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Abstract: We are concerned with spherically symmetric solutions of the Euler equa-
tions for multidimensional compressible fluids, which are motivated by many important
physical situations. Various evidences indicate that spherically symmetric solutions of
the compressible Euler equations may blow up near the origin at a certain time under
some circumstance. The central feature is the strengthening of waves as they move radi-
ally inward. A longstanding open, fundamental problem is whether concentration could
be formed at the origin. In this paper, we develop a method of vanishing viscosity and
related estimate techniques for viscosity approximate solutions, and establish the con-
vergence of the approximate solutions to a global finite-energy entropy solution of the
isentropic Euler equations with spherical symmetry and large initial data. This indicates
that concentration is not formed in the vanishing viscosity limit, even though the density
may blow up at a certain time. To achieve this, we first construct global smooth solutions
of appropriate initial-boundary value problems for the Euler equations with designed
viscosity terms, approximate pressure function, and boundary conditions, and then we
establish the strong convergence of the viscosity approximate solutions to a finite-energy
entropy solution of the Euler equations.

1. Introduction

We are concerned with the existence theory for spherically symmetric global solutions
of the Euler equations for multidimensional isentropic compressible fluids:{

∂tρ + ∇x · (ρv) = 0,
(ρv)t + ∇x · (ρv ⊗ v) + ∇x p = 0,

(1.1)

where ρ ≥ 0 is the density, p the pressure, v ∈ R
n the velocity, t ∈ R, x ∈ R

n , and
∇x is the gradient with respect to x ∈ R

n . The constitutive pressure-density relation for
polytropic perfect gases is
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p = p(ρ) = κργ ,

where γ > 1 is the adiabatic exponent and, by scaling, the constant κ in the pressure-
density relation may be chosen as κ = (γ − 1)2/4γ without loss of generality.

For the spherically symmetric motion,

ρ(t, x) = ρ(t, r), v(t, x) = u(t, r)
x
r
, r = |x|. (1.2)

Then the functions (ρ,m) = (ρ, ρu) are governed by the following Euler equations
with geometrical terms:{

∂tρ + ∂rm + n−1
r m = 0,

∂tm + ∂r (
m2

ρ
+ p(ρ)) + n−1

r
m2

ρ
= 0.

(1.3)

The existence theory for spherically symmetric solutions (ρ, v)(t, x) to (1.1) through
form (1.2) is equivalent to the existence theory for global solutions (ρ,m)(t, r) to (1.3).
For any problem with a constant velocity v∞ at infinity, i.e., lim|x|→∞ v(t, x) = v∞, we
may assumewithout loss of generality thatv∞ = 0, or equivalently, limr→∞ u(t, r) = 0,
by the Galilean invariance.

The study of spherically symmetric solutions can date back to the 1950s, and is mo-
tivated by many important physical problems such as flow in a jet engine inlet manifold
and stellar dynamics including gaseous stars and supernovae formation. In particular,
the similarity solutions of such a problem have been discussed in a large literature (cf.
[9,14,24,25,27]), and which are determined by singular ordinary differential equations.
The central feature is the strengthening of waves as they move radially inward. Vari-
ous evidences indicate that spherically symmetric solutions of the compressible Euler
equations may blow up near the origin at a certain time under some circumstance. A
longstanding open, fundamental problem is whether concentration could be formed at
the origin, that is, the density becomes a delta measure at the origin, especially when a
focusing spherical shock is moving inward the origin (cf. [9,24,27]).

Some progress has been made toward solving this problem in recent decades. The
local existence of spherically symmetric weak solutions outside a solid ball at the origin
was discussed in Makino–Takeno [22] for the case 1 < γ ≤ 5

3 ; also see Yang [28,
29]. A shock capturing scheme was introduced in Chen–Glimm [6] for constructing
approximate solutions to spherically symmetric entropy solutions for γ > 1, where the
convergence proof was limited to be locally in time. A first global existence of entropy
solutions including the origin was established in Chen [5] for a class of L∞ Cauchy
data of arbitrarily large amplitude, which model outgoing blast waves and large-time
asymptotic solutions. Also see Slemrod [25] for the resolution of the spherical piston
problem for isentropic gas dynamics via a self-similar viscous limit, and LeFloch–
Westdickenberg [18] for a compactness framework to ensure the strong compactness of
spherically symmetric approximate solutions with uniform finite-energy norms for the
case 1 < γ ≤ 5

3 .
The approach and ideas developed in this paper can indeed yield the global existence

of finite-energy entropy solutions of the compressible Euler equations with spherical
symmetry and large initial data for the general case γ > 1, based on our earlier results
in [8]. To establish the existence of global entropy solutions to (1.3) with initial data:

(ρ,m)|t=0 = (ρ0,m0), (1.4)
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we develop a method of vanishing viscosity and related estimate techniques for viscos-
ity approximate solutions, and establish the convergence of the viscosity approximate
solutions to a global finite-energy entropy solution. To achieve this, we first construct
global smooth solutions of appropriate initial-boundary value problems for the Euler
equations with designed viscosity terms, approximate pressure function, and boundary
conditions, and then we establish the strong convergence of the viscosity approximate
solutions to an entropy solution of the Euler equations (1.3), which is equivalent to (1.1)
via relation (1.2). For simplicity of presentation, we focus our analysis on the physical
region 1 < γ ≤ 3 throughout the paper, though the convergence argument also works
for all γ > 1.

The viscosity terms and approximate pressure function are designed to approximate
the Euler equations are as follows:{

ρt + mr + n−1
r m = ε

(
ρrr + n−1

r ρr
) ≡ εr−(n−1)

(
rn−1ρr

)
r ,

mt +
(m2

ρ
+ pδ(ρ)

)
r +

n−1
r

m2

ρ
= ε

(
mr + n−1

r m
)
r ≡ ε

(
r−(n−1)(rn−1m)r

)
r ,

(1.5)

where

pδ(ρ) = κργ + δρ2, δ = δ(ε) > 0,

with ε ∈ (0, 1] and δ(ε) → 0 as ε → 0 in an appropriate order. Notice that the positive
term δρ2 is added into pδ(ρ) to avoid the possibility of formation of cavitation of the
solutions to the viscous system (1.5). For shallow water flow, γ = 2, so that the term
δρ2 can be dropped.

We consider (1.5) on a cylinder Qε = R+ × (a, b), with R+ = [0,∞), a := a(ε) ∈
(0, 1), b := b(ε) > 1, and

lim
ε→0

a(ε) = 0, lim
ε→0

b(ε) = ∞,

with the boundary conditions:

(ρr ,m)
∣∣
r=a = (0, 0), (ρ,m)|r=b = (ρ̄, 0) for t > 0 (1.6)

for some ρ̄ := ρ̄(ε) > 0, and with appropriate approximate initial functions:

(ρ,m)|t=0 = (ρε
0,m

ε
0)(r) for a < r < b, (1.7)

satisfying the conditions in Theorem 1.1 below.
A pair of mappings (η, q) : R+ ×R → R

2 is called an entropy-entropy flux pair (or
entropy pair, for short) of system (1.3) if the pair satisfies the 2 × 2 linear hyperbolic
system:

∇q(U ) = ∇η(U )∇
(

m
m2

ρ
+ p(ρ)

)
, (1.8)

where ∇ = (∂ρ, ∂m) is the gradient with respect to U = (ρ,m) from now on. Further-
more, η(ρ,m) is called a weak entropy if

η

∣∣∣ρ=0
u=m/ρ fixed

= 0. (1.9)

An entropy pair is said to be convex if the Hessian ∇2η(ρ,m) is nonnegative in the
region under consideration.
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For example, the mechanical energy η∗(ρ,m) (a sum of the kinetic and internal
energy) and the mechanical energy flux q∗(ρ,m):

η∗(ρ,m) = 1

2

m2

ρ
+

κργ

γ − 1
, q∗(ρ,m) = 1

2

m3

ρ2 +
κγ

γ − 1
mργ−1, (1.10)

form a special entropy pair of system (1.3), and η∗(ρ,m) is convex in the region ρ ≥ 0.
Any weak entropy pair for the Euler system (1.3) can be expressed by

ηψ(ρ,m) = ρ

∫ ∞

−∞
ψ(

m

ρ
+ ρθ s)[1 − s2]λ+ ds, (1.11)

qψ(ρ,m) = ρ

∫ ∞

−∞
(
m

ρ
+ θρθ s)ψ(

m

ρ
+ ρθ s)[1 − s2]λ+ ds, (1.12)

with λ = 3−γ
2(γ−1) and the generating function ψ(s).

