−2

)
− 1

β
3
ln
(
2
3S + 1

)

≥ −2S

β
e−βCS
−2 − 1

β
3
ln
(
2
3S + 1

)
. (5.16)

For


 = 
0 := (βCS)1/2
(
ln
(
S(βCS)3/2

))−1/2
(5.17)

this yields an expression of the desired form (5.13). For larger 
, we can use the subad-
ditivity (5.2) to obtain the result in general. ��
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We now come to themain part of our lower bound on the free energy. The preliminary
estimate (5.13) allows us to restrict the computation of the partition function to the
subspace of states with not too large energy. Let PE be the spectral projection of H�


corresponding to energy ≤ E . Then

Tr(1 − PE )e−βH�
 ≤ e−βE/2 Tr(1 − PE )e−βH�

/2 ≤ e−βE/2e−β
3 f (S,β/2,�
)/2.

(5.18)
In particular, with

E = E0 := −
3 f (S, β/2,�
), (5.19)

we have
Tr(1 − PE0)e

−βH�
 ≤ 1. (5.20)

Note that Lemma 5.3 implies that

E0 ≤ C
3S−3/2(β−1 ln Sβ)5/2 for 
 ≥ (βS)1/2. (5.21)

For the part of the spectrum corresponding to energy≤ E0, we decompose theHilbert
space into sectors of total spin ST , defined in (5.4). For given ST , every eigenvalue of H�


is (2ST +1)-fold degenerate, corresponding to the different values−ST , ST +1, . . . , ST

the third component of the total spin,
∑

x∈�

S3x , can take. We can thus restrict our

attention to the eigenstates for which
∑

x∈�

S3x = −ST , taking the degeneracy factor

into account. That is, with P3 denoting the projection onto the subspace of our Hilbert
space corresponding to

∑
x∈�


S3x = −ST , we have

Tr g(H�

) = Tr (2ST + 1)P3g(H�


) (5.22)

for any function g. In particular,

Tr PE0e
−βH�
 = Tr PE0(2S

T + 1)P3e−βH�
 ≤ (2S
3 + 1)Tr PE0 P
3e−βH�
 . (5.23)

Note the total particle number in any eigenstate of H�

in the range of PE0 P

3 is bounded
by 
2E0/(CS), according to Proposition 5.2.

Let us denote PE0 P
3 by QE0 for short. By combining (5.20) and (5.23), we obtain

Tr e−βH�
 ≤ 1 + (2S
3 + 1)Tr QE0e
−βH�
 ≤ (2S
3 + 2)Tr QE0e

−βH�
 , (5.24)

where we have used that Tr QE0e
−βH�
 ≥ 1 in the last step (which follows from the

fact that H�

has a zero eigenvalue with eigenvector in the range of QE0 ). If we write

H�

= T − K for two hermitian operators T and K , the Peierls–Bogoliubov inequality

implies that

Tr QE0e
−βH�
 ≤ Tr QE0e

−βQE0T QE0 exp

(
β
Tr QE0K QE0e

−βH�


Tr QE0e
−βH�


)
. (5.25)

We choose T to be the Hamiltonian of free bosons, projected to our Hilbert space where
nx ≤ 2S for every x ∈ �
. That is,

T = S
∑

〈x,y〉⊂�


PS

(
−a†xay − a†yax + nx + ny

)
PS (5.26)

withPS the projection onto nx ≤ 2S for every site. The operator K is then simply defined
via H�


= T − K . We have the following bound on K , similar to [13, Prop. 2.3].
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Lemma 5.4. The operator K defined above satisfies the bound

K ≤ 1

2

∑

〈x,y〉⊂�


(
4nxny + nx (nx − 1) + ny(ny − 1)

)
. (5.27)

Proof. The operator K can be written as a sum of two terms, K = K1 + K2, with

K2 =
∑

〈x,y〉⊂�


nxny . (5.28)

Hence it only remains to look at K1, given by

K1 = −S
∑

〈x,y〉⊂�


PS

(
a†x kx,yay + a†ykx,yax

)
PS, (5.29)

where

kx,y := 1 −
√
1 − nx

2S

√
1 − ny

2S
≥ 0. (5.30)

The Cauchy–Schwarz inequality and the fact that kx,y ≤ (nx + ny)/(2S) imply that

K1 ≤ S
∑

〈x,y〉⊂�


PS

(
a†x kx,yax + a†ykx,yay

)
PS

≤ 1

2

∑

〈x,y〉⊂�


PS
(
nx (nx − 1) + ny(ny − 1) + 2nxny

)PS . (5.31)

The projections PS can be dropped in the last expression, since H�

= PSF is left

invariant by the operators nx . ��
Let now � be an eigenstate of H�


in the range of QE0 , and let ρ(x1, x2) =
〈�|a†xa†yayax |�〉 denote its two-particle density. From Lemma 5.4 we have

〈�|K |�〉 ≤
∑

〈x,y〉⊂�


(
2ρ(x, y) +

1

2
ρ(x, x) +

1

2
ρ(y, y)

)
≤ 18
3‖ρ‖∞. (5.32)

