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Abstract: We study boundary conditions for extended topological quantum field the-
ories (TQFTs) and their relation to topological anomalies. We introduce the notion of
TQFTs with moduli levelm, and describe extended anomalous theories as natural trans-
formations of invertible field theories of this type. We show how in such a framework
anomalous theories give rise naturally to homotopy fixed points for n-characters on ∞-
groups. By using dimensional reduction on manifolds with boundaries, we show how
boundary conditions for n + 1-dimensional TQFTs produce n-dimensional anomalous
field theories. Finally, we analyse the case of fully extended TQFTs, and show that any
fully extended anomalous theory produces a suitable boundary condition for the anomaly
field theory.
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1. Introduction

In recent years, the study of boundary conditions for topological quantum field theories
(TQFTs) has attracted much interest, both in the physics and mathematics literature; see
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for instance [10,15,22,23,25–28,39,49], amongothers.Namely, given ann-dimensional
TQFT, from the mathematical point of view it is a sensible question to ask when does
such a theory produce genuine numerical invariants of an n-dimensional manifold with
boundary, rather than vectors in a state space associated to it. This is possible if we can re-
gard the boundary not as arising froma “cut-and-paste” procedure implementing locality,
but rather as a “constrained” part of the manifold. In general, there will be obstructions
in extending a TQFT to manifolds with boundaries: the case of Reshetikhin–Turaev and
Turaev–Viro TQFTs has been recently investigated in [22]. Both Reshetikhin–Turaev
[40] and Turaev–Viro [47] TQFTs are extended topological field theories, namely these
theories assign data also to manifolds of codimension 2. In the present work, we focus
our attention on TQFTs that are extended down to codimension k, and at the same time,
most importantly, extended up to infinity to include diffeomorphisms, and their isotopies.
This is the framework pioneered in [35], which makes extensive use of the language of
∞-categories, and which we find particularly suitable for our aims. Indeed, by regarding
n-categories as ∞-categories, we can introduce the notion of a TQFT with moduli level
m: these are topological field theories that also detect information about the homotopy
type of the diffeomorphisms group of manifolds up to a certain level m.

Our main motivation to introduce and study such field theories is due to the fact
that they provide a very natural and elegant description of anomalous TQFTs. It is well
known, for instance, that the Reshetikhin–Turaev construction produces from a mod-
ular tensor category C a TQFT that is defined on a central extension of the extended
3-dimensional cobordism category [48]: namely, it gives rise only to a projective rep-
resentation of the 2-tier extended cobordism category Cob2(3) taking values in 2-Vect,
and the anomaly, in this context, is represented via a 2-cocycle on the modular groupoid
[2,3,5,46]. In a more modern approach, (topological) anomalies are themselves field
theories in higher dimensions, and of a special kind, namely they are invertible; anom-
alous TQFTs are then realised as truncated morphisms from the trivial theory 1 to the
given anomaly. We refer the reader to very recent works [16,17] detailing this point
of view. In the present work, we realise the anomaly theory as an invertible TQFT of
moduli level 1 of the same dimension as the anomalous TQFT. Namely, taking the higher
morphisms into account there is no need for the involved TQFTs to be truncations of
TQFTs defined in one dimension higher; rather, truncated TQFTs are a very particular
example of moduli level 1 TQFTs. This provides a unified language to describe anom-
alous theories extended down to codimension k, and their category: given an anomaly
theory W , it is the (∞, k − 1)-category of natural transformations between the trivial
theory and W . Moreover, this description allows for more general anomaly theories,
as explained in the text, and it has a strong representation theoretic flavour: anomalous
n-dimensional TQFTs extended down to codimension k give rise to homotopy fixed
points for k + 1-characters, a suitable and natural generalisation of group characters to
the setting of ∞-groups. In codimension 1, these provide projective representations of
the mapping class group of n − 1-closed manifolds.

Anomalous TQFTs and boundary conditions are expected to intertwine in a subtle
relationship. The most striking example is provided by Chern–Simons theory, which
should best be regarded as a field theory living on the boundary of a 4-dimensional TQFT
[20,48,50]. Similarly, the Reshetikhin–Turaev theory arising from a modular tensor
category C is induced by a 4-dimensional Crane–Yetter theory [11,48]. By basically
using a dimensional reduction procedure, we show that from a boundary condition of
an (invertible) n + 1-dimensional theory Z one can obtain an anomalous TQFT, where
the anomaly is induced by Z itself. One sensible question to ask concerns the converse
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statement, i.e., the possibility of producing a boundary condition for an n+1-dimensional
theory from the datum of an anomalous TQFT. In general, we do not expect this to hold:
indeed, an anomalousTQFTwith anomalyW contains too little information to determine
a boundary condition Z̃ . Nevertheless, when Z is a fully extended theory the situation
is much more amenable to treatment: via the cobordism hypothesis for manifolds with
singularities, we show that anomalous TQFTs with anomaly given by a fully extended
TQFT Z do indeed produce boundary conditions for Z . In other words, in the fully
extended situation, “truncated morphisms” of TQFTs are just a shadow of something
richer, namelyTQFTswith genuine boundary conditions. This is particularly clear thanks
to the formalism used to describe anomalies, namely as morphisms of TQFTs of moduli
level 1.

The present work is organised as follows.
In Sect. 2 we present a very gentle introduction to the language of ∞-categories, in

the amount necessary to allow the reader acquainted with category theory to follow the
rest of the paper. We also include some results we were not able to retrieve from the
literature.

InSect. 3wegive somebasic notions concerning cobordismcategories,with emphasis
on properties available once we consider extension “up to infinity”.

In Sect. 4 we introduce the notion of an extended TQFT with moduli level m, and
provide some examples; we show also how we recover ordinary extended TQFTs. The
fully extended case is discussed as well in this section.

In Sect. 5, we introduce anomalies and anomalous TQFTs via the language developed
in Sect. 4. For consistency, we also discuss invertible theories, and some properties of
the Picard groupoid of n-vector spaces.

In Sect. 6 we take a little detour to introduce n-characters and their homotopy fixed
points, which is a subject in its own.We present the basic definitions and results needed to
provide a description of anomalous TQFTs as homotopy fixed points, and we show how
anomalousn-dimensionalTQFTs in codimension1give rise to projective representations
of the mapping class group of closed n − 1-dimensional manifolds, hence to projective
modular functors.

In Sect. 7 we finally introduce boundary condition for TQFTs, providing examples
in the simplest situations, and comparisons with the existing literature when needed.

In Sect. 8 we show how boundary conditions for invertible TQFTs give rise to anom-
alous theories.Moreover, we show that in the fully extended case also the contrary holds.
We conclude with some remarks on recent results on 4-dimensional field theories arising
from modular tensor categories.

Not to burden the present workwith technicalities ofHigher Category theory, we have
in several places appealed to intuition, and hence have preferred to give “sketches” of
definitions, rather than full blown ones.We do feel the need then to be clearer concerning
which aspects of our results should be regarded as rigorously established, andwhich ones
still require a solid foundation, or at least technical details to be filled in. In the following
we try to concisely state which tools we require: most of them are contained in [35],
which, though lacking some amount of rigor in certain points, has had a wide influence
in the study of TQFTs, in particular concerning their classification. See, for instance,
[20].

First, for any nonnegative integer n and any group homomorphism G → O(n)

we assume there exists a symmetric monoidal (∞, n)-category Bord(n)G of G-framed
cobordism. Next, for any nonnegative integer n, we assume there exists a notion of a
symmetric monoidal n-category n-Vect of n-vector spaces over a field K, which, for
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n = 1, reproduces the usual monoidal category of vector spaces over K. Moreover, we
require a natural equivalence of symmetricmonoidal (∞, n−1)-categoriesΩ(n-Vect) ∼=
(n − 1)-Vect. In the last part of the present work, we assume also the cobordism hy-
pothesis to hold, namely that a symmetric monoidal functor Z : Bord(n)G → n-Vect is
completely determined by its value on the G-framed point, and that this value can be
any G-invariant fully dualizable object of n-Vect. Finally, we assume a robust notion of
lax natural transformations between strong monoidal ∞-functors between symmetric
(∞, n)-categories. All the other results in the article are mathematically derived by these
assumptions, and so they should be considered as mathematically established as soon as
one is confident in assuming that in any rigorous foundation of the theory of symmetric
monoidal (∞, n)-categories, all of the above assumptions will have to be true. This is
widely expected to be so in the extended TQFTs/Higher Categories communities.

Nevertheless, for n ≤ 2 all the constructions we present here can be entirely refor-
mulated using the language of ordinary categories, or the well established language of
2-categories and bicategories (see, e.g., [9]). Indeed, the reader who is uncomfortable
with the theory of∞-category tout court can safely substitute k andm in the paperwith 1,
and only have to deal with bicategories for the (n ≤ 2)-version of the results presented
here. In particular, the main results of this article, i.e., the construction of projective
representations of the mapping class groups of manifolds from anomalous TQFTs, and
that boundary conditions for extended (invertible) TQFTs do produce anomalous topo-
logical theories can be both entirely expressed within a bicategorical language. On the
other hand, we have preferred to use the language of ∞-category because the naturality
of the ideas contained in the present work become visibly clearer. Moreover, it allows
us to “see far” in the landscape of topological quantum field theories, and permits in-
deed interesting speculations, like the conjectural relation between Reshetikhin–Turaev
anomalous 3d TQFT, and the 4-category Braid⊗ we present in the final part of the article.
These could certainly be seen as additional motivations to pursue the consolidation of
the foundation of ∞-category theory in all its aspects.

2. Preliminary Notions on Higher Category Theory

In this section we will collect relevant results concerning higher category theory, and
in particular ∞-categories, which we will use in the paper, mainly following [6,35], to
which we direct the reader for details. The experienced reader, instead, can skip this
section altogether.