Theorem 1.1. Assume that (ρ0,m0) ∈ L1
loc(R+)

2, with ρ0 ≥ 0, is of finite energy:

( m2
0

2ρ0
+

κρ
γ
0

γ − 1

)
rn−1 ∈ L1(R+). (1.13)

Let (δ, ρ̄) = (δ(ε), ρ̄(ε)) ∈ (0, ε) × (0, 1) with limε→0(δ, ρ̄) = (0, 0) satisfy

ρ̄γ bn +
δ

ε
bn ≤ M, (1.14)

for some M < ∞ independent of ε ∈ (0, 1]. If (ρε
0,m

ε
0) is a sequence of smooth functions

with the following properties:

(i) ρε
0 > 0;

(ii) (ρε
0,m

ε
0) satisfies (1.6) and (

rn−1mε
0

)
r

∣∣
r=a = 0, (1.15)

and, at r = b,

mε
0,r = εr−(n−1)(rn−1ρε

0,r

)
r ,

( (mε
0)

2

ρε
0

+ pδ(ρ
ε
0)

)
r

= εr−(n−1)(rn−1mε
0

)
r ;

(1.16)
(iii) (ρε

0,m
ε
0) → (ρ0,m0) a.e. r ∈ R+ as ε → 0, where we understand (ρε

0,m
ε
0) as the

zero extension of (ρε
0,m

ε
0) outside (a, b);

(iv)
∫ b
a

(
(mε

0)
2

2ρε
0

+
κ(ρε

0)
γ

γ−1

)
rn−1dr → ∫ ∞

0

(
m2
0

2ρ0
+

κρ
γ
0

γ−1

)
rn−1dr as ε → 0,

then, for each fixed ε > 0, there is a unique global classical solution (ρε,mε)(t, r) of
(1.5)–(1.7) with initial data (ρε

0,m
ε
0) so that there exists a subsequence (still labeled

(ρε,mε)) that converges a.e. (t, r) ∈ R
2
+ := R+ × R+ and in L p

loc(R
2
+) × Lq

loc(R
2
+),

p ∈ [1, γ + 1), q ∈ [1, 3(γ+1)
γ+3 ), as ε → 0, to a global finite-energy entropy solution

(ρ,m) of the Euler equations (1.3) with initial condition (1.7) in the following sense:
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(i) For any ϕ ∈ C∞
0 (R2

+) with ϕr (t, 0) = 0,∫
R
2
+

(
ρϕt + mϕr

)
rn−1drdt +

∫ ∞

0
ρ0(r)ϕ(0, r) rn−1dr = 0;

(ii) For all ϕ ∈ C∞
0 (R2

+), with ϕ(t, 0) = ϕr (t, 0) = 0,∫
R
2
+

(
mϕt +

m2

ρ
ϕr + p(ρ)(ϕr +

n − 1

r
ϕ)

)
rn−1drdt +

∫ ∞

0
m0(r)ϕ(0, r) rn−1dr = 0;

(iii) For a.e. t2 ≥ t1 ≥ 0,∫ ∞

0
η∗(ρ,m)(t2, r) r

n−1dr ≤
∫ ∞

0
η∗(ρ,m)(t1, r) r

n−1dr

≤
∫ ∞

0
η∗(ρ0,m0)(r) r

n−1dr; (1.17)

(iv) For any convex function ψ(s) with subquadratic growth at infinity and any entropy
pair (ηψ, qψ) defined in (1.11)–(1.12),

(ηψr
n−1)t + (qψr

n−1)r + (n − 1)rn−2(mηψ,ρ +
m2

ρ
ηψ,m − qψ

) ≤ 0 (1.18)

in the sense of distributions.

Remark 1.1. Theorem1.1 indicates that there is no concentration formed in the vanishing
viscosity limit of the viscosity approximate solutions to the global entropy solution of the
compressible Euler equations (1.3) with initial condition (1.7), which is of finite-energy
with monotonic decreasing in time (1.17) and obeys the entropy inequality (1.18).

Remark 1.2. To achieve (1.14), it suffices to choose δ = εb−k1 and ρ̄ = b−k2 for any
k1 ≥ n and k2 ≥ n

γ
.

2. Global Existence of a Unique Classical Solution of the Approximate Euler
Equations with Artificial Viscosity

The equations in (1.5) form a quasilinear parabolic system for (ρ,m). In this section,
we show the existence of a unique smooth solution (ρ,m), equivalently (ρ, u) with
u = m

ρ
, and make some estimates of the solution whose bounds may depend on the

parameter ε ∈ (0, 1] (except the energybound E0 below). Forβ ∈ (0, 1), letC2+β([a, b])
and C2+β,1+ β

2 (QT ) be the usual Hölder and parabolic Hölder spaces, where QT =
[0, T ] × (a, b) (cf. [15]). For simplicity, we will drop the ε-dependence of the involved
functions in this section.

Theorem 2.1. Let (ρ0,m0) ∈ (C2+β([a, b]))2 with infa≤r≤b ρ0(r) > 0 and satisfy (1.6)
and (1.15)–(1.16). Then there exists a unique global solution (ρ,m) of problem (1.5)–
(1.7) for γ ∈ (1, 3] such that

(ρ,m) ∈ (C2+β,1+ β
2 (QT ))2 with inf

(t,r)∈QT
ρ(t, r) > 0 for all T > 0.
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The nonlinear terms in (1.5) have singularities when ρ = 0 or |m| = ∞. To es-
tablish Theorem 2.1, we derive a priori estimates for a generic solution in C2,1(QT )

with ‖(ρ, 1
ρ
, m

ρ
)‖L∞(QT ) < ∞, showing by this that the solution takes values in a re-

gion (determined a priori) away from the singularities. With the a priori estimates, the
existence of the solution can be derived from the general theory of the quasilinear par-
abolic systems, by a suitable linearization techniques; see Section 5 and Theorem 7.1 in
Ladyzhenskaja–Solonnikov–Uraltseva [15].

The a priori estimates are obtained by the following arguments: First we derive the
estimates based on the balance of total energy. Then, in Lemma 2.2, we use themaximum
principle for the Riemann invariants and the total energy estimates to show that the L∞-
norm of u = m

ρ
depends linearly on the L∞-norm of ρ(γ−1)/2. This is in turn used in

Lemma 2.3 to close the higher energy estimates for (ρr ,mr ). With that, we obtain the a
priori upper bound ρ in L∞ and, by using Lemma 2.2 again, the a priori bounds of the
L∞-norms of m and u. Finally, to show the positive lower bound for ρ, we obtain an
estimate on

∫ t
0 ‖ur (t, ·)‖L∞ dt .

We proceed now with the derivation of the a priori estimates. Let (ρ,m), with ρ > 0,
be a C2,1(QT ) solution of (1.5)–(1.7) with (1.15)–(1.16).

2.1. Energy estimate. As usual, we denote by

η∗
δ = m2

2ρ
+ hδ(ρ), q∗

δ = m3

2ρ2 + mh′
δ(ρ), (2.1)

as the mechanical energy pair of system (1.5) with ε = 0, where hδ(ρ) := ρeδ(ρ) for
the internal energy eδ(ρ) := ∫ ρ

0
pδ(s)
s2

ds.
Note that (ρ̄, 0) is the only constant equilibrium state of the system. For the mechan-

ical energy pair (η∗
δ , q

∗
δ ) in (2.1), we denote

η̄∗
δ (ρ,m) = η∗

δ (ρ,m) − η∗
δ (ρ̄, 0) − (η∗

δ )ρ(ρ̄, 0)(ρ − ρ̄), (2.2)

as the total energy relative to the constant equilibrium state (ρ̄, 0).

Proposition 2.1. Let

E0 := sup
ε>0

∫ b

a
η̄∗

δ (ρ
ε
0(r),m

ε
0(r))r

n−1dr < ∞.

Then, for the viscosity approximate solution (ρ,m) = (ρ, ρu) determined by Theorem
2.1 for each fixed ε > 0, we have

sup
t∈[0,T ]

∫ b

a

(1
2
ρu2 + h̄δ(ρ, ρ̄)

)
rn−1dr

+ε

∫
QT

(
h′′

δ (ρ)|ρr |2 + ρ|ur |2 + (n − 1)
ρu2

r2

)
rn−1drdt ≤ E0, (2.3)

where

h̄δ(ρ, ρ̄) = hδ(ρ) − hδ(ρ̄) − h′
δ(ρ̄)(ρ − ρ̄) ≥ c1ρ(ρθ − ρ̄θ )2, θ = γ − 1

2
, (2.4)

for some constant c1 = c1(ρ̄, γ ) > 0. Furthermore, for any t ∈ [0, T ], the measure of
set {ρ(t, ·) > 3

2 ρ̄} is less than c2E0 for some c2 = c2(ρ̄, γ ) > 0.
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Proof. We multiply the first equation in (1.5) by (η̄∗
δ )ρr

n−1, the second in (1.5) by
(η̄∗

δ )mr
n−1, and then add them up to obtain(

η̄∗
δ r

n−1)
t +

(
(q∗

δ − (η∗
δ )ρ(ρ̄, 0)m)rn−1)

r

= εrn−1(ρrr + n − 1

r
ρr

)(
(η∗

δ )ρ − (η∗
δ )ρ(ρ̄, 0)

)
+ εrn−1(mr +

n − 1

r
m

)
r (η

∗
δ )m,

that is,

(η̄∗
δ r

n−1)t +
(
(q∗

δ − (η∗
δ )ρ(ρ̄, 0)m)rn−1)

r + (n − 1)εm(η∗
δ )mr

n−3

= ε(ρr r
n−1)r

(
(η∗

δ )ρ − (η∗
δ )ρ(ρ̄, 0)

)
+ ε(mrr

n−1)r (η
∗
δ )m . (2.5)

Integrating both sides of (2.5) over Qt for any t ∈ (0, T ] and using the boundary
conditions (1.6), we have∫ b

a
η̄∗

δ r
n−1 dr + ε

∫
Qt

(
(ρr ,mr )∇2η̄∗

δ (ρr ,mr )

 +

m2

2ρr2

)
rn−1 drdt = E0.

