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Abstract: We studyN = 2 supersymmetricU (N ) Chern–Simons with N f fundamen-
tal and N f antifundamental chiral multiplets of mass m in the parameter space spanned
by (g, m, N , N f ), where g denotes the coupling constant. In particular, we analyze the
matrix model description of its partition function, both at finite N using the method of
orthogonal polynomials together with Mordell integrals and, at large N with fixed g,
using the theory of Toeplitz determinants. We show for the massless case that there is
an explicit realization of the Giveon–Kutasov duality. For finite N , with N > N f , three
regimes that exactly correspond to the known three large N phases of the theory are
identified and characterized.

1. Introduction

In a classic paper [1], Mordell analyzed integrals of the type

I =
∫ ∞

−∞
eat

2+bt

ect + d
dt,

whichwere originally studied byKronecker and Lerch in the late 1800s and, anticipating
the comprehensive work byMordell, they had also appeared in the study of the Riemann
zeta function by Siegel and in the relationship withMock theta functions by Ramanujan.
This latter line of research is of much current interest after the work [2]. This integral
also emerges in studies of unitary representations of extended superconformal algebras
(see [3] and references therein).

In this paperwe consider a quantumfield theorywhere this integral also plays a central
role and will show that it carries exact non-perturbative information on the quantum
theory. The theory is N = 2 supersymmetric U (N ) Chern–Simons (CS) with N f
fundamental and N f antifundamental chiral multiplets of massm. The partition function
on S

3 can be determined by localization techniques [4–7] and is given by
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Z U (N )
N f

=
∫

dNμ

∏
i< j 4 sinh

2( 12 (μi − μ j )) e
− 1

2g

∑
i μ2

i

∏
i

(
4 cosh( 12 (μi + m)) cosh( 12 (μi − m))

)N f
, (1.1)

where g = 2π i
k with k ∈ Z the Chern–Simons level andμi/2π represent the eigenvalues

of the scalar field σ belonging to the three dimensionalN = 2 vector multiplet. In (1.1)
the radius R of the three-sphere has been set to one. It can be restored by rescaling
m → mR, μi → μi R. The partition function is periodic in imaginary shifts of the
mass, Z(m + i2πn) = Z(m), for integer n.

Localization thus reduces the original functional integral to the (infinitely) simpler
matrix integral (1.1). However, computing the remaining N integrations is not straight-
forward and requires the use of specific techniques. In the more general case, where the
matter chiral multiplets have R-charge q and belong to the representation R of the gauge
group, the matrix model (1.1) contains double sine functions [6,7]. A large number of
works have been devoted to analyzing such a matrix model, albeit in a limited region of
the parameter space (e.g. large N ), whereas in this paper we focus on a more compre-
hensive analyzing of (1.1), which arises when q = 1/2 and R = r ⊕ r . The partition
function (1.1) was calculated in [8] in the large N limit at fixed gN by exactly solving
the saddle-point equations. The planar theory exhibits a number of interesting features.
Non-trivial results emerge when the decompactification limit is taken by scaling the ’t
Hooft coupling t = gN with the radius as t = mRλ, with fixed λ. An inspection of the
saddle-point equations shows that this is the only possible self-consistent scaling that
maintains matter multiplets in the theory (if, instead, t is fixed, then the decompactifica-
tion limit just decouples matter multiplets). Thus the decompactification limit taken in
[8] involves a strong coupling limit. Then, as λ is varied, the theory develops quantum
phase transitions of the third order. The theory presents three phases when 0 < N f < N
and two phases for N f ≥ N . The different phases emerge as λ is increased from zero: the
eigenvalue distribution starts flat and begins to extend around the origin until it hits ±m.
Upon further increasing of the coupling, the eigenvalues begin to accumulate at ±m and
then, at some higher critical coupling, the boundary of the distribution overcomes ±m
and continues extending gradually in the form of a flat distribution with delta function
peaks at ±m.

These phase transitions are very similar to phase transitions appearing in four-
dimensional N = 2 supersymmetric massive gauge theories [9–11]. Specifically, this
case parallels phase transitions occurring in four-dimensionalN = 2 Super-QCD [10].
Recently, similar phase transitions were found in N = 2 Chern–Simons theories with
bifundamental matter, such as ABJM and generalizations [12]. Notably, they are the pre-
cise three-dimensional analog of the phase transitions occurring in the four-dimensional
N = 2∗ Super Yang–Mills theory [9,10].

The calculation of [8] showing the existence of phase transitions describes the CS
theory with fundamental matter only in a special corner of parameter space. Therefore,
it is of interest to explore the different physical and mathematical features of the theory
in the complete parameter space spanned by (g, m, N , N f ). To this aim, in this paper
we will use different methods to determine the partition function of this theory first at
finite N (by the method of orthogonal polynomials [13,14]), and then at large N with
fixed g, by considering the unitary version of the matrix model, which allows the use of
the theory of Toeplitz determinants [15,16].

The partition function can also be written, using the change of variables [8]

zi = ceμi , c ≡ eg(N−N f ) , (1.2)
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as

Z U (N )
N f

= e− gN
2 (N2−N2

f )

∫
[0,∞)N

dN z
∏
i< j

(zi − z j )
2 e− 1

2g

∑
i (ln zi )

2

∏
i

(
1 + zi

em
c

)N f
(
1 + zi

e−m

c

)N f
.

(1.3)

This ensemble can be formally viewed as a deformation, with logarithmic potentials, of
the Stieltjes–Wigert ensemble whose associated orthogonal polynomials solve exactly
[17] the Chern–Simonsmatrixmodel that describes pureU (N )Chern–Simons theory on
S
3 [18]. Consideration of the orthogonal polynomial method as applied to the Hermitian

ensemble (1.3) leads to the emergence of the Mordell integral as a crucial tool to obtain
explicit analytical expressions for the partition function. This is developed in Sect. 2,
following an introduction of the basic formalism of orthogonal polynomials in Sect. 2.1.
This use of Mordell integrals not only allows one to obtain analytic expressions for the
partition functions, but also provides a very explicit realization of the Giveon–Kutasov
duality [19,20], as shown in detail in Sect. 2.7. In addition, the existence of such duality,
together with the analytical method developed here, allows to obtain an explicit expres-
sion, of the finite-sum type, for the non-Abelian theory, as shown at the very end of
Sect. 2.

In Sect. 3, we compute ZU (N )
N f

in a large g limit and with the massm also scaling with
g. In the large N calculations of [8], this limit was found to lead to phase transitions and
we find here, for finite N , three regimes that are in exact correspondence to the three
large N phases discussed above. Upon taking the large N limit, we will reproduce the
free energies of each phase computed in [8].

Then, in Sects. 4 and 5, a complementary analysis of the matrix model is carried out
by considering a unitary matrix model version of (1.1), in analogy to what occurs in pure
Chern–Simons theory [21]. We show that the unitary matrix model can be written as

Z̃U (N )
N f

=
( g

2π

)N/2
∫
[0,2π ]N

dNμ

(2π)N

N∏
j=1

θ3(eiμ j , q)(
4 cos( 12 (μ j + im)) cos( 12 (μ j − im))

)N f

×
∏
i< j

4 sin2(
1

2
(μi − μ j )), (1.4)

where θ3(eiμ, q) is a theta function, and proceed to analyze it using tools in the theory of
Toeplitz determinants [15,16]. In particular, we give, using Szegö’s theorem, a large N
expression for the partition function when g = 2π i/k is fixed, in contrast to the large N
limit obtained in [8], which was taken keeping gN fixed. In addition, several properties
of the matrix model are presented: (i) the existence of an equivalent matrix model, dual
to (1.4) and (ii) the connection between (1.4) and supersymmetric versions of Schur
polynomials. Both results are generalizations of properties that also hold for the matrix
model that describes pure Chern–Simons theory [22–24].

In Sect. 5, we show that more refined results in the theory of Toeplitz determinants
allow one to analyze the massless case [15,25], which is more delicate to handle than
the massive one. In particular, we give an explicit expression for the partition function
for strong-coupling and finite N and a large N expression for arbitrary coupling.
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2. U(N) Partition Function from Orthogonal Polynomials

2.1. Definitions and conventions. A set of functions {φn} satisfying

(φn, φm) =
∫

φn(x)φm(x)dα(x) = δnm (2.1)

is said to be orthonormal.
From a set of functions { fn} with n = 0, 1, 2, . . ., we can construct an orthogonal

set {D( f )
n } as follows [13]

D( f )
n (x) = 1

Nn

∣∣∣∣∣∣∣∣∣

( f0, f0) ( f0, f1) · · · ( f0, fn)
( f1, f0) ( f1, f1) · · · ( f1, fn)

· · · · · · · · · · · ·
( fn−1, f0) ( fn−1, f1) · · · ( fn−1, fn)
f0(x) f1(x) · · · fn(x)

∣∣∣∣∣∣∣∣∣
(2.2)

with

Nn =

∣∣∣∣∣∣∣

( f0, f0) ( f0, f1) · · · ( f0, fn−1)

( f1, f0) ( f1, f1) · · · ( f1, fn)
· · · · · · · · · · · ·

( fn−1, f0) ( fn−1, f1) · · · ( fn−1, fn−1)

∣∣∣∣∣∣∣
(2.3)

Here the factor Nn was chosen so that upon choosing fn(x) = xn , the polynomials
pn(x) = D( f )

n (x) have unit coefficient in its highest power pn(x) = xn + . . .. We define
hn as

(pn, pm) = hnδnm .