An n-category can be informally thought of as a mathematical structure generalizing
the notion of a category: we not only have objects and morphisms, but also morphisms
between morphisms, morphisms between morphisms between morphisms, and so on,
up to n. In the case n = 2, a precise definition can be given (see, e.g., [9,42]), where the
crucial difference arises between strict andweak 2-category. Once we notice that a strict
2-category is equivalent to a category enriched in Cat, we can give a recursive definition
for strict n-categories as follows: for n ≥ 2, a strict n-category is a category enriched in
Catn−1, the category of strict n−1-categories. The problem arises when we try to extend
the above definition to obtain weak n-categories, i.e. an n-category where associativity
for k-morphisms, etc. is only preserved up to k + 1-morphisms, for 1 ≤ k ≤ n, which
obey the necessary coherence diagrams. A rigorous definition of weak n-category can
nevertheless be given, and there are even different equivalent ways of formalizing this
notion. Basic references are [7,8]. It goes without saying that weak n-categories are
those of relevance in the mathematical world.
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Example 1. An important example of (weak) n-category is that of n-vector spaces over
a fixed characteristic 0 base field K. For n = 0, the 0-category (i.e., the set) 0-Vect is
the field K; for n = 1 the 1-category (i.e., the ordinary category) 1-Vect is the category
of (finite dimensional) vector spaces over K. For n = 2, the 2-category 2-Vect comes
in various flavours: by 2-Vect one can mean the 2-category of Kapranov–Voevodsky 2-
vector spaces [29], or the 2-category of (finite) K-linear categories with linear functors
as morphisms and K-linear natural transformations as 2-morphisms, or the 2-category
of (finite dimensional) K-algebras (to be thought as placeholders for their categories
of right modules), with (finite dimensional) bimodules as 1-morphisms and morphisms
of bimodules as 2-morphisms, as in [43].1 This latter incarnation of 2-Vect suggests
an iterative definition of n-Vect, see [20]. For instance one can define 3-Vect as the
3-category whose objects are tensor categories over K, whose morphisms are bimodule
categories, and so on. In any of its incarnations, n-Vect is an example of symmetric
monoidal n-category. For instance, for n = 2 the symmetric monoidal structure on the
2-category of finite K-linear categories is induced by Deligne’s tensor product [12].

When one has k-morphisms for any k up to infinity, one speaks of an ∞-category. Just
to settle the notation, we give the following

Definition 1. For n ≥ 0, a (∞, n)-category is a∞-category inwhich every k-morphisms
is invertible for k > n.

Details, and a rigorous definitionof an (∞, n)-category as ann-fold completeSegal space
can be found in [7]; see also [8,35,41]. Notice that in the “definition” above, invertibility
of k-morphisms must be understood recursively in the higher categorical sense, i.e. up
to invertible k + 1-morphisms. In particular, any n-category can be extended to an n-
discrete (∞, n)-category, i.e., an (∞, n)-category in which all k-morphisms for k > n
are identities. We will often pass tacitly from n-categories to n-discrete ∞ categories
in what follows. Moreover, given an (∞, n)-category and objects x, y ∈ C, there is a
(∞, n − 1)-category MorC(x, y) of 1-morphisms.

Example 2. The prototypical example of ∞-category arises from homotopy theory. In-
deed, let X be a topological space. Then there is an ∞-category π≤∞(X), with objects
given by the points of X , 1-morphisms given by continuous paths in X , 2-morphisms
given by homotopies of paths with fixed end-points, 3-morphisms given by homotopies
between homotopies, and so on. Since the composition of paths is only associative up to
homotopy, i.e. up to a 2-morphism, π≤∞(X) is necessarily a weak ∞-category. Never-
theless, the 2-morphism above, which is part of the data, is invertible up to 3-morphisms.
Indeed, all k-morphisms in π≤∞(X) are invertible, hence it is a (∞, 0)-category, which
is usually called a ∞-groupoid. The guiding principle behind ∞-categories is that also
the converse should be true, i.e. any∞-groupoid arises as π≤∞(X) for some topological
space, hence the theory of (∞, 0)-categories can be defined via homotopy theory.

Example 3. A genuine example of an (∞, n)-category with n > 0 is given by Bord(n),
the ∞-category of cobordisms, which can be informally described as consisting of hav-
ing points as objects, 1-dimensional bordisms as 1-morphisms, 2-dimensional bordisms
between bordisms as 2-morphisms, and so on until we arrive at n-dimensional bor-
disms as n-morphisms, from where higher morphisms are given by diffeomorphisms

1 The 2-category of Kapranov–Voevodsky 2-vector spaces can be seen as the full subcategory of the 2-
category of K-algebras and bimodules on the K-algebras of the form K

⊕m , for m ∈ N.
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and isotopies: more precisely, the (n +1)-morphisms are diffeomorphisms which fix the
boundaries, (n+2)-morphisms are isotopies of diffeomorphisms, (n+3)-morphisms are
isotopies of isotopies, and so on. This is an example of a (∞, n)-symmetricmonoidal cat-
egory, see [35]. A rigorous and detailed construction of Bord(n) as an (∞, n)-symmetric
monoidal category can be found in [41].

Remark 1. The (∞, n)-category Bord(n) comes also in other “flavours”, depending on
the additional structures we equip the manifolds with: for instance orientation and n-
framing give (∞, n)-categories Bord(n)or and Bord(n) f r , respectively. More precisely,
let G → GL(n; R) be a group homomorphism. For any k ≤ n, a k-manifold M is
naturally equipped with the GL(n; R)-bundle T M ⊕ R

n−k , and a G-framing for M is
the datum of a reduction of the structure group of T M ⊕ R

n−k from GL(n; R) to G.
Just as in the non-framed case, G-framed k-manifolds with k ≤ n are the k-morphisms
for a symmetric monoidal (∞, n)-category Bord(n)G , called the (∞, n)-category of G-
cobordism. Notice that one can consider an equivalent category ofG-cobordisms, where
our manifolds are equipped with a O(n)-structure on the stable tangent bundle, and its
G-reductions. The equivalence comes from the fact that O(n) is a retract of GL(n; R).
We will implicitly make this identification later on.

In particular, when G is the trivial group, one writes Bord(n) f r for Bord(n){e}, and
calls it the (∞, n)-category of framed cobordism, while when G is SO(n) one writes
Bord(n)or for Bord(n)SO(n), and calls it the (∞, n)-category of oriented cobordism. The
unoriented case Bord(n) is obtained when G is O(n). We will use Bord(n) generically
to indicate one of these G-framed versions, unless explicitly specified.

As for any mathematical structure, there is a notion of morphisms between ∞-
category, which are given by∞-functors. Informally speaking, an∞–functor F between
two ∞–categories C and D is a rule assigning to each k-morphism in C a k-morphism
inD in a way respecting sources, targets and (higher) compositions. For instance, if one
adopts the simplicial model for (∞, 1)-categories, i.e., if one looks at (∞, 1)-categories
as simplicial sets with internal horn-filling conditions (with k-morphisms corresponding
to k-simplices), then an ∞-functor between (∞, 1)-categories is precisely a morphism
of simplicial sets. See [36, Chapter 1] and [35] for details. In particular, given two ∞-
categories C andD, we have an ∞-category Fun(C,D). It is immediate to see that, ifD
is n-discrete, then also Fun(C,D) is n-discrete (or, more precisely, it is equivalent to an
n-discrete ∞-category).

Given an (∞, n)-category C we can obtain an ordinary category π≤1C, called the
homotopy category of C, with objects given by the objects of C, and morphisms given
by equivalence classes of 1-morphisms up to invertible 2-morphisms in C, where in-
vertibility is understood in the ∞ setting. Similarly, for k ≥ 2 we can associate to C
a k-category π≤kC, called the homotopy k-category of C, with objects and morphisms
up to k − 1-morphisms given by those of C, and k-morphisms given by equivalence
classes of k-morphisms up to invertible k + 1-morphisms. By the usual identification of
k-categories with k-discrete ∞-categories, we have then the following

Lemma 1. The formation of the homotopy n-category is the adjoint ∞-functor to the
inclusion of n-discrete categories into (∞, n)-categories, i.e., if C and D are (∞, n)-
categories, with D discrete, then one has a natural equivalence of ∞-categories

Fun(C,D) ∼= Fun(π≤nC,D). (1)

In more colloquial terms, this is just the statement that if D is n-discrete then an ∞-
functor C → D naturally factors as C → π≤nC → D.
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For any (∞, n)-category C and an object x ∈ C, we have that EndC(x) = HomC(x, x)
is a monoidal (∞, n − 1)-category. In particular, to a monoidal (∞, n)-category C we
can canonically assign a monoidal (∞, n − 1)-category ΩC := EndC(1C), where 1C
denotes the monoidal unit of C. We will refer to ΩC as the (based) loop space of C. It
can be seen as the homotopy pullback

ΩC�
��

��

1

��
1 �� C

(2)

where 1 is the trivial monoidal category, and 1 → C is the unique monoidal functor
from 1 to C. We can reiterate the construction to obtain a monoidal (∞, n− k)-category,
which we denote with ΩkC. If C is also symmetric, then ΩkC is symmetric as well. We
will denote with Fun⊗(C,D) the (∞, n)-category of monoidal ∞-functors between C
and D. Any monoidal ∞-functor F from C to D induces a monoidal ∞-functor Ωk F
from ΩkC to ΩkD.

Example 4. OnehasΩ(n-Vect) 
 (n−1)-Vect for any n ≥ 1. For instance, themonoidal
unit of the category 1-Vect is the field K seen as a vector space over itself, hence

Ω(1-Vect) = End1-Vect(K) = K = 0-Vect. (3)

Similarly, the monoidal unit of the 2-category 2-Vect is the category Vect, while its
category of endomorphisms is the category of linear functors from Vect to Vect, which
can be canonically identified with Vect itself.

Lemma 2. Let C be a symmetric monoidal (∞, n)-category, and let D be a symmetric
monoidal (∞, n + 1)-category. Then

EndFun⊗(C,D)(1D) 
 Fun⊗(C,ΩD) (4)

where 1D : C → D denotes the trivial monoidal functor, mapping all objects of C to the
monoidal unit 1D of D, and all morphisms in C to identities.

Proof. The trivial monoidal functor 1D is the composition C → 1 → D. It follows from
this description that EndFun⊗(C,D)(1D) is the ∞-category of homotopy commutative
diagrams

C ��

��

1

��
1 �� D

�� ��
����

(5)

By the universal property of the homotopy pullback, this is equivalent to Fun⊗(C,ΩD).

On the other hand, given a monoidal (∞, n)-category C we can obtain an (∞, n + 1)-
category BC with a single object, and C as the ∞-category of morphisms. We will refer
to BC as the classifying space of C. The relationship between B and Ω is given by the
following

Lemma 3. Let C be a symmetric monoidal (∞, n)-category, and let D be a symmetric
monoidal (∞, n + 1)-category. Then

Fun⊗(BC,D) 
 Fun⊗(C,ΩD) (6)
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Proof. Let F ∈ Fun⊗(BC,D). Since BC is an ∞-category with a single object �, and
F is a monoidal functor, then necessarily F(�) = 1D. Hence, to any k-morphism in
BC, corresponding to a (k − 1)-morphism in C, is assigned by F a k-morphism from
1D to 1D in D, i.e., a (k − 1)-morphism in the symmetric monoidal (∞, n)-category
ΩD = EndD(1D).