Note that (ρr ,mr )∇2η̄∗
δ (ρr ,mr )


 is a positive quadratic form that dominates h′′
δ (ρ)|ρr |2

and ρ|ur |2 so that∫ b

a
η̄∗

δ r
n−1 dr +ε

∫
QT

(
(2δ + κγργ−2)|ρr |2 + ρ|ur |2 + (n − 1)

ρu2

r2

)
rn−1drdt ≤ E0.

(2.6)
Estimate (2.6) also implies

sup
t∈[0,T ]

∫ b

a

(
ρu2 + h̄δ(ρ, ρ̄)

)
rn−1 dr ≤ E0.

The function h̄δ(ρ, ρ̄) is positive, quadratic in ρ − ρ̄ for ρ near ρ̄, and grows as ρmax{γ,2}
for large values of ρ. In particular, there exists c1 = c1(ρ̄, γ ) > 0 such that (2.4) holds.
Thus, for any t ∈ [0, T ], the measure of set {ρ(t, ·) > 3

2 ρ̄} is less than c2E0 for some
c2 > 0. ��

With the basic energy estimate (2.3), we have

Lemma 2.1. There exists C = C(ε, T, E0) > 0 such that∫ T

0
‖ρ(t, ·)‖2max{2,γ }

L∞(a,b) dt ≤ C. (2.7)

Proof. In the case that the measure of set {ρ(t, ·) > 3
2 ρ̄} is zero, we have the uniform

upper bound 3
2 ρ̄ for ρ(t, r). Otherwise, for r ∈ (a, b), let r0 ∈ (a, b) be the closest to

point r such that ρ(t, r0) = 3
2 ρ̄. Clearly, |r − r0| ≤ c(ρ̄)E0. With such a choice of r0,

we have

|ργ (t, r) − ργ (t, r0)| (2.8)

≤ γ

∣∣∣ ∫ r

r0
ργ−1(t, y)ρy(t, y) dy

∣∣∣
≤ C

∣∣∣ ∫ r

r0
ργ (t, y)yn−1 dy

∣∣∣ 12 ( ∫ b

a
ργ−2(t, y)|ρy(t, y)|2yn−1 dy

) 1
2

≤ C
( ∫ b

a
ργ−2(t, r)|ρr (t, r)|2rn−1 dr

) 1
2
. (2.9)
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Then estimate (2.6) yields ∫ T

0
‖ρ(t, ·)‖2γL∞(a,b) dt ≤ C, (2.10)

where C stands for a generic function of the parameters: γ, ε, δ, T, E0, and ρ̄.
Repeating the argument with ρ2 instead of ργ , we conclude (2.7). ��
From now on, the constant C > 0 is a universal constant that may depend on the

parameter ε > 0 in Sects. 2.2–2.3, while the constant M > 0 below is another universal
constant independent of the parameter ε as E0 from Sect. 3, though both of them may
also depend on T > 0, E0, and other parameters; we will also specify their dependence
whenever needed.

2.2. Maximum principle estimates. Furthermore, we have

Lemma 2.2. There exists C = C(a, T, E0) such that, for any t ∈ [0, T ],
‖u‖L∞(Qt ) ≤ C

(‖u0 + R(ρ0)‖L∞(a,b)+‖u0− R(ρ0)‖L∞(a,b)+‖R(ρ)‖L∞(Qt )

)
, (2.11)

where

R(ρ) =
∫ ρ

0

√
p′
δ(s)

s
ds. (2.12)

Proof. Consider system (1.5). The characteristic speeds of system (1.5) without artificial
viscosity terms are

λ1 = u −
√
p′
δ(ρ), λ2 = u +

√
p′
δ(ρ),

and the corresponding right-eigenvectors are

r1 =
[
1
λ1

]
, r2 =

[
1
λ2

]
.

The Riemann invariants (w, z), defined by the conditions ∇w · r1 = 0 and ∇z · r2 = 0,
are given by

w = m

ρ
+ R(ρ), z = m

ρ
− R(ρ),

with R defined in (2.12). They are quasi-convex:

∇⊥w∇2w(∇⊥w)
 ≥ 0, −∇⊥z∇2z(∇⊥z)
 ≥ 0, (2.13)

where ∇2 is the Hessian with respect to (ρ,m) and ∇⊥ = (∂m,−∂ρ).

Let us multiply the first equation in (1.5) by wρ(ρ,m), the second in (1.5) by
wm(ρ,m), and add them to obtain

wt + λ2wr +
n − 1

r
u
√
p′
δ(ρ)

= − ε
(
ρr (wρ)r + mr (wm)r

)
+ εwrr +

(n − 1)ε

r

(
wr − 1

r
mwm

)
,
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where λ2 is as above. Then

wt +
(
λ2 − (n − 1)ε

r

)
wr − εwrr

= − ε(ρr ,mr )∇2w(ρr ,mr )

 − n − 1

r
u
√
p′
δ(ρ) − (n − 1)ε

u

r2
.

We write

(ρr ,mr ) = α∇w + β∇⊥w,

with

α = wr

|∇w|2 , β = ρrwm − mrwρ

|∇w|2 .

Then we can further write

wt + λwr − εwrr

= − εβ2∇⊥w∇2w(∇⊥w)
 − n − 1

r
u
√
p′
δ(ρ) − (n − 1)ε

u

r2
, (2.14)

where

λ = λ2 − (n − 1)ε

r
+

εα

|∇w|2∇w∇2w(∇w)
 +
2εβ

|∇w|2∇⊥w∇2w(∇w)
.

By setting

w̃(t, r) = w(t, r) − (n − 1)
∫ t

0

∥∥∥
√
p′
δ(ρ(τ, r))u(τ, r)

r
+

εu(τ, r)

r2

∥∥∥
L∞(a,b)

dτ,

and using the quasi-convexity property (2.13) and the classical maximum principle
applied to the parabolic equation (2.14), we obtain

max
Qt

w̃ ≤ max
{
max
(a,b)

w0, max[0,t]×({a}∪{b}) w̃
}
,

or

max
Qt

w ≤ max
(a,b)

w0 + ‖R(ρ)‖L∞(Qt )

+C(ρ̄, a)

∫ t

0

(
1 + ‖ρ(τ, ·)‖

1
2 max{1,γ−1}
L∞(a,b)

)
‖u(τ, ·)‖L∞(a,b) dτ.

Similarly, we have

max
Qt

(−z) ≤ max
(a,b)

(−z0) + ‖R(ρ)‖L∞(Qt )

+C
∫ t

0

(
1 + ‖ρ(τ, ·)‖

1
2 max{1,γ−1}
L∞(a,b)

)
‖u(τ, ·)‖L∞(a,b) dτ.
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Since ρ ≥ 0, it follows that

max
Qt

|u| ≤ max
(a,b)

|w0| + max
(a,b)

|z0| + ‖R(ρ)‖L∞(Qt )

+ C(a)

∫ t

0

(
1 + ‖ρ(τ, ·)‖

1
2 max{1,γ−1}
L∞(a,b)

)
‖u(τ, ·)‖L∞(a,b) dτ. (2.15)

By (2.7) and max{1, γ − 1} < 4γ , we have∫ T

0
‖ρ(τ, ·)‖

1
2 max{1,γ−1}
L∞ dτ ≤ C.

Then we conclude (2.11) from (2.15). ��

2.3. Lower bound on ρ.

Lemma 2.3. There exists C = C(‖(ρ0, u0)‖L∞(a,b), ‖(ρ0,m0)‖H1(a,b), γ ) such that

sup
t∈[0,T ]

∫ b

a

(|ρr |2 + |mr |2
)
dr +

∫
QT

(|ρrr |2 + |mrr |2) drdt ≤ C. (2.16)

Proof. We multiply the first equation in (1.5) by ρrr and the second by mrr to obtain

−∂t

( |ρr |2 + |mr |2
2

)
− ε

(|ρrr |2 + |mrr |2
)
+ (ρtρr )r + (mtmr )r

= −mrρrr − (n − 1)

r
mρrr − (ρu2 + pδ)rmrr − n − 1

r
ρu2mrr

+
(n − 1)ε

r
ρrρrr +

( (n − 1)ε

r
m

)
rmrr .

We integrate this over Qt to obtain∫ b

a

( |ρr |2 + |mr |2
2

)∣∣∣t
0
dr + ε

∫
Qt

(|ρrr |2 + mrr |2) drdt

=
∫
Qt

(
mrρrr +

n − 1

r
mρrr

)
drdt +

∫
Qt

(ρu2 + pδ)rmrr drdt

+ (n − 1)
∫
Qt

(ρu2

r
mrr − ε

r
ρrρrr

)
drdt−(n − 1)ε

∫
Qt

(m
r

)
rmrr drdt. (2.17)

We now estimate the term
∫
QT

(ρu2 + p)rmrr drdt first. Consider∣∣∣∣
∫
Qt

p′
δ(ρ)ρrmrr drdτ

∣∣∣∣
≤ �

∫
Qt

|mrr |2 drdτ + C�

∫
Qt

(
2δρ + κγργ−1)2|ρr |2 drdτ

≤ �

∫
Qt

|mrr |2 drdτ + C�

∫ t

0

((
1 + ‖ρ(τ, ·)‖2γL∞

) ∫ b

a
|ρr |2 dr

)
dτ, (2.18)

where � > 0 will be chosen later.
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Consider (ρu2)rmrr = u2ρrmr + 2ρuurmrr . We estimate

∫
Qt

|u2ρrmrr | drdτ

≤ �

∫
Qt

|mrr |2 drdτ + C�

∫ t

0

(
‖u(τ, ·)‖4L∞

∫ b

a
|ρr (τ, r)|2 dr

)
dτ

≤ �

∫
Qt

|mrr |2 drdτ + C�

∫ t

0

(
‖u(τ, ·)‖4L∞

∫ b

a
h′′

δ (ρ)|ρr (τ, r)|2 dr
)
dτ.