U (N ) matrix models. An Hermitian matrix model has a Jacobian 	2(z) =∏i< j (zi −
z j )2 arising from gauge fixing the U (N ) symmetry

Z =
∫

dN z 	2(z) e− 1
g

∑
i V (zi ). (2.4)

The factor 	, known as Vandermonde determinant, can be written as

	(z) =

∣∣∣∣∣∣∣∣

1 z1 (z1)2 · · · (z1)N−1

1 z2 (z2)2 · · · (z2)N−1

· · · · · · · · · · · · · · ·
1 zN (zN )2 · · · (zN )N−1

∣∣∣∣∣∣∣∣
(2.5)

Choosing

dα(z) = e− 1
g V (z)dz , (2.6)

as measure, the matrix model orthogonal polynomials pn(z) satisfy

∫
pn(z)pm(z)dα(z) = hnδnm . (2.7)
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A U (N ) gauge theory requires the computation of the first N polynomials. Having the
polynomials pn(z) = zn + . . ., and rewriting the Vandermonde determinant (2.5) as

	(z)=

∣∣∣∣∣∣∣

p0(z1) p1(z1) p2(z1) · · · pN−1(z1)
p0(z2) p1(z1) p2(z2) · · · pN−1(z2)
· · · · · · · · · · · · · · ·
p0(zN ) p1(zN ) p2(zN ) · · · pN−1(zN )

∣∣∣∣∣∣∣
=εi1...iN pi1−1(z1) · · · piN−1(zN ).

The partition function (2.4) can then be computed as follows [14]:

Z =
∫

dNα(z)	2(z)

=
∫

dNα(z) εi1...iN ε j1... jN pi1−1(z1) · · · piN−1(zN )p j1−1(z1) · · · p jN−1(zN )

= εi1...iN ε j1... jN

(∫
dα(z1) pi1−1(z1)p j1−1(z1)

)
· · ·
(∫

dα(zN ) piN−1(zN )p jN−1(zN )

)
,

i.e.

Z = N !
N∏
i=1

hi . (2.8)

Alternatively, the partition function Z can be determined from the formula (2.5) for 	.
This gives

Z = N !NN . (2.9)

2.2. The “Mordell” ensemble. In the present case, we need to compute

(fi , f j ) =
∫

dα(z) zi+ j

=
∫ ∞

0
dz

zi+ j(
1 + z e

+m

c

)N f
(
1 + z e

−m

c

)N f
e− 1

2g (ln z)2

= ci+ j+1e− 1
2g (ln c)2

∫ ∞

−∞
dμ

eμ(i+ j+1+N f −N )

(1 + eμ+m)N f
(
1 + eμ−m

)N f
e− 1

2g μ2
. (2.10)

We have called z = c eμ and i, j = 0, 1, . . . , N − 1. The second line reduces to
the integral appearing in the Stieltjes–Wigert ensemble by formally regarding c as an
independent parameter and taking c → ∞. This is only a formal connection because
here c depends on g. In particular, note that

ci+ j+1e− 1
2g (ln c)2 = eg(N−N f )

(
i+ j+1− 1

2 (N−N f )
)
. (2.11)

The partition function is thus given by

Z U (N )
N f

= N ! e− gN
2 (N2−N2

f ) det(fi , f j ). (2.12)
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2.3. Case N f = 1. When N f = 1 we can use

1

(1 + ax)(1 + bx)
= 1

a − b

(
a

1 + ax
− b

1 + bx

)

to obtain

(fi , f j ) = e
g
2 (N2−1) e�g(N−1) I (�,m) − I (�,−m)

2 sinhm
, (2.13)

where the function I is given by

I (�,m) =
∫ ∞

−∞
dμ

e(�+1)μ+m

1 + eμ+m e− 1
2g μ2

, (2.14)

and the integer � = i + j + 1 − N runs from � = 1 − N , . . . , N − 1. Note that the first
exponential factor in (2.13) cancels a similar one in (2.12) upon taking the determinant.

The integral (2.14) is a particular case of a Mordell integral [1], which can in general
be evaluated in terms of expressions involving infinite sums. In special cases, theMordell
integrals simplify to finite Gauss sums, as we shall discuss below and in Sect. 2.5. For
generic values of the parameters, the integral (2.14) can also be given in terms of infinite
sums of error functions,

I (�,m) =
∫ −m

−∞
dμ

e(�+1)μ+m

1 + eμ+m e− 1
2g μ2

+
∫ ∞

−m
dμ

e(�+1)μ+m

1 + eμ+m e− 1
2g μ2

=
√

πg

2

∞∑
n=0

(−1)nem(n+1)e
g
2 (n+�+1)2erfc

(
g(� + n + 1) + m√

2g

)

+

√
πg

2

∞∑
n=0

(−1)ne−mne
g
2 (n−�)2erfc

(
g(n − �) − m√

2g

)
, (2.15)

where erfc(x) = 1−erf(x) denotes the complementary error function and we have used
erf(−x) = −erf(x).

2.4. Case N f = 1 and m = gp, p ∈ N. In this particular case equation (2.15) dramat-
ically simplifies and one obtains

I (�, g p) =

⎧⎪⎪⎨
⎪⎪⎩

√
πg
2 e− gp

2 (p+2�)∑2(p+�)
n=0 (−1)ne

g
2 (p+�−n)2 , p + � ≥ 0

√
πg
2 e− gp

2 (p+2�)∑−2(p+�+1)
n=0 (−1)ne

g
2 (p+�+n+1)2 , p + � ≤ −1

(2.16)

This formula permits the calculation of ZU (N ) in terms of elementary functions, using
(2.12) (in this section, N f = 1). In what follows we give examples for gauge groups
U (1), U (2) and U (3).
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U (1) gauge group:

ZU (1)
p =

√
2πg egp−

gp2

2

e2gp − 1

2p−1∑
n=0

(−1)ne
1
2 g(p−n)2 . (2.17)

In particular,

ZU (1)
p=1 =

√
2πg e

g
2(

e
g
2 + 1

)
(eg + 1)

ZU (1)
p=2 =

√
2πg

(
e
3g
2 + eg + e

g
2 − 1

)
(
e
g
2 + 1

)
(eg + 1)

(
e2g + 1

)

ZU (1)
p=3 =

√
2πg e−3g/2

(
e3g + e

3g
2 − 2e

g
2 + 1

)
(
e
3g
2 + 1

) (
e3g + 1

) .

Note that the potential pole at g = 0 in (2.17) cancels against a zero of the numerator.

U (2) gauge group:

ZU (2)
p=1 = gπ e−g(e

g
2 − 1)(eg + 2e

g
2 − 1)

(e
g
2 + 1)(eg + 1)

ZU (2)
p=2 = gπ e−4g(e

g
2 − 1)(2e

3g
2 + eg − 1)(2e5g/2 + e2g − 2e

g
2 + 1)

(e
g
2 + 1)(eg + 1)(e2g + 1)

ZU (2)
p=3 = gπe−9g(e

g
2 − 1)(2e3g − eg − e

g
2 + 1)(2e5g + 2e

9g
2 − 2e

7g
2 + e3g − 2e2g + 2e

g
2 − 1)

(e
3g
2 + 1)(e3g + 1)

U (3) gauge group:

ZU (3)
p=1 =

3
√
2π

3
2 g

3
2 e−2g

(
e

g
2 − 1

)3
eg + 1

(
e
3g
2 + eg + e

g
2 − 1

)

ZU (3)
p=2 =

3
√
2π

3
2 g

3
2 e−6g

(
e

g
2 − 1

)3
(eg + 1)

(
e2g + 1

) (
e2g + 2e

3g
2 − 1

)

×
(
e
7g
2 + e3g + e

5g
2 + e2g − e

3g
2 − eg − e

g
2 + 1

)

ZU (3)
p=3 =

3
√
2π

3
2 g

3
2 e−12g

(
e

g
2 − 1

)3 (
2e

7g
2 + e3g − e

5g
2 − e

3g
2 − e

g
2 + 1

)

(eg + 1)
(
eg − e

g
2 + 1

) (
e2g − eg + 1

)

×
(
2e6g + e

11g
2 + e5g + e

9g
2 − e4g − e

7g
2 − e3g − e

5g
2 − e2g + e

3g
2 + eg + e

g
2 − 1

)

It is interesting to interpret these results in terms of the quantized CS coupling k using
g = 2π i/k. In this case the mass, m = 2π i p/k is imaginary and the partition function
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(1.1) depends only on p mod k. From the expressions above we see that for N = 1, 2, 3
the partition function ZU (N )

p has singularities for particular values of k. For example,

ZU (2)
p=3 has singularities at k = 1, 2, 3, 6. In general, the partition function is regular for

k > 2p. The singularity at k = 2p arises because in this case m = iπ and the integrand
in the partition function (1.1) acquires a pole on the integration region. The analytic
continuation to imaginary g is therefore only justified for k > 2p, for k < 2p the above
expressions cease to be valid. In the following section we will give general expressions
valid for any integer k.

2.5. Calculation of Z in terms of Mordell integrals. The basic integral I (2.14) that
is used to construct the orthogonal polynomials has been computed by Mordell [1] for
general parameters. In general, it is given in terms of infinite sums. However, in a specific
case it assumes the form of a Gauss’s finite sum.Mordell gives the remarkable formulas1

∫ ∞

−∞
dt

e−iπ a
b t2−2π t x

e2π t − 1
= G−(a, b, x) ,

∫ ∞

−∞
dt

eiπ
a
b t2−2π t x

e2π t − 1
= G+(a, b, x),

(2.18)

G−(a, b, x) ≡ 1

eiπb(2x−a) − 1

(√−ib

a

a−1∑
r=0

e−iπ b
a (x−r)2 + i

b∑
s=1

eiπs(2x+s
a
b )

)
,

(2.19)

G+(a, b, x) ≡ 1

eiπb(2x−a) − 1

(
−
√
ib

a

a∑
r=1

eiπ
b
a (x+r)2 + i

b−1∑
s=0

eiπs(2x−s ab )

)
, (2.20)

where a, b are any positive integers, the square root should be understood as having
positive real part and the integration contour is deformed to the lower (upper) half plane
to avoid the singularity in G−( G+). Notice that G± depend only on the ratio a/b, even
though it is not manifest in the expressions.