3. Cobordism (∞, k)-Categories

In this section we will recall some basic properties concerning ∞-categories of cobor-
disms. We will mainly refer to oriented cobordisms, unless otherwise stated. Via the
mapping cylinder construction, we obtain a monoidal embedding

i : Bord(n) ↪→ Bord(n + 1) (7)

Let us briefly recall how this works. Given a (orientation preserving) diffeomorphism
f : Σ1 → Σ2 between closed n-dimensional oriented manifolds, the mapping cylinder
of f is the oriented manifold M f with boundary obtained as

M f := (([0, 1] × Σ1) � Σ2)/ ∼ (8)

where ∼ is the equivalence relation generated by (0, x) ∼ f (x),∀x ∈ Σ1. In particular,
we have that ∂M f = Σ1 � Σ2, where Σ2 denotes the manifold Σ2 endowed with
the opposite orientation, so that M f represents a (oriented) cobordism between Σ1 and
Σ2. This means that f → M f maps an (n + 1)-morphism in Bord(n) to an (n + 1)-
morphism in Bord(n + 1). Moreover, the mapping cylinder construction is compatible
with composition of diffeomorphisms in the following sense: if g : Σ1 → Σ2 and
f : Σ2 → Σ3 are diffeomorphisms between closed oriented n-dimensional manifolds,
then we have a canonical diffeomorphism

M fg 
 M f ◦ Mg. (9)

In other words, f → M f behaves functorially with respect to the composition of
(n + 1)-morphism. Moreover, the mapping cylinder is compatible with isotopies of
diffeomorphisms.Namely, an isotopyh betweenorientation preserving diffeomorphisms
f, g : Σ1 → Σ2 induces a orientation preserving diffeomorphism

h∗ : M f

−→ Mg. (10)

Hence the mapping cylinder construction maps an (n + 2)-morphism in Bord(n) to an
(n + 2)-morphism in Bord(n + 1), and also in this case one can verify the compatibility
with composition. Similarly, isotopies between isotopies of diffeomorphisms produce
correspondent isotopies of diffeomorphisms of the mapping cylinders. One has natural
generalisations to unoriented and toG-framed cobordism, and so on, so that themapping
cylinder construction actually gives an ∞-functor Bord(n) → Bord(n + 1), which is
immediately seen to be compatible with disjoint unions, i.e., with the monoidal structure
of cobordism categories. Details on the properties of the functor i can be found in [35]:
interestingly, the proof of the fact that i is actually a (not full) embedding of∞-categories
is at the core of the Cobordism Hypothesis.

Remark 2. One has natural generalisations of (7) to unoriented, and to G-framed cobor-
disms.



Boundary TQFTs and Projective Modular Functors 1051

Applying the iterated loop space construction to the symmetric monoidal (∞, n)-
category Bord(n) we obtain the following important

Definition 2. For any 0 ≤ k ≤ n, the (∞, k)-symmetric monoidal category Cob∞
k (n) is

defined as
Cob∞

k (n) := Ωn−kBord(n) (11)

It will be called the (∞, k)-category of n-dimensional cobordism extended down to
codimension k.

In a similar way, one can define G-framed cobordism categories Cob∞,G
k (n).

Note that Bord(n) = Cob∞
n (n), the (∞, n)-category of n-dimensional cobordism

extended down to codimension n. We will refer to Bord(n) as the fully extended n-
dimensional cobordism category.

Notice that if F : C → D is a monoidal functor, then also Ω(F) : ΩC → ΩD
is monoidal. This in particular implies that the monoidal embedding i : Bord(n) ↪→
Bord(n + 1) induces monoidal embeddings

Cob∞
k (n) ↪→ Cob∞

k+1(n + 1) (12)

for any k ≥ 0.

Remark 3. The homotopy category π≤1Cob∞
1 (n) is the usual category of n-dimensional

cobordism: it has (n − 1)-closed manifolds as objects and diffeomorphism classes of
n-dimensional cobordisms as morphisms. In the following, we will refer to this category
simply as Cob(n)

Remark 4. The (∞, 0)-category Cob∞
0 (n) is the∞-groupoid having closed n-manifolds

as objects, diffeomorphisms between them as 1-morphisms, isotopies between diffeo-
morphisms as 2-morphisms and so on.

Let Σ be a closed n-dimensional manifold. By slight abuse of notation, we will
denote by BΓ ∞(Σ) the connected component of Σ in Cob∞

0 (n). The homotopy cat-
egory π≤1Cob∞

0 (n) is the groupoid usually denoted Γn , see [5], while π≤1BΓ ∞(Σ)

is the (one-object groupoid associated with the) mapping class group Γ (Σ) of Σ . To
emphasise the G-framing, we will occasionally write Γ G(Σ) for the mapping class
group of a G-framed manifold Σ . For instance, if Σ is a closed oriented surface, then
Γ SO(2)(Σ) is the mapping class group of isotopy classes of oriented diffeomorphisms
one encounters in Teichmüller theory. If Σ is a closed oriented surface endowed with
a spin structure, i.e., with a lift of the structure group SO(2) of the tangent bundle to

the double cover SO(2)
2:1−→ SO(2), then Γ Spin(Σ) is the spin-framed mapping class

group of Σ considered in [31].

4. Topological Quantum Field Theories

In this section we introduce the notion of a topological quantum field theory with moduli
level m.

4.1. TQFTs with moduli level. Since both Cob∞
k (n) and r -Vect are symmetric monoidal

∞-categories, it is meaningful to consider symmetric monoidal functors between them.
This leads us to the main definition in the present work.
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Definition 3. An n-dimensional TQFT extended down to codimension k with moduli
level m is a symmetric monoidal functor

Z : Cob∞
k (n) → (m + k)-Vect. (13)

Remark 5. One main feature of r -Vect, whichever realisation of r -vector spaces one
considers, is that Ω(r -Vect) ∼= (r − 1)-Vect. This, together with the equivalence
ΩCob∞

k (n) ∼= Cob∞
k−1(n), implies that by looping an n-dimensional TQFT extended

down to codimension k we obtain an n-dimensional TQFT extended down to codimen-
sion k − 1 with the same moduli level:

ΩZ : Cob∞
k−1(n) → (m + k − 1)-Vect. (14)

On the other hand, pulling back along the inclusion Cob∞
k−1(n − 1) ↪→ Cob∞

k (n) one
can restrict an n-dimensional TQFT extended down to codimension k with moduli level
m to a (n − 1)-dimensional TQFT extended down to codimension k − 1 with moduli
level m + 1,

Z
∣
∣
k−1 : Cob∞

k−1(n − 1) → (m + k)-Vect. (15)

We will refer to Z
∣
∣
k−1 as the (n − 1)-dimensional truncation of Z .

The terminology used in Definition 3 is due to the fact that a TQFT of moduli level
greater than 0 produces in general more refined manifold invariants than an ordinary
TQFT, namely it can detect the moduli space of diffeomorphisms. As we will illustrate
in the following examples, from a TQFT of moduli level k we can obtain in specific
situations the notion of ordinary and extended TQFTs.

Example 5. An n-dimensional TQFT extended down to codimension 1withmoduli level
0 is a TQFT in the sense of Atiyah and Segal [4,44]. Namely, since 1-Vect is 1-discrete,
a symmetric monoidal functor Z : Cob∞

1 (n) → 1-Vect factors through the category
Cob(n) of n-dimensional cobordism π≤1Cob∞

1 (n); see Remark 3. It is interesting to
notice that, even if one does not a priori imposes any finite dimensionality condition on
the objects in 1-Vect, i.e., if one takes 1-Vect to be the category of all vector spaces over
some fixed field K, then, as an almost immediate corollary of the definition, the vector
space Z(M) that an Atiyah n-dimensional TQFT assigns to a closed n − 1-manifold M
must be finite dimensional, see [5,30].

Example 6. Similarly, an n-dimensional TQFT extended down to codimension 2 with
moduli level 0 is equivalently a symmetric monoidal 2-functor

Z : Cob2(n) → 2-Vect (16)

where Cob2(n) = π≤2Cob∞
2 (n) is the so-called 2-category of extended cobordism.

Its objects are (n − 2)-dimensional closed manifolds, its 1-morphisms are (n − 1)-
dimensional cobordisms, and its 2-morphisms are diffeomorphism classes of
n-dimensional cobordisms. Such a monoidal functor is sometimes called a (2-tier) ex-
tended n-dimensional TQFT, see [24,38]. Notice that applying the loop construction
to an extended TQFT one obtains an n-dimensional TQFT in the sense of Atiyah and
Segal.

Remark 6. 2-tier extended TQFTs have been the subject of great investigation, in par-
ticular in 3-dimension. Indeed, historically it was 3-dimensional Chern–Simons theory
which motivated the notion of an extended field theory. Particularly relevant are the ex-
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tended 3d TQFTs known as of Reshetikhin–Turaev type [40] obtained by the algebraic
data encoded in a modular tensor category, and those of Turaev–Viro type [47], which
are constructed from a spherical fusion category.2

Example 7. The categorified field theories in [13] are an example of topological quantum
field theories extended down to codimension 2 with moduli level 1.

4.2. Fully extended TQFTs. It is easy to see that a 1-dimensional TQFT in the sense of
Atiyah and Segal [4,44] is completely determined by the vector space V + it assigns to
the oriented point pt+. Moreover, the category of 1-dimensional Atiyah-Segal TQFTs,
i.e. the category

Fun⊗(Cob∞
1 (1), 1-Vect) (17)

turns out to be equivalent to the groupoid obtained from the category of finite dimensional
vector spaces by discarding all the noninvertible morphisms. This can be seen as fol-
lows. Given amonoidal natural transformationϕ : Z1 → Z2 between two 1-dimensional
Atiyah-Segal TQFTs, then we have a linear morphism ϕ(pt+) : V +

1 → V +
2 . The compat-

ibility of ϕ with the evaluation and coevaluation morphisms forces V +
1 and V +

2 to have
the same dimension, and ϕ(pt+) to be a linear isomorphism. By the same argument one
can show that n-dimensional Atiyah-Segal TQFTs as well form a groupoid. See [18] for
details.