Theorem 3.1 states that ‖ρ‖∞ ≤ CS−3E3
0‖ρ‖1. Moreover, ‖ρ‖1 is bounded by the

square of the particle number, i.e.,

‖ρ‖1 ≤
(


2E0

CS

)2

. (5.33)

In particular, we conclude that

Tr QE0K QE0e
−βH�


Tr QE0e
−βH�


≤ C

S5

7E5

0 ≤ C

2

(Sβ)5/2

(

2

Sβ

)10

(ln Sβ)25/2 (5.34)

for some constant C > 0 and 
 ≥ (βS)1/2.
We are left with deriving an upper bound on

Tr QE0e
−βQE0T QE0 , (5.35)
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with T defined in (5.26) above.As already noted, the total number of particles in the range
of QE0 is bounded by N0 := 
2E0/(CS), and hence QE0 ≤ QN0 , the projection onto
the subspace corresponding to particle number ≤ N0. Let again F = ⊗

x∈�

L2(N0)

denote the bosonic Fock space. The operator T in (5.26) is of the form PST0PS , with
T0 the Hamiltonian for free bosons on F . We can thus write

Tr QE0e
−βQE0T QE0 = TrF PSQE0e

−βQE0PST0PS QE0 (5.36)

where we denote by TrF the trace on the Fock space F . By the Gibbs variational
principle,

− 1

β
ln TrF PSQE0e

−βQE0PST0PS QE0

= min

{
Tr T0ρ +

1

β
TrF ρ ln ρ : 0 ≤ ρ ≤ PSQE0 , TrF ρ = 1

}
. (5.37)

Since PSQE0 ≤ QN0 (viewed as an operator on F), this implies that

TrF PSQE0e
−βQE0PST0PS QE0 ≤ TrF QN0e

−βQN0T0QN0 = TrF QN0e
−βT0 , (5.38)

where we used that QN0 commutes with T0 in the last step.
The eigenvalues of the Laplacian on �
 are given by

{
ε(p) =

3∑

i=1

2(1 − cos(pi )) : p ∈ �∗N

 := π



�


}
. (5.39)

For p �= 0, we can simply ignore the restriction on the particle number, and bound

TrF QN0e
−βT0 ≤ (N0 + 1)

∏

p∈�∗N



p �=0

1

1 − e−βSε(p)
. (5.40)

By viewing the sum over p is a Riemann approximation to the corresponding integral,
it is not difficult to see that

1

β
3

∑

p∈�∗N



p �=0

ln
(
1 − e−βSε(p)

)
≥ 1

(2π)3β

∫

[−π,π ]3
ln
(
1 − e−βSε(p)

)
dp − C

Sβ2


(5.41)
for some constantC > 0. (Compare with the corresponding bound (4.27) in the previous
section.) Finally, for some C > 0

1

(2π)3β

∫

[−π,π ]3
ln
(
1 − e−βSε(p)

)
dp ≥ C0

β5/2S3/2

(
1 +

C

βS

)
(5.42)

with C0 given in (2.4). To see (5.42), note that C0β
−5/2S−3/2 is the result of the integral

if ε(p) is replaced by |p|2 and the region of integration [−π, π ]3 is replaced by R
3.
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Using that ε(p) ≥ |p|2 max{1 − |p|2/12, 4/π2} for p ∈ [−π, π ]3, we have
1

(2π)3β

∫

[−π,π ]3
ln
(
1 − e−βSε(p)

)
dp − C0

β5/2S3/2

≥ 1

(2π)3β

∫

|p|≤2
ln

1 − e−βS|p|2(1−|p|2/12)

1 − e−βS|p|2 dp

+
1

(2π)3β

∫

|p|≥2
ln
(
1 − e−4βS|p|2/π2

)
dp. (5.43)

The last term is exponentially small in βS. In the integrand of the first term, we can
bound

ln
1 − e−βS|p|2(1−|p|2/12)

1 − e−βS|p|2 = −
∫ βS|p|4/12

0

1

eβS|p|2−t − 1
dt ≥ −βS|p|4

12

1

e2βS|p|2/3 − 1
(5.44)

for |p| ≤ 2, which leads to the desired estimate (5.42).
Collecting all the bounds, we have

f (S, β,�
) ≥ C0

β5/2S3/2

(
1 +

C

βS

)
− C




1

(Sβ)5/2

(

2

Sβ

)10

(ln Sβ)25/2

− C

Sβ2

− 1

β
3
ln
[
(N0 + 1)(2S
3 + 2)

]
. (5.45)

We are still free to choose 
. For the choice 
 = (βS)21/40 we obtain an error term
smaller than CS(βS)−5/2−1/40(ln βS)25/2, implying (5.1).

6. Proof of Theorem 3.1

In this section we will give the proof of Theorem 3.1. Note that since ‖ρ‖∞ ≤ ‖ρ‖1
holds trivially, it suffices to prove the theoremwhen the parameter E/S is suitably small.
Thanks to Proposition 5.2, all non-zero eigenvalues of H�


are bounded from below by
CS
−2. Hence E/S small implies that 
 is large.

