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Abstract: We prove |x |−2 decay of the critical two-point function for the continuous-
time weakly self-avoiding walk on Z

d , in the upper critical dimension d = 4. This is a
statement that the critical exponent η exists and is equal to zero. Results of this nature
have been proved previously for dimensions d ≥ 5 using the lace expansion, but the lace
expansion does not apply when d = 4. The proof is based on a rigorous renormalisation
group analysis of an exact representation of the continuous-time weakly self-avoiding
walk as a supersymmetric field theory.Much of the analysis applies more widely and has
been carried out in a previous paper, where an asymptotic formula for the susceptibility
is obtained. Here, we show how observables can be incorporated into the analysis to
obtain a pointwise asymptotic formula for the critical two-point function. This involves
perturbative calculations similar to those familiar in the physics literature, but with error
terms controlled rigorously.

1. Main Result

1.1. Introduction. The critical behaviour of the self-avoidingwalk depends on the spatial
dimension d. The upper critical dimension is 4, and for d ≥ 5 the lace expansion has been
used to prove that the asymptotic behaviour is Gaussian [20,29–31,43]. In particular,
for the strictly self-avoiding walk in dimensions d ≥ 5, the critical two-point function
has |x |−(d−2+η) decay with critical exponent η = 0, both for spread-out walks [21,30]
and for the nearest-neighbour walk [29]. For d = 3, the problem remains completely
unsolved from a mathematical point of view, but numerical and other evidence provides
convincing evidence that the behaviour is not Gaussian. In particular, numerical values
of the critical exponents γ and ν [22,42], together with Fisher’s relation γ = (2 − η)ν,
indicate that the critical two-point function has approximate decay |x |−1.031 for d = 3.
For d = 2, the critical two-point function is predicted to decay as |x |−5/24 [40], and
recent work suggests that the scaling behaviour is described by SLE8/3 [37], but neither
has been proved. The case of d = 1 is of interest for weakly self-avoiding walk, where a
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fairly complete understanding has been obtained [33]. More about mathematical results
for self-avoiding walk can be found in [8,38].

In the present paper, we prove that the critical two-point function of the continuous-
time weakly self-avoiding walk is asymptotic to a multiple of |x |−2 as |x | → ∞, in
dimension d = 4. This is a statement that the critical exponent η exists and is equal
to zero. The proof is based on a rigorous renormalisation group method; a summary
of the method and proof is given in [12]. Early indications of the critical nature of the
dimension d = 4 were given in [3,9], following proofs of triviality of φ4 field theory
above dimension 4 [2,25].

Logarithmic corrections to scaling are common in statistical mechanical models at
the upper critical dimension, and are predicted for the susceptibility and correlation
length and several other interesting quantities [10,35,45], but not for the leading decay
of the critical two-point function of the 4-dimensional self-avoiding walk. In [5], it is
proved that the susceptibility of the 4-dimensional weakly self-avoiding walk does have
a logarithmic correction to scaling, with exponent 1

4 . We now extend the methods of [5]
to study the critical two-point function.

We use an integral representation to rewrite the two-point function of the continuous-
time weakly self-avoiding walk as the two-point function of a supersymmetric field
theory, and apply a rigorous renormalisation group argument to analyse the field the-
ory.

Our proof involves an extension of the ideas and structure developed in [5], and to
avoid repetitionwe refer below frequently to [5] for ideas and notation that apply without
modification to our present purpose. A feature present here but not in [5] is the use of a
complex observable field σ ; this requires aspects of [6,17–19] concerning observables
that were not used in [5]. A similar extension was used to study correlations of the dipole
gas in [23].

Our general approach applies more widely. In [44], it has been extended to prove
existence of logarithmic corrections to scaling for 4-dimensional critical networks of
weakly self-avoiding walks, and for critical correlation functions of the 4-dimensional
n-component |ϕ|4 spin model.

1.2. Main result. We now define the two-point function for continuous time weakly
self-avoiding walk, and state our main result. Fix a dimension d > 0. Let X be the
stochastic process on Z

d with right-continuous sample paths, that takes its steps at the
times of the events of a rate-2d Poisson process. Steps are independent both of the
Poisson process and of all other steps, and are taken uniformly at random to one of
the 2d nearest neighbours of the current position. Let Ea denote the corresponding
expectation for the process started at X (0) = a. The local time at x up to time T
is defined by Lx,T = ∫ T

0 1X (s)=xds, and the self-intersection local time up to time
T is I (T ) = ∑

x∈Zd L2
x,T . The continuous-time weakly self-avoiding walk two-point

function is then defined by

Gg,ν(a, b) =
∫ ∞

0
Ea

(
e−gI (T )1X (T )=b

)
e−νT dT, (1.1)

where g > 0, and ν is a parameter (possibly negative) chosen so that the integral
converges. By translation invariance, Gg,ν(a, b) only depends on a, b via a − b. For
d = 4, the continuous-time weakly self-avoiding walk is identical to the lattice Edwards
model; see [38, Section 10.1].
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In (1.1), self-intersections are suppressed by the factor e−gI (T ). In the limit g → ∞,
if ν is simultaneously sent to −∞ in a suitable g-dependent manner, it is known that
the limit of the two-point function (1.1) is a multiple of the two-point function of the
standard discrete-time strictly self-avoiding walk [13]. The model defined by (1.1) is
predicted to be in the same universality class as the strictly self-avoiding walk for all
g > 0. Our analysis is restricted to small g > 0.

The susceptibility is defined by

χg(ν) =
∑

b∈Zd

Gg,ν(a, b), (1.2)

and the critical value νc(g) is defined by νc(g) = inf{ν ∈ R : χg(ν) < ∞}. It is proved
in [5, Lemma A.1] that νc = νc(g, d) ∈ (−∞, 0] for all g > 0 and d > 0, and that
moreover

χg(ν) < ∞ if and only if ν > νc. (1.3)

Moreover, it is shown in [5, Theorem 1.2] that for d = 4, as g ↓ 0,

νc(g) = −ag(1 + O(g)), (1.4)

where the positive constant a is given by a = −2Δ−1
00 . In particular, (1.4) implies that

νc(g) < 0 for small positive g.
Our main result is the following theorem which gives the decay of the critical two-

point function in dimension 4, for sufficiently small g.

Theorem 1.1. Let d = 4. There exists δ > 0 such that for each g ∈ (0, δ) there exists
c(g) = (2π)−2(1 + O(g)) such that as |a − b| → ∞,

Gg,νc(g)(a, b) = c(g)

|a − b|2
(

1 + O

(
1

log |a − b|
))

. (1.5)

In [12], an extension of Theorem 1.1 states that the critical two-point function has
decay |a − b|2−d for all dimensions d ≥ 4, but [12] provides only a sketch of proof.
Our principal interest is the critical dimension d = 4, and we provide the details of the
proof for d = 4 here. The restriction to d = 4 avoids additional complications required
to handle general high dimensions. We intend to return to the general case in a future
publication.

We define the Laplacian Δ on Z
d by (Δ f )x = ∑

e:|e|=1( fx+e − fx ). For g = 0 and

ν ≥ 0, the two-point function is given by G0,ν(a, b) = (−Δ + ν)−1
ab , and νc(0) = 0.

Theorem 1.1 proves that for d = 4 and small positive g, the critical two-point function
has the same |a − b|−2 decay as the lattice Green function −Δ−1

ab on Z
4. In contrast, for

ν > νc(g), Gg,ν(a, b) decays exponentially as |a − b| → ∞; an elementary proof is
sketched below in Proposition 2.1.

In [5, Section 4], it is shown that the susceptibility of the weakly self-avoiding walk
is equal to the susceptibility of the simple random walk with renormalised diffusion
constant (field strength) 1 + z0 and killing rate (mass) m2, with z0 and m2 functions of
g, ε with ε = ν − νc(g). More precisely,

χg(ν) = 1 + z0
m2 , (1.6)
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with z0 = O(g) and with m2 asymptotic to a multiple of ε(log ε−1)−1/4 as ε ↓ 0. In the
proof of Theorem 1.1 we extend this correspondence and prove that (with z0 = z0(g, 0))

Gg,νc(g)(a, b) ∼ (1 + z0)(−ΔZd )
−1
ab (|a − b| → ∞), (1.7)

which shows that the critical interacting two-point function is asymptotic to the critical
non-interacting two-point function, with the same renormalised diffusion constant.

The proof of Theorem 1.1 uses a supersymmetric integral representation for the two-
point function, which requires us to work first in finite volume and with ν > νc. Because
of this, our analysis initially stays slightly away from the critical point. A related issue
is that the Laplacian annihilates constants in finite volume, and hence is not invertible
without the addition of some mass term. Ultimately, we first take the infinite volume
limit with ν > νc, and then let ν ↓ νc.