The rigidity of the 1-dimensional example illustrated above comes from the fact that
the involved TQFT is amoduli level 0 fully extended TQFT. Indeed, these TQFTs encode
so much information that they can be completely classified. This is indeed the content
of the cobordism hypothesis, which can be stated as follows.3

Theorem 1 (Lurie–Hopkins). A moduli level 0 fully extended n-dimensional framed
TQFT is completely determined by a fully dualizable n-vector space. More precisely,
let (n-Vect)fd be the full subcategory of n-Vect of fully dualizable objects, and let
(n-Vect)(∞,0)

fd be the underlying (∞, 0)-groupoid, i.e., the (∞, 0)-groupoid obtained
from (n-Vect)fd by discarding all the non-invertible morphisms. Then there is an equiv-
alence of ∞-categories

Fun⊗(Bord f r (n), n-Vect) 
 (n-Vect)(∞,0)
fd (18)

induced by the evaluation functor Z → Z(pt+). More generally, if G → O(n) is a
reduction of structure group for n-dimensional manifolds, then there is a natural action
of G on (n-Vect)fd and Z → Z(pt+) induces an equivalence

Fun⊗(BordG(n), n-Vect) 
 (n-Vect)G (∞,0)
fd (19)

where (n-Vect)Gfd denotes the full subcategory on the homotopy fixed points for the
induced G-action on (n-Vect)fd.

2 In general, the Turaev–Viro construction produces oriented theories, while Reshetikhin–Turaev theories
require a framing to be defined.

3 Here we are formulating the cobordism hypothesis for TQFTs with target higher vector spaces; one can
give a more general formulation with target an arbitrary (∞, n)-symmetric monoidal category, see [35].
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Remark 7. The G-action on (n-Vect)(∞,0)
fd in Theorem 1 is obtained as follows. First,

notice that O(n) acts on the n-framings of a k-dimensional manifold M , and hence it
gives an action on Bord f r (n). Consequently, O(n) acts on Fun⊗(Bord f r (n), n-Vect).
By the equivalence in Eq. (18), we obtain an induced action of O(n) on (n-Vect)(∞,0)

fd
and so, for any homomorphism G → O(n), we have a corresponding G-action on
(n-Vect)(∞,0)

fd . The equivalence in Eq. (19) is then obtained as a consequence of the
equivalence between Fun⊗(Bord f r (n), n-Vect)G and Fun⊗(BordG(n), n-Vect).

Example 8. A fully extended 2-dimensional oriented TQFT Z is the datum of a semisim-
ple Frobenius algebra A. To the oriented point pt+ it is assigned the linear categoryModA
of finite dimensional right A-modules, while the closed oriented 1-manifold S1 is sent to
the center of A, which is a commutative Frobenius algebra. See [42] for details. This is
consistent with what one should have expected: the looped TQFTΩZ is a 2-dimensional
Atiyah-Segal TQFT, and these are equivalent to the category of commutative Frobenius
algebras; see [30]. Note, however, that not every 2-dimensional Atiyah-Segal TQFT
is obtained a the looping of a fully extended 2-dimensional TQFT, as a commutative
Frobenius algebra need not to be semisimple.

Example 9. As a particular case of Example 8, one can show that to any finite group G is
associated an extended 2-dimensional TQFT ZG , mapping pt+ to the category of finite
dimensional representations of G, and S1 to the algebra K[G//G] of class functions on
G. For a review, see [34].

The cobordism hypothesis tells us that the ∞-category of fully extended n-dimensional
TQFTs of moduli level 0 constitutes an ∞-groupoid. This is in general no longer true
when the moduli level is higher than 0. In particular, this means that if Z1 and Z2 are
two TQFTs with moduli level greater than 0, it is possible to have nontrivial (i.e., non-
invertible) morphisms between Z1 and Z2, as in Example 10 below. This possibility will
be particularly relevant in the forthcoming sections.

Remark 8. A useful mechanism to produce fully extended n-dimensional TQFTs of
moduli level 1 is to start from a fully extended (n + 1)-dimensional TQFT of moduli
level 0 and consider a truncation, as in Remark 5. If Z1 and Z2 are moduli level 0 fully
extended (n + 1)-dimensional TQFTs and

η : Z1
∣
∣
n → Z2

∣
∣
n (20)

is a morphism between their n-dimensional truncations, then, due to the cobordism
hypothesis, η will not in general lift to a morphism between Z1 and Z2. At the level
of fully extended (n + 1)-dimensional TQFTs, the morphism η can be considered as a
codimension 1 defect, also known as a domain wall.

Example 10. Let 1 : Bordor (2) → 2-Vect be the trivial extended 2-dimensional oriented
TQFT,which assigns to the oriented point the linear category of finite dimensional vector
spaces, to S1 the vector space K, and to closed 2-manifolds the element 1 in K. Let ZG
be the 2-tier extended 2-dimensional oriented TQFT associated with a finite group G,
see Example 9. Then, a morphism ρ : 1∣∣1 → ZG

∣
∣
1 is the datum of a finite dimensional

representation ρ of G, and in the fully extended 2-dimensional TQFT “with defects”
lifting it, the representation ρ becomes a domain wall and the cylinder
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1 ρ G

corresponds to the character of ρ. The cylinder equipped with a circle defect depicted
above appears in the literature with the name of transmission functor, and plays an
important role in the study of symmetries of topological quantum field theories [21].

Since from the literaturewe are not aware of the any characterization of fully extended
TQFTs with moduli level greater than 0, we conclude this section with a conjecture.

Conjecture 1 (Cobordism hypothesis for TQFTs with moduli level m). For any m ≥ 0
there is an equivalence of ∞-categories

Fun⊗(BordG(n), (m + n)-Vect) 
 ((m + n)-Vect)G (∞,m)
fd (21)

induced by the evaluation functor Z → Z(pt+).

In the above conjecture ((m+n)-Vect)G (∞,m)
fd denotes the (∞,m) groupoid obtained

from ((m + n)-Vect)Gfd by discarding all non-invertible k-morphisms with k > m.

Example 11. As a supporting evidence for the above conjecture, let us expand Example
10 above. In the same notations as in Example 10, we have seen that any finite dimen-
sional representation ρ of G gives rise to a 1-morphism Fρ between the moduli level 1
1-dimensional TQFTs 1

∣
∣
1 and ZG

∣
∣
1. From conjecture, we should expect that amorphism

of representations f : ρ1 → ρ2 induces a 2-morphism Fρ1 → Fρ2 if and only if f is an
isomorphism. This is actually true: looking at the data associated with the 1-dimensional
manifold S1, we see that Fρ1 → Fρ2 induces a morphism inK[G//G] between the char-
acter of ρ1 and the character of ρ2. But since the only morphisms in the vector space
K[G//G] (seen as a 0-category) are identities, this means that the representations ρ1
and ρ2 have the same character, and therefore they are isomorphic.

5. Anomalies in Topological Quantum Field Theories

We consider now a particular type of TQFT, called invertible, which will be relevant in
the description of anomalies we present later.

5.1. Invertible TQFTs. To be able to define invertible TQFTs, we first need to introduce
the following

Definition 4. The Picard ∞-groupoid Pic(n-Vect) is defined as the ∞-category with
objects given by the invertible objects in n-Vect, and k-morphisms given by the invertible
k-morphisms for any k.

Notice that thePicard∞-groupoidPic(n-Vect) is a symmetricmonoidal (∞, n)-subcategory
of n-Vect. Moreover, Definition 4 can be extended to any symmetric monoidal (∞, n)-
category C.
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Example 12. The Picard groupoid Pic(0-Vect) is the group K
∗ of invertible elements of

the fieldK, and identities asmorphisms. The Picard groupoid Pic(1-Vect) is the groupoid
with objects given by complex vector spaces of dimension 1, 1-morphisms given by in-
vertible linear maps, and identities for k-morphisms, for k > 1. The Picard 2-groupoid
Pic(2-Vect) can be realized as the 2-groupoid with objects given by Vect-module cate-
gories of rank 1, 1-morphisms given by invertible module functors, 2-morphisms given
by invertible module natural transformation, and identities for higher k-morphisms. See
[14].

An invertible TQFT is essentially an ∞-functor assigning objects to invertible objects,
and morphisms to invertible morphisms. More precisely

Definition 5. An n-dimensional Topological Quantum Field Theory extended to codi-
mension k and with moduli level m

Z : Cob∞
k (n) → (m + k)-Vect (22)

is said to be invertible iff it factors as

Cob∞
k (n)

��������������
Z �� (m + k)-Vect

Pic((m + k)-Vect)

�� (23)

From every symmetric monoidal (∞, n)-category C one obtains a symmetric monoidal
(∞, n + 1)-category BC by taking the ∞-category with a single object, and with C
as the ∞-category of morphisms. It is immediate to see that BPic(n-Vect) is naturally
identified with the full subcategory of Pic((n+1)-Vect) on the tensor unit of (n+1)-Vect.
This gives a natural embedding

BPic(n-Vect) ↪→ Pic((n + 1)-Vect). (24)

This observation leads us to the following

Definition 6. An invertible TQFT with moduli level m

Z : Cob∞
k (n) → Pic((m + k)-Vect) ↪→ (m + k)-Vect (25)

is said to be semitrivialized if it is given a factorization of Z through BPic((m + k −
1)-Vect).

Remark 9. Form + k = 1, 2 the inclusion BPic((m + k−1)-Vect) ↪→ Pic((m + k)-Vect)
is an equivalence of (m +k)-groupoids. Therefore, an invertible TQFT with moduli level
m can always be (non canonically) semitrivialized as soon as m + k ≤ 2. It is presently
not clear whether this result holds true for m + k > 2.

Remark 10. An important aspect of invertible TQFTs is that they can be described as
maps of spectra. Namely, an invertible TQFT factorizes through the “groupoid ∞-
completion” |Cob∞

k (n)|, which can be proven to be a spectrum in low dimensions. See
[16,17] for details.

We will not push in this direction in the present article.
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5.2. Anomalies. Invertible TQFTs of moduli level 1 will be particularly relevant to the
present work: they will indeed describe anomalies.

Definition 7. An n-dimensional anomaly is an invertible TQFT of moduli level 1

W : Cob∞
k (n) → Pic((k + 1)-Vect) ↪→ (k + 1)-Vect. (26)

Remark 11. A natural way of producing an n-dimensional anomaly is by truncating a
(n + 1)-dimensional TQFT with moduli level 0, i.e., by considering the composition

Cob∞
k (n) ↪→ Cob∞

k+1(n + 1) → Pic((k + 1)-Vect) ↪→ (k + 1)-Vect. (27)

Example 13. Let us make explicit the data of a semitirivialized n-dimensional anomaly
for k = 1. By definition, this is a symmetric monoidal functor

W : Cob∞
1 (n) → BPic(1-Vect) ↪→ Pic(2-Vect) ↪→ 2-Vect. (28)

Therefore, to each n-dimensional cobordism M a complex lineWM is assigned, together
with an isomorphismWM◦M ′ 
 WM⊗WM ′ , wheneverM◦M ′ exists. This isomorphism,
which we denote with ψMM ′ , is part of the structure of W , and hence has to obey the
natural coherence conditions. In particular, to the trivial cobordismΣ×[0, 1] is assigned
the complex vector space C.

