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Abstract: Newsmooth solutions of theStrominger systemwith nonvanishingflux, non-
trivial instanton and non-constant dilaton based on the quaternionic Heisenberg group
are constructed.We show that through appropriate contractions the solutions found in the
G2-heterotic case converge to the heterotic solutions on 6-dimensional inner non-Kähler
spaces previously found by the authors and, moreover, to new heterotic solutions with
non-constant dilatons in dimension 5. All found solutions satisfy the heterotic equations
of motion up to first order of α′.
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1. Introduction

We investigate smooth solutions with non-trivial fluxes to the heterotic equations of
motion, preserving at least one supersymmetry up to the first order of the string tension
α′ in dimensions seven and five. Using the quaternionic Heisenberg group, we propose
an explicit construction leading to new smooth solutions with non-constant dilatons of
the Strominger system comprised of the Killing spinor equations and the Green-Schwarz
anomaly cancellation condition. The found solutions satisfy the heterotic equations of
motion up to the first order of α′.

Another goal of the paper is to point out that through contractions of the Lie algebra
of the quaternionic Heisenberg group, the geometric structures, the partial differential
equations, and their solutions found in the G2-heterotic case converge to the heterotic
solutions on the 6-dimensional inner non-Kähler spaces found in [26] and to the new
5-dimensional heterotic solutions with non-constant dilaton.

The bosonic fields of the ten-dimensional supergravity, which arises as low energy
effective theory of the heterotic string, are the spacetime metric g, the NS three-form
field strength (flux) H , the dilaton φ and the gauge connection A with curvature 2-form
F A. The bosonic geometry is of the form R

1,9−d × Md , where the bosonic fields are
non-trivial only onMd , d ≤ 8.We consider the two connections∇± = ∇g± 1

2H,where
∇g is the Levi-Civita connection of the Riemannian metric g. Both connections preserve
the metric, ∇±g = 0, and have totally skew-symmetric torsion ±H , respectively. We
denote by Rg, R± the corresponding curvature.

We consider the heterotic supergravity theory with an α′ expansion, where 1/2πα′ is
the heterotic string tension. The bosonic part of the ten-dimensional supergravity action
in the string frame is ([13,47], R = R−)

S = 1

2k2

∫
d10x

√−ge−2φ
[
Scalg + 4(∇gφ)2 − 1

2
|H |2− α′

4

(
Tr |F A|2) − Tr |R|2

)]
.

(1.1)

The string frame field equations (the equations of motion induced from the action (1.1))
of the heterotic string up to the first order of α′ in sigma model perturbation theory are
[45,47]

Ricgi j − 1

4
HimnH

mn
j + 2∇g

i ∇g
j φ − α′

4

[
(F A)imab(F

A)mab
j − Rimnq R

mnq
j

]
= 0,

∇g
i (e−2φHi

jk) = 0, ∇+
i (e−2φ(F A)ij ) = 0, (1.2)

in the notations of [37]. The field equation of the dilaton φ is implied from the first two
equations above.

The Green-Schwarz anomaly cancellation mechanism requires that the three-form
Bianchi identity receives an α′ correction of the form

dH = α′

4
8π2(p1(M

d) − p1(E)) = α′

4

(
Tr(R ∧ R) − Tr(F A ∧ F A)

)
, (1.3)

where p1(Md) and p1(E) are the first Pontrjagin forms of Md with respect to a connec-
tion ∇ with curvature R and a vector bundle E with connection A, respectively.

A class of heterotic-string backgrounds for which the Bianchi identity of the three-
form H receives a correction of type (1.3) are those with (2,0) world-volume super-
symmetry. Such models were considered in [48]. The target-space geometry of (2,0)-
supersymmetric sigmamodels has been extensively investigated in [44,48,68]. Recently,
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there is revived interest in these models [17,20,33–35,37,52,53] as string backgrounds
and in connectionwith heterotic-string compactificationwith fluxesmainly in dimension
six [2–11,14,16,22,30,31,36,39–42,56,59,60,62–64].

Equations (1.3), (1.1) and (1.2) involve a subtlety due to the choice of the connection
∇ on T Md , since anomalies can be canceled independently of the choice [46]. Differ-
ent connections correspond to different regularization schemes in the two-dimensional
worldsheet non-linear sigma model. Hence the background fields given for the partic-
ular choice of ∇ must be related to those for a different choice by a field redefinition
[65]. Connections on Md proposed to investigate the anomaly cancellation (1.3) are ∇g

[35,68], ∇+ [17,19,24], ∇− [13,16,37,46,49,50,54,55,58,61], and the Chern connec-
tion ∇c when d = 6 [9,30,31,56,68].

A heterotic geometry preserves supersymmetry iff in ten dimensions there exists at
least one Majorana-Weyl spinor ε such that the following Killing-spinor equations hold
[13,68]

δλ = ∇mε =
(

∇g
m +

1

4
Hmnp�

np
)

ε = ∇+ε = 0,

δ	 =
(

�m∂mφ − 1

12
Hmnp�

mnp
)

ε = (dφ − 1

2
H) · ε = 0,

δξ = F A
mn�

mnε = F A · ε = 0,

(1.4)

where λ,	, ξ are the gravitino, the dilatino and the gaugino fields, �i generate the
Clifford algebra {�i , � j } = 2gi j and · means Clifford action of forms on spinors.

The system of Killing spinor Eq. (1.4) together with the anomaly cancellation con-
dition (1.3) is known as the Strominger system [68]. The last equation in (1.4) is the
instanton condition, which means that the curvature F A is contained in a Lie algebra of
a Lie group that is a stabilizer of a non-trivial spinor. In dimension 7 this group is G2.
Denoting the G2 three-form by �, the G2-instanton condition has the form

7∑
k,l=1

(F A)ij (Ek, El)�(Ek, El , Em) = 0. (1.5)

In the presence of a curvature term Tr(R∧R), the solutions of the Strominger system
(1.4), (1.3) obey the second and the third equations of motion (the second and the third
equations in (1.2)) but do not always satisfy the Einstein equations of motion (see [23–
25], where a sufficient quadratic condition on R is found). It was proved in [51] that,
in dimensions 5, 6, 7 and 8, the solutions of the Strominger system ((1.4) and (1.3))
also solve the heterotic supersymmetric equations of motion (1.2) if and only if R is
an instanton (see [58,62] for higher dimensions and different proofs). In particular, in
dimension 7, R is required to be a G2-instanton.

The physically relevant connection on the tangent bundle to be considered in (1.3),
(1.1), (1.2) is the (−)-connection [13,46]. One reason is that the curvature R− of the
(−)-connection is an instanton up to the first order of α′, which is a consequence of the
first equation in (1.4), (1.3) and the well known identity

R+(X,Y, Z ,U ) − R−(Z ,U, X,Y ) = 1

2
dH(X,Y, Z ,U ). (1.6)

Indeed, (1.3) together with (1.6) imply R+(X,Y, Z ,U )−R−(Z ,U, X,Y ) = O(α′) and
the first equation in (1.4) yields that the holonomy group of ∇+ is contained in G2, i.e.,
the curvature 2-form R+(X,Y ) ⊂ g2 and therefore R− satisfies the instanton condition
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(1.5) up to the first order of α′. Hence, a solution to the Strominger system with first
Pontrjagin form of the (−)-connection always satisfies the heterotic equations of motion
(1.2) up to the first order of α′ (see e.g. [58] and references therein).