We shall divide the proof into several steps. In Step 1, we shall prove a differential in-
equality satisfied by the two-particle density of an eigenstate of H�. It involves a suitable
weighted Laplacian on�×�. In Step 2, we shall use the method of reflections to extend
the inequality from �
 × �
 to the whole of Z6. By iterating the resulting inequality,
we obtain a bound on the two-particle density in terms of the probability density of a
random walk on Z

6. The necessary bounds on this probability density are derived in
Step 3. With their aid, we can show that the desired bound on the two-particle density
holds at least a certain finite distance away from the boundary of �
 × �
. To extend
this result to the whole space, we shall show in Step 4 that our differential inequality
also implies that the two-particle density is very flat near its maximum, implying that
its maximal value in the smaller cube a finite distance away from the boundary is very
close to its global maximum.
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6.1. Step 1. The first step in the proof is to derive a differential inequality for the two-
particle density of an eigenstate of H�. We state it in the following lemma.

Lemma 6.1. Let � be an eigenstate of H� with eigenvalue E, and let ρ(x1, x2) =
〈�|a†x1a†x2ax2ax1 |�〉 denote its two-particle density. Then

2E

S
ρ(x1, x2) ≥

∑

y∈�
|y−x1|=1

[
ρ(x1, x2)

(
1 − δy,x2

2S

)
− ρ(y, x2)

(
1 − δx1,x2

2S

)]

+
∑

y∈�
|y−x2 |=1

[
ρ(x1, x2)

(
1 − δx1,y

2S

)
− ρ(x1, y)

(
1 − δx1,x2

2S

)]
. (6.1)

Proof. The Heisenberg Hamiltonian (3.2) can be written as

H� = S
∑

〈x,y〉⊂�

(
a†x

√
1 − ny

2S
− a†y

√
1 − nx

2S

)(
ax

√
1 − ny

2S
− ay

√
1 − nx

2S

)
,

(6.2)
where nx = a†xax and the sum is over all bonds in the graph. Equivalently,

H� = S
∑

(x,y)

(
a†x

√
1 − ny

2S
− a†y

√
1 − nx

2S

)
ax

√
1 − ny

2S
, (6.3)

where the sum is now over all ordered nearest neighbor pairs in �.
Let � be an eigenfunction of H� with eigenvalue E . Then

Eρ(x1, x2) = E〈�|a†x1a†x2ax2ax1 |�〉 = 〈�|H�a
†
x1a

†
x2ax2ax1 |�〉. (6.4)

We compute

ax

√
1 − ny

2S
a†x1a

†
x2ax2ax1 =

(
a†x1a

†
x2ax2ax1 + δx,x1nx2 + δx,x2nx1

)
ax

√
1 − ny

2S
(6.5)

and thus

Eρ(x1, x2) = S
∑

(x,y)

〈
�

∣∣∣∣

(
a†x

√
1 − ny

2S
− a†y

√
1 − nx

2S

)

×
(
a†x1a

†
x2ax2ax1 + δx,x1nx2 + δx,x2nx1

)
ax

√
1 − ny

2S

∣∣∣∣�
〉
. (6.6)

The contribution of the first term a†x1a
†
x2ax2ax1 in the middle parenthesis is non-negative

after summing over all pairs (x, y), and can hence be dropped for a lower bound. For
the remaining two terms, we write the last factor in (6.6) as

ax

√
1 − ny

2S
= 1

2

(
ax

√
1 − ny

2S
− ay

√
1 − nx

2S

)
+
1

2

(
ax

√
1 − ny

2S
+ ay

√
1 − nx

2S

)

(6.7)
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and observe that the contribution of the first term yields again a non-negative expression.
Hence we get the lower bound

Eρ(x1, x2) ≥ S

2

∑

(x,y)

〈
�

∣∣∣∣

(
a†x

√
1 − ny

2S
− a†y

√
1 − nx

2S

)

× (
δx,x1nx2 + δx,x2nx1

) (
ax

√
1 − ny

2S
+ ay

√
1 − nx

2S

) ∣∣∣∣�
〉
. (6.8)

Since the right side is real, we only have to consider the hermitian part of the operator
involved. This gives

2E

S
ρ(x1, x2) ≥

∑

(x,y)

〈
�

∣∣∣∣a
†
x

√
1 − ny

2S

(
δx,x1nx2 + δx,x2nx1

)
ax

√
1 − ny

2S

∣∣∣∣�
〉

−
∑

(x,y)

〈
�

∣∣∣∣a
†
y

√
1 − nx

2S

(
δx,x1nx2 + δx,x2nx1

)
ay

√
1 − nx

2S

∣∣∣∣�
〉

=
∑

y:|y−x1|=1

〈
�

∣∣∣
[
a†x1a

†
x2ax2ax1

(
1 − ny

2S

)
− a†ya

†
x2ax2ay

(
1 − nx1

2S

)]∣∣∣�
〉

+
∑

y:|y−x2|=1

〈
�

∣∣∣
[
a†x1a

†
x2ax2ax1

(
1− ny

2S

)
−a†x1a

†
yayax1

(
1 − nx2

2S

)]∣∣∣�
〉

=
∑

y:|y−x1|=1

[
ρ(x1, x2)

(
1 − δy,x2

2S

)
− ρ(y, x2)

(
1 − δx1,x2

2S

)]

+
∑

y:|y−x2|=1

[
ρ(x1, x2)

(
1 − δx1,y

2S

)
− ρ(x1, y)

(
1 − δx1,x2

2S

)]
.