Using the uniform estimates (2.11), we obtain

‖u(τ, ·)‖4L∞(a,b) ≤ ‖u‖4L∞(Qτ ) ≤ C(ρ̄, a, ‖(ρ0, u0)‖L∞(a,b))
(
1 + ‖ρ‖2max{1,γ−1}

L∞(Qτ )

)
.

(2.19)
Inserting this into the above inequality, we have

∫
Qt

|u2ρrmrr | drdτ

≤ �

∫
Qt

|mrr |2 drdτ

+ C�

∫ t

0

((
1 + sup

s∈[0,τ ]
‖ρ(s, ·)‖2max{1,γ−1}

L∞
) ∫ b

a
h′′

δ (ρ)|ρr (τ, r)|2 dr
)
dτ.

On the other hand, using the estimate similar to (2.8), we can write

‖ρ(t, ·)‖max{4,γ+2}
L∞ ≤ C

(
1 +

∫ b

a
|ρr (t, ·)|2 dr

)
for t ∈ [0, T ]. (2.20)

Using (2.20) and γ ∈ (1, 3], we obtain
∫
Qt

|u2ρrmrr | drdτ

≤ �

∫
Qt

|mrr |2 drdτ

+C�

∫ t

0

((
1 + sup

s∈[0,τ ]

∫ b

a
|ρr (s, r)|2dr

) ∫ b

a
h′′

δ (ρ)|ρr (τ, r)|2 dr
)
dτ. (2.21)

Furthermore, we have

∫
Qt

|ρuurmrr | drdτ ≤ �

∫
Qt

|mrr |2 drdτ

+C�

∫ t

0

(
‖(ρu2)(τ, ·)‖L∞

∫ b

a
ρ(τ, r)|ur (τ, r)|2 dr

)
dτ.

(2.22)
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Arguing as in (2.19) and (2.20), we obtain

‖(ρu2)(τ, ·)‖L∞ ≤ C
(
1 + sup

s∈[0,τ ]
‖ρ(s, ·)‖max{2,γ }

L∞
)

≤ C
(
1 + sup

s∈[0,τ ]

∫ b

a
|ρr (s, r)|2 dr

)
. (2.23)

Inserting this into (2.22), we obtain∫
Qt

|ρuurmrr | drdτ

≤ �

∫
Qt

|mrr |2 drdτ

+C�

∫ t

0

((
1 + sup

s∈[0,τ ]

∫ b

a
|ρr (s, r)|2dr

) ∫ b

a
ρ(τ, r)|ur (τ, r)|2 dr

)
dτ.

(2.24)

Combining (2.18), (2.21), and (2.24), we obtain∣∣∣∣
∫
Qt

(ρu2 + p)rmrr drdτ

∣∣∣∣ ≤ �

∫
Qt

|mrr |2 drdτ

+C�

∫ t

0
�1(τ )

(
1 + sup

s∈[0,τ ]

∫ b

a
|ρr (s, r)|2dr

)
dτ,

where

�1(τ ) =
∫ b

a

(
h′′

δ (ρ)|ρr (τ, r)|2 + ρ(τ, r)|ur (τ, r)|2
)
dr

is an L1(0, T )–function with the norm depending on a, ε, and E0; see (2.3) and (2.7).
Consider now∣∣∣∣

∫
Qt

2ρu2

r
mrrdrdτ

∣∣∣∣
≤ �

∫
Qt

|mrr |2 drdτ + C�

∫ t

0

(
‖(ρu2)(τ, ·)‖L∞

∫ b

a
(ρu2)(τ, r) dr

)
dτ

≤ �

∫
Qt

|mrr |2 drdτ + C�

∫ t

0

(
1 + sup

s∈[0,τ ]

∫ b

a
|ρr (s, r)|2 dr

)
dτ,

where, in the last inequality, we have used (2.3) and (2.23). All the other terms in (2.17)
can be estimated by similar arguments. Thus, we obtain

sup
τ∈[0,t]

∫ b

a

(|ρr (τ, s)|2 + |mr (τ, s)|2
)
dr + ε

∫
Qt

(|ρrr |2 + |mrr |2
)
drdτ

≤ �

∫
Qt

(|ρrr |2 + |mrr |2
)
drdτ

+ C�

∫ t

0

(
1 + �(τ)

)(
1 + sup

s∈[0,τ ]

∫ b

a

(|ρr (s, r)|2 + |mr (s, r)|2
)
dr

)
dτ,

where �(τ) = �1(τ ) + ‖ρ(τ, ·)‖2max{2,γ }
L∞ .



Global Solutions to the Euler Equations with Spherical Symmetry 783

Choosing � small enough and using the Gronwall-type argument and Lemma 2.1,
we complete the proof. ��

As a corollary, we can first bound ‖ρ‖L∞(QT ), which follows directly from (2.16)
and (2.20), and then bound ‖u‖L∞(QT ) from Lemma 2.2.

Lemma 2.4. There exists an a priori bound for ‖(ρ, u)‖L∞(QT ) in terms of the parame-
ters T, E0, ‖(ρ0, u0)‖L∞(a,b), and ‖(ρ0, u0)‖H1(a,b).

Define

φ(ρ) =
{

1
ρ

− 1
ρ̃
+ ρ−ρ̃

ρ̃2 , ρ < ρ̃,

0, ρ > ρ̃.

Lemma 2.5. There exists C > 0, depending on ‖φ(ρ0)‖L1(a,b) and the other parameters
of the problem, such that

sup
t∈[0,T ]

∫ b

a
φ(ρ(t, ·)) dr +

∫
QT

|ρr |2
ρ3 drdt ≤ C. (2.25)

Proof. Indeed, multiplying the first equation in (1.5) by φ′(ρ), we have

φt + (uφ)r − ε φrr + (n − 1)ε
|ρr |2
ρ3 χ{ρ<ρ̃}

=2
( 1
ρ

− 1

ρ̃

)
urχ{ρ<ρ̃}+

n − 1

r
ρu

( 1

ρ2 − 1

ρ̃2

)
χ{ρ<ρ̃}+

(n − 1)ε

r

( 1

ρ2 − 1

ρ̃2

)
ρrχ{ρ<ρ̃}.

Integrating the above equation in (t, r) and using the boundary conditions (1.6), we have

sup
t∈[0,T ]

∫ b

a
φ(ρ) dr + ε(n − 1)

∫
QT ∩{ρ<ρ̃}

|ρr |2
ρ3 drdt

≤
∣∣∣∣
∫
QT ∩{ρ<ρ̃}

2
( 1
ρ

− 1

ρ̃

)
ur drdt

∣∣∣∣ +

∣∣∣∣
∫
QT ∩{ρ<ρ̃}

n − 1

r
ρu

(
1

ρ2 − 1

ρ̃2

)
drdt

∣∣∣∣
+

∣∣∣∣
∫
QT ∩{ρ<ρ̃}

(n − 1)ε

r
ρr

(
1

ρ2 − 1

ρ̃2

)
drdt

∣∣∣∣
= I1 + I2 + I3. (2.26)

Integrating by parts, we have

I1 ≤ 2
∫
QT ∩{ρ<ρ̃}

∣∣∣∣ρr uρ2

∣∣∣∣ ≤ ε

8

∫
QT ∩{ρ<ρ̃}

|ρr |2
ρ3 drdt + Cε

∫
QT ∩{ρ<ρ̃}

|u|2
ρ

drdt.

Since ρ−1 ≤ φ(ρ) for small ρ, u is bounded in L∞, and |{ρ(t, ·) ≤ ρ̃}| is bounded
independently of T , then the last term in the above inequality is bounded by

C
(
1 +

∫
QT

φ(ρ) drdt
)
.
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Thus, we have

I1 ≤ 2
∫
QT ∩{ρ<ρ̃}

∣∣∣ρr u
ρ2

∣∣∣ drdt
≤ �

∫
QT ∩{ρ<ρ̃}

|ρr |2
ρ3 drdt + C�

(
1 +

∫
QT

φ(ρ) drdt

)
. (2.27)

Also, by the similar arguments,

I2 =
∣∣∣∣
∫
QT ∩{ρ<ρ̃}

n − 1

r

(
ρu

ρ̃2 − u

ρ

)
drdt

∣∣∣∣ ≤ C

(
1 +

∫
QT

φ(ρ) drdt

)
, (2.28)

and

I3 ≤ C
∫
QT ∩{ρ<ρ̃}

∣∣∣∣ερrρ2

∣∣∣∣ drdt
≤ �

∫
QT ∩{ρ<ρ̃}

|ρr |2
ρ3 drdt + C�

(
1 +

∫
QT

φ(ρ) drdt

)
. (2.29)

Combining the last three estimates in (2.26), choosing � > 0 sufficiently small, and
using the Gronwall-type inequality, we obtain the a priori estimate we need. ��

Then we have the following estimate:∫ T

0

∥∥∥ 1

ρ(t, ·)
∥∥∥
L∞(a,b)

dt ≤ C

(
1 +

( ∫
QT

|ρr |2
ρ3 drdt

) 1
2
( ∫

QT

φ(ρ) drdt
)1/2)

≤ C

(
1 +

( ∫
QT

|ρr |2
ρ3 drdt

) 1
2

)
. (2.30)

Lemma 2.6. There exists C > 0, depending on ‖φ(ρ0)‖L1(a,b) and the other parameters
as in Lemma 2.4, such that∫ T

0

∥∥∥(
mr

ρ
,
ρr

ρ
, ur )(t, ·)

∥∥∥
L∞(a,b)

dt ≤ C, (2.31)

and
C−1 ≤ ρ(t, r) ≤ C. (2.32)

Proof. Indeed, by the Sobolev embedding and (2.30), we have∫ T

0

∥∥∥mr (t, ·)
ρ(t, ·)

∥∥∥
L∞(a,b)

dt ≤
∫ T

0
‖mr (t, ·)‖L∞(a,b)‖ρ−1(t, ·)‖L∞(a,b) dt

≤ C
∫ T

0

( ∫ b

a
|mrr |2 dr

) 1
2
(
1 +

( ∫ b

a

|ρr |2
ρ3 dr

) 1
2
)
dt,

which is bounded by (2.16) and (2.25). The estimate for ρr
ρ

is the same. The estimate

for ur follows from ur = mr
ρ

− uρr
ρ
, the estimates above, and Lemma 2.4.

