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Abstract: We prove that the susceptibility of the continuous-time weakly self-avoiding
walk on Z

d , in the critical dimension d = 4, has a logarithmic correction to mean-field
scaling behaviour as the critical point is approached, with exponent 1

4 for the logarithm.
The susceptibility has been well understood previously for dimensions d ≥ 5 using the
lace expansion, but the lace expansion does not apply when d = 4. The proof begins by
rewriting thewalk two-point function as the two-point function of a supersymmetric field
theory. The field theory is then analysed via a rigorous renormalisation group method
developed in a companion series of papers. By providing a setting where the methods of
the companion papers are applied together, the proof also serves as an example of how
to assemble the various ingredients of the general renormalisation group method in a
coordinated manner.

1. Introduction and Main Result

The critical behaviour of the self-avoiding walk depends on the spatial dimension d.
The upper critical dimension is 4, and for d ≥ 5 the lace expansion has been used
to prove that the self-avoiding walk is governed by the same critical exponents as the
simple random walk [26,39,40,59]. In this paper, we apply a rigorous renormalisation
group analysis to study the susceptibility of the weakly self-avoiding walk in the critical
dimension d = 4.

1.1. Continuous-time weakly self-avoiding walk. Let X be the continuous-time simple
random walk on the integer lattice Z

d , with d > 0. In more detail, X is the stochastic
process with right-continuous sample paths that takes its steps at the times of the events
of a rate-2d Poisson process. Steps are independent both of the Poisson process and of
all other steps, and are taken uniformly at random to one of the 2d nearest neighbours
of the current position. The intersection local time up to time T is defined by
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I (T ) =
∫ T

0

∫ T

0
1X (S1)=X (S2) dS1 dS2 =

∑
x∈Zd

(Lx
T )

2, (1.1)

where Lx
T =

∫ T
0 1X (S)=x dS is the local time of X at x up to time T . Let Ea denote the

expectation for the process with X (0) = a ∈ Z
d .

Given g > 0 and a, b ∈ Z
d , the continuous-timeweakly self-avoidingwalk two-point

function is then defined by

Gg,ν(a, b) =
∫ ∞

0
Ea

(
e−gI (T )1X (T )=b

)
e−νT dT, (1.2)

where ν is a parameter (possibly negative) chosen such that the integral converges. In
(1.2), self-intersections are suppressed by the factor e−gI (T ). In the limit g →∞, if ν is
simultaneously sent to −∞ in a suitable g-dependent manner, it is known that the limit
of the two-point function (1.2) is a multiple of the two-point function of the standard
discrete-time strictly self-avoiding walk [16]. Our analysis is for small g > 0; the model
we study is predicted to be in the same universality class as the strictly self-avoiding
walk for all g > 0.

We set cT = cg,T = Ea(e−gI (T )), and define the susceptibility by

χ(g, ν) =
∑
b∈Zd

Gg,ν(a, b) =
∫ ∞

0
cg,T e

−νT dT . (1.3)

By translation-invariance of the simple randomwalk and of (1.1), cT and χ are indepen-
dent of the point a ∈ Z

d . In Lemma A.1, we apply a standard subadditivity argument to
prove that for all dimensions d > 0 there exists a critical value νc = νc(d, g) ∈ (−∞, 0]
such that

χ(g, ν) <∞ if and only if ν > νc. (1.4)

The rate of divergence ofχ(g, ·) is characterised by the critical exponent γ (assuming
it exists) by

χ(g, ν) ∼ Ag(ν − νc)−γ as ν ↓ νc, (1.5)

where Ag and γ are d-dependent constants. Throughout the paper, we write p ∼ q for
asymptotic formulas, i.e.,when lim p/q = 1.The exponentγ is predicted to beuniversal,
i.e., dependent on the dimension d, but otherwise independent of fine details of themodel.
For d = 4, a universal logarithmic correction to this scaling has been predicted, and our
main result gives a rigorous proof of this logarithmic correction. Logarithmic corrections
for the scaling behaviour of the weakly self-avoiding walk in dimension 4 have been
computed in the physics literature using nonrigorous renormalisation group arguments,
e.g., [12,30]. Early indications of the critical nature of the dimension d = 4 were
given in [2,11], following proofs of triviality of the ϕ4 field theory above dimension 4
[1,33]. For d = 4, the weakly self-avoiding walk also coincides with the discrete-space
continuous-time Edwards model (see [51, Section 10.1]).

For d ≥ 5, it is known that (1.5) holds with critical exponent γ = 1, for the weakly
and strictly self-avoiding walk [26,40]. For d = 3, the problem remains completely
unsolved from a mathematical point of view; a recent numerical estimate for d = 3 is
γ ≈ 1.157 [58]. For d = 2, it is predicted that γ = 11

32 [54], and recent work suggests
that the scaling behaviour can be described by SLE8/3 [48], but the existence neither
of critical exponents nor the scaling limit has yet been proved. The case of d = 1 is of
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interest for weakly self-avoiding walk, where a fairly complete understanding has been
obtained [42]. For a recent survey of mathematical results about the self-avoiding walk,
see [9].

1.2. Main result. LetΔdenote the latticeLaplacian defined byΔ f (x) = ∑
e:|e|=1( f (x+

e)− f (x)) on Z
d . The lattice Green function is defined, for m2 > 0, by

Cm2(x) = G0,m2(0, x) = (−Δ + m2)−10x . (1.6)

The inverse is bounded in l2(Zd)-sense form2 > 0, and the limitm2 ↓ 0 exists (pointwise
in x) if d > 2. The bubble diagram for simple random walk is the squared �2 norm
Bm2 = ∑

x∈Zd Cm2(x)2. It follows from the definition that

Bm2 =
∫ ∞

0

∫ ∞

0
P(X (T ) = Y (S))e−m2T e−m2S dT dS, (1.7)

where X and Y are two independent simple random walks starting at 0. Hence the
bubble diagram measures the expected amount of time that two independent simple
random walks killed at rate m2 intersect each other. The bubble diagram arises in an
important way in our analysis, and it is convenient to define Bm2 = 8Bm2 . By Parseval’s
formula and elementary calculus, as m2 ↓ 0,

Bm2 = 8Bm2 = 8
∫
[−π,π ]d

∣∣∣∣∣∣
1

4
∑d

j=1 sin2(
k j
2 ) + m2

∣∣∣∣∣∣
2

dk

(2π)d
∼

{
b logm−2 (d = 4)
B0 (d > 4),

(1.8)
with b = 1/(2π2) and a d-dependent constant B0 ∈ (0,∞). In particular, the expected
time that two independent simple randomwalks, without killing, spend intersecting each
other is finite in dimension d > 4, but infinite in d = 4.

Our main result is the following theorem.

Theorem 1.1. Let d = 4 and let g > 0 be sufficiently small. There exists Ag > 0 such
that, as ε ↓ 0,

χ(g, νc + ε) ∼ Agε
−1(log ε−1)1/4. (1.9)

As g ↓ 0,

Ag = (bg)1/4(1 + O(g)). (1.10)

Let a = 2C0(0) where C0(0) > 0 is the expected total time spent at the origin by
the simple random walk, C0(0) =

∫∞
0 P(X (T ) = 0) dT = E0(

∫∞
0 1X (T )=0 dT ). By

an elementary application of Jensen’s inequality, we prove in Lemma A.1 that νc(g) ∈
[−ag, 0] for all d > 2. As a corollary of the proof of Theorem 1.1, we obtain the
following asymptotic formula for the critical value.

Theorem 1.2. Let d = 4 and a = 2C0(0). As g ↓ 0,

νc(g) = −ag + O(g2). (1.11)
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Our method of proof of Theorems 1.1–1.2 is based on a rigorous renormalisation
group analysis, and applies more widely. In particular, it is used in [5] to prove that the
critical two-point functionGg,νc(g)(0, x) is asymptotic to amultiple of |x |−2 as |x | → ∞
in dimension d = 4. Also, work is in progress to extend our methods to study the weakly
self-avoiding walk with nearest-neighbour contact attraction [4] in dimension d = 4. In
[8], we apply the renormalisation group method to study the critical behaviour of the 4-
dimensional n-component |ϕ|4 spin model, for all positive integers n ≥ 1. The existence
of logarithmic corrections to scaling for certain critical 4-dimensional polymer networks,
and for various critical correlation functions for the |ϕ|4 model is proved in [60].

1.3. Discussion. Since a = 2
∫∞
0 P(X (T ) = 0) dT > 0, (1.11) shows that νc(g) < 0

for g > 0. In addition, νc(g)→ 0 as g ↓ 0, as expected since νc(0) = 0 is the critical
point of the simple random walk.

The factor ε−1 in (1.9) corresponds to the linear divergence of the simple random
walk susceptibility:

χ(0,m2) =
∑
x∈Zd

Cm2(x) = m−2, (1.12)

while the logarithmic factor in (1.9) arises from the logarithmic divergence in (1.8). Note
that Ag tends to 0 as g ↓ 0, as expected since there is no logarithmic correction for the
simple random walk (g = 0). It has been observed that if the Fourier transform of the
critical two-point function is bounded by a multiple of |k|−2 as k → 0 (as is known
for d ≥ 5 [40] and as is predicted to be true in all dimensions), then the susceptibility
can have at most a logarithmic correction for d = 4 (see [11] and [51, Theorem 1.5.4]).
The exponent 1

4 in (1.9) is predicted to be universal for models of self-avoiding walk in
four dimensions. In particular, it is predicted to be the same for the usual discrete-time
strictly self-avoiding walk [51].