Remark 12. Recall from Remark 4 that BΓ ∞(Σ) denotes the ∞-groupoid associated
to Diff(Σ),4 namely BΓ ∞(Σ) is the connected component of Σ in Cob∞

0 (n − 1). Let
W be as in Example 13. By the mapping cylinder construction, we have the ∞-functor

BΓ ∞(Σ) ↪→ Cob∞
0 (n − 1) ↪→ Cob∞

1 (n) −→ BPic(1-Vect) (29)

where the last arrow is given by the factorisation of W through BPic(1-Vect). In the
terminology of Sect. 6, W gives rise to a 2-character for Γ ∞(Σ).

We can now introduce the definition of anomalous TQFTs with given anomalyW . These
are called W -twisted field theories in [45] and relative field theories in [24].

Definition 8. LetW : Cob∞
k (n) → Pic((k+1)-Vect) ↪→ (k+1)-Vect be ann-dimensional

anomaly. An anomalous n-dimensional extended TQFT with anomalyW is a morphism
of n-dimensional TQFTs with moduli level 1

ZW : 1 → W, (30)

where 1 : Cob∞
k (n) → (k + 1)-Vect is the trivial TQFT mapping all objects to the

monoidal unit and all morphisms to identities.

Lemma 4. Let W be the trivial n-dimensional anomaly, i.e., let W = 1. Then an n-
dimensional extended anomalous TQFT with anomaly W is equivalent to an ordinary
n-dimensional extended TQFT.

Proof. Immediate from Lemma 2.

4 Here we are omitting the explicit reference to the framing G → O(n): the manifold Σ here is (as always
in this article) endowed with a G-framing of its stabilised tangent bundle, and Diff(Σ) denotes the group of
G-framing preserving diffeomorphisms of Σ .
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Remark 13. Strictly speaking, we have defined above a TQFT with incoming anomaly,
and one could also consider outgoing anomalies by taking morphismsW → 1, see, e.g.,
[24]. Although this distinction is relevant, e.g., for oriented theories, where one can also
have both kinds of anomalies at the same time, we will not elaborate on this here.

To get the flavour of these TQFTs with anomaly, let us spell out the data of an n-
dimensional TQFT with semitrivialized anomaly in the k = 1 case. As expected, we
obtain a structure resembling an n-dimensional TQFT a lá Atiyah-Segal, but with a
“twisting” coming from the anomaly W . Namely, if

W : Cob∞
1 (n) → BPic(1-Vect) ↪→ Pic(2-Vect) ↪→ 2-Vect (31)

is a semitrivialized anomaly, then a morphism ZW : 1 → W consists of the following
collection of data:

(a) To each closed (n − 1)-dimensional manifold Σ it is assigned a vector space VΣ ,
with V∅ 
 K and with functorial isomorphisms VΣ�Σ ′ 
 VΣ ⊗ VΣ ′ ;

(b) To each cobordism M between Σ and Σ ′ it is assigned a linear map ϕM : WM ⊗
VΣ → VΣ ′ ; for M the trivial cobordism, the corresponding linear map is the natural
isomorphism ϕΣ×[0,1] : K ⊗ VΣ → VΣ .

Moreover, these data satisfy the following compatibilities:

(i) Let fMM ′ : M → M ′ be a diffeomorphism fixing the boundaries between two
cobordisms M and M ′ between Σ and Σ ′. Then the following diagram commutes:

WM ⊗ VΣ

ϕM ��

fMM ′∗⊗id
��

VΣ ′

WM ′ ⊗ VΣ

ϕM ′

������������

(32)

where fMM ′∗ : WM → WM ′ denotes the isomorphism induced by fMM ′ .
(ii) For any cobordismM betweenΣ andΣ ′, andM ′ betweenΣ ′ andΣ ′′, the following

diagram commutes

WM ′ ⊗ WM ⊗ VΣ
id⊗ϕM ��

�ψM ′M⊗id
��

WM ′ ⊗ VΣ ′

ϕM ′
��

WM ′◦M ⊗ VΣ

ϕM ′◦M �� VΣ ′′

(33)

In general, an anomalous TQFT as defined above will give rise to projective rep-
resentations of diffeomorphsims of closed manifolds. In order to give a precise
statement, in the following section we will take a detour into projective representa-
tions of ∞-groups as homotopy fixed points of higher characters.

6. n-Characters and Projective Representations

In this section we will introduce the notion of an n-character for an ∞-group (e.g., the
Poincaré ∞-groupoid π≤∞(G top) of a topological group G top), and its homotopy fixed
points. This is a natural higher generalisation of the notion of a C

∗-group character.
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Hence, as a warm up, we will first discuss the case of a discrete group G, and show how
this recovers the category of (finite dimensional) projective representations of G. This
is well known in geometric representation theory, but since we are not able to point the
reader to a specific treatment in the literature, we will provide the necessary amount of
detail here.

6.1. Discrete groups. Let G be a (discrete) group, and let BG denote the 1-object
groupoid with G as group of morphisms, regarded as an ∞-groupoid with only identity
k-morphisms for k > 1.

Definition 9. A 2-character for G with values in Vect is a 2-functor

ρ : BG → BPic(Vect) (34)

Explicitly, a 2-character ρ consists of a family of complex linesW ρ
g , one for each g ∈ G,

and isomorphisms

ψ
ρ
g,h : W ρ

g ⊗ W ρ
h


−→ W ρ
gh (35)

satisfying the associativity condition

ψ
ρ
gh, j ◦ (ψ

ρ
g,h ⊗ id) = ψ

ρ
g,h j ◦ (id ⊗ ψ

ρ
h, j ) (36)

for any g, h, j ∈ G. When no confusion is possible we will simply write Wg for W ρ
g

and ψg,h for ψ
ρ
g,h .

For a given group G, 2-characters form a category, given by the groupoid [BG,

BPic(Vect)] of functors between BG and BPic(Vect), and their natural transforma-
tions. Explicitly, a morphism ρ → ρ̃ is a collection of isomorphisms of complex lines
ξg : Wg

∼−→ W̃g such that

ψg,h ◦ (ξg ⊗ ξh) = ξgh ◦ ψg,h,

for any g, h ∈ G.
The assignment W → W ⊗ (−) induces an equivalence of groupoids

Pic(Vect) 
 Aut(Vect), (37)

where Aut(Vect) denotes the groupoid of linear auto-equivalences of Vect, i.e. of linear
invertible functors from Vect to itself. As a consequence, a 2-character defines an action
of G by functors on the linear category Vect. As for any action of a group, we can
investigate the structure of its fixed points. Since we are in a categorical setting, though,
we can ask that points are fixed at most up to isomorphisms. This motivates the following

Definition 10. Let ρ = {Wg;ψg,h} be a 2-character for a (discrete) group G. A ho-
motopy fixed point for ρ is given by an object V ∈ Vect and a family {ϕg}g∈G of
isomorphisms

ϕg : Wg ⊗ V

−→ V (38)

satisfying the compatibility condition

ϕgh ◦ (ψg,h ⊗ id) = ϕg ◦ (id ⊗ ϕh) (39)
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Remark 14. A convenient way to encapsulate the data in Definition 10 is the following.
By using the equivalence (37), a 2-character ρ induces a 2-functor W : BG → 2-Vect,
which assigns to the single object in BG the category Vect.5 If we denote by 1 the trivial
2-functor from BG to 2-Vect, we have then that a homotopy fixed point is equivalently
a morphism, i.e. a natural transformation of 2-functors, 1 → W .

Remark 15. Homotopy fixed points for a given 2-character ρ form a category in a natural
way, which we denote with Vectρ . It is immediate to see that, up to equivalence, Vectρ

depends only on the isomorphism class of ρ.

In the following, we will show that 2-characters for a group G are related to group
2-cocyles forG, and that homotopy fixed points are related to projective representations.

Recall that to a groupG we can assign its groupoid of group 2-cocycles with values in
K

∗, which we denote by Z2
grp(G; K

∗). This is, essentially by definition, the 2-groupoid
[BG, B2

K
∗] of 2-functors from BG to B2

K
∗. Since B2

K
∗ is the simplicial set with

a single 0-simplex, a single 1-simplex, 2-simplices indexed by elements in K
∗, and

3-simplices corresponding to those configurations of 2-simplices the indices of whose
boundary faces satisfy the 2-cocycle condition, a 2-functor F : BG → B2

K
∗ is precisely

a group 2-cocycle on G with coefficients in K
∗.

The equivalence BK
∗ 
−→ Pic(1-Vect) induces an equivalence B2

K
∗ 
−→ BPic(1-Vect),

and so an equivalence

T : Z2
grp(G; K

∗) 
−→ [BG, B(Pic(1-Vect))] (40)

for any finite group G. In particular, every 2-cocycle α naturally induces (and is actually
equivalent to) a 2-character T (α). Note thatWT (α)

g = K for any g ∈ G. The morphisms

ψ
T (α)
g,h : WT (α)

g ⊗ WT (α)
h


−→ WT (α)
gh are given by

WT (α)
g ⊗ WT (α)

h = K ⊗ K ∼= K
α(g,h)−−−→ K = WT (α)

gh . (41)

Recall that a projective representation for a group G with 2-cocycle α is given by a
vector space V , and a family of isomorphisms

ϕα
g : V 
−→ V, ∀g ∈ G (42)

satisfying the condition

ϕα
gh = α(g, h) ϕα

g ◦ ϕα
h , ∀g, h ∈ G (43)

Projective representations for a given 2-cocycle α form naturally a category, which we
denote with Repα(G).

Given any projective representation (V, ϕα) with 2-cocycle α, the vector space V is
naturally a homotopy fixed point for T (α): consider the family of isomorphisms

ϕT (α)
g : WT (α)

g ⊗ V = K ⊗ V ∼= V
ϕα
g−→ V, ∀g ∈ G. (44)

Then condition (43) assures that the family of isomorphisms {ϕT (α)
g } realises V as a

homotopyfixedpoint for T (α). It is immediate to check that this construction is functorial
and therefore defines a “realisation as homotopy fixed point” functor Hα : Repα(G) →
VectT (α), for any 2-cocycle α.