A variant of the 4-dimensional Edwards model was analysed in [34] using a renor-
malisation group method. Although this variant is not a model of walks taking steps in a
lattice, it is presumably in the same universality class as the 4-dimensional self-avoiding
walk, and the results of [34] are of a similar nature to ours. For the 4-dimensional ϕ4

model, related results were obtained via block spin renormalisation in [26–28,32], and
via partially renormalised phase space expansion in [24]. Our method is applied to the
n-component |ϕ|4 model in [7,44].

2. Integral Representation for the Two-Point Function

The proof of Theorem 1.1 is based on an integral representation for a finite volume
approximation of the two-point function. To discuss this, we first show how the two-
point function can be approximated by a two-point function on a finite torus.

2.1. Finite volume approximation. Let L ≥ 3 and N ≥ 1 be integers, and let  =
N = Z

d/LN
Z
d denote the discrete torus of side LN . We are ultimately interested

in the limit N → ∞, and regard N as a finite volume approximation to Z
d . It is

convenient at times to consider N to be a box (approximately) centred at the origin
in Z

d , without identifying opposite sides to create the torus. For fixed a, b ∈ Z
d , we

can then regard a, b as points in N provided N is large enough, and we make this
identification throughout the paper. In particular, we tacitly assume that N is sufficiently
large to contain given a, b.

For a, b ∈ N , let

GN ,g,ν(a, b) =
∫ ∞

0
EN
a

(
e−gI (T )1X (T )=b

)
e−νT dT, (2.1)

where EN
a denotes the continuous-time simple random walk on the torus N , started

from the point a. By the Cauchy–Schwarz inequality, T = ∑
x∈ Lx

T ≤ (||I (T ))1/2

and hence I (T ) ≥ T 2/||, from which we conclude that the integral (2.1) is finite for
all g > 0 and ν ∈ R. The following proposition shows that the infinite volume two-point
function (1.1) can be approximated by the finite volume two-point function (2.1), and
that it is possible to study the critical two-point function on Z

d in the double limit in
which first N → ∞ and then ν ↓ νc.
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Proposition 2.1. Let d > 0, g > 0, and ν > νc(g). Then Gν(a, b) decays exponentially
in |a − b|, and

Gg,ν(a, b) = lim
N→∞GN ,g,ν(a, b). (2.2)

Also, for all ν ≥ νc(g),

Gg,ν(a, b) = lim
ν′↓ν

lim
N→∞GN ,g,ν′(a, b). (2.3)

Proof. Wefix g > 0 anddrop it from thenotation.Onceweprove (2.2), then (2.3) follows
because, by monotone convergence, Gg,ν(a, b) is right continuous for ν ≥ νc(g).

Let cT (a, b) = Ea(e−gI (T )1X (T )=b) and cN ,T (a, b) = EN
a (e−gI (T )1X (T )=b). Fix

ν > ν′ > νc and S > 0. By the triangle inequality,

|Gν(a, b)−GN ,ν(a, b) | ≤
∫ S

0
|cT (a, b)−cN ,T (a, b)|e−νT dT +

∫ ∞

S
cT (a, b)e−νT dT

+
∫ ∞

S
cN ,T (a, b)e−νT dT . (2.4)

For the analysis of the right-hand side of (2.4), we defineχN (ν) = ∑
b∈ GN ,ν(a, b),

and recall from [5, Lemma 2.1] that χN (ν) ≤ χ(ν). From this it follows that

lim sup
N→∞

GN ,ν′(a, b) ≤ lim sup
N→∞

χN (ν′) ≤ χ(ν′) < ∞. (2.5)

Let δ = ν − ν′ > 0. Then
∫ ∞

S
cT (a, b)e−νT dT ≤ e−δSGν′(a, b), (2.6)

lim sup
N→∞

∫ ∞

S
cN ,T (a, b)e−νT dT ≤ e−δS lim sup

N→∞
GN ,ν′(a, b). (2.7)

This shows that the last two terms in (2.4) can be made as small as desired, uniformly
in N , by choosing S large.

To estimate the first contribution, let (Yt )t≥0 be a rate-2d Poisson process with corre-
sponding probability measure P . Since contributions to the difference |cT − cN ,T | only
arise from walks that reach the inner boundary ∂ of the torus (identified with a subset
of Z

d so that it does have a boundary), for any 0 ≤ T ≤ S we have

|cT (a, b) − cN ,T (a, b)| ≤ Ea

(
e−gI (T )1{X ([0,T ])∩∂ �=∅}

)

+ E
a

(
e−gI (T )1{X ([0,T ])∩∂ �=∅}

)

≤ Pa
{
X

([0, T ]) ∩ ∂ �= ∅
}
+ P

a

{
X

([0, T ]) ∩ ∂ �= ∅
}

≤ 2P {YT ≥ diam()} ≤ 2P {YS ≥ diam()} , (2.8)

and the right-hand side goes to zero as N → ∞ with S fixed. By this estimate, the first
integral in (2.4) converges to 0 as N → ∞, for any fixed S. This completes the proof of
(2.2) and hence of (2.3).
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We do not use the exponential decay in this paper, and its proof is standard, so we
only sketch the argument. Given any α > 0, we write x = b − a and make the division

Gν(a, b) =
∫ α|x |

0
cT (a, b)e−νT dT +

∫ ∞

α|x |
cT (a, b)e−νT dT . (2.9)

For the second integral on the right-hand side, we set cT = ∑
b∈Zd cT (a, b) and use

cT (a, b) ≤ cT . It can be shown that cT obeys cS+T ≤ cScT and that this implies
c1/TT → eνc as T → ∞, from which we see that cT (a, b) ≤ Cεe(νc+ε)T for any ε > 0.
This gives exponential decay in x for the second integral. For the first integral, we recall
the Chernoff estimate for the Poisson distribution, in the form that if X is Poisson with
mean λ and k > λ, then P(X > k) ≤ e−λ(eλ/k)k . Since a walk can travel from a to
b in time T only if the number of steps taken is at least x , it follows from the Chernoff
bound that if 2dα < 1 and T ≤ α|x | then

cT (a, b) ≤ P(YT ≥ |x |) ≤ e−2dT (2dT e)|x ||x |−|x | ≤ (2deα)|x |. (2.10)

By choosing α sufficiently small depending on ν (recall that ν < 0 is possible), we see
that the first term on the right-hand side of (2.9) also exhibits exponential decay in x .

�

2.2. Integral representation. We use the supersymmetric integral representation for the
two-point function discussed in detail in [5, Section 3]. We refer to that discussion for
further details, notation, and definitions, and here we recall the minimum needed for our
present purposes.

In terms of the complex bosonfieldφ, φ̄ and conjugate fermionfieldsψ, ψ̄ introduced
in [5, Section 3], and using the same notation, for x ∈ we define the differential forms

τx = φx φ̄x + ψx ∧ ψ̄x , (2.11)

τΔ,x = 1

2

(
φx (−Δφ̄)x + (−Δφ)x φ̄x + ψx ∧ (−Δψ̄)x + (−Δψ)x ∧ ψ̄x

)
, (2.12)

where Δ = Δ is the lattice Laplacian on  given by Δφx = ∑
y:|y−x |=1(φy − φx ).

Here ∧ denotes the wedge product; we drop the wedge from the notation subsequently
with the understanding that forms are always multiplied using this anti-commutative
product.

Let EC denote the Gaussian super-expectation with covariance matrix C , as defined
in [5, Definition 3.2]. In [5, (4.7)–(4.8)], it is shown that for N < ∞, g > 0, ν ∈ R,
m2 > 0, and z0 > −1,

GN ,g,ν(a, b) = (1 + z0)EC

(
e−U0()φ̄aφb

)
, (2.13)

where C = (−Δ + m2)−1,

U0() =
∑

x∈

(
g0τ

2
x + ν0τx + z0τΔ,x

)
, (2.14)

and

g0 = g(1 + z0)
2, ν0 = (1 + z0)ν − m2. (2.15)
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The identity (2.13) is a rewriting of an identity from [11,15] that was inspired by [39,41];
see also [16, Theorem 5.1] for a self-contained proof.

In [5], we also use (2.13), but there write V instead of U . In the present paper, we
use V for an extension of U that incorporates also an observable field, discussed next.

2.3. Observable field. We introduce an external field σ ∈ C and define

V0() = U0() − σ φ̄a − σ̄ φb. (2.16)

We refer to σ as the observable field. Then we can compute the two-point function using
the identity

GN ,g,ν(a, b) = (1 + z0)
∂2

∂σ∂σ̄

∣
∣
∣
0
ECe

−V0(), (2.17)

which follows from (2.13). To prove Theorem 1.1, we analyse the derivative of the
Gaussian super-expectation on the right-hand side of (2.17), without making further
reference to its connection with self-avoiding walks.

