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Abstract: Weprove that the deformation theory of compactifiable asymptotically cylin-
drical Calabi–Yau manifolds is unobstructed. This relies on a detailed study of the
Dolbeault–Hodge theory and its description in terms of the cohomology of the com-
pactification. We also show that these Calabi–Yau metrics admit a polyhomogeneous
expansion at infinity, a result that we extend to asymptotically conical Calabi–Yau met-
rics as well. We then study the moduli space of Calabi–Yau deformations that fix the
complex structure at infinity. There is a Weil–Petersson metric on this space, which we
show is Kähler. By proving a local families L2-index theorem, we exhibit its Kähler
form as a multiple of the curvature of a certain determinant line bundle.
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1. Introduction

A complete Riemannian manifold (M, g) of dimension 2n is said to be Calabi–Yau if its
holonomy group is contained in SU(n), in which case (M, g) is Ricci-flat and Kähler.
Conversely, if (M, g) is Ricci-flat Kähler, then its reduced holonomy group is contained
in SU(n), hence (M, g) is Calabi–Yau if M is simply connected. The principal source of
examples of Calabi–Yaumanifolds is the famousCalabi conjecture proved byYau [47]: a
compact Kähler manifold with trivial canonical line bundle admits a unique Calabi–Yau
metric in each Kähler class. Subsequent work by Tian [42] and Todorov [45] shows that
the moduli space of (polarized simply connected) compact Calabi–Yau manifolds has at
most quotient singularities, and moreover, its natural Weil–Petersson metric is Kähler.
This moduli space is central in the study of mirror symmetry, and is thus of importance
in mathematical physics, algebraic geometry, differential geometry and number theory.

Fundamental results of Tian–Yau [43,44] and Joyce [24] imply the existence of many
non-compact, complete, quasi-projectiveCalabi–Yaumanifolds. In the present paper, we
study the moduli space of compactifiable asymptotically cylindrical Calabi–Yau mani-
folds. The only previous generalization of the Tian–Todorov theorem (to any complete
quasi-projective setting) is for the same class of asymptotically cylindrical metrics, but
only in complex dimension 2, by Hein [20, Corollary 4.3]. We mention also the formal
deformation theory in the same setting, but in general dimensions, in [25, §4.3.3]. Recall
that a complete Riemannian manifold (M, g) is asymptotically cylindrical if there ex-
ist a compact set K ⊂ M , a closed Riemannian manifold (N , h) and a diffeomorphism
� : M\K → N × (0,∞) such that for some δ > 0, |∇k(�∗g − g∞)| = O(e−δt ) for
all k ∈ N0, where g∞ = dt2 + h is a product metric. By the Cheeger–Gromoll splitting
theorem, see also [39], a connected, completemanifoldwith nonnegative Ricci curvature
can have at most one end unless it splits as a global Riemannian product R × N , so we
may as well assume that (M, g) has a single cylindrical end. The recent improvements
by Haskins–Hein–Nordström [18] of the Tian–Yau construction [43] give many new
examples of asymptotically cylindrical Calabi–Yau spaces. Indeed, let M be a compact
Kähler orbifold of complex dimension n ≥ 2. Let D ∈ |− KM | be an effective orbifold
divisor satisfying the following two conditions:

(i) The complement M := M\D is a smooth manifold;
(ii) The orbifold normal bundle of D is biholomorphic to (C×D)/〈ι〉 as an orbifold line

bundle, where D is a connected complex manifold and ι is a complex automorphism

of D of order m <∞ acting on the product via ι(w, x) = (e
2π i
m w, ι(x)).

Then if � is a meromorphic n-form on M with a simple pole along D, the construction
of [43] and [18] ensures that for every Kähler class t onM , there exists an asymptotically
cylindrical Calabi–Yau metric gCY on M with Kähler form ωCY such that ωCY ∈ t|M
and ωn

CY = in
2
� ∧ �. We say that a Calabi–Yau manifold (M, gCY) obtained in this

way is a compactifiable asymptotically cylindrical Calabi–Yau manifold with com-
pactification M .

The existence result of Haskins–Hein–Nordström was used in [11] to obtain many
new examples of asymptotically cylindrical Calabi–Yau threefolds. Those play a distin-
guished role because they can be used as building blocks in Kovalev’s twisted connected
sum construction of compact manifold with holonomy G2, see [10,29,31]. Haskins–
Hein–Nordström also prove a uniqueness result, see Theorem 5.3 below for the formu-
lation that will be used here. More surprisingly, they establish a converse by recovering
the compactificationM inmany important cases; namely if (M, g) is a simply-connected,
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irreducible asymptotically cylindrical Calabi–Yau manifold of complex dimension
n > 2, then (M, g) arises from their construction.

In the present paper, we shall study compactifiable asymptotically cylindrical Calabi–
Yau manifolds and their moduli spaces. After some preliminaries on b-metrics and the
b-calculus of Melrose [35], we begin our investigation by determining the space of L2-
harmonic forms of type (p, q) on such a manifold. As shown in [35], see also [19],
the space of (de Rham) L2-harmonic forms of an asymptotically cylindrical manifold
is identified in terms of the (de Rham) cohomology of an associated manifold with
boundary. However, to respect the (p, q) decomposition, it turns out to be more natural
here to relate this (p, q) Hodge cohomology with the Dolbeault cohomology of the
compactification M . More precisely, if E → M is a holomorphic vector bundle over
M , then Theorem 4.6 below is the following assertion:

Theorem A.

L2Hp,q(M; E) ∼= Im{Hq(M;�p(log D)⊗ E(−D))→ Hq(M;�p(log D)⊗ E)}.
See Sect. 4 for notation.
The proof uses a sheaf theoretic argument, along with some key facts about elliptic

b-operators which lead to the characterization of weighted Dolbeault L2 cohomology

WHp,q(gb, ε,M; E) ∼= Hq(M,�p(log D)⊗ E(−D)),

WHp,q(gb,−ε,M; E) ∼= Hq(M;�p(log D)⊗ E),

when ε > 0 is small enough, see Theorem 4.2 for details. Further analysis yields,
in Theorem 4.11, a ∂∂-lemma adapted to this setting, and the existence of canonical
harmonic representatives for classes in WHp,q(gb,−ε,M; E), which is necessary for
the deformation theory. These Hodge theoretic results do not require the full regularity
of the metric assumed here, and also do not require that gb be Calabi–Yau. We continue
to assume, however, that gb is a polyhomogeneous exact b-metric, i.e., gb admits a
complete asymptotic expansion in the cylindrical end in powers of ρ = e−t , see Sect. 2
for details, and in fact, our next result shows that our Calabi–Yau spaces possess this
sharp regularity:

Theorem B. Compactifiable asymptotically cylindrical Calabi–Yau metrics are polyho-
mogeneous exact b-metrics.

This is the content of Theorem 5.1 and Corollary 5.4 below. The paper [41] already
contains some results in this direction, but what we prove here is more precise.

Similar regularity results for Kähler–Einstein metrics trace back to the work of Lee–
Melrose [33], where the polyhomogeneity of the Cheng–Yaumetric on a strictly pseudo-
convex domain is established: we refer also to [22,38], which prove polyhomogeneity
of other types of Kähler–Einstein metrics. All of these results are proved by using a
linear regularity theorem (Corollary 3.8 below in our case) in an inductive bootstrapping
argument for the complex Monge–Ampère equation.

Using the fact that asymptotically conical metrics are conformal to asymptotically
cylindrical metrics, we can deduce from the proof here a similar polyhomogeneity result
for asymptotically conical Calabi–Yau metrics, as constructed in [8,44]; this is carried
out in Corollary 6.4.

This sharp regularity of asymptotically cylindrical Calabi–Yau metrics becomes ex-
tremely useful when studying the deformation theory of these metrics and for under-
standing theWeil–Petersson geometry of the correspondingmoduli space. Our approach
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to the deformation theory follows Kawamata [26], who studied deformations of com-
pactifiable complex manifolds. Infinitesimal deformations of the complex structure are
described by the cohomology group H1(M; TM (log D)), where TM (log D) is the sheaf
of holomorphic vector fields on M tangent to D. By our study of the Dolbeault–Hodge
theory, these infinitesimal deformations admit canonical harmonic representatives. Us-
ing the Tian–Todorov theorem as well as the ∂∂-lemma in Lemma 4.10, we recover the
result of [25] that the deformation theory is formally unobstructed in this setting. There
are important simplifications in complex dimension 2, which follow from the vanishing
of the Frölicher–Nijenhuis bracket of constant differential forms on a flat cylinder, see
[20]. To obtain actual deformations, we must choose the terms in the formal series of
the deformation systematically. This is done using a parametrix for the Laplacian in the
sense of [35] and [34]. Invoking some estimates for this parametrix, we can then safely
apply the standard argument of Kodaira–Spencer [27, § 5.3] to obtain the following
result.

Theorem C. The deformation theory of compactifiable asymptotically cylindrical
Calabi–Yau manifolds is unobstructed.

Combining this with the work of Kovalev [30], which in turn generalizes results of
Koiso [28], we see that any Ricci-flat asymptotically cylindrical metric sufficiently close
to a compactifiable asymptotically cylindrical Calabi–Yau metric g is in fact Kähler for
some nearby deformation of the complex structure of g.

Similar results about the deformation theory in somedifferent (though closely related)
settings which involve asymptotically cylindrical geometries may be found in [23] and
[40].

We next consider relative deformations, i.e., those which fix the complex structure at
infinity. The infinitesimal analogue of this type of deformation is

Im{H1(M; TM (log D)(−D))→H1(M; TM (log D))},
the space of L2-harmonic forms L2H0,1(M; TM (log D)) by Theorem A. Fixing a po-
larization M and assuming that H1(M;R) = 0, we show how to systematically choose
a Calabi–Yau metric gm for each point m in the relative moduli space Mrel.

Now define a Weil–Petersson metric on the moduli space by

gWP(u, v) =
∫
Mm

〈u, v〉gm dμ(gm), u, v ∈ TmMrel ∼= L2H0,1(Mm, gm, T
1,0Mm),

where Mm is the deformation corresponding to the point m. Using a suitable notion of
renormalized volume, we show in Proposition 10.4 that this metric is Kähler with Kähler
form ωWP, a multiple of the first Chern class of the vertical tangent bundle.

Just as in the compact setting, we show that dim L2Hp,q is constant inMrel, which
means that it is possible to define a determinant line bundle associated to the family
of ∂ operators on Mrel with a corresponding Quillen metric and Quillen connection.
Twisting by a suitable choice of holomorphic vector bundle E , see (10.5), our final
result generalizes [2, 5.30], see also [13].

Theorem D. The curvature of the determinant line bundle of the family of Dolbeault
operators

√
(∂ + ∂

∗
) associated to the holomorphic vector bundle E is

i

2π
(∇Q)2 = χ(M)

12π
ωWP.
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The key step in proving this is to obtain a local families L2-index theorem. This is not
quite the setting of the families index theorem of Melrose–Piazza [36] since ours is not a
Fredholm family of operators. In particular, the heat kernel does not decay exponentially
fast for large time. There are special features which help our calculations. One is that the
collection of L2 kernels and cokernels form bundles over the moduli space. The other is
that the indicial family, that is, the model operator at infinity, is the same for all members
of the family.

Using these and the scattering theory of [35], we show in Proposition 8.1 that the
heat kernel decays rapidly in positive degree. We can then apply the argument of [36] to
obtain the local families L2-index formula, see Theorem 8.4. Because of the constancy
of the indicial family, our formula contains no eta form in positive degree, and only
the standard ‘Atiyah–Singer’ integrand appears. Note that our formula also applies to
certain families of signature operators. For the Dolbeault operator, proceeding as in
[5] and regularizing as in [35] to define the analytic torsion, we obtain the formula in
Theorem 9.4 for the curvature of the Quillen determinant line bundle.

The paper is organized as follows. The initial sections Sects. 2 and 3 review the no-
tion of b-metrics and recall some important properties of elliptic b-operators. In Sect. 4,
we then study the Hodge theory of polyhomogeneous Kähler b-metrics admitting some
suitable compactification by a compact Kähler manifold. We then prove in Sect. 5 that
the asymptotically cylindrical Calabi–Yau metrics of [18] are polyhomogeneous exact
b-metrics. We also show that the asymptotically conical Calabi–Yau metrics of [8,9] are
polyhomogeneous as well. These results are used in Sect. 7 to show that the deformation
theory of asymptotically cylindrical Calabi–Yau manifolds is unobstructed. In Sects. 8
and 9, we obtain a local families L2-index theorem and a curvature formula of the asso-
ciated Quillen determinant line bundle for families of Dolbeault operators parametrized
by the relative moduli space of asymptotically cylindrical Calabi–Yau manifolds. Fi-
nally, in Sect. 10, we define the Weil–Petersson metric on the relative moduli space and
explore some of its properties.

2. Asymptotically Cylindrical Metrics

In this section we define various classes of asymptotically cylindrical metrics, defined
through different decay and regularity assumptions presented in the language of b-
geometry. This point of view is the one most coherent with the analytic methods used
later in this paper. For those unacquainted with this language, we refer principally to
the book of Melrose [35]. We first introduce the b-vector fields, which give structure to
later definitions. This leads to the introduction of function spaces which are used later,
in particular, the spaces of polyhomogeneous functions as well as the various classes
of asymptotically cylindrical metrics, also called b-metrics. Differences between these
spaces are due to the precise asymptotic regularity at infinity we impose on them.

Suppose that M̃ is a compact manifold with boundary with dim M̃ = n, and let
ρ ∈ C∞(M̃) be a boundary defining function, i.e., ρ > 0 in the interior M = M̃\∂ M̃ ,
ρ = 0 on ∂ M̃ and dρ is nowhere zero on ∂ M̃ . We define the Lie algebra of b-vector
fields on M̃ by

Vb(M̃) = {ξ ∈ C∞(M̃; T M̃) | ξ is tangent to ∂ M̃}.
In local coordinates (ρ, y) near ∂ M̃ , a b-vector field ξ takes the form

ξ = aρ
∂

∂ρ
+

n−1∑
i=1

ai
∂

∂yi
with a, a1, . . . , an−1 ∈ C∞(M̃).
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As an alternate characterization, ξ ∈ C∞(M̃; T M̃) is in Vb(M̃) if and only if ξρ ∈
ρC∞(M̃) for any boundary defining function ρ.

Associated to Vb(M̃) is the b-tangent bundle, bT M̃ → M̃ . This is a natural smooth
vector bundle with fibre over p ∈ M̃ given by

bTp M̃ = Vb(M̃)/(IpVb(M̃)), Ip = { f ∈ C∞(M̃) | f (p) = 0}.
There is a canonical morphism ιb : bT M̃ → T M̃ of vector bundles such that

(ιb)∗C∞(M̃; bT M̃) = Vb(M̃) ⊂ C∞(M̃; T M̃).

Note that ιb is only an isomorphism when restricted to M̃\∂ M̃ . The vector bundle bT M̃
is a Lie algebroid with anchor map given by (ιb)∗.

Definition 2.1. A b-metric is a complete Riemannian metric g on M = M̃\∂ M̃ which
can be written as

g = (ι−1
b )∗(gb|M̃\∂ M̃ )

for some positive definite section gb ∈ C∞(M̃;Sym2(bT ∗M̃)).

Remark 2.2. It is convenient and innocuous to regard gb as the b-metric.

In local coordinates (ρ, y) near ∂ M̃ , a b-metric is of the form

g = a
dρ2

ρ2
+
∑

aidy
i � dρ

ρ
+
∑

ai j dy
i � dy j , a, a j , ai j ∈ C∞(M̃). (2.1)

The b-metrics with all ai ≡ 0 are particularly interesting.

Definition 2.3. A b-metric g is a product b-metric if there exists a collar neighborhood

c : ∂ M̃ × [0, ε)ρ → M̃

of the boundary such that c∗g = λ2
dρ2

ρ2
+ g∂ M̃ , where λ is a positive constant and g∂ M̃ is

a Riemannian metric on ∂ M̃ . A b-metric g is exact if g− gp ∈ ρC∞(M̃; bT M̃⊗ bT M̃)
for some product b-metric gp.

In terms of the variable t = −λ log ρ, a product b-metric has the form

dt2 + g∂ M̃ , t ∈ (−λ log ε,∞)
in a collar neighborhood of ∂ M̃ , i.e., is isometric to a half-cylinder outside a compact
set, while exact b-metrics are those which converge exponentially to product metrics.
An alternate characterization is that g is an exact b-metric if each of the coefficients
ai of the cross-terms in (2.1) vanish at ∂ M̃ . One useful feature of exact b-metrics, see
[35, Proposition 2.37], is that their Levi-Civita connection ∇ extends naturally to the
boundary to give a connection for the b-tangent bundle bT M̃ .

We now describe some useful function spaces in this setting. Fix a volume density νg
associated to any exact b-metric g; this gives the Hilbert spaces L2

b(M) and L
2
b(M; E) of

square integrable functions and of square integrable sections of a vector bundle E → M̃
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with Hermitian metric. Using a connection ∇E for E and the Levi-Civita connection of
g, we define the b-Sobolev spaces

Hk
b (M; E) = { f ∈ L2(M; E) | ∇� f ∈ L2

b(M; (bT ∗M̃)� ⊗ E) ∀� = 0, . . . , k},
where bT ∗M̃ denotes the dual of bT M̃ . Since the elements of Vb(M̃) are simply the
vector fields on M which extend smoothly to the boundary and which have uniformly
bounded length with respect to any fixed b-metric, these b-Sobolev spaces can also be
defined by requiring that u ∈ Hk

b (M) if u and V1 · · · V�u lie in L2
b for any collection of

b-vector fields Vi and for every � ≤ k. From this it is clear that the space Hk
b (M; E) is

independent of choices, even though the inner product is not. We shall also use weighted
versions of these Sobolev spaces, namely

ρ�Hk
b (M; E) = {ρ�σ | σ ∈ Hk

b (M; E)}.
We next define the space of k-times differentiable sections of E with derivatives

uniformly bounded on M (with respect to g and the metric on E):

Ckb(M; E) = {σ ∈ Ck(M; E) | sup
p∈M

|∇�σ (p)|g,gE <∞ ∀� = 0, 1, . . . , k}.

As before, Ckb(M; E) (but not its norm) is independent of choices. Set

C∞b (M; E) =
∞⋂
k=0

Ckb(M; E) and H∞
b (M; E) =

∞⋂
k=0

Hk
b (M; E).

Note that

C∞(M̃; E) � C∞b (M; E), and H∞
b (M; E) � C∞b (M; E).

The first inclusion is proper since u ∈ C∞b only requires the boundedness of all b-
derivatives of u, but not that they extend continuously to the boundary. Thus, for example,
cos(log ρ) lies in C∞b (M), but not in C∞(M̃). The latter inclusion follows from the
Sobolev embedding theorem, and is proper since elements of C∞b (M; E) which are
bounded but do not decay are not square integrable. The space C∞b (M; E) is often
called the space of conormal sections of order 0 and denoted A0(M; E).

It is certainly too restrictive to require that the metric coefficients a, ai , ai j in (2.1)
are smooth up to the boundary. One way of generalizing this, which appears in [18], is
as follows.

Definition 2.4. An asymptotically cylindrical metric on M = M̃\∂ M̃ (ACyl-metric
for short) is a complete Riemannian metric g on M such that there exists a δ > 0 and a
product b-metric gp on M for which

g − gp = ρδC∞b (M; bT ∗M̃ ⊗ bT ∗M̃).