In our case, the integral (2.14) involves a denominator with positive relative sign
between the two terms. This case can be easily obtained by a suitable contour deformation
as explained in [1]. We find

∫ ∞

−∞
dt

e−iπ a
b t2−2π t x

e2π t − e2π iλ
= e−iπ(2λ+2λx− a

b λ2) G−
(
a, b, x − a

b
λ
)
, (2.21)

∫ ∞

−∞
dt

eiπ
a
b t2−2π t x

e2π t − e−2π iλ = eiπ(2λ+2λx− a
b λ2) G+

(
a, b, x − a

b
λ
)
, (2.22)

where 0 ≤ �(λ) < 1. In particular, for λ = 1/2, we get a denominator with positive
relative sign. Consider now I (2.14)with g = 2π i/k, by performing a shift of integration
variable μ + m → μ and then a rescaling μ → 2π t , we can put it into the form

I (�,m) = 2π e−m�+ ikm2
4π

∫ ∞

−∞
dt

eiπkt
2+2π t (�+1)−i tkm

e2π t + 1
. (2.23)

1 We correct two small typos on the RHS of (8.2) of [1] (corresponding to (2.20) above): there is no minus
sign inside the square root on the first term, and the limits of summation in the second term must be shifted
by 1.
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Strikingly, thanks to the fact that k is an integer in CS theory, we can apply Mordell’s
formulas (2.21)–(2.22), which assume that a and b are positive integers. This implies a
drastic simplification of the partition function, since, otherwise, for a generic real number
k, the integral I (�,m) would be given by a complicated expression involving infinite
sums.

Thus, using (2.22) with x = −� − 1 + ikm/2π , a = k, b = 1 and λ = 1/2, for any
positive integer k we have

I (�,m) = 2π e−iπ(�+ k
4 ) e−m(�+ k

2 )+ ikm2
4π G+

(
k, 1,−� − 1 + i

km

2π
− k

2

)
, (2.24)

with

G+
(
k, 1,−�−1+ i

km

2π
− k

2

) = 1

e−km − 1

(
−
√

i

k

k∑
r=1

e
iπ
k (r−�−1− k

2 +i
km
2π )2 + i

)
(2.25)

For negative k, one must use the analog formula with G−, namely

I (�,m) = 2π eiπ(�− k
4 ) e−m(�− k

2 )+ ikm2
4π G−

(− k, 1,−� − 1 + i
km

2π
+
k

2

)
, (2.26)

with

G−
(−k, 1,−�−1+ i

km

2π
+
k

2

) = 1

1 − ekm

(√
i

k
ekm

−k∑
r=1

e
iπ
k (r+�− k

2−i km2π )2 + i

)
(2.27)

We now apply these expressions to compute the U (N ) Chern–Simons matter partition
function for arbitrary level and mass. We will make use of the generalized Gauss’s sum
identities

1√
ik

k∑
r=1

e
iπ
k (r−�− k

2 )2 = 1, k > 0 , (2.28)

1√
ik

−k∑
r=1

e
iπ
k (r+�− k

2 )2 = 1, k < 0 . (2.29)

valid for � ∈ Z.
It is useful to compare (2.24), (2.26) with the formulas (2.16) for the case m = gp.

The denominator in (2.25) becomes singular for m = gp = 2π i p/k with integer p,
however, also the numerator vanishes in virtue of (2.28).2 By taking the limit p →
integer in (2.24), and comparing with (2.16), we also find the remarkable identity

I (�, gp) = 2π i

k
e−iπ(�+ k

4 ) e− iπp
k (2�+k+p)

(
p +

k

2
+�+1− 1√

ik

k∑
r=1

re
iπ
k

(
r− k

2−p−�−1
)2)

(2.30)

2 One can reverse the logic and use the fact that (2.23) [and thereforeG+ in (2.25)] is regular atm = 2π i p/k
to actually provide another proof of the Gauss’s identity (2.28).
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=

⎧⎪⎪⎨
⎪⎪⎩

π

√
i
k e

− iπp
k (p+2�)∑2(p+�)

n=0 (−1)ne
iπ
2k (p+�−n)2 , p + � ≥ 0

π

√
i
k e

− iπp
k (p+2�)∑−2(p+�+1)

n=0 (−1)ne
iπ
k (p+�+n+1)2 , p + � ≤ −1

valid for k > 0, and which we verified case by case for various values of p, k, �.
Summarizing, the partition function can be computed in terms of simple formulas

involving finite sums in two cases: (i) when m = gp for arbitrary complex number g
and integer p, or (ii) when k = 2π i/g is an integer for arbitrary m. The identity (2.30)
ensures that both approaches agree in the overlapping region of the parameters, that is,
when both k = 2π i/g and p = m/g are integers.

In what follows, we give examples for the partition function for arbitrary m and
different gauge groups. In all cases, N f = 1.

U (1) gauge group: In the abelian case, the partition function (2.12) reduces to

ZU (1)
k = I (0,m) − I (0,−m)

2 sinhm
(2.31)

from (2.24), (2.26) we obtain

ZU (1)
k = 2πe−m+ ik(m−iπ)2

4π

(1 − e−2m)(ekm − 1)

×
(√

i

k

k∑
r=1

(
e
iπ
k

(
r−1− k

2− ikm
2π

)2
+ e

iπ
k

(
r−1− k

2 +
ikm
2π

)2)
− 2i

)
(2.32)

for k > 0 and

ZU (1)
k = 2πe−m+ ik(m+iπ)2

4π

(1 − e−2m)(e−km − 1)

×
(√

i

k

−k∑
r=1

(
e
iπ
k

(
r− k

2− ikm
2π

)2
+km

+ e
iπ
k

(
r− k

2 +
ikm
2π

)2−km

)
+ 2i

)
(2.33)

for k < 0. These formulas contain perturbative as well as non-perturbative terms.

The perturbative terms arise from the weak-coupling expansion of factors e
iπ
k (r−1)2 =

e
g
2 (r−1)2 , whereas non-perturbative terms are factors e

ik(m−iπ)2
4π = e− (m−iπ)2

2g and ekm =
e
2π im
g .
For particular values of k, we obtain

ZU (1)
(k=1) =

2πemei
π
4

(
em + 1 − 2e

m
2 +

im2
4π

)

(em − 1)2 (em + 1)

ZU (1)
(k=2) =

√
2πe

iπ
4 em

(
e2m + 1 − 2em+ iπ

2 − 2
√
2 em+ im2

2π − iπ
4

)

(
e2m − 1

)2
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U (2) gauge group:

ZU (2)
(k=1) =

8iπ2em+ im2
2π

(
em + 1 − 2e

m
2 − im2

4π

)

(em − 1)2 (em + 1)
(2.34)

ZU (2)
(k=2) =

8π2e2m
(
e
im2
2π − 1

)(
e
im2
2π + i

)

(
e2m − 1

)2 (2.35)

U (3) gauge group:

ZU (3)
(k=1) = 48π3e

im2
2π + 3iπ

4 (2.36)

ZU (3)
(k=2) = 24

√
2π3e

iπ
4 em+ im2

π(
e2m − 1

)2
(
e2m + 2iem + 1 − 2

√
2ei

π
4 em− im2

2π

)
(2.37)

2.6. Massless theory. The partition function can also be computed in the massless limit.
A convenient way to obtain this case is to consider (2.24),(2.26) and take the limit

lim
m→0

I (�,m) − I (�,−m)

2 sinhm

= π(−1)�

k
3
2

e
iπ
4 (1−k)

k−1∑
n=0

e
iπ
k

(
n− k

2−�
)2 ((

n − k

2

)2 − ik

2π
− �2

)
, (2.38)

valid for k > 0, and

lim
m→0

I (�,m) − I (�,−m)

2 sinhm

= π(−1)�

(−k)
3
2

e− iπ
4 (1−k)

−k∑
n=1

e
iπ
k

(
n− k

2 +�
)2 ((

n +
k

2

)2 − ik

2π
− �2

)
, (2.39)

for k < 0.
Substituting these equations into (2.13), (2.12) we can obtain the partition function

in the massless case for any U (N ) gauge group and N f = 1.
As an example, we quote the case of U (1) gauge theory:

ZU (1)
∣∣∣∣
m=0

= π

k
3
2

e
iπ
4

k−1∑
n=0

(−1)ne
iπ
k n2
((

n − k

2

)2 − ik

2π

)

= 1

2
e− iπk

4 +
π

k
3
2

e
iπ
4

k−1∑
n=0

(−1)ne
iπ
k n2
(
n − k

2

)2
, k > 0,

ZU (1)
∣∣∣∣
m=0

= π

k
3
2

e
5iπ
4

−k∑
n=1

(−1)ne
iπ
k n2
((

n +
k

2

)2 − ik

2π

)

= 1

2
e− iπk

4 +
π

k
3
2

e
5iπ
4

−k∑
n=1

(−1)ne
iπ
k n2
(
n +

k

2

)2
, k < 0, (2.40)
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Generically, the partition function for arbitrary gauge groupU (N ) in the massless limit
can be obtained from (2.32)–(2.37) by taking the m → 0 limit.

Finally, note that expressions involving finite sums of the Gauss type are typical
of partition functions in finite quantum mechanics [26]. Thus, it would be interesting
to see if the partition function above and also the massive one (2.32) can be naturally
interpreted as Tr

(
e−βH

)
over a finite-dimensional Hilbert space.

2.7. Giveon–Kutasov duality. In recent years there has been considerable interest in
3d Seiberg-like dualities [19,20]. Our analytical computations with Mordell integrals
allow for an explicit check of such a duality, as we show in what follows, focussing on
the massless case. The duality applies to the partition function of the type (1.1) which,
written in the same variables and with the same prefactors as in [20] reads

ZU (N )
N f ,k

= 1

N !
∫

dNλ

∏
i< j 4 sinh

2(π(λi − λ j )) eπ ik
∑

i λ2i∏
i (4 cosh(π(λi + m)) cosh(π(λi − m)))N f

. (2.41)

In [20] it is shown, in the context of localization and matrix models, that the Giveon–
Kutasov duality of U (N ) N=2 Chern–Simons-matter theories [19] also holds forN=3
supersymmetry. More specifically, they find that3

ZU (Nc)
N f ,k

(η) = e
sgn(k)π i

(
c|k|,N f −η2

)
ZU (|k|+2N f −Nc)

N f ,−k (η) , (2.42)

where the l.h.s. denotes the partition function of a theorywith Nc colors, N f fundamental
chiral multiplets, Chern–Simons level k, and a Fayet-Iliopoulos term η. The term c|k|,N f

is a phase.
In particular, the matrix model for the case of N f fundamental chiral multiplets of

mass m is considered in [20] and the duality checked for low values of N f .
We will now show that our formulas are consistent with Giveon–Kutasov duality

(2.42). In particular, for Nc = N f = 1, in the massless case with η = 0, the duality
(2.42) becomes

ZU (1)
1,−k = eiπφ(k)ZU (|k|+1)

1,k , (2.43)

where φ(k) denotes a k-dependent phase. One can therefore use this duality to study
large Nc limits in terms of a simple integral.