For d = 4, Theorem 1.1 and a standard Tauberian theorem [32, Chapter XIII] imply
that

1

T

∫ T

0
cSe

νc S dS ∼ Ag(log T )
1/4 (T →∞). (1.13)

It is believed that (1.13) remains true without Cesàro average in T , i.e., that

cT ∼ Age
−νcT (log T )1/4 (T →∞), (1.14)

but our present estimates do not suffice to prove (1.14). Furthermore, denoting by Eg,T
a

the expectation for the measure of weakly self-avoiding walks of length T , i.e.,

Eg,T
a (F(X)) = Ea(e−gI (T )F(X))

Ea(e−gI (T ))
, (1.15)

it is believed that for p ≥ 1,

(
Eg,T
0 |X (T )|p

)1/p ∼ cg,p T
1/2(log T )1/8 (T →∞), (1.16)

and that (λ− 1
2 (log λ)− 1

8 X (λT ))T≥0 converges as a process to a multiple of Brownian
motion as λ → ∞. (Such convergence is known for the 4-dimensional loop-erased
random walk, with exponent 1

6 rather than 1
8 for the logarithm [46,47].)
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Renormalisation group methods have been used previously to study weakly self-
avoiding walk on a 4-dimensional hierarchical lattice. The continuous-time version
of the model has been studied in the series of papers [13,18,19,36]. In particular, in
[19], the results of [18] were extended to prove a result analogous to (1.16) for the
4-dimensional hierarchical lattice. This was achieved by a contour integral analysis
of Gν(x), with ν complex. Our methods would require further development to follow
the same procedure for Z

4. More recently, a completely different renormalisation group
approach to the discrete-time weakly self-avoiding walk on a 4-dimensional hierarchical
lattice has been developed in [55]. A variant of the 4-dimensional Edwards model was
analysed in [43] using a renormalisation group method; this variant is not a model of
walks taking steps in a lattice, but it is presumably in the same universality class as the 4-
dimensional self-avoiding walk, and the results of [43] bear some relation to our results.
Some steps towards an understanding of the behaviour in dimension d = 4−ε are taken
in [53] (the work of [53] is formulated in dimension 3 but it mimics the behaviour of the
nearest-neighbour model in dimension 4− ε).

Our renormalisation group analysis has grown out of the methods of [13,19], but
in a much extended and generalised form. It is based on an exact functional integral
representation of the two-point function of the continuous-time self-avoiding walk as
the two-point function of a supersymmetric quantum field theory, containing both boson
and fermion fields. Such integral representations are summarised in [20]. These repre-
sentations are inspired by the observation of de Gennes [27] that the self-avoiding walk
problem can be regarded as the n = 0 limit of the n-vector model (see also [51, Sec-
tion 2.3]). The basic observation of de Gennes was that in a random walk representation
of the n-vector model every closed loop contributes a factor n. When n = 0, closed
loops do not contribute, leading to self-avoiding walks. The n-vector model is closely
related to the n-component |ϕ|4 model. For n = 1, the critical 4-dimensional ϕ4 model
was analysed using block spin renormalisation in [34,35], and via partially renormalised
phase space expansion in [31]. In both approaches, the critical two-point function was
controlled. Block spin methods were extended from the critical point to its neighbour-
hood in [38,41], where logarithmic corrections for the susceptibility and correlation
length were derived for the 4-dimensional one-component ϕ4 model (in particular, the
susceptibility has exponent 1

3 for the logarithm). However, it is not clear how to prove
theorems about the scaling limit of the self-avoiding walk, in a rigorous mathematical
sense, via an analysis of an n → 0 limit of the n-vector model or n-component |ϕ|4
theory.

On the other hand, the notion was developed in [20,49,50,52,56] that while an n-
component boson field φ associates n to each closed loop, an n-component fermion field
ψ associates−n.With both fields present, the net effect is to associate zero to each closed
loop. This provides a way to realise de Gennes’ idea, without any nonrigorous limit.
Moreover, it was also understood that the fermion field can be regarded as nothing more
than the differential of the boson field, with the anticommuting nature of fermions being
represented by anticommuting differential forms. A representation of the self-avoiding
walk two-point function as the two-point function of a supersymmetric field theory,
sometimes referred to as the τ -isomorphism, is central to the analysis of [13,18,19]. A
self-contained derivation of this integral representation is given in [20], both for weakly
self-avoidingwalk in continuous time and for strictly self-avoidingwalk in discrete time.

We use the integral representation to rewrite the two-point function of the continuous-
time weakly self-avoiding walk as the two-point function of a supersymmetric field the-
ory, and apply a rigorous renormalisation group argument to analyse the field theory.
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Key steps in the method are developed in the series of papers [6,7,14,21–24]. In the
present paper, we rely heavily on those developments and show how they can be com-
bined to analyse the susceptibility in the critical dimension d = 4. The proof here is thus
not self-contained, but rather reveals its general structure, with reliance on substantial
details obtained elsewhere.

In [8], we extend our analysis to the n-component |ϕ|4 model. Among other results,
we prove that its susceptibility obeys

χ(n, g, νc + ε) ∼ Ag,nε
−1(log ε−1)(n+2)/(n+8). (1.17)

This confirms the logarithmic correction with exponent n+2
n+8 predicted for n ≥ 1 in

[12,45,61], and generalises the rigorous result of [38,41] for n = 1. Setting n = 0 in
(1.17) gives a formula consistent with (1.9), but our proof for the weakly self-avoiding
walk does not use any non-rigorous n → 0 limit.

1.4. Organisation. The proof of Theorem 1.1–1.2 is divided into sections, as follows.
In Sect. 2, we show that the susceptibility of the weakly self-avoiding walk on Z

d

is well approximated by replacing Z
d by a sequence of finite tori ΛN = Z

d/LN
Z
d , as

N →∞ with a fixed integer L > 1.
In Sect. 3, we explain how the two-point function of weakly self-avoiding walk on the

finite setΛN can be represented as the two-point function of a supersymmetric field the-
ory onΛN . The latter is a certain integral over differential forms on the finite-dimensional
linear manifold C

ΛN , and has an interpretation as a Gaussian super-expectation. From
that point onward, we no longer consider walks, and instead focus attention on the study
of such integrals.

In Sect. 4, we express the two-point function of the weakly self-avoiding walk in
terms of the two-point function of a simple random walk with renormalised parameters.
We show that Theorem 1.1 follows if these renormalised parameters can be chosen
suitably.

In Sect. 5, we explain how the integrals of Sect. 3 can be evaluated progressively.
This progressive integration is the starting point for a multiscale analysis and defines
the renormalisation group map, which we parametrise by coordinates (V, K ). The V -
coordinate is 3-dimensional and describes the important (“relevant” and “marginal”)
directions of the renormalisation group map. The K -coordinate is infinite dimensional
and complements V to a complete description of the problem. Thus the leading contri-
butions in (1.9)–(1.11) will be determined by V , but the control of K is at the heart of
obtaining a mathematically rigorous result.

In Sect. 6, we consider the definition and properties of a single application of the
renormalisation group map, by making extensive use of results developed in the com-
panion series of papers, especially [6,24]. This includes the definition of an infinite
dimensional dynamical system which describes the infinite volume limit ΛN ↑ Z

d .
In Sect. 7, we study the evolution of the renormalisation group map, by applying a

result of [7] concerning dynamical systems, together with the estimates given in Sect. 6.
We analyse the stability of the renormalisation group map near the Gaussian fixed point
corresponding to the simple random walk g = 0. More precisely, we construct a centre
stable manifold near this fixed point.

In Sect. 8,weproveTheorems1.1–1.2 using the results of Sects. 2–7.The centre stable
manifold constructed in Sect. 7 plays a crucial role in the identification of the critical
point. To deduce the logarithmic correction for the susceptibility for d = 4, we study
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infinitesimal deviations of the flow from the centre stable manifold, which allows the
derivative of χ with respect to ν to be computed. An elementary but important technical
aspect is that the results of the previous sections permit us to focus our attention on this
derivative for the case of finite volume ΛN .

Throughout the remainder of this paper, we emphasise the source of the power of the
logarithm in (1.9) by writing

γ = 1

4
. (1.18)

Thus γ does not denote the critical exponent as in (1.5), but rather the exponent of the
logarithmic correction to the critical exponent 1.

2. Finite Volume Approximation

The proof begins by approximation of Z
d by a sequence of finite tori of period LN ,

which we denote by Λ = ΛN = Z
d/LN

Z
d . Let EΛN

a denote the expectation of the
continuous-time simple random walk on ΛN , started from a ∈ ΛN . Let

cN ,T (a, b) = EΛN
a (e−gI (T )1X (T )=b), cN ,T = EΛN

a (e−gI (T )). (2.1)

We define the two-point function for the torus by

GN ,ν(a, b) =
∫ ∞

0
cN ,T (a, b)e

−νT dT, (2.2)

and define the corresponding torus susceptibility by

χN (ν) =
∑
b∈ΛN

GN ,ν(a, b) =
∫ ∞

0
cN ,T e

−νT dT . (2.3)

By the Cauchy–Schwarz inequality, T = ∑
x∈Λ Lx

T ≤ (|Λ|I (T ))1/2, and hence

χN (ν) ≤
∫ ∞

0
e−gT 2/|ΛN |e−νT dT <∞ for all ν ∈ R. (2.4)

The following lemma shows that χN is a good approximation to χ .

Lemma 2.1. Let d > 0. For all ν ∈ R, χN (ν) is non-decreasing in N, and obeys
limN→∞ χN (ν) = χ(ν) (with χ(ν) = ∞ for ν ≤ νc). The functions χN and χ are
analytic on {ν ∈ C : Reν > νc}, and χN and all its derivatives converge uniformly on
compact subsets of Reν > νc to χ and its derivatives.