In dimension d = 7 heterotic/type I solutions with non-zero fluxes to the equations of
motion preserving at least one supersymmetry were constructed in [43]. These solutions
are noncompact, conformal to a flat space, and satisfy (1.4) and (1.3) with vanishing
curvature term, R = 0. Noncompact solutions to (1.4) and (1.3) in dimension 7 are
also presented in [50]. The first compact heterotic/type I solutions with non-zero fluxes
and constant dilaton to the equations of motion preserving at least one supersymmetry
(satisfying (1.4) and (1.3)) in dimension seven were constructed in [25].

In dimension d = 5, if the field strength vanishes, H = 0, then the 5-dimensional
case reduces to dimension four, since any five dimensional Riemannian spin manifold
admitting ∇g-parallel spinor is reducible. Non-compact solutions on circle bundle over
4-dimensional base endowedwith a hyper Kählermetric (when the 4-dimensionalmetric
is Eguchi-Hanson, Taub-NUT or Atiyah-Hitchin) have appeared in [12,32,57,64,66],
the compact cases are discussed in [35], where a cohomological obstruction is presented.
The first compact heterotic/type I solutions with non-zero fluxes and constant dilaton
to the equations of motion preserving at least one supersymmetry (satisfying (1.4) and
(1.3)) in dimension five are constructed in [23].

In this paper, we construct smooth solutionswith non vanishing flux and non-constant
dilaton to the Strominger system using the first Pontrjagin form of the (−)-connection
on a 7-dimensional complete non-compact manifold equipped with conformally cocal-
ibrated G2-structures of pure type coupled with carefully chosen instanton bundle. The
source of the construction is the already constructed smooth compact solutions to the
Strominger system with constant dilaton on nilmanifods presented in [25] and the ideas
outlined there to consider special three-torus bundles over either conformally T

4 or K3
manifold.

Our first family of solutions are complete G2 manifolds, which are T3-bundles over
conformally compact asymptotically hyperbolic metric on T4 with conformal boundary
at infinity a flat torus T3. Using the first Pontrjagin form of the (−)-connection, together
with the first Pontrjagin form of a carefully chosen instanton, we show that the anomaly
cancellation condition is satisfied with a negative α′ and a non-constant dilaton which is
a real slice of an elliptic function of order two. See Remark 4.4 for the primary obstacle
to finding a compact solution using these techniques.

In Sect. 5 we present another smooth non-compact complete solution to the Stro-
minger system with non-vanishing torsion, non-trivial instanton and non-constant dila-
ton using the first Pontrjagin form of the (−)-connection with positive string tension on
certain T3-bundle over R4. The non-constant dilaton function here is determined by the
fundamental solution of the Laplacian on R

4.

Conventions. The connection 1-forms ω j i of a metric connection ∇,∇g = 0, with re-
spect to a local orthonormal basis {E1, . . . , Ed} are given by ω j i (Ek) = g(∇Ek E j , Ei ),
since we write ∇X E j = ωs

j (X) Es .

The curvature 2-forms �i
j of ∇ are given in terms of the connection 1-forms ωi

j by

�i
j = dωi

j + ωi
k ∧ ωk

j , � j i = dω j i + ωki ∧ ω jk, Rl
i jk = �l

k(Ei , E j ), Ri jkl =
Rs
i jkgls .

The first Pontrjagin class is represented by the 4-form 8π2 p1(∇) = ∑
1≤i< j≤d �i

j ∧
�i

j .
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2. The Supersymmetry Equations and the Geometric Model

Geometrically, the vanishing of the gravitino variation is equivalent to the existence of
a non-trivial real spinor parallel with respect to the metric connection ∇+ with totally
skew-symmetric torsion T = H . The presence of ∇+-parallel spinor leads to restriction
of the holonomy group Hol(∇+) of the torsion connection ∇+.

2.1. Dimension 7. In dimension seven Hol(∇+) has to be contained in the exceptional
groupG2 [27,28,33,35]. The precise conditions to have a solution to the gravitinoKilling
spinor equation in dimension 7 were found in [27]. Namely, there exists a non-trivial
parallel spinor with respect to aG2-connection with torsion 3-form T if and only if there
exists an integrableG2-structure�, i.e. d∗� = θ7∧∗�, where θ7 = − 1

3 ∗(∗d�∧�) =
1
3 ∗ (∗d ∗ � ∧ ∗�) is the Lee form. In this case, the connection ∇+ is unique and the
torsion 3-form T is given by the formula [27]

H = T = 1

6
(d�, ∗�)� − ∗d� + ∗(θ7 ∧ �).

The necessary conditions to have a solution to the system of dilatino and gravitino
Killing spinor equations (the first two equations in (1.4)) in dimension sevenwere derived
in [27,28,33], and the sufficiency was proved in [27,28]. The general existence result
[27,28] states that there exists a non-trivial solution to both dilatino and gravitino Killing
spinor equations (the first two equations in (1.4)) in dimension 7 if and only if there exists
a globally conformal co-calibrated G2-structure (�, g) of pure type and with exact Lee
form θ7, i.e. a G2 -structure � satisfying the equations

d ∗ � = θ7 ∧ ∗�, d� ∧ � = 0, θ7 = −2dφ. (2.1)

Consequently, the torsion 3-form (the flux H ) is given by H = T = −∗d�−2∗(dφ∧�)

and the Riemannian scalar curvature satisfies sg = 8||dφ||2− 1
12 ||T ||2−6 δdφ. The Eq.

(2.1) hold exactly when the G2-structure (�̄ = e− 3
2φ�, ḡ = e−φg) obeys the equations

d∗̄�̄ = d�̄ ∧ �̄ = 0, i.e., it is co-calibrated of pure type.
A geometric model which fits the above structures was proposed in [25] as a certain

T
3-bundle over aCalabi-Yau surface. For this, let�i , 1 ≤ i ≤ 3, be three closed anti-self-

dual 2-forms on a Calabi-Yau surface M4, which represent integral cohomology classes.
Denote byω1 and byω2+

√−1ω3 the (closed) Kähler form and the holomorphic volume
formonM4, respectively. Then, there is a compact 7-dimensionalmanifoldM1,1,1 which
is the total space of a T3-bundle over M4 and has a G2-structure

� = ω1 ∧ η1 + ω2 ∧ η2 − ω3 ∧ η3 + η1 ∧ η2 ∧ η3,

solving the first two Killing spinor equations in (1.4) with constant dilaton in dimension
7, where ηi , 1 ≤ i ≤ 3, is a 1-form on M1,1,1 such that dηi = �i , 1 ≤ i ≤ 3.

For any smooth function f on M4, the G2-structure on M1,1,1 given by

� f = e2 f
[
ω1 ∧ η1 + ω2 ∧ η2 − ω3 ∧ η3

]
+ η1 ∧ η2 ∧ η3

solves the first twoKilling spinor equations in (1.4) with non-constant dilaton φ = −2 f .
The corresponding Riemannian metric has the form

g f = e2 f gcy + η1 ⊗ η1 + η2 ⊗ η2 + η3 ⊗ η3.
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To achieve a smooth solution to the Strominger system we still have to determine an
auxiliary vector bundle with an instanton and a linear connection on M1,1,1 in order to
satisfy the anomaly cancellation condition (1.3).

2.2. Dimension 5. The existence of ∇+-parallel spinor in dimension 5 determines an
almost contact metric structure and, equivalently, a reduction of the structure group
SO(5) to SU (2). The properties of the almost contactmetric structure aswell as solutions
to the gravitino and dilatino Killing-spinor equations are investigated in [27,29] and
presented in terms of reduction to SU (2) in [23].