Unfortunately, this class of metrics is now too general for our purposes, so for reasons
which will become clear later, we consider a class of metrics intermediate between ACyl
and exact b-metrics, which are characterized as having an asymptotic expansion at infin-
ity. To make this precise, we first recall the definition of polyhomogeneous expansions
of functions and sections of bundles over M̃ ; this, in turn, relies on the notion of index
sets, so this is our starting point.
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Definition 2.5. An index set F is a discrete subset of C × N0 such that

(i) (z j , k j ) ∈ F, |(z j , k j )| → ∞ �⇒ Re z j → ∞,
(ii) (z, k) ∈ F �⇒ (z + p, k) ∈ F ∀p ∈ N,

(iii) (z, k) ∈ F �⇒ (z, p) ∈ F ∀p = 0, . . . , k.

The index set F is called positive if

(z, k) ∈ F �⇒ Im z = 0,Re z > 0,

and is nonnegative if

(z, k) ∈ F �⇒ Im z = 0,Re z ≥ 0,

(0, k) ∈ F �⇒ k = 0.

Finally, if F and G are two index sets, then their extended union F ∪G consists of
the union of these two sets along with the pairs (z, k + � + 1) where (z, k) ∈ F and
(z, �) ∈ G.

If F ⊂ R × N0, we define inf F to be the smallest element of F with respect to the
lexicographic order relation on R × N0, i.e.,

(z1, k1) < (z2, k2) ⇐⇒ z1 < z2 or z1 = z2 and k1 > k2.

Definition 2.6. Given an index set F , define the space AF
phg(M̃) of polyhomogeneous

functions with index set F to consist of all functions f which have an asymptotic
expansion at ∂ M̃ of the form

f ∼
∑

(z,k)∈F
a(z,k)ρ

z(log ρ)k, az,k ∈ C∞(M̃). (2.2)

The symbol ∼ means here that for all N ∈ N,

f −
∑

(z,k)∈F
Re z≤N

a(z,k)ρ
z(log ρ)k ∈ ρNC∞b (M).

If F is a nonnegative index set (or one such that every (z, k)∈F\{(0, 0)} hasRe z>0),
then AF

phg ⊂ C∞b . We call polyhomogeneous functions with these types of index sets

bounded polyhomogeneous. More generally, if (s, k) = inf F , thenAF
phg ⊂ ρ−s−εC∞b

for every ε > 0.

The coefficients a(z,k) in the expansion (2.2) depend on the choice of boundary
defining function ρ, but because of condition ii) in the definition of index sets, the space
AF

phg(M̃) itself is independent of this choice. There are two familiar examples of these

spaces: first, A∅
phg(M̃) is the same as Ċ∞(M̃), the space of smooth functions on M̃

vanishing with all derivatives on ∂ M̃ ; next, AF
phg(M̃) with F = N0 × {0} is the same

as C∞(M̃). The reason for introducing these spaces with more general index sets is
that solutions of natural elliptic operators associated to even just product b-metrics are
polyhomogeneous with index sets determined by spectral data on ∂ M̃ , hence are only
rarely smooth up to the boundary.
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The space AF
phg(M̃) is a C∞(M̃)-module, and thus, for any vector bundle E → M̃ ,

we can define the space of polyhomogeneous sections of E with index set F by

AF
phg(M̃; E) = AF

phg(M̃)⊗C∞(M̃) C∞(M̃; E).
Definition 2.7. A polyhomogeneousACyl-metric onM is an asymptotically cylindrical
metric g on M of the form

g = (ι−1
b )∗(gb|∂ M̃ ),

where gb ∈ AF
phg(M̃;Sym2(bT ∗M̃)) with F a nonnegative index set.

3. Elliptic b-Operators

Wenext review someaspects of the theory of ellipticb-operatorswith particular emphasis
on their mapping properties on spaces of polyhomogeneous and conormal sections.

The space of b-differential operators on M̃ , Diff∗b(M̃), is the universal enveloping
algebra ofVb(M̃) over C∞(M̃). In otherwords, an element of P ∈ Diff∗b(M̃) is generated
by C∞(M̃) and locally finite sums of products of b-vector fields. In local coordinates
(ρ, y) near ∂ M̃ ,

P =
∑

α+|β|≤k

aαβ

(
ρ
∂

∂ρ

)α (
∂

∂y

)β
, aαβ ∈ C∞(M̃), (3.1)

where k is the order of P . Since Diffkb(M̃) is a C∞(M̃)-module, we can immediately
define the space of b-differential operators acting on sections of a vector bundle E → M̃
by

Diffkb(M̃; E) = Diffkb(M̃)⊗C∞(M̃) C∞(M̃;End(E)).
A connection ∇ on (bT ∗M̃)� ⊗ E is obtained from a connection ∇ on E and the Levi-
Civita connection of an exact b-metric g. Any P ∈ Diffkb(M̃; E) then takes the form

P =
k∑
�=0

a� · ∇�, a� ∈ C∞(M̃; (bT M̃)� ⊗ End(E)), (3.2)

where “·” denotes contraction between the copies of bT M̃ and bT ∗M̃ . Important exam-
ples of b-differential operators include the geometric operators associated to b-metrics,
e.g., the Laplacian or Dirac-type operators. If g is a polyhomogeneous ACyl-metric,
these geometric operators are elements of

Diff∗b,F (M̃; E) = AF
phg(M̃)⊗C∞(M̃) Diff

∗
b(M̃; E),

the polyhomogeneous b-differential operators with index set F .

Definition 3.1. Theprincipal symbolof P ∈ Diffkb(M̃; E) is themapσk(P) : bT ∗M̃ →
End(E) which is homogeneous of degree k on the fibres and is given by

σ(P)(ξ) = i kak(ξ, . . . , ξ︸ ︷︷ ︸
k times

) ∈ End(E), ξ ∈ bT ∗M̃;
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here ak is the leading coefficient in (3.2). It is not hard to check that this definition is
independent of the choice of connection. We say that P is elliptic if σk(P)(ξ) is an
invertible element of End(Ep) for all p ∈ M̃ and ξ ∈ bT ∗

p M̃\{0}.
Remark 3.2. The principal symbol and ellipticity also make sense for polyhomogeneous
b-differential operators with nonnegative index set.

In contrast to the situation on closedmanifolds, ellipticity alone does not ensure that a
b-differential operator is Fredholm. The extra information needed to produce a Fredholm
theory is encoded in the indicial family. This is a family of operators on sections of E
over ∂ M̃ defined by

C � τ �→ I (P, τ )σ = ρ−iτ Pρiτ σ̃
∣∣∣
∂ M̃
, σ ∈ C∞(∂ M̃; E), (3.3)

where σ̃ ∈ C∞(M̃; E) is any smooth extension of σ to M̃ . From the local coordinate
description (3.1), we can write

I (P, τ ) =
∑

α+|β|≤k

(
aα,β
∣∣
∂ M̃

)
(iτ)α
(
∂

∂y

)β
. (3.4)

For any elliptic operator P ∈ Diff∗b(M̃; E), we define
Specb(P) = {τ ∈ C | I (P, τ ) is not invertible}.

This set is of fundamental importance in the description of the mapping properties of P .
We recall two standard results, see [35, Theorem 5.60 and Proposition 5.61].

Theorem 3.3. If P ∈ Diffkb(M̃; E) is elliptic, then the map

P : ραHm+k
b (M; E)→ ραHm

b (M; E)
between weighted b-Sobolev spaces is Fredholm if and only if α /∈ − Im Specb(P).

Proposition 3.4. Let P ∈ Diffkb(M̃; E) be elliptic. If u ∈ ραL2
b(M; E) and Pu ∈

AG
phg(M̃; E), then

u ∈ AG∪F̂+(α)
phg (M̃; E),

where

F̂+(α) = {(z, k) ∈ C × N0 | ∃r ∈ N0,Re z > α + r,

−i(z − r) ∈ Specb(P), k + 1 ≤
r∑
j=0

ord(−i(z − j))}.

Remark 3.5. The appearance of this somewhat complicated looking index set F̂+(α) and
the need for taking its extended union with G to obtain the correct index set for u is
explained by the fact that once we know that u is polyhomogeneous, then a purely formal
calculation, matching terms on either side of Pu = f with equal exponents, regulates
which terms can appear in the expansion for u. Hence one part of this result is simply
the assertion that the solution u must be polyhomogeneous if Pu is, while the second
part asserts precisely which terms appear in its expansion.
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There is an important generalization of Proposition 3.4 which follows easily from
Theorem 3.3.

Theorem 3.6. Let P ∈ Diffkb(M̃; E) be elliptic. Suppose that u ∈ ραC∞b (M; E) and

Pu = f1 + f2, where f1 ∈ ρα+βC∞b (M; E) and f2 ∈ AG
phg(M̃; E) (3.5)

for some β > 0 and some index set G. Then u = u1 + u2, where

u1 ∈
⋂
δ>0

ρα+β−δC∞b (M; E), u2 ∈ AF̂+(α)∪G(M̃; E).

If no z ∈ Specb(P) has − Im z = α + β, then u1 ∈ ρα+βC∞b (M; E).
Proof. Choose δ > 0 small enough so that − Im Specb(P) ∩ [α + β − δ, α + β) = ∅.
Then u ∈ ρα−δHm+2

b (M) and f1 ∈ ρα+β−δHm
b (M; E) for all m ∈ N0 and the map

P : ρα+β−δHm+k
b (M; E)→ ρα+β−δHm

b (M; E)
is Fredholm. By the density of Ċ∞(M̃; E) in ρα+β−δHm

b (M; E), we can find a finite
dimensional subspace V ⊂ Ċ∞(M̃; E) such that

ρα+β−δHm
b (M; E) = P

(
ρα+β−δHm+k

b (M; E)
)
+ V .

We can therefore find f3 ∈ V and u1 ∈ ρα+β−δHm+k
b (M; E) such that

Pu1 = f1 − f3.

This is true for every m, so u1 ∈ ρα+β−δH∞
b (M; E). On the other hand, if we set

u2 = u − u1, then

Pu2 = f2 + f3 ∈ AG
phg(M̃; E),

so by Proposition 3.4, u2 ∈ AF̂+(α)∪G(M̃; E) as claimed. Finally, if

(F̂+(α)∪G) ∩ [α + β − δ, α + β) = ∅,
thenu2 is independent of the choice of δ > 0up to an error term inρα+β(log ρ)kC∞b (M; E)
for some fixed k ∈ N0. Hence u1 ∈ ρα+β−δH∞

b (M; E) ⊂ ρα+β−δC∞b (M; E) for all
δ > 0. ��

These results extend easily to allow P to have polyhomogeneous coefficients. For
Theorem 3.3, we refer to [34]. For Proposition 3.4, one can systematically and with
little effort modify the parametrix construction of [35], see [34]. Alternatively, one can
extract this generalization directly from Theorem 3.6 as follows.

Corollary 3.7. Let F be a nonnegative index set and suppose that P ∈ Diffkb,F (M̃; E) is
elliptic. If u ∈ ραHm

b (M; E) and Pu = f ∈ AG
phg(M̃; E), then u is polyhomogeneous

as well.
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Proof. Take β, δ > 0 sufficiently small so that no element (z, k) ∈ F has z ∈ (0, β + δ),
and then decompose

P = P0 + ρ
β P1,

where P0 ∈ Diffkb(M̃; E) and P1 ∈ Diffkb,F ′(M̃; E) with F ′ = (F\{0})− β > δ. Then

P0u = −ρβ P1u + f, (3.6)

and since ρβ P1u ∈ ρα+β+δ
′C∞b (M; E) for 0 < δ′ < δ, Theorem 3.6 implies that

u = u1 + u2 with u2 ∈ AF̂+(α)∪G(M̃; E) and u1 ∈ ρα+βC∞b (M; E). Reinserting this
into (3.6) gives

P0u1 = −ρβ P1u1+ f1 with ρβ P1u1∈ρα+2β+δC∞b (M; E) and f1 polyhomogeneous.

(3.7)

Applying Theorem 3.6 again, we thus see that u1 = v1 + v2 with v1 ∈ ρα+2βC∞b (M; E)
and v2 polyhomogeneous, and hence u = v1 + v′1 with v′1 = v2 + u2 polyhomogneous.
This argument can be iterated, so for each k ∈ N, we can write u = vk + v′k with
vk ∈ ρα+kβC∞b (M; E) and v′k polyhomogeneous. Since k is arbitrary, we see that u is
polyhomogeneous as well. ��

Replacing Proposition 3.4 by Corollary 3.7 in the proof of Theorem 3.6, we obtain
the following

Corollary 3.8. Let P ∈ Diffkb,F (M̃; E) be elliptic with nonnegative index family F and
let G be another index set. Suppose that u ∈ ραC∞b (M; E) satisfies

Pu = f1 + f2 with f1 ∈ ρα+βC∞b (M; E) and f2 polyhomogeneous.

Then u = u1 + u2 with

u1 ∈
⋂
δ>0

ρα+β−δC∞b (M; E) and u2 polyhomogeneous.

4. Hodge Theory for Asymptotically Cylindrical Kähler Manifolds

Let M be a compact Kähler orbifold of complex dimension n ≥ 2. Let D be an effective
orbifold divisor satisfying the following two conditions:

(i) The complement M := M\D is a smooth manifold;
(ii) The orbifold normal bundle of D is biholomorphic to (C×D)/〈ι〉 as an orbifold line

bundle, where D is a connected smooth complex manifold and ι is a complex auto-

morphism of D of orderm <∞ acting on the product via ι(w, x) = (e
2π i
m w, ι(x)).

Let M̃ := [M; D] be themanifold with boundary obtained by taking the real blow-up
of M around D, cf. [35]. Although M may have an orbifold singularity along D, the
blow-up M̃ is a smooth manifold with boundary ∂ M̃ which is naturally identified with
the total space of the orbifold unit normal bundle of D. Thus ∂ M̃ is foliated by circles
and the space of leaves is identified with the orbifold D. In particular, if D is smooth,
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this circle foliation is a circle bundle. The manifold M̃ is an example of a b-complex
manifold, as defined by Mendoza [37].

Suppose now that gb is a polyhomogeneous Kähler ACyl-metric on M = M\D =
M̃\∂ M̃ , and denote by ωb its Kähler form. Fix a defining function ρ ∈ C∞(M̃) and
let E → M be a holomorphic vector bundle over M equipped with a Hermitian metric
h. We then consider on the quasiprojective manifold M = M\D, for any a ∈ R, the
weighted L2-Dolbeault complex

· · · ∂ �� ρa L2
∂
�p,q(M; E, gb) ∂ �� ρa L2

∂
�p,q+1(M; E, gb) ∂ �� · · · , (4.1)

where L2�p,q(M; E, gb) is the space of forms of type (p, q) on M which are L2 with
respect to the metric gb, and

ρa L2
∂
�p,q(M; E, gb) = {μ ∈ ρa L2�p,q(M; E, gb) | ∂μ ∈ ρa L2�p,q+1(M; E, gb)}.

(4.2)

Denote the cohomology groups of the complex (4.1) by

WHp,q(gb, a,M; E) = {μ ∈ ρa L2�p,q(M; E, gb) | ∂μ = 0}
{∂ζ ∈ ρa L2�p,q(M; E, gb) | ζ ∈ ρa L2

∂
�p,q−1(M; E, gb)}

.

(4.3)

Theseweighted L2-cohomologygroups are related to the sheaf cohomologyof certain
holomorphic vector bundles on M .

Definition 4.1. The logarithmic tangent sheaf TM (log D) is the subsheaf of the tangent
sheaf TM of M consisting of derivations of OM sending the ideal sheaf ID of D in OM
to itself. In other words, TM (log D) is the sheaf of holomorphic vector fields tangent to
D. We also denote by �1(log D) the corresponding dual sheaf of logarithmic 1-forms
and by �p(log D) the sheaf of the pth exterior power of �1(log D) with itself.

Theorem 4.2. For ε > 0 sufficiently small, there are canonical identifications

WHp,q(gb, ε,M; E) ∼= Hq(M,�p(log D)⊗ E(−D)),

WHp,q(gb,−ε,M; E) ∼= Hq(M;�p(log D)⊗ E),

where E(−D) is the holomorphic vector bundle on M associated to the sheaf of holo-
morphic sections of E vanishing along D.

Proof. The idea is to adapt the sheaf theoretic proof of the Dolbeault theorem, see [17,
p.45] for example, to our context. Fix a  = 0. Denote by ρa L2Hp,0(E) the sheaf induced
by the presheaf of local holomorphic p-forms on M with values in E which are ρa L2

with respect to gb and the Hermitian metric h of E . Also, let ρa L2
∂
�p,q(E) denote the

sheaf defined by the presheaf which associates to U ⊂ M the abelian group

{μ ∈ ρa L2�p,q(U ∩ M; E, gb) | ∂μ ∈ ρa L2�p,q+1(U ∩ M; E, gb)}.
Finally, let ρa L2Z p,q(E) be the subsheaf of ρa L2

∂
�p,q(E) which associates to U the

abelian group

{μ ∈ ρa L2�p,q(E)U | ∂μ = 0}.
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By Lemma 4.3 below (which is a version of the ∂-Poincaré lemma in ρa L2), we
know that if a is sufficiently close to 0, there are short exact sequences of sheaves,

0 �� ρa L2Hp,0(E) �� ρa L2
∂
�p,0(E) ∂ �� ρa L2Z p,1(E) �� 0, q = 0,

(4.4)

0 �� ρa L2Z p,q(E) �� ρa L2
∂
�p,q(E) ∂ �� ρa L2Z p,q+1(E) �� 0, q>0.

(4.5)

We know from [19, Proposition 2, p.500] (see also the beginning of the proof of [15,
Corollary 17]) that the sheaf ρa L2

∂
�p,q(E) is fine, so that Hk(M; ρa L2

∂
�p,q(E)) = {0}

when k > 0. The corresponding long exact sequences in cohomology then give that

Hq(M; ρa L2Hp,0(E)) ∼= Hq−1(M; ρa L2Z p,1(E))
∼= Hq−2(M; ρa L2Z p,2(E))
∼= · · · ∼= H1(M; ρa L2Z p,q−1(E))
∼= H0(M; ρa L2Z p,q(E))/∂H0(M; ρa L2

∂
�p,q−1(E))

∼= WHp,q(gb, a,M; E). (4.6)

If a > 0 is sufficiently close to zero, then ρa L2Hp,0(E) is identified with the sheaf
�p(log D) ⊗ (E(−D)) of holomorphic p-forms on M with values in E(−D), while
ρ−a L2Hp,0(E) is identified with the sheaf �p(log D) ⊗ E of holomorphic p-forms
with values in E . Thus, by (4.6), when ε > 0 is sufficiently small,

WHp,q(gb, ε,M; E) ∼= Hq(M;�p(log D)⊗ (E(−D))),

WHp,q(gb,−ε,M; E) ∼= Hq(M;�p(log D)⊗ E).
(4.7)

��
Lemma 4.3. The morphism of sheaves ∂ : ρa L2

∂
�p,q(E)→ ρa L2Z p,q+1(E) is surjec-

tive for a  = 0 sufficiently small.

Proof. Suppose first that D is smooth. It then suffices to show that the map

∂ : ρa L2
∂
�p,q(E)U → ρa L2Z p,q+1(E)U (4.8)

is surjective for any open set U ⊂ M biholomorphic to a polycylinder � ⊂ C
n over

which E is trivial when lifted to �. We can restrict to sets of this type which are either
disjoint from D, or else for which there is a biholomorphism ϕ : U → � ⊂ C

n mapping
D ∩ U onto � ∩ (Cn−1 × {0}).