(6.9)

��
Instead of looking at ρ(x1, x2), it will be convenient below to define σ(x1, x2) by

ρ(x1, x2) = σ(x1, x2)

(
1 − δx1,x2

2S

)
. (6.10)

For S ≥ 1 this defines σ in terms of ρ for every pair of points; for S = 1/2 we take
σ(x, x) = 0, i.e., σ = ρ. By plugging this ansatz into (6.1) we obtain

2E

S
σ(x1, x2) ≥

∑

y:|y−x1|=1

(σ (x1, x2) − σ(y, x2))

(
1 − δy,x2

2S

)

+
∑

y:|y−x2|=1

(σ (x1, x2) − σ(x1, y))

(
1 − δx1,y

2S

)
. (6.11)

In particular, σ satisfies the inequality

((−
x1 − 
x2

)
σ
)
(x1, x2) ≤ 2E

S
σ(x1, x2) +

1

S
σ(x1, x2)χ|x1−x2|=1, (6.12)

with 
 denoting the Laplacian on �.
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6.2. Step 2. Consider now a cubic lattice restricted to 
3 sites, �
 := [0, 
)3 ∩ Z
3.

The inequality (6.12) holds for (x1, x2) ∈ �
 × �
. It can be extended to all of Z6 via
reflection: For z ∈ {0, 1, . . . , 
 − 1} and m ∈ Z, let

zm = m
 +
1

2
(
 − 1) + (−1)m

(
z − 1

2
(
 − 1)

)
∈ {m
,m
 + 1, . . . , (m + 1)
 − 1}

(6.13)
denote the image of z obtained after reflecting m times at the boundary of the interval.
One readily checks that

z − wm = (−1)m
(
z(−1)m+1m − w

)
, (6.14)

which will be useful below. We extend this to z ∈ �
 × �
 componentwise, and
introduce the corresponding zm for m ∈ Z

6. For any function f on �
 × �
, we define
a corresponding function f R on Z

6 by

f R(zm) = f (z) (6.15)

for all m ∈ Z
6 and z ∈ �
 × �
. With χ denoting the characteristic function of the

subset of �
 × �
 with |x1 − x2| = 1, we obtain from (6.12) the bound

(
−
Z6σ R

)
(z) ≤ 2E

S
σ R(z) +

1

S
σ R(z)χ R(z) (6.16)

for all z = (x1, x2) ∈ Z
6, and with 
Z6 now the usual Laplacian on the full space Z6.

We bound the σ R in the last term on the right side of (6.16) simply by ‖σ R‖∞ =
‖σ‖∞. For E < 6S, we can write the resulting inequality equivalently as

σ R(z) ≤ (1 − E/(6S))−1
(

〈σ R〉(z) + 1

12S
‖σ‖∞χ R(z)

)
,

(6.17)

where 〈 〉means averaging over nearest neighbors inZ6. If we iterate this bound n times,
we further obtain

σ R(z)≤(1 − E/(6S))−n

⎛

⎝
∑

w∈Z6

Pn(z, w)σ R(w)+
1

12S
‖σ‖∞

∑

w∈Z6

Qn(z, w)χ R(w)

⎞

⎠ ,

(6.18)

where Pn(z, w) denotes the probability that a simple symmetric random walk on Z
6

starting at z ends up at w in n steps, and Qn = ∑n−1
j=0 Pj .

In the next step, we shall derive a simple upper bound on Pn which will allow us to
bound the first term on the right side of (6.18) in terms of the 1-norm of σ . Moreover,
we shall carefully evaluate the last term in (6.18) in order to show that it is strictly less
than ‖σ‖∞. It can thus be combined with the term on the left side of (6.18) to obtain the
desired bound on the ∞-norm in terms of the 1-norm.
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6.3. Step 3. We shall first give a bound on the last term in (6.18). For any F ≥ 0, we
can bound Qn as

Qn(z, w) ≤ (1 + F/6)n−1
n−1∑

j=0

(1 + F/6)− j Pj (z, w)

≤ (1 + F/6)n−1
∞∑

j=0

(1 + F/6)− j Pj (z, w)

= 12(1 + F/6)n (−
Z6 + 2F)−1(z, w). (6.19)

We are thus left with the task of deriving an upper bound on the quantity
∑

w∈Z6

(−
Z6 + 2F)−1(z, w)χ R(w) =
∑

m∈Z6

∑

w∈�
×�


(−
Z6 + 2F)−1(z, wm)χ(w).

(6.20)
Using detailed properties of the resolvent of the Laplacian on Z

6, we can obtain the
following bound. Its proof will be given in the Appendix.