2.2.1. Almost contact structure point of view. We recall that an almost contact metric
structure consists of an odd dimensional manifold M2k+1 equipped with a Riemannian
metric g, vector field ξ of length one, its dual 1-form η as well as an endomorphism ψ

of the tangent bundle such that

ψ(ξ) = 0, ψ2 = −id + η ⊗ ξ, g(ψ., ψ.) = g(., .) − η ⊗ η.

The Reeb vector field ξ is determined by the equations η(ξ) = 1, ξ�dη = 0, where
� denotes the interior multiplication. The Nijenhuis tensor N , the fundamental form F
and the Lee form θ of an almost contact metric structure are defined by

N = [ψ.,ψ.] + ψ2[., .] − ψ[ψ., .] − ψ[., ψ.] + dη ⊗ ξ, F(., .) = g(., ψ.),

θ = 1

2
F�dF.

It was shown in [29] that the gravitino and the dilatino equations admit a solution in
dimension five if and only if the Nijenhuis tensor is totally skew-symmetric, the Reeb
vector field ξ is a Killing vector field and the equalities 2dφ = θ and ∗Hdη = −dη

hold, where ∗H denotes the Hodge operator acting on the 4-dimensional orthogonal
complement H of the vector ξ , H = Ker η.

2.2.2. The SU(2)-structure point of view. The reduction of the structure group SO(5)
to SU (2) is described in terms of forms by Conti and Salamon in [18] (see also [32])
as follows: an SU (2)-structure on a 5-dimensional manifold M is (η, F = ω1, ω2, ω3),
where η is a 1-form dual to ξ via the metric and ωs , s = 1, 2, 3, are 2-forms on M
satisfying ωs ∧ ωt = δst v, v ∧ η 
= 0 for some 4 -form v, and X�ω1 = Y�ω2 ⇒
ω3(X,Y ) ≥ 0. The 2-forms ωs , s = 1, 2, 3, can be chosen to form a basis of the
H-self-dual 2-forms [18].

It was shown in [23] that the first two equations in (1.4) admit a solution in dimension
five exactly when there exists a five dimensional manifold M endowed with an SU (2)-
structure (η, F = ω1, ω2, ω3) satisfying the structure equations:

dωs = 2d f ∧ ωs, ∗Hdη = −dη, d f (ξ) = 0. (2.2)

The flux H is given by [27,29]

H = T = η ∧ dη + 2dψ f ∧ F, where dψ f (X) = −d f (ψX). (2.3)

The dilaton φ is equal to φ = 2 f .
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In other words, the gravitino and dilatino equations in dimension five are satisfied
if and only if the manifold is “special” or H-conformal to a quasi-Sasakian manifold
with H-anti-self-dual exterior derivative of the almost contact form and the metric has
the form

g f = e2 f g|H + η ⊗ η.

It was proposed in [25] to investigate S1 bundles over a conformally hyper-Kähler
manifold. This ansatz guaranties solution to the first two equations in (1.4). To achieve a
smooth solution to the Strominger system we still have to determine a linear connection
on the tangent bundle and an auxiliary vector bundle with an SU (2)-instanton, i.e., a
connection A with curvature 2-form F A satisfying

(F A)ij (ψEk, ψEl) = (F A)ij (Ek, El),

5∑
k=1

(F A)ij (Ek, ψEk) = 0 (2.4)

so that the anomaly cancellation condition (1.3) is satisfied.

3. The Quaternionic Heisenberg Group

The seven dimensional quaternionic Heisenberg group G(H) is the connected simply
connected Lie group with a group multiplication [., .] determined by the Lie algebra
g(H) with structure equations

dγ 1 = dγ 2 = dγ 3 = dγ 4 = 0, dγ 5 = γ 12 − γ 34, dγ 6 = γ 13 + γ 24,

dγ 7 = γ 14 − γ 23. (3.1)

In order to obtain results in dimensions less than seven through contractions of g(H)

it will be convenient to consider the orbit of G(H) under the natural action of GL(3,R)

on the span {γ 5, γ 6, γ 7}. Accordingly let KA be a seven-dimensional real Lie group
with Lie bracket [x, x ′]A = A[A−1x, A−1x ′] for A ∈ GL(3,R) defined by a basis of
left-invariant 1-forms {e1, . . . , e7} such that ei = γ i for 1 ≤ i ≤ 4 and (e5 e6 e7) =
A (γ 5 γ 6 γ 7)T . Hence, the structure equations of the Lie algebra KA of the group KA
are

de1 = de2 = de3 = de4 = 0, de4+i =
3∑
j=1

ai j σ j , i = 1, 2, 3, (3.2)

where σ1 = e12 − e34, σ2 = e13 + e24, σ3 = e14 − e23 are the three anti-self-dual forms
on R

4 and

A =
⎛
⎝a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞
⎠ . (3.3)

We will denote the norm of A by |A|, |A|2 = ∑3
i, j=1 a

2
i j .

Since KA is isomorphic to g(H), if KA is connected and simply connected it is
isomorphic to G(H). Furthermore, any lattice �A gives rise to a (compact) nilmanifold
MA = KA/�A, which is a T3-bundle over a T4 whose connection 1-form is the anti-
self-dual curvature on the four torus.

Following [25] we consider the G2-structure on the Lie group KA defined by the
3-form
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� = ω1 ∧ e7 + ω2 ∧ e5 − ω3 ∧ e6 + e567, (3.4)

where
ω1 = e12 + e34, ω2 = e13 − e24, ω3 = e14 + e23

are the three closed self-dual 2-forms on R4. The corresponding Hodge dual 4-form ∗�

is given by
∗� = ω1 ∧ e56 + ω2 ∧ e67 + ω3 ∧ e57 +

1

2
ω1 ∧ ω1. (3.5)

It is easy to check using (3.2) and the property σi ∧ ω j = 0 for 1 ≤ i, j ≤ 3 that

d ∗ � = 0, d� ∧ � = 0, (3.6)

i.e. � is co-calibrated of pure type. According to [27,28] this G2-structure solves the
gravitino and dilatino equations with constant dilaton.

Let f be a smooth function onR4. Following [25] we consider the G2 form given by

�̄ = e2 f
[
ω1 ∧ e7 + ω2 ∧ e5 − ω3 ∧ e6

]
+ e567. (3.7)

The corresponding metric ḡ on KA has an orthonormal basis of 1-forms defined by

ē1 = e f e1, ē2 = e f e2, ē3 = e f e3, ē4 = e f e4, ē5 = e5, ē6 = e6, ē7 = e7.
(3.8)

With respect to ḡ, the self-dual forms ω̄i and anti-self-dual forms σ̄i are given by

ω̄i = e2 f ωi , σ̄i = e2 f σi , i = 1, 2, 3. (3.9)

The corresponding Hodge dual 4-form ∗̄�̄ is

∗̄�̄ = e2 f
[
ω1 ∧ e56 + ω2 ∧ e67 + ω3 ∧ e57 +

e2 f

2
ω1 ∧ ω1

]
. (3.10)

It was shown in [25, Theorem 6.1] using (3.6) that

d∗̄�̄ = 2d f ∧ ∗̄�̄, d�̄ ∧ �̄ = 0. (3.11)

Then the Lie form θ̄ is given by
θ̄ = 2d f (3.12)

and the G2-structure �̄ solves the gravitino and dilatino equations with non-constant
dilaton φ = −2 f [27,28].