Using (2.40) we find (recalling that the variables in (2.41) and (1.1) are related by
2πλ = μ and a N ! prefactor)

ZU (1)
1,−1 = 1

8π
e
iπ
4 (2 − iπ)

ZU (1)
1,−2 = 1

8π
e
iπ
2 (2 − (1 + i) π)

ZU (1)
1,−3 = 1

72π
e
iπ
4

(
18i +

(
3 − 8i

√
3
)

π
)

ZU (1)
1,−4 = 1

8π
e
iπ
2

(
2i + (1 − 2e

iπ
4 )π

)

3 In this paper N f = 1 denotes a pair of fundamental and anti-fundamental chiral multiplets, therefore
there is a factor of 2 relative to the N f of [20].
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We need to compare now with the massless limit of (2.34) and (2.37), together with
a couple of additional higher-rank cases, finding the highly non-trivial identities

lim
m→0

ZU (2)
1,1 = − 1

8π
(2 − iπ) = e

3iπ
4 ZU (1)

1,−1

lim
m→0

ZU (3)
1,2 = − 1

8π
(2 − (1 + i) π) = e

iπ
2 ZU (1)

1,−2

lim
m→0

ZU (4)
1,3 = 1

72π
e
4iπ
3

(
18i +

(
3 − 8i

√
3
)

π
)

= e− 11iπ
12 ZU (1)

1,−3

lim
m→0

ZU (5)
1,4 = − 1

8π

(
2i + (1 − 2e

iπ
4 )π

)
= e

iπ
2 ZU (1)

1,−4

Thus, the Giveon–Kutasov dualities are satisfied. From the above relations, we find the
following general expression for the phase:

φ(k) = 1

6
+
1

2
k +

7

12
k2. (2.44)

Like in [20], the phase depends quadratically on k. The quadratic ansatz is completely
determined by the first three casesU (2),U (3),U (4) in the above relations; the last case
U (5) is then satisfied identically. We have checked that the same formula for the phase
holds for higher rank cases.

We stress that the computation of one side of the duality involves the determinant
of an Nc × Nc matrix of integrals, in particular, a determinant of a 5 × 5 matrix in the
last line, whereas on the other side we have a simple integral. More generally, using the
duality, we have derived the formula

ZU (Nc)
1,k

∣∣∣∣
m=0

= e−iπφ(k)

(
1

2
e
iπk
4 +

π

k
3
2

e− iπ
4

k∑
n=1

(−1)ne− iπ
k n2
(
n − k

2

)2)
, k = Nc−1.

(2.45)

3. Large Coupling g Limit and Phase Transitions at Large N

Our starting point is the basic integral (2.10) that is used to compute the determinantNN

(fi , f j ) = g eg(�+N )(N−N f )e− 1
2 g(N−N f )

2
Ji j , (3.1)

with

Ji j =
∫ ∞

−∞
dx

e− g
2 (x2−2x�)

(
4 cosh 1

2 (gx + m) cosh 1
2 (gx − m)

)N f
, (3.2)

where � = i + j + 1 − N with 1 − N ≤ � ≤ N − 1. The approximations below rely on
the observation that when the coupling g is large, the main contributions to the integrals
come from the saddle-point.

In this limit the hyperbolic cosine functions in the denominator can be replaced by
exponential functions. We will consider the limit where m scales with g, i.e. m = gp,
where p is an arbitrary positive real number. This implies 2 cosh g

2 (x± p) → exp g
2 |x±

p|. In the large N calculations of [8], this limit was found to lead to phase transitions.We
now study the partition function of the Chern–Simons-matter (CSM) theory in the same
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limit but for any finite N , and arbitrary N f . It should be noted that this limit is equivalent
to a decompactification limit, since the three-sphere radius appear in the combination
mR.

In this limit we thus have

Ji j ≈
∫ −p

−∞
dx e− g

2 (x2−2x(�+N f )) + e−gpN f

∫ p

−p
dx e− g

2 (x2−2x�)

+
∫ ∞

p
dx e− g

2 (x2−2x(�−N f )).

Which term is dominant depends on the interval where the saddle point lies. The saddle
point at x = � in the second term lies inside the interval (−p, p) for p > N − 1 (as
|�| ≤ N − 1). In this case Ji j is just given by the Gaussian integral of the second term.
When N − N f − 1 < p ≤ N − 1, the main contribution comes from the boundaries at
x = ±p. Finally, when p ≤ N − N f − 1, the saddle points at x = � ± N f in the first
and third terms can lie on the intervals (p,∞) or (−∞,−p), depending on the value of
�, in which case the main contributions come from the first or the third integral.

To keep the discussion general, we may compute analytically the integrals in terms
of error functions. Computing the integrals, we obtain

Ji j ≈
√
gπ

2

(
e
g
2 �2−mN f

(
erf(

m + g�√
2g

) + erf(
m − g�√

2g
)
)

+e
g
2 (�+N f )

2
erfc(

m + g(� + N f )√
2g

) + e
g
2 (�−N f )

2
erfc(

m + g(−� + N f )√
2g

)

)
. (3.3)

In what followswewill make use of the asymptotic behavior for the error function erf(x)
at large |x |

erf(x) ≈ sign(x) − e−x2

x
√

π
, (3.4)

which implies

erfc(x) =

⎧⎪⎪⎨
⎪⎪⎩

e−x2

x
√

π
, for x > 0,

2 + e−x2

x
√

π
, for x < 0.

The asymptotic behavior of the error functions in (3.3) depends crucially on the sign
of their arguments. In turn, these depend on i, j and on the different parameters
g,m, N , N f . The strategy is to compute the determinant by keeping the dominant terms.
Notice that for the special case m = gp with integer p, the argument of the error func-
tions may vanish for some i, j and one has to use erf(0) = 0 instead of the above
asymptotic form.

We now discuss the behavior of the partition function as we increase the ’t Hooft
coupling gN from 0 to gN 
 m. Taking into account that |�| ≤ (N − 1), we can
distinguish three different regimes:

I. 0 < g < m/(N − 1): as long as the ’t Hooft coupling is bounded by the mass, the
arguments of error functions will always be positive. Then, the dominant terms are
those in the first line of (3.3), with the sum of the two error functions replaced by
2. We thus obtain

Ji j ≈ √2πg e
g
2 �2−mN f . (3.5)
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The partition function, for arbitrary N , N f and mass m satisfying m > (N − 1)g,
to leading order in g results

ZU (N )
N f

= N ! e− t
2 N

2(1−ζ 2) det(fi , f j ) ≈ N ! (2πg)N/2e−mN f N e
1
6 gN (N2−1). (3.6)

Note that the matrix model has become a multiple of the strong coupling limit of
the CS matrix model (see eqn 4.43 in [27])

ZU (N )
N f

= e−mN f N ZCS(S
3) , ZCS(S

3) ≈ N !(2πg)N/2e
1
6 gN (N2−1). (3.7)

In the strong coupling limit, the non-trivial Vandermonde term in ZCS(S
3) simpli-

fies, i.e. sinh
((

μi − μ j
)
/2
)
is “bosonized” to exp

(∣∣μi − μ j
∣∣ /2). Therefore, the

matrix model for Phase I is simplified to

Z = e−mN f N
∫

dNμ
∏
i< j

exp
(|μi − μ j |

)
e− 1

2g

∑
i μ2

i .

One can check that the formula (3.6) exactly reproduces the U (1), U (2), U (3)
cases of Sect. 2.4. For U (3) and U (2), the condition m > (N − 1)g is satisfied for
p ≥ 3 and p ≥ 2 respectively; forU (1), it is always satisfied. The formula (3.6) then
arises by keeping the leading exponentials in the formulas for U (1), U (2), U (3)
of Sect. 2.4.

II. m/(N − 1) ≤ g < m/(N − 1 − N f ), with N f < N . In this case, the arguments
of the two error functions in the second line of (3.3) are always positive and can be

replaced by their asymptotic form e−x2

x
√

π
. However, the sign in the argument of the

error functions in the first line of (3.3) can be positive, negative or zero, depending
on the value of i + j . Writing m = gp, it can be zero when N − p − 1 is an even
number. As a result, the expression for Z is more involved.
When N − p − 1 is not an even number, we find

ZU (N )
N f

=N !N 2β+2
f (2πg)

N
2 −1−β eS

β∏
j=0

1

(N − 1 − p − 2 j)2(1 + 2 j − N + N f + p)2
,

(3.8)
with

β = [1
2
(N − p − 1)

]
,

S = 1

6
g
(
N
(
12β(β + 2) + 6p

(
2β + 2 − N f

)
+ 11

)
+ N 3 − 6(β + 1)N 2

−2(β + 1)
(
4β(β + 2) + 3p2 + 6(β + 1)p + 3

) )
,

where “[. . . ]” denotes integer part. Here p is any positive real number in the interval
N − 1− N f < p ≤ N − 1, but with the only condition that N − p− 1 is not even.
If N f ≥ N , then this regime II extends to arbitrary low values of m = gp.

When N − p − 1 is even we find

ZU (N )
N f

= 1

4
N ! N 2β

f (2πg)
N
2 −β eS

′
β−1∏
j=0

1

(N − 1 − p − 2 j)2(1 + 2 j − N +N f + p)2
,

(3.9)
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with

m = gp, β = [1
2
(N − p − 1)

] = 1

2
(N − p − 1),

S′ = −gpNN f +
1

6
g
(
3N 2 + p2 − 3Np − 1

)
.