An external field is also employed to analyse the susceptibility in [5, Section 4.1],
but in a different way. There the external field is a test function J :  → R, and
U0() becomes replaced by U0() − ∑

x∈(Jx φ̄x + J̄xφx ). In [5] the interest is in the
constant external field Jx = 1 for all x ∈ , and the macroscopic regularity of this test
function is important. Here, in contrast, (2.16) corresponds to setting Jx = σ1x=a and
J̄x = σ̄1x=b (so the two are not precisely complex conjugates). To work with such a
singular external field, we use a different analysis based on ideas prepared in [17–19].
It would be desirable to allow all coupling constants to be spatially varying, not just the
external field. This extension has been achieved for hierarchical models in [1].

Our attention to the dependence on the external field is quite limited: we only wish to
compute the derivative (2.17), and as such wemake no use of any functional dependence
on σ, σ̄ beyond expansion to second order, i.e., including terms of order 1, σ, σ̄ , σ σ̄ . We
formalise this notion by identifying quantities with the same expansion to second order,
as follows. Recall the spaceN of even differential forms introduced in [5, Section 3.1],
which we now denote instead by N∅. As in [5, (3.5)], an element of N∅ has the form

∑

x,y

Fx,y(φ, φ̄)ψ x ψ̄ y . (2.18)

We extend this notion by now allowing the coefficients Fx,y to be functions of the
external field σ, σ̄ as well as of the boson field φ, φ̄. Let N be the resulting algebra of
differential forms. Let I denote the ideal inN consisting of those elements ofN whose
expansion to second order in the external field is zero. The quotient algebra N /I then
has the direct sum decomposition

N /I = N∅ ⊕ N a ⊕ N b ⊕ N ab, (2.19)

where elements of N a,N b,N ab are respectively given by elements of N∅ multiplied
by σ , by σ̄ , and by σ σ̄ . For example, φx φ̄yψx ψ̄x ∈ N∅, and σ φ̄x ∈ N a . There are
canonical projections πα : N → N α for α ∈ {∅, a, b, ab}. We use the abbreviation
π∗ = 1− π∅ = πa + πb + πab. The quotient space is used also in [17–19], e.g., around
[17, (1.60)]. Since we have no further use of N , to simplify the notation we henceforth
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write simply N instead of N /I. As functions of the external field, elements of N are
then polynomials of degree at most 2, by definition. For example, we identify eσ φ̄a+σ̄ φb

and 1 + σ φ̄a + σ̄ φb + σ σ̄ φ̄aφb, as both are elements of the same equivalence class in the
quotient space.

3. Renormalisation Group Map

In this section, we sketch only the most important ingredients of our renormalisation
group method from [5,6,18,19]. A more detailed introduction is given in [5] (see also
[7,12]).

3.1. Progressive Gaussian integration. We use decompositions of the covariances C =
(−ΔN +m2)−1 and (−ΔZ4 +m2)−1 for the torus and Z

4, respectively, as discussed in
[5, Section 5.1], and we use the same notation as in [5]. These decompositions take the
form

(−ΔZ4 + m2)−1 =
∞∑

j=1

C j (m2 ∈ [0, δ)), (3.1)

C = (−ΔN + m2)−1 =
N−1∑

j=1

C j + CN ,N (m2 ∈ (0, δ)), (3.2)

where the covariance CN ,N is special because of the effect of the torus. The particular
finite-range decomposition we use is developed in [4,14], with properties given in [6].
The finite-range condition is the statement that C j;x,y = 0 when |x − y| ≥ 1

2 L
j ; this

condition is important for results we use from [18,19]. As discussed in [5, Section 5.1],
the Gaussian super-expectation of F ∈ N can be carried out progressively, via the
identity

ECθF = (
ECN ,N θ ◦ ECN−1θ ◦ · · · ◦ EC1θ

)
F. (3.3)

The external field σ, σ̄ is treated as a constant by the super-expectation. To compute
ECe−V0() of (2.17), we use (3.3), and define

Z0 = e−V0(), Z j+1 = EC j+1θ Z j ( j < N ). (3.4)

For j + 1 = N , we interpret the convolution EC j+1θ as the convolution ECN ,N θ , i.e.,
the last covariance is taken to be the one appropriate for the torus N . Then the desired
expectation is given by Z0

N (0), where the superscript 0 denotes projection onto the
degree-0 part of the differential form (i.e., the fermion field is set to 0) and the argument
0 means that the boson field is evaluated at φ = 0. Thus we are led to study the recursion
Z j �→ Z j+1. By (2.17), the two-point function is given by

GN ,g,ν(a, b) = (1 + z0)Z
0
N ;σ σ̄ (0), (3.5)

where Fσ σ̄ ∈ N∅ denotes the coefficient of σ σ̄ in F ∈ N , i.e., πabZ0
N = σ σ̄ Z0

N ;σ σ̄
.

3.2. The interaction functional. LetQ(0) andQ(1) respectively denote the vector space
of local polynomials of the form
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V (0) = gτ 2 + ντ + zτΔ − λa1a σ φ̄ − λb1b σ̄ φ, (3.6)

V (1) = V (0) − 1
2σ σ̄ (qa1a + qb1b), (3.7)

where g, ν, z ∈ R, λa, λb, qa, qb ∈ C, and the indicator functions are defined by the
Kronecker delta 1a,x = δa,x . (We believe that in fact only real coupling constants
λa, λb, qa, qb are required, but we did not prove this and it costs us nothing to permit
complex coupling constants.) The terms involving σ are referred to as observables, while
the terms involving τ 2, τ , and τΔ are bulk terms. We frequently identify elements of
Q(0) and Q(1) as sequences V (0) = (g, ν, z, λa, λb), V (1) = (g, ν, z, λa, λb, qa, qb),
and typically write U = π∅V = (g, ν, z).

Recall from [5, Section 5.3] the set B j of scale- j blocks, and the set P j of scale-
j polymers in . We also recall from [5, Section 5.4] the interaction functional I j :
Q(0) × P j → N defined for B ∈ B j , X ∈ P j , and V ∈ Q(0) by

I j (V, B) = e−V (B)(1 +Wj (V, B)), I j (V, X) =
∏

B∈B j

I j (V, B), (3.8)

where Wj is an explicit quadratic function of V defined in [6]. In particular, W0 = 0.
We often write simply I j (X) = I j (V, X). By (3.8), I0(V, X) = e−V (X) for all X ⊂ ,
with V (X) = ∑

x∈X Vx .
Motivation for the definition (3.8) is given in [6, Section 2]. In the present paper, we

do not give the details of the definitions of Wj and I j since we do not need them here.
They are, however, important in [6,18,19] and we rely on results from those references.
The V domain of I j is larger here than in [5], due to the presence of observables, but
the larger domain is permitted and present in the analysis of [6,18,19].

3.3. Renormalisation group coordinates. Given F1, F2 : P j → N , we define the circle
product F1 ◦ F2 : P j → N by

(F1 ◦ F2)(Y ) =
∑

X∈P j :X⊂Y

F1(X)F2(Y\X) (Y ∈ P j ). (3.9)

The terms X = ∅ and X =  are included in the summation on the right-hand side,
and we demand that all functions F : P j → N obey F(∅) = 1. The circle product
depends on the scale j , is associative, and is also commutative due to our restriction in
N to forms of even degree. Its identity element is 1∅, defined by 1∅(X) = 1 if X is
empty, and otherwise 1∅(X) = 0.

In the definition of I0 we set V = V0, with V0 defined in (2.16), so that I0(X) =
I0(V0, X) = e−V0(X) for all X ⊂ . Let K0 : P0 → N be defined by K0 = 1∅, and
set q0 = 0. Then Z0 = I0(V0,) of (3.4) is also given by

Z0 = I0() = eq0σ σ̄ (I0 ◦ K0)(). (3.10)

Our strategy is to define q j ∈ C, Vj ∈ Q(0), K j : P j → N , and set I j = I j (Vj ), so as
to maintain this form as

Z j = eq jσ σ̄ (I j ◦ K j )() (0 ≤ j ≤ N ) (3.11)
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in the recursion Z j �→ Z j+1 = EC j+1θ Z j of (3.4), with the initial condition given by
(3.10). At the final scale j = N , the only two polymers are the single block  = N
and the empty set∅, and since I j (∅) = K j (∅) = 1, by assumption, (3.11) simply reads

ZN = eqNσ σ̄ (IN ◦ KN )() = eqNσ σ̄ (IN () + KN ()). (3.12)

If we set δq j+1 = q j+1 − q j , then (3.11) can equivalently be written as

EC j+1θ(I j ◦ K j )() = eδq j+1σ σ̄ (I j+1 ◦ K j+1)(). (3.13)

In view of (3.13), and since I j is determined by Vj , we are led to study the renormali-
sation group map

(Vj , K j ) �→ (δq j+1, Vj+1, K j+1). (3.14)

The coupling constants of Vj ∈ Q(0) are written as g j , ν j , z j , λa, j , λb, j . Ultimately
we express the two-point function in terms of the sequence (q j ), so this sequence is
fundamentally important in the proof of Theorem 1.1. Our construction creates δq j as
the average

δq j = 1

2
(δqa, j + δqb, j ) (3.15)

of two sequences δqa, j and δqb, j (see [19, (1.50)]).