Proof. Let cN ,T = EΛN (e−gI (T )) as in (2.1), and let cT = E(e−gI (T )) as in (1.3). We
first show that

cN ,T ≤ cN+1,T ≤ cT , lim
N→∞ cN ,T = cT (2.5)

(for the inequality we assume LN ≥ 3).
To see this, we observe that there is a one-to-one correspondence between nearest-

neighbour walks on Z
d started at the origin and such walks on the finite torus Z

d
n if

n ≥ 3, by folding awalk onZ
d (the image under the canonical projectionZ

d � Z
d
n ), and

corresponding unfolding of walks on Z
d
n (unique for the nearest-neighbour walk when
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n ≥ 3). Given a walk X on Z
d starting at 0, we denote the folded walk on Z

d
n by Xn .

This allows us to couple walks on tori of different diameter via the distribution of walks
on Z

d . We denote the local time of a walk X up to time T by Lx
T (X) =

∫ T
0 1X (S)=x dS,

and similarly the intersection local time by IT (X). Given X and a positive integer k, we
obtain

IT (X
kn) =

∑
x∈Z

d
kn

(
Lx
T (X

kn)
)2 = ∑

x∈Zd
n

∑
y∈Zd :‖y‖∞<k

(
Lx+yn
T (Xkn)

)2

≤
∑
x∈Zd

n

⎛
⎝ ∑

y∈Zd :‖y‖∞<k
Lx+yn
T (Xkn)

⎞
⎠

2

=
∑
x∈Zd

n

(
Lx
T (X

n)
)2 = IT (X

n). (2.6)

Thus, with n = LN , k = L , and with X fixed,

e−gIN+1,T (X) ≥ e−gIN ,T (X). (2.7)

Now we take the expectation over X to obtain the first inequality of (2.5). This shows
monotonicity in N of cN ,T . Also, a folded walk can only have more intersections than
its unfolding, so IT (Xn) ≥ IT (X) for any walk X on Z

d and for any n, so we also have
cN ,T ≤ cN+1,T ≤ cT .

For the convergence of cT,N to cT , we first note that walkswhich do not reach distance
1
2 L

N from the origin do not contribute to the difference.Walkswhich domust take at least
1
2 L

N steps. Therefore, since I (T ) ≥ 0,we conclude that |cT−cT,N | ≤ 2P(MT >
1
2 L

N ),
where MT is a rate-2d Poisson process. The probability in the upper bound goes to zero
as N →∞, so limN→∞ cN ,T = cT , and (2.5) is proved.

With the monotone convergence theorem, (2.5) gives

χ(ν) =
∫ ∞

0
lim

N→∞ cN ,T e
−νT dT = lim

N→∞χN (ν) for ν ∈ R, (2.8)

where both sides are finite if and only if ν > νc. Also, since |cN ,T e−νT | ≤
cN ,T e−(Reν)T ≤ cT e−(Reν)T , it follows from the dominated convergence theorem that

χ(ν) = lim
N→∞χN (ν) for Reν > νc. (2.9)

The analyticity of χ and χN follows from analyticity of Laplace transforms, and the
desired compact convergence of χN and all its derivatives then follows from Montel’s
theorem. �

3. Integral Representation

The next step in the proof is to represent the two-point function for walks on the finite set
Λ by an integral over the finite dimensional spaceC

Λ. Before entering into the details of
the representation, we first briefly recall some basic facts about integration of differential
forms.
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3.1. Integration of differential forms. LetΛ = {1, . . . ,M} be a finite set (e.g., a discrete
torus) of cardinality M . Let u1, v1, . . . , uM , vM be standard coordinates on R

2M . Then
du1 ∧ dv1 ∧ · · · ∧ duM ∧ dvM is the standard volume form on R

2M , where ∧ denotes
the usual anticommuting wedge product (see [57, Chapter 10] for an introduction). In
the following, we drop the wedge from the notation and write simply duidv j in place
of dui ∧ dv j . The one-forms dui , dv j generate the Grassmann algebra of differential
forms on R

2M . A form which is a function of u, v times a product of p differentials is
said to have degree p, for p ≥ 0. A sum of differential forms of even degree is called
even. We will use the term form as an abbreviation for “differential form.”

Any form F of degree 2M can be written as F = f (u, v)du1dv1 · · · duMdvM , and
its integral is defined by

∫
F =

∫
R2M

f (u, v)du1dv1 · · · duMdvM , (3.1)

where the right-hand side is the usual Lebesgue integral of f over R
2M . For p �= 2M ,

we define the integral over R
2M of a form of degree p to be zero. Then the integral of an

arbitrary form, which is a linear combination of forms of degree p for different values
of p, is defined by linearity; only its component of top degree affects the value of the
integral.

We introduce complex coordinates by setting φx = ux + ivx , φ̄x = ux − ivx and
dφx = dux + idvx , dφ̄x = dux − idvx , for x ∈ Λ. Since the wedge product is
anticommutative, the following pairs all anticommute for every x, y ∈ Λ: dφx and dφy ,
dφ̄x and dφy , dφ̄x and dφ̄y . In addition,

dφ̄xdφx = 2iduxdvx . (3.2)

The integral of a function f (φ, φ̄) (i.e., a 0-form) with respect to
∏

x∈Λ dφ̄xdφx
is thus given by (2i)M times the integral of f (u + iv, u − iv) over R

2M . Note that
the product here can be taken in any order, since each factor dφ̄xdφx has even degree
(namely degree two). It is convenient for us to define

ψx = 1√
2π i

dφx , ψ̄x = 1√
2π i

dφ̄x , (3.3)

where we fix a choice of the square root and use this choice henceforth. Then

ψ̄xψx = 1

2π i
dφ̄xdφx = 1

π
duxdvx . (3.4)

By definition, a differential form F can be written as
∑
x,y

Fx,y(φ, φ̄)ψ
x ψ̄ y, (3.5)

where the sum is over sequences x and y inΛ (of any length) and ψ x = ψx1 · · ·ψxp for
x = (x1, . . . , xp) ∈ Λp. Given a subset X ⊂ Λ, we denote byN (X) the algebra of even
forms F with the restriction that the sum in (3.5) extends only over sequences in X and
the coefficients Fx,y depend only on (φx , φ̄x )x∈X . The algebra N (X) is commutative
and associative. For the special case X = Λ, we write simply N = N (X). Later we
discuss norms on N that impose regularity conditions on its elements.
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3.2. Functions of forms. We refer to the variables (φx ) and the forms (ψx ) in (3.5) as
boson and fermion fields, respectively. We view ψ as an anticommuting analogue of φ
and think of a differential form as a function of φ and ψ . Differential forms have degree
at most 2M and therefore, as “functions” of ψ , they are polynomial with degree at most
2M . We use terminology corresponding to this view of differential forms. For example,
by setting ψ̄ = ψ = 0 in a form we mean to take the projection to its degree-0 part.
In our context, the forms ψ, ψ̄ are often called Grassmann variables, and integrals of
“functions” of ψ in the standard sense of differential forms, as explained in Sect. 3.1,
are the same as the Berezin integral [10,49].

We also define functions of even forms. Let F = (Fj ) j∈J be a finite collection of
even forms. We say that F is even. Let F0

j denote the degree-0 part of Fj and assume F0
j

is real. Given a C∞ function f : R
J → C we define a form f (F) by its Taylor series

about the degree-0 part of F , i.e.,

f (F) =
∑
α

1

α! f
(α)(F0)(F − F0)α (3.6)

whereα = (α j ) j∈J is amulti-index, with α! = ∏
j∈J α j !, and (F−F0)α = ∏

j∈J (Fj−
F0
j )
α j . Note that the summation terminates as soon as

∑
j∈J α j = M since higher order

forms vanish, and that the order of the product on the right-hand side is immaterial when
F is even. For example,

e−φx φ̄x−ψx ψ̄x = e−φx φ̄x
(
1− ψx ψ̄x

)
. (3.7)

3.3. Identity for two-point function. Let Λ = ΛN now denote the discrete torus in Z
d ,

as in Sect. 2. For x ∈ Λ, we define the forms

τx = φx φ̄x + ψx ∧ ψ̄x , (3.8)

and

τΔ,x = 1

2

(
φx (−Δφ̄)x + (−Δφ)x φ̄x + ψx ∧ (−Δψ̄)x + (−Δψ)x ∧ ψ̄x

)
, (3.9)

whereΔ is the lattice Laplacian onΛ given byΔφx = ∑
e:|e|=1(φx+e−φx ). Atypically,

we have left the wedge product ∧ explicit in the above definitions, for emphasis. The
following proposition is proved in [13,19]; see [20, Theorem 5.1] for a self-contained
proof. The integrand and integral on the right-hand side of (3.10) are as defined in
Sect. 3.1.

Proposition 3.1. Let d > 0. For g > 0 and ν ∈ R, or g = 0 and ν > 0,

GN ,g,ν(a, b) =
∫

e−
∑

x∈Λ(τΔ,x+gτ 2x +ντx )φ̄aφb. (3.10)

Note that, by summation by parts on the torus Λ,
∑
x∈Λ

τΔ,x =
∑
x∈Λ

(
φx (−Δφ̄)x + ψx ∧ (−Δψ̄)x

)
, (3.11)

so the symmetrisation in (3.9) is not needed for (3.10) (it is absent also in [20, Theo-
rem 5.1]). However, later we need sums

∑
x∈X τΔ,x with X ⊂ Λ a proper subset, and

there symmetrisation is important.
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The right-hand side of (3.10) is the two-point function of a supersymmetric field
theory with quartic self-interaction. The partition function that results by dropping the
factor φ̄aφb on the right-hand side of (3.10) turns out to be simply equal to 1. More
generally, there is the remarkable self-normalisation property that∫

e−
∑

x∈Λ(px τΔ,x+qx τ 2x +rx τx ) = 1 for all px ≥ 0, qx > 0, rx ∈ R, (3.12)

as a result of supersymmetry. Thus supersymmetry provides, in particular, the simplifica-
tion that there is no need to conduct any analysis of a partition function. A self-contained
proof of (3.12) and generalisations, as well as a brief discussion of supersymmetry, can
be found in [20].