The assertion is not hard in complex dimension n = 1. Indeed, in that case regard�
as a disk centered at 0 in C ∪ {∞} = CP

1. If U ∩ D = ∅, we use the surjectivity of
∂ : H1(CP

1)→ L2�0,1(CP
1)

to see that (4.8) is surjective. If U ∩ D  = ∅, then assume that the biholomorphism
ϕ : U → � ⊂ C maps U ∩ D to 0 ∈ �. Now put a complete asymptotically cylindrical
Kähler metric kb on CP

1\{0} and let x ∈ C∞(CP
1) be the boundary defining function

which equals the Euclidean distance to the origin near 0 ∈ � ⊂ C. Since there are
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no nontrivial meromorphic 1-forms on CP
1 with at most one simple pole, then by [35,

§6.3], we know that

∂ : xaH1(CP
1\{0}, kb)→ xaL2�0,1(CP

1\{0}, kb)
is Fredholm and surjective whenever a is nonzero but sufficiently small. Its kernel is
trivial when a > 0, while if a < 0, it is just the constants. Restricting to �, we see that
the map (4.8) is again surjective. This proves the result in complex dimension 1.

From this discussion, we see that when n = 1, there is a right inverse

(∂)−1 : xaL2Z p,q+1(E)U → xaL2
∂
�p,q(E)U (4.9)

to (4.8). To prove the result in complex dimensions greater than 1, we then proceed just
as in [17, p.25-26], although we use (4.9) instead of the one-variable ∂-Poincaré lemma,
cf. [17, p.5].

Finally, if M has orbifold singularities, then we can proceed as before away from
D. Near D however, we must also consider open sets of the form U = V/〈μ〉 with μ a
finite order automorphism of V such that the restriction of E to U lifts on V to a trivial
holomorphic vector bundle. The preceding discussion proves the surjectivity of (4.8) on
sufficiently small open sets V , and we can then average with respect to the action of μ
to obtain the desired surjectivity on U . ��

Our main interest here is in the case where the weight a = 0, but the cohomology
then is often infinite dimensional since ∂ + ∂

∗
does not have closed range when acting

between appropriate Sobolev spaces. Here ∂
∗
is the formal adjoint of ∂ with respect

gb and a choice of Hermitian metric on h. However, we can still consider the space of
L2-harmonic forms of type (p, q) with values in E , namely

L2Hp,q(M; E) = {μ ∈ L2�p,q(M; E, gb, h) | ∂μ = 0, ∂
∗
μ = 0}. (4.10)

Since ∂+∂
∗
is an elliptic b-operator (acting on sections of�p,∗⊗E = ⊕q�

p,q⊗E), this
space is finite dimensional and every element η ∈ L2Hp,q(M; E) is polyhomogeneous,
namely

η ∼
∑

(z,k)∈I
ρz(log ρ)kηz,k near ρ = 0, where ηz,k ∈ C∞(M̃,�p,q(bT ∗M̃)⊗ E).

The index set I here is determined solely by the indicial family of ∂ + ∂
∗
, i.e., it is

independent of η.
For convenience below, let us denote by Ia the index set corresponding to elements

η ∈ ρa L2�p,∗ which lie in the common nullspace of ∂ and ∂
∗
. Note that the condition

ρz ∈ L2 implies z > 0, so I0 is a positive index set. Henceforth we shall always choose
ε so that

0 < ε < inf I0. (4.11)

By virtue of this remark, any η ∈ L2Hp,q(M; E) is in ρεL2�p,q(M; E, gb) and
satisfies ∂η = 0, thus represents an element in WHp,q(gb, ε,M; E). Hence, composing
with the natural map between weighted cohomologies, we obtain a map

� : L2Hp,q(M; E)→ Im{WHp,q(gb, ε,M; E)→ WHp,q(gb,−ε,M; E)}. (4.12)

We wish to show that � is an isomorphism, and to this end we collect some results.
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First note that

∂ + ∂
∗ : ρ−εH1

b�
p,∗(M; E)→ ρ−εL2�p,∗(M; E, gb) (4.13)

is Fredholm when ε satisfies (4.11), where Hk
b�

p,q(M; E) is the b-Sobolev space of

order k of forms of type (p, q) taking values in E . The symmetry of ∂ + ∂
∗
with respect

to the L2
b pairing and the fact that the spaces ρ±εL2�∗(M; E, gb) are dual to each

other means that the cokernel of (4.13) can be identified with the kernel of ∂ + ∂
∗
on

ρεH1
b�

∗(M; E), which as we have just shown is the same as L2H∗(M; E). Hence there
is a direct sum decomposition

ρ−εL2�∗(M; E, gb) = Im{∂ + ∂∗ : ρ−εH1
b�

∗(M; E, gb)→ ρ−εL2�∗(M; E, gb)}
⊕L2H∗(M; E). (4.14)

For similar reasons, the ∂-Laplacian �∂ = (∂ + ∂
∗
)2 induces the decomposition

ρ−εL2�∗(M; E, gb) = Im{�∂ : ρ−εH2
b�

∗(M; E, gb)→ ρ−εL2�∗(M; E, gb)}
⊕L2H∗(M; E). (4.15)

Proposition 4.4. There is a finite dimensional subspace A ⊂ �̇∗(M; E) orthogonal to
L2H∗(M; E) such that

ρεL2�∗(M; E, gb) = Im{�∂ : ρεH2
b�

∗(M; E)→ ρεL2�∗(M; E, gb)}
⊕A ⊕ L2H∗(M; E), (4.16)

where �̇∗(M; E) = Ċ∞(M̃;�∗(T ∗M̃)⊗ E) denotes the space of smooth forms on M̃
with values in E that vanish to all orders along ∂ M̃.

Proof. Using the density of �̇∗(M; E) in L2�∗(M; E, gb), we first find a finite dimen-
sional subspace A′ ⊂ �̇∗(M; E) such that

ρεL2�∗(M; E, gb) = Im{�∂ : ρεH2
b�

∗(M; E)→ ρεL2�∗(M; E, gb)}
⊕A′ ⊕ L2H∗(M; E).

This A′ need not be orthogonal to L2H∗(M; E), but by subtracting the L2-harmonic
component of each element of A′, we obtain a finite dimensional space
A′′ ⊂ AI0

phg�
∗(M; E) orthogonal to L2H∗(M; E) such that

ρεL2�∗(M; E, gb) = Im{�∂ : ρεH2
b�

∗(M; E)→ ρεL2�∗(M; E, gb)}
⊕A′′ ⊕ L2H∗(M; E).

Choose a basis a1, . . . , ap for A′′. Then by [35, Lemma 5.44], we can find b1, . . . , bp ∈
AG

phg�
∗
b(M̃; E), where G is an index set containing I0 and with inf G = inf I0, such

that

ai −�∂bi ∈ �̇∗(M; E) for i = {1, . . . , p}.
Clearly, the �∂bi are all orthogonal to L2H∗(M, E). We thus let A be the span of the
forms ai −�∂bi , i = 1, . . . , p. ��
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This has the following useful consequence.

Corollary 4.5. Let ζ ∈ ρ−εH1
b�

p,q−1(M; E) ⊕ ρ−εH1
b�

p,q+1(M; E) and suppose
that

(∂ + ∂
∗
)ζ ∈ ρεL2

b�
p,q(M; E). (4.17)

Then ζ = ζ1 + ζ2, where ζ1 is polyhomogeneous and ζ2 ∈ ρεH1
b�

∗(M; E), and
the only nonzero components of ζ1 and ζ2 are in degrees (p, q − 1) and (p, q + 1).
Furthermore, ζ1 = μ0 +

dρ
ρ
∧ ν0 +O(ρε), where μ0 and ν0 are harmonic, so ∂ζ, ∂

∗
ζ ∈

ρεL2
b�

p,q(M; E).
Proof. By (4.15), (4.16) and (4.17), we can write (∂ + ∂

∗
)ζ = �∂(η1 + η2) + η3 where

η1 ∈ ρ−εH2
b�

p,q(M; E) satisfies �∂η1 ∈ A ⊂ �̇∗(M; E), η2 ∈ ρεH2
b�

p,q(M; E)
and η3 ∈ L2Hp,q(M; E). Set ζ1= (∂ + ∂∗)η1 ∈ρ−εH1

b�
∗(M; E) and ζ2= (∂ + ∂∗)η2

∈ ρεH1
b�

∗(M; E); these only have nonzero components in degrees (p, q − 1) and
(p, q + 1), and we have that

(∂ + ∂
∗
)ζ = (∂ + ∂

∗
)(ζ1 + ζ2) + η3.

Integrating by parts in ||η3||2 = 〈η3, (∂ + ∂∗)(ζ − ζ1 − ζ2)〉, where the pairing is in L2
b,

shows that η3 = 0. We then see from this that ζ − ζ1 − ζ2 = γ is an element of the
nullspace of ∂ + ∂

∗
on ρ−εH1

b�
∗(M; E), so by replacing ζ1 by ζ1 − γ , we may as well

assume that ζ = ζ1 + ζ2.
By Corollary 3.7, ζ1 lies in AI−ε

phg , so the leading term in its expansion is ρ0 with

coefficient lying in the kernel of the indicial family of ∂ + ∂
∗
, and hence also in the

kernel of the indicial family of �∂ = 1
2� = (∂ + ∂

∗
)2 at τ = 0, i.e., it is harmonic and

has the form

μ0 +
dρ

ρ
∧ ν0 (4.18)

withμ0, ν0 harmonic on ∂ M̃ . Thus dζ1 ∈ ρεL2
b�

∗(M; E), and since ζ only has nonzero
components of types (p, q−1) and (p, q+1), we see that ∂ζ1, ∂ζ1 ∈ ρεL2

b�
∗(M; E) in-

dividually. Since (∂+∂
∗
)ζ1∈ρεL2�∗(M; E),we alsoobtain that ∂∗ζ1∈ρεL2�∗(M; E).

Altogether, we have shown the final claim, that ∂ζ, ∂
∗
ζ ∈ ρεL2

b�
∗(M; E). ��

The following is a simple adaptation of a result of [35], see also [19].

Theorem 4.6. For ε > 0 sufficiently small, there is a natural identification

L2Hp,q(M; E) ∼= Im{WHp,q(gb, ε,M; E)→ WHp,q(gb,−ε,M; E)}
∼= Im{Hq(M;�p(log D)⊗ E(−D))→ Hq(M;�p(log D)⊗ E)}.

(4.19)

Proof. We follow closely the proof of [19, Theorem 2B].
Let us first show that the map � in (4.10) is injective. Thus, assume that there

is an η ∈ L2Hp,q(M; E) such that �(η) = 0. This means that η = ∂ζ for some
ζ ∈ ρ−εL2�

p,q−1
∂

(M; E, gb). Since ε < inf I, we can integrate by parts to deduce that



970 R. J. Conlon, R. Mazzeo, F. Rochon

‖η‖2L2 =
∫
M
〈η, ∂ζ 〉dgb =

∫
M
〈∂∗η, ζ 〉dgb = 0,

i.e., η = 0.
To prove the surjectivity of �, fix

[η] ∈ Im{WHp,q(gb, ε,M; E)→ WHp,q(gb,−ε,M; E)}.
We must show that [η] is in the image of �. If η ∈ ρεL2

∂
�p,q(M; E, gb) is a rep-

resentative of this class, then by (4.15), there are ν ∈ ρ−εH2
b�

p,q(M; E) and γ ∈
L2Hp,q(M; E) such that

η = (∂ + ∂
∗
)2ν + γ = (∂ + ∂

∗
)ζ + γ with ζ := (∂ + ∂

∗
)ν ∈ ρ−εH1

b�
∗(M; E).

(4.20)

The assertion is then equivalent to showing that ∂
∗
ζ = 0. By Corollary 4.5, ∂

∗
ζ ∈

ρεL2
b�

p,q(M; E), so the integration by parts

〈∂ζ, ∂∗ζ 〉L2
b
=
∫
M
(∂ζ ) ∧ ∗∂∗ζ =

∫
M
∂(ζ ∧ ∗∂∗ζ ) =

∫
M
d(ζ ∧ ∗∂∗ζ ) = 0

is justified and shows that ∂ζ is orthogonal to ∂
∗
ζ . We have used here that ζ ∧∗∂∗ζ is a

formof type (n, n−1), so that ∂(ζ∧∗∂∗ζ ) = 0. Similarly, 〈∂∗ζ, η〉L2
b
= 〈∂∗ζ, γ 〉L2

b
= 0,

so we conclude from (4.20) that

‖∂∗ζ‖2L2 = 0 �⇒ ∂
∗
ζ ≡ 0.

We have thus proved that η = ∂ζ + γ , hence [η] indeed lies in the image of the map �.
The second identification of the theorem follows by applying Theorem 4.2. ��
Corollary 4.7. If the metric gb is Ricci-flat, then L2Hp,0(M) ∼= L2H0,p(M) ∼= {0},
and so

{0} = Im{H p(M;O(−D))→ H p(M;O)}
∼= Im{H0(M;�p(log D)⊗O(−D))→ H0(M;�p(log D))}.

Proof. This is a standard argument, cf. [24, Proposition 6.2.4]. TheWeitzenböck formula
on (p, 0)-forms specializes, since gb is Ricci-flat, to

�dξ = ∇∗∇ξ.
Thus if ξ ∈ L2Hp,0(M), then the left hand side vanishes, and integrating by parts yields
that ξ is parallel. But ξ ∈ L2, so ξ ≡ 0. This proves that L2Hp,0(M) = {0}, and by
Hodge duality, that L2H0,p(M) = {0}. ��

Parallel to [35, Proposition 6.18], we now give an analytical characterization of the
weighted cohomology WHp,q(gb,−ε,M; E) using the ∂-Laplacian �∂ = ∂∂

∗
+ ∂

∗
∂

instead of ∂ + ∂
∗
and in terms of the space of extended L2-harmonic forms

ker p,q− �∂ =
⋂
ε>0

{η ∈ ρ−εH2
b�

p,q(M; E, gb) | �∂η = 0}.



Asymptotically Cylindrical Calabi–Yau Moduli 971

As in [35], consider the space

F(∂ + ∂
∗
, 0) = {μ0 +

dρ

ρ
∧ ν0 | μ0 +

dρ

ρ
∧ ν0 ∈ ker I (�∂, 0)}

= {μ0 +
dρ

ρ
∧ ν0 | μ0, ν0 are harmonic on ∂ M̃}. (4.21)

Here, I (�∂, λ) = 1
2�∂ M̃ + cλ2 is the indicial family of �∂ , with �∂ M̃ the Laplacian

induced by the ‘restriction’ of the metric gb on ∂ M̃ , and c = gb(ρ∂ρ, ρ∂ρ) at ρ = 0.
Now define a pairing on F(∂ + ∂

∗
, 0) by

B(u, v) = 〈(∂ + ∂∗)̃u, ṽ〉L2
b
− 〈̃u, (∂ + ∂∗)̃b〉L2

b
, (4.22)

where ũ, ṽ ∈ C∞(M̃;�∗(bT ∗M)) are smooth extensions of u and v to M̃ . This is
independent of the choice of extensions. As shown in [35, Proposition 6.2], this pairing
is non-degenerate, and clearly, if ṽ is a smooth extension of an element v ∈ F(∂ + ∂

∗
, 0)

of type (p, q), then

∂ṽ ∈ ρεH∞
b �

p,q+1(M; E), ∂
∗
ṽ ∈ ρεH∞

b �
p,q−1(M; E) (4.23)

for ε ∈ (0, inf I).
Lemma 4.8. Suppose that u ∈ ρ−εH2

b�
p,q(M; E) and�∂u is polyhomogeneous, lying

in some AF
phg�

p,∗(M; E) where inf F > ε. Then u is polyhomogeneous and ∂u, ∂
∗
u

are bounded polyhomogeneous. If u is bounded polyhomogeneous, then ∂u, ∂
∗
u ∈

AG
phg�

p,∗(M; E) for some index set G with inf G > ε.

Proof. Corollary 3.7 already shows that u is polyhomogeneous. Since the indicial family
I (�∂, λ) = 1

2�∂ M̃ + cλ2 is quadratic in λ, its inverse has a pole of order at most 2 at
λ = 0. This means that the leading terms in the expansion of u are

u0,1 log ρ + u0, u0,1, u0 ∈ ker I (�∂, 0).

But I (�∂, 0) = I (∂ + ∂
∗
, 0)2 and I (∂ + ∂

∗
, 0) is self-adjoint, so that u0,1, u0 ∈

ker I (∂ +∂
∗
, 0). Furthermore, since ∂u is of type (p, q +1) and ∂

∗
u is of type (p, q−1),

we get I (∂, 0)u0,1 = I (∂
∗
, 0)u0,1 = 0 and I (∂, 0)u0 = I (∂

∗
, 0)u0 = 0. In partic-

ular, ∂u and ∂
∗
u are bounded, and if u is also bounded, i.e., u0,1 = 0, then in fact

∂u, ∂
∗
u ∈ ρεH∞

b �
∗(M; E). ��

Lemma 4.9. If w ∈ ∂∗ ker p,q− �∂, then w is bounded polyhomogeneous with ∂w = 0.
More generally, any bounded u ∈ ker p,q− �∂ satisfies ∂u = ∂

∗
u = 0.

Proof. By Lemma 4.8, w is bounded polyhomogeneous. Thus we must show that if u∈
ker p,q− �∂ is bounded, then ∂u=∂∗u=0.But in this case, ∂u∈ρεH∞

b �
p,q+1(M; E, gb),

so ∂u, which a priori only lies in ker p,q− �∂ , is actually an L2-harmonic form. Thus,
∂
∗
∂u = 0, and integrating by parts yields

‖∂u‖2L2 = 〈∂u, ∂u〉L2
b
= 〈u, ∂∗∂u〉L2

b
= 0 �⇒ ∂u = 0.
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Similarly, ∂
∗
u is an L2-harmonic form, and

‖∂∗u‖2L2 = 〈∂∗u, ∂∗u〉L2
b
= 〈u, ∂ ∂∗u〉L2

b
= 0 �⇒ ∂

∗
u = 0.

��
Using these lemmas with E a trivial holomorphic line bundle, we can prove a ∂∂-

lemma which will be important later on.

Lemma 4.10 (∂∂-lemma). Let α be a bounded polyhomogeneous (p, q)-form which is
∂-closed, with α = ∂β for some bounded polyhomogeneous (p−1, q)-form. Then there
exists a polyhomogeneous (p − 1, q − 1)-form μ such that α = ∂∂μ with ∂μ bounded
polyhomogeneous. Furthermore, if β ∈ AF

phg for some positive index set F, then μ is

bounded polyhomogeneous and ∂μ ∈ ρεH∞
b �

p,q−1(M).

Proof. From (4.15), there exist ψ ∈ ρ−εH2
b�

p−1,q(M) and γ ∈ L2Hp−1,q(M) such
that

β = �∂ψ + γ.

But β and γ are both polyhomogeneous, so ψ is polyhomogeneous as well, with top
order terms

ψ0,2(log ρ)
2 + ψ0,1 log ρ + ψ0,0, ψ0,2, ψ0,1 ∈ ker I (�∂, 0).

As in the proof of Lemma 4.8, this means that ψ0,2 and ψ0,1 are also in the kernel of
I (∂, 0) and I (∂

∗
, 0). The same considerations for ψ imply that ψ0,2 and ψ0,1 are in the

kernel of I (∂, 0) and I (∂∗, 0), and thus ∂∂ψ and ∂∂
∗
ψ are bounded polyhomogeneous.