Nowwe can obtain a uniform estimate for v = 1
ρ
. Notice that v verifies the inequality:

vt +
(
u − ε(n − 1)

r

)
vr − εvrr ≤ (

ur +
(n − 1)u

r

)
v.

By the maximum principle, we have
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max
QT

v ≤ C max
{‖v0‖L∞(a,b), v̄

}
eC

∫ T
0 ‖(ur ,u)(τ,·)‖L∞(a,b) dτ ≤ C max

{‖v0‖L∞(a,b), v̄
}
,

(2.33)
by Lemma 2.4 and (2.31).

The estimates in Lemma 2.4 and (2.33) are the required a priori estimates. The proof
of Theorem 2.1 is completed.

3. Proof of Theorem 1.1

In this section, we provide a complete proof of Theorem 1.1. As indicated earlier, the
constant M is a universal constant, independent of ε > 0, from now on.

3.1. A priori estimates independent of ε. We will need the following estimate.

Lemma 3.1. Let l = 0, . . . , n − 1, and a1 ∈ (a, 1]. There exists M = M(γ, a1, E0)

such that, for any T > 0,

sup
t∈[0,T ]

∫ b

a1
ρ(t, ·)γ rldr ≤ M

(
1 + ρ̄γ bn

)
. (3.1)

Proof. The proof is based on the energy estimate (2.3). Let

ê(ρ) = ργ − ρ̄γ − γ ρ̄γ−1(ρ − ρ̄).

Using the Young inequality, we find that there exists M(γ ) > 0 such that

ργ ≤ M(γ )
(
ê(ρ) + ρ̄γ

)
.

Then we have ∫ b

a1
ργ rldr ≤ M

( ∫ b

a1
ê(ρ) rldr + ρ̄γ bl+1

)
.

Since 0 < a(ε) < 1 < b(ε) < ∞, we have∫ b

a1
ê(ρ(t, r)) rldr ≤ a1

l+1−n sup
τ∈[0,t]

∫ b

a
η̄∗

δ (ρ(τ, r),m(τ, r)) rn−1dr ≤ a1
1−n E0,

by Proposition 2.1 for E0, independent of ε, which implies that, for all l = 0, . . . , n−1,

∫ b

a1
ργ rldr ≤ M

(
a1−n
1 E0 + ρ̄γ bn

) ≤ M
(
1 + ρ̄γ bn

)
.

��
Lemma 3.2. There exists M = M(T ), independent of ε, such that

∫ T

0

∫ b

r
ρ3 yn−1dydt ≤ M

(
1 +

bn

ε

)
for any r ∈ (a, b). (3.2)
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Proof. Consider first the case γ ∈ (1, 2). We estimate

ε

∫ T

0

∫ b

r
ρ3 yn−1dydt ≤ Mε

∫ T

0
sup
(r,b)

ρ3−γ (t, ·) dt

≤ M + Mε

∫ T

0

∫ b

r
ρ3− 3γ

2 |(ρ γ
2 )y | dydt

≤ M + Mε

∫ T

0

∫ b

r
ρ6−3γ (yn−1)−1 dydt

= M + Mε

∫ T

0

∫ b

r
ρ6−3γ (yn−1)2−γ (yn−1)γ−3 dydt

≤ M +
ε

2

∫ T

0

∫ b

r
ρ3 yn−1dydt,

where, in the last inequality, we have used the Jensen inequality. It follows from the
above computation that

ε

∫ T

0

∫ b

r
ρ3 yn−1dydt ≤ M(T ) for all r ∈ (a, b),

which arrives at (3.2).
Let now γ ∈ [2, 3]. First, we notice that

sup
t∈[0,T ]

∫ b

r
ρ yn−1dy ≤ sup

t∈[0,T ]

(∫ b

a
ργ rn−1dr

) 1
γ

(∫ b

r
yn−1dy

) γ−1
γ

≤ Mb
n(γ−1)

γ ≤ Mbn

since b > 1.
Then we argue as above:∫ T

0

∫ b

r
ρ3 yn−1dydt ≤

∫ T

0

(
sup
(r,b)

ρ2(t, ·)
∫ b

r
ρ yn−1dy

)
dt

≤ Mbn
(
1 +

∫ T

0

∫ b

r
ρ|ρr | dydt

)

= Mbn
(
1 +

∫ T

0

∫ b

r
ρ2− γ

2 ρ
γ−2
2 |ρy | dydt

)

≤ Mbn
(
1 +

1

ε
+

∫ T

0

∫ b

r
ρ4−γ (yn−1)−1 dydt

)

≤ Mbn
(
1 +

1

ε

)
≤ M

bn

ε
,

where, in the last inequality, we have used the Jensen inequality with powers γ
4−γ

and
γ

2γ−4 and the energy estimate (2.3). ��



Global Solutions to the Euler Equations with Spherical Symmetry 787

Lemma 3.3. Let K be a compact subset of (a, b). Then, for T > 0, there exists M =
M(K , T ) independent of ε such that

∫ T

0

∫
K
(ργ+1 + δρ3) drdt ≤ M. (3.3)

Proof. We divide the proof into five steps.

1. Letω(r) be a smooth positive, compactly supported function on (a, b).Wemultiply
the momentum equation in (1.5) by ω to obtain

(ρuω)t +
(
(ρu2 + pδ)ω

)
r +

n − 1

r
ρu2ω − ε

(
ω(mr +

n − 1

r
m)

)
r

= (
ρu2 + pδ − ε(mr +

n − 1

r
m)

)
ωr . (3.4)

Integrating (3.4) in r over (r, b) yields

( ∫ b

r
ρuω dy

)
t
+

∫ b

r

n − 1

y
ρu2ω dy + εω

(
mr +

n − 1

r
m

) = ω(ρu2 + pδ) + f1,

(3.5)

where

f1 =
∫ b

r

(
ρu2 + pδ − ε(my +

n − 1

y
m)

)
ωy dy.

2. Multiplying (3.5) by ρ and using the continuity equation (1.5), we have

(
ρ

∫ b

r
ρuω dy

)
t
+

(
(ρu)r +

n − 1

r
ρm − ε(ρrr +

n − 1

r
ρr )

) ∫ b

r
ρuω dy

+ρ

∫ b

r

n − 1

y
ρu2ω dy + ερω

(
mr +

n − 1

r
m

)
= (ρ2u2 + ρpδ)ω + ρ f1,

and

(
ρ

∫ b

r
ρuω dy

)
t
+

(
ρu

∫ b

r
ρuω dy

)
r

+ ε
(

− (
ρrr +

n − 1

r
ρr

) ∫ b

r
ρuω dy + ρω

(
mr +

n − 1

r
m

))
= ρpδω + f2, (3.6)

where

f2 = ρ f1 − n − 1

r
ρm

∫ b

r
ρuω dy − ρ

∫ b

r

n − 1

y
ρu2ωdy.
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Notice that

−(
ρrr +

n − 1

r
ρr

) ∫ b

r
ρuω dy + ρω

(
mr +

n − 1

r
m

)
= −

(
ρr

∫ b

r
ρuω dy

)
r
− ρuρrω −

(
n − 1

r
ρ

∫ b

r
ρuω dy

)
r

− n − 1

r
ρ2uω

+
n − 1

r2
ρ

∫ b

r
ρuω dy + ρ2urω + ρuρrω +

n − 1

r
ρ2uω

= − (
ρ

∫ b

r
ρuω dy

)
rr − (ρ2uω)r −

(
n − 1

r
ρ

∫ b

r
ρuω dy

)
r

+ρ2urω +
n − 1

r2
ρ

∫ b

r
ρuω dy.

It then follows that(
ρ

∫ b

r
ρuω dy

)
t
+

(
ρu

∫ b

r
ρuω dy

)
r
− ε

(
ρ

∫ b

r
ρuω dy

)
rr

− ε(ρ2uω)r

−ε

(
n − 1

r
ρ

∫ b

r
ρuω dy

)
r
+ ερ2urω

= pδρω + f3, (3.7)

where f3 = f2 − ε n−1
r2

ρ
∫ b
r ρuω dy.