Lemma 6.2. Let

C4 :=
√
3 − 1

192π3 �2( 1
24 )�

2( 1124 ) ≈ 0.2527 (6.21)

and assume that z ∈ �
 × �
 is a distance d away from the complement of �
 × �
.
Then

∑

w∈Z6

(−
Z6 + 2F)−1(z, w)χ R(w) ≤ −1

2
+ (3 + F/2)

⎡

⎣C4 +
2

πd

(
2(1 +

√
F)
/3

1 − (1 +
√
F)−
/3

)3
⎤

⎦ .

(6.22)

The last term on the right side of (6.22) is due to the finite size of �
. It would be
absent in infinite volume, in which case we could set F = 0. It will be very important
to note that

3C4 − 1

2
≈ 0.2582 <

1

2
≤ S. (6.23)

It implies that, for our choice of F ∼ 
−2 below, the expression on the right side of
(6.22) is strictly less than S for large enough d.

It remains to derive a bound on Pn(z, w). The central limit theorem implies that, for
large n, Pn(z, w) behaves like (3/(πn))3e−3‖z−w‖22/n . In fact, we have the following
explicit bound.

Lemma 6.3. Let b0 ≈ 1.942 denote the unique solution of

6b2

(sinh b)2
= b. (6.24)

Then

Pn(z, w) ≤
(
3π

n

)3

exp

(
−b0

‖z − w‖22
2n

)
. (6.25)
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The proof of Lemma 6.3 is straightforward and we shall give it in the Appendix.
From Lemma 6.3 we have the bound
∑

w∈Z6

Pn(z, w)σ R(w) ≤ ‖σ‖1
∑

k∈Z6

sup
w∈�
×�


Pn(z, w − k
)

≤ ‖σ‖1
(
3π

n

)3 ∑

k∈Z6

sup
z,w∈�
×�


exp

(
−b0

‖z − w + k
‖22
2n

)

= ‖σ‖1
(
3π

n

)3
(
∑

k∈Z
sup

z,w∈{0,1,...,
−1}
exp

(
−b0

|z−w+k
|2
2n

))6

,

(6.26)

where ‖σ‖1 = ∑
w∈�
×�


σ (w). We can bound the last exponential by 1 for |k| ≤ 1,
and by exp(−b0
2(|k| − 1)2/(2n)) for |k| ≥ 2. This gives

∑

w∈Z6

Pn(z, w)σ R(w) ≤ ‖σ‖1
(
3π

n

)3
⎛

⎝3 + 2
∑

m≥1

exp

(
−b0

m2
2

2n

)⎞

⎠
6

≤ ‖σ‖1
(
3π

n

)3 (
3 + 2

∫ ∞

0
exp

(
−b0

m2
2

2n

)
dm

)6

= ‖σ‖1
(
3π

n

)3
(
3 +

√
2πn

b0
2

)6

. (6.27)

If we insert the bounds obtained in (6.19), (6.22) and (6.27) into (6.18), we obtain

σ(z) ≤ (1 − E/(6S))−n‖σ‖1
(
3π

n

)3
(
3 +

√
2πn

b0
2

)6

+

(
1 + F/6

1 − E/(6S)

)n 1

S
‖σ‖∞

⎛

⎝3C4 − 1

2
+
C4

2
F +

6 + F

πd

[
2(1 +

√
F)
/3

1 − (1 +
√
F)−
/3

]3⎞

⎠

(6.28)

for all z = (x1, x2) ∈ �
 ×�
 a distance d away from its complement. The bound holds
for all n ≥ 1 and all F > 0.

We shall simply choose F = 
−2 and, recalling that E/S ≥ C
−2, we fix

n = �εSE−1� (6.29)

with ε small enough such that
(

1 + F/6

1 − E/(6S)

)n

≤ 1 − δ

6C4 − 1 + C4
−2 (6.30)

for some δ > 0 and all small enough E/S. Since 6C4 − 1 ≈ 0.516 < 1, this condition
can be satisfied for small enough (but strictly positive) δ. The resulting bound is then

σ(z) ≤ CS−3E3‖σ‖1 + 1

2S

(
1 − δ + Cd−1

)
‖σ‖∞. (6.31)
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For S large enough, the coefficient in front of the last term in (6.31) is smaller than 1
for all d ≥ 1, hence we obtain the desired result directly from (6.31) in this case, taking
the supremum over z on the left. For smaller S, we need an additional argument, which
is provided in the next and final step.

6.4. Step 4. The following lemma implies that σ is very flat near its maximum. In
particular, the maximal value of σ in the smaller cube a distance d away from the
boundary of �
 × �
 is close to its global maximum. We shall deduce this property
from the differential inequality (6.11).