Furthermore,

�∂ ∂∂ψ = ∂∂�∂ψ = ∂(∂(β − γ )) = ∂α = 0.

Thus, by Lemma 4.9, we have that ∂
∗
∂∂ψ = 0, so that

α = ∂β = ∂∂ ∂
∗
ψ.

We can now set μ = ∂
∗
ψ , which gives the result.

Finally, if β is polyhomogeneous and vanishes to positive order, then by Lemma 4.8,
∂
∗
ψ is bounded polyhomogeneous. But �∂(∂

∗
ψ) = ∂

∗
β, so applying Lemma 4.8 to

the complex conjugate of ∂
∗
ψ gives that ∂μ = ∂∂

∗
ψ vanishes to positive order. ��

Theorem 4.11. There is a natural isomorphism

WHp,q(gb,−ε,M; E) ∼= L2
bHp,q

− (M; E) := L2Hp,q(M; E)⊕ ∂∗ ker p,q+1− �∂.

Proof. By Lemma 4.9, there is a well-defined map

� : L2
bHp,q

− (M; E)→ WHp,q(gb,−ε,M; E).
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If u ∈ ρ−εL2
∂
�p,q(M; E) represents a class in WHp,q(gb,−ε,M; E), then by (4.15),

u = ∂ ∂
∗
ζ + ∂

∗
∂ζ + γ

for some ζ ∈ ρ−εH2
b�

p,q(M; E, gb) and γ ∈ L2Hp,q(M; E). Set v = ∂ζ . Then

∂u = 0 implies ∂ ∂
∗
v = 0. Since ∂v = 0 as well, we have that

v ∈ ker p,q+1− �∂,

and thus

u − ∂ ∂∗ζ = γ + ∂
∗
v ∈ L2Hp,q(M; E) + ∂∗ ker p,q+1− �∂.

This shows that the map � is surjective.
To show that � is injective, fix γ ∈ L2Hp,q(M; E) and w ∈ ker p,q+1− �∂ and

suppose that there exists ζ ∈ ρ−εL2
b�

p,q(M; E) such that

γ + ∂
∗
w = ∂ζ.

We must show that γ + ∂
∗
w = 0. First compute

‖γ ‖2
L2
b
= 〈γ, γ 〉L2

b
= 〈γ, ∂ζ − ∂∗w〉L2

b
= 〈∂∗γ, ζ 〉L2

b
− 〈∂γ,w〉L2

b
= 0,

so γ = 0 and ∂
∗
w = ∂ζ . By Lemma 4.9, ∂

∗
w ∈ ker(∂ + ∂

∗
) is bounded polyhomo-

geneous. Its restriction u to ∂ M̃ is an element of F(∂ + ∂
∗
, 0). To show that u = 0,

we use the nondegeneracy of the pairing (4.22). Namely, it suffices to show that for any
v ∈ F(∂ + ∂

∗
, 0), we have B(u, v) = 0. But if ṽ is a smooth extension of v, then using

(4.23), we find that

B(u, v) = 〈(∂ + ∂∗)∂∗w, ṽ〉L2
b
− 〈∂∗w, (∂ + ∂∗)̃v〉L2

b
,

= −〈∂∗w, (∂ + ∂∗)̃v〉L2
b
,

= −〈w, ∂ ∂ṽ〉L2
b
− 〈ζ, ∂∗∂∗ṽ〉L2

b
= 0.

This shows that u = 0, and so ∂
∗
w vanishes to positive order. This justifies the final

integration by parts

‖∂∗w‖2
L2
b
= 〈∂∗w, ∂∗w〉L2

b
= 〈∂∗w, ∂ζ 〉L2

b
= 〈w, ∂ ∂ζ 〉L2

b
= 0,

so that ∂
∗
w ≡ 0. ��

5. Polyhomogeneity at Infinity for Asymptotically Cylindrical Calabi–Yau
Metrics

Let M , D, gb and ωb be as in Sect. 4. We now prove the main regularity result for the
complex Monge–Ampère equation.
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Theorem 5.1. Let F be a positive index set. If there exists f ∈ AF
phg(M̃) and u ∈

ρεC∞b (M) for some ε > 0 such that

(ωb + i∂∂u)n

ωn
b

= e f , (5.1)

then u ∈ AG
phg(M̃) for some positive index set G.

Proof. It suffices to show that for each k ∈ N, there is a real index set Gk and uk ∈
AGk

phg(M̃) such that

u − uk ∈ ρ kε
2 +δC∞b (M), (5.2)

where δ = ε
4 .

For k = 1, it suffices to take u1 = 0 and G1 = ∅. Suppose then that we already have
a real index set Gk and uk ∈ AGk

phg(M̃) such that (5.2) holds. We must find Gk+1 and
uk+1 so that (5.2) holds with k replaced by k + 1.

Since uk ∈ ρεC∞b (M), we can replace uk by χ(ρr )uk , where χ ∈ C∞c ([0,∞)) is a
cut-off function with χ(t) = 1 for t < 1 and r # 1, so as to make the C2b (M)-norm of
uk small enough to ensure that

ωb

2
< ωb + i∂∂uk < 2ωb.

Thusωb,k := ωb+ i∂∂uk is also the Kähler form of an exact polyhomogeneous b-metric.

By our inductive hypothesis, vk := u − uk ∈ ρ kε
2 +δC∞b (M) satisfies the equation

(ωb,k + i∂∂vk)n

ωn
b,k

= e fk , with fk = f + log

(
ωn
b

ωn
b,k

)
. (5.3)

Since f ∈ AG
phg(M̃) and uk ∈ AGk

phg(M̃), we see that fk ∈ AG̃k

phg(M̃) for some real

index set G̃k . Moreover, by (5.2),

fk = f + log

(
ωn
b

ωn
b,k

)
= log

(
(ωb + i∂∂u)n

ωn
b

)
− log

(
ωn
b,k

ωn
b

)
∈ ρ kε

2 +δC∞b (M).

Now write (5.3) as

1 +�ωb,kvk +
n∑
j=2

N
ωb,k
j (vk) = e fk , (5.4)

where �ωb,k is the ∂-Laplacian associated to the Kähler form ωb,k , that is, half the
Laplacian associated to the corresponding Riemannian metric, and where

N
ωb,k
j (h) = n!

(n − j)! j !

(
ω
n− j
b,k ∧ (i∂∂h) j

ωn
b,k

)
, h ∈ C∞b (M).



Asymptotically Cylindrical Calabi–Yau Moduli 975

From (5.2), we deduce that N
ωb,k
j (vk) ∈ ρ jkε

2 + jδC∞b (M), so that

�ωb,kvk = wk + (e
fk − 1),

where wk ∈ ρkε+2δC∞b (M) and (e fk − 1) ∈ AHk

phg(M̃) ∩ ρ
kε
2 +δC∞b (M) for some real

index set Hk . By Corollary 3.8, we can therefore find hk+1 polyhomogeneous and in

ρ
kε
2 +δC∞b (M) such that

vk − hk+1 ∈ ρkε+δC∞b (M).
Thus, we can take uk+1 = uk + hk+1 ∈ AGk+1

phg (M̃) where Gk+1 is some real index set.
This completes the inductive step and the proof. ��

This theorem shows that the Calabi–Yau ACyl-metrics constructed in [18] are poly-
homogeneous at infinity. Let us first recall the construction of [18].

Definition 5.2. Let M be a compact Kähler orbifold of complex dimension n ≥ 2. Let
D ∈ | − KM | be an effective orbifold divisor satisfying the following two conditions:

(i) The complement M := M\D is a smooth manifold;
(ii) The orbifold normal bundle of D is biholomorphic to (C×D)/〈ι〉 as an orbifold line

bundle, where D is a connected complexmanifold and ι is a complex automorphism

of D of order m <∞ acting on the product via ι(w, x) = (e
2π i
m w, ι(x)).

Then if we pick a meromorphic n-form � on M with a simple pole along D, the con-
struction of [43] and [18] ensures that for every Kähler class t on M , there exists a
Calabi–Yau ACyl-metric gCY on M with Kähler class ωCY such that ωCY ∈ t|M and
ωn
CY = in

2
� ∧ �. We say that the Calabi–Yau manifold (M, gCY) of the above con-

struction is a compactifiable asymptotically cylindrical Calabi–Yau manifold with
compactification M .

To obtain the uniqueness of such a Calabi–Yau metric, we need to better understand
the role of the n-form � in the construction of [18]. First notice that � corresponds
to a holomorphic section of KM (D). Since this bundle is holomorphically trivial by
hypothesis, restriction to D and the adjunction formula give a canonical identification

H0(M; KM (D)) = H0(D; KM (D)
∣∣
D) = H0(D; KD). (5.5)

In other words,� corresponds to a choice of a holomorphic section of KD . Its restriction
to ∂ M̃ yields a section �∂ M̃ ∈ C∞(∂ M̃;�0,n( bT ∗M̃

∣∣
∂ M̃ )). Clearly then,

ωn
CY = in

2
� ∧� ⇐⇒ ωn

CY

∣∣
∂ M̃ = in

2
�∂ M̃ ∧�∂ M̃ . (5.6)

Thus the role of � is to impose a condition at infinity for the metric gCY. Indeed, in the
construction of [18], part of the behavior of ωCY at infinity is specified by requiring that
the ‘pull-back’ of ωCY to D corresponds to the Kähler form of the Calabi–Yau metric
on D associated to the Kähler class t|D . From this, (5.6) then completely determines
gb in the direction conormal to D. This suggests that one can describe this condition at
infinity directly without choosing a meromorphic n-form �. Let c : D ×�/〈ι〉 → M
be a choice of smooth orbifold tubular neighborhood for D, where � ⊂ C is the unit
disk. Let q : D ×�→ D ×�/〈ι〉 be the quotient map. The existence and uniqueness
results of [18, Theorem D and Theorem E] can then be combined into the following.
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Theorem 5.3 (Haskins–Hein–Nordström). Let M and D be as in Definition 5.2. For
any choice of Kähler class t on M and any λ > 0, there exists a unique asymptotically
cylindrical Calabi–Yau metric gCY on M with Kähler form ωCY such that [ωCY] = t|M
and

gCY − c∗q∗
(
gD + λ

dw � dw

|w|2
)
∈ ρδC∞b (M;Sym2(T ∗M)) (5.7)

for some δ > 0, where gD is the Calabi–Yau metric on D associated to the Kähler class
t|D.
Corollary 5.4. The asymptotically cylindrical Calabi–Yau metric of the previous theo-
rem is in fact a polyhomogeneous exact b-metric.

Proof. The existence of ωCY as an element of C∞b (M;�2(T ∗(M\∂M))) is obtained
in [18] by finding for ε > 0 small enough a solution u ∈ ρεC∞(M) of the complex
Monge–Ampère equation (5.1) with ωb the Kähler form of a carefully chosen exact
b-metric and with

f = log

(
in

2
� ∧�
ωn
b

)
∈ ρC∞(M̃).

The polyhomogeneity of ωCY = ωb + i∂∂u then follows from Theorem 5.1. ��

6. Polyhomogeneity at Infinity for Asymptotically Conical Calabi–Yau Metrics

Another important class of complete noncompact quasi-projectiveCalabi–Yau spaces are
those which are asymptotically conical at infinity. These are conformal to asymptotically
cylindrical metrics, so essentially the same techniques as above can be used to prove
their polyhomogeneity. Since this is only a slight detour, we carry this out here.

Webeginwith amore careful definitionof asymptotically conicalmetrics.Once again,
let M̃ be a compact manifold with connected boundary ∂ M̃ . Fix a collar neighborhood
of the boundary described by some diffeomorphism c : ∂ M̃ × [0, ν) ↪→ M̃ . The
projection prR : ∂ M̃ × [0, ν) → [0, ν) determines a boundary defining function ρ
in this neighborhood, which we then extend smoothly to all of M̃ . Having fixed ρ,
consider the Lie algebra of scattering vector fields,

Vsc(M̃) = {ξ ∈ C∞(M̃; T M̃) | ξρ ∈ ρ2C∞(M̃; T M̃)}. (6.1)

This is a Lie subalgebra of Vb(M̃) and its definition depends on the choice of ρ. As for
b-vector fields, there is an associated scattering tangent bundle scT M̃ with

scTp M̃ = Vsc(M̃)/IpVsc(M̃), Ip = { f ∈ C∞(M̃) | f (p) = 0}.
There is a canonical morphism ιsc : scT M̃ → T M̃ such that (ιsc)∗C∞(M̃; scT M̃) =
Vsc(M̃) ⊂ C∞(M̃; T M̃), inducing on scT M̃ the structure of a Lie algebroid with anchor
map (ιsc)∗. Just as for ιb, ιsc is only an isomorphism when restricted to the interior of
M̃ .

There is a space of scattering differential operators, Diff∗sc(M̃), where an element of
order k is generated by C∞(M̃) and products of up to k sc-vector fields. We can also
consider the space of polyhomogeneous scattering differential operators

Diffksc,F (M̃) = AF
phg(M̃)⊗C∞(M̃) Diff

k
sc(M̃).
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Definition 6.1. A scattering metric g onM = M̃\∂ M̃ is a complete Riemannianmetric
on M of the form

g = (ι−1
sc )

∗gsc

for some positive definite section gsc ∈ C∞(M̃;Sym2(scT ∗M̃)). It is a warped product
scattering metric if in the collar neighborhood,

c∗g = dρ2

ρ4
+
g∂ M̃
ρ2

(6.2)

where g∂ M̃ is a metric on ∂ M̃ , and it is exact if g − gp ∈ ρC∞(M̃;Sym2(scT ∗M̃)) for
some warped product scattering metric gp.

If g is a scattering metric, then gb = ρ2g is a b-metric; with this correspondence,
warped product and exact scattering metrics correspond to product and exact b-metrics.
Under the change of variable t = 1/x , we recognize a warped product scattering metric
as an exact conical metric

dt2 + t2g∂ M̃ , t >
1

ν
.

More generally, cf. [9], a complete metric g on M is an asymptotically conical metric
on M if there is a choice of collar neighborhood, compatible boundary defining function
ρ, and warped product scattering metric gp such that

g − gp ∈ ρδC∞b (M̃;Sym2(scT ∗M̃)) for some δ > 0.

An asymptotically conical metric g is called a polyhomogeneous scattering metric if
g ∈ AF

phg(M̃;Sym2(scT ∗M̃)) for some F ≥ 0. Notice that the exactness condition is
assumed.

Let �sc be the Laplacian (with negative spectrum) associated to gsc ∈
AF

phg(M̃;Sym2(scT ∗M̃)). In the collar neighborhood, and for some δ > 0,

�sc − ρ2
(
�∂ M̃ +

(
ρ
∂

∂ρ

)2
− (n − 2)ρ

∂

∂ρ

)
∈ ρδ Diff2sc,F ′(M̃) ⊂ ρ2+δ Diff2b,F ′(M̃),

where F ′ ≥ 0. In particular, A := ρ−2�sc ∈ Diff2b,F ′(M̃) is an elliptic b-operator with
indicial family

Â(τ ) = �∂ M̃ − τ 2 − i(n − 2)τ.

We may thus apply Corollary 3.8 directly to obtain the following.

Corollary 6.2. Let gsc be a polyhomogeneous scattering metric. If u ∈ ραC∞b (M) sat-
isfies

�scu = ρ2( f1 + f2) with f1 ∈ ρα+βC∞b (M), f2 ∈ AG
phg(M̃q),

for some β > 0 and some index set G with inf G > α, then u = u1 + u2 with u1 ∈⋂
δ>0 ρ

α+β−δC∞b (M) and u2 polyhomogeneous.

We now turn to the complex Monge–Ampère equation. Suppose that M̃\∂ M̃ is
a complex manifold and that the complex structure J extends to an element J ∈
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AQ
phg(M̃;End(scT M̃)) for some Q ≥ 0. Suppose gsc is a polyhomogeneous scatter-

ing metric which is Kähler with respect to J , and has Kähler form ωsc.

Theorem 6.3. Let F be a positive index set. If f ∈ AF
phg(M̃) and for some ε > 0,

u ∈ ρε−2C∞b (M) satisfies

(ωsc + i∂∂u)n

ωn
sc

= e f , (6.3)

then u ∈ AG−2
phg (M̃q) for some G > 0.

Proof. The strategy is the same as in the proof of Theorem 5.1, with small variations.
It suffices to show that for each k ∈ N, there is a positive index set Gk and uk ∈

AGk−2
phg (M̃) such that

u − uk ∈ ρ kε
2 −2+δC∞b (M), (6.4)

where δ = ε
4 . For k = 1, we take u1 = 0 and G1 = ∅.

Suppose that (6.4) holds for some uk ∈ AGk−2
phg (M̃q) with Gk > 0; we must show

that (6.4) holds at the next level. Just as before, replace uk by χ(ρr )uk with r # 1 to
make the ρ−2C2b(M)-norm of uk small enough so that

ωsc

2
< ωsc + i∂∂uk < 2ωsc.

Thus, ωsc,k := ωsc + i∂∂uk is the Kähler form of a polyhomogeneous sc-metric. By our

inductive hypothesis, vk := u − uk ∈ ρ kε
2 −2+δC∞b (M) satisfies

(ωsc,k + i∂∂vk)n

ωn
sc,k

= e fk , with fk = f + log

(
ωn
sc

ωn
sc,k

)
. (6.5)

Since f ∈ AF
phg(M̃) and uk ∈ AGk

phg(M̃), we see that fk ∈ AG̃k

phg(M̃q) for some G̃k > 0.
Moreover, by (6.4),

fk = f + log

(
ωn
sc

ωsc,k

)
= log

(
(ωsc + i∂∂u)n

ωn
sc

)
− log

(
ωn
sc,k

ωsc

)

is in ρ
kε
2 +δC∞b (M). Now rewrite (6.5) as

1 +�ωsc,kvk +
n∑
j=2

N
ωsc,k
j (vk) = e fk , (6.6)

where �ωsc,k is the ∂-Laplacian associated to the Kähler form ωsc,k , and where

N
ωsc,k
j (h) = n!

(n − j)! j !

(
ω
n− j
sc,k ∧ (i∂∂h) j

ωsc,k

)
, h ∈ ρ−2C∞b (M).
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By (6.4), we deduce that N
ωsc,k
j (vk) ∈ ρ jkε

2 + jδC∞b (M), so that
�ωsc,kvk = wk + (e

fk − 1),

wherewk ∈ ρkε+2δC∞b (M) and (e fk −1) ∈ AHk

phg(M̃)∩ρ
kε
2 +δC∞b (M) for some Hk ≥ 0.