5 In other words, W is a 2-representation of G of rank 1.
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Lemma 5. The functor Hα : Repα(G) → VectT (α) is an equivalence of categories.

Proof. It is immediate to see that Hα is faithful and full. To see that it is essentially
surjective, take a homotopy fixed point (V, ϕ) for T (α), and define ϕα as

ϕα
g : V ∼= K ⊗ V = WT (α)

g ⊗ V
ϕg−→ V . (45)

Then the compatibility condition (39) ensures then that (V, ϕα) is a projective represen-
tation with 2-cocycle α, with Hα(V, ϕα) 
 (V, ϕ).

6.2. 2-characters for ∞-groups. In this subsection we will see how the notion of a 2-
character for a finite group immediately generalises to the notion of (n + 1)-character
for an ∞-group (i.e., for a monoidal ∞-groupoid whose objects are invertible for the
monoidal structure) G, for any n ≥ 0.

Since an ∞-group G is in particular a monoidal ∞-category, it has a classifying
monoidal ∞-category BG. The fact that G is not just any monoidal ∞-category but an
∞-group can then be expressed by saying that BG is a one-object ∞-groupoid. The
∞-group structure on G induces a (discrete) group structure on the set π0(G) of the
isomorphism classes of objects of G, and one has a natural equivalence of groupoids
Bπ0(G) ∼= π≤1BG.

Example 14. The basic example of an ∞-group is the fundamental ∞-groupoid of a
topological group G top. Namely, since G top is a group, the ∞-groupoid π≤∞(G top)

has a natural monoidal structure for which all the objects are invertible, given by the
product in G top. Moreover, one has π0(π≤∞(G top)) = π0(G top), the (discrete) group of
(path-)connected components of the topological group G top.

Example 15. A second fundamental example of an ∞-group is the ∞-group Γ ∞(Σ)

of diffeomorphisms of a smooth manifold Σ . Here the objects are the diffeomorphisms
of Σ , 1-morphisms are isotopies between diffeomorphism, 2-morphism are isotopies
between isotopies, and so on. For oriented manifolds one can analogously consider the
∞-group of oriented diffeomorphisms, and more generally for G-framed manifolds
one can consider the ∞-group of G-framed diffeomorphisms. The π0 of the ∞-group
Γ ∞(Σ) is the mapping class group Γ (Σ) of the (G-framed) manifold Σ .

Definition 11. Let G be an ∞-group. A n + 1-character for G is a ∞-functor

ρ : BG → B(Pic(n-Vect)) (46)

The definition given above is very flexible and compact, and can be easily generalised
by taking an arbitrary symmetric monoidal (∞, n)-category in place of n-Vect.

Remark 16. A 2-character for an ∞-group contains (in general) more information than
a 2-character for a discrete group (which can be seen as a very particular case of an
∞-group). Namely, for G an ∞-group, a 2-character ρ is given by an assignment to
each object g ∈ G of a complex line Wg , of a family ψg,h of isomorphisms

ψg,h : Wg ⊗ Wh
∼−→ Wgh, ∀g, h ∈ G (47)

and of isomorphisms
ψ f : Wg → Wh (48)
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for any path (i.e., 1-morphism) f connecting g to h. The above isomorphisms must
obey coherence conditions which encode the fact that ρ is an ∞-functor. In particular,
the isomorphism ψ f depends only on the isomorphism class of the 1-morphism f . In
the particular case of a discrete group, the only paths in G are the identities and one is
reduced to Definition 9.

Example 16. LetGLie be a Lie group, and let L be amultiplicative line bundle overGLie,
equipped with a compatible flat connection ∇. From L one obtains a 2-character ρ for
π≤∞(GLie) as follows: to each g in GLie, one assigns the vector space given by the fiber
Lg , and for each path γ connecting g and h one takes the isomorphism ψγ : Lg → Lh
induced by the connection via parallel transport (this depends only the homotopy class
of γ , since ∇ is flat). Finally, the fact that L is multiplicative and the compatibility of ∇
with the multiplicative structure imply that this assignment does define a 2-character.

For any n, the (n + 1)-group Pic(n-Vect) acts (n + 1)-linearly on n-Vect. This means
that any (n+1)-character ρ : BG → BPic(n-Vect) can naturally be seen as an∞-functor
W : BG → (n + 1)-Vect, mapping the unique object of BG to n-Vect. We will denote
by 1 : BG → (n + 1)-Vect the trivial ∞-functor, mapping the unique object of BG to
the monoidal unit of (n+1)-Vect (i.e., to n-Vect), and all morphisms in BG to identities.

Having introduced this notation, we can give the following definition of homotopy
fixed point for an (n +1)-character, generalizing the definition of homotopy fixed points
for a 2-character of a discrete group seen above.

Definition 12. Let ρ be an (n + 1)-character for an ∞-group G, and let W : BG →
(n+1)-Vect be the corresponding∞-functor. A homotopy fixed point forρ is amorphism
of ∞-functors 1 → W .

Homotopy fixed points for a (n +1)-character ρ form naturally an n-category, which we
denote by n-Vectρ .

Remark 17. Since a 2-character for a ∞-group contains more information than a 2-
character for a discrete group (see Remark 16), being a homotopy fixed point is a more
restrictive condition (in general) in the ∞-group case. Namely, with respect to the com-
patibility conditions in Definition 10, one has in addition that the following diagram

Wg ⊗ V
ϕg ��

ψ f ⊗id ������������ V

Wh ⊗ V

ϕh

�� (49)

has to commute, for any two objects g and h in G and any 1-morphism f : g → h
between them.

Remark 18. Homotopy fixed points for a 2-character for a topological group are a special
case of the following construction. Let X be a ∞-groupoid, and let L be a ∞-functor
from X to B(Pic(1-Vect)). Amodule for L is given by an∞-functor E : X → Vect, and
isomorphisms L f ⊗ Ex 
 Ey for any 1-morphism f : x → y, where L f is the complex
line assigned to f , and Ex is the vector space assigned to x by E . Higher morphisms
must also be taken into account, and together with the above family of isomorphisms
they must obey natural coherence conditions. The case of a homotopy fixed point for a
2-character for a topological group G corresponds to X = BG. Another geometrically
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interesting case iswhen X is the groupoidY [2] ⇒ Y for a surjective submersionY → M :
in this case an∞-functor L : X → B(Pic(1-Vect)) is given by a bundle gerbe with a flat
connection over X , while a module E over L is given by a (flat) gerbe module over L .

IfG is a (discrete) group andρ is a 1-character, i.e., a group homomorphismG → K
∗,

a homotopy fixed point is then nothing but a fixed point for the natural linear action of
G on K via ρ. Notice how the existence of a nonzero fixed point imposes a very strong
constraint on the character ρ in this case: if there exists a nonzero fixed point, then ρ is
the trivial character.

An analogous phenomenon happens for (n + 1)-characters of ∞-groups, for any
n ≥ 0. Here we will investigate in detail the case of 2-characters, due to its relevance to
anomalous TQFTs. To do this, it is convenient to introduce the following terminology:
we say that a 2-character ρ : BG → BPic(1-Vect) has trivial holonomy if it factors
through the natural projection BG → Bπ0(G). The origin of this terminology is clear
from Example 16. There, the 2-character ρ factors through Bπ≤∞(GLie) → Bπ0(GLie)

precisely when the connection ∇ has trivial holonomy. We have then the following

Lemma 6. Let V be a non-zero homotopy fixed point for a 2-character ρ. Then ρ has
trivial holonomy.

Proof. Since V is a homotopy fixed point for ρ, by Remark 17 we have the commutative
diagram (49) for any 2-morphism f : g → h in BG (i.e., for any 1-morphism f : g → h
in G). Since ϕg and ϕh are isomorphisms, we have

ψ f ⊗ id = ϕ−1
h ◦ ϕg, (50)

and so ψ f ⊗ id is independent of f . Since V is nonzero, this implies that ψ f is actu-
ally independent of f . This means that all the complex lines Wg with g ranging over
a connected component (i.e., an isomorphism class of objects) of G are canonically
isomorphic to each other, and so ρ factors through Bπ0(G).

Summing up the results in this section, we have the following

Proposition 1. Let ρ be a 2-character on an ∞-group G, and let V be a nontrivial
homotopy fixed point for ρ. Then there exist a 2-cocycle αρ on π0(G), unique up to
equivalence, such that V is isomorphic to (the homotopy fixed point realisation of) a
projective representation of π0(G) with 2-cocycle αρ .

Proof. Since ρ has a nontrivial homotopy fixed point, ρ has trivial holonomy by Lemma
6. Therefore, by definition of trivial holonomy, ρ is (equivalent to) a 2-character on the
discrete group π0(G). The statement then follows from Equation (40) and Lemma 5.

6.3. Projective representations from TQFTs. We can finally apply the results on (k +1)-
characters to anomalous TQFTs. Indeed, consider a semitrivialized anomaly W : Cob∞

k
(n) → BPic(k-Vect) ↪→ (k + 1)-Vect, and let ZW be an n-dimensional anomalous
TQFT extended down to codimension k, with anomaly W . Reasoning as in Remark
12, the anomaly W induces, for any closed (oriented) (n − k)-dimensional manifold
Σ , a 2-character ρΣ for the ∞-group of (oriented) diffeomorphisms Γ ∞(Σ), as in the
following diagram



1064 D. Fiorenza, A. Valentino

BΓ ∞(Σ)

ρΣ

		
� � �� Cob∞

0 (n − k) � � �� Cob∞
k (n) ��

W




BPic(k-Vect) �� (k + 1)-Vect

(51)
The k-vector space ZW (Σ) associated by the anomalous TQFT ZW to the (oriented)
(n − k)-dimensional manifold Σ is, by definition, a homotopy fixed point for ρΣ . In
particular, for k = 1, by Proposition 1, the vector space ZW (Σ) associated to an (n−1)-
dimensional manifoldΣ is a projective representation of the mapping class group Γ (Σ)

as soon as ZW (Σ) is nonzero. In other words, for any (n − 1)-dimensional manifold Σ

we obtain a central extension

1 → K
∗ → Γ̃ (Σ) → Γ (Σ) → 1

and a linear representation Γ̃ (Σ) → Aut(ZW (Σ)). This can be neatly described by
noticing that for k = 1 the data for an anomalous TQFTwith anomalyW are a homotopy
commutative diagram of the form

Cob∞
1 (n) ��

W
��

1

��
BPic(Vect) �� 2-Vect

ZW
�� ��

����

.