This formula can be compared with the formulas given in the U (2), U (3) case in
Sect. 2.4, for p = 1 and p = 2 respectively–so that the condition g(N −1−N f ) <

m ≤ g(N − 1) is satisfied. Keeping the leading exponential in g, one checks that
(3.9) is exactly reproduced.

III. m/(N − 1− N f ) ≤ g. This regime exists only when N f < N . Now the arguments
of all error functions in (3.3) may be either positive or negative according to the
value of i + j (or 0, for special values of m and i, j). As a result, Z is complicated
also in this case. For a generic m = gp, 0 < p ≤ N − 1 − N f , we obtain

ZU (N )
N f

= N ! N 2β−2γ
f (2πg)

N
2 −β+γ eI

β∏
j=γ+1

1

(N − 1 − p − 2 j)2(1 + 2 j − N + N f + p)2
,

(3.10)
with

m = gp , β = [1
2
(N − p − 1)

]
, γ = [1

2
(N − p − 1 − N f )

]
, (3.11)

I = 1

6
g
(
8γ 3 + 2γ

(
−6N

(
N f + p + 2

)
+ 6(p + 2)N f + 3N 2

f + 3N 2

+3p2 + 12p + 11
)

+2
(
6(p + 1)N f + 3N 2

f − β
(
4β2 + 12β + 3p2 + 6(β + 2)p + 11

))

+N
(
12β2 − 6(p + 2)N f + 12β(p + 2) − 1

)
− 12γ 2 (−N f + N − p − 2

)

+N 3 − 6βN 2
)
.

If N f is an even number, then γ = β − N f /2 and the expression for I simplifies:

I = 1

6
g
(
−3N 2N f − N f

(
3pN f + N 2

f + 3p2 − 1
)

+N
(
3N 2

f − 1
)
+ N 3

)
, N f even.

Similar simplifications can be made for N f odd, leading to formulas which depend
on whether N is even or odd. There are simplifications also for integer p.
The above three regimes correspond to the three large N phases found in [8].Adopting

the same definition of free energy as in [8],

FU (N )
N f

≡ − 1

N 2 ln ZU (N )
N f

,

we can now compare the free energies computed in [8] for the three different phases.
We take the same Veneziano limit as in [8]: N → ∞, with

t ≡ gN , ζ ≡ N f

N
fixed.
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Phase I) m > g(N − 1) case. we now find

FU (N )
N f

= 1

N 2

(
− ln N ! − N

2
ln(2πg) + N 2ζm − 1

6
t (N 2 − 1)

)

−→ 1

6

(
6ζm − t

)
.

This exactly matches eq. (3.10) of [8] (in [8], λ ≡ t/m).

Phase II) g(N − 1 − N f ) < m ≤ g(N − 1). The leading order O(N 2) contribution
in ln Z comes from the exponent S. Replacing β by (N − p)/2, and restoring m by
p → m/g = N/λ, we find

FU (N )
N f

≈ − 1

N 2 S = m

6λ2
(
3(2ζ − 1)λ2 + 3λ − 1

)
+ O(1/N ) ,

which exactly matches the free energy in the intermediate regime of [8].

Phase III) 0 < m ≤ g(N − 1 − N f ). The order O(N 2) contribution in ln Z now
comes from I . Recall p → N/λ. At large N , we can replace β → (N − p)/2, γ →
(N − p − N f )/2. We then find

FU (N )
N f

= m

6λ

(
(ζ − 1)3λ2 + 3ζ 2λ + 3ζ

)
+ O(1/N ).

This exactly matches (3.12) of [8].
As pointed out in [8], the above free energies exhibit discontinuities in the third deriv-

ative with respect to λ. As in the four-dimensional case [9–11], the discontinuities occur
due to resonances produced by extra massless particles appearing in the spectrum. In the
presence of a vev for the scalar field σ of the vector multiplet, the chiral multiplet masses
are proportional to |μi ±m|. In the large N limit, the matrix integral is determined by a
saddle-point where eigenvalues are distributed continuously in some interval (−A, A)

[8]. Therefore, extra massless chiral multiplets contribute to the saddle point when A
is greater or equal m. This is the case for m < gN , thus producing the discontinuous
behavior in the transition from phase I to phase II. The transition to phase III—occurring
only for N f < N—seems to be caused by a different effect: by the time m becomes
lower than g(N − N f ), there is a saturation of N f eigenvalues located at ±m. In the
present context, the origin of the three regimes can be understood from the changing
behavior of matrix element Ji j in the three different intervals, as described above. It is
also worth stressing that for finite N the eigenvalue distribution is not continuous; the
average separation of μi eigenvalues is of O(1/N ) and this is the typical value of a light
mass in the spectrum. Thus there are no sharp resonance effects in this case, unless N
is very large.

In conclusion, we have computed the same large t,m limit that in [8] led to phase
transitions, but now for arbitrary (finite) N . Expressions (3.6), (3.9), (3.10) for ZU (N )

N f

apply to any value of N and N f , even low values such as N = 1 or N = 2, they only
involve the limit g 
 1, with m scaling with g as m = gp and fixed positive real p.

4. Unitary Matrix Model Formulation and Large N

We will now analyze a unitary version of the matrix model, in which the eigenvalues of
the matrix model lie on S

1. For pure Chern–Simons theory on S
3 one can indistinctly
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use the Hermitian matrix model or the unitary matrix model [21]. By considering the
unitary version of thematrixmodel one can employ then tools from the theory of Toeplitz
determinants and also establish relationships with symmetric functions/polynomials.
These relationships parallel the ones existing for pure Chern–Simons theory, where they
are known to describe some of the connections between Chern–Simons theory and 2d
Yang–Mills theories [24].

Thus, in addition to computing large N free energies for both the massive and mass-
less cases, we shall establish some mathematical properties involving supersymmetric
versions of Schur polynomials which parallel results for the pure U (N ) Chern–Simons
theory on S3.

4.1. Toeplitz determinants and Szegö theorem. We begin with a reminder on unitary
matrix models through discussion of their equivalent formulation in terms of Toeplitz
determinants and their computation employing Szegö’s theorem. These tools have
already been used in gauge theory in [22–24,28].

Let f (z) be a complex-valued function on C with Laurent series expansion f (z) =∑
k∈Z fk zk , and let TN ( f ) = ( fi− j )i, j=1,...,N be the associated Toeplitz operator of

dimension N and symbol f . By the Heine–Szegö identity, the corresponding Toeplitz
determinant is the partition function of a U (N ) unitary matrix model

ZN [ f ] := det TN ( f ) =
∫

[0,2π)N

dNφ

(2π)N

∏
l<k

∣∣∣e iφl − eiφk
∣∣∣2

N∏
j=1

f (e iφ j ). (4.1)

Notice that the symbol of the Toeplitz determinant is the weight function of the matrix
model and recall that one typically writes f

(
e i φ
) = exp

(−V (eiφ)
)
and V (eiφ) is the

potential of the matrix model. Let [ln f ]k , k ∈ Z denote the coefficients in the Fourier
series expansion on the unit circle S1 of the logarithm of the symbol

ln f (z) =
∞∑

k=−∞
[ln f ]k zk ,

and suppose that they obey the absolute summability conditions

∞∑
k=−∞

∣∣ [ln f ]k
∣∣ < ∞ and

∞∑
k=−∞

k
∣∣ [ln f ]k

∣∣2 < ∞.

Let Ĝ( f ) = exp([ln f ]0) denote the geometric mean of the symbol f . Then the strong
Szegö limit theorem for Toeplitz determinants states [16]

lim
N→∞

det TN ( f )

Ĝ( f )
= exp

( ∞∑
k=1

k [ln f ]k [ln f ]−k

)
. (4.2)

Thus the theorem gives an expression for the large N limit of the partition function (or
free energy) of the matrix model in terms of the Fourier coefficients of the potential. One
practical advantage of using directly this theorem is that one does not need to study the
density of states in the large N (with a saddle-point approximation) in order to compute
the free energy.
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We shall focus on the two types of symbol functions that describe pure and supersym-
metric Chern–Simons theory with massive fundamental matter. The relevant symbol in
pure Chern–Simons theory is [22,24].

ϕ(z) =
r∏

i=1

(1 − xi z)
−1(1 − yi z

−1)−1. (4.3)

The result in [29] shows that this symbol is dual to the symbol

ϕ̃(z) =
r∏

i=1

(1 + xi z)(1 + yi z
−1) (4.4)

and the corresponding Toeplitz determinants are identical detN (ϕ) = detN (ϕ̃) (see also
[21,22]). Notice that the principal specialization4 xi = yi = qi−1/2 of the latter directly
gives the unitary matrix model with potential

exp(−V1(e
iθ )) = lim

r→∞ ϕ̃(z; xi = qi−1/2, yi = qi−1/2) = θ3(eiθ , q)

(q; q)∞
, (4.5)

with the theta function given by

θ3(e
iθ , q) =

∞∑
n=−∞

qn
2/2einθ =

∏∞
j=1

(
1 − q j

) (
1 + q j− 1

2 eiθ
) (

1 + q j− 1
2 e−iθ

)
,

(4.6)
and (q; q)∞ = ∏∞

j=1

(
1 − q j

)
is the q-Pochhammer symbol.5 On the other hand, the

principal specialization of the first symbol (4.3) gives

exp(−V2(e
iθ )) = lim

r→∞ ϕ(z; xi = qi−1/2, yi = qi−1/2) = (q; q)∞ θ3(−eiθ , q)−1.