Lemma 6.4. Assume that σ satisfies (6.11), and let z0 ∈ �
 × �
 be such that σ(z0) =
‖σ‖∞. Then, for S ≥ 1,

min
z:‖z−z0‖1=n

σ(z) ≥ ‖σ‖∞

(
1 − 2E

11S

(
12

1 − 1
2S

)n)
(6.32)

for any n ≥ 1. For S = 1/2 we have the bound

min
z:d(z,z0)=n

σ(z) ≥ ‖σ‖∞
(
1 − 4E

11
(12)n

)
(6.33)

instead, where d(z, w) denotes the distance on the graph �
 × �
\{(x, x) : x ∈ �
}.
Proof. Let us first consider the case S ≥ 1. Let

νn = ‖σ‖−1∞ min
z:‖z−z0‖1=n

σ(z), (6.34)

and choose zn with ‖zn − z0‖1 = n. Let us define the degree of the vertex z ∈ �
 × �


as

dz =
∑

w:|w−z|=1

(
1 − δw1,w2

2S

)
. (6.35)

The inequality (6.11) can be written as

2E

S
σ(z) ≥ dzσ(z) −

∑

w:|w−z|=1

σ(w)

(
1 − δw1,w2

2S

)
. (6.36)

Hence we have, for z = zn ,

2E

S
‖σ‖∞ ≥ 2E

S
σ(zn) ≥ dznσ(zn) − (dzn − λ)‖σ‖∞ − λσ(zn+1), (6.37)

where zn+1 is a neighbor of zn such that ‖zn+1 − z0‖1 = n + 1, and λ is either 1 or
(1 − 1/(2S)). Equivalently,

σ(zn+1) ≥ 1

λ
dznσ(zn) − 1

λ
(dzn + 2ES−1 − λ)‖σ‖∞. (6.38)
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Note that dz ≤ 12 for any z. The right side above is decreasing in dzn and increasing in
λ, hence we can replace dzn by 12 and λ by (1− 1/(2S)) for a lower bound. Moreover,
we pick zn and zn+1 in such a way that σ(zn+1) = ‖σ‖∞νn+1. We thus conclude that

νn+1 ≥ 1 − 12(1 − νn) + 2ES−1

1 − 1
2S

. (6.39)

By induction, one easily sees that this implies that

νn ≥ 1 − 2E

S

(
12

1− 1
2S

)n

− 1

11 + 1
2S

≥ 1 − 2E

11S

(
12

1 − 1
2S

)n

. (6.40)

This proves thebound (6.32) in the case S ≥ 1.Theproof of (6.33)works analogously. ��
Lemma 6.4 implies that

sup{σ(z) : dist(z, (�
 × �
)
c) ≥ d} ≥ ‖σ‖∞

⎛

⎝1 − 2E

11S

(
12

1 − 1
2S

)d−1
⎞

⎠ (6.41)

for S ≥ 1. Similarly, we can bound for S = 1/2

sup{σ(z) : dist(z, (�
 × �
)
c) ≥ d} ≥ ‖σ‖∞

(
1 − 4E

11
(12)d+1

)
, (6.42)

noting that because of the hard-core constraint z1 �= z2 it may take up to two more steps
to go from a point w to a point z. In both cases,

sup{σ(z) : dist(z, (�
 × �
)
c) ≥ d} ≥ ‖σ‖∞

(
1 − ES−1Cd

)
(6.43)

for a constant C > 1. We plug this into (6.31), taking the maximum over all z a distance
d away from the boundary on the left side. This gives

‖σ‖∞
(
1 − ECd

S
− 1

2S

(
1 − δ + Cd−1

))
≤ CS−3E3‖σ‖1, (6.44)

and this bound now holds for all d. We choose d large enough such that 1− 1
2S (1− δ +

Cd−1) ≥ δ/2, and thus obtain, for small enough E/S,

‖σ‖∞ ≤ CS−3E3‖σ‖1. (6.45)

Since ρ(z) ≤ σ(z) ≤ ρ(z)(1 − 1/(2S))−1 for S ≥ 1, and ρ(z) = σ(z) for S = 1/2,
this implies (3.4).
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Appendix A. Proofs of Auxiliary Lemmas

Proof of Lemma 6.2. From the property (6.14) and translation-invariance and parity of
the Laplacian, the expression in (6.20) equals

(6.20) =
∑

m∈Z6

∑

w∈�
×�


(−
Z6 + 2F)−1(zm, w)χ(w) (A.1)

for z ∈ �
 × �
. Because of χ , the sum is restricted to w = (w1, w2) ∈ �
 × �
 with
|w1 − w2| = 1. Since the resolvent of the Laplacian has a positive kernel, we can drop
the condition that w2 ∈ �
 for an upper bound. This gives

(A.1) ≤
∑

m∈Z6

∑

e∈Z3:|e|=1

∑

x∈�


(−
Z6 + 2F)−1(zm, (x, x + e)). (A.2)

The resolvent of the Laplacian can be conveniently written in terms of its Fourier trans-
form as

(−
Z6 + 2F)−1(z, w) = 1

(2π)6

∫

[−π,π ]6
eip1·(x1−y1)+i p2·(x2−y2)

ε(p1) + ε(p2) + 2F
dp1 dp2, (A.3)

where z = (x1, x2), w = (y1, y2) and ε(p) = 6 − ∑
e∈Z3:|e|=1 e

ip·e denotes the disper-
sion relation of the Laplacian on Z

3. Hence

(A.2) =
∑

m1∈Z3

∑

m2∈Z3

∑

e∈Z3:|e|=1

∑

x∈�


1

(2π)6

∫

[−π,π ]6
eip1·(x1,m1−x)+i p2·(x2,m2−x−e)

ε(p1) + ε(p2) + 2F
dp1 dp2

=
∑

m1∈Z3

∑

m2∈Z3

∑

x∈�


1

(2π)6

∫

[−π,π ]6
eip1·(x1,m1−x)+i p2·(x2,m2−x)

ε(p1) + ε(p2) + 2F
(6 − ε(p2)) dp1 dp2.