According to [27,28], the torsion of the (+)-connection ∇+ is the 3-form

T = − ∗ d� + ∗(θ ∧ �). (3.13)

We calculate from (3.2) and (3.7) that

d�̄ = 2d f ∧ �̄ − 2d f ∧ e567 + de567. (3.14)

A substitution of (3.14) in (3.13) together with (3.12) give

T̄ = ∗̄(2d f ∧ e567 − de567) = e− f
[

− 2 f1 ē
234 + 2 f2 ē

134 − 2 f3 ē
124 + 2 f4 ē

123
]

+ e−2 f
[
(a11 σ̄1 + a12 σ̄2 + a13 σ̄3) ∧ ē5 + (a21 σ̄1 + a22 σ̄2 + a23 σ̄3) ∧ ē6

+ (a31 σ̄1 + a32 σ̄2 + a33 σ̄3) ∧ ē7
]
, (3.15)
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where fi = ∂ f
∂xi

, 1 ≤ i ≤ 4, σ̄1 = ē12 − ē34, σ̄2 = ē13 + ē24 and σ̄3 = ē14 − ē23. Letting

fi j = ∂2 f
∂x j ∂xi

, 1 ≤ i, j ≤ 4, a short calculation gives

dT̄ = −e−4 f
[
�e2 f + 2|A|2

]
ē1234 = −

[
�e2 f + 2|A|2

]
e1234, (3.16)

where �e2 f = (e2 f )11 + (e2 f )22 + (e2 f )33 + (e2 f )44 is the standard Laplacian on R
4.

3.1. The first Pontrjagin form of the (−)-connection. From Koszul’s formula, we have
that the Levi-Civita connection 1-forms (ωḡ)ı̄

j̄
of the metric ḡ are given by

(ωḡ)ı̄
j̄
(ēk) = −1

2

(
ḡ(ēi , [ē j , ēk]) − ḡ(ēk, [ēi , ē j ]) + ḡ(ē j , [ēk, ēi ])

)

= 1

2

(
dēi (ē j , ēk) − dēk(ēi , ē j ) + dē j (ēk, ēi )

)
(3.17)

taking into account ḡ(ēi , [ē j , ēk]) = −dēi (ē j , ēk). With the help of (3.17) we compute
the expressions for the connection 1-forms (ω−)ı̄

j̄
of the connection ∇−,

(ω−)ı̄
j̄
= (ωḡ)ı̄

j̄
− 1

2
(T̄ )ı̄

j̄
, where (T̄ )ı̄

j̄
(ēk) = T̄ (ēi , ē j , ēk). (3.18)

Now, (3.18), (3.17) and (3.15) show that the possibly non-zero connection 1-forms (ω−)ı̄
j̄

are given in terms of the basis {ē1, . . . , ē7} by the identities

(ω−)1̄
2̄

= (ω−)3̄
4̄

= e− f
(
f2 ē

1 − f1 ē
2 + f4 ē

3 − f3 ē
4
)

,

(ω−)1̄
3̄

= −(ω−)2̄
4̄

= e− f
(
f3 ē

1 − f4 ē
2 − f1 ē

3 + f2 ē
4
)

,

(ω−)1̄
4̄

= (ω−)2̄
3̄

= e− f
(
f4 ē

1 + f3 ē
2 − f2 ē

3 − f1 ē
4
)

,

(ω−)1̄
5̄

= e−2 f
(
−a11 ē

2 − a12 ē
3 − a13 ē

4
)

, (ω−)1̄
6̄

= e−2 f
(
−a21 ē

2 − a22 ē
3 − a23 ē

4
)

,

(ω−)1̄
7̄

= e−2 f
(
−a31 ē

2 − a32 ē
3 − a33 ē

4
)

, (ω−)2̄
5̄

= e−2 f
(
a11 ē

1 + a13 ē
3 − a12 ē

4
)

,

(ω−)2̄
6̄

= e−2 f
(
a21 ē

1 + a23 ē
3 − a22 ē

4
)

, (ω−)2̄
7̄

= e−2 f
(
a31 ē

1 + a33 ē
3 − a32 ē

4
)

,

(ω−)3̄
5̄

= e−2 f
(
a12 ē

1 − a13 ē
2 + a11 ē

4
)

, (ω−)3̄
6̄

= e−2 f
(
a22 ē

1 − a23 ē
2 + a21 ē

4
)

,

(ω−)3̄
7̄

= e−2 f
(
a32 ē

1 − a33 ē
2 + a31 ē

4
)

, (ω−)4̄
5̄

= e−2 f
(
a13 ē

1 + a12 ē
2 − a11 ē

3
)

,

(ω−)4̄
6̄

= e−2 f
(
a23 ē

1 + a22 ē
2 − a21 ē

3
)

, (ω−)4̄
7̄

= e−2 f
(
a33 ē

1 + a32 ē
2 − a31 ē

3
)

.

(3.19)

A long straightforward calculation using (3.19) gives in terms of the basis {ē1, . . . , ē7}
the following formulas for the curvature 2-forms (�−)ī

j̄
of the connection ∇−:
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(�−)1̄
2̄

= −e−2 f
[
f11 + f22 + 2 f 23 + 2 f 24 + (a211 + a221 + a231)e

−2 f
]
ē12

+ e−2 f
[
f14 − f23 − 2 f1 f4 + 2 f2 f3 − (a11a12 + a21a22 + a31a32)e

−2 f
]

σ̄2

− e−2 f
[
f13 + f24 − 2 f1 f3 − 2 f2 f4 + (a11a13 + a21a23 + a31a33)e

−2 f
]

σ̄3

− e−2 f
[
f33+ f44+2 f

2
1 +2 f

2
2 + (a212 + a222 + a232 + a213 + a223 + a233)e

−2 f
]
ē34,

(�−)1̄
3̄

= −e−2 f
[
f14 + f23 − 2 f1 f4 − 2 f2 f3 + (a11a12 + a21a22 + a31a32)e

−2 f
]

σ̄1

− e−2 f
[
f11 + f33 + 2 f 22 + 2 f 24 + (a212 + a222 + a232)e

−2 f
]
ē13

+ e−2 f
[
f12 − f34 − 2 f1 f2 + 2 f3 f4 + (a12a13 + a22a23 + a32a33)e

−2 f
]

σ̄3

+ e−2 f
[
f22+ f44+2 f

2
1 +2 f

2
3 + (a211 + a221 + a231 + a213 + a223 + a233)e

−2 f
]
ē24,

(�−)1̄
4̄

= e−2 f
[
f13 − f24 − 2 f1 f3 + 2 f2 f4 − (a11a13 + a21a23 + a31a33)e

−2 f
]

σ̄1

− e−2 f
[
f12 + f34 − 2 f1 f2 − 2 f3 f4 + (a12a13 + a22a23 + a32a33)e

−2 f
]

σ̄2

− e−2 f
[
f11 + f44 + 2 f 22 + 2 f 23 + (a213 + a223 + a233)e

−2 f
]
ē14

− e−2 f
[
f22+ f33+2 f

2
1 +2 f

2
4 + (a211 + a221 + a231 + a212 + a222 + a232)e

−2 f
]
ē23,

(�−)1̄
5̄

= 2e−3 f [(a11 f1 − a13 f3 + a12 f4) σ̄1 + (a12 f1 + a13 f2 − a11 f4) σ̄2

+ (a13 f1 − a12 f2 + a11 f3) σ̄3] ,

(�−)1̄
6̄

= 2e−3 f [(a21 f1 − a23 f3 + a22 f4) σ̄1 + (a22 f1 + a23 f2 − a21 f4) σ̄2

+ (a23 f1 − a22 f2 + a21 f3) σ̄3] ,

(�−)1̄
7̄

= 2e−3 f [(a31 f1 − a33 f3 + a32 f4) σ̄1 + (a32 f1 + a33 f2 − a31 f4) σ̄2

+ (a33 f1 − a32 f2 + a31 f3) σ̄3] ,

(�−)2̄
3̄

= e−2 f
[
f13 − f24 − 2 f1 f3 + 2 f2 f4 + (a11a13 + a21a23 + a31a33)e

−2 f
]