Such a diagram can be interpreted as the datum of a section ZW of the 2-line bundle L
over Cob∞

1 (n) associated withW . The “graph” of this section is a∞-category C̃ob
∞
1 (n)

over Cob∞
1 (n) whose objects are pairs consisting of an (n − 1)-dimensional manifold

Σ together with the choice of an object in the fibre LΣ . The mapping class group for
such a pair is the K

∗-central extension of Γ (Σ) described above. Notice the striking
similarity with Segal’s description of projective modular functors via central extensions
of the cobordism category [44], with the remarkable difference that anomalies in the
sense of the present article induce K

∗-central extensions whereas in Segal’s extended
cobordism one deals with Z-central extensions.

Remark 19. As we have seen above, having a semitrivialized anomaly W produces pro-
jective representations of the mapping class groups of all closed (n − k)-dimensional
manifolds at once. If one is interested in a single (n − k)-dimensional manifold Σ ,
though, there is no need for a semitrivialization of the anomaly: indeed, one can pro-
duce a projective representation of Γ (Σ) from any anomalous TQFT ZW , as soon as
the invertible (k + 1)-vector space W (Σ) is equivalent to the “trivial” (k + 1)-vector
space k-Vect. As already observed in Remark 9, this is always possible, although non
canonically, for any invertible (k + 1)-vector space, with k = 0, 1. Namely, choosing
an equivalence between W (Σ) and k-Vect amounts to give a homotopy commutative
diagram

BAut(W (Σ))
W (Σ) ��

��

(k + 1)-Vect

BPic(k-Vect)

��������������

Ψ
�
��

�
��

�
,
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where the top horizontal arrow picks the (k +1)-vector spaceW (Σ), while the diagonal
arrows is the canonical embedding of BPic(k-Vect) into (k+1)-Vect, which picks the (k+
1)-vector space k-Vect. The construction of the projective representation of the mapping
class group ofΣ follows from the very same arguments as above: indeed, just notice that
in diagram (51) it is inessential to have the arrow Cob∞

k (n) → BPic(k-Vect) if we are
interested in a single manifold Σ , while at the same time the morphism BΓ ∞(Σ) →
(k + 1)-Vect naturally factors through BAut(W (Σ)). We therefore obtain the following
variant of diagram (51), which induces the same considerations as above:

BΓ∞(Σ)

ρΣ

Cob∞
0 (n − k) Cob∞

k (n)

1

W (k + 1)-Vect

BAut(W (Σ))

W (Σ)

BPic(k-Vect)

Ψ

ZW

∼

(52)

7. Boundary Conditions for TQFTs

7.1. Boundary conditions. The n-dimensional TQFTs defined in Sect. 4 assign diffeo-
morphism invariants to closed n-manifolds. Nevertheless, n-manifolds with boundaries
have also invariants, usually obtained via relative constructions. One possibility to in-
corporate invariants of manifolds with boundaries is to enlarge the cobordism category
with morphisms represented bymanifolds with constrained boundaries. The guiding ex-
ample is given by 2-dimensional open/closed topological field theory [32,33,37], where
the authors enlarge the category Cob1(2) = π≤1Cob∞

1 (2) of 2-dimensional cobordism
by adding to it 1- and 2-dimensional manifolds with part of the boundary declared to
be constrained, meaning that it is not possible to glue along. If we denote by Cob∂

1(2)
this enlarged category, we will have the following 1-manifolds (and disjoint union of)
as objects

and the following 2-manifolds as some of the morphisms
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wherewe denote the constrained boundarywith a dashed red line. Notice that, differently
from [37], we are here using only one type of constrained boundary, whichwe label/color
red. The general case will be discussed in Remark 24 below.

Inspired by the description of Cob∂ (2) sketched above, let us define iteratively a
constrained bordism between two constrained d-dimensional manifolds Σ0 and Σ1
as a (d + 1)-dimensional manifold6 M whose boundary ∂M can be decomposed as
Σ0 ∪ Σ1 ∪ ∂const M , where ∂const M is a cobordism from ∂constΣ0 to ∂constΣ1. Con-
strained cobordisms come with smooth collars around the part of the boundary which is
unconstrained, in order to be able to glue them. With this premise, we can give the fol-
lowing informal definition, a rigorous version of which can be found in [35, Section 4.3].

Definition 13. The symmetric monoidal (∞, n)-category Bord∂ (n) has points as ob-
jects, 1-dimensional constrained bordisms as 1-morphisms, 2-dimensional constrained
bordisms between constrained bordisms as 2-morphisms, and so on until we arrive at
n-dimensional constrained bordisms as n-morphisms, fromwhere higher morphisms are
given by diffeomorphisms fixing the unconstrained boundaries and isotopies between
these (and isotopies between isotopies, and so on).

Remark 20. Exactly asBord(n), alsoBord∂ (n) comes in different flavours corresponding
to the various possibleG-framings of the cobordisms. In this sectionwewill be interested
in the general features of TQFTs with boundary conditions, and in their relation to
anomalous field theories. Hence in what follows, we will always leave the G-marking
unspecified, unless stated otherwise.

Example 17. The following 1-dimensional constrained cobordisms are examples of 1-
morphisms in Bord∂,or (n), for any n ≥ 1.

The one on the left represents a 1-morphism ∅ → pt+, which cannot be realized in
Bord(n). Similarly, the morphism on the right represents a 1-morphism pt+ → ∅, which
is also not present in Bord(n).

In analogy with the notation used in the unconstrained case, we will set

Cob∂,∞
k (n) = Ωn−kBord∂ (n). (53)

With this notation, we have that the category of 2-dimensional constrained cobordism
mentioned above is given by Cob∂

1(2) = π≤1Cob
∂,∞
1 (2). There is a canonical (non full)

embedding Bord(n) ↪→ Bord∂ (n), hence for any k ≥ 0 we have a natural (non full)
embeddings

i : Cob∞
k (n) ↪→ Cob∂,∞

k (n). (54)

This allows us to give the following

6 Here manifold more precisely means “manifold with corners”.
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Definition 14. Let Z : Cob∞
k (n) → (k +m)-Vect be an n-dimensional TQFT with mod-

uli level m. A boundary condition for Z is a symmetric monoidal extension

Cob∂,∞
k (n)

Z̃ �� (k + m)-Vect

Cob∞
k (n)

Z

		������������
i

��
(55)

Remark 21. It is important to notice that boundary conditions for an invertible TQFT
are not required to be invertible. This is reminiscent of the definition of an anomalous
TQFT, where the morphism 1 → W is not required to be an isomorphism.We will come
back to this in Sect. 8.

Example 18. The definition above can be made completely explicit for an Atiyah-Segal
1-dimensional TQFT, i.e., for Z : Cob∞

1 (1) → Vect. Indeed, in the same way as Z

factors through Cob1(1), Z̃ will factor through Cob∂
1(1) = π≤1Cob

∂,∞
1 (1). The objects

of Cob∂ (1) are oriented points, and the morphisms are given by those in Cob(1), and in
addition the following constrained morphisms

and their duals. Therefore, if the 1-dimensionalTQFT Z is givenby thefinite-dimensional
vector space V , then a boundary condition Z̃ for Z is the datum of a pair (v, ϕ), where
v is a vector in V and ϕ is an element in the dual space V ∗. We will call these a left and
a right boundary condition, respectively. In the unoriented situation the two morphisms
above are identified, and a boundary condition reduces to the datum of the vector v,
which also plays the role of a linear functional on V via the symmetric nondegenerate
inner product on V .

What makes the description of the boundary conditions so simple in the example above
is the fact that we are dealing with a fully extended theory. Indeed, one has the following
extension of the cobordism hypothesis to cobordisms with constrained boundaries [35].

Theorem 2 (Lurie–Hopkins). Let Z : Bord f r (n) → n-Vect be a fully extended TQFT
with moduli level 0. Then there is an equivalence

{(Left) boundary conditions for Z} ∼= Homn-Vect((n − 1)-Vect, Z(pt+)) ∼= Z(pt+)
(56)

induced by the evaluation of Z̃ on the decorated interval on the left in Example 17.

This description of (left) boundary conditions is strongly reminiscent of an anomalous
TQFT as in Definition 8. In the following we will see how a TQFT with (left) boundary
conditions naturally induces an anomalous TQFT.

Remark 22. For TQFTswith values in an arbitrary symmetricmonoidal (∞, n)-category
C, one still has that the (∞, n − 1)-category of boundary conditions is equivalent to the
hom-space HomC(1C, Z(pt+)), where 1C is the monoidal unit of C. However in general
this hom-space is not equivalent to Z(pt+).
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Remark 23. An analogue statement is likely to hold for cobordisms with a reduction
G → O(n) of the structure group of n-dimensional manifolds, by suitably taking into
account the homotopy O(n)-action on the homotopyG-fixed point Z(pt+). For instance,
in the oriented situation one has O(n)/SO(n) = Z/2Z, and the full boundary conditions
data consist of a left boundary condition (n − 1)-Vect → Z(pt+) and a right boundary
condition Z(pt+) → (n − 1)-Vect. Yet, for n ≥ 2, every n-vector space V realized as
a linear (n − 1)-category comes naturally equipped with a distinguished inner product
given by the Hom bifunctor

Hom : V op � V → (n − 1)-Vect (57)

With this choice of inner product, left boundary conditions automatically determine right
boundary conditions as in the unoriented case.

Remark 24. One can consider more than a single boundary condition at once, by re-
placing Bord∂ (n) by the larger symmetric monoidal (∞, n)-category Bord∂J (n), where
constrained boundaries are labelled by indices from a set J of colours. An extension Z̃ of
a TQFT Z to Cob∂J ,∞

k (n) is then the assignment of a boundary condition to each colour
j ∈ J , in such a way that the constraints imposed by requiring Z̃ to be a monoidal
symmetric functor are satisfied. One can in particular make the tautological choice
J = objects(BZ ), where BZ denotes the category of boundary conditions for Z . In this
way we recover the open/closed field theory framework as in [32,33,37]. Namely, we
recall from Example 8 that an extended 2-dimensional oriented TQFT Z is the datum of
a semisimple Frobenius algebra A, to be seen as a placeholder for its category of finite
dimensional right modules. Using the Hom functor as an inner product on AMod reduces
boundary conditions to left boundary conditions (see Remark 23). Therefore one has
constrained boundaries decorated by right A-modules, and the boundary condition Z̃
associates with the oriented segment with constrained boundaries

a

b

decorated by the A-modules Ra and Rb the vector space Oab = HomA(Ra, Rb). See
[1] for a treatment of open/closes 2d nonoriented TQFTs.