3.4. Renormalisation group map. To implement the above strategy, given suitable Vj ∈
Q(0) and K j : P j → N , we define δq j+1 ∈ C, Vj+1 ∈ Q(0) and K j+1 : P j+1 → N in
such a way that

Z j+1 = EC j+1θ Z j = eq jσ σ̄
EC j+1θ(I j ◦ K j )()

= eq j+1σ σ̄ (I j+1 ◦ K j+1)() ( j < N ). (3.16)

Thus (3.11) does retain its form under progressive integration.We use the explicit choice
for the renormalisation group map (3.14) that is given in [19], from now on. This choice
achieves (3.16) for fixed j < N , assuming that (Vj , K j ) is in an appropriate domain,
and it provides good estimates for (δq j+1, Vj+1, K j+1).

To simplify the notation, we set V+ = (δq+, V (0)
+ ) ∈ Q(1) and write (3.14) as

(V, K ) �→ (V+, K+). We typically drop subscripts j and write + in place of j + 1,
also leave the dependence of the maps on the mass parameter m2 of the covariance
(−Δ + m2)−1 implicit.

3.5. Bulk flow. By [19, (1.68)], the renormalisation group map has the property

π∅V+(V, K ) = V+(π∅V, π∅K ), π∅K+(V, K ) = K+(π∅V, π∅K ). (3.17)

Thus, under (3.14), the bulk coordinates (π∅Vj , π∅K j ) satisfy a closed evolution equa-
tion of their own.We denote its evolution map by (V∅

+ , K∅
+ ) and writeU = π∅V . Then

(3.14) reduces to

(Uj+1, π∅K j+1) = (V∅
+ (Uj , π∅K j ), K

∅
+ (Uj , π∅K j )). (3.18)
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The construction of a critical global renormalisation group flow of the bulk coor-
dinates (3.18) is achieved in [5]. Namely, there is a construction of (Uj , π∅K j ) for
0 ≤ j ≤ N such that (3.18) holds for all 0 ≤ j ≤ N . This construction provides
detailed information about the sequenceUj , and good estimates on π∅K j , sufficient for
studying the infinite volume limit at the critical point. In Sect. 4, we use this bulk flow
to study observables.

It is convenient to change perspective onwhich variables are independent. Theweakly
self-avoiding walk has parameters g, ν. In (2.14), additional parameters m2, g0, ν0, z0
were introduced. For the moment we consider these as independent variables and do not
consider g, ν directly. The relation between m2, g0, ν0, z0 and the original parameters
g, ν is addressed in Sect. 3.6.

To state the result about the bulk flow, let ḡ j be the (m2, g0)-dependent sequence
determined by ḡ j+1 = ḡ j − β j ḡ2j with ḡ0 = g0 and with β j = β j (m2) defined in [5,
(6.5)]. We also recall the sequence χ j defined in [5, (6.7)], but its precise definition is not
important for our present needs. It obeys 0 ≤ χ j ≤ 1, eventually decays exponentially
when m2 > 0, and is identically equal to 1 when m2 = 0. Also, by [5, Proposition 6.1]
and [5, (8.22)] respectively,

χ j ḡ j ≤ O

(
g0

1 + g0 j

)

uniformly in (m2, g0) ∈ [0, δ)2, (3.19)

∞∑

k= j

χk ḡ
2
k = O(χ j ḡ j ). (3.20)

Without multiplication by χ j , the sequence ḡ j converges to 0 whenm2 = 0 but not when
m2 > 0. (To apply (2.3), in which the limit ν ↓ νc follows the limit N → ∞, we do
consider limits j → ∞ with m2 > 0, corresponding to ν > νc, to prove Theorem 1.1.)

The following theorem is a reduced version of [5, Proposition (8.1)]. Some of its
notation is explained after the statement.

Theorem 3.1. Let d = 4 and let δ > 0 be sufficiently small. There exist M > 0 and an
infinite sequence of functions U j = (gcj , ν

c
j , z

c
j ) of (m2, g0) ∈ [0, δ)2, independent of

N ∈ N, such that:

(i) assuming σ = 0, given N ∈ N, for initial conditions U0 = (g0, νc0, z
c
0) with

g0 ∈ (0, δ), K0 = 1∅, and with mass m2 ∈ [0, δ), a flow (Uj , K j ) ∈ D
∅

j exists

such that (3.18) holds for all j + 1 < N, and given m2 ∈ [δL−2(N−1), δ), also for
j + 1 = N. Then, in particular,

‖K j‖W j = ‖π∅K j‖W j ≤ Mχ j ḡ
3
j ( j ≤ N ) (3.21)

and gcj = O(ḡ j ). In addition, zcj = O(χ j ḡ j ) and ν j = O(χ j L−2 j ḡ j ).

(ii) zc0, ν
c
0 are continuous in (m2, g0) ∈ [0, δ)2.

The definition of theW j norm in (3.21) is discussed at length in [19], and we do not
repeat the details here, as we now only need the fact that (3.21) with j = N implies that

|π∅K 0
N (, 0)| ≤ MχN ḡ

3
N , (3.22)

uniformly in m2 ∈ [δL−2(N−1), δ), as a consequence of [19, (1.64)].
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The W j = W j (s̃) norm depends on a parameter s̃ = (m̃2, g̃) ∈ [0, δ) × (0, δ). Its
significance is discussed in [5, Section 6.3]. In particular, useful choices of this parameter
depend on the scale j , as well as on approximate values of the mass parameterm2 of the
covariance and the coupling constant g j . Throughout the paper, we use the convention
that when the parameter s̃ is omitted, it is given by s̃ = s j = (m2, g̃ j (m2, g0)). Here
m̃2 = m2 is the mass parameter of the covariance, and g̃ = g̃ j is defined in terms of the
initial condition g0 by

g̃ j = g̃ j (m
2, g0) = ḡ j (0, g0)1 j≤ jm + ḡ jm (0, g0)1 j> jm , (3.23)

where themass scale jm is the smallest integer j such that L2 jm2 ≥ 1.By [5,Lemma7.4],

g̃ j = ḡ j + O(ḡ2j ), (3.24)

so the two sequences are the same to leading order. However, g̃ j is more convenient for
aspects of the analysis in [5].

The domain D
∅

j = D
∅

j (s̃) also depends on s̃ (with the same convention when the
parameter is omitted) and is defined as follows. For the universal constant CD ≥ 2
determined in [5], for j < N ,

D
∅

j (s̃) = {(g, ν, z) ∈ R
3 : C−1

D g̃ < g < CD g̃, L2 j |ν|, |z| ≤ CD g̃} × BW∅

j
(αχ̃ j g̃

3).

(3.25)

The first factor is the important stability domain defined in [18, (1.55)], restricted to the
bulk coordinates and real scalars. In the second factor, BX (a) denotes the open ball of
radius a centred at the origin of the Banach space X , and α is fixed in [5]; it can be taken
to be 4M where M is the constant of Theorem 3.1. Compared to [19], we have replaced
χ3/2 by χ for notational convenience. The spaceW∅ is the restriction ofW to elements
K ∈ W with π∗K (X) = 0 for all polymers X . Since the renormalisation group acts
triangularly, by (3.17), the distinction between W and W∅ is unimportant for the bulk
flow, and W∅ is denoted byW in [5].

3.6. Change of variables. Theorem3.1 is stated in terms of the parametersm2, g0, rather
than the parameters g, ν of the weakly self-avoiding walk. The following proposition,
proved in [5, Proposition 4.2(ii)], relates these sets of parameters via the functions zc0, ν

c
0

of Theorem 3.1 and (2.15).

Proposition 3.2. Let d = 4 and let δ1 > 0 be sufficiently small. There exists a function
[0, δ1)2 → [0, δ)2, written (g, ε) �→ (m̃2(g, ε), g̃0(g, ε)), such that (2.15) holds with
ν = νc(g) + ε, if z0 = zc0(m̃

2, g̃0) and ν0 = νc0(m̃
2, g̃0). The functions m̃, g̃0 are

right-continuous as ε ↓ 0, with m̃2(g, 0) = 0, and m̃2(g, ε) > 0 if ε > 0.