In the remainder of this section, we discuss some of the intuition associated to (3.10),
but we do not make use of it afterwards. Since τ 2 = |φ|4 + 2|φ|2|ψ |2, the fermionic part
of the right-hand side of (3.10) is

e−
∑

x,y∈Λ ψx Axy ψ̄y with Axy = −Δxy + (ν + 2gφx φ̄x )δxy . (3.13)

One way to evaluate the integral on the right-hand side of (3.10) is to expand the expo-
nential (3.13), keep only the top-degree part, and rearrange the order of the differentials
to obtain the standard volume form. The anti-commutativity produces a determinant,
with the result that the top-degree part of e−

∑
x∈Λ(τΔ,x+gτ 2x +ντx ) is equal to

det(−Δ + ν + 2g|φ|2)e−
∑

x∈Λ(φx (−Δφ̄)x+g|φx |4+ν|φx |2)
∏
x∈Λ

dφ̄x dφx
2π i

. (3.14)

Thus there is an alternate version of the identity (3.10), in which the exponential on its
right-hand side is replaced by (3.14). This procedure of integrating out of fermions has
been useful in the study of other supersymmetric models [28,29], but we do not follow
this approach. Instead, we work directly with the right-hand side of (3.10) throughout
the entire analysis.

If we drop the ψ terms in the definitions of τ, τΔ in (3.8)–(3.9) (or equivalently drop
the determinant in (3.14)), consider a real-valued boson field ϕx rather than a complex-
valued one, and integrate with respect to the Lebesgue measure

∏
x∈Λ dϕx on R

Λ, the
right-hand side of (3.10) becomes the integral∫

RΛ
ϕaϕbe

−∑
x∈Λ( 12ϕx (−Δϕ)x+ 1

4 gϕ
4
x+

1
2 νϕ

2
x )

∏
x∈Λ

dϕx (3.15)

which is the unnormalised two-point function of the ϕ4-model. The ϕ4-model is a spin
system in which each point x ∈ Λ carries a spin variable ϕx ∈ R. It is a perturbation of
the massless Gaussian free field, in which each spin has a factor e−U (ϕx ) with U (t) =
1
4gt

4 + 1
2νt

2. The term
∑

x∈Λ 1
2ϕx (−Δϕ)x in the exponent can also be written as a sum

of squares of the gradient of ϕx , so fields with small gradient receive larger weight,
which is a ferromagnetic interaction. Completing the square gives

U (t) = 1

4
g

(
t2 +

ν

g

)2

− ν
2

4g
. (3.16)

The term −ν2/4g on the right-hand side cancels upon normalisation of the integral
(3.15) and is unimportant. As in Theorem 1.2, we are interested in negative values of ν,
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so thatU (t) has a double well shape, with minima at t = ±√|ν|/g separated by a barrier
of height ν2/g. As ν becomes increasingly negative, the two wells become increasingly
deep and increasingly separated, so it is plausible that there is a critical value of ν at
which long range correlations develop due to the values of ϕx becoming concentrated
at the minima of U . The behaviour in dimension d = 4 at and near this critical point
is the subject of the renormalisation group analyses of [31,34,35,38,41]. Although our
method of proof is not based on the above picture, the picture provides some intuition.
Our method is applied to the n-component |ϕ|4 model in [8,60].

3.4. Gaussian super-expectation. The right-hand side of (3.10) is an instance of a
Gaussian super-expectation, defined as follows. First, given a Λ × Λ matrix A, let

SA(Λ) =
∑
x,y∈Λ

(
φx Axy φ̄y + ψx Axyψ̄y

)
. (3.17)

Definition 3.2. Given a positive-definite Λ ×Λ matrix C , let A = C−1. Given a form
F on C

Λ, we define the Gaussian super-expectation of F , with covariance C , by

EC F =
∫

e−SA(Λ)F (3.18)

where the integral on the right-hand side is defined as in Sect. 3.1.

In the special case that f is a 0-form, or in other words f is a function of (φ, φ̄),
EC f is equal to the standard Gaussian expectation for a complex-valued random field
φ with covariance C (see [20, Proposition 4.1]), i.e.,

EC f =
∫

CΛ
f (φ, φ̄)dμC (φ, φ̄), dμC (φ, φ̄) = Z−1C e−

∑
x,y∈Λ φxC−1xy φ̄y

∏
x∈Λ

dφ̄xdφx ,

(3.19)
where ZC is a normalisation constant such that EC1 = 1. In particular, EC φ̄aφb = Cab,
i.e.,C is the covarianceof theGaussianmeasureμC . For a general differential form,EC F
loses the probabilistic interpretation, but nevertheless many of the important properties
of Gaussian integrals continue to hold for the Gaussian super-expectation. For example,
C is also the “covariance” of ψ , i.e., EC ψ̄aψb = −ECψbψ̄a = Cab. Also, as a result of
supersymmetry and in contrast to the usual Gaussian measure μC in (3.19), there is no
normalisation constant in (3.18). Further discussion of the Gaussian super-expectation
is given in Sect. 5.1 below.

Formally, the right-hand side of (3.10) looks like the Gaussian super-expectation of
e−

∑
x∈Λ gτ 2x with A = −Δ+ν whereΔ is the discrete Laplace operator onΛN . However,

the critical point νc is negative according to (1.11). Thus −Δ + ν is an indefinite matrix
for the values of ν of interest, and therefore is not a proper covariance of a Gaussian
expectation. On the other hand, for any ε > 0, (3.10) can be written as

∫
e−

∑
x∈Λ(τΔ,x+gτ 2x +ντx )φ̄aφb = EC (e

−∑
x∈Λ(gτ 2x +(ν−ε)τx )φ̄aφb) (3.20)

with the positive-definite covariance C = (−Δ + ε)−1. A careful division of the right-
hand side of (3.10) into a Gaussian expectation and a perturbation is central to our
analysis and is discussed next, where we divide not just the τ term but also the τΔ term.
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4. Reformulation in Renormalised Parameters

4.1. Approximation by simple random walk. An important notion in theoretical physics
is that it is often possible to approximate an interacting system by an effective non-
interacting system with renormalised parameters. As a first step towards implementing
this, we write temporarily

Vg,ν,z;x = Vg,ν,z;x (φ,ψ) = gτ 2x + ντx + zτΔ,x . (4.1)

We fix m2 > 0 and z0 > −1, and set (φ′, ψ ′) = ((1 + z0)1/2φ, (1 + z0)1/2ψ) and
similarly for the conjugates. By definition,

Vg,ν,1;x (φ′, ψ ′) = V0,m2,1;x (φ,ψ) + Vg0,ν0,z0;x (φ,ψ), (4.2)

where
g0 = g(1 + z0)

2, ν0 = (1 + z0)ν − m2, (4.3)

or equivalently,

g = g0
(1 + z0)2

, ν = ν0 + m2

1 + z0
. (4.4)

For X ⊂ Λ, we define
V0(X) =

∑
x∈X

Vg0,ν0,z0;x =
∑
x∈X

(
g0τ

2
x + ν0τx + z0τΔ,x

)
. (4.5)

Let C = (−Δ+m2)−1, withΔ the discrete Laplacian onΛN . By making the change
of variables φx �→ φ′ = (1 + z0)1/2φx , and writing F ′(φ,ψ) = F(φ′, ψ ′), we obtain

∫
Fe−

∑
x∈Λ(τΔ,x+gτ 2x +ντx ) = EC F

′e−V0(Λ). (4.6)

There is no explicit Jacobian factor, since we also make the change of variables in the
differentials ψ, ψ̄ . Then, by (4.6),

GN (g, ν) = (1 + z0)ĜN (m
2, g0, ν0, z0), (4.7)

where
ĜN (m

2, g0, ν0, z0) = EC (e
−V0(Λ)φ̄aφb) (4.8)

(for g0 > 0 the right-hand side is convergent for all ν0 ∈ R and m2 > 0). In (4.7),
we write the two-point function as GN (g, ν) instead of GN ,g,ν(a, b), with a, b now
suppressed, since the lattice points a, b do not play a primary role for the moment and
it is rather the dependence on g, ν that we wish to emphasise. If we set V0 = 0 on the
right-hand side of (4.7), the result is a multiple of the simple random walk two-point
function with massm2. We regard the factor e−V0 as a perturbation of the simple random
walk. Much of our effort lies in the choice of the renormalised parameters (m2, z0) and
the determination of their relation to the original (or “bare,” in terminology of quantum
field theory) parameters (g, ν), so that the perturbation is small and the approximation
by simple random walk is a good one.

We define an analogous quantity for the susceptibility by

χ̂N (m
2, g0, ν0, z0) =

∑
x∈Λ

EC (e
−V0(Λ)φ̄0φx ). (4.9)
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Then, as in (4.7), χ and χ̂ are related by

χN (g, ν) = (1 + z0)χ̂N (m
2, g0, ν0, z0). (4.10)

The limit
χ̂ (m2, g0, ν0, z0) = lim

N→∞ χ̂N (m
2, g0, ν0, z0) (4.11)

exists by Lemma 2.1 and (4.10), and

χ(g, ν) = (1 + z0)χ̂(m
2, g0, ν0, z0). (4.12)

Also, for ν > νc, it follows from Lemma 2.1 and the chain rule that

∂χ

∂ν
(g, ν) = (1 + z0)

2 ∂χ̂

∂ν0
(m2, g0, ν0, z0) = (1 + z0)

2 lim
N→∞

∂χ̂N

∂ν0
(m2, g0, ν0, z0).