3. We multiply (3.7) by ω to obtain(
ρω

∫ b

r
ρuω dy

)
t
+

(
ρuω

∫ b

r
ρuω dy

)
r
− ε

(
ω

(
ρ

∫ b

r
ρuω dy

)
r

)
r

+ε
(
ρωr

∫ b

r
ρuω dy

)
r
− ε(ρ2uω2)r − ε

(
n − 1

r
ρω

∫ b

r
ρuω dy

)
r

+ερ2urω
2 + ερ2uωωr

= pδρω2 + f4, (3.8)

where f4 = ω f3 + ρuωr
∫ b
r ρuω dy − n−1

r ρωr
∫ b
r ρuω dy.

We integrate (3.8) over [0, T ] × [a, b] to obtain∫
QT

(
δρ3 + κργ+1)ω2 drdt

=
∫
QT

(
ερ2urω

2 + ερ2uωωr
)
drdt

+
∫ b

a

(
ρω

∫ b

r
ρuω dy

)∣∣∣T
0
dr −

∫
QT

f4 drdt

≤ ε

∫
QT

ρ3ω2 drdt + εM
∫
QT

(
ρ|ur |2ω2 + ρ|u|2|ωr |2

)
drdt

+
∫ b

a

(
ρω

∫ b

r
ρuω dy

)∣∣T
0 dr −

∫
QT

f4 drdt

≤ ε

∫
QT

ρ3ω2 drdt + M(suppω, T, E0). (3.9)
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The last inequality follows easily from (2.3)–(2.6) and the formula for f4.

4. Claim: There exists M = M(suppω, T, E0) such that

ε

∫
Qt

ρ3ω2 drdt ≤ M + Mε

∫
Qt

ργ+1ω2 drdt. (3.10)

If γ ≥ 2, the claim is trivial. Let γ < β ≤ 3. We estimate

ε

∫
QT

ρβω2dxdt (3.11)

≤ ε sup
suppω

(
ρβ−γ ω2) ∫

QT ∩ suppω

ργ drdt

≤ εM sup
suppω

(
ρβ−γ ω2)

≤ εM
∫
QT

ρβ−γ− γ
2 |(ρ γ

2 )r |ω2drdt + εM
∫
QT

ρβ−γ ω|ωr |drdt

≤ εM
( ∫

QT ∩ suppω

ργ drdt +
∫
QT

|(ρ γ
2 )r |2ω2drdt +

∫
QT

ρ2β−3γ ω2drdt
)

≤ M
(
1 + ε

∫
QT

ρ2β−3γ ω2drdt
)
. (3.12)

If 2β −3γ ≤ γ +1, the estimate of the claim follows. Otherwise, since 2β −3γ < β

(note that β ≤ 3), we can iterate (3.11) with β replaced by 2β − 3γ and improve (3.11):

ε

∫
QT

ρβω2drdt ≤ M
(
1 + ε

∫
QT

ρ4β−9γ ω2drdt
)
. (3.13)

If 4β − 9γ is still larger than γ + 1, we iterate the estimate again. In this way, we obtain
a recurrence relation βn = 2βn−1 − 3γ , β0 = β ≤ 3, and the estimate

ε

∫
QT

ρβω2drdt ≤ M(n)
(
1 + ε

∫
QT

ρβnγ ω2drdt
)
.

Solving the recurrence relation, we obtain

βn = 2nβ − 3γ (2n−1 − 1).

For some n, the expression is less than γ + 1 (note that β ≤ 3). Then the expected
estimate is obtained.

5. Now returning to (3.9), we have∫
QT

(
ργ+1 + δρ2)ω2drdt ≤ M(suppω, T, E0)

for all small ε > 0. ��
The following lemma holds for weak entropies η (also cf. [13]).
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Lemma 3.4. Let η∗(ρ,m) be the mechanical energy of system (1.3), and let (ηψ, qψ)

be an entropy pair (1.11)–(1.12) with the generating function ψ(s) satisfying

sup
s

|ψ ′′(s)| < ∞.

Then, for any (ρ,m) ∈ R
2
+ and any vector ā = (a1, a2),

|ā∇2ηā
| ≤ Mψ ā∇2η∗ā
 for some Mψ > 0. (3.14)

Lemma 3.5. Let K ⊂ (a, b) be compact. There exists M = M(K , T ) independent of ε
such that, for any ε > 0,∫ T

0

∫
K

(
ρ|u|3 + ργ+θ

)
drdt ≤ M

(
1 + ρ̄γ bn +

δ

ε
bn

)
.

Proof. We divide the proof into five steps.

1. Let (η̌, q̌) be an entropy pair corresponding to ψ(s) = 1
2 s|s|. Define

η̃(ρ,m) = η̌(ρ,m) − ∇(ρ,m)η̌(ρ̄, 0) · (ρ − ρ̄,m) ≥ 0,

q̃(ρ,m) = q̌(ρ,m) − ∇(ρ,m)η̌(ρ̄, 0) · (m,
m2

ρ
+ p).

Note that the entropy pair (η̌, q̌) is defined for system (1.3) with pressure p = κργ ,
rather than pδ . Then (η̃, q̃) is still an entropy pair of (1.3).

We multiply the continuity equation in (1.5) by η̃ρrn−1, the momentum equation
(1.5) by η̃mrn−1, and then add them to obtain

(η̃rn−1)t + (q̃rn−1)r + (n − 1)rn−2( − q̌ + mη̌ρ +
m2

ρ
η̌m + η̌m(ρ̄, 0)p(ρ)

)
= εrn−1

(
(ρrr +

n − 1

r
ρr )η̃ρ + (mr +

n − 1

r
m)r η̃m

)
− (δρ2)r η̃mr

n−1. (3.15)

2. It can be checked directly that, for some constant M = M(γ ) > 0,

q̃(ρ,m) ≥ 1

M
(ρ|u|3 + ργ+θ ) − M(ρ + ρ|u|2 + ργ ), (3.16)

−q̌ + m(η̌ρ + uη̌m) ≤ 0, (3.17)

|η̌m | ≤ M
(|u| + ρθ

)
, |η̌ρ | ≤ M

(|u|2 + ρ2θ ), (3.18)

|η̃| ≤ M
(
ρ + ρ|u|2 + ργ

)
, ρ|η̃ρ + uη̃m | ≤ M

(
ρ + ρ|u|2 + ργ

)
, (3.19)

and, for η̌ρ + uη̌m considered as a function of (ρ, u),

|(η̌ρ + uη̌m
)
ρ
| ≤ M

(
ρθ−1|u| + ρ2θ−1), |(η̌ρ + uη̌m

)
u | ≤ M

(|u| + ρθ
)
. (3.20)

Also see [8] for these inequalities.
Moreover, note that, at r = b,

q̃(ρ̄, 0) = q̌(ρ̄, 0) = c0(γ )ρ̄γ+θ , |η̌m(ρ̄, 0)| = c1(γ )ρ̄θ , η̌ρ(ρ̄, 0) = 0, (3.21)

for some positive ci (γ ), i = 0, 1, depending only on γ .
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3. We integrate equation (3.15) over (0, T ) × (r, b) to find∫ T

0
q̃(τ, r)rn−1 dτ = c(θ)ρ̄γ+θbn−1T +

∫ b

r
(η̃(T, y) − η̃(0, y)) yn−1dy

+(n − 1)
∫ T

0

∫ b

r

(
−q̌ + mη̌ρ +

m2

ρ
η̌m

)
yn−2dydτ

+ (n − 1)
∫ T

0

∫ b

r
yn−2η̌m(ρ̄, 0)

(
p(ρ) − p(ρ̄)

)
dydτ

+
∫ T

0

∫ b

r
εyn−1

(
(ρyy+

n−1

y
ρy)η̃ρ+(my+

n−1

y
m)y η̃m

)
dydτ

+
∫ T

0

∫ b

r
δρ2((η̃m)ρρy + (η̃m)uuy

)
yn−1 dydτ

+(n − 1)
∫ T

0

∫ b

r
δρ2η̃m y

n−2 dydτ

= I1 + · · · + I7. (3.22)

4. Now we estimate the terms in (3.22). Clearly,

|I1| ≤ M ρ̄γ+θbn−1 ≤ M ρ̄γ bn,

since ρ̄ < 1 and b > 1 for small ε > 0.
Notice that |η̃(ρ,m)| ≤ η∗(ρ,m). It then follows that

|I2| ≤
∫ b

r
|η̃(ρ(T, r),m(T, r))| rn−1dr

≤
∫ b

a
η∗(ρ(T, r),m(T, r)) rn−1dr.

By the energy estimate (2.6), |I2(t, r)| ≤ E0.
The term I3 is nonpositive by (3.17) and can be dropped.
Using Step 2, we have

|I4(t, r)| ≤ M(a1, T )
(
1 + ρ̄γ bn

)
for any (t, r) ∈ [0, T ] × [a1, b]. (3.23)

5. Consider I5. We write

rn−1(ρrr +
n − 1

r
ρr )η̃ρ = (rn−1ρr )r η̃ρ,

rn−1(mr +
n − 1

r
m)r η̃m = (rn−1mr )r η̃m − (n − 1)rn−3mη̃m,

and employ integration by parts (note that η̃ρ(ρ̄, 0) = η̃m(ρ̄, 0) = 0) to obtain

I5 = − ε

∫ t

0

∫ b

r

(
ρy(η̃ρ)y + my(η̃m)y

)
yn−1dydτ − (n − 1)ε

∫ t

0

∫ b

r
mη̃m yn−3dydτ

+ε

∫ t

0
η̃r (τ, r) r

n−1dτ

= J1 + J2 + J3. (3.24)
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Using the energy estimate (2.3) and Lemma 3.4, we have

|J1(t, r)| ≤ ME0.