(A.4)

With the aid of the identity (6.14), we can rewrite the last expression as

(A.4) =
∑

m1∈Z3

∑

m2∈Z3

∑

x∈�


1

(2π)6

∫

[−π,π]6
eip1·(x1−xm1 )+i p2·(x2,m2−xm1 )

ε(p1) + ε(p2) + 2F
(6 − ε(p2)) dp1 dp2

= 1

2

∑

m2∈Z3

1

(2π)3

∫

[−π,π]3
6 − ε(p)

ε(p) + F
eip·(x1−x2,m2 )dp. (A.5)

For (x1, x2) ∈ �
 × �
, this further equals

(A.5) = (3 + F/2)
∑

m∈Z3

(−
Z3 + F
)−1

(x1, x2,m) − 1

2
δx1,x2 . (A.6)

At this point, we need some properties of the resolvent of the Laplacian on Z
3, which

we collect in the following lemma. Its proof will be given at the end of the proof of
Lemma 6.2.
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Lemma A.1. For F ≥ 0, the function Z
3 � x �→ (−
Z3 + F

)−1
(0, x) is positive and

decreasing in the components x j for x j positive, and increasing otherwise. We have the
bounds

(−
Z3 + F
)−1

(0, 0) ≤ (−
Z3
)−1

(0, 0) =
√
3 − 1

192π3 �2( 1
24 )�

2( 1124 ) ≈ 0.2527 (A.7)

and

(−
Z3 + F
)−1

(0, x) ≤ (−
Z3
)−1

(0, e) =
√
3 − 1

192π3 �2 ( 1
24

)
�2 ( 11

24

) − 1

6
≈ 0.0861

(A.8)
for x �= 0 and |e| = 1. Moreover, for x �= 0 and ‖x‖∞ = max1≤ j≤3 |x j |,

(−
Z3 + F
)−1

(0, x) ≤ 2

π‖x‖∞

(
1 +

√
F
)−‖x‖∞

. (A.9)

With C4 defined in (6.21), Lemma A.1 implies that

(3 + F/2)
(−
Z3 + F

)−1
(x1, x2) − 1

2
δx1,x2 ≤ C4 (3 + F/2) − 1

2
. (A.10)

Moreover, if x1 ∈ �
 is at least a distance d from the complement of �
, we can use
(A.9) to bound the contribution of m �= 0 to the sum in (A.6). Since ‖x1 − x2,m‖∞ ≥
d + (‖m‖∞ − 1)
 in this case, this gives

(A.6) ≤ −1

2
+ (3 + F/2)

⎡

⎣C4 +
∑

m �=0

2

π‖x1 − x2,m‖∞

(
1 +

√
F
)−‖x1−x2,m‖∞

⎤

⎦

≤ −1

2
+ (3 + F/2)

⎡

⎣C4 +
2

πd

∑

m �=0

(
1 +

√
F
)−(‖m‖∞−1)


⎤

⎦ . (A.11)

Using ‖m‖∞ ≥ ‖m‖1/3 in the last sum, we obtain the desired bound (6.22), with d the
distance of x1 to the complement of �
. This distance is greater or equal to the distance
of z = (x1, x2) to the complement of �
 × �
, hence the proof is complete. ��
Proof of Lemma A.1. The resolvent of the Laplacian onZ3 can be expressed via the heat
kernel as (see, e.g., [15])

(−
Z3 + F
)−1

(x, y) =
∫ ∞

0
e−6t I|x1−y1|(2t)I|x2−y2|(2t)I|x3−y3|(2t)e−Ftdt (A.12)

for F ≥ 0, with In denoting the modified Bessel functions, which are positive and
increasing on the positive real axis. (For a definition, see [1] or Eq. (A.14) below.)
The monotonicity property of the resolvent then follows directly from the fact that
In(t) ≥ In+1(t) for all t ∈ R and n ∈ N. To see this last property, note that the recursion
relations [1, 9.6.26] imply that Rn(t) = In(t) − In+1(t) satisfies

Rn(t) = n

t
In(t) +

n + 1

t
In+1(t) − R′

n(t). (A.13)
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This further implies that R′
n is positive whenever Rn is zero. Since Rn is positive for

small argument, as can be seen from the asymptotic expansion [1, 9.6.10], for instance,
this is impossible. Hence Rn is positive.