(4.13)
The finite volume susceptibility χ̂N can be conveniently re-expressed in terms of a

generating functional, as follows. Given an external field (or test function) J : Λ→ C,
we write

(J, φ̄) =
∑
x∈Λ

Jx φ̄x , ( J̄ , φ) =
∑
x∈Λ

J̄xφx . (4.14)

Let 1 denote the constant test function 1x = 1 for all x ∈ Λ. Let m2 > 0, g0 > 0,
ν0 ∈ R, z0 > −1. By (4.9) and translation invariance,

χ̂N = χ̂N (m2, g0, ν0, z0) = |Λ|−1EC ((1, φ̄)(1, φ)Z0), (4.15)

where C = (−Δ + m2)−1 and Z0 = Z0(g0, ν0, z0) = e−V0(Λ). We define the bosonic
generating functional Σ : CΛ→ C by

Σ(J, J̄ ) = EC (e
(J,φ̄)+(φ, J̄ )Z0). (4.16)

Then

χ̂N = |Λ|−1D2Σ(0, 0; (0, 1), (1, 0)) = |Λ|−1D2Σ(0, 0; 1, 1), (4.17)

where the right-hand sides involve the directional derivative with directions equal to the
constant function 1 in the first and second argument, respectively, for which we use the
short-hand notation of the last equality. The evaluation of χ̂N now becomes reduced to
the evaluation of D2Σ on the right-hand side of (4.17).

As a first step, we complete the square in the exponent to obtain

Σ(J, J̄ ) = e(J,C J̄ )
EC (Z0(φ + C J, φ̄ + C J̄ , ψ, ψ̄)). (4.18)

In more detail, with A = −Δ + m2 = C−1,
∑
x∈Λ

(
τΔ,x + m2τx

)
− (J, φ̄)− (φ, J̄ ) = (φ, Aφ̄) + (ψ, Aψ̄)− (J, φ̄)− (φ, J̄ )

= (φ − C J, A(φ̄ − C J̄ )) + (ψ, Aψ̄)− (J,C J̄ )
(4.19)

and (4.18) follows with the translation φ �→ φ + C J of the integration variable in the
integral (3.18) defining the super-expectation EC . This translation of φ leaves ψ =
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(2π i)−1/2dφ unchanged. As we explain next, (4.18) can be expressed conveniently in
terms of a notion of convolution.

By definition, any form F in the algebra N = N (Λ) of differential forms (see
Sect. 3.1) is a linear combination of products of factorsψxi and ψ̄yi , with xi , yi ∈ Λ and
with coefficients given by functions of φ and φ̄.We also define an algebraN× with twice
as many fields as N , namely with boson fields (φ, ξ) and fermion fields (ψ, η), where
ψ = (2π i)−1/2dφ, η = (2π i)−1/2dξ . There are also the four corresponding conjugate
fields. Given a form F = f (φ, φ̄)ψ x ψ̄ y (where ψ x denotes a product ψx1 · · ·ψx j ), we
define

θF = f (φ + ξ, φ̄ + ξ̄ )(ψ + η)x (ψ̄ + η̄)y, (4.20)

and extend this to a map θ : N → N× by linearity. Then we understand the map
EC ◦ θ : N → N as the integration with respect to the fluctuation fields ξ and η,
with the fields φ and ψ left fixed. This is like a conditional expectation. For example, if
F = f (φ) is of degree-0, then

ECθF = μC ∗ f = EC ( f (φ + ξ)|φ), (4.21)

where the right-hand side is the usual conditional expectationwith respect to theGaussian
measure dμC defined in (3.19). However, in general, this is not usual probability theory,
since EC ◦ θ acts on the algebra of forms.

The expectation with the translated boson field φ in (4.18), with no corresponding
translation of the fermion field ψ , can be expressed succinctly in terms of ECθ and
projection onto the subspace of degree zero forms. To this end, let

ZN = ECθ Z0 (4.22)

which is a differential form on C
Λ. The subscript N on ZN refers to the parameter

defining the finite volume ΛN . We denote the degree-0 part of ZN by Z0
N , i.e., Z

0
N is a

function Z0
N : CΛ→ C. Then

Σ(J, J̄ ) = e(J,C J̄ )Z0
N (C J,C J̄ ). (4.23)

As mentioned already in (3.12), the partition function EC Z0 is equal to 1 by supersym-
metry. However it is much more challenging to understand the convolution ECθ Z0.

To express the susceptibility conveniently in terms of Z0
N , observe that 1 is an eigen-

function of the covariance matrix C , namely

C1 = (−Δ + m2)−11 = 1

m2 1. (4.24)

With (4.23), this and (1, 1) = |Λ| imply that

D2Σ(0, 0; 1, 1) = (1,C1) + D2Z0
N (0, 0;C1,C1) = 1

m2 |Λ| +
1

m4 D
2Z0

N (0, 0; 1, 1).
(4.25)

Thus, with (4.17), we obtain

χ̂N = 1

m2 +
1

m4

1

|Λ|D
2Z0

N (0, 0; 1, 1). (4.26)

The representation (4.12) has the two free parameters m2 and z0, which define a
division of the quadratic τ and τΔ terms between the Gaussian expectation (1 + z0)EC
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and the perturbation V0(Λ). The formula (4.26) holds for any choice ofm2, z0 (and also
any choice of g0, ν0), but to study the behaviour near the critical point νc, it is essential
that this split be made exactly right. The correct critical choice is given in the following
theorem, whose proof occupies the remainder of the paper. With this choice, we have
|Λ|−1D2Z0

N (0, 0; 1, 1) → 0 as N → ∞ in (4.26). In Sect. 4.3 below, we show that
Theorem 1.1 is a consequence of Theorem 4.1.

Theorem 4.1. Let d = 4, and let δ > 0 be sufficiently small. There are continuous real-
valued functions νc0, z

c
0, defined for (m

2, g0) ∈ [0, δ)2 and continuously differentiable in
g0, and there is a continuous function c(g0) = 1 + O(g0), such that for all m2, g0, ĝ0 ∈
(0, δ),

χ̂
(
m2, g0, ν

c
0(m

2, g0), z
c
0(m

2, g0)
)
= 1

m2 , (4.27)

∂χ̂

∂ν0

(
m2, g0, ν

c
0(m

2, g0), z
c
0(m

2, g0)
)
∼ − 1

m4

c(ĝ0)

(ĝ0Bm2)γ
as (m2, g0)→ (0, ĝ0).

(4.28)

The functions νc0, z
c
0 obey

νc0(m
2, 0) = zc0(m

2, 0) = 0,
∂νc0

∂g0
(m2, g0) = O(1),

∂zc0
∂g0
(m2, g0) = O(1), (4.29)

where O(1)means that these derivatives are boundedon theirwhole domain by constants
uniform in (m2, g0).

4.2. Change of parameters. We have introduced six real variables {g, ν,m2, g0, z0, ν0},
and it is convenient in different contexts to switch perspective onwhich are dependent and
which are independent variables. In particular, to deduceTheorem1.1 fromTheorem4.1,
we relate the parameters (m2, g0, νc0, z

c
0) of χ̂ in (4.11) with the parameters (g, ν) of

χ . We summarise the different perspectives now. The six variables are constrained to
satisfy the two equations in (4.3) as well as

ν0 = νc0(m2, g0), z0 = zc0(m
2, g0), (4.30)

with νc0, z
c
0 the functions of Theorem 4.1. In particular, (4.7) and (4.12) hold for such a

choice.
Given (m2, g0), (4.4) and (4.30) determine gc, νc such that

(g, ν, ν0, z0) = (gc(m2, g0), ν
c(m2, g0), ν

c
0(m

2, g0), z
c
0(m

2, g0)), (4.31)

and (4.31) is continuous in (m2, g0) ∈ [0, δ)2 by Theorem 4.1. In Proposition 4.2(i)
below, we show that, given (m2, g), we can determine

(ν, g0, ν0, z0) = (ν∗(m2, g), g∗0(m2, g), ν∗0 (m2, g), z∗0(m2, g)), (4.32)

continuously in (m2, g) ∈ [0, δ1)2, with (4.3) and (4.30) satisfied. In Proposition 4.2(ii)
below, we show that given (g, νc + ε), we can determine

(m2, g0, ν0, z0) = (m̃2(g, ε), g̃0(g, ε), ν̃0(g, ε), z̃0(g, ε)) (4.33)



Logarithmic Corrections for Weakly Self-Avoiding Walk 833

so that (4.3) and (4.30) hold, with right-continuity as ε ↓ 0. (We also expect continuity
in ε > 0, but have not proved it.)

Theorem 4.1 is stated in terms of parameters (m2, g0) rather than the original para-
meters (g, ν) in (1.3). Let ν = νc(g) + ε, and let (m̃2, g̃0, ν̃0, z̃0) be given by (4.33). By
(4.12) and Theorem 4.1, we have the equality

χ(g, ν) = (1 + z̃0)χ̂(m̃
2, g̃0, ν̃0, z̃0) = (1 + z̃0)

1

m̃2 . (4.34)

The right-hand side is (1 + z̃0) times the susceptibility m̃−2 of the non-interacting walk
with killing rate m̃2. Thus we have implemented the goal mentioned at the beginning
of Sect. 4.1, i.e., to represent the susceptibility of the interacting model by that of a
non-interacting model with renormalised parameters. Equation (4.34) is reminiscent of
the renormalisation conditions imposed in the physics literature (e.g., [44, Chapter 5]).
However, we stress that here (4.34) arises not by defining m̃2, z̃0 by the requirement
that the equality holds, but rather that our method computes m̃2, z̃0 and we subsequently
verify that the equality holds. The equality (4.34) is an identity, not merely an asymptotic
formula, and thus it contains all information about the susceptibility, including not just
the leading asymptotic behaviour but also all higher-order corrections.

Proposition 4.2. There exists δ1 > 0 such that the following hold.