σ̄1

− e−2 f
[
f12 + f34 − 2 f1 f2 − 2 f3 f4 − (a12a13 + a22a23 + a32a33)e

−2 f
]

σ̄2

− e−2 f
[
f11+ f44+2 f

2
2 + 2 f 23 + (a211 + a221 + a231 + a212 + a222 + a232)e

−2 f
]
ē14

− e−2 f
[
f22 + f33 + 2 f 21 + 2 f 24 + (a213 + a223 + a233)e

−2 f
]
ē23,

(�−)2̄
4̄

= e−2 f
[
f14 + f23 − 2 f1 f4 − 2 f2 f3 − (a11a12 + a21a22 + a31a32)e

−2 f
]

σ̄1

+ e−2 f
[
f11 + f33+2 f

2
2 + 2 f 24 + (a211 + a221 + a231 + a213 + a223 + a233)e

−2 f
]
ē13

− e−2 f
[
f12 − f34 − 2 f1 f2 + 2 f3 f4 + (a12a13 + a22a23 + a32a33)e

−2 f
]

σ̄3

− e−2 f
[
f22 + f44 + 2 f 21 + 2 f 23 + (a212 + a222 + a232)e

−2 f
]
ē24,
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(�−)2̄
5̄

= 2e−3 f [(a11 f2 − a12 f3 − a13 f4) σ̄1 − (a13 f1 − a12 f2 − a11 f3) σ̄2

+ (a12 f1 + a13 f2 + a11 f4) σ̄3] ,

(�−)2̄
6̄

= 2e−3 f [(a21 f2 − a22 f3 − a23 f4) σ̄1 − (a23 f1 − a22 f2 − a21 f3) σ̄2

+ (a22 f1 + a23 f2 + a21 f4) σ̄3] ,

(�−)2̄
7̄

= 2e−3 f [(a31 f2 − a32 f3 − a33 f4) σ̄1 − (a33 f1 − a32 f2 − a31 f3) σ̄2

+ (a32 f1 + a33 f2 + a31 f4) σ̄3] ,

(�−)3̄
4̄

= − e−2 f [ f11+ f22 + 2 f 23 + 2 f 24 + (a212 + a222 + a232 + a213 + a223 + a233)e
−2 f )ē12

+ e−2 f [ f14 − f23 − 2 f1 f4 + 2 f2 f3 + (a11a12 + a21a22 + a31a32)e
−2 f ] σ̄2

− e−2 f [ f13 + f24 − 2 f1 f3 − 2 f2 f4 − (a11a13 + a21a23 + a31a33)e
−2 f ] σ̄3

− e−2 f [ f33 + f44 + 2 f 21 + 2 f 22 + (a211 + a221 + a231)e
−2 f )ē34,

(�−)3̄
5̄

= 2e−3 f [(a13 f1 + a12 f2 + a11 f3) σ̄1 − (a11 f2 − a12 f3 + a13 f4) σ̄2

− (a11 f1 − a13 f3 − a12 f4) σ̄3] ,

(�−)3̄
6̄

= 2e−3 f [(a23 f1 + a22 f2 + a21 f3) σ̄1 − (a21 f2 − a22 f3 + a23 f4) σ̄2

− (a21 f1 − a23 f3 − a22 f4) σ̄3] ,

(�−)3̄
7̄

= 2e−3 f [(a33 f1 + a32 f2 + a31 f3) σ̄1 − (a31 f2 − a32 f3 + a33 f4) σ̄2

− (a31 f1 − a33 f3 − a32 f4) σ̄3] ,

(�−)4̄
5̄

= 2e−3 f [−(a12 f1 − a13 f2 − a11 f4) σ̄1 + (a11 f1 + a13 f3 + a12 f4) σ̄2

− (a11 f2 + a12 f3 − a13 f4) σ̄3] ,

(�−)4̄
6̄

= 2e−3 f [−(a22 f1 − a23 f2 − a21 f4) σ̄1 + (a21 f1 + a23 f3 + a22 f4) σ̄2

− (a21 f2 + a22 f3 − a23 f4) σ̄3] ,

(�−)4̄
7̄

= 2e−3 f [−(a32 f1 − a33 f2 − a31 f4) σ̄1 + (a31 f1 + a33 f3 + a32 f4) σ̄2

− (a31 f2 + a32 f3 − a33 f4) σ̄3] ,

(�−)5̄
6̄

= 2e−4 f [(a12a23−a13a22) σ̄1 − (a11a23 − a13a21) σ̄2 + (a11a22 − a12a21) σ̄3] ,

(�−)5̄
7̄

= 2e−4 f [(a12a33−a13a32) σ̄1 − (a11a33 − a13a31) σ̄2 + (a11a32 − a12a31) σ̄3] ,

(�−)6̄
7̄

= 2e−4 f [(a22a33−a23a32) σ̄1 − (a21a33 − a23a31) σ̄2 + (a21a32 − a22a31) σ̄3] .

A long calculation based on the formulas for the curvature 2-form (�−)ī
j̄
of ∇−

gives.

Proposition 3.1. The first Pontrjagin form of ∇− is a scalar multiple of e1234 given by

π2 p1(∇−) =
[
F2[ f ] + �4 f − 3

8
|A|2�e−2 f

]
e1234, (3.20)

where F2[ f ] is the 2-Hessian of f , i.e., the sum of all principle 2 × 2-minors of the
Hessian, and �4 f = div(|∇ f |2∇ f ) is the 4-Laplacian of f .

The above Proposition shows, in particular, that even though the curvature 2-forms
of ∇− are quadratic in the gradient of the dilaton, the Pontrjagin form of ∇− is also
quadratic in these terms. Furthermore, if f depends on two of the variables thenF2[ f ] =
det (Hess f ) while if f is a function of one variable F2[ f ] vanishes.
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4. A Conformally Compact Solution with Negative α′

In this section we give our first main result. Recall that KA is the connected simply
connected Lie group with Lie algebraKA determined by (3.2). Due to the results recalled
in Sect. 2.1 the remaining part is to solve the anomaly cancellation condition. This will
be achieved for the G2 structure (3.7) with the torsion term (3.16), the Pontrjagin form
(3.20) of the ∇− connection, and the G2-instanton defined below.

Proposition 4.1. LetD�,� = (λi j ) ∈ gl3(R), be the linear connection on the Lie group
KA whose possibly non-zero 1-forms are given as follows

(ωD�)1̄
2̄

= −(ωD�)2̄
1̄

= −(ωD�)3̄
4̄

= (ωD�)4̄
3̄

= λ11 ē
5 + λ12 ē

6 + λ13 ē
7,

(ωD�)1̄
3̄

= −(ωD�)3̄
1̄

= (ωD�)2̄
4̄

= −(ωD�)4̄
2̄

= λ21 ē
5 + λ22 ē

6 + λ23 ē
7,

(ωD�)1̄
4̄

= −(ωD�)4̄
1̄

= −(ωD�)2̄
3̄

= (ωD�)3̄
2̄

= λ31 ē
5 + λ32 ē

6 + λ33 ē
7.