The values of the integrals corresponding to (A.7) and (A.8) can be found in [22,
6.612(6)]. Finally, to obtain the bound (A.9), we start with the integral representation
[1, 9.6.18]

In(t) = (t/2)n√
π�(n + 1/2)

∫ 1

−1
(1 − s2)n−1/2e−st ds. (A.14)

It implies that

I0(t) = 1

π

∫ 1

−1
(1 − s2)−1/2e−st ds = et

π

∫ 1

0

e−st

√
s

1 + e−2(1−s)t

√
2 − s

ds

≤ 2et

π

∫ 1

0

e−st

√
s
ds ≤ 2et

π

∫ ∞

0

e−st

√
s
ds = 2et√

π t
. (A.15)

Hence, with n = ‖x − y‖∞, we further have

(−
Z3 + F
)−1

(x, y) ≤
∫ ∞

0
e−6t In(2t)I0(2t)

2e−Ftdt

≤ 2

π

∫ ∞

0

1

t
e−2t In(2t)e

−Ftdt

= 2

πn

(
1 + F/2 +

√
F(1 + F/4)

)−n ≤ 2

πn

(
1 +

√
F
)−n

,

(A.16)

where we used [22, 6.623(3)] to compute the integral. ��
Proof of Lemma 6.3. We start with the integral representation

Pn(z, w) = 1

(2π)6

∫

[−π,π ]6

⎛

⎝1

6

6∑

j=1

cos(q j )

⎞

⎠
n

ei
∑

j q j (z j−w j )dq1 . . . dq6. (A.17)

The integrand is a Laurent polynomial in the eiq j , and hence the integral does not change
if the q j are replaced by q j + ia j for any a j ∈ C. We shall choose a j ∈ R, and bound

Pn(z, w) = 1

(2π)6

∫

[−π,π ]6

⎛

⎝1

6

6∑

j=1

cos(q j + ia j )

⎞

⎠
n

ei
∑

j (q j+ia j )(z j−w j )dq1 . . . dq6

≤ 1

(2π)6

∫

[−π,π ]6

⎛

⎝1

6

6∑

j=1

∣∣cos(q j + ia j )
∣∣

⎞

⎠
n

e−∑
j a j (z j−w j )dq1 . . . dq6

= π−6e−∑
j a j (z j−w j )

∫

[−π/2,π/2]6

⎛

⎝1

6

6∑

j=1

∣∣cos(q j + ia j )
∣∣

⎞

⎠
n

dq1 . . . dq6.

(A.18)



Heisenberg Ferromagnet 305

We have

| cos(q + ia)|2 = (sinh a)2 + (cos q)2 ≤
(
a sinh b

b

)2

+ 1 − (2q/π)2 (A.19)

for |a| ≤ b and |q| ≤ π/2. In particular,

1

6

6∑

j=1

∣∣cos(q j + ia j )
∣∣ ≤

⎛

⎝1

6

6∑

j=1

∣∣cos(q j + ia j )
∣∣2
⎞

⎠
1/2

≤
⎛

⎝1 − 2

3π2

6∑

j=1

q2j +
(sinh b)2

6b2

6∑

j=1

a2j

⎞

⎠
1/2

≤ exp

⎛

⎝− 1

3π2

6∑

j=1

q2j +
(sinh b)2

12b2

6∑

j=1

a2j

⎞

⎠ . (A.20)

Plugging this bound into (A.18), we obtain

Pn(z, w) ≤ exp

⎛

⎝−
6∑

j=1

a j (z
j − w j ) + n

(sinh b)2

12b2

6∑

j=1

a2j

⎞

⎠

×
(
1

π

∫

[−π/2,π/2]
e−nq2/(3π2)dq

)6

≤
(
3π

n

)3

exp

⎛

⎝−
∑

j

a j (z
j − w j ) + n

(sinh b)2

12b2

6∑

j=1

a2j

⎞

⎠ . (A.21)

To minimize the right side, we choose

a j = (z j − w j )

n

6b2

(sinh b)2
. (A.22)

Keeping in mind that |a j | ≤ b is required for all j , we see that if

6b2

(sinh b)2
≤ b (A.23)

then we obtain the bound

Pn(z, w) ≤
(
3π

n

)3

exp

(
−‖z − w‖22

n

3b2

(sinh b)2

)
(A.24)

for all z and w with ‖z − w‖∞ ≤ n. But Pn(z, w) = 0 for ‖z − w‖∞ > n, hence this
establishes the desired bound for all values of z ∈ Z

6 and w ∈ Z
6. ��
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Appendix B. Quasi Long-Range Order

Here we prove (2.6). Let us preliminarily observe that taking the expectation of (5.10) in
〈·〉β we immediately get (2.6) with the factor 9/8 replaced by 2. To improve the factor,
let

fn = sup
‖x−y‖1=n

〈S2 − �Sx · �Sy〉β. (B.1)

Note that f1 = e(S, β). Using (5.6), for n > 1,

fn ≤ 2( fn− j + f j ), 1 ≤ j < n. (B.2)

We pick j = �n/2�, so that in particular

fn ≤
{
4 fn/2, if n is even
2( f n−1

2
+ f n+1

2
), if n is odd.

(B.3)

We claim that this implies that fn ≤ 9
8n

2 f1. To see this, observe that the solution gn to
the iteration defined by (B.3) with equality sign and initial datum f1 = 1 is

gn = n2 + 2km − m2, if n = 2k + m with 0 ≤ m < 2k . (B.4)

Hence fn ≤ gn f1 for all n. Given n = 2k + m with 0 ≤ m < 2k , one has gn/n2 =
(3x +1)/(x +1)2 with x = m2−k . Maximizing over x gives gn ≤ 9

8n
2, from which (2.6)

follows.
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