Also, using Step 2 and (3.21), we have

|mη̃m | ≤ M
(
ρ|u|2 + ργ + ρ|η̃m(ρ̄, 0)|) ≤ M

(
η∗(ρ,m) + ρ̄2θρ

)
.

It follows by the energy estimate (2.3) that

∣∣ ∫ b

a
J2 ω dr

∣∣ ≤ M(suppω, T )
(
1 + ρ̄γ bn

)
for any nonnegative smooth function ω with suppω ⊂ (a, b).

We write

η̃r = ρr η̃ρ + mr η̃m = ρr (η̃ρ + uη̃m) + ρη̃mur .

Then we consider the integral∫ b

a
J3 ω dr =ε

∫
QT

ρ
(
η̃ρ+uη̃m

)
ωr r

n−1drdτ −(n−1)ε
∫
QT

ρ
(
η̃ρ+uη̃m

)
ω rn−2drdτ

−ε

∫
QT

ρ
(
ρr (η̃ρ + uη̃m)ρ + ur (η̃ρ + uη̃m)u − η̃mur

)
ω rn−1drdτ.

Noticing that η̃ρ+uη̃m = η̌ρ+uη̌m+const. and using Step 2 and estimates (2.3)–(2.6)
and (3.10), we obtain

∣∣ ∫ b

a
J3(t, r) ω dr

∣∣ ≤ M(a1, T, ‖ω‖C1) +
1

2

∫
QT

(
ρ|u|3 + ργ+θ

)
ω rn−1drdτ.

To estimate I6, employing that |(η̃m)ρ | ≤ Mρθ−1, |(η̃m)u | ≤ M , and the energy
estimate (2.3), we have

|I6| ≤ M
δ2

ε

∫ T

0

∫ b

r
ρ3 rn−1drdτ ≤ M

δ2

ε2
bn ≤ M

δ

ε
bn,

where we have used the result of Lemma 3.2 and δ
ε

< 1 for small ε > 0 in the last
inequality.

The last term I7 is estimated in the similar fashion:

∣∣ ∫ b

a
I7 ω dr

∣∣ ≤ M(suppω)
δ2

ε
bn ≤ M(suppω)

δ

ε
bn,

since δ < 1 for small ε > 0.
Finally, we multiply equation (3.22) by the nonnegative smooth function ω, integrate

it over (a, b), and use estimate (3.16), together with the above estimates for I j , j =
1, . . . , 7, and an appropriate choice of δ to obtain∫

Qt

(
ρ|u|3 + ργ+θ

)
ω rn−1drdτ

≤ M
(
1 + ρ̄γ bn +

δ

ε
bn

)
+
1

2

∫
Qt

(
ρ|u|3 + ργ+θ

)
ω rn−1drdτ.

This completes the proof. ��
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3.2. Weak entropy dissipation estimates. Let a = a(ε) → 0 and b = b(ε) → ∞. We
choose ρ̄ = ρ̄(ε) → 0 and δ = δ(ε) → 0 such that

ρ̄γ bn +
δ

ε
bn ≤ M uniformly in ε. (3.25)

With this choice (ρ̄, δ), the estimates in the lemmas in Sect. 3.1 are uniform in ε → 0.
Given a sequence of the initial data functions as in Theorem 1.1, denote (ρε,mε) by

the corresponding solution of the viscosity equations (1.5) on Qε = [0,∞)×[a(ε), b(ε)]
with ρ̄ = ρ̄(ε) as above.

Proposition 3.1. Let (η, q) be an entropy pair of system (1.3) with form (1.11)–(1.12)
for a smooth, compactly supported function ψ(s) on R. Then the entropy dissipation
measures

η(ρε,mε)t + q(ρε,mε)r are compact in H−1
loc . (3.26)

Proof. We divide the proof into seven steps.

1. Denote ηε = η(ρε,mε), qε = q(ρε,mε), and mε = ρεuε. We compute

ηε
t + qε

r = − n − 1

r
ρuε

(
ηε

ρ + uεηε
m

)
+ ε

n − 1

r

(
ρε
r η

ε
ρ + r

(1
r
mε

)
rη

ε
m

)
−ε

(
ρε
r (η

ε
ρ)r + mε

r (η
ε
m)r

)
+ εηε

rr − (δρ2)rη
ε
m

= I ε
1 + · · · + I ε

5 . (3.27)

2. We notice that

|I ε
1 (t, r)| ≤ Mρε|uε|(1 + (ρε)θ

) ≤ M
(
ρε|uε|2 + ρε + (ρε)γ

)
, (3.28)

bounded in L1
(
0, T ; L1

loc(0,∞)
)
, independent of ε (all of the functions are extended

by 0 outside (a, b)).

3. Next,

I ε
2 = ε

n − 1

r2
(
ηε − mεηε

m

)
+ ε

(n − 1

r
ηε

)
r =: I ε

2a + I ε
2b. (3.29)

Since

|ηε − mεηε
m | ≤ M

(
ρε + ρε|uε|2),

then
I ε
2a → 0 in L1

loc(R
2
+) as ε → 0. (3.30)

On the other hand, if ω is smooth and compactly supported on R2
+, then

ε

∣∣∣∣
∫
Qε

I ε
2bω(t, r) drdt

∣∣∣∣ = ε

∣∣∣∣
∫

n − 1

r
ηεωr drdt

∣∣∣∣
≤ εM(suppω)‖ρε‖Lγ+1(suppω)‖ω‖H1(R2

+)
.

Since ‖ρε‖Lγ+1(suppω) is bounded, independent of ε (see (3.3)), the above estimate
shows that

I ε
2b → 0 in H−1

loc (R2
+) as ε → 0. (3.31)
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4. For I ε
3 , we use Lemma 2.1 to obtain

|I ε
3 | = ε|〈∇2η(ρε,mε)(ρε

r ,m
ε
r ), (ρ

ε
r ,m

ε
r )〉|

≤ Mψ ε〈∇2η̄∗(ρε,mε)(ρε
r ,m

ε
r ), (ρ

ε
r ,m

ε
r )〉.

Combining (3.32) with Proposition 2.1 and Lemma 3.4, we conclude that

I ε
3 is uniformly bounded in L1(0, T ; L1

loc(0,∞)). (3.32)

5. To show that I ε
4 → 0 in H−1

loc as ε → 0, we need the following claim, adopting
the arguments from [19].

Claim: Let K ⊂ (0,∞) be a compact subset. Then, for any 0 < � < 1 and ε > 0,

∫ T

0

∫
K

ε
3
2 |ρε

r |2 drdt ≤ M
(√

ε�
γ
2 + � + ε

)
. (3.33)

In particular,

∫ T

0

∫
K

ε
3
2 |ρε

r |2 drdt → 0,

and

εηε
r → 0 in L p(0, T ; L p

loc(0,∞)) for p := 2 − 2

γ + 1
∈ (1, 2).

Now we prove the claim. For the simplicity of notation, we suppress superscript ε in
all of the functions. Define

φ(ρ) =
{

ρ2

2 , ρ < �,
�2

2 + �(ρ − �), ρ ≥ �,

so that

φ′′(ρ) = χ{ρ<�}(ρ),

ρφ′(ρ) − φ(ρ) = ρ2

2
for ρ < �,

ρφ′(ρ) − φ(ρ) = �2

2
for ρ ≥ �,

where χA(ρ) is the indicator function that is 1 when ρ ∈ A and 0 otherwise.
Let ω(r) be a nonnegative smooth, compactly supported function on (0,∞). We

compute from the continuity equation, the first equation, in (1.5):

(φω)t + (φuω)r − φuωr − 1

2

(
ρ2χ{ρ<�} + δ2χ{ρ>�}

)
ωur +

n − 1

r
ρumin{ρ,�}

= ε(φ′ωρr )r − εmin{ρ,�}ω′ρr +
(n − 1)ε

r
ωmin{ρ,�}ρr − εω|ρr |2χ{ρ<�}.

(3.34)



Global Solutions to the Euler Equations with Spherical Symmetry 795

Integrating (3.34) over (0, T ) × (0,∞), we obtain

∫ T

0

∫
εω|ρr |2χ{ρ<�} drdt

= −
∫

φω
∣∣T
0 dr +

∫ T

0

∫
φuωr drdt

+
1

2

∫ T

0

∫ (
ρ2χ{ρ<�} + δχ{ρ>�}

)
ωur drdt −

∫ T

0

∫
n − 1

r
ρumin{ρ,�} drdt

−
∫ T

0

∫
εmin{ρ,�}ω′ρr drdt +

∫ T

0

∫
(n − 1)ε

r
ωmin{ρ,�}ρr drdt

= J1 + · · · + J6. (3.35)

We estimate the integrals on the right:

|J1| ≤ M(suppω)
(
�2 + �

∫ T

0

∫
suppω

ρ drdt
)

≤ M(suppω, T )�; (3.36)

|J2| ≤
∫ T

0

∫
suppω

(
�|ρu|χ{ρ<�} + (�2 + �ρ)|u|χ{ρ>�}

)
drdt

≤ �

∫ T

0

∫
suppω

(
ρ + ρ|u|2)dtdt

≤ M(suppω, T )�; (3.37)

|J3| ≤ �
3
2√
ε

∫ T

0

∫
suppω

(
ρ + ερ|ur |2

)
drdt ≤ M(suppω, T )