Then, D� is a G2-instanton with respect to the G2 structure defined by (3.7) which
preserves the metric if and only if rank(�) ≤ 1.

Proof. Let us use the notation �i jkl = λikλ jl − λ jkλil = det

(
λik λil
λ jk λ jl

)
for the 2× 2

minors of �. A direct calculation using (3.2) shows that the possibly non-zero curvature
forms (�D�)ı̄

j̄
of the connection D� are:

(�D�)1̄
2̄

= −(�D�)2̄
1̄

= −(�D�)3̄
4̄

= (�D�)4̄
3̄

= e−2 f (a11λ11 + a21λ12 + a31λ13) σ̄1

+ e−2 f (a12λ11 + a22λ12 + a32λ13) σ̄2 + e−2 f (a13λ11 + a23λ12 + a33λ13) σ̄3

+ 2�2312 ē
56 + 2�2313 ē

57 + 2�2323 ē
67,

(�D�)1̄
3̄

= −(�D�)3̄
1̄

= (�D�)2̄
4̄

= −(�D�)4̄
2̄

= e−2 f (a11λ21 + a21λ22 + a31λ23) σ̄1

+ e−2 f (a12λ21 + a22λ22 + a32λ23) σ̄2 + e−2 f (a13λ21 + a23λ22 + a33λ23) σ̄3

− 2�1312 ē
56 − 2�1313 ē

57 − 2�1323 ē
67,

(�D�)1̄
4̄

= −(�D�)4̄
1̄

= −(�D�)2̄
3̄

= (�D�)3̄
2̄

= e−2 f (a11λ31 + a21λ32 + a31λ33) σ̄1

+ e−2 f (a12λ31 + a22λ32 + a32λ33) σ̄2 + e−2 f (a13λ31 + a23λ32 + a33λ33) σ̄3

+ 2�1212 ē
56 + 2�1213 ē

57 + 2�1223 ē
67.

Now, it is straightforward to see that D� satisfies (1.5) if and only if all the 2× 2 minors
�i jkl of the matrix � vanish. Therefore, D� is a G2 -instanton if and only if rank(�) ≤
1. ��
Corollary 4.2. For a matrix � of rank one, � = (λi j ) ∈ gl3(R), let D� be the
G2 -instanton defined in Proposition 4.1. Then, the first Pontrjagin form p1(D�)

of the G2-instanton D� is given by

8π2 p1(D�) = −4λ2 e1234, (4.1)

where λ = |� A| is the norm of the product matrix � A.

Proof. Since the 2 × 2 minors �i jkl are all zero, the formulas for the curvature forms

(�D�)ī
j̄
given in the proof of Proposition 4.1 imply the claimed identity. ��

We turn to the proof of our first main result whose formulation uses (3.2), (3.7),
(3.19) and Proposition 4.1.
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Theorem 4.3. The conformally compact manifold M7 = (�\KA, �̄,∇−, D�, f ) is a
G2-manifold which solves the Strominger system with non-constant dilaton f , non-
trivial flux H = T̄ , non-flat instanton D� using the first Pontrjagin form of ∇− and
negative α′. The dilaton f depends on one variable and is determined as a real slice of
the Weierstrass’ elliptic function.

The conformally compact manifold M7 = (�\KA, �̄,∇−, D�, f ) satisfies the het-
erotic equations of motion (1.2) up to first order of α′.

Proof. By the construction in Sect. 2.1 we are left with solving the anomaly cancellation

condition dT̄ = α′
4 8π

2
(
p1(∇−) − p1(D�)

)
, which in our case taking into account

(3.16), (3.20) and (4.1) becomes the single non-linear equation

�e2 f + 2|A|2 + α′

4

[
8F2[ f ] + 8�4 f − 3|A|2�e−2 f + 4λ2

]
= 0. (4.2)

Remark 4.4. We note explicitly that the existence of a periodic solution of Eq. (4.2) on
R
4 would give a compact solution of Strominger system with non-constant dilaton.

Up to relabeling the constants, this is the same equation as the one obtained through
the anomaly cancellation that appeared in [26, Sect. 4.2]. Accordingly, we assume that
the function f depends on one variable, f = f (x1), and for a negative α′ we choose
2|A|2 + α′λ2 = 0, i.e., we let α′ = −α2 so that 2|A|2 = α2λ2. This simplifies (4.2) to
the ordinary differential equation

(
e2 f

)′
+
3

4
α2|A|2

(
e−2 f

)′ − 2α2 f ′3 = C0 = const. (4.3)

A solution of the last equation for C0 = 0 was found in [26, Sect. 4.2]. For ease of
reading we repeat the key steps of the derivation in order to obtain a seven dimensional
solution of the Strominger system. The substitution u = α−2e2 f allows us to write (4.3)
in the form

(
e2 f

)′
+
3

4
α2|A|2

(
e−2 f

)′ − 2α2 f ′3 = α2u′

4u3

(
4u3 − 3

|A|2
α2 u − u′2

)
.

For C0 = 0 we shall solve the following ordinary differential equation for the function
u = u(x1) > 0

u′2 = 4u3 − 3
|A|2
α2 u = 4u (u − d) (u + d) , d =

√
3|A|2/α. (4.4)

Replacing the real derivative with the complex derivative leads to the Weierstrass’ equa-
tion (

d P
dz

)2

= 4P (P − d) (P + d) (4.5)

for the doubly periodic Weierstrass P function with a pole at the origin. As well known,
[1,21], near the origin P has the expansion

P(z) = 1

z2
+
d2

5
z2 + d1z

6 + · · · ,

which has no z4 term and only even powers of z. Furthermore, see [1,21], letting τ± be
the basic half-periods such that τ+ is real and τ− is purely imaginary we have that P is
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real valued on the linesRe z = mτ+ or Im z = imτ−,m ∈ Z. In the fundamental region
centered at the origin, where P has a pole of order two, we have that P(z) decreases
from +∞ to a to 0 to −a to −∞ as z varies along the sides of the half-period rectangle
from 0 to τ+ to τ+ + τ− to τ− to 0.

Thus, u(x1) = P(x1) defines a non-negative 2τ+-periodic function with singularities
at the points 2nτ+, n ∈ Z, which solves the real Eq. (4.4). From the Laurent expansion
of the Weierstrass’ function it follows

u(x1) = 1

(x1)2

(
1 +

d2

5
(x1)4 + · · ·

)
.

By construction, f = 1
2 ln(α

2u) is a periodic function with singularities on the real line
which is a solution to Eq. (4.2). Therefore theG2-structure defined by �̄ descends to the
7 -dimensional nilmanifold M7 = �\KA with singularity, determined by the singularity
of u, where KA is the 2-step nilpotent Lie group with Lie algebra KA, defined by (3.2),
and � is a lattice with the same period as f , i.e., 2τ+ in all variables. In fact, as seen from
the asymptotic behavior of u,M7 is the total space of aT3-bundle over the asymptotically
hyperbolic manifold M4 with metric

ḡH = u(x1)
(
(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2

)
,

which is a conformally compact 4-torus with conformal boundary at infinity a flat 3-
torus. Thus, we conclude that there is a complete solution with non-constant dilaton,
non-trivial instanton and flux and with a negative α′ parameter.

The last statement follows from the fact that the (−)-connection is an instanton up
to the first order of α′. This completes the proof of Theorem 4.3. ��

From the apparent Z2-symmetry of u determined by the symmetry with respect to
the line x1 = τ+ we also obtain a solution on the quotient M7/Z2.