(i) For (m2, g) ∈ [0, δ1)2, there exist
(ν, g0, ν0, z0) = (ν∗(m2, g), g∗0(m2, g), ν∗0 (m2, g), z∗0(m2, g)), (4.35)

continuous in (m2, g), such that (4.3) and (4.30) hold, and

ν∗(0, g) = νc(g), ν∗(m2, g) > νc(g) (m
2 > 0), (4.36)

g∗0(m2, g) = g + O(g2), ν∗0 (m2, g) = O(g), z∗0(m2, g) = O(g). (4.37)

(ii) For (g, ε) ∈ [0, δ1)2, there exist
(m2, g0, z0, ν0) = (m̃2(g, ε), g̃0(g, ε), z̃0(g, ε), ν̃0(g, ε)), (4.38)

right-continuous as ε ↓ 0 (with g fixed), such that (4.3) and (4.30) hold, and

m̃2(g, 0) = 0, m̃2(g, ε) > 0 (ε > 0), (4.39)

g̃0(g, ε) = g + O(g2), ν̃0(g, ε) = O(g), z̃0(g, ε) = O(g). (4.40)

In the following proof, the construction of the maps (4.35) and (4.38) involves only
elementary calculus. The proof does not use (4.28), but the identification of the critical
point (which occurs in (4.36) and (4.39)), as well as the proof of right-continuity of
(m̃2, g̃0, ν̃0, z̃0) as ε ↓ 0, uses (4.27).

Proof. (i) For (m2, g0) ∈ [0, δ)2, set

s(m2, g0) = g0
(1 + zc0(m

2, g0))2
. (4.41)

For fixedm2, we show below that it is possible to construct an inverse to themap g0 �→ s,
i.e., to show that there exists δ1 > 0 such that the equation g = s(m2, g0) can be solved
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for g0 = g∗0(m2, g) as a continuous function of (m2, g) ∈ [0, δ1)2. Given its existence,
we set

ν∗0 = ν∗0 (m2, g) = νc0(m2, g∗0(m2, g)), z∗0 = z∗0(m2, g) = zc0(m
2, g∗0(m2, g)),

(4.42)
and also define

ν∗ = ν∗(m2, g) = ν
∗
0 + m2

1 + z∗0
. (4.43)

Since νc0 and zc0 are continuous in (m
2, g0), and since g∗0 is continuous in (m2, g), it is

also the case that z∗0, ν∗0 , and ν∗ are continuous in (m2, g), and it is immediate that (4.3)
and (4.30) hold, and also that (4.37) holds. To show (4.36), it follows from (4.12) and
(4.27) that

χ(g, ν∗(m2, g)) = (1 + z∗0)χ̂(m2, g∗0 , ν∗0 , z∗0) = (1 + z∗0)
1

m2 . (4.44)

In particular, χ(g, ν∗(m2, g)) < ∞ if m2 > 0 and therefore ν∗(m2, g) > νc(g) for
m2 > 0. Also, since χ(g, ν∗) ↑ ∞ as m2 ↓ 0, it follows from the continuity of ν∗ that

νc(g) = ν∗(0, g) = inf{ν∗(m2, g) : m2 ∈ [0, δ1)}. (4.45)

To construct the inverse to g0 �→ s, we proceed as follows. By Theorem 4.1, νc0, z
c
0

are continuous in (m2, g0) ∈ [0, δ)2, differentiable in g0, and satisfy (4.29). Thus, with
z′0 = ∂

∂g0
z0(m2, g0),

∂

∂g0
s(m2, g0) = (1 + z0)2 − 2g0(1 + z0)z′0

(1 + z0)4
= 1 + O(g0) > 0. (4.46)

For sufficiently small g∗ > 0, s is therefore a strictly increasing continuous function of
g0 ∈ [0, g∗) such that |s(m2, u)−s(m2, v)| ≥ (1−O(g∗))|u−v| and hence, form2 fixed,
s(m2, ·) is a continuously invertible map from [0, g∗) onto the interval [0, s(m2, g∗)).
Let [0, δ1) be in the intersection over m2 > 0 of the latter intervals. Since (4.46) holds
uniformly inm2, it follows that δ1 > 0. Therefore, g = s(m2, g0) can be solved for g0 as
a function g∗0(m2, g) for g ∈ [0, δ1) and g∗0 is continuous in g form2 fixed. To prove that
g∗0 is jointly continuous in (m2, g) it suffices to show that when (m̂2, ĝ)→ (m2, g), then
ĝ0 → g0, where ĝ0, g0 solve s(m̂2, ĝ0) − ĝ = 0 = s(m2, g0) − g. This follows from
(1−O(g∗))|ĝ0−g0| ≤ |s(m̂2, ĝ0)−s(m̂2, g0)| = |(s(m2, g0)−s(m̂2, g0))+(ĝ−g)| →
0, since s(·, g0) is continuous by (4.41) and the continuity of zc0.
(ii) We set

m̃2 = m̃2(g, ε) = inf{m2 > 0 : ν∗(m2, g) = νc(g) + ε}. (4.47)

By continuity of ν∗, the infimum is attained and

νc(g) + ε = ν∗(m̃2(g, ε), g). (4.48)

The left-hand side of (4.48) converges to νc as ε ↓ 0, and hence m̃2(g, ε) ↓ 0 as ε ↓ 0
(if m̃2(g, ε) had a nonzero accumulation point the right-hand side of (4.48) would not
converge to νc). We set

g̃0 = g̃0(g, ε) = g∗0(m̃2, g), ν̃0 = ν̃0(g, ε)=ν∗0 (m̃2, g), z̃0= z̃0(g, ε) = z∗0(m̃2, g),
(4.49)

and conclude that (4.3) and (4.30) hold. The desired properties of ν̃0 and z̃0 follow from
those of m̃ and g̃0, and continuity of ν∗0 and z∗0, and the proof is complete. �
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4.3. Proof of Theorem 1.1 assuming Theorem 4.1. The following elementary lemma is
used in the proof of Theorem 1.1.

Lemma 4.3. Let δ > 0. Suppose that u : [0, δ)→ [0,∞) is continuous, differentiable
on (0, δ), that u(0) = 0 and u(t) > 0 for t > 0, and that

u′(t) = (− log u(t))−γ (1 + o(1)) (as t ↓ 0). (4.50)

Then
u(t) = t (− log t)−γ (1 + o(1)) (as t ↓ 0). (4.51)

Proof. By hypothesis,
∫ t

0
u′(t)(− log u(t))γ dt =

∫ t

0
(1 + o(1)) dt = t (1 + o(1)). (4.52)

Note that u(t) > 0 implies that u′(t) > 0 for small t , so u is monotone. A change of
variables, followed by integration by parts, gives

∫ t

0
u′(t)(− log u(t))γ dt =

∫ u(t)

0
(− log v)γ dv

= u(t)(− log u(t))γ (1 + O((− log u(t))−1)). (4.53)

The equality of the above two right-hand sides then gives

u(t)(− log u(t))γ = t (1 + o(1)). (4.54)

Let f (x) = x(− log x)γ and g(y) = y(− log y)−γ . Then f and g are approximate
inverses in the sense that f (g(y)) = y(1 + o(1)). Thus u(t) = t (− log t)−γ (1 + o(1)),
and the proof is complete. �
Proof of Theorem 1.1. Let ν = νc(g) + ε. We have observed already in (4.34) that

χ(g, ν) = (1 + z̃0)χ̂(m̃
2, g̃0, ν̃0, z̃0) = (1 + z̃0)

1

m̃2 . (4.55)

For the derivative, we apply (4.13), (4.28) and (4.55) to obtain, as ν ↓ νc,
∂χ

∂ν
(g, ν) = (1 + z̃0)

2 ∂χ̂

∂ν0
(m̃2, g̃0, ν̃0, z̃0) ∼ −χ2(g, ν)

c0(g)

(g̃0Bm̃2)γ
. (4.56)

The constant on the right-hand side is c0(g) = limε↓0 c(g̃0(g, ε)) which exists by right-
continuity of g̃0 at ε = 0 for fixed g and by continuity of c. Equation (4.13) relates a
directional derivative of χ at the point (g, ν) to a directional derivative of χ̂ at any point
(m2, g0, ν0, z0) related to (g, ν) by (4.3). Equation (4.56) is valid because it specialises
(4.13) to (m̃2, g̃0, ν̃0, z̃0) which is related to (g, ν) by (4.3).

Now we drop g from the notation. For ν > νc, let

F(ν) = 1

χ(ν)
. (4.57)

By Proposition 4.2(ii), z̃0(ε) is continuous as ε ↓ 0, and hence, by (4.55),

F(ν) ∼ (1 + z̃0(0))
−1m̃2 (as ν ↓ νc). (4.58)
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We set F(νc) = 0. By (4.56), together with (1.8), (4.58) and (4.40),

∂F

∂ν
= − 1

χ2

∂χ

∂ν
∼ c0(g)

(g̃0Bm̃2)γ
∼ c0(g)

(g̃0(0)b)γ
(− log F(ν))−γ (as ν ↓ νc). (4.59)

We apply Lemma 4.3 with u(t) = (g̃0(0)b)γ c0(g)−1F(νc + t) to conclude from (4.59)
that

F(νc + ε) ∼ A−1g ε(− log ε)−γ (4.60)

with

Ag = (g̃0(0)b)
γ

c0(g)
. (4.61)

This is equivalent to (1.9). Since c0(g) = 1 + O(g̃0(0)) = 1 + O(g) as g ↓ 0 by (4.40),
we obtain

Ag = (gb)γ (1 + O(g)), (4.62)

which proves (1.10) and completes the proof. �
As a consequence of Theorems 1.1 and 4.1, we note in passing that the effective

killing rate m2 vanishes as the critical point is approached, i.e., as ε = ν − νc(g) ↓ 0,
according to the asymptotic formula

m2 ∼ 1 + zc0(0, g0)

Ag
ε(log ε−1)−γ as ε ↓ 0. (4.63)

5. Renormalisation Group

In this section, we gather together some of the important ingredients of the renormali-
sation group analysis used in the proof of Theorem 4.1.