We also write

z̃0(g, ε) = zc0(m̃
2(g, ε), g̃0(g, ε)), ν̃0(g, ε) = νc0(m̃

2(g, ε), g̃0(g, ε)). (3.26)

The functions z̃0, ν̃0 are right-continuous as ε ↓ 0. For the problemwithout observables,
considered in [5], we analysed the sequence Z j by choosing variables as follows. First,
starting from (g, ν), Proposition 3.2 gives us (m̃2, g̃0), and then Theorem 3.1 gives us
an initial condition U0 = (g̃0, z̃0, ν̃0) for which there exists a global bulk flow of the
renormalisation group map. In the next section, we extend this to include observables.
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4. Observable Flow

It follows from Proposition 2.1 and (3.5) that

Gg,νc (a, b) = lim
ε↓0 lim

N→∞GN ,g,νc+ε(a, b) = lim
ε↓0

(
(1 + z0) lim

N→∞ Z0
N ;σ σ̄ (0)

)
, (4.1)

provided the parameters (m2, g0, ν0, z0) implicit on the right-hand side obey (2.15) with
ν = νc(g) + ε. To analyse (4.1) via the renormalisation group flow, our remaining task
is to supplement the bulk flow of Theorem 3.1 with the flow of the observable coupling
constants λa, j , λb, j , qa, j , qb, j and of the observable partπ∗K j of K j . In other words, we
extend Theorem 3.1 to the case of nonzero σ . This is truly an extension, in the sense that
the bulkflowneeds nomodificationbecause the equations forλa, j , λb, j , qa, j , qb, j , π∗K j
depend on but do not appear in the flow of (g j , z j , ν j , π∅K j ) which corresponds to
σ = 0, by (3.17). With the estimates provided by [19], we will prove Theorem 1.1 using
the kind of perturbative calculations familiar in the physics literature, in amathematically
rigorous manner.

4.1. Perturbative flow of observables.

Definition 4.1. Given a, b ∈ , the coalescence scale jab is defined by

jab = ⌊
logL(2|a − b|)⌋. (4.2)

The coalescence scale is related to the finite-range property of the covariance decom-
position mentioned in Sect. 3.1, namely that C j;x,y = 0 if |x − y| ≥ 1

2 L
j . Thus jab is

such that C jab;a,b = 0, but C jab+1;a,b need not be zero. By definition, L−2 jab is bounded
above and below by multiples of |a − b|−2, in fact L jab ≤ 2|a − b|.

In [6], the flow of the coupling constants in V is computed at a perturbative level.
The perturbative flow is without control of errors uniformly in the volume, and we
address the uniform control below. The perturbative flow is determined by a map V =
(g, ν, z, λa, λb, qa, qb) �→ Vpt = (gpt, νpt, zpt, λa,pt, λb,pt, qa,pt, qb,pt); here we are
only interested in λ, q. The perturbative flow of λ, q is reported in [6, (3.34)–(3.35)] as
the scale-dependent map V �→ (λpt, qpt) given, for x = a, b, by

λx,pt =
{

(1 − δ[νw(1)])λx ( j + 1 < jab)
λ ( j + 1 ≥ jab),

(4.3)

qx,pt = qx + λaλb C j+1;a,b. (4.4)

In (4.3)–(4.4), j refers to the scale of the initial V , with (λpt, qpt) being scale-( j + 1)

objects. Also, w(1) = w
(1)
j = ∑

x∈

∑ j
i=1 Ci;0,x , and

δ[νw(1)] = ν+w
(1)
j+1 − νw

(1)
j with ν+ = ν + 2gC j+1;0,0. (4.5)

The coalescence scale jab has the property that qpt = 0 if q = 0 for j ≤ jab because the
factorC j+1;a,b on the right-hand side of (4.4) is zerowhen j+1 ≤ jab. The considerations
that lead to the stopping of the flow of λ at the coalescence scale in (4.3) are discussed
in [6, Section 3.2].

As discussed above (3.13), it is convenient to express the renormalisation group map
in terms of δq rather than q. For this, we identify elements V ∈ Q(0) with elements of
Q(1) having qa = qb = 0, and, when V ∈ Q(0) we write δqpt instead of qpt.
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4.2. A single renormalisation group step. Now we consider the renormalisation group
map

(V, K ) �→ (V (1)
+ , K+) = (δq+, V+, K+), (4.6)

which pertains not only to the bulk, but also to the observable coupling constants as well
as π∗K = (πaK , πbK , πabK ). To state the estimates we require from [19] for the map
(4.6), we recall (3.25), and define similarly

D j (s̃) = {(g, ν, z, λa, λb) ∈ R
3 × C

2 : C−1
D g̃ < g < CD g̃, L2 j |ν|, |z| ≤ CD g̃,

|λa |, |λb| ≤ CD} × BW j (αχ̃ j g̃
3). (4.7)

The first factor is the same as [19, (1.55)], but restricted to real values. Compared toD
∅ of

(3.25), the coupling constants λa, λb are included in D of (4.7). Also, the Banach spaces
W j = W j (s̃) now pertain to K with components in N a,N b,N ab; these spaces are
discussed in detail in [19, Sections 1.6–1.7]. The domain D

∅ is obtained by projecting
both factors in the definition (4.7) by the appropriate definitions of π∅ onQ(0) andW j
separately.

A j-dependent norm on Q(1) is defined by

‖V ‖Q = max{|g|, L2 j |ν j |, |z j |, � j�σ, j |λa |, � j�σ, j |λb|, �2σ, j |qa |, �2σ, j |qb|} (4.8)

where

� j = �0L
− j , �σ, j = 2( j− jab)+L( j∧ jab)g̃. (4.9)

The significance of the weights � j , �σ, j is explained in [18, Remark 3.3]; the constant
�0 > 0 is determined in [18, (1.73)] and is of no direct importance here.

The following theorem concerns a single renormalisation group step (3.14), with
observables. It is a reduced version of the main result of [19], combining the relevant
parts of [19, Theorems 1.10–1.11, 1.13] into a single statement. Such a result was
used in [5, Theorem 6.3], but now observables are included in V and K . In fact, only
the observable part of the statement is of interest here—the bulk flow is independent
and has already been analysed—but it is convenient to state the theorem in its general
form, applying to both bulk and observables simultaneously. The bounds on derivatives
provided by [19] are not stated in Theorem 4.2 as they are not needed here.

The map V (1)
+ = (δq+, V+) is a perturbation of the map Vpt discussed in Sect. 4.1,

and it is convenient to describe it in terms of the difference

R+(V, K ) = V (1)
+ (V, K ) − Vpt(V ). (4.10)

Thus R+ is an element of Q(1) with components for all seven of the coupling constants
(g, ν, z, λa, λb, δqa, δqb), and δq is definedby δq = 1

2 (δqa+δqb).As in [5], considerable
care is required to express the continuity of the maps R+, K+ in the mass parameter m2,
and we define the intervals

I j =
{[0, δ] ( j < N )

[δL−2(N−1), δ] ( j = N ),
(4.11)
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and, for m̃2 ∈ I j ,

Ĩ j = Ĩ j (m̃
2) =

{[ 12 m̃2, 2m̃2] ∩ I j (m̃2 �= 0)

[0, L−2( j−1)] ∩ I j (m̃2 = 0).
(4.12)

For the statement of the theorem, we write s̃ = (m̃2, g̃) and s̃+ = (m̃2, g̃+). We assume
1
2 g̃+ ≤ g̃ ≤ 2g̃+ and write χ̃ = χ j (m̃2). We subsequently use the explicit choice s̃ = s j
and s̃+ = s j+1, discussed in Sect. 3.5, and the choice of α mentioned below (3.25). Then
in particular χ̃ = χ j .

Theorem 4.2. Let d = 4. Let CD and L be sufficiently large. There exist M > 0 and
δ > 0 such that for g̃ ∈ (0, δ) and m̃2 ∈ I+, and with the domain D defined using any
α > M, the maps

R+ : D(s̃) × Ĩ+(m̃
2) → Q(1), K+ : D(s̃) × Ĩ+(m̃

2) → W+(s̃+) (4.13)

are analytic in (V, K ), and satisfy the estimates

‖R+‖Q ≤ Mχ̃ g̃3+, ‖K+‖W+ ≤ Mχ̃ g̃3+. (4.14)

In addition, R+, K+ are jointly continuous in all arguments m2, V, K.

In a precise and non-trivial sense, Theorem 4.2 shows that the error to the perturbative
calculation of Sect. 4.1 is of third-order in the coupling constants. However, unlike the
bulk coupling constants, which remain small, the observables are not small, e.g., λ0 = 1,
and this is compensated by the weights in (4.9).