(4.7)
Both matrix models have the same partition function, which is essentially the U (N )

Chern–Simons partition function on S
3. It holds that in the case r = N :

Z =
∫

(0,2π ]N
dNμ

(2π)N

∏
i< j

4 sin2(
1

2
(μi − μ j ))

N∏
j=1

ϕ(eiμ j )

=
∫

(0,2π ]N
dNμ

(2π)N

∏
i< j

4 sin2(
1

2
(μi − μ j ))

N∏
j=1

ϕ̃(eiμ j )

=
N∏
i, j

1

1 − xi y j
. (4.8)

The final Cauchy–Binet expression for the two equivalent matrix models in (4.8) follows
fromGessel’s andBaxter’s identities [30],which are spelled out in detail in theAppendix.
From (4.8) andwhen xi = yi = qi−1/2 thematrixmodels above have a partition function

Z =
N−1∏
j=1

1(
1 − q j

) j . (4.9)

4 In our case, q = e−g = exp (−2π i/k). That is, there is no shift k → k + N as happens in pure
Chern–Simons theory.

5 Obviously, just a nomenclature and not a symbol of a Toeplitz determinant, like (4.3) or (4.4).
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To obtain the full Chern–Simons partition function the two matrix models have to be
endowed with the right normalization, which is given by the first factor in the r.h.s. of
(4.6), which is missing in both symbols, namely the q-Pochhammer symbol in its finite
version (q; q)N . Indeed, multiplying the weight function of the two matrix models in

(4.8) by (q; q)N gives a numerical pre-factor
(
(q; q)N

)N , which manifestly transforms
(4.9) into the Chern–Simons partition function:

ZCS

(
S
3
)

=
N−1∏
j=1

(
1 − q j

)N− j
.

In principle, Cauchy identity holds when the matrix model is infinite-dimensional but
for this symbol it also holds for the finite case [30,31]. We show this explicitly in the
Appendix, togetherwith the fact that Szegö’s theoremactually corresponds to theCauchy
identity when the latter is written in terms of Miwa variables.

4.2. Unitarymatrix model and large N. Let us first write down the trigonometric version
for our model corresponding to supersymmetric CS theory with massive fundamental
matter:

Z̃U (N )
N f

=
∫
[−∞,∞]N

dNμ

(2π)N

e− 1
2g

∑
i μ2

i
∏

i< j 4 sin
2( 12 (μi − μ j ))∏

i

(
4 cos( 12 (μi + im)) cos( 12 (μi − im))

)N f
, (4.10)

making the range of integration compact, as with the pure CS matrix model [21] brings
the Gaussian factor into a theta function. Let us see this explicitly by making the range
of integration compact in which case the weight function is rewritten as follows

∫
[−∞,∞]N

N∏
j=1

e− 1
2g

∑N
j=1 μ2

j

(
4 cos( 12 (μ j + im)) cos( 12 (μ j − im))

)N f

dμ j

2π

∏
i< j

4 sin2(
1

2
(μi − μ j ))

= g
N
2

(2π)
N
2

∫
[0,2π]N

N∏
j=1

∑∞
n=−∞ e− g

2 n
2+inμ j

(
4 cos( 12 (μ j + im)) cos( 12 (μ j − im))

)N f

dμ j

2π

∏
i< j

4 sin2(
1

2
(μi − μ j ))

= g
N
2

(2π)
N
2

∫
[0,2π]N

N∏
j=1

θ3(eiμ j , q)(
4 cos( 12 (μ j + im)) cos( 12 (μ j − im))

)N f

dμ j

2π

∏
i< j

4 sin2(
1

2
(μi − μ j )),

where the first equality comes out by expressing the integral over [−∞,∞] as an infinite
sum of integrals over [0, 2π ] while taking into account the periodicity of the trigono-
metric functions in the integrand and the identity

∞∑
n=−∞

e−β(u+2πn)2 = 1√
4πβ

∞∑
n=−∞

e−n2/(4β)einu, (4.11)

which follows from Poisson resummation. This allows to make the identification, in the
last equality above, with the theta function (4.6), giving

Z̃U (N )
N f

=
( g

2π

)N/2
∫

(0,2π ]N
dNμ

(2π)N

∏
j θ3(e

iμ j , q)
∏

i< j 4 sin
2( 12 (μi − μ j ))∏

i

(
4 cos( 12 (μi + im)) cos( 12 (μi − im))

)N f
.

(4.12)
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The denominator can be conveniently factorized as

4 cos(
1

2
(μ + im)) cos(

1

2
(μ − im)) = em

(
1 + e−iμe−m

) (
1 + eiμe−m

)
. (4.13)

Hence, we can study the problem from the point of view of Toeplitz determinants, having
to study the symbol:

ϕCSM(z) = θ3(z, q)

emN f
(
1 + e−m/z

)N f
(
1 + e−mz

)N f
. (4.14)

As we shall see below, this type of symbol emerges when studying supersymmetric
Schur polynomials [32], in the same way the pure CS matrix model is related to Schur
polynomials [23,24]. We will also show below, in (4.23), that it exists a dual symbol
which gives the same partition function.

4.2.1. Large N limit of the model using Szegö’s theorem. Computation of the Fourier
coefficients [ln ϕ(z)]k and [ln ϕ(z)]−k corresponding to (4.14) and application of Szeg
ö’s theorem (4.2) gives

Z̃U (N )
N f

=
( g

2π

)N/2 e−NN f |m|
(
1 − e−2|m|)N2

f

∞∏
j=1

(
1 − q j

)N− j (
1 − q j− 1

2 e−|m|)2N f
for N → ∞.

(4.15)

Note that this is different from the large N limit obtained in [8], which was taken keeping
gN fixed. Here g = 2π i/k is fixed.

If we further take the limit of g → ∞ with m/g fixed, then (4.15) reproduces to
the expression (3.6) corresponding to phase I.6 The other phases II and III cannot be
recovered because in the unitary model |e±iμe−m | is always < 1 and hence in the large
m limit the product of cosine functions in (4.13) just reduces to em . As a result, (4.12)
becomes proportional to the CS matrix partition function model, as in (3.7).

4.3. Supersymmetric Schur polynomials. The mathematical structure involving Schur
polynomials and relating Chern–Simons theory to 2d Yang–Mills theory and its q-
deformation [24,33], also appears in our model but with supersymmetric Schur polyno-
mials [32]. This suggests a relationship between supersymmetric Chern–Simons theory
with massive fundamental matter and the zero area limit of a supersymmetric version of
the combinatorial Migdal–Witten description of 2d Yang–Mills theory7 on S

2. This is
similar to the relationship between refinedChern–Simons theory and refined q-deformed
2d Yang–Mills theory [24,36] and to the link found between the superconformal index,
which is a twisted supersymmetric partition function of anN = 2 superconformal field
theory on S

3 × S
1, and the zero area limit of q-deformed 2d Yang–Mills theory [37].

6 In the present section the normalization of the partition function differs by a factor of (2π)N from the
previous one.

7 Two dimensional Yang–Mills theorywith a supergroup symmetry, such asU (m| n), does not seem to have
been previously studied in the literature. Its extension by substitution of dimensions with superdimensions
might be possible since the supersymmetric Schur polynomials are known to be characters of both typical
and atypical representations [34]. In addition, the related Chern–Simons theory has been extended to the
supergroup setting [35].
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We also find, as we shall see below, a connection of this type but with a supersymmetric
q-deformed version of the dimensions of the zero area 2d Yang–Mills theory on S2.

We consider the analogue of the expression (4.8) involving supersymmetric Schur
polynomials HSλ(x |z) [32], which naturally emerges in the representation theory of Lie
superalgebras. In particular, they are characters of irreducible covariant and contravari-
ant tensor representations of gl (m| n) while Schur polynomials are well-known to be
characters in gl(m). In our setting, we will have m = N and n = N f . The polynomials
are defined by [32]

HSλ(x |z) =
∑
μ,ν

Nμν
λ sμ(x) sν′(z) (4.16)

where sλ(x) are Schur polynomials [38], λ, μ and ν denote representations, indexed
by partitions which are characterized by a sequence of ordered positive numbers, such
as λ = (λ1, λ2, . . . , λn). The partition ν′ is the conjugate to ν and the coefficients
Nμν

λ ∈ Z≥0 are the Littlewood–Richardson coefficients defined by expressing the ring
structure on the space of symmetric polynomials in the basis of Schur functions as [38]

sμ(x) sν(x) =
∑
λ

Nμν
λsλ(x) , (4.17)

where the sum is over partitions λ of size |μ| + |ν| [39], see Appendix A for definitions.
The Cauchy–Binet identity is now [32] (see also [39,40])

∑
λ

HSλ(x |z)HSλ(y|w) =
∏
i, j≥1

(1 + xi w j ) (1 + yi z j )

(1 − xi y j ) (1 − zi w j )
, (4.18)

which we note is symmetric under interchange (x, y) ↔ (z, w). We point out that
while the sums in (4.16) and (4.18) are formally over all representations, the size of the
partitions that are summed over is bounded in terms of the number of variables in the
symmetric polynomials, due to the fact that a Schur polynomial is identically 0 if the
length of its partition is larger than the number of its variables [38]; see again Appendix
A for details. An analogous sum to (4.18) but with an explicit bound on the size of the
first row of λ admits a unitary matrix model description [40]

∑
λ,λ1≤N

HSλ(x1, . . . , xk1 |z1, . . . , zl1 )HSλ(y1, . . . , yk2 |w1, . . . , wl2 )

=
∫

[0,2π)N

N∏
i=1

dφi

2π

∏k1
j=1

(
1 + x j eiφi

)∏k2
j=1

(
1 + y j e−iφi

)
∏l1

j=1

(
1 − z j eiφi

)∏l2
j=1

(
1 − w j e−iφi

) ∏
i< j

4 sin2(
1

2
(φi − φ j )). (4.19)

This is an extension of Gessel identity, quoted in Appendix A, to the case of supersym-
metric Schur polynomials. Notice that our unitary matrix model, (4.12) above, is of this
type since a principal specialization of the x and y set of variables xi = yi = qi−1/2

(i = 1, . . . , N ) and the semiclassical limit of a principal specialization of the z and w

variables, namely z j = w j = −e−m ( j = 1, . . . , N f ) gives for the r.h.s. of (4.19)

∫
(0,2π ]N

dNμ

(2π)N

∏
i< j 4 sin

2( 12 (μi − μ j ))
∏

j θ
(N )
3 (eiμ j , q)

∏
i

(
4 cos( 12 (μi + im)) cos( 12 (μi − im))

)N f
,
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where θ
(N )
3 (eiμ, q) denotes a truncated theta function [41]

θ
(N )
3 (z, q) =

N∑
n=−N

[
2N

n + N

]
q
qn

2/2 zn = (√
q z ; q)N

(√
q z−1 ; q

)
N

.