5. A Complete Solution with Positive α′

In this section we exhibit a solution of the Strominger system using again the G2-
structure (3.7) by solving the anomaly cancellation condition with torsion term (3.16),
the Pontrjagin form (3.20) of the ∇− connection, and the G2-instanton defined below
with the help of Lemma 5.1.

Lemma 5.1. The (−)-connection of the G2-structure �̄ is a G2 instanton with respect
to �̄ if and only if the torsion 3-form is closed, dT̄ = 0, i.e. the dilaton function f
satisfies the equality

�e2 f + 2|A|2 = 0. (5.1)

Proof. Let {ē1, . . . , ē7} be the orthonormal basis dual to {ē1, . . . , ē7}. Using (1.6) we
investigate the G2 instanton condition (1.5) for R− as follows

0 =
∑7

i, j=1
R−(ēi , ē j , ēl , ēm)�̄(ēi , ē j , ēk)

=
∑7

i, j=1

[
R+ − dT̄

]
(ēi , ē j , ēl , ēm)�̄(ēi , ē j , ēk)

= −
∑7

i, j=1
dT̄ (ēi , ē j , ēl , ēm)�̄(ēi , ē j , ēk), (5.2)
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wherewe used the fact that the holonomy of∇+ is contained inG2, i.e.
∑7

i, j=1 R
+(ēi , ē j ,

ēl , ēm)�̄(ēi , ē j , ēk) = 0. Now, applying (3.16) and (3.7) we conclude that (5.2) is
satisfied if and only if (5.1) holds. ��

Let DB be the ∇− connection obtained by replacing A with the matrix B in Lemma
5.1, but allowing B to be singular, B ∈ gl3(R). Hence, the connection DB is a G2-
instantonwith respect to theG2-structure defined by (3.7) iff the dilaton function satisfies

�e2 f = −2|B|2. (5.3)

Equation (3.20) shows that the difference between the first Pontrjagin forms of ∇−
and DB is given by the formula

8π2
(
p1(∇−) − p1(DB)

)
= −3

(
|A|2 − |B|2

) (
�e−2 f

)
e1234. (5.4)

Therefore, recalling (3.16) and taking into account (5.4), the anomaly cancellation con-
dition is

dT̄ − α′

4
8π2

(
p1(∇−) − p1(DB)

)

= −
[
�e2 f + 2|A|2 − 3

4
α′(|A|2 − |B|2

) (
�e−2 f

) ]
e1234 = 0

coupled with (5.3). Notice that at this point the analysis can proceed exactly as in
[26, Sect. 5.2]. As a result we obtain the following results depending on the difference
|A|2 − |B|2 being zero or non-zero.

For B = O , where O is the zero matrix in gl3(R), and a fixed e ∈ R
4 we let

e2 f = 3α′

4|x − e|2 , x ∈ R
4. (5.5)

Using logarithmic radial coordinates near the singularity (as e.g. in [15]) it follows that
the 4-D metric induced on R

4 is actually complete. In fact, taking the singularity at
the origin, in the coordinate t = √

3α′/2 ln
(
4|x |2/3α′) = −√

3α′ f , we have that the
dilaton and the 4-D metric can be expressed as follows

f = −t
√
3α′, ḡH =

4∑
i=1

e2 f (ei )2 = dt2 + 3α′ds23 ,

where ds23 is the metric on the unit three-dimensional sphere in the four dimensional
Euclidean space. The completeness of the horizontal metric implies that the metric
ḡ = ḡH + (e5)2 + (e6)2 + (e7)2 is also complete. Thus, we proved.

Theorem 5.2. The non-compact complete simply connectedmanifold (KA, �̄,∇−,DO ,

f ) described above is a complete G2 manifold which solves the Strominger system
with non-constant dilaton f determined by (5.5), non-zero flux H = T̄ and non-
flat instanton DO using the first Pontrjagin form of ∇− and positive α′. Furthermore,
(KA, �̄,∇−,DO , f ) also solves the heterotic equations of motion (1.2) up to the first
order of α′.
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On the other hand, in the case |A|2 = |B|2 
= 0 the anomaly condition is trivially
satisfied for anyα′, provided the torsion is closed, seeLemma5.1. In this case the solution
is given by the solutions of (5.1). Furthermore, both ∇− and DB are G2-instantons. For
example, a particular solution is obtained by taking

e2 f = |A|2
4

(1 − |x |2)
defined in the unit ball.

6. Solutions Through Contractions

In this section we consider appropriate contractions of the quaternionic Heisenberg
algebra (3.2) leading to deformations of the geometric structures, the partial differential
equations and their solutions found in Sects. 4 and 5 in the G2-heterotic case. We show
that these G2 solutions converge to the heterotic solutions on the 6-dimensional inner
non-Kähler spaces constructed in [26]. Furthermore, this method allows us to find new
heterotic solutions with non-constant dilaton in dimension 5.

6.1. Six dimensional solutions. Using the classification results of [69], it was shown in
[26] that 2-step nilmanifolds which are T2-bundles over T4, with connection 1-form the
anti-self-dual curvature of T4, are precisely the 6-dimensional nilmanifolds admitting
invariant balancedHermitianmetricswithAbelian complex structure J , i.e., [J X, JY ] =
[X,Y ]. Moreover, in this case the Lie algebra underlying M is isomorphic to h3 or h5.
Here, h3 is the Lie algebra underlying the nilmanifold given by the product of the
5-dimensional generalized Heisenberg nilmanifold by S1, while h5 is the Lie algebra
underlying the Iwasawa manifold. The structure equations of the Lie algebra h5 are

de1 = de2 = de3 = de4 = 0, de5 = b σ2, de6 = a σ1 − b σ3, (6.1)

while h3 is given by

de1 = de2 = de3 = de4 = 0, de5 = 0, de6 = a σ1,

where a, b ∈ R
∗ and σi are the anti-self-dual forms on R4, see after (3.2). Clearly h3 is

a contraction of h5 and both are contractions of g(H), see (3.2).
It is remarkable that the geometric structures, the partial differential equations and

their solutions found in Sects. 4 and 5 converge to the heterotic solutions on the 6-
dimensional inner non-Kähler spaces found in [26] as we explain next in details for h5.
The SU (3)-structure and corresponding solution based on h3 is handled analogously.

Clearly h5 is a contraction of KA when ε → 0 using, for example,

Aε
de f=

⎛
⎝ 0 b 0
a 0 −b
0 0 ε

⎞
⎠ .

Notice that by (3.8) we have ē7 = e7ε = εγ 7 → 0 as ε → 0. With the above choice of
Aε we write the G2-form (3.7) in the usual way as

�̄ε = F̄ ∧ e7ε + 	̄+, F̄ = e2 f ω1 + e56, 	̄+ = e2 f (ω2 ∧ e5 − ω3 ∧ e6)
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using (3.8) and indicating with subscript ε the dependence on ε through the matrix Aε.
In addition, we let 	̄− = e2 f (ω2 ∧ e6 + ω3 ∧ e5). In the limit ε → 0, the forms F̄ , 	̄±
define an SU (3)-structure (F̄, 	̄±) on a six dimensional space, obtained through the
ansatz proposed in [38] from a T2 bundle over T4 (corresponding to f = 0), see [26,
Sect. 3.2] for details in the case of h5. Therefore, this SU (3) structure solves the first
two Killing spinor equations. Furthermore, the Pontrjagin form of the ∇− connection
is given again by (3.20) as shown in [26, Sect. 3]. In fact, the connection forms (3.8)
and the corresponding curvature 2-forms (notice that (�−

ε )ī
7̄

→ 0 for all i) converge
to those of the ∇− connection of the SU (3) case. Similarly, the seven dimensional
anomaly cancellation conditions of Sects. 4 and 5 turn into the anomaly cancellation
conditions for the corresponding six dimensional structures. As a consequencewe obtain
the six-dimensional solutions with non-constant dilaton found in [26].