By Corollary 6.2, we can find a polyhomogeneous function hk+1 ∈ ρ kε
2 −2+δC∞b (M) such

that

vk − hk+1 ∈ ρkε−2+δC∞b (M).
Now take uk+1 = uk + hk+1 ∈ AGk+1−2

phg (M̃q) for some positive index set Gk+1. Since

u − uk+1 ∈ ρkε−2+δC∞b (M), we have in particular that
uk+1 = (uk+1 − u) + u ∈ ρε−2C∞b (M),

which completes the inductive step and the proof. ��
This result can be used to prove the polyhomogeneity at infinity of the asymptotically

conical Calabi–Yau metrics which come from the construction of Tian–Yau [44, Corol-
lary 1.1] and its refinement and generalization [8, Theorem A]. Let M be a compact
Kähler orbifold of complex dimension n > 1 without C-codimension 1 singularities.
Let D be a suborbifold divisor of M containing all the singularities of M such that
−KM = q[D] with q ∈ N and q > 1. Suppose that D admits a Kähler–Einstein metric
with positive scalar curvature. By the orbifold Calabi ansatz [6], [32, Proposition 3.1],
there exists a Calabi–Yau cone structure h on KD\0. Using the (q − 1)-covering map
η : ND\0 → KD\0 induced by the adjunction formula Nq−1

D
∼= K−1

D and a choice of
meromorphic volume form � on M with pole of order q along D, the pullback of h is
a Calabi–Yau cone metric g0 on ND\0 with apex at infinity. Consider the real blow-up
M̃ = [M; D] of M ; this is a smooth manifold with boundary. We can then write

g0 = dx2

x4
+

h

x2
,

where x = ρ
q−1
n for some boundary defining function ρ ∈ C∞(M̃). Thus g0 is a

scattering metric in terms of this new defining function. What is actually happening here
is that we are replacing the original smooth manifold with boundary M̃ by a new one,
M̃ q−1

n
, where the (equivalent) C∞ structure is the one obtained by adjoining this new

defining function, or equivalently, by pulling back the original C∞ structure under the
obvious homeomorphism. In this new structure, smooth functions on M̃ have Taylor
expansions in nonnegative integral powers of x rather than ρ, etc. Notice, however, that
a function which is polyhomogeneous in the new structure is polyhomogeneous in the
original structure, and vice versa, and the notions of positivity and nonnegativity of index
sets remain the same, even though the index sets themselves transform.

Corollary 6.4. If t is a Kähler class on M = M\D and c > 0, then there exists a unique
Calabi–Yau polyhomogeneous scattering metric gCY on M̃ q−1

n
in the Kähler class t with

gCY − exp∗(cg0) ∈ xδC∞(M̃ q−1
n
;Sym2(scT ∗M̃ q−1

n
))

for some δ > 0, where exp : ND → M is the exponential map of any background
Hermitian metric on M .
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Proof. By assumption, there exists a meromorphic volume form� on M with a pole of
order q at D, so in particular, � defines a polyhomogeneous scattering volume form on
M̃q−1. It is shown in [8, Proposition 2.1] that

�− (−1)n(q − 1)−1 exp∗(η∗�0) ∈ x
n

q−1 C∞b (M̃ q−1
n
;�n(scT ∗M̃ q−1

n
)), (6.7)

where �0 is the tautological holomorphic volume form on KD . In addition, it is proven
that the Kähler class t (and indeed, any Kähler class on M ,) can be represented by a
smooth real (1, 1)-form ξ on M̃ . This shows in particular that t is (−2)-almost compactly
supported in the sense of [9, Definition 2.3]. From [9, Proof of Theorem 2.4], one can
then construct an asymptotically conical Kähler metric gsc in the Kähler class t with
Kähler form ωsc such that

ωsc = ξ + c(i/2)∂∂(exp∗ r2)

in a neighborhood of the boundary of M̃ , where r is the radial function of the metric g0.
Since ξ is smooth on M , it is in particular polyhomogeneous on M̃ q−1

n
, so that gsc is in

fact a polyhomogeneous exact scattering metric with

gsc − exp∗(cg0) ∈ xδC∞b (M̃ q−1
n
;Sym2(scT ∗M̃ q−1

n
)) (6.8)

for some δ > 0.
The existence and uniqueness of gCY with Kähler formωCY = ωsc + i∂∂u is obtained

in [9] by showing that the complex Monge–Ampère equation

(ωsc + i∂∂u)n

ωn
sc

= e f , with f = log

(
in

2
� ∧�
ωn
sc

)
, (6.9)

has a unique solution u ∈ ρδ−2C∞b (M) for some δ > 0. By (6.7) and (6.8), f ∈
ρδC∞b (M;�n(scT ∗M̃)). Since � and ωsc are polyhomogeneous, f is also polyhomo-
geneous. Thus, the polyhomogeneity of u and ωCY follows from Theorem 6.3. ��

Theorem 6.3 can also be used to show that the asymptotically conical Calabi–Yau
metrics of Goto [16] and van Coevering [46] on a crepant resolution of an irregular
Calabi–Yau cone are polyhomogeneous. Indeed, letC = L×R+ be an irregular Calabi–
Yau cone of dimension n with Calabi–Yau cone metric g0, associated Kähler form ω0,
and holomorphic volume form�0 normalized so thatωn

0 = in
2
�0∧�0. Furthermore, let

p : C → L denote the radial projection and let π : M → C be any crepant resolution,
so that the holomorphic volume form π∗�0 extends to a holomorphic volume form �

on M . For a given c > 0, an asymptotically conical Kähler metric gsc can be constructed
in each Kähler class t of M whose Kähler form ωsc can be written as

ωsc = π∗ p∗α + cπ∗ω0

outside some compact subset of M , for some closed primitive basic (1, 1)-form α on
L; see [16, Lemma 5.7] and also [9, Section 4.2]. We compactify M as a manifold with
boundary M̃ using the boundary defining function x = (π∗r)−1, where r is the radial
coordinate of the cone metric g0. Then, since both M and C are biholomorphic away
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from the exceptional set of the resolution, and since the form π∗ p∗α clearly extends to
∂ M̃ , we see that the metric gsc is a polyhomogeneous exact scattering metric with

gsc − π∗(cg0) ∈ xδC∞b (M̃;Sym2(scT ∗M̃))

for some δ > 0. As before, the existence of an asymptotically conical Calabi–Yaumetric
gCY with Kähler form ωCY = ωsc + i∂∂̄u is obtained by showing that the complex
Monge–Ampère equation

(ωsc + i∂∂u)n

ωn
sc

= e f , with f = log

(
(π∗ω0)n

ωn
sc

)
,

has a unique solution u ∈ xδ−2C∞b (M) for some δ > 0. Polyhomogeneity of u, and
hence ωCY, then follows from Theorem 6.3 using the fact that f is polyhomogeneous
because ωsc is.

As for the asymptotically conicalCalabi–Yaumetrics of [8, TheoremC]with irregular
tangent cone at infinity, one can show that they too are polyhomogeneous. In this example,
the irregular cone isC = KD\0with D = CP

2
p1,p2 the blow-up ofCP

2 at two points. The

asymptotically conical Calabi–Yau metric is constructed on M = M\D with M = CP
3
p

the blow-up ofCP
3 at one point, where D ∈ |− 1

2KM | is seen as the strict transform of a
smooth quadric passing through p. By [14], we know thatC = KD\0 admits an irregular
Calabi–Yau cone metric g0 with apex at the zero section. The Calabi–Yau metric of [8,
Theorem C] is then constructed using a very careful choice of exponential type map
exp : ND → M . Notice however that this map does not provide the right gauge to
establish the polyhomogeneity of the metric, since it introduces non-polyhomogeneous
terms in the complex Monge–Ampère equation used to construct the metric. In fact, in
[8], a better diffeomorphism � : M\K1 → C\K2 for some compact sets K1 ⊂ M and
K2 ⊂ C is obtained using a gauge fixing argument as in [7]. With this identification,
we get a compactification M̃ of M such that g := �∗g0 is a scattering metric and such
that ρ = 1

�∗r , with r the radial function of (C, g0), is a boundary defining function near
∂ M̃ . With respect to the metric g, the Calabi–Yau metric gCY = g + h of [8, Theorem
C] satisfies the elliptic quasi-linear equation

Ric(g0 + h)i j + (∇iBg(h) j + ∇ jBg(h)i ) = 0

with h ∈ ρδC∞b (M̃; scT ∗M̃ ⊗ scT ∗M̃) for δ = 0.0128 > 0, (6.10)

whereBg = divg(h− 1
2 trg(h)g) is the operator appearing in theBianchi gauge condition

and∇ is the Levi-Civita connection of g. Using [9, Lemma 1.6], one can put this equation
in the form

Ph = F0(h) · h2 + F1(h) ·
(
h∇h

ρ

)
+ F2(h) ·

(∇h

ρ

)2
, (6.11)

where P is an elliptic b-operator, Fi : Sym2(scT ∗M̃) → (scT M̃)i ⊗ Sym2(scT M̃)
for i = 0, 1, 2 are smooth maps mapping sections to sections, but not linearly, and “·”
denotes some contraction of indices. In particular, the right hand side of (6.11) is in
ρ2δC∞b (M̃; scT ∗M̃ ⊗ scT ∗M̃). Using Corollary 3.8, we can then apply a bootstrapping
argument as in the proof ofTheorem5.1 to conclude that themetric gCY of [8,TheoremC]
is in fact a polyhomogeneous exact scattering metric for the boundary compactification
M̃ .
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7. Deformations of Compactifiable Asymptotically Cylindrical Calabi–Yau
Manifolds

We henceforth fix a compactifiable, asymptotically cylindrical Calabi–Yau manifold
(M, gb) with compactification (M, D). To describe the complex deformations of M ,
we appeal to the deformation theory of compactifiable complex manifolds developed
by Kawamata [26]. There is a Kuranishi type theorem in this context. In our setting,
however, the existence of a Calabi–Yau metric makes it possible to obtain a sharper
result, namely that the deformation theory is unobstructed.

First, recall from [26] that the infinitesimal complex deformations of M , as a com-
pactifiable complex manifold, are given by H1(M; TM (log D)), where TM (log D) is the
logarithmic tangent sheaf. Given a Dolbeault representative φ1 ∈ �0,1(M; TM (log D))
of a class [φ1] ∈ H1(M; TM (log D)) ∼= H0,1

∂
(M; TM (log D)), the first step in ‘integrat-

ing’ φ1 to an actual deformation is to solve the problem formally. In other words, we
wish to construct a possibly non-convergent series

φ(t) ∼
∞∑
i=1

φi t
i , t ∈ C, (7.1)

term by term so that the new formal ∂-operator ∂ + φ(t) satisfies the Maurer–Cartan
equation ∂φ(t) + 1

2 [φ(t), φ(t)] = 0 in the sense of Taylor series. This equation is the
one which indicates whether this ∂ operator is integrable, i.e., corresponds to a new
complex structure. In terms of the coefficients of the power series (7.1), the Maurer–
Cartan equation implies the sequence of equations

∂φk = −1

2

∑
i<k

[φi , φk−i ]. (7.2)

When k = 1, this states simply that ∂φ1 = 0, which is automatic by definition of the
Dolbeault cohomology group H0,1

∂
(M; TM (log D)).When k = 2, this gives the equation

∂φ2 = −1

2
[φ1, φ1]. (7.3)

There is an obvious cohomological obstruction to solving this equation. Indeed, [φ1, φ1]
represents a class in H0,2

∂
(M; TM (log D)) and (7.3) has a solution if and only if this

class is trivial. But in our case, as we now explain, this obstruction always vanishes—as
do the obstructions inherent to solving (7.2) for all higher values of k. The proof takes
advantage of the asymptotically cylindrical Calabi–Yau metric gb and uses the same
strategy of Tian and Todorov [42,45]; we refer also to [21] for a nice introduction to the
subject.

By using the meromorphic form � ∈ H0(M;�n
M
(log D)), we first define a sheaf

isomorphism

η : �pTM (log D)→ �
n−p
M

(log D), η(v1 ∧ · · · ∧ vp) = ιv1 · · · ιvp�. (7.4)

This induces an isomorphism

η : �0,q
b (M̃,�p(bT 1,0M̃))→ �

n−p,q
b (M̃), (7.5)
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which in turn can be used to define the b-operator

T : �0,q
b (M̃;�p(bT 1,0M̃))→ �

0,q
b (M̃;�p−1(bT 1,0M̃)), T = η−1 ◦ ∂ ◦ η. (7.6)

It is not hard to check, see [21], that T anti-commutes with ∂ , namely

T ◦ ∂ = −∂ ◦ T . (7.7)

In addition, T satisfies the following fundamental property.

Lemma 7.1 (Tian, Todorov). For

α ∈ �0,p
b (M̃; TM (log D)) and β ∈ �0,q

b (M̃; TM (log D)),
we have that

(−1)p[α, β] = T (α ∧ β)− T (α) ∧ β − (−1)p+1α ∧ T (β).

In particular, if α and β are T -closed, then [α, β] is T -exact.
Proof. The proof is a local computation; see [21] for details. ��

We are now ready to solve (7.2) by induction on k.

Proposition 7.2. Let (M, gb) be a compactifiable asymptotically cylindrical Calabi–Yau
manifold with compactification M. Suppose that φ1 ∈ L2

bH0,1
− (M; bT 1,0M̃) represents

an infinitesimal deformation. Then there exists a formal power series
∑∞

k=0 φk t
k with

∂φk = −1

2

k−1∑
i=1

[φi , φk−i ], (7.8)

where each φk is a bounded polyhomogeneous (0, 1)-form with values in bT 1,0M̃ such
that η(φk) = ∂βk for some polyhomogeneous form βk .

Proof. We first claim that if φ1 is harmonic, then η(φ1) ∈ ρ−εH∞
b �

n−1,1(M) is har-
monic as well. Indeed, since � is holomorphic, ∂ ◦ η = η ◦ ∂ , so that ∂η(φ1) = 0.
Next, since gb is Calabi–Yau, η is compatible (up to a constant scalar factor) with the
Hermitian metrics on bT 1,0M̃ and �n,0(bT ∗M̃), so that ∂

∗ ◦ η = η ◦ ∂∗, and hence
∂
∗
η(φ1) = 0 as well.
Since φ1 is bounded polyhomogeneous, so is η(φ1), so applying Lemma 4.9 to

η(φ1) and its complex conjugate shows that it is both ∂-closed and ∂-closed. Hence,
by Lemma 7.1, η([φ1, φ1]) is ∂-exact and ∂-closed, i.e., η([φ1, φ1]) = ∂β with β =
−η(φ1 ∧φ1) bounded polyhomogeneous. By Lemma 4.10 (the ∂∂-lemma), we can find
a polyhomogeneous (n − 1, 1)-form μ with ∂μ bounded such that

η[φ1, φ1] = ∂∂μ.

Thus, taking φ2 = − 1
2η

−1∂μ, we have that

∂φ2 +
1

2
[φ1, φ1] = 0.

Furthermore, η(φ2) = − 1
2∂μ is ∂-exact.
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Suppose now that we have found φ2, . . . , φk−1 with the desired properties. Then by
the Tian–Todorov Lemma,

η[φi , φk−i ] = −∂η(φi ∧ φk−i ),

i.e., η([φi , φk−i ]) is ∂-exact for i < k. Thus,
∑k−1

i=1 [φi , φk−i ] is ∂-exact. It also ∂-closed,
since

∂

(
k−1∑
i=1

[φi , φk−i ]
)
=

k−1∑
i=1

([∂φi , φk−i ] − [φi , ∂φk−i ]
)

= −1

2

k−1∑
i=1

⎛
⎝ i−1∑

j=1

[[φ j , φi− j ], φk−i ] −
k−i−1∑
�=1

[φi , [φ�, φk−i−�]]
⎞
⎠

= −1

2

k−1∑
i=1

i−1∑
j=1

([[φ j , φi− j ], φk−i ] − [φk−i , [φ j , φi− j ]]
)

=
k−1∑
i=1

i−1∑
j=1

[φk−i , [φ j , φi− j ]]. (7.9)

But this is precisely equal to the coefficient of tk in

[
k−1∑
i=1

φi t
i , [

k−1∑
i=1

φi t
i ,

k−1∑
i=1

φi t
i ]],

and therefore vanishes by the Jacobi identity. By Lemma 4.10, we can thus find a polyho-
mogeneous (n−1, 1)-formμk with ∂μk bounded such that ∂∂μk=− 1

2η(
∑k−1

i=1 [φi , φk−i ]).
Now take φk = η−1∂μk to complete the inductive step. ��

To find actual deformation families, wewish to show that this formal series converges
in a suitable topology, and for this wemust study themapping properties of a generalized
inverse of �∂ . Fix ε as in (4.11) and consider the generalized inverse G−ε of

�∂ : ρ−εHk+2
b �p,q(M)→ ρ−εHk

b�
p,q(M) (7.10)

in the sense of [35, Proposition 5.64] and [34, Theorem 6.1]. Namely,

G−ε : ρ−εHk
b�

p,q(M)→ ρ−εHk+2
b �p,q(M)

is the unique b-pseudodifferential operator of order −2 which satisfies

G−ε�∂ = Id−�1, �∂G−ε = Id−�0,

where �1 is the ρ−εL2
b-orthogonal projection onto ker p,q− �∂ and

�0 : ρ−εL2
b�

p,q(M)→ L2
bHp,q(M) ↪→ ρ−εL2

b�
p,q(M)

is the projection defined by

�0(u) =
�∑

i=1

〈u, vi 〉L2
b
vi ,

where v1, . . . , v� is an orthonormal basis of L2Hp,q(M).
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Proposition 7.3. For any δ ∈ [0, inf I0),

∂∂
∗
G−ε : ρδCk,αgb (M;�p,q(M))→ ρδCk,αgb (M;�p+1,q−1(M))

is a bounded operator.

Proof. We need to invoke some of the more technical aspects of the structure of the
Schwartz kernel of this operator, for which we refer to [34,35] and also to [22], where
a very similar but more complicated result is proven. First note that ∂∂

∗
G−ε is a b-

pseudodifferential operator of order zero. A priori, its Schwartz kernel could have a
leading logarithmic term at order ρ0 in its polyhomogeneous expansion at the left bound-
ary face lb(M2

b ) of the b-double space. However, we rule this out by observing that this
operator maps polyhomogeneous forms with positive index sets to polyhomogeneous
forms with positive index sets. To check this last fact, note that if β is polyhomogeneous
with positive index set, then ψ = G−εβ is polyhomogeneous and �∂ψ = β + γ with
γ ∈ L2

bHp,q(M). Thus, Lemma 4.8 implies that ∂
∗
ψ is bounded polyhomogeneous.

Applying this lemma oncemore, this time to the complex conjugate of ∂
∗
ψ , we conclude

that ∂∂
∗
ψ is polyhomogeneous with positive index set.

This property implies that the index set Elb of the polyhomogeneous expansion of
the Schwartz kernel of ∂∂

∗
G−ε is strictly positive; in fact, inf Elb ≥ inf I0. Now [34,

Proposition 3.27] shows that

∂∂
∗
G−ε : ρδCk,αgb (M;�p,q(M))→ ρδCk,αgb (M;�p+1,q−1(M)) (7.11)

is bounded for 0 ≤ δ < inf I0. ��

We now define a function space slightly smaller than Ck,αgb (M;�p,q(M)) in which
restriction to ∂ M̃ makes sense. Let χ ∈ C∞(M) equal 1 near ∂ M̃ and be supported in a
collar neighborhood c : ∂ M̃ × [0, 1)→ M̃ of ∂ M̃ , and let π : ∂ M̃ × [0, 1)→ ∂ M̃ be
the projection onto ∂ M̃ . For 0 < δ < inf I0, define

Ck,α0,δ (M;�p,q(M)) := χc∗π∗Ck,α(∂ M̃; �p,q(bT ∗M̃)
∣∣∣
∂ M̃
) + ρδCk,αgb (M;�p,q(M)).

(7.12)

This is a subspace of Ck,αgb (M;�p,q(M)) and is naturally isomorphic to the direct sum

Ck,α(∂ M̃; �p,q(bT ∗
C
M̃)
∣∣∣
∂ M̃
)⊕ ρδCk,αgb (M;�p,q(M)).

The norm on this latter space induces a norm on Ck,α0,δ (M;�p,q(M)).