�√
ε
; (3.38)

|J4| ≤ M(suppω)�

∫ T

0

∫
suppω

(
ρ + ρ|u|2) drdt ≤ M(suppω, T )�; (3.39)

|J5| ≤ √
ε�

γ
2

∫ T

0

∫
suppω

√
ερ

γ−2
2 |ρr | drdt + ε

∫ T

0

∫
suppω

ρ|ρr |χ{ρ<�}ω′ drdt

≤ ε

4

∫ T

0
ργ−2|ρr |2ω drdt + 2ε

∫ T

0

∫
suppω

ρ2 |ω′|2
ω

drdt +
√

ε�
γ
2 M(suppω, T )

≤ ε

4

∫ T

0

∫
|ρr |2ω drdt + εM(suppω, T )

+
√

ε�
γ
2 M(suppω, T ). (3.40)

Moreover, J6 is estimated in the same way as J5. Thus, estimate (3.33) is proved.
Now we prove the second part of the claim.
Notice that

|ηr | ≤ M
(|ρr ||ηρ + uηm | + ρ|ur |

) ≤ M
(|ρr |(1 + ρθ ) + ρ|ur |

)
. (3.41)
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Let q ∈ (1, 2) be chosen later on. Compute∫ T

0

∫
K

εq |ηr |q drdt ≤ M
∫ T

0

∫
K

εq |ρr |q drdt +
∫ T

0

∫
K

εq
∣∣|ρr |ρθ + ρ|ur |

∣∣q drdt
≤ � +

M

�

∫ T

0

∫
K

ε2q |ρr |2 drdt

+ M
∫ T

0

∫
K

ε pρ
q
2
(|ρ γ−2

2 ρr |q + |ρ 1
2 ur |q

)
drdt

≤ � +
M

�

∫ T

0

∫
K

ε
3
2 |ρr |2 drdt

+ εq−1M
∫ T

0

∫
K

(
ε(ργ−2|ρr |2 + ρ|ur |2) + ερ

q
2−q

)
drdt

≤ � +
M

�

∫ T

0

∫
K

ε
3
2 |ρr |2 drdt + εq−1C(T, K ), (3.42)

provided that 2
2−q = γ + 1, which holds if and only if q = 2 − 2

γ+1 . Combining this
with estimate (3.33), we arrive at the conclusion of the claim.

6. Consider the last term I ε
5 . This term is bounded in L1(0, T : L1

loc(0,∞)). Indeed,
for a compact set K ⊂ (0,∞), using the energy estimates (2.3) and Lemma 3.2, we
obtain ∫ T

0

∫
K

|I5| drdt ≤ Mψ

∫ T

0

∫
K

δρ|ρr | drdt

≤ M(ψ, K )
(
1 +

δ2

ε

∫ T

0

∫
K

ρ4−γ drdt
)

≤ M(ψ, K )
(
1 +

δ2

ε
+

δ2

ε

∫ T

0

∫
K

ρ3 drdt
)

≤ M(ψ, K )
(
1 +

δ2

ε
+

δ2

ε
bn

)
.

From the choice of δ, the term on the right is uniformly bounded in ε.

7. Combining Steps 1–6, we conclude

η(ρε,mε)t + q(ρε,mε)r = f ε + gε, (3.43)

where f ε is bounded in L1
(
0, T ; L1

loc(0,∞)
)
and gε → 0 in W−1,q

loc (R2
+) for some

q ∈ (1, 2). This implies that, for 1 < q1 < 2,

η(ρε,mε)t + q(ρε,mε)r are confined in a compact subset of W−1,q1
loc . (3.44)

On the other hand, using formulas (1.11)–(1.12) and the estimates in Proposition 2.1
and Lemma 3.5, we obtain that, for any smooth, compactly supported function ψ(s) on
R,

η(ρε,mε), q(ρε,mε) are uniformly bounded in Lq2
loc(R

2
+),
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for q2 = γ + 1 > 2 when γ > 1. This implies that, for some q2 > 2,

η(ρε,mε)t + q(ρε,mε)r are uniformly bounded in W−1,q2
loc . (3.45)

The interpolation compactness theorem (cf. [3,11,12]) indicates that, for q1 > 1,
q2 ∈ (q1,∞], and q0 ∈ [q1, q2),(

compact set ofW−1,q1
loc (R2

+)
) ∩ (

bounded set ofW−1,q2
loc (R2

+)
)

⊂ (
compact set ofW−1,q0

loc (R2
+)

)
,

which is a generalization of Murat’s lemma in [23,26]. Combining this interpolation
compactness theorem for 1 < q1 < 2, q2 > 2, and q0 = 2 with the facts in (3.44)–
(3.45), we conclude the result.

3.3. Strong convergence and the entropy inequality. The a priori estimates and compact-
ness properties obtained in Sects. 3.1–3.2 imply that the viscous solutions satisfy the
compensated compactness framework in Chen–Perepelitsa [8]. Then the compactness
theorem established in [8] for the case γ > 1 (also see LeFloch–Westdickenberg [18])
yields that

(ρε,mε) → (ρ,m) a.e.(t, r) ∈ R
2
+ in L p

loc(R
2
+) × Lq

loc(R
2
+)

for p ∈ [1, γ + 1) and q ∈ [1, 3(γ+1)
γ+3 ). This requires the uniform bounds (3.3)–(3.5) and

the estimate:

|m|q = ρ
q
3 |u|qρ 2q

3 ≤ ρ|u|3 + ργ+1

for q = 3(γ+1)
γ+3 .

From the same estimates, we also obtain the convergence of the energy as ε → 0:

η∗(ρε,mε) → η∗(ρ,m) in L1
loc(R

2
+).

Since the energy η∗(ρ,m) is a convex function, by passing to the limit in (2.6), we obtain∫ t2

t1

∫ ∞

0
η∗(ρ,m)(t, r) rn−1drdt ≤ (t1 − t2)

∫ ∞

0
η∗(ρ0,m0)(r) r

n−1dr,

which implies that, for a.e. t ≥ 0,∫
R+

η∗(ρ,m)(t, r) rn−1dr ≤
∫ ∞

0
η∗(ρ0,m0)(r) r

n−1dr. (3.46)

This implies that there is no concentration formed in the density ρ at the origin r = 0.
Furthermore, we multiply both sides of (2.5) by a smooth function ϕ(t) ∈ C1

0(R+)

with ϕ(0) = 0, integrate it over R2
+, and pass to the limit ε → 0 to obtain∫

R
2
+

η∗(ρ,m)ϕ′(t) drdt ≥ 0,

which, together with (3.46), concludes (1.17).
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Finally, the energy estimates (2.3)–(2.6) and the estimates in Lemmas 3.3–3.5 imply
the equi-integrability of a sequence of

ηε
ψ, qε

ψ , mε∂ρηε
ψ,

(mε)2

ρε
∂mηε

ψ, qε
ψ ,

for any ψ(s) that is convex with subquadratic growth at infinity: lims→∞ |ψ(s)|
s2

= 0.
Passing to the limit in (3.27) multiplied by rn and integrated against a smooth com-

pactly function supported on (0,∞) × (0,∞), we obtain (1.18).

3.4. Limit in the equations. Let ϕ(t, r) be a smooth, compactly supported function on
[0,∞)×[0, b(ε)), with ϕr (t, r) = 0 for all r close to 0. Assume that the viscosity solu-
tions (ρε, mε) are extended by 0 outside of [a(ε), b(ε)]. Multiplying the first equation
in (1.5) by rn−1ϕ and then integrating it over R2

+, we have∫
R
2
+

(
ρεϕt + mεϕr + ερε(ϕrr +

n − 1

r
ϕr )

)
rn−1drdt

+
∫
R+

ρε
0(r)ϕ(0, r) rn−1dr = 0.

Note that, by the energy inequality,
∫ 1
0 (ρε)γ rn−1dr is bounded, independent of ε, which

implies that there is no concentration of mass at r = 0.
Passing to the limit in the above equation, we deduce∫

R
2
+

(
ρϕt + mϕr

)
rn−1drdt +

∫
R+

ρ0(r)ϕ(0, r) rn−1dr = 0,

which can be extended to hold for any smooth, compactly supported function ϕ(t, r) on
[0,∞) × [0,∞), with ϕr (t, 0) = 0.

Consider now the momentum equation in (1.3). Let ϕ(t, r) be a smooth, compactly
supported function on [0,∞) × (a(ε), b(ε)). Multiplying the first equation in (1.5) and
then integrating it over R2

+, we obtain∫
R
2
+

(
mεϕt +

(mε)2

ρε
ϕr + pδ(ρ

ε)
(
ϕr +

n − 1

r
ϕ
)
+ εmεϕrr

)
rn−1drdt

+
∫
R+

mε
0(r)ϕ(0, r) rn−1dr = 0.

Passing to the limit, we find∫
R
2
+

(
mϕt +

m2

ρ
ϕr + p(ρ)

(
ϕr +

n − 1

r
ϕ
))

rn−1drdt +
∫
R+

m0(r)ϕ(0, r) rn−1dr = 0.

Note that the term containing δρ2 converges to zero by Lemma 3.2 since δ = δ(ε) →
0 as ε → 0.

This equation can be extended for any smooth compactly supported function ϕ(t, r)

on [0,∞)×[0,∞)withϕ(t, 0) = ϕr (t, 0) = 0, since (m
2

ρ
+ργ )(t, r)rn−1 ∈ L1

loc([0,∞)×
[0,∞)).
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