6.2. Five dimensional solutions. We begin with recalling the five dimensional Lie alge-
bra h(2, 1) [23] with structure equations

de j = 0, j = 1, 2, 3, 4, de5 =
3∑

i=1

ai σi , ai ∈ R, (a1, a2, a3) 
= (0, 0, 0).

(6.2)

Without loss of generality we will suppose next that a1 
= 0. Clearly h(2, 1) is a con-
traction of KA, see (3.2), using, for example,

Aε
de f=

⎛
⎝a1 a2 a3

0 ε 0
0 0 ε

⎞
⎠

and letting ε → 0. Notice that by (3.8) we have

ēi = eiε = εγ i → 0, i = 6, 7 (6.3)

when ε → 0.
It was shown in [23, Sect. 4] that the SU (2)-structure (e5, ω1, ω2, ω3) is the unique

family of left invariant solutions (with constant dilaton) to the first two Killing spinor
equations on a five dimensional Lie group. Furthermore, [23] continued on showing that
for ∇ = ∇+ or ∇ = ∇g and suitably defined instantons one can obtain compact (nil-
manifolds) heterotic solutions with constant dilaton. However, since the first Pontrjagin
form of the connection ∇− vanishes there is no compact solution with constant dilaton
to the heterotic supersymmetry equations satisfying the anomaly cancellation condition
with ∇ = ∇−.

From the current point of view, we consider the case∇ = ∇− as a contraction limit of
the G2-solutions in Sects. 4 and 5. As a result we will obtain five dimensional solutions
with non-constant dilaton. Indeed, applying (6.3) and (6.2) to (3.15) we obtain the
expression for the torsion in dimension five described in (2.3). In other words, the torsion
in dimension five is obtained as a dimensional reduction of the torsion in dimension
seven. Furthermore, the Pontrjagin form of the ∇− connection is given again by (3.20)
taking into account (6.2). In fact, the connection forms (3.8) and the corresponding
curvature 2-forms (notice that (�−

ε )ī
6̄

→ 0 and (�−
ε )ī

7̄
→ 0 for all i) converge to those
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of the ∇− connection of the SU (2) structure in dimension five. Similarly, the seven
dimensional anomaly cancellation conditions of Sects. 4 and 5 turn into the anomaly
cancellation conditions for the corresponding five dimensional structures. At this point
we turn to the construction of the five dimensional solutions with non-constant dilaton.

The five dimensional version of Theorem 4.3 is Theorem 6.2 below. In the statement
of Theorem 6.2 we use (3.9), i.e., ω̄i = e2 f ωi , i = 1, 2, 3, 4. Let H(2, 1) be the five
dimensional connected simply connected Lie group H(2, 1) with Lie algebra h(2, 1),
We consider a lattice � in the Lie group H(2, 1) with period 2τ+ in all variables, where
2τ+ is the period of the Weierstrass’ P function (4.5). The SU (2) instanton D� below
corresponds to the instanton obtained from the one in Proposition 4.1 by setting the last
two columns equal to zero as well as letting ε → 0, see (6.3).

Lemma 6.1. Let D�, � = (λ1, λ2, λ3) ∈ R
3, be the linear connection on the Lie group

H(2, 1) whose possibly non-zero 1-forms are given as follows

(ωD�)1̄
2̄

= −(ωD�)2̄
1̄

= −(ωD�)3̄
4̄

= (ωD�)4̄
3̄

= λ1 ē
5,

(ωD�)1̄
3̄

= −(ωD�)3̄
1̄

= (ωD�)2̄
4̄

= −(ωD�)4̄
2̄

= λ2 ē
5,

(ωD�)1̄
4̄

= −(ωD�)4̄
1̄

= −(ωD�)2̄
3̄

= (ωD�)3̄
2̄

= λ3 ē
5.

Then,D� is an SU (2)-instantonwith respect to the SU (2) structure definedby (e5, ω̄1, ω̄2,

ω̄3).

We skip the proof which is similar to the proof of Proposition 4.1. The five dimensional
version of Theorem 4.3 follows.

Theorem 6.2. Let (e5, ω̄1, ω̄2, ω̄3) be the SU (2)-structure on the Lie group H(2, 1). The
conformally compact five manifold M5 = (�\H(2, 1), η5, ω̄1, ω̄2, ω̄3,∇−, D�, f ) is
a conformally quasi-Sasakian five manifold which solves the Strominger system with
non-constant dilaton f , non-trivial flux H = T̄ and non-flat instanton D� using the
first Pontrjagin form of ∇− and negative α′. The dilaton f depends on one variable
and is determined as a real slice of the Weierstrass’ elliptic function. In addition, M5

satisfies the heterotic equations of motion (1.2) up to first order of α′.

In order to obtain the five dimensional version of Theorem 5.2 we use the following
property of the ∇− connection whose 1-forms are

(ω−)1̄
2̄

= (ω−)3̄
4̄

= e− f
(
f2 ē

1 − f1 ē
2 + f4 ē

3 − f3 ē
4
)

,

(ω−)1̄
3̄

= −(ω−)2̄
4̄

= e− f
(
f3 ē

1 − f4 ē
2 − f1 ē

3 + f2 ē
4
)

,

(ω−)1̄
4̄

= (ω−)2̄
3̄

= e− f
(
f4 ē

1 + f3 ē
2 − f2 ē

3 − f1 ē
4
)

,

(ω−)1̄
5̄

= e−2 f
(
−a11 ē

2 − a12 ē
3−a13 ē

4
)

, (ω−)2̄
5̄
=e−2 f

(
a11 ē

1 + a13 ē
3 − a12 ē

4
)

,

(ω−)3̄
5̄

= e−2 f
(
a12 ē

1 − a13 ē
2 + a11 ē

4
)

, (ω−)4̄
5̄

= e−2 f
(
a13 ē

1 + a12 ē
2 − a11 ē

3
)

,

which are obtained from (3.19) taking into account (6.3).

Lemma 6.3. The (−)-connection of the SU (2) structure (e5, ω̄1, ω̄2, ω̄3) is an SU (2)
instanton iff the torsion 3-form is closed, dT̄ = 0, i.e., the dilaton function f satisfies
Eq. (5.1).
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The proof of Lemma 6.3 is very similar to the proof of Lemma 5.1 and involves a
direct calculation. Let DO be the SU (2) instanton constructed by Lemma 6.3 in the case
A = O-the zero:

Theorem 6.4. The non-compact simply connected five manifold (H(2, 1), e5, ω̄1, ω̄2,

ω̄3,∇−, DO , f ) is a complete conformally quasi-Sasakian five manifold which solves
the Strominger system with non-constant dilaton f determined by (5.5), non-trivial flux
H = T̄ , non-flat instanton DO using the first Pontrjagin form of ∇− and positive α′.

The complete five manifold (H(2, 1), e5, ω̄1, ω̄2, ω̄3,∇−, DO , f ) satisfies the het-
erotic equations of motion (1.2) up to first order of α′.
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