In the remainder of the paper, we write

f ≺ g when there is a C > 0 such that f ≤ Cg; (4.15)

the constant C is always uniform in g, ε and the scale j but may depend on L .
For x = a, b, let Rλx

+ denote the coupling constant corresponding to λx in R+, and
similarly for Rqx

+ . In [19, Proposition 1.14], it is shown that for (V, K ) ∈ D j and
x = a, b,

|Rλx
+ | ≺ χ j g̃

2
j1 j< jab , (4.16)

|Rqx
+ | ≺ |a − b|−2χ j4

−( j− jab)g̃ j1 j≥ jab . (4.17)

The perturbative contribution λpt,x to the observable coupling constant is independent
of x = a, b, as is apparent from (4.3). However, the paving of the torus  by blocks
breaks translation invariance, and this allows λx to have non-perturbative contributions
that depend on the relative positions of x = a, b within blocks. Nevertheless, our main
result Theorem 1.1 does not depend on the positions of a, b in the initial paving of  by
blocks.

4.3. Observable flow. The achievement of Theorem 4.2 is to show that if (Vj , K j ) lies
in the domain D j , then we have good control of λx, j+1, qx, j+1 and also the observable
part of K j+1 (whose bulk part has been controlled along with the bulk coupling constants
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already in Theorem 3.1). The following proposition links scales together via an inductive
argument to conclude that (Vj , K j ) remains in D j for all j ≤ N .

In particular, this requires that the bulk flow is well-defined for all j ≤ N . For this,
we recall that, given the parameters (m2, g0) ∈ [0, δ)2, the critical initial conditions for
the global existence of the bulk renormalisation group flow are given by

U0 = Uc
0 = (g0, z

c
0(m

2, g0), ν
c
0(m

2, g0)), (4.18)

by Theorem 3.1. We also recall the corresponding sequence Uj (m2, g0).
According to [19, (1.69)], in the presence of observables, (3.17) is supplemented by

the statement that, for x = a or x = b,

if πx V = 0 and πx K (X) = 0 for all X ∈ P then

πx V+ = πabV+ = 0 and πx K+(U ) = πabK+(U ) = 0 for all U ∈ P+, (4.19)

and, in addition, λa,+ is independent of each of λb, πbK , and πabK , and the same is true
with a, b interchanged.

As a consequence, using Theorem 4.2, the next proposition shows that the flow with
observables, and with initial conditions

π∅V0 = Uc
0 , λx,0 ∈ {0, 1}, qx,0 = 0, (x = a, b) (4.20)

exists for all j ≤ N . Note that we permit one or both of λx,0 to equal zero, and in
this case we regard the observable at x as being absent, so the concept of coalescence
becomes vacuous. We therefore use the convention that

jab = ∞ if λa,0 = 0 or λb,0 = 0. (4.21)

Proposition 4.3. Let λx,0 ∈ {0, 1} and qx,0 = 0 for x = a, b.

(i) For (m2, g0) ∈ [δL−2(N−1), δ)× (0, δ), there is a choice of (qa, j , qb, j , Vj , K j ) such
that (3.16) holds for 0 ≤ j ≤ N. This choice is such that π∅Vj = Uj (m2, g0). If
λx,0 = 0 then λx, j = 0 for all 0 ≤ j ≤ N, whereas if λx,0 = 1 then

λx, j =
{

(1 + ν jw
(1)
j )−1

(
1 +

∑ j−1
k=0 v̌λx ,k

)
( j + 1 < jab)

λ jab−1 ( j + 1 ≥ jab).
(4.22)

If λx,0 = 0 for one or both of x = a, b then qa, j = qb, j = 0 for all 0 ≤ j ≤ N,
whereas if λa,0 = λb,0 = 1 then, for x = a, b,

qx, j =
j−1∑

i= jab−1

(
λa, jab−1λb, jab−1 Ci+1;a,b + vqx ,i

)
. (4.23)

For λx,0 ∈ {0, 1},
‖K j‖W j ≤ Mχ j g̃

3
j . (4.24)

In the above estimates, M is the constant appearing in (4.14), and v̌λx , j , vqx , j ∈ C

obey, uniformly in (m2, g0) ∈ [0, δ)2,
|v̌λx , j | ≺ χ j g̃

2
j1 j< jab , |vqx , j | ≺ |a − b|−2χ j4

−( j− jab)g̃ j1 j≥ jab . (4.25)
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(ii) For j ≤ N, each of λx, j , δqx, j , qx, j is independent of N , in the sense that, e.g.,
qx,1, . . . , qx,N have the same values on N as on a larger torus N ′ with N ′ > N.
In addition, each is defined as a continuous function of (m2, g0) ∈ [0, δ)2. Finally,
λa, j is independent of λb,0, and λb, j is independent of λa,0.

Proof. To simplify the notation, we drop the labels x = a, b from λ, q when their role
is insignificant.

(i) As a preliminary step, we introduce a change of variables that diagonalises the
evolution of λ to linear order in V . For (Vj , K j ), we write λpt = λpt(Vj ) and vλ, j =
Rλ
j+1(Vj , K j ). Then the λ-component of (4.6) can be written as λ j+1 = λpt + vλ, j . We

define

λ̌ j = λ j (1 + ν jw
(1)
j ). (4.26)

By (4.3), the recursion for λ̌ j can then be written as

λ̌ j+1 = λ̌ j + v̌λ, j (4.27)

with

v̌λ, j = (ν j+1 − ν+j )λ jw
(1)
j+1 + vλ, j (1 + ν j+1w

(1)
j+1) − δ j [νw(1)]λ jν j+1w

(1)
j+1. (4.28)

The solution to (4.27) with initial condition λ0 = 1 is λ̌ j = 1 +
∑ j−1

k=0 v̌λ,k , and hence

λ j = (1 + ν jw
(1)
j )−1

(
1 +

j−1∑

k=0

v̌λ,k

)
. (4.29)

By (4.4) and (4.10), and with vq, j = Rq
j+1(Vj , K j ), δq j is simply given by

δq j+1 = δqpt + vq, j = λa, jλb, jC j+1;a,b + vq, j . (4.30)

Now we can prove (4.22)–(4.25) by induction on j , with induction hypothesis:

IH j : for all k ≤ j , (Vk, Kk) ∈ Dk , (4.22)–(4.25) hold with j replaced by k.

By direct verification, IH0 holds (with v̌λ,−1 = vq,−1 = 0).
We assume IH j and show that it implies IH j+1. By IH j and the bound (4.14) of The-

orem 4.2, K j+1 obeys (4.24). In particular, this estimate implies K j+1 ∈ BW j (αχ j g̃ j ).
By (3.17)–(3.18), π∅Vj = Uj for all j , and by Theorem 3.1, U satisfies the bounds

required for π∅V in the definiton of D. Therefore, to verify (Vj+1, K j+1) ∈ D j+1, it
suffices to show |λ j+1| ≤ CD.

By (4.10), (4.3), and (4.16), λ j = λ jab−1 for all j ≥ jab, so we assume that j < jab−
1. To estimate v̌λ, j , we use the fact that |λ j | ≤ CD by assumption, and |ν j | ≺ L−2 jχ j g̃ j

by Theorem 3.1. We apply [6, Lemma 6.2] and [19, (1.80)] to see that w(1)
j ≺ L2 j and

|ν j+1−ν+j | ≺ L−2 jχ j g̃2j , and also |ν j |w(1)
j ≺ L−2 jχ j g̃ jw

(1)
j ≺ χ j g̃ j . The factor vλ, j is

bounded via (4.16), and the last term on the right-hand side of (4.28) is similarly bounded
(without any need for cancellation in the δ term). We conclude that |v̌λ, j | ≺ χ j g̃2j , as
required. With (3.20), this leads to |λ j+1| = 1 + O(g0) ≤ CD (since we have assumed
above (3.25) that CD ≥ 2). This establishes that λ j+1 obeys the condition required
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in the definition of the domain D j+1, and all necessary properties for λ j+1 have been
established.

By (4.30) and (4.17) with IH j , (4.23) holds with vq, j obeying (4.25). This advances
the induction and completes the proof of part (i). The claim that λx,0 = 0 implies
qa, j = qb, j = 0 for all 0 ≤ j ≤ N also follows by induction and (4.19).

(ii) The N -independence of λ j , δq j follows exactly as in the proof of [5, Proposi-
tion 8.1], so we only sketch the argument. By (4.3)–(4.4), λpt and δqpt are independent
of N . Moreover, by [19, Proposition 1.18(i)], R+(V, K ) is independent of N provided
that V is independent of N and that the family K has Property Z

d defined in [19]. That
the renormalisation group map preserves Property Z

d for K is shown in [19, Proposi-
tion 1.17].

To show that λ j , δq j (and thus also q j ) are continuous as functions of (m2, g0) ∈
[0, δ)2, assuming that V0 = V c

0 (m2, g0), we can proceed exactly as in [5, Section 8.2].
The definition of continuous functions of the renormalisation group coordinates at scale-
j , provided by [5, Definition 8.2] for the bulk coordinates, applies literally also to the
renormalisation group coordinates with observables. By Theorem 4.2 for R+ and [6,
Lemma 6.2] for Vpt, both of λ+, δq+ are continuous functions of the renormalisation
group coordinates at scale- j . By [5, Proposition 8.3], which also applies literally with
observables, we conclude continuity of λ j , δq j for all j .