Proposition 7.4. For δ > 0 sufficiently small,

∂∂
∗
G−ε : Ck,α0,δ (M;�p,q(M))→ Ck,α0,δ (M;�p+1,q−1(M))

is bounded.
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Proof. By definition, the indicial operator I (P) of P := ∂∂
∗
G−ε is the restriction of the

Schwartz kernel of P to the front face of the b-double space. Recall from [35] that I (P)
is anR

+-invariant operator on the cylinder ∂ M̃×(0,+∞)ρ .Moreover, the corresponding
indicial family I (P, λ), which is the Mellin transform of I (P), satisfies

I (P)� ∗u = � ∗ I (P, 0)u for u ∈ Ck,α(∂ M̃; �p,q(bT ∗
C
M̃)
∣∣∣
∂ M̃
), (7.13)

where � : ∂ M̃ × (0,+∞)ρ → ∂ M̃ is the projection onto the left factor. Therefore,

χ I (P)χπ∗u = χπ∗ I (P, 0)u − χ I (P)(1− χ)� ∗u. (7.14)

Clearly,

I (P, 0) : Ck,α(∂ M̃; �p,q(bT ∗
C
M̃)
∣∣∣
∂ M̃
)→ Ck,α(∂ M̃; �p+1,q−1(bT ∗

C
M̃)
∣∣∣
∂ M̃
)

is bounded. On the other hand, applying [34, Proposition 3.27] as in the proof Proposi-
tion 7.3, we see that

χ I (P)(1− χ) : � ∗Ck,α(∂ M̃; �p,q(bT ∗
C
M̃)
∣∣∣
∂ M̃
)→ ρδCk,αgb (M;�p+1,q−1(M))

is also bounded. One similarly checks that χ I (P)χ is bounded on ρδCk,αgb -forms. Alto-
gether,

χ I (P)χ : Ck,α0,δ (M;�p,q(M))→ Ck,α0,δ (M;�p+1,q−1(M)) (7.15)

is bounded. Now, by construction, the Schwartz kernel of P − χ I (P)χ has positive
index sets at all front faces. Thus, by [34, Proposition 3.27],

P − χ I (P)χ : Ck,α(M;�p,q(M))→ ρδCk,α(M;�p+1,q−1(M)) (7.16)

is bounded for δ sufficiently small. Combining (7.15) and (7.16) yields the result. ��
Theorem 7.5. Let (M, gb) be a compactifiable asymptotically cylindrical Calabi–Yau
manifold with compactification M. Then the logarithmic deformations of M (in the sense
of Kawamata [26]) are unobstructed.

Proof. We construct the formal power series of Proposition 7.2 more systematically.
Given an infinitesimal deformation φ1 ∈ L2

bH0,1
− (M; TM (log D)), choose the coeffi-

cients of the power series of Proposition 7.2 by

φk = 1

2
η−1

⎛
⎝∂∂∗G−ε

⎛
⎝k−1∑

j=1

η(φ j ∧ φk− j )

⎞
⎠
⎞
⎠, (7.17)

since in the proof of the ∂∂-lemma (Lemma 4.10), we can take ψ = G−εβ. By (7.17)
and Proposition 7.4, if δ > 0 is sufficiently small, there is a positive constant Kk,α such
that

‖φ�‖Ck,α
δ,0

≤ Kk,α

�−1∑
i=1

(
‖φi‖Ck,α

δ,0
· ‖φ�−i‖Ck,α

δ,0

)
. (7.18)
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Now apply the argument of [27] to conclude that for m ∈ N, there is δm > 0 such that

φ(t) =
∞∑
k=1

φk t
k (7.19)

converges in Cm,α0,δ for |t | < δm . This does not immediately imply that φ(t) is smooth.
To prove this, note that from its construction, φ is a solution of the non-linear equation

�∂φ = ∂
∗
∂φ = −1

2
∂
∗[φ, φ]. (7.20)

This equation can be put in the form

�∂φ + φ · Pφ = ∇φ · ∇φ, (7.21)

where P is some second order differential operator and “·” denotes some contraction of
indices. When φ is sufficiently small in C0-norm, this is a quasi-linear elliptic equation,
so by taking δm smaller if necessary, we see that φ is smooth for |t | < δm . Similarly,
restricting this equation to the boundary, we see that φ(t)|∂ M̃ is smooth. Thus, φ∂(t) :=
χc∗π∗(φ(t)|∂ M̃ ) is smooth and v = φ−φ∂

ρδ
satisfies the equation

(ρ−δ�∂ρ
δ)v = ρ−δ

(
−1

2
∂
∗[φ, φ] −�∂φ∂

)
. (7.22)

By definition ofφ∂ , the right hand side of (7.22) is inCk,αgb (M;�0,1(T ∗M)⊗TM (log D)).
Since (M, gb) has bounded geometry, interior Schauder estimates and a bootstrapping
argument imply that

v ∈ C∞gb (M;�0,1(T M)⊗ TM (log D)).

Consequently, φ = φ∂ + ρδv ∈ C∞0,δ(M;�0,1(T M) ⊗ TM (log D)). Using (7.20) and
Corollary 3.8, we can apply a bootstrapping argument as in the proof of Theorem 5.1 to
show that φ is in fact polyhomogeneous. Proceeding as in [27], we also check that φ is
smooth in t .

Finally, notice that by construction,φ∂(t) ∈ C∞(∂ M̃; �0,1(bT ∗M̃)⊗ TM (log D)
∣∣
∂ M̃ )

corresponds to a deformation of the complex structure of ND\0, i.e. a ι-invariant de-
formation of D × C

∗. From (5.7), we see that the Calabi–Yau metric on M induces on
D × C

∗ a Calabi–Yau cylindrical metric

g∂ = gD + λ
dw � dw

|w|2 .

The Calabi–Yau manifold (D×C
∗, g∂ ) is naturally compactified by D×CP

1. For this
compactification, we have a natural identification

L2H0,1
− (D × C

∗; T 1,0(D × C
∗)) ∼= H1(D × CP

1; T 1,0D ⊕OD×CP1)

∼= H1(D; T 1,0D)⊕ H1(D;OD)

∼= H0,1(D; T 1,0D)⊕H0,1(D), (7.23)

where in the last line the spaces of harmonic forms are defined with respect to the
Calabi–Yau metric gD . The identification

ϒ : H0,1(D; T 1,0D)⊕H0,1(D)→ L2H0,1
− (D × C

∗; T 1,0(D × C
∗))

is given by
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ϒ(ω1, ω2) = pr∗1(ω2) + pr∗1(ω2)⊗ w
∂

∂w
, (7.24)

where pr1 : D × C
∗ → D is the projection on the first factor. Notice in particular that

elements of L2H0,1
− (D×C

∗; T 1,0(D×C
∗)) areC

∗-invariant. Now, the restriction φ∂(t)
of φ(t) can be recovered by applying the construction (7.17) to D × C

∗ starting with
the restriction φ1,∂ ∈ L2H0,1

− (D ×C
∗; T 1,0(D ×C

∗)) of the infinitesimal deformation
φ1. Since the Laplacian on D × C

∗ is C
∗-invariant, so is the generalized inverse G−ε .

This means that the construction (7.17) is carried out in a C
∗-invariant way, hence φ∂(t)

is C
∗-invariant. We also deduce from (7.24) and (7.17) that φ∂(t) is of the form

φ∂(t) = pr∗1 μ1 + pr∗1(μ2)⊗ w ∂

∂w
(7.25)

with μ1 ∈ �0,1(D) and μ2 ∈ �0,1(D; T 1,0D). In this decomposition, the first term
corresponds to a deformation of the complex structure on D, while the second term
corresponds to a deformation of the holomorphic structure of the trivial C

∗-bundle over
D. This shows thatφ∂(t) naturally extends to a deformation of D×C (and D×CP

1). The
whole construction is ι-invariant, so it descends to a deformation of ND as a holomorphic
orbifold line bundle.

The new line bundle obtained from such a deformation is not necessarily holomor-
phically trivial, but nevertheless, the proof of [18, Theorem 3.1] still works, so that there
is a diffeomorphism ψt on M such that if Jt is the new complex structure defined by
φ(t), then ψ∗

t Jt extends to a smooth complex structure J t on M , making (M, Jt ) a
compactifiable complex manifold as in Definition 5.2. ��

Combining this result with the result of Kovalev [30], we obtain the following.

Corollary 7.6. Let (M, gb) be a compactifiable asymptotically cylindrical Calabi–Yau
manifold with compactification M. Then any Ricci-flat asymptotically cylindrical metric
on M sufficiently close to gb is Kähler with respect to some logarithmic deformation of
the complex structure on M.

We are also interested in studying relative logarithmic deformations, i.e., deforma-
tions which fix the complex structure on ND . Infinitesimal relative logarithmic defor-
mations correspond to

Im
(
H1(M; TM (log D)(−D))→ H1(M; TM (log D))

)
,

and by Theorem 4.6, this space is the same as L2
bH0,1(M; TM (log D)).

Theorem 7.7. Let (M, gb) be a compactifiable asymptotically cylindrical Calabi–Yau
manifold with compactification M. Then the relative logarithmic deformations of M are
unobstructed.

Proof. If φ1 ∈ L2
bH0,1(M; TM (log D)) represents an infinitesimal deformation, then

Theorem 7.5 gives a deformation (7.19). We must check that this solution φ(t) decays
at infinity so that it is a relative logarithmic deformation.

Choosing δ < inf I0, we see from Proposition 7.3 that instead of (7.18), there is a
positive constant Kk,α such that

‖φ�‖ρδCk,α
gb

≤ Kk,α

�−1∑
i=1

(
‖φi‖ρδCk,α

gb
· ‖φ�−i‖ρδCk,α

gb

)
. (7.26)
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We thus conclude that for m ∈ N, there is δm > 0 such that φ(t) ∈
ρδCm,αgb (M;�0,1(bT ∗M) ⊗ TM (log D)) for |t | < δm . Since φ∂ = 0, we deduce from
Theorem 7.5 that φ(t) = ρδv ∈ ρδC∞gb (M;�0,1(bT ∗M)⊗TM (log D)), which gives the
desired decay. ��

8. A Families Index for Dirac-Type b-Operators with Fixed Indicial Family

We consider a smooth fibre bundle

M̃ �� Ñ

φ

��
B

(8.1)

with base B a smooth connected manifold and typical fibre M̃ an even dimensional
orientedmanifoldwith boundary.Wewill suppose that the restrictionofφ to the boundary
of Ñ induces the trivial fibre bundle

∂ M̃ �� ∂ Ñ = ∂ M̃ × B

φ|∂
��
B,

(8.2)

where φ|∂ = πR : ∂ M̃ × B → B is the projection onto the right factor. Let ρ ∈
C∞(Ñ ) be a choice of boundary defining function and let gb be a family of fibrewise
polyhomogeneous exact b-metrics on the fibres of (8.1) with restriction to ∂ Ñ given by

gb|∂ Ñ = π∗
Lh,

where πL : ∂ M̃ × B → ∂ M̃ is the projection on the left factor and h is the restriction
to ∂ M̃ of an exact polyhomogeneous b-metric on M = M̃\∂ M̃ . In other words, the
restriction of the family gb to ∂ Ñ is constant in b ∈ B. Let Cl(Ñ/B) be the family of
Clifford bundles associated to bT (Ñ/B) and gb. Finally, let E → Ñ be a smooth family
of Clifford modules with Clifford connections∇E . Assumemoreover that the restriction
of (E,∇E ) to ∂ Ñ is the pull-back under πL of the restriction of a Clifford module with
Clifford connection on M̃ associated to the Clifford bundle Cl(bT (Ñ/B))

∣∣
φ−1(b) for

some b ∈ B. In other words, (E,∇E )
∣∣
∂ Ñ is ‘constant’ in b ∈ B. Let ð ∈ Diff1b(Ñ/B; E)

be the corresponding family of Dirac-type operators. With our assumptions, the indicial
operator I (ð) is the same for each element of the family. We will further assume that

dim kerL2 ð
+(b) and dim kerL2 ð

−(b) are independent of b ∈ B. (8.3)

A simple example of a family satisfying all of these hypotheses is the family of
signature operators associated to gb. More importantly for us is the family of Dolbeault
operators associated to a family of asymptotically cylindrical Calabi–Yau metrics; that
these operators satisfy all of the conditions above is proved in Sect. 10.

If the operator I (ð, 0) is invertible, then Theorem 8.4, the main result of this section,
is an immediate consequence of the families index theorem of Melrose and Piazza [36].
Thus, we shall concentrate on the case where I (ð, 0) is not invertible. The families
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index theorem of Melrose and Piazza [36] does not apply then since this is no longer
a Fredholm family. Nevertheless, assumption (8.3) together with the constancy of the
family of indicial operators makes it possible to derive a local formula for the Chern
character of the L2-index bundle of the family ð.

Before going into the precise statement of the result and details of the proof, let us
point out that the results from [35,36] used here are only stated for exact b-metrics
with index set F = N0 × {0}. Nevertheless, these results do admit straightforward
generalizations when the b-metrics are polyhomogeneous, cf. [34]. Indeed, the presence
of a polyhomogeneous exact b-metric necessitates only mild changes to the index sets
appearing in these results and their proofs. Moreover, only the parts of the index sets

close to zero are relevant, so if we replace the boundary defining function ρ by x = ρ
1
k

for some large k ∈ N, then

gb − gp ∈ xNC∞b (M; bT M̃ 1
k
⊗ bT M̃ 1

k
),

where gp is a product b-metric and M̃ 1
k
is the kth root of M̃ as defined in [12] (i.e., the

manifold M̃ with the new C∞ structure obtained by adjoining x = ρ
1
k ). Thus, for the

purposes of applying the results of [35,36], this change effectively presents the metric
gb as a product b-metric. From now on, we will therefore apply the results of [35,36] to
polyhomogeneous b-metrics without further comments.

To define the local families L2-index, choose a connection for the fibre bundle (8.1),
i.e., a splitting

bT Ñ = TH Ñ ⊕ bT (Ñ/B), φ∗T B ∼= TH Ñ .

We assume that this agrees on ∂ Ñ with the canonical splitting induced by the identifi-
cation ∂ Ñ = ∂ M̃ × B. We can then associate to ð a Bismut superconnection

A = ð + A[1] + A[2],

see [36, (9.23)] for a definition. The rescaled Bismut superconnection is then given by

At = t
1
2 δt ◦ A ◦ δ−1

t = t
1
2 ð + A[1] + t−

1
2 A[2],

where δt is the automorphismwhichmultiplies elements of C∞(Ñ ;φ∗� j (T ∗B)⊗E) by
t− i

2 , cf. [1, p.281]. Let us also denote by�0 the orthogonal projection onto the L2-kernel
bundle of ð. The operator

∇L2 = �0A[1]�0

defines a smooth Z2-graded connection on the L2-kernel bundle of ð.

Proposition 8.1. The b-Chern character of the Bismut superconnection is such that

lim
t→∞

bCh(At )[0] = ĩnd(ð(b)), ∀b ∈ B, (8.4)

lim
t→∞

bCh(At )[2n] = Ch(kerL2 ð,∇L2
)[2n], n > 0, (8.5)

where ĩnd(ð(b)) is the extended index of Melrose [35, (In.30)].
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The proof of this proposition is carried out in a set of lemmas, following the strategy
of [1] and [36]. However, since our family of operators is not Fredholm, many important
modifications are necessary. Let us first introduce some notation. As in [36, (15.8) and
(A.9)], set

N ε = �∗(B)⊗C∞(B) �
−∞,ε
φ (Ñ ; E) = �∗(B)⊗C∞(B) Aε−(Ñ ×φ Ñ ; E ⊗ b�

1
2
fib);

this is the space of smooth families of operators of order −∞ with Schwartz kernel
conormal and vanishing at order ε − ν for all ν > 0 at the boundaries of Ñ ×φ Ñ . We
also set, cf. [36, (15.8) and (A.11)],

Mε = �∗(B)⊗C∞(B) (ρ
ε�0

b,φ(Ñ ; E) + ρε�−∞,ε
b,φ (Ñ ; E) +�−∞,ε

φ (Ñ ; E)),
where we refer to [36, (A.11)] for the definition of the space of family pseudodifferential
operators�0,δ

b,φ(Ñ ; E). Notice that contrary to the definition in [36], the space of operators
Mε is residual in the sense that the Schwartz kernels of its elements decay like ρε at the
front face of the b-double space. There are filtrations

N ε
i =
∑
k≥i

�k(B)⊗C∞(B) �
−∞,ε
φ (Ñ ; E),

Mε
i =
∑
k≥i

�k(B)⊗C∞(B) (ρ
ε�0

b,φ(Ñ ; E) + ρε�−∞,ε
b,φ (Ñ ; E) +�−∞,ε

φ (Ñ ; E)).
(8.6)

As in (4.11), we choose ε ∈ (0, inf I), where I is the index set of the expansions of
elements of the L2-kernel of ð. Since the fibration φ : Ñ → B and E are trivial over
∂ M̃ , we see from [36, (9.25)] that we can choose ε small enough to ensure that

A
2 = ð

2 mod Mε
1.

Now, using the projection �0 onto the L2-kernel, we can decompose the Bismut
superconnection as follows:

A = Ã + ω with ω = �0A(Id−�0) + (Id−�0)A�0 ∈ N ε
1 .

In terms of the decomposition L2
b(Ñ/B; E) = ran(�0)⊕ ran(Id−�0), we have

ω =
(
0 μ

ν 0

)
with μ = �0A(Id−�0), ν = (Id−�0)A�0.

Hence the curvature is(
X Y
Z T

)
:= F = (Ã + ω)2 = Ã

2 + [Ã, ω] + ω ∧ ω

=
(

R + μν �0[Ã, μ](Id−�0)

(Id−�0)[Ã, ν]�0 S + νμ

)
, (8.7)

where R = �0Ã
2�0 and S = (Id−�0)Ã

2(Id−�0). We conclude that

(
X Y
Z T

)
=
(
R[2] + μ[1]ν[1] μ[1]ð

ðν[1] ð
2

)
mod

(N ε
3 N ε

2

N ε
2 Mε

1

)
.
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Now consider the family of Fredholm operators

ð
2 : ρ−εHk+2

b (Ñ/B; E)→ ρ−εHk
b (Ñ/B; E). (8.8)

This has cokernel canonically identified with the L2-kernel of ð. Since the index of (8.8)
is independent of b ∈ B, the kernels of the operators of this family form a vector bundle
over B. Thus by [35, Proposition 5.64] and [34, Theorem 6.1], there exists a smooth
family of generalized inverses b �→ G(b) of (8.8) such that

ð
2G = Id−�0, Gð

2 = Id−�1,

where�1 is a smooth family of projections onto the kernel of (8.8). The projection�0
acts on ρ−εL2(φ−1(b); E) by

�0(b) : ρ−εL2(φ−1(b); E)→ kerL2 ð(b), �0(b)(u) =
k∑

i=1

〈u, vi 〉L2vi ,

where v1, . . . , vk is a choice of orthonormal basis of kerL2 ð(b). The formal adjoint G∗
of G is a smooth family of generalized inverses for

ð
2 : ρεHk+2

b (N/B; E)→ ρεHk
b (N/B; E) (8.9)

and satisfies

G∗
ð
2 = Id−�0, ð

2G∗ = Id−�∗
1.