If we consider the sum over all representations λ in (4.19) (i.e. without the restriction
λ1 ≤ N ) as in a 2d Yang–Mills theory and take k1 → ∞ and k2 → ∞ (while keeping
l1 = l2 = N f ) then we have

∑
λ

e−2m|λ|sdim2
qλ

=
∫

(0,2π ]∞

∞∏
k=1

∏∞
j=1

(
1 + q j− 1

2 eiμk

) (
1 + q j− 1

2 e−iμk

)
(
1 + e−meiμk

)N f
(
1 + e−me−iμk

)N f

dμk

2π

∏
i< j

4 sin2(
1

2
(μi − μ j ))

= lim
N→∞ ẐU (N )

N f
= 1(

1 − e−2|m|)N2
f

N∏
j=1

(1 − q j )− j (1 − q j− 1
2 e−|m|)2N f , (4.20)

where ẐU (N )
N f

≡ (2π/g)N/2 eNN f |m| Z̃U (N )
N f

/ ((q; q)∞)N andwehave defined the “super-

symmetric half-q-deformed” dimensions8

sdimqλ ≡ HSλ(q
1/2, q3/2, . . . | − 1, . . . ,−1).

Notice that in (4.20), as usual with this type of description, we do not have the full CS
partition function part and a ((q; q)∞)N piece has to be added. Likewise, the factor
e−NN f |m| in (4.15) also does not appear in the r.h.s. of (4.20) because such a term comes
from the numerical pre-factor in (4.14) and the symbol that arises from writing the l.h.s.
of (4.20) as a Toeplitz determinant only gives the z-dependent part of (4.14) without
numerical pre-factors.

As we shall see below, the massless case can also be analyzed with an extension of
Szegö’s theorem. We collect here, for comparison with (4.20), the ensuing result
∑
λ

sdim2
qλ

=
∫

(0,2π ]∞

∞∏
k=1

∏∞
j=1

(
1+q j− 1

2 eiμk

) (
1+q j− 1

2 e−iμk

)
(
1 + e−meiμk

)N f
(
1 + e−me−iμk

)N f

dμk

2π

∏
i< j

4 sin2(
1

2
(μi − μ j ))

= lim
N→∞ ẐU (N )

N f
(m = 0) = G2(1 + N f )

G(1 + 2N f )
NN2

f

N∏
j=1

(1 − q j )− j (1 − q j− 1
2 )2N f ,

where G is the Barnes G-function [42], whose main definition and properties are col-
lected in the Appendix.

8 These dimensions can be seen as a q-deformation of the t-dimensions in [34]. In addition, the ring of
q-superdimensions and its appearance in U (m| n) Chern–Simons theory were studied in [35]. It remains
to be analyzed whether the definition in [35] is also given by a specialization of the supersymmetric Schur
polynomial.
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4.4. Dual symbol. Let us prove that there is also a dual symbol. This gives an alternative,
equivalentmatrixmodel description, in analogy to the case of pure Chern–Simons theory
on S

3 [23,24,31]. In addition, it also justifies the use of the Fisher–Hartwig formalism
below, for the massless case. We have mentioned above the duality between the symbols
(4.3) and (4.4). This result is ultimately due to the existence and equivalence of the
Jacobi–Trudi formula and its dual (also known as Nagelsbach–Kostka formula) [38]

sλ (x1, . . . , xN ) = det
(
hλi+ j−i

)N
i, j=1 = det

(
e
λ

′
i+ j−i

)N
i, j=1

,

where hλ and eλ are homogeneous and elementary symmetric polynomials [38], respec-
tively. These determinantal expressions can also be interpreted as another definition of
Schur polynomials, alternative to the one given in Appendix A. The same result holds
for the supersymmetric Schur polynomials, replacing the homogeneous and elementary
symmetric functions with its supersymmetric counterparts [34]

HSλ(x |z) = det
(
hλi+ j−i (x |z)

)N
i, j=1 = det

(
e
λ

′
i+ j−i (x |z)

)N
i, j=1

, (4.21)

where the generating function of the supersymmetric homogenous and elementary sym-
metric functions is now [34]

∑
r≥0

hr (x |z)tr =
∏l1

j=1

(
1 + z j t

)
∏k1

i=1

(
1 − x j t

) and
∑
r≥0

er (x |z)tr =
∏k1

i=1

(
1 + x j t

)
∏l1

j=1

(
1 − z j t

) . (4.22)

Hence, it immediately holds that the symbol and its dual are

ϕ (z) =
∏k1

j=1

(
1 + x j z

)∏k2
j=1

(
1 + y j/z

)
∏l1

j=1

(
1 − z j z

) ∏l2
j=1

(
1 − w j/z

) ,

ϕ̃ (z) =
∏l1

j=1

(
1 + z j z

) ∏l2
j=1

(
1 + w j/z

)
∏k1

j=1

(
1 − x j z

)∏k2
j=1

(
1 − y j/z

) .

After the principal specialization x j = y j = q j−1/2 and z j = w j = e−m with l1 =
l2 = N f and k1 = k2 → ∞ we have that

ϕ (z) = θ3(z, q)(
1 + e−m/z

)N f
(
1 + e−mz

)N f
and ϕ̃ (z) =

(
1 − e−m/z

)N f
(
1 − e−mz

)N f

θ3(−z, q)
,

(4.23)

where ϕ (z) = emN f ϕCSM(z) [recall (4.14)]. The numerical factor emN f does not appear
in any of the symbols in (4.23) because it comes out of the relationship (4.13). Notice
also how consideration of Szegö’s theorem confirms that the determinant for both cases
in (4.23) coincides. It is also worth mentioning that, while the two symbols give the same
partition function, if one studies Wilson loops in a representation λ, then 〈Wλ〉ϕ(z) =〈
W

λ
′
〉
ϕ̃(z). This is shown explicitly for the pure Chern–Simons case in [31] and the

same proof again follows here with the use of (4.21) and (4.22) instead of their non-
supersymmetric versions. Alternatively, notice that it holds that HSλ(x |z) = HSλ′(z|x).
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5. Massless Case

While themassive case can be analyzed with the strong Szegö theorem andwith general-
ized Cauchy identities, the massless case develops a Fisher–Hartwig singularity [15,25].
This is the only particular case of our problem where the Cauchy identity and Szegö’s
theorem is not directly applicable since the situation where the symbol of the Toeplitz
determinant (weight function of the unitary matrix model) has a zero/singularity on S

1

is well-known to require Fisher–Hartwig (FH) asymptotics [15,25], which refines the
strong Szegö theorem.

5.1. g = ∞ limit case. In this particular case, we do not have the Gaussian/theta
function part and we end up with a Toeplitz determinant whose symbol has just one
FH singularity. The Cauchy identity diverges in this case because it corresponds to the
specialization xi = yi = 1 for i = 1, . . . , N .

This corresponds to the absence of a Chern–Simons term, a case which has been
studied in [43] but for large N and in the setting of a more general matter content, where
the matrix model is characterized by double sine functions. In the Appendix A of [20],
the massive case (with different masses) without Chern–Simons term is also studied,
and their resulting formula is nothing else but the Cauchy determinant. As explained
above, the massless case is outside the domain of convergence of such formula.

Taking into account the duality between symbols discussed above we can directly use
the result in [44,45], which computes the matrix model (4.1) for finite N for a symbol
φ(z) = (1 − z)α(1 − z−1)β , giving the result

det TN (φ) = G(N + 1)
G(α + β + N + 1)

G(α + β + 1)

G(α + 1)

G(α + N + 1)

G(β + 1)

G(β + N + 1)
, (5.1)

whereG(z) is again Barnes G-function. Then, if α = β = N f , then det TN (φ) = ẐU (N )
N f

and we have

ẐU (N )
N f

(m = 0, g = ∞) = G(N + 1)
G(2N f + N + 1)

G(2N f + 1)

G2(N f + 1)

G2(N f + N + 1)
. (5.2)

We note that consideration of Selberg integral also leads to (5.2) [15]. Notice that this
is in principle very different from the massive case, which is given by Cauchy identity,
even for N finite:

ZN =
N f∏

i, j=1

1

1 − xi y j
= 1(

1 − e−2|m|)N2
f

valid for N ≥ N f .

The large N limit of (5.2) is very well-known

ẐU (N )
N f

(m = 0, g = ∞) = G2(1 + N f )

G(1 + 2N f )
NN2

f for N → ∞.

This will be a piece of the large N result of the massless case with g finite, as we shall
see below. Note that this g = ∞ limit for the massless case cannot be connected with
the g = ∞ limit of Sect. 3, where we assumed that m is also large and scales with g.
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5.2. Large N. We can keep the Gaussian/theta function part and use the result on Fisher–
Hartwig (FH) asymptotics, which is a generalization of Szegö’s result [25]. Note that
above we used instead an exact result for finite N . The symbols of FH class have the
following form [15]

f (z) = eV (z) z
∑m

j=0 β j

m∏
j=0

|z − z j |2α j gz j , β j (z) z
−β j
j , z = eiθ , 0 ≤ θ < 2π,

(5.3)

for some m = 0, 1, 2, . . . , with

z j = ei θ j , j = 0, 1, . . . ,m, 0 = θ0 < θ1 < · · · < θm < 2π, (5.4)

gz j β j (z) ≡ gβ j (z) = eiπβ j for 0 ≤ arg z < θ j (e
−iπβ j otherwise). (5.5)

� (α j
)

> −1

2
, β j ∈ C, j = 0, 1, . . . ,m, (5.6)

and V(eiθ ) is a sufficiently smooth function on S1. Here the condition on� (α j
)
guaran-

tees integrability. Note that a FH singularity at z j , j = 1, . . . ,m, consists of a root-type
singularity

|z − z j |2α j = |2 sin θ − θ j

2
|2α j (5.7)

and a jump singularity zβ j gβ j (z) at z j (note that z
β j gβ j (z) is continuous at z = 1 for

j �= 0). Notice that the symbol ϕ̃ (z) in (4.23) is of this type with m = 0 and hence with
only one FH singularity of the root-type, because α0 = N f and β0 = 0. The asymptotic
form of det TN ( f ) for the general symbol above is,

det TN ( f ) = E(eV , α0, . . . , αm , β0, . . . , βm , θ0, . . . , θm) n
∑m

j=0(α
2
j−β2

j ) eNV0 (1 + o(1)),

V0 = 1

2π

∫ 2π

0
V(eiθ )dθ (5.8)

as N → ∞. For a Fisher–Hartwig symbol, in addition we have

E(eV , α0, . . . , αm, θ0, . . . , θm)