5.1. Progressive integration and covariance decomposition. The proof of Theorem 4.1
is based on renormalisation group analysis of the integral on the right-hand side of
(4.9). We now explain a fundamental mechanism of our renormalisation group method:
progressive Gaussian integration which enables a multi-scale analysis.

It is an elementary fact that if X1 ∼ N (0, σ 21 ) and X2 ∼ N (0, σ 22 ) are independent
centred Gaussian random variables with respective variances σ 21 , σ

2
2 , then X1 + X2 ∼

N (0, σ 21 + σ 22 ) (here∼ denotes equality in distribution). In particular, if X ∼ N (0, σ 21 +
σ 22 ) then we can evaluate an expectation E( f (X)) by performing iterated Gaussian
integrals, as

E( f (X)) = E(E( f (X1 + X2) | X2)). (5.1)

The inner expectation on the right-hand side is conditional on X2, and the outer expec-
tation then averages over X2. The elementary identity (5.1) extends to the super-
expectation (3.18), as we describe next. Recall the map θ defined in (4.20).

Proposition 5.1. Let F ∈ N (Λ), and suppose that C1 and C ′ areΛ×Λ matrices with
positive-definite Hermitian parts. Then

EC ′+C1θF = (EC ′θ ◦ EC1θ)F. (5.2)
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For a proof, see [21, Proposition 2.6]. Equations (5.2) and (5.1) are closely related.
To see this, consider the special case in which we set φ = φ̄ = 0 and ψ = ψ̄ = 0 in
(5.2). In this case, (5.2) gives

EC ′+C1F = EC ′(EC1θF), (5.3)

which is an abbreviation for the lengthier formula (in which we suppress the conjugate
fields) expressed in the conventional notation for conditional expectations as

EC ′+C1F(ξ, η) = EC ′(EC1(F(ξ
′ + ξ1, η′ + η1) | ξ ′, η′)). (5.4)

As in Sect. 3.4, we setC = (−Δ+m2)−1 whereΔ is the Laplacian on the torusΛN of
period LN . Our goal is to prove Theorem 4.1, which concerns the asymptotic behaviour
of χ̂N of (4.9). In particular, we are interested in the limits ΛN ↑ Z

d and m2 ↓ 0, so
C is an approximation to the operator (−ΔZd )−1. The kernel [(−ΔZd )−1]xy decays as
|x−y|−2 as |x−y| → ∞ in dimension d = 4, and such long-range correlationsmake the
analysis difficult. The renormalisation group approach takes the long-range correlations
into account progressively, by making a good decomposition of the covariance C into
a sum of terms with finite range, together with progressive integration. The covariance
(−ΔZd + m2)−1 with m2 > 0 also arises in our analysis.

Theprogressive integration is basedonfinite-rangedecompositions of the covariances
C and (−ΔZd +m2)−1. The decompositions we use are defined and discussed in detail
in [6, Section 6.1], based on [3] (see also [15,17]). In [3], it is shown that there are
positive-definite covariances (C j )1≤ j<∞ on Z

d such that

(−ΔZd + m2)−1 =
∞∑
j=1

C j . (5.5)

These covariances have the finite-range property that

C j;x,y = 0 if |x − y| ≥ 1
2 L

j , (5.6)

and thereforeC j can also be identified with a covariance on the torus of period LN when
N > j . In addition, there is a positive-definite covariance CN ,N on Λ such that

C = (−ΔΛ + m2)−1 =
N−1∑
j=1

C j + CN ,N . (5.7)

The finite-range property gives rise to a factorisation property which is essential for
the analysis of [24], upon which our results depend. To state the property, given X ⊂ Λ,
recall thatN (X)was defined in Sect. 3.1 as the subalgebra ofN (Λ) consisting of forms
that depend on the boson and fermion fields only at points in X . It follows from [21,
Proposition 2.7] that for forms F ∈ N (X) and G ∈ N (Y ) such that dist(X,Y ) > 1

2 L
j ,

EC j θ(FG) = (EC j θF)(EC j θG), (5.8)

so F and G are uncorrelated with respect to EC j . This is an extension to the fermionic
setting of the standard fact that uncorrelated Gaussian random variables are independent.

By (5.7) and Proposition 5.1,

ECθF =
(
ECN ,N θ ◦ ECN−1θ ◦ · · · ◦ EC1θ

)
F, (5.9)
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and this expresses the expectation on the left-hand side as a progressive integration. The
calculation of the expectation on the right-hand side of (4.26) provides the basis for our
proof of Theorem 4.1. For simplicity, we sometimes write CN = CN ,N . To compute the
expectation (4.22), we use (5.9) to evaluate it progressively. Namely, if we define

Z0 = e−V0(Λ), Z j+1 = EC j+1θ Z j ( j < N ), (5.10)

then, consistent with (4.22),
ZN = ECθ Z0. (5.11)

Thus we are led to study the recursion Z j �→ Z j+1. To simplify the notation, we use the
short-hand notation E j = EC j , and leave implicit the dependence of the covariance C j
on of the mass m.

In our analysis, the value m2 = 0 corresponds to ν = νc. The fact that we work with
covariances with m2 > 0 is an important feature of our method because it permits the
renormalisation group step to be carried out with good estimates indefinitely, not only
for ν = νc but also for ν > νc.

5.2. Typical size of fields. To control the progressive integration,we need good estimates
on C j . To state the estimates, we fix some δ > 0 and define mass intervals

I j =
{
[0, δ) ( j < N )
[δL−2(N−1), δ) ( j = N ).

(5.12)

It is shown in [6, Proposition 6.1] that for multi-indices α, β with �1 norms |α|1, |β|1 at
most some fixed value p, for j ≤ N , for m2 ∈ I j , and for any k ∈ N,

|∇αx ∇βy C j;x,y | ≤ c(1 + m2L2( j−1))−k L−( j−1)(2[φ]+(|α|1+|β|1)), (5.13)

where c = c(k) depends on k and δ but is independent of j and m2, and the estimate is
for CN ,N when j = N . Here ∇αx = ∇α1x1 · · · ∇αdxd for a multi-index α = (α1, . . . , αd),
where ∇xk denotes the finite-difference operator ∇xk f (x, y) = f (x + ek, y)− f (x, y).
The number [φ] = 1

2 (d − 2) is referred to as the scaling dimension or engineering
dimension of the field, or, more briefly, simply as the field’s dimension. Throughout this
paper, the parameter δ > 0 in (5.12) is fixed and all constants are allowed to depend on
it. For other reasons, we sometimes assume that δ > 0 is small. We take limits in the
order N → ∞, and then m2 ↓ 0, so that the condition m2 ≥ δL−2(N−1) required for
the validity of (5.13) is satisfied. Moreover, throughout the remainder of this paper, we
tacitly assume that L is sufficiently large. This is needed, in particular, for the results of
[23,24], on which our results rely.

In the expectation Z j+1 = E j+1θ Z j , on the right-hand side we may write φ j =
φ j+1+ξ j+1, as in (4.20), and similarly for φ̄ j , dφ j , dφ̄ j . The expectationE j+1θ integrates
out ξ j+1, ξ̄ j+1, dξ j+1, d ξ̄ j+1 leaving dependence of Z j+1 on φ j+1, φ̄ j+1, dφ j+1, dφ̄ j+1.
This process is repeated. The ξ j fields that are integrated out are called fluctuation fields.
The field φ j is thus the variable in a Gaussian super-expectation with the remaining
covariance C≥ j+1 = ∑N

k= j+1 Ck . By (3.19), E≥ j+1|φ j,x |2 = C≥ j+1;x,x . The bounds
of (5.13) suggest that C≥ j+1;x,x ≈ C j+1;x,x , so that the typical size of the field φ j;x is
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Fig. 1. Illustration of B j (Λ) for j = 0, 1, 2, 3 when d = 2, N = 3, L = 2

of order L− j[φ]. Moreover, (5.13) also indicates that the derivative ∇xkφ j;x is typically
smaller than the field itself by a factor L− j , so that φ j remains approximately constant
over a distance L j . It is less familiar to think of the size of a differential form, but
motivated by

E j+1(ψ̄xψy) = E j+1(φ̄xφy) = C j+1;xy, (5.14)

we can apply the same heuristics as for φ to the fermion field ψ .

5.3. Polymers and relevant directions. To make a systematic analysis of the fluctuation
fields with covariance satisfying (5.6) and (5.13), we introduce nested pavings of the
torus Λ = ΛN = Z

d/LN
Z
d by sets of blocks B j on scales j = 0, . . . , N . See Fig. 1.

The blocks in B0 are simply the points inΛ. The blocks in B1 form a disjoint paving of
Λ by boxes of side L . More generally, each block in B j has side length L j and consists
of Ld disjoint blocks inB j−1. The following definition makes this more formal, and also
introduces the concept of a polymer, which has a long history in statistical mechanics
going back to the important paper [37] (these polymers have nothing to do with long
chain molecules or random walks).

Definition 5.2. For each j = 0, 1, . . . , N , the torusΛ is paved in a natural way by LN− j

disjoint d-dimensional cubes of side L j . The cube that contains the origin at the corner
has the form

{x ∈ Λ : xi = 0, 1, . . . , L j − 1 ∀ i = 1, . . . , d} (5.15)

and all the other cubes are translates of this one by vectors in L j
Z
d . We call these

cubes j-blocks, or blocks for short, and denote the set of j-blocks by B j = B j (Λ). A
union of j-blocks is called a polymer or j-polymer, and the set of j-polymers is denoted
P j = P j (Λ).