Remark 25. As an intermediate symmetricmonoidal (∞, k)-category betweenCob∞
k (n)

andCob∂,∞
k (n), one can consider the closed sector Cob∂,∞

k,cl (n), defined as the full (∞, k)-

subcategory generated by Cob∞
k (n) inside Cob∂,∞

k (n). Namely, objects in Cob∂,∞
k,cl (n)

are closed k-manifolds, as in Cob∞
k (n). Notice that in Cob∂,∞

k (n) we allow for more
objects, since one can consider k-manifolds with completely constrained boundary. For
instance, of the two objects in Cob∂,∞

1 (2) depicted at the beginning of this section, only
S1 is an object in the closed sector.

One can therefore also consider closed sector boundary conditions, i.e., extensions
of a TQFT to the closed sector
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Cob∂,∞
k,cl (n)

Z̃cl �� (k + m)-Vect

Cob∞
k (n)

Z

		������������
i

��
(58)

These are expected to be particularly simple in the k = n − 1 case. Indeed, since S1

is the only closed 1-dimensional manifold up to cobordisms, closed sector boundary
conditions for a TQFT Z : Cob∞

n−1(n) → (n−1)-Vect should reduce to a (n−1)-linear
morphism (n − 2)-Vect → Z(S1), i.e., to an object in Z(S1). This is in agreement
with the findings in the literature on extended 3-dimensional TQFTs, where boundary
decorations for a 2-dimensional surface Σ with boundary components are objects in the
modular tensor category the TQFT associates to S1 [5].

8. From Boundary Conditions to Anomalous TQFTs

As mentioned in the previous section, there is a close relation between boundary condi-
tions for invertible TQFTs and anomalous TQFTs. In the present section we will exploit
this relation in detail.

Let Z̃ be a boundary condition for an (n+1)-dimensional invertible TQFT Z extended
up to codimension k + 1 with moduli level 0. In other words, we have the following
commutative diagram

Cob∂,∞
k+1 (n + 1)

Z̃ �� (k + 1)-Vect

Cob∞
k+1(n + 1) Z ��

i

��

Pic((k + 1)-Vect)

�� (59)

As mentioned in Remark 11, the restriction of Z to Cobk(n) ↪→ Cobk+1(n + 1) is an
n-dimensional anomaly, which we will denote WZ .

Let [0, 1] denote the oriented interval [0, 1] with {0} being a constrained component
of the boundary, as in the figure in Example 17, on the left. Then for any m-morphism
Σ in Cobk(n), with k ≥ 0, i.e. for any (n − k + m)-dimensional manifold Σ , possibly
with boundary, the product manifoldΣ ×[0, 1] can be seen as a (m +1)-morphism from
∅ to Σ in Cob∂,∞

k+1 (n + 1):

∅ Σ×[0,1]−−−−−→ Σ, (60)

We can graphically depict the morphism above as follows

Σ × 0

Σ × 1
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Moreover, given an (n − k +m + 1)-cobordism M between Σ and Σ ′, we have that the
coloured manifold M ×[0, 1] induces a cobordism between Σ ×[0, 1] and Σ ′ × [0, 1].

Evaluating Z̃ on Σ ×[0, 1] gives us a (m +1)-morphism in (k +1)-Vect between the
unit (in the correct degree) and Z̃(Σ) = Z(Σ) = WZ (Σ).

Recall that a (k + 1)-morphism in Cobk(n) is a diffeomorphism ϕ : Σ1 → Σ2 of
n-dimensional manifolds fixing the boundaries. By combining it with the identity of
[0, 1], one gets a diffeomorphism of (n + 1)-dimensional manifolds, which realizes a
(k + 2)-morphism in Cob∂,∞

k+1 (n + 1) between the empty set and the mapping cylinder
of ϕ. Applying Z̃ we get a morphism from the unit to Z̃(Mϕ) = Z(Mϕ) = WZ (ϕ).
This pattern continues with no changes to isotopies between diffeomorphisms, isotopies
between isotopies, etc. Hence we have that

Z̃W Z := Z̃(− × [0, 1]) (61)

defines amorphism Z̃W Z : 1 → WZ , i.e. an anomalousTQFT in the senseofDefinition 8.
We can assemble the argument above in the following

Proposition 2. Let Z be a (n + 1)-dimensional invertible TQFT extended down to codi-
mension k + 1 with moduli level 0, and let W Z denote the n + 1-dimensional anomaly
induced by Z. Then any boundary condition Z̃ for Z induces an n-dimensional anom-
alous TQFT Z̃W Z with anomaly W Z .

The above argument shows that we have a “forgetful map”

{boundary conditions on invertible TQFTs} � {anomalous TQFTs} (62)

In general, we do not expect the converse to hold. Namely, an anomalous TQFT with
anomaly W contains too little information to determine a boundary condition Z̃ . Nev-
ertheless, in the case of fully extended TQFTs the situation is rather different.

Remark 26. The procedure of taking “cartesian products” with the constrained inter-
val can be seen as a form of dimensional reduction for manifolds with boundaries. It
is completely analogous to dimensional reduction over S1, which allows to obtain a
n − 1-dimensional extended TQFT from an n-dimensional one, preserving the tiers of
extension.

8.1. Boundary conditions for fully extended TQFTs. For simplicity, in the following we
will consider the framed case. Let Z be a (n + 1)-dimensional fully extended invertible
TQFT, namely an ∞-functor Z : Bord f r (n + 1) → (n + 1)-Vect which factors through
Pic((n + 1)-Vect). As mentioned in Remark 11, from Z we obtain an n-character WZ .
Let ZW Z be an anomalous TQFT with anomaly WZ , namely a morphism 1 → WZ ,
which contains in particular the datum of a 1-morphism

n-Vect → WZ (pt+) = Z(pt+) (63)

By Theorem 2, we have then that ZW induces a boundary condition Z̃ of Z , and an
equivalence

ZW Z 
 Z̃W Z (64)

of 1-morphisms 1 → WZ , where Z̃W Z is the anomalous TQFT as from Proposition 2.
This argument can be assembled in the following
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Theorem 3. Let Z be a fully extended invertible (n + 1)-dimensional TQFT. Any n-
dimensional anomalous TQFT ZW Z with respect to W Z gives rise to a boundary con-
dition Z̃ of Z.

Hence in the fully extended case, an anomalous TQFT with respect to an anomaly
obtained by restriction of a higher dimensional TQFT Z contains enough information
to allow Z to be extended on manifolds with boundaries.

We conclude this section with an observation we find intriguing. In [20] a 4-category
with duals Braid⊗ of braided tensor categories has been introduced, as follows:

– objects are given by braided tensor categories C;
– 1-morphisms between C and D are pairs (A, q), with A a fusion category, and q a

braided functor Cop � D → Z(A), where Z(A) is the Drinfel’d centre of A;
– 2-morphisms are A-B bimodules M ;
– 3-morphisms are bimodule functors;
– 4-morphisms are bimodule natural transformations;

Recently [19], the invertible objects inBraid⊗ have been investigated: they are exactly the
modular tensor categories. They are also fully dualizable. Let then C be a modular tensor
category, and consider the invertible fully extended 4-dimensional TQFT Z induced by
C. Also, let (A, q) be a 1-morphism from Vect (i.e., from the monoidal unit of Braid⊗)
to C, i.e., let q be a braided functor C ∼= Vectop � C → Z(A) for some fusion category
A. By the results above7, to (A, q) there corresponds a boundary condition Z̃ of Z , and
consequently a fully extended 3-dimensional anomalous theory with respect toWZ with
values inΩBraid⊗. We will denote with Z (A,q) this anomalous theory. Notice that if we
apply the loop operator to the morphism Z (A,q) we obtain a 3-dimensional anomalous
TQFT extended up to codimension 2 with values in Ω2Braid⊗ 
 2-Vect.

On the other hand, given a modular tensor category C, the Reshetikhin–Turaev con-
struction also produces an anomalous 3-dimensional TQFT extended up to codimension
2, which we denote by ZRT

C . It is very tempting then to state the following

Conjecture 2. Let C be a modular tensor category. Then, any isomorphism (A, q) be-
tween Vect and C in Braid⊗, i.e., any equivalence q : C → Z(A), induces a natural
equivalence

ZRT
C 
 Ω(Z (A,q)). (65)

The conjecture above is compatible with findings in [22], which studies obstructions to
the existence of boundary conditions for Reshetikhin–Turaev TQFTs.

Remark 27. In Conjecture 2, Reshetikhin–Turaev TQFT is regarded as an anomalous
theory with respect to the 4-dimensional Crane–Yetter theory, i.e. a natural transfor-
mation of (higher) functors, rather than a functor on a central extension of Cobor2 (3).
In other words, we trade the additional structures on 1-, 2-, and 3-manifolds needed to

7 In the main body of the paper we have been considering only n-Vect as a target for a TQFT. The
constructions presented there generalise to an arbitrary symmetric monoidal (∞, n)-category with duals C as
a target, see [35]. More precisely, when C takes the role of n-Vect, then ΩC takes the role of (n− 1)-Vect, and
so on, down to ΩnC taking the role of the base field K. In particular, it is meaningful to have the symmetric
monoidal 4-category Braid⊗ as a target, as we are doing here.
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define Reshetikhin–Turaev TQFT as functors, as for instance in [46,48], with looking
at them as natural transformations.

8.2. Further applications and outlook. An interesting playground to test and apply the
language and results developed in this article is provided by the quantisation of classi-
cal Lagrangian field theories, as in [20,38,39]. In this case the TQFT is obtained via
a linearisation of the (higher) stack of classical fields over ∞-categories of groupoid
correspondences: we expect therefore the anomalous theory to retain some “classical”
properties concerning the anomaly.A particularly amenable situation is given by (higher)
Dijkgraaf–Witten theories: indeed, in this case we expect to reproduce the results ob-
tained in [23] in 3-dimensions, which would provide a purely quantum field theoretic
support to the ansatz therein proposed.

On a closely related topic, we remark that there is a version of the cobordism hypoth-
esis to incorporate defects between fully extended TQFTs. Indeed, a boundary condition
for Z as presented in this article can be regarded as a defect between the trivial the-
ory and Z . One can then investigate morphisms between two arbitrary n-dimensional
TQFTs of moduli level m, with m > 0: we expect the structure involved in this case to
be richer than the case m = 0, where the (∞, n − 1)-category of morphisms forms a
groupoid.
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