Acting on ρεL2(N/B; E), we have
ð
2G∗(Id−�0) = ð

2G∗(ð2G) = ð
2(Id−�0)G = ð

2G = Id−�0. (8.10)

Taking the adjoint yields that

(Id−�0)Gð
2 = Id−�0 (8.11)

on ρ−εL2(N/B; E). Similarly, we have that

ðG∗
ð = ðG∗

ð(Id−�0) = ðG∗
ð(ð2G) = ð(Id−�0)ðG = ð

2G = Id−�0, (8.12)

along with the adjoint equation

ðGð = Id−�0. (8.13)

In particular, these identities imply that

X[2] − Y[1]GZ[1] = R[2] + μ[1]ν[1] − (μ[1]ð)G(ðν[1]) = R[2],
X[2] − Y[1]G∗Z[1] = R[2] + μ[1]ν[1] − (μ[1]ð)G∗(ðν[1]) = R[2].

(8.14)

Lemma 8.2. There exists a family of operators A with A − Id ∈ N ε
1 such that

AF A−1 = A

(
X Y

Z T

)
A−1 =
(
U 0

0 V

)

with U = X − YGZ mod N ε
3 and V = T mod N ε

1 .
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Proof. We proceed by induction on i = 1, . . . , dim B and assume that we have found
Ai with Ai − Id ∈ N ε

1 such that

AiF A−1
i =
(
Xi Yi
Zi Ti

)
∈
(N ε

2 N ε
i

N ε
i T +N ε

1

)
,

where Ti = ð
2 mod Mε

1 (we take A1 = Id). Notice that if we write Ai = Id +K , then

A−1
i =

dim B∑
j=0

(−1) j K j .

Now, set
(
X̃i Ỹi
Z̃i T̃i

)
:=
(

Id −YiG

G∗Zi Id

)(
Xi Yi
Zi Ti

)(
Id −YiG

G∗Zi Id

)−1

.

Since

(
0 −YiG

G∗Zi 0

)
∈ N ε

i , we see that

(
Id −YiG

G∗Zi Id

)−1

−
(

Id YiG

−G∗Zi Id

)
∈ N ε

2i ,

and hence
(
X̃i Ỹi
Z̃i T̃i

)
=
(

Id −YiG

G∗Zi Id

)(
Xi Yi
Zi Ti

)(
Id YiG

−G∗Zi Id

)
mod N ε

2i .

This gives

X̃i = Xi − YiGZi − YiG
∗Zi + YiGTiG

∗Zi = Xi mod N ε
2i ,

Ỹi = Yi (Id−GTi ) + (Xi − YiGZi )YiG mod N ε
2i ,

Z̃i = (Id−TiG
∗)Zi + (G

∗Zi )(Xi − YiG
∗Zi ) mod N ε

2i ,

T̃i = Ti + G∗ZiYi + ZiYiG + G∗Zi XiYiG = Ti mod N ε
1 ,

(8.15)

so using (8.10) and (8.11), we compute that

Ỹi = Yi (Id−Gð
2) = Yi (Id−�0)(Id−Gð

2) = 0 mod N ε
i+1,

Z̃i = (Id−ð
2G∗)Zi = (Id−ð

2G∗)(Id−�0)Zi = 0 mod N ε
i+1.

(8.16)

This shows that we can continue the induction to construct the element A as desired.

Now, if A =
(
Id +K M
N Id +L

)
with K ,M, N , L ∈ N ε

1 , then we have that

(
Id +K M

N Id +L

)(
X Y

Z T

)
=
(
U 0

0 V

)(
Id +K M

N Id +L

)
,
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so that

V = (T + LT + NY )(Id +L)−1 = T mod N ε
1 ,

U = (X + K X + MZ)(Id +K )−1 = X + MZ mod N ε
3 , (8.17)

Y + MT = UM − KY ∈ N ε
2 .

Multiplying the last equation by G gives that M = −YG mod N ε
2 . Substituting this

into (8.17), we obtain finally that U = X − YGZ mod N ε
3 , as claimed. ��

We now show that the contribution of V to the Chern character vanishes in positive
degree when t tends to infinity.

Lemma 8.3. For k > 0, the form (etδt (V ))[k] lies in N ε
k and decreases rapidly along

with all its derivatives as t tends to infinity. In particular, it decreases rapidly with all
its derivatives as a differential form valued in trace class operators.

Proof. Writing V = ð
2 + A with A ∈ Mε

1, we have that e
−tδt (V ) =∑dim B

k=0 (−t)k Ik(t),
where

Ik(t) =
∫
�k

e−σ0tð2δt (A)e−σ1tð
2
δt (A) · · · e−σk−1tð2δt (A)e

−σk tð2dσ1 · · · dσk .

Here �k is the simplex

�k = {(σ0, . . . , σk) ∈ R
k+1 |

k∑
i=0

σi = 1, σi ≥ 0}.

The family of operators e−tð2 ∈ �−∞
b (Ñ/B; E) is bounded on L2 uniformly in t ∈

[0,∞). Since A ∈ Mε
1, we have that (Id−�0)e−tð2(Id−�0)A and

A(Id−�0)e−tð2(Id−�0) are in N ε
1 . Clearly, it then suffices to show that

(Id−�0)e−tð2(Id−�0)A and A(Id−�0)e−tð2(Id−�0) are rapidly decreasing with
all their derivatives as t tends to infinity to obtain the result.

Suppose that we establish that

p1,t : N ε
1 → N ε

1

U �→ (Id−�0)e−tð2(Id−�0)U
,

p2,t : N ε
1 → N ε

1

U �→ U (Id−�0)e−tð2(Id−�0)

have the property that t
1
2 pi,t is uniformly bounded with all its derivatives in B as t tends

to infinity. Noticing that for k ∈ N,

tk pi,t = (2k)k
(

t
1
2√
2k

pi, t
2k

)2k
,

we see that tk pi,t is also uniformly bounded as t tends to infinity and that the same is true
for all horizontal derivatives using Duhamel’s formula. Thus (Id−�0)e−tð2(Id−�0)A
and A(Id−�0)e−tð2(Id−�0) are rapidly decreasing with all derivatives as t tends to
infinity.
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It remains to show that t
1
2 pi,t is uniformly bounded with all horizontal derivatives as

t tends to infinity. For this purpose, we proceed as in the proof of [35, Proposition 7.37]
and write the heat kernel of ð

2 in terms of the resolvent,

e−tð2 = 1

2π i

∫
γA

e−tλ(ð2 − λ)−1dλ, (8.18)

where γA is a contour in C that can be taken to be inward along a line segment of
argument −δ, 1

2 > δ > 0, with end point (−A − 1, 0), and outward along a line
segment of argument δ from this point. Choosing a cut-off function χ ∈ C∞(R) such
that χ(r) = 1 for r < C

2 and χ(r) = 0 for r > 3
4C , where 0 < C # 1 will be specified

later, (8.18) decomposes as a sum of the two terms

H1(t) = 1

2π i

∫
γA

χ(Re λ)e−tλ(ð2 − λ)−1dλ,

H2(t) = 1

2π i

∫
γA

(1− χ(Re λ))e−tλ(ð2 − λ)−1dλ.
(8.19)

In the expression for H2, the integrand is supported in Re z ≥ B
2 . Since (ð

2 − λ)−1 is
uniformly bounded in the calculus with bounds for the part of γA in that region, we see
that H2(t) : N ε

1 → N ε
1 decays exponentially quickly with all its derivatives as t tends

to infinity.
We thus focus attention on H1(t). First replace γA by the simpler contour integral

Im z = δ > 0 where λ = z2 and Im z > 0 is the physical region. Using the Cauchy
formula, write H1 = H ′

1 + H ′′
1 , where

H ′
1(t) =

1

2π i

∫
Im z=δ

χ(Re λ)e−tλ(ð2 − λ)−1dλ,

H ′′
1 (t) =

1

2π i

∫
S(A,δ)

∂χ(Re λ)e−tλ(ð2 − λ)−1dλ ∧ dλ.
(8.20)

Since ∂χ(Re z) is supported in Re z ≥ B
2 , the second term H ′′

1 (t) decays exponentially
quickly with all derivatives as t → ∞, so we reduce further and focus solely on the first
term. Introducing z as a variable of integration, we have that

H ′
1(t) =

1

π i

∫
Im z=δ

χ(Re(z2))e−t z2(ð2 − z2)−1zdz. (8.21)

We know from [35] that (ð2 − z2)−1 extends meromorphically to C with values in the
calculus with bounds. It has a double pole at z = 0 with coefficient of 1/z2 equal to the
projection onto the L2-kernel of ð

2 and with residue, i.e., the coefficient of 1/z equal to
∑
�

U�U �dgb. (8.22)

Here, U� ∈ C∞(φ−1(b); Eb) + ρδH∞
b (φ

−1(b); E) for some δ > 0 is a basis of those
solutions of ð

2U = 0 orthogonal to the subspace of L2-solutions which have boundary
values orthonormal in L2(∂φ−1(b); Eb).

Only (Id−�0)H ′
1(t)(Id−�0) is really used in the definition of pi,t , so that it is

only necessary to deal with (Id−�0)(ð
2 − z2)−1(Id−�0). This has a simple pole at
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z = 0 with residue given by (8.22). In particular, provided that the constant C used in
the definition of χ above is sufficiently small so that (ð2 − z2) has only a pole at z = 0
on the support of χ(Re(z2)), we see that

P(z) = zχ(Re z2)(Id−�0)(ð
2 − z2)−1(Id−�0)

is a family of operators which is smooth down to Im z ↘ 0 and with values in the
calculus with bounds�m,0,0

b,os,∞(φ−1(b); Eb) (see [35, (5.107)]). This induces a family of
operators

P(z) : N ε
1 → N ε

1

which is uniformly bounded as Im z ↘ 0. Taking the limit δ → 0 andmaking the change

of variable Z = z/s, s = 1/t
1
2 , we see that

(Id−�0)H
′
1(t)(Id−�0) = s

π i

∫ +∞

−∞
e−Z2

P(sZ)dZ .

After removing the factor s on the right, this integral is a differentiable family in the
argument s2 with values in the space of bounded operators onN ε

1 (acting by composition

on the left or on the right). By the discussion above, this shows that t
1
2 pi,t is uniformly

bounded as t tends to infinity. Moreover, using Duhamel’s formula, the same argument

can be applied to show the uniform boundedness of the horizontal derivatives of t
1
2 pi,t .

This completes the proof. ��
Proof of Proposition 8.1. The formula (8.4) follows from [35, Proposition 7.37]. For
(8.5), Lemma 8.2 gives that

e−tδt (F) = δt (A)
−1

(
e−tδt (U ) 0

0 e−tδt (V )

)
δt (A).

UsingLemmas 8.2 and8.3, and since A−Id ∈ N ε
1 ,we see that if k > 0, then (e−tδt (F ))[k]

is a differential form with values in the space of trace-class operators such that

(
e−tδt (F)

)
[k] =
(
e−tδt (U ) 0

0 0

)
+O(t− 1

2 ) =
(
e−R[2] 0

0 0

)
+O(t− 1

2 ).

Consequently, for k > 0,

lim
t→∞

bCh(At )[2k] = lim
t→∞

b Str((e−tδt (F))[2k]) = lim
t→∞Str((e−tδt (F))[2k])

= Str(e−R[2])[2k] = Ch(kerL2 ð,∇L2
)[2k]. (8.23)

��
Combining this result with [36, Proposition 11 and Proposition 16], we obtain a

formula for the Chern character of the L2-kernel bundle with respect to the connection
∇L2

.
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Theorem 8.4. The Chern character of the L2-kernel bundle of ð with respect to the
connection ∇L2

is given by

Ch(kerL2 ð,∇L2
)[2n] =

[
1

(2π i)
m
2

∫
N/B

Â(N/B; gb)Ch′(E)− dBγ

]
[2n]

, n > 0.

Here, m = dim M̃ and

γ =
∫ ∞

0

bSTr

(
dAt

dt
e−A2

t

)
dt.

Proof. By [36, Proposition 11],

d

dt
bCh(At ) = −dBγ (t)− η̂(t),

where

γ (t) = bSTr

(
dAt

dt
e−A2

t

)
, η̂(t)

1√
π
StrCl(1)

(
dBt

dt
e−B2

t

)
.

Here, Bt is the rescaled odd superconnection associated to the family of Dirac-type
operators on ∂ Ñ , see [36, p.38]. By assumption, this family is trivial, so the only non-
zero contribution is in degree 0. Thus in fact,

d

dt
bCh(At )[2k] = −(dBγ (t))[2k] for k > 0. (8.24)

Next, by [36, (15.17)],

γ (t) = O(t− 1
2 ) as t → 0+.

On the other hand, using Proposition 8.1 and its proof, we can argue as in the proof of
[1, Theorem 9.23] to conclude that for k > 0,

γ (t)[k] = O(t− 3
2 ) as t → ∞.

Finally, [36, (15.15)] tells us that

lim
t→0

bCh(At )[2k] =
[

1

(2π i)
m
2

∫
N/B

Â(N/B; gb)Ch′(E)
]
[2k]

for k > 0,

so the result follows by integrating (8.24) with respect to t . ��
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9. The Curvature of the Quillen Connection

In this section, we suppose that Ñ = [N ; D], where N is a complex orbifold and D is
an effective orbifold divisor with (N , D) satisfying hypotheses (i) and (ii) of Sect. 4.
We also assume that B is a complex manifold and that φ : N → B is induced by a
holomorphic fibration φ : N → B. In this case, E is a Hermitian vector bundle over N
such that the family of Dirac-type operators is the family of Dolbeault operators

ð = √
2(∂ + ∂

∗
) (9.1)

associated to the Clifford bundle E = �0,∗(N/B)⊗ E . We will also assume that gb is a
family of Kähler metrics inducing a structure of Kähler fibration on φ : N → B in the
sense of [4], with associated connection TH N for φ : Ñ → B. Finally, we assume not
only that the family of nullspaces kerL2 ð is a bundle over B, but also that the L2-kernels
of ð acting on �0,q(N/B)⊗ E determine a bundle over B in each degree q.

With these extra assumptions, we now consider the L2-determinant bundle associated
to the family (9.1). This is the complex line bundle over B given by

det(ð+) = (�max kerL2(ð+))−1 ⊗�max kerL2(ð−). (9.2)

The L2-connection ∇L2
induces a connection ∇det(ð+) on det(ð+). By Theorem 8.4, the

curvature of this connection is given by

(∇det(ð+))2 =
[

1

(2π i)
m
2

∫
N/B

Â(N/B; gb)Ch′(E)− dBγ

]
[2]
. (9.3)

Amore natural choice of connection on∇det(ð+) is theQuillen connection. To describe
it, we introduce the ∂-torsion of the family of operators ð, following the approach in
[35]. We first define the determinant of the restriction �q of the Laplacian � = ð

2 =
2(∂

∗
∂ + ∂∂

∗
) to elements of type (0, q).

First consider the function

ζ0(�q , s) = 1

!(s)

∫ 1

0
t s−1 bTr(e−t�q )dt for Re s ) 0.

Since bTr(e−t�q ) admits a short-time asymptotic expansion,

bTr(e−t�q ) ∼
∞∑

k=−m

akt
k
2 as t ↘ 0,

the ζ -function ζ0(�q , s) extends to a meromorphic function on C with only simple
poles. Because of the !(s) factor, ζ0(�q , s) is holomorphic near s = 0. For t ↗ ∞, we
also consider the ζ -function

ζ∞(�q , s) = 1

!(s)

∫ ∞

1
t s−1 bTr(e−t�q ) dt for Re s # 0.

There is an expansion

bTr(e−t�q ) ∼
∞∑
k≥0

akt
−k/2 as t → ∞,
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so ζ∞(�q , s) extends meromorphically to C with at most simple poles. As before, this
extension is holomorphic near s = 0, so altogether,

ζ(�q , s) = ζ0(�q , s) + ζ∞(�q , s)

is holomorphic near s = 0. We then define the regularized determinant of �q by the
usual formula

log det(�q) := −ζ ′(�q , 0).

The ∂-torsion of the family ð is now defined by

log T (∂) =
∑
q

(−1)qq log det(�q).

Alternatively,we can define the ∂-torsion in terms of one ζ -function using the regularized
supertrace and the number operatorQ, which acts on�0,q(N/B)⊗ E as multiplication
by q, namely

log T (∂) = ζ ′(∂, 0),

where ζ(∂, s) = ζ0(∂, s) + ζ∞(∂, s) with

ζ0(∂, s) =
∑
q

(−1)qqζ0(�q , s) = 1

!(s)

∫ 1

0
t s−1 bSTr(Qe−t�)dt for Re s ) 0.

ζ∞(∂, s) =
∑
q

(−1)qqζ∞(�q , s) = 1

!(s)

∫ ∞

1
t s−1 bSTr(Qe−t�)dt for Re s # 0.

(9.4)

We now define the Quillen metric of det(ð+) by

‖ · ‖Q = T (∂)
1
2 ‖ · ‖L2 ,

where ‖ · ‖L2 is the metric induced by the L2-norm on kerL2 ð.
To introduce the corresponding Quillen connection, we need a bit more preparation.

Following [1], first consider the Fréchet bundle φ∗E → B with fibre

φ∗E |b = Ċ∞(φ−1(b); E × b�
1
2 (φ−1(b)));

b�
1
2 (φ−1(b)) is the half b-density bundle and Ċ∞(φ−1(b); E × b�

1
2 (φ−1(b))) is the

space of smooth sections with rapid decay at infinity. The choices of connection for
φ : N → B and E induces a connection ∇φ∗E for φ∗E (cf. [1, Proposition 9.13]). In
fact, A[1] = ∇φ∗E (see [1, Proposition 10.16]). It is convenient to consider a truncated
version of the Bismut superconnection involving only the terms of degree 0 and 1,

Ã = A[0] + A[1] = ð + ∇φ∗E ,
which has the rescaling

Ãt = t
1
2 ð + ∇φ∗E .
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For t ∈ R
+, define the following differential forms on B:

α+(t) = 1

2t
1
2

bSTr
(√

2∂
∗
e−Ã2

t

)
and α−(t) = 1

2t
1
2

bSTr
(√

2∂e−Ã2
t

)
.

In degree 1,

(e−Ã2
t )[1] = (e−A2

t )[1] = −t
∫ 1

0
e−(1−σ)tð2 t−

1
2 [∇φ∗E ,ð]e−σ tð2dσ

= −t
1
2

∫ 1

0
e−(1−σ)tð2 [∇φ∗E ,ð]e−σ tð2dσ. (9.5)

Due to our assumptions on the restriction of the family ð to ∂N , [∇φ∗E ,ð] has vanishing
indicial family, so the integrand in (9.5) is trace class, and we can thus define α±(t)[1]
without using the b-supertrace:

α+(t)[1] = 1

2t
1
2

STr(
√
2∂

∗
(e−Ã2

t )[1]) and α−(t)[1] = 1

2t
1
2

STr(
√
2∂(e−Ã2

t )[1]).

Lemma 9.1. The 1-form components of the differential forms α±(t) satisfy

α+(t)[1] = −α−(t)[1].
These are rapidly decreasing (with all derivatives in B) as t tends to infinity and have
short-time asymptotics

α±(t)[1] ∼
∞∑

k=−N

t
k
2 a±k as t ↘ 0.

Proof. Since (e−Ã2
t )[1] is trace class, the first assertion follows as in [1, Lemma 9.42],

using the fact that ∂
∗
is the formal adjoint of ∂ and that∇φ∗E respects the metric on φ∗E .