Finally, it follows inductively from (4.19) and the statement below (4.19) that λa, j is
independent of λb,0, and vice versa, as required. This completes the proof. �

In the following lemma, we denote the derivative of Z0
N (φ, φ̄)with respect to φ̄, in the

direction of a test function J :  → C, as Dφ̄Z
0
N (φ, φ̄; J ) = d

dt Z
0
N (φ, φ̄ + t J )|0. Let 1

denote the constant test function 1x = 1 for all x ∈ . We systematically use subscripts
σ or σ σ̄ to denote the coefficient of σ or σ σ̄ in F ∈ N , under the decomposition (2.19).
For example, we write KN ;σ σ̄ () = 1

σ σ̄
πabKN ().

Lemma 4.4. The flow of Proposition 4.3 obeys

λa,N = Dφ̄Z
0
N ;σ (0, 0; 1) − Dφ̄W

0
N ;σ (; 0, 0; 1) − Dφ̄K

0
N ;σ (; 0, 0; 1).

(4.31)

Proof. As in [5, (8.13)],

Z0
N = I 0N () + K 0

N () = e−V 0
N ()(1 +W 0

N ()) + K 0
N (). (4.32)

Therefore, since πa(FG) = (πa F)(π∅G) + (π∅F)(πaG), and since

π∅(e−V 0
N ()) = e−U0

N (), πa(e
−V 0

N ()) = σλa,N φ̄a, (4.33)

we obtain

Z0
N ;σ = λa,N φ̄ae

−U0
N ()(1 +W 0,∅

N ()) + e−U0
N ()W 0

N ;σ () + K 0
N ;σ (). (4.34)

Differentiating with respect to φ̄ at (φ, φ̄) = (0, 0), we obtain

Dφ̄Z
0
N ;σ (0, 0; 1) = λa,N + Dφ̄W

0
N ;σ (; 0, 0; 1) + Dφ̄K

0
N ;σ (; 0, 0; 1), (4.35)

where we used e−U0
N (;0,0) = 1 and the fact that W 0,∅

N (; 0, 0) = 0 since W 0,∅
N is a

polynomial in φ with no monomials of degree below two. �
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TheW and K terms in the statement of Lemma 4.4 are estimated using the following
lemma.

Lemma 4.5. The flow of Proposition 4.3 obeys, uniformly in m2 ∈ [δL−2(N−1), δ):

∣
∣
∣K 0

N ;σ σ̄ (; 0, 0)
∣
∣
∣ ≺ 1

4(N− jab)+

1

|a − b|2χN ḡN , (4.36)

|Dφ̄K
0
N ;σ (; 0, 0; 1)| ≺ χN ḡ

2
N

(
L

2

)(N− jab)+
, (4.37)

|Dφ̄W
0
N ;σ (; 0, 0; 1)| ≺ χN ḡN

(
L

2

)(N− jab)+
. (4.38)

Proof. Recall the definitions of theQ norm from (4.8), and the definitions of the T0, j (� j )

and � j (� j ) norms from [5, Section 6.3].
Recall from [17, (1.61)] that in the T0 norm each occurrence of σ or σ̄ gives rise to

a weight

�σ, j = 2( j− jab)+L( j∧ jab)g̃ j . (4.39)

There is therefore a factor �2σ, j inside the norm of πabK j . In particular,

|K 0
N ;σ σ̄ (; 0, 0)|≤ �−2

σ, j‖KN ()‖T0,N (�N ). (4.40)

We apply [19, (1.62)], which uses this fact, and which implies that the bound

|K 0
N ;σ σ̄ (;0, 0)|≤ �−2

σ, j‖KN ()‖T0,N (�N ) ≤ �−2
σ, j‖KN‖WN ≺ 4−(N− jab)+L−2 jabχN g̃N

(4.41)

holds uniformly in m2 ∈ [δL−2(N−1), δ). As mentioned below Definition 4.1, L jab and
|a − b| are comparable. With (4.24) and (3.24), this shows that (4.36) holds.

Bydefinition of the T0, j (� j ) norm, for any F ∈ N∅ and any test function J :  → C,

|Dφ̄F
0(0, 0; J )| ≤ ‖F‖T0,N (�N )‖J‖�N (�N ). (4.42)

By definition, ‖1‖�N (�N ) = �−1
N (see [5, (8.55)]). With (4.42), this gives

|Dφ̄K
0
N ;σ (; 0, 0; 1)| ≤ �−1

σ,N‖KN ()‖T0,N (�N )‖1‖�N (�N ) = �−1
σ,N�−1

N ‖KN‖WN .

(4.43)

With (4.9) and (4.24), this proves (4.37). Finally, by [18, Proposition 4.1],

‖WN ()‖T0,N ≺ χN g
2
N , (4.44)

and (4.38) then follows as in (4.43). �
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The next two lemmas apply Proposition 4.3 to study limits of the sequencesλx, j , qx, j .
By Proposition 4.3(ii), qx, j is independent of N (assuming that N is larger than jab),
and λx, j is independent of jab and N if j < jab ≤ N , and we can therefore define
sequences λ∗

x, j for all j ∈ N0, with λ∗
x,0 = 1, such that λx, j = λ∗

x, j for j < jab. The
sequence λ∗

a, j is independent of λb,0, and vice versa. By definition,

λx, j = λ∗
x, j∧( jab−1), (4.45)

and

λa, j = λ∗
a, j for all j ≤ N when λb,0 = 0. (4.46)

We make the dependence on (m2, g0) explicit by writing λx, j = λx, j (m2, g0) and
qx, j = qx, j (m2, g0).

Lemma 4.6. For (m2, g0) ∈ [0, δ)2, for x = a or x = b, for λx,0 = 1, and for j ∈ N0,

|1 − λ∗
j (m

2, g0)| ≺ χ j ḡ j . (4.47)

In particular,

|1 − λx, jab−1(m
2, g0)| ≺ χ jab ḡ jab . (4.48)

Proof. By Proposition 4.3, the flow of λa is independent of the choice of λb,0, and vice
versa. We give the proof for the case x = a, and the same argument applies to x = b.

We choose the initial conditions (λa,0, λb,0) = (1, 0). As discussed above Proposi-
tion 4.3, in this case we have jab = N . By Lemma 4.4,

λ∗
a,N = Dφ̄Z

0
N ;σ (0, 0; 1) − Dφ̄W

0
N ;σ (; 0, 0; 1) − Dφ̄K

0
N ;σ (; 0, 0; 1). (4.49)

By Lemma 4.5, this gives

λ∗
a,N = Dφ̄Z

0
N ;σ (0, 0; 1) + O(χN gN ). (4.50)

The limit of the first term on the right-hand side of (4.50), as N → ∞, can be evaluated
exactly, as follows. Let C be the covariance defined in (3.2). Recall from [5, (4.23)] that,
for any external field J :  → C,

�a(J, J̄ ) = EC

(
e−V0()+(J,φ̄)+( J̄ ,φ)

)
= e(J,C J̄ )Z0

N (C J,C J̄ ), (4.51)

where the superscript 0 denotes projection onto the degree-0 part of the form ZN . As
opposed to [5], we include the observable term σ φ̄a in V0 and ZN here, andwe emphasise
this by writing �a instead of �; the potential V0 without observable terms is again
denoted by U0. Each side of (4.51) has a decomposition as in (2.19), and we equate the
coefficients of σ in the components in N a to obtain

EC

(
e−U0()+(J,φ̄)+( J̄ ,φ)φ̄a

)
= e(J,C J̄ )Z0

N ;σ (C J,C J̄ ). (4.52)

Let 1 be the constant test function 1x = 1 for all x ∈ . Then C1 = m−21.
Differentiation of (4.52) at (0, 0) with respect to J , in direction 1, gives

∑

x

EC

(
e−U0()φx φ̄a

)
= Dφ̄Z

0;a
N (0, 0;C1) = m−2Dφ̄Z

0
N ;σ (0, 0; 1). (4.53)
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By translation invariance of EC and U0, the left-hand side is independent of a ∈ . In
fact, it is equal to χ̂N defined in [5, (4.9)], which converges to m−2 as N → ∞, by
[5, Theorem 4.1]. Therefore,

lim
N→∞ Dφ̄Z

0
N ;σ (0, 0; 1) = 1. (4.54)

We then apply Lemma 4.5 (with (N − jab)+ = 0), together with χN gN → 0, to
conclude from (4.54) that the right-hand side of (4.50) tends to 1. On the other hand,
by (4.22), together with (4.25) and the estimate |ν j |w(1)

j ≺ χ j g̃ j used in the proof of
Proposition 4.3,

lim
N→∞ λ∗

a,N = 1 +
∞∑

k=0

v̌λx ,k, so
∞∑

k=0

v̌λx ,k = 0. (4.55)