= E(eV )
∏

0≤ j<k≤m

|eiθ j − eiθk |−2α jαk

m∏
j=0

e−α j V̂ (eiθ j ) ×
m∏
j=0

Eα j (5.9)

where

E(eV ) = e
∑∞

k=1 k Vk V−k , Vk = Fourier coefficient of V(eiθ ), (5.10)

V̂(eiθ j ) = V(eiθ j ) − V0 (5.11)

Eα j = G2(1 + α j )/G(1 + 2α j ), (5.12)

Notice that the term (5.10) is the content of Szegö’s theorem, the rest therefore extends it
with additional contributions. Note also that (5.12) is essentially the large N limit of the
finite N result above (5.1). Since we only have one FH singularity ( j = 0), the product
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term in (5.9) does not contribute. Taking into account that our symbol is (4.23) with
m = 0 then α0 = N f , β0 = 0 and z0 = 1 (θ0 = 0). Therefore, we obtain

Z̃U (N )
N f

(m = 0)

=
( g

2π

)N/2 G2(1 + N f )

G(1 + 2N f )
NN2

f

∞∏
j=1

(
1 − q j

)N− j (
1 − q j− 1

2

)2N f
for N → ∞.

(5.13)
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Appendix A. Mathematical Identities

We collect here a number of mathematical identities and results used through the text.
A partition is a finite sequence of nonnegative integers λ1 ≥ · · · ≥ λn ≥ 0. Associated
to every partition is a Young diagram with λi squares in the i-th row and the rows are
understood to be aligned on the left. There is a unique n such that λn > 0 but λn+1 = 0
and this n = l(λ) is the length of λ. The number |λ| = ∑

i λi is called the size of λ

and we denote by λ′ the conjugate partition to λ. Schur polynomials sλ(x) are |λ|-th
homogeneous symmetric polynomials, if λ is any partition of length n we define [38]

sλ(x1, . . . , xn) :=
det
(
xλk+n−k
j

)n
j,k=1

det
(
xn−k
j

)n
j,k=1

.

We shall summarize now a number relationships between Schur polynomials and
Toeplitz determinants (equivalently, unitary matrix models [22–24]). We begin with
two classical results by Gessel and Baxter which are relevant in Sect. 4.

A.1 Gessel and Baxter identities. We first quote Gessel’s formula for the product of
Schur polynomials in terms of a Toeplitz determinant, which reads [46]

∑
λ ;l(λ)≤N

sλ (x) sλ (y) = det(Ai− j )
N
i, j=1, (A.1)

where

Ai = Ai (x, y) =
∞∑
l=0

hl+i (x) hl(y), (A.2)
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are the Fourier coefficients of the symbol (entries of the Toeplitz matrix) and hr (x)
is the r -th homogeneous symmetric function, characterized by its generating function∑

r≥0 hr t
r =∏ j≥1

(
1 − x j t

)−1. The symbol of theToeplitz determinant is then [29,46]

ϕ (z) =
∞∑

i=−∞
Ai (x, y) z

i =
∏
j≥1

(
1 − y j z

−1
)−1 (

1 − x j z
)−1

. (A.3)

The dual version is [29]

∑
λ : λ1≤N

sλ (x) sλ (y) = det( Ãi− j )
N
i, j=1, (A.4)

where the Fourier coefficients are now in terms of elementary symmetric functions and
the symbol is

ϕ̃ (z) =
∞∑

i=−∞
Ãi (x, y) z

i =
∏
j≥1

(
1 + y j z

−1
) (

1 + x j z
)
. (A.5)

Notice that the restriction in the sum over representations in (A.1) is a bound on the size
of the first column whereas in (A.4) the first row is bounded by N . When the sum is
not restricted, the Toeplitz determinants (equivalently, the unitary matrix models) are in
principle infinite-dimensional and the Cauchy–Binet identity holds:

∑
λ

sλ
(
x1, . . . , xp

)
sλ
(
y1, . . . , yq

) =
p∏

i=1

q∏
j=1

1

1 − xi y j
,

where the products goes from 1 to the number of x and y variables. Schur polynomials
satisfy the property sλ(x1, . . . , xn) = 0 if l(λ) > n [38], which implies a truncation of
the sum for a finite number of variables of the Schur polynomials. Thus, the sum on the
l.h.s. is effectively over all partitions λ of length≤ min(p, q). This result is translated
into an statement for Toeplitz determinants by the following Lemma:

Lemma 1 (Baxter [30, Lemma 7.4]). Let Dn(σ ) denote the determinant of a Toeplitz
matrix n × n and symbol σ , then

Dn (σ ) = �i, j
(
1 − αiβ j

)−1
,

where the symbol is, specifically σ (z) = �k
i=1 (1 − αi z)�m

i=1

(
1 − β j z−1

)
. This result

is valid for n ≥ max(k,m) and independent of n.

Notice again that Cauchy–Binet identity only says that limn→∞ Dn−1(σ ) = �i, j (1−
αiβ j )

−1, but for this symbol, the determinant will give the same result for any finite size,
from infinite size, down to the number of product terms in the symbol. This result leads
to the last identity in (4.8).
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A.2 Cauchy–Binet identity and Szegö’s theorem. Notice that, at least in our context, the
statement of Szegö’s theorem is equivalent to the Cauchy–Binet formula (4.8) when the
latter is written in Miwa variables [47]

∑
λ

sλ(x) sλ(y) = exp

⎛
⎝∑

k≥1

k mk tk

⎞
⎠ , (A.6)

where

mk = 1

k

∑
i≥1

xki and tk = 1

k

∑
i≥1

yki

are power sums of the sets of variables x and y. Hence, the construction ofMiwa variables
is equivalent to the computation of the moments of the logarithm of the symbol, which
is the potential of the matrix model (coming from the Taylor expansion of a logarithm).

A.3 Barnes G-function. The Barnes G-function [42] is a double-Gamma function that
can be for example defined with the functional equation

G(z + 1) = � (z)G(z)

with normalization G(1) = 1. Its asymptotic expansion is especially useful

lnG(t + a + 1) = 1

12
− ln A − 3t2

4
− at +

t + a

2
ln(2π) + (

t2

2
+ at +

a2

2
− 1

12
) ln t

+o(t−1), as t → ∞.

Appendix B. Moment Problem and Discretization of the Matrix Model

In this paper, we have studied a one matrix model with potential

V (z) = 1

2g
ln2 z + N f ln

(
1 + zi

em

c

)(
1 + zi

e−m

c

)
, (B.1)

where z ∈ (0,∞). Thus, the confining properties are those of the Stieltjes–Wigert
potential [17] since, for large z, the first term in (B.1) dominates. Therefore, we expect
the model to be associated to an undetermined moment problem, as happens with the
Stieltjes–Wigert matrix model [17,24,48]. This means that there are infinitely many
deformations of the measure (2.6) with identical orthogonal polynomials pn(z) and
therefore identical (2.7). In consequence, every matrix model constructed from such a
measure possesses the same partition function.
This is demonstrated by considering Krein’s proposition [17], which gives a sufficient

condition for a moment problem to be undetermined. The condition is for the weight
function ω(z) = exp(−V (z)) to satisfy

−
∫ ∞

0

lnω(z)

(1 + z)

dz√
z

< ∞.
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The integral converges for our potential (B.1), as it happens in the pure Stieltjes–Wigert
case [17], and hence the moment problem associated is undetermined. Alternatively, this
can be seen even more explicitly by following Stieltjes directly [17], by showing

∫ ∞

0
zke

− 1
2g ln2 z+N f ln

(
1+zi

em
c

)(
1+zi

e−m
c

)
sin (2π ln z/ ln q) = 0,

which follows, as happens in the case N f = 0, by the change of variables v = −(k +
1)/2 + ln z, the periodicity of sin(.), and the fact that sin is an odd function. Thus for
any θ ∈ [−1, 1] the weight function ωθ(z) = ω(z)(1 + θ sin (2π ln z/ ln q)), where
ω(z) = exp(−V (z)) and V (z) is (B.1), has the same positive integer moments as ω(z)
and therefore the corresponding (infinitely many) matrix models have the same partition
function.
The set of all solutions to an indeterminate moment problem always includes discrete

measures (the so-called canonical solutions of amoment problem are discretemeasures),
which implies that there is a discrete matrix model equivalent to the continuous one.
In the case of the Stieltjes–Wigert matrix model, the discrete matrix model is known

explicitly since the discrete measure with the same moments as e− 1
2g ln2 z is known

to be M (q)
∑

n∈Z qn
2/2+nδ (x − qn) with M(q) a suitable constant (see [24,48] and

references therein). The analogous result for (B.1) is not known and not immediate to
obtain. Hence to find the explicit form of the discrete matrix model which is equivalent
to (1.3) and, after the change of variables, to (1.1), is an open problem.

Notice however that a straightforward discretization of the Mordell integral gives
already very good results for large coupling constant g since it is known that, for the
integral [49]

ϕ(g, c, z) =
∫ ∞

−∞
e− 1

2g (x−z)2

ecx + 1
dx,

the straightforward discretization which is standard trapezoidal quadrature with step h,
that is

ϕ(g, c, z) = h
∞∑

k=−∞

e− 1
2g (kh−z)2

eckh + 1
+ E (h) ,

has an error term which is bounded by

|E (h)| ≤ 2 exp(π2/8c2g − π2/hc) for g >
h

4c
,

|E (h)| ≤ 2 exp(−2π2g/h2) for g ≤ h

4c
.

The contour integral result in [49] allows for the generalization to the case corresponding
to N f > 1.
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