To see that α+(t)[1] is rapidly decreasing as t tends to infinity, notice that

α+(t)[1] = −STr(
√
2∂

∗[∇φ∗E ,ð]e−tð2)

= −STr(
√
2∂

∗[∇φ∗E ,ð](Id−�0)e
−tð2(Id−�0)),

so we can use the decay properties of pi,t : N ε
1 → N ε

1 established in the proof of
Lemma8.3 to conclude thatα±(t)[1] is rapidly decreasing as t tends to infinity. The short-
time asymptotics follow from the corresponding asymptotics of the heat kernel. Taking
the complex conjugate of α+(t)[1], we get the corresponding statement for α−(t)[1]. ��

This lemma shows that the 1-forms

β±(s) = 2
∫ ∞

0
t sα±(t)[1]dt

are well-defined and holomorphic in s for Re s ) 0. The short-time asymptotics of
α±(t) also allow us to extend β±(s) to a meromorphic function in s for s ∈ C with at
most simple poles. In particular, we can define the finite part at s = 0 by

β± = d

ds

1

!(s)
β±(s)
∣∣∣∣
s=0

.
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Lemma 9.2. As a function on B, the differential of log T (∂) = ζ ′(∂, 0) equals
dζ ′(∂, 0) = β+ − β−.

Proof. Using Duhamel’s formula,

dζ ′∞(∂, s)=
d

ds

(
1

!(s)

∫ ∞

1

(
−t s−1bSTr

(
Q
∫ t

0
e−(t−σ)ð2 [∇φ∗E ,ð2]e−σð2dσ

))
dt

)

(9.6)

for Re s # 0. Since [∇φ∗E ,ð2] has vanishing indicial family, the term inside the b-
supertrace is trace class, so we can replace the b-supertrace with the usual supertrace.
The decay properties of pi,t show that the integrand is rapidly decreasing (with all
derivatives in B) as t tends to infinity, so the differential dζ ′∞(∂, s) extends to an entire
function of s. In particular,

dζ ′∞(∂, 0) = − d

ds

(
1

!(s)

∫ ∞

1
t s STr(Q[∇φ∗E ,ð2]e−tð2)dt

)∣∣∣∣
s=0

.

Similarly, for Re s ) 0, we have that

dζ ′0(∂, s) = − d

ds

(
1

!(s)

∫ 1

0
t s STr(Q[∇φ∗E ,ð2]e−tð2)dt

)
.

By the short-time asymptotics of the heat kernel, we extend this differential meromor-
phically in s ∈ C with only simple poles; the result is regular at s = 0. This shows
that

dζ ′(∂, 0) = dζ ′0(∂, 0) + dζ ′∞(∂, 0)

= − d

ds

(
1

!(s)

∫ ∞

0
t s STr(Q[∇φ∗E ,ð2]e−tð2)dt

)∣∣∣∣
s=0

. (9.7)

Now, using the relation

[∇φ∗E ,ð2] = [∇φ∗E ,ð]ð + ð[∇φ∗E ,ð],
we see that

STr(Q[∇φ∗E ,ð2]e−tð2) = STr(Q[∇φ∗E ,ð]ðe−tð2) + STr(Qð[∇φ∗E ,ð]e−tð2)

= STr(Q[∇φ∗E ,ð]e−tð2
ð) + STr(Qð[∇φ∗E ,ð]e−tð2)

= STr([Q,ð][∇φ∗E ,ð]e−tð2), (9.8)

where in the last step, we use that

0 = STr(
[
(Q[∇φ∗E ,ð]e−tð2),ð

]
)

= STr(Q[∇φ∗E ,ð]e−tð2
ð) + STr(ðQ[∇φ∗E ,ð]e−tð2).

Therefore, since [Q,ð] = √
2(∂ − ∂∗), (9.7) and (9.8) show that

dζ ′(∂, 0) = − d

ds

(
1

!(s)

∫ ∞

0
t s STr(

√
2(∂ − ∂∗)[∇φ∗E ,ð]e−tð2)dt

)∣∣∣∣
s=0

= β+ − β−, (9.9)

which gives the claimed result. ��
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The Quillen connection on det(ð+) is given by

∇Q = ∇det(ð+) + β+.

As the terminology suggests, ∇Q is compatible with the Quillen metric.

Proposition 9.3. TheQuillen connection is the Chern connection of det(ð+)with respect
to the Quillen metric.

Proof. We know that ∇det(ð+) is the Chern connection of det(ð+) with respect to the

L2-metric. Since ‖ · ‖Q = e
ζ ′(∂,0)

2 ‖ · ‖L2 , we see that ∇Q is compatible with the Quillen
metric provided

β+ = dζ ′(∂, 0)
2

+ ω

with ω an imaginary 1-form. But by Lemma 9.2, ω = β++β−
2 , and by Lemma 9.1, this

is imaginary. To see that ∇Q is the Chern connection of the Quillen metric, we note
that β+ is a (1, 0) form on B, which follows from the fact (see [4, Theorem 1.14]) that
[∇φ∗E , ∂] is an operator valued (1, 0)-form. ��
Theorem 9.4. The curvature of the Quillen connection equals

(∇Q)2 =
[

1

(2π i)
m
2

∫
N/B

Td(T 1,0(N/B), gb)Ch(E)

]
[2]
, where m = dimR M.

Proof. The curvature of ∇det(ð+) is given by (9.3). On the other hand, since β+ − β− =
dζ ′(∂, 0) is a closed form, we have

(∇Q)2 = (∇det(ð+))2 + dβ+ = (∇det(ð+))2 +
d(β+ + β−)

2
. (9.10)

Since Ã equals A up to terms of order 2, we see that

1

2
(β+ + β−) = d

ds

(
1

!(s)

∫ ∞

0
t s(α+(t)[1] + α−(t)[1])dt

)∣∣∣∣
s=0

= d

ds

(
1

!(s)

∫ ∞

0
t s STr

(
dAt

dt
e−A2

t

)
[1]

dt

)∣∣∣∣∣
s=0

=
∫ ∞

0
STr

(
dAt

dt
e−A2

t

)
[1]

dt, (9.11)

where in the last step we have used that STr
(
dAt
dt e

−A2
t

)
[1] is integrable in t . Thus, by

combining (9.3), (9.10) and (9.11), we see that

(∇Q)2 =
[

1

(2π i)
m
2

∫
N/B

Â(N/B; gb)Ch′(E)
]
[2]
. (9.12)

Taking advantage of the fact that φ : N → B is a Kähler fibration, this integral can be
rewritten in terms of the Todd form of T 1,0(N/B) and the Chern character form of the
Hermitian bundle E . ��
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Remark 9.5. Instead of using the ∂-torsion as in [5] to define the Quillen metric, we
could as well have used the approach of Bismut–Freed [3] and defined the metric as

‖ · ‖BF := det(ð−
ð
+)−

1
2 ‖ · ‖ = e−

1
2 ζ

′(ð−ð+,0)‖ · ‖L2

with a compatible connection ∇BF whose curvature is given by (9.12). The advantage
of the Bismut–Freed approach is that it works in non-holomorphic settings, but its
disadvantage is that in holomorphic settings, the connection ∇BF is typically not the
Chern connection of the metric ‖ · ‖BF .

10. The Weil–Petersson Metric on the Moduli Space of Asymptotically
Cylindrical Calabi–Yau Manifolds

Let (Z , gb) be a compactifiable asymptotically cylindrical Calabi–Yau manifold with
compactification Z such that Z = Z\D for some divisor D in Z as in Definition 5.2.
Assume that H1(Z;R) = 0. This is the case for instance if H1(Z;R) = 0. Let L → Z
be an ample line bundle over Z with inducedKähler class � ∈ H1,1(Z) ⊂ H2(Z;R) and
denote by � ∈ H2(Z;R) the restriction of � to Z . By Theorem 7.7, there is a well-defined
relative moduli space in a neighborhood of Z ,

Z
i �� X

φ

��
Mrel,

(10.1)

with φ−1(m0) = Z and

Tm0Mrel ∼= L2H0,1(Z; bT 1,0Z)

∼= Im
(
H1(Z; TZ (log(D))(−D))→ H1(Z; TZ (log(D))

)
.

As the complex structure is deformed, the line bundle KZ (D) = KZ⊗LD automatically
remains topologically trivial. Thus, since H0,1(Z) = 0, we conclude that KZ (D) also
remains holomorphically trivial. This means that a global non-zero meromorphic vol-
ume formwith a simple pole at D continues to exist as we deform the complex structure.
Consequently, we can apply the construction of Haskins–Hein–Nordström and obtain
the existence of Calabi–Yaumetrics on the deformed spaces. The following result allows
us to make a canonical choice.

Lemma 10.1. The class � on Z remains a Kähler class as the complex structure is
deformed inMrel.

Proof. Any class ξ ∈ Im
(
H1(Z; TZ (log(D)(−D)))→ H1(Z; TZ (log D))

)
can be

paired with � to obtain an element in

Im(H2(Z; T ∗
Z
⊗ TZ (log D)(−D))→ H2(Z; T ∗

Z
⊗ TZ (log D))).

Since TZ (log D) is naturally a subsheaf of TZ , there is a canonical map
H2(Z; T ∗

Z
⊗ TZ (log D)) → H2(Z; T ∗

Z
⊗ TZ ). Composing with the map



1004 R. J. Conlon, R. Mazzeo, F. Rochon

H2(Z; T ∗
Z
⊗ TZ )→ H0,2(Z) induced by the trace T ∗

Z
⊗ TZ → OZ , we obtain from ξ

and � a class

ιξ � ∈ H0,2(Z).

This encodes how � changes when the complex structure is varied in the direction ξ .
Restricting to Z , again using the sheaf map TZ (log D)→ TZ , we see that the restriction
of ιξ � to Z comes from an element of

Im(H2(Z;OZ (−D))→ H2(Z;OZ ))
∼= L2H0,2(Z).

But by Corollary 4.7, this latter space is trivial so ιξ �
∣∣
Z = 0.

On the other hand, consider the long exact sequence associated to the pair (Z , Z\ND),
whereND is a tubular neighborhood of D in Z , which is of course diffeomorphic to the
normal bundle of D. Depending on whether or not H1(Z;R) is trivial, we deduce that
either

ker(H2(Z;C)→ H2(Z;C)) = 0

or that

ker(H2(Z;C)→ H2(Z;C)) ∼= H2
c (ND;C) ∼= H0(D;C) ∼= C.

In the first case, we have automatically that ιξ � = 0. In the second case, H2
c (ND;C)

is generated by a (1, 1)-current supported on D. Since ιξ � is of type (0, 2) and lies in
this space, we conclude that ιξ � = 0. Since the class ξ was arbitrary, � must remain
unchanged as the complex structure is deformed inMrel. ��

By this lemma, we can use the class � and Theorem 5.3 with λ = 1 to define for each
m ∈ Mrel a unique asymptotically cylindrical Calabi–Yau metric gm on Zm = φ−1(m)
withKähler formωm belonging to the class � = �

∣∣
Z ∈ H2(Z;R). This family ofCalabi–

Yau metrics gives φ the structure of a Kähler fibration in the sense of [4, Definition 1.4].
Indeed, let hm be the Hermitian metric on the polarization L over the fibre φ−1(m) with
first Chern form on φ−1(m) equal to the Kähler form ωm . Let ω be the corresponding
first Chern form of the line bundle L → X with Hermitian metric hm . Clearly, ω is
a closed (1, 1)-form which restricts to ωm on φ−1(m) for each m. Define THX as the
orthogonal complement of the vertical tangent bundle T (X/Mrel) with respect to the
symmetric 2-form g = ω(J ·, ·), where J is the complex structure on X. Notice that g is
not necessarily positive-definite onX, but it is when restricted to the fibres of φ, so THX
is a well-defined vector bundle inducing the decomposition TX = THX⊕ T (X/Mrel).
Since the action of J preserves g and TX/Mrel, it preserves THX. This means that the
triple (φ, gm, THX) is a Kähler fibration.

More importantly, the family of Calabi–Yau metrics gm induces a metric on the
moduli space Mrel.

Definition 10.2. The Weil–Petersson metric on Mrel is defined by

gWP(u, v) =
∫
Zm

〈u, v〉gm dμ(gm) for u, v ∈ L2H0,1(Zm, gm; bT 1,0 Z̃m) ∼= TmMrel.
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For compact Calabi–Yau manifolds, the volume is a natural quantity which appears
in many computations related to this Weil–Petersson metric. Although the volume of
an asymptotically cylindrical Calabi–Yau manifold is infinite, there is a notion of renor-
malized volume which is an adequate replacement. This is defined by

RVol(Zm, gm, ρ) := FPs=0

∫
Zm

ρsdμ(gm), (10.2)

where ρ ∈ C∞(Z) is a choice of boundary defining function for Z and FPs=0 f (s)
denotes the finite part at s = 0 of the meromorphic function f . This uses the fact that
s �→ ∫Zm

ρsdμ(gm) is meromorphic in s with at most a simple pole at s = 0. This
definition depends on the choice of ρ. However, replacing ρ by cρ for some positive
constant c, a simple computation shows that

RVol(Zm, gm, cρ) = RVol(Zm, gm, ρ) + Vol(∂ Z̃m; gm) log c.
Thus, choosing ρ appropriately, we can assume that

RVol(Zm0 , gm0 , ρ) = 1, where m0 ∈ Mrel is such that Z = φ−1(m0). (10.3)

The good news is that by doing so, nearby Calabi–Yau manifolds in this family also
have renormalized volume 1 for this same choice of ρ.

Lemma 10.3. Suppose that ρ ∈ C∞(Z̃) is a boundary defining function such that (10.3)
holds. Then

RVol(Zm, gm, ρ) = 1 ∀m ∈ Mrel.

Proof. Let ωm be the Kähler form of gm . Then, by Lemma 10.1 and Corollary 5.4, we
know that

ωm = ωm0 + du

for some polyhomogeneous L2 1-form u. Using Stokes’ theorem, we thus obtain that

RVol(Zm, gm, ρ)− RVol(Zm0 , gm0 , ρ) =
∫
Zm

ωn
m − ωn

m0

n!

= 1

n!
∫
Zm

d

⎛
⎝ n∑

j=1

n!
j !(n − j)!u ∧ (du) j−1 ∧ ωn− j

m0

⎞
⎠

= 0.

��
Proposition 10.4. The Weil–Petersson metric is Kähler. Furthermore, the first Chern
form of the bundle bT 1,0(X/Mrel) with Hermitian structure induced by the family of
Calabi–Yau metrics associated to the class � is given by

c1(
bT 1,0(X/Mrel)) = −c1(�

n((bT 1,0(X/Mrel))
∗)) = φ∗ωWP

π
,

where ωWP is the Kähler form of gWP.
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Proof. We know that�n((bT 1,0(X/Mrel))
∗) has a global holomorphic section which is

flat with respect to the Levi-Civita connection of gm , hence

c1(
bT 1,0(X/Mrel)) = −φ∗c1(H0(X/Mrel;�n

X/Mrel
(log D))).

Let � be a local non-vanishing holomorphic section of H0(X/Mrel;�n
X/Mrel

(log D))

onMrel. Then on Zm ,

�(m) ∧�(m) = cm(−i)n
2
dμ(gm)

for some constant cm > 0, or equivalently,

|�(m)|2gm = cm,

so that

c1(H
0(X/Mrel;�n

X/Mrel
(log D))) = i

2π
∂Mrel∂Mrel log |�(m)|2gm

= i

2π
∂Mrel∂Mrel log cm . (10.4)

Now, the constant cm can be conveniently rewritten using the renormalized volume,

cm = (−i)−n2
FPs=0
∫
Zm
ρs�(m) ∧�(m)

RVol(Zm, gm, ρ)
= (−i)−n2 FPs=0

∫
Zm

ρs�(m) ∧�(m),

where, by Lemma 10.3, we can assume that ρ is chosen so that RVol(Zm, gm, ρ) = 1.
Substituting this expression in (10.4), we compute that

c1(H
0(X/Mrel;�n

X/Mrel
(log D)))(ξ, η) = − i

2π

1

(−i)n2cm

∫
Zm

ιξ�(m) ∧ ιη�(m).

Just as for the moduli space of compact Calabi–Yau manifolds, see for instance [42,
p.640-641], we also have that∫

Zm

ιξ�(m) ∧ ιη�(m) = cm(−i)n
2 2

i
ωWP(ξ, η),

and the result follows from this. ��
Consider the holomorphic vector bundle over X with coefficients

E =
n⊕

p=1

(−1)p p�p(X/Mrel). (10.5)

This has a Hermitian structure induced by the family of Calabi–Yau metrics gm associ-
ated to the polarization �. Let ð = √

2(∂ + ∂
∗
) be the corresponding family of Dolbeault

operators. To apply Theorem 9.4 to this family, we must check that the family ð satisfies
the hypotheses of Sects. 8 and 9. Since we are on the moduli space of relative defor-
mations, it is clear from Theorem 7.7 and Corollary 5.4 that the indicial family I (ð, λ)
is unchanged as we move on Mrel. On the other hand, we have shown that the family
of Calabi–Yau metrics gm gives φ the structure of a Kähler fibration (φ, gm, THX). It
follows from the next result that the L2-kernels of ð acting on�0,q(X/Mrel)⊗ E form
a bundle over Mrel.
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Lemma 10.5. The Hodge numbers h p,q(m) := dim L2Hp,q(φ−1(m), gm) are indepen-
dent of m ∈ Mrel.

Proof. Since Mrel is assumed to be connected, it suffices to show that h p,q is locally
constant. For ε > 0 sufficiently small, L2Hp,q(φ−1(m), gm) corresponds to the kernel
of the Fredholm operator

�∂ : ρεH2
b (φ

−1(m),�p,q(φ−1(M)))→ ρεL2
b(φ

−1(m),�p,q(φ−1(M))).

Hence, there is a small neighborhoodU of anym0 ∈ Mrel such that h p,q(m) ≤ h p,q(m0)

for all m ∈ U . On the other hand,

dim L2Hk(φ−1(m), gm) =
∑
p+q=k

h p,q .

But by the result of [35], see also [19], the number dim L2Hk(φ−1(M), gm) depends
only on the topology of Z̃ = [Z; D], the blow-up of Z at D in the sense of [35], so it
is independent of m. This means that none of the individual Hodge numbers h p,q can
decrease, so h p,q(m) = h p,q(m0) for all m ∈ U . ��

The familyð thus has awell-defined determinant line bundle.We can useTheorem9.4
to compute its curvature.

Theorem 10.6. The curvature of the determinant line bundle of the family of Dolbeault
operators ð = √

2(∂ + ∂
∗
) associated to the bundle (10.5) is

i

2π
(∇Q)2 = χ(Z)

12π
ωWP .

Proof. By Theorem 9.4,

(∇Q)2 =
[

1

(2π i)n

∫
N/B

Td(T 1,0(X/Mrel), gb)Ch(E)

]
[2]
, where n = dimC Z .

(10.6)

On the other hand, by [2, p.374],

Td(T 1,0(X/Mrel)Ch(E)) = −(2π i)n−1cn−1 + (2π i)
n n

2
cn − (2π i)n+1

12
c1cn

+ (higher order terms), (10.7)

where ci = ci (T 1,0(X/Mrel)) are the Chern forms of the Hermitian bundle
T 1,0(X/Mrel) and the 2π i factors appear because we follow the convention of [1]
for the definitions of the Todd form and the Chern character form. On the other hand,
by Proposition 10.4,

c1(T
1,0(X/Mrel)) = φ∗ωWP

π
. (10.8)

Hence, combining (10.6), (10.7) and (10.8), the result follows from the Chern-Gauss-
Bonnet theorem for manifolds with cylindrical ends (see [35]),∫

Zm

cn = χ(Zm) = χ(Z).

��
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