(Note that the convergence of the sum in (4.55) is guaranteed by (4.25) and (3.20).)
Finally, by (4.22) and (3.20), uniformly in (m2, g0) we have

λ∗
j − 1 = −ν jw

(1)
j λ j −

∞∑

k= j

v̌λ,k = O(χ j ḡ j ), (4.56)

and the proof is complete. �
Lemma 4.7. For (m2, g0) ∈ [0, δ)2 and x = a, b, the limit

qx,∞(m2, g0) = lim
j→∞ qx, j (m

2, g0), (4.57)

exists, is continuous, and, as |a − b| → ∞,

qx,∞(0, g0) = (−ΔZ4)
−1
ab

(

1 + O

(
1

log |a − b|
))

. (4.58)

Proof. We again drop the labels x = a, b from λ, q when their role is insignificant.
By (4.23),

q j =
j−1∑

i= jab−1

(
λa, jab−1λb, jab−1 Ci+1;a,b + vq,i

)
. (4.59)

Since Ci+1;a,b = 0 for i < jab, we can restore the scales i < jab to the sum in the first
term on the right-hand side. In the limit j → ∞, we obtain the complete finite-range
decomposition for the inverse Laplacian on Z

4 as in (3.1),

∞∑

i= jab−1

Ci+1;a,b =
∞∑

i=0

Ci+1;a,b = (−ΔZ4 + m2)−1
ab . (4.60)

The dependence of λx, jab−1 is continuous in [0, δ)2 by Proposition 4.3, and (−ΔZ4 +
m2)−1

ab is continuous in m2 ∈ [0, δ). By Proposition 4.3, in the limit j → ∞ the sum
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of vq,i on the right-hand side of (4.59) is a uniformly convergent sum of terms that are
continuous. Therefore the sum q∞(m2, g0) is also continuous, and

q∞ = λa, jab−1λb, jab−1(−ΔZ4 + m2)−1
ab +

∞∑

i= jab

vq,i . (4.61)

By (4.17),

∞∑

i= jab

|vq,i | ≺ |a − b|−2
∞∑

i= jab

4−(i− jab)χi g̃i ≺ |a − b|−2χ jab ḡ jab . (4.62)

Therefore,
∣
∣q∞ − λa, jab−1λb, jab−1(−ΔZ4 + m2)−1

ab

∣
∣ ≺ χ jab ḡ jab |a − b|−2. (4.63)

By Lemma 4.6,

|1 − λa, jab−1λb, jab−1| ≺ χ jab ḡ jab . (4.64)

With (4.63) and |(−ΔZ4 + m2)−1
ab | ≺ |a − b|−2, this gives

∣
∣q∞ − (−ΔZ4 + m2)−1

ab

∣
∣ ≺ χ jab ḡ jab |a − b|−2, (4.65)

uniformly in (m2, g0). By (3.19), χ jab ḡ jab ≺ j−1
ab ≺ (log |a − b|)−1. In particular, the

limit q∞(0, g0) obeys (4.58). �

4.4. Proof of main result. We now prove Theorem 1.1. In addition to the study of q j ,
which provides the leading contribution, this requires the estimate (4.36) on πabKN .

Proof of Theorem 1.1. For small g, ε > 0, set ν = νc(g) + ε, and let (m2, g0, ν0, z0) =
(m̃2, g̃0, ν̃0, z̃0)be the functions of (g, ε)givenbyProposition3.2. Since z0 = z̃0(g, ε) →
z̃0(g, 0) as ε ↓ 0, (4.1) gives

Gg,νc (a, b) = (
1 + z̃0(g, 0)

)
lim
ε↓0 lim

N→∞ Z0
N ;σ σ̄ (0). (4.66)

The arguments 0 on the right-hand side mean that the fields φ,ψ are to be set to zero
in IN , KN . Thus I 0N (, 0) = 1, and for K 0

N (, 0) only dependence on σ, σ̄ remains.
From (3.12) we obtain

Z0
N (0) = eqNσ σ̄ (I 0N (, 0) + K 0

N (, 0)) = eqNσ σ̄ (1 + K 0
N (, 0)), (4.67)

with qN = 1
2 (qa,N + qb,N ) as in (3.15). Equating the coefficients of σ σ̄ on both sides

gives

Z0
N ;σ σ̄ (0) = qN

(
1 + π∅K 0

N (, 0)
)
+ K 0

N ;σ σ̄ (, 0). (4.68)

Since ε > 0 by assumption, it follows that m2 > 0, by Proposition 3.2. Therefore, for
N sufficiently large, the bounds (3.22) and (4.36) hold. In particular, by (3.19),

lim
N→∞ π∅K 0

N (, 0) = 0, lim
N→∞ K 0

N ;σ σ̄ (, 0) = 0, (4.69)
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and therefore

lim
N→∞ Z0

N ;σ σ̄ (0) = lim
N→∞ qN = q∞ = 1

2
(qa,∞ + qb,∞). (4.70)

With (4.66) and Lemma 4.7, this gives

Gg,νc (a, b) = (1 + z̃0(g, 0)) lim
ε↓0 q∞

= (
1 + z̃0(g, 0)

)
(−ΔZ4)

−1
ab

(

1 + O

(
1

log |a − b|
))

. (4.71)

It is a standard fact that (−ΔZ4)
−1
ab = (2π)−2|a − b|−2(1 + O(|a − b|−2)) (see, e.g.,

[36]—the different constant (2π)−2 takes into account our definition of the Laplacian).
Since z̃0(g, 0) = O(g), the proof is complete. (Although our analysis allows q j to
become complex, the left-hand side of (4.71) is real by definition, so the right-hand side
is as well.) �
Remark 4.8. The proof of (4.71) used the fact, proved in Lemma 4.6, that λ∗

x, j → 1
as j → ∞. The fact that this limit is exactly equal to 1 (without O(g) error, as one
might expect) is intimately related to the interpretation of lim j→∞(1+z0)1/2λx, j as field
strength renormalisation. Without using λ∗

x,∞ = 1, the above proof would show that the

two-point function is asymptotic to (1 + z0)λ∗
a,∞λ∗

b,∞(−Δ)−1
ab . Thus, λ

∗
x,∞ = 1 means

that the field strength renormalisation is given by (1 + z0)1/2 only. This was anticipated
already in [5, Section 4], when we split the original potential Vg,ν,1 into an effective free
field with field strength (1 + z0)1/2 and mass m, and a perturbation.

Remark 4.9. Note that

Gg,νc (a, b) = (1 + z̃0(g, 0))q∞ (4.72)

is an equality, and not merely an asymptotic formula. As such, it contains all information
about the two-point function, including not just the leading asymptotic behaviour but
also all higher-order corrections.

Remark 4.10. Equations (4.39) and (4.36) provide corrections to [12, (109)–(111)],
which contain erroneous powers of ḡN in the upper bounds. In [12, (109), (111)], the
ḡ3N in the upper bound should be ḡN , and in [12, (110)] a factor ḡN is missing on the
right-hand side (it is present in (4.39)). The above proof shows that the correct powers
here remain sufficient to prove (4.71).
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27. Gawȩdzki, K., Kupiainen,A.: Asymptotic freedombeyond perturbation theory. In: Osterwalder, K., Stora,
R. (eds.) Critical Phenomena, Random Systems, Gauge Theories, Amsterdam (1986) (North-Holland.
Les Houches 1984)

28. Hara, T.: A rigorous control of logarithmic corrections in four dimensional ϕ4 spin systems. I. Trajectory
of effective Hamiltonians. J. Stat. Phys. 47, 57–98 (1987)

29. Hara, T.: Decay of correlations in nearest-neighbor self-avoiding walk, percolation, lattice trees and
animals. Ann. Probab. 36, 530–593 (2008)

30. Hara, T., van der Hofstad, R., Slade, G.: Critical two-point functions and the lace expansion for spread-out
high-dimensional percolation and related models. Ann. Probab. 31, 349–408 (2003)

31. Hara, T., Slade, G.: Self-avoiding walk in five or more dimensions. I. The critical behaviour. Commun.
Math. Phys. 147, 101–136 (1992)

32. Hara, T., Tasaki, H.: A rigorous control of logarithmic corrections in four dimensional ϕ4 spin systems.
II. Critical behaviour of susceptibility and correlation length. J. Stat. Phys. 47, 99–121 (1987)

33. denHollander, F.: RandomPolymers. LectureNotes inMathematics vol. 1974. Ecole d’Eté deProbabilités
de Saint–Flour. Springer, Berlin, XXXVII–2007 (2009)

34. Iagolnitzer, D., Magnen, J.: Polymers in a weak random potential in dimension four: rigorous renormal-
ization group analysis. Commun. Math. Phys. 162, 85–121 (1994)
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