For a block B ∈ B j , the considerations in Sect. 5.2 concerning the typical size of φ j

suggest that, at each of the Ld j points x ∈ B, φ j,x has typical size of order L− j[φ], and
hence ∑

x∈B
φ
p
j,x ≈ Ld j L−pj[φ] = L(d−p[φ]) j . (5.16)
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The above right-hand side is relevant (growing exponentially in j) for p[φ] < d, irrel-
evant (decaying exponentially in j) for p[φ] > d, and marginal (neither growing or
decaying) for p[φ] = d. Since τx = φx φ̄x + ψx ψ̄x is quadratic in the fields, it corre-
sponds to p = 2, so p[φ] = 2[φ] = d − 2 < d and τx is relevant in all dimensions.
Similarly, τ 2x corresponds to p = 4 with p[φ] = 4[φ] = 2d − 4, so τ 2x is irrelevant
for d > 4, marginal for d = 4, and relevant for d < 4. Also, τΔ,x is marginal in all
dimensions. In fact, by [6, Lemma 5.3], any sum of local field monomials in φ and ψ
that are relevant or marginal, Euclidean invariant, and that obey the additional symmetry
between boson and fermions called supersymmetry (see [6, Section 5.2] for details) is
of the same form as V0 of (4.5), plus an additional term τ∇∇ (the use of summation by
parts to avoid inclusion of the term τ∇∇ is discussed in [6, Section 4.2]).

Essentially based on this observation, the general approach of Wilson [62] sug-
gests that, for d = 4 the map Z j �→ Z j+1 is qualitatively well approximated by a
3-dimensional map (g j , z j , μ j ) �→ (g j+1, z j+1, μ j+1) such that

Z j ≈ e−Vj (Λ) (5.17)

where Vj has the same form as V0 with renormalised coupling constants g j , z j , μ j . Fur-
thermore, Wilson’s general approach suggests that, given g0 > 0, one can find z0, μ0
such that (g j , z j , μ j ) → 0, i.e., Z j ≈ 1 as j → ∞. This is the famous observa-
tion of infrared asymptotic freedom. In the context of Sect. 4.1, it corresponds to the
approximation of the interactingmodel by the non-interactingmodel. Ourmethod gives a
rigorousmeaning to the approximation, by introducing a codimension-3 error coordinate
K j which rigorously keeps track of all errors in the approximation. The introduction
of K j trades the linear but nonlocal evolution of Z j given by (5.10) for a nonlinear
but local evolution of (Vj , K j ). The evolution of (Vj , K j ) is addressed in Sects. 6–7
below.

Our construction of the evolution map in [24] makes important use of the finite-range
property of the covariance decomposition. This can be contrasted with the block spin
method [34,35], in which the fluctuation covariances C j are chosen such the fields φ j
are constant over the blocks in B j (Λ). Block spin covariances decay exponentially, but
do not have the finite-range property (5.6). In our setup, fields are only approximately
constant over blocks by (5.13), but this is compensated by the independence property
(5.8) which allows for an effective construction of a renormalisation groupmap, by using
independence rather than cluster expansion.

5.4. Interaction functional. Motivated by the discussion in Sect. 5.3, we define V = R
3

and identify V with the vector space of local field polynomials

V = gτ 2 + ντ + zτΔ, (5.18)

where (g, ν, z) ∈ R
3. Rather than the coupling constant ν = ν j we often use its rescaled

version
μ j = L2 jν j . (5.19)

The reason for this rescaling is that, according to the heuristics discussed around (5.16),
the sizes of τ 2, τΔ are comparable with that of L−2 jτ rather than with that of τ . There
is no distinction between μ0 and ν0, so the two are interchangeable. The parameters
(g, z, ν) in V are designed to track the relevant and marginal directions in the dynamical
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system determined by the renormalisation group flow. The norm we use on V is the
scale-dependent maximum norm on R

3 with respect to the rescaled coordinate μ, i.e.,

‖V ‖V = max{|g|, |z|, |μ|} = max{|g|, |z|, L2 j |ν|}. (5.20)

Given a polymer X ∈ P j (Λ) as in Definition 5.2, we write V (X) for the form

V (X) =
∑
x∈X
(gτ 2x + ντx + zτΔ,x ). (5.21)

In [6, Section 3.5], for X ∈ P j (Λ) we define a field functional Wj (V, X) ∈ N as an
explicit quadratic function of V ∈ V . Given V ∈ V , B ∈ B j (Λ), and X ∈ P j (Λ), we
define the interaction functional I j : P j (Λ)→ N (Λ) by

I j (V, B) = e−V (B)(1 +Wj (V, B)), I j (V, X) =
∏

B∈B j (X)

I j (V, B). (5.22)

For simplicity, we often write I j (X) = I j (V, X), with the coordinate V left implicit.
The precise definitions ofWj (V, X) and I j (V, B) do not play a major role in this paper,
but they do play a role in results from [6,23,24] upon which our analysis depends. The
interaction functional I j has the following important properties. In their statement, the
enlargement B+ of a block B is the union of B and its neighbouring blocks.

– Field locality: I j (B) ∈ N (B+) for each block B ∈ B j (ΛN );
– Symmetry: I j is supersymmetric and Euclidean invariant;
– Block factorisation: I j (X) = ∏

B∈B j (X) I j (B).

By definition, W0 = 0, so I0(V, X) = e−V (X) for all X ⊂ Λ. With V0 defined by (4.5),
it follows from (5.10) that

Z0 = I0(Λ) = I0(V0,Λ). (5.23)

The definition (5.22) is motivated in [6, Section 2]. In short, given V as in (5.18), it
is shown in [6, Section 2] that there is an explicit choice Vpt of the same form as V but
with renormalised coupling constants, such that as a formal power series in V ,

E j+1θ I j (V,Λ) = I j+1(Vpt,Λ) + O(V 3). (5.24)

This shows that the form of I is stable in the sense that integrating out a fluctuation field
is approximately the same as replacing V by Vpt. However, the error in (5.24) fails to be
uniform in the size of Λ. To obtain an approximation that is uniform in Λ, we use the
localised form (5.22).

The factorised version (5.22), together with our choice of the side length of B to be
larger than the range of the covariance, allows us to take advantage of independence of
fields on polymers that do not touch. An expression of this is (5.8), which implies that
whenever X1, X2 ∈ P j (Λ) do not touch, and F(Xi ) ∈ N (Xi ) for i = 1, 2, then

E jθ(F(X1)F(X2)) = (E jθF(X1))(E jθF(X2)). (5.25)

This factorisation property can be combinedwith a perturbative calculation on individual
polymers, together with a careful control of errors in the perturbative calculation. Large
parts of [6,23,24] are concerned with such matters.
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5.5. Circle product and error coordinate. Given F1, F2 : P j → N , we define their
circle product F1 ◦ F2 : P j → N by

(F1 ◦ F2)(Y ) =
∑

X∈P j :X⊂Y
F1(X)F2(Y \ X), for Y ∈ P j . (5.26)

The terms corresponding to X = ∅ and X = Y are included in the summation on
the right-hand side, and we assume that F(∅) = 1 for all F : P j → N . The circle
product depends on the scale 0 ≤ j ≤ N , but we leave this dependence implicit. It
is an associative and commutative product, since N has these properties. The identity
element for the circle product is 1∅(X) = 1X=∅, i.e., (F ◦ 1∅)(Y ) = F(Y ) for all F
and Y .

Let K0 : P0 → N be the identity element K0 = 1∅. Then Z0 = I0(V0,Λ) of (5.10)
is also given by

Z0 = I0(Λ) = (I0 ◦ K0)(Λ). (5.27)

Our procedure is to maintain this form,

Z j = (I j ◦ K j )(Λ) with K j : P j (Λ)→ N (Λ), (5.28)

in the recursion Z j �→ Z j+1 = E j+1θ Z j of (5.10), with the initial condition given by
(5.27). With I j = I j (Vj ), the action of E j+1θ on Z j is then expressed as the renormal-
isation group map

(Vj , K j ) �→ (Vj+1, K j+1). (5.29)

The map (5.29) depends on the scale j and the volume parameter N . To achieve this,
given Vj ∈ V and K j : P j (Λ) → N (Λ), we seek to define Vj+1 ∈ V and K j+1 :
P j+1(Λ)→ N (Λ) in such a way that

Z j+1 = E j+1θ(I j ◦ K j )(Λ) = (I j+1 ◦ K j+1)(Λ). (5.30)

Then Z j = (I j ◦ K j )(Λ) retains its form under progressive integration. The represen-
tation (5.28) is by no means unique: given Z j there are many choices of I j , K j such
that (5.30) holds. For example, a trivial choice is given by K j (X) = 1X=ΛZ j (X) along
with any I j for which I j (∅) = 1.

It is crucial to make a careful choice of the representation in order to obtain useful
estimates valid at all scales. A choice of the map (Vj , K j ) �→ (Vj+1, K j+1) that leads to
good estimates is explicitly constructed in [24]. This choice is such that K j = O(‖Vj‖3)
holds in a certain precise sense, so that K j can be regarded as a third-order error term.
We discuss this in more detail in the next section, deferring substantial details to [24].

Substantial details underlying our analysis are developed in the series of papers
[6,7,21–24]. One important aspect, which is worthy of mention despite not playing a
visible role in the present paper, is the operator Loc defined and analysed in [22]. The
operator Loc extracts from an arbitrary element of N its relevant and marginal parts,
in the form of a local polynomial in the fields. Although Loc does not make a direct
appearance in the present paper, it plays a crucial role in results from [6,23,24] upon
which we rely here. The local polynomial Vj+1 is created from (Vj , K j ) using Loc,
which is used to incorporate the relevant and marginal parts of Wj and K j into Vj+1.
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6. Renormalisation Group Map

In this section, we discuss the definition and properties of the renormalisation group
map (Vj , K j ) �→ (Vj+1, K j+1) in more detail. Our discussion summarises results of
[6,23,24], where further details can be found. The observable fields σ, σ̄ that appear in
those references play no role in this paper, and can be set equal to zero for our present
needs. The observable fields are needed for the analysis of critical correlation functions
in [5,60].

Both local and global aspects are important for the repeated application of the renor-
malisation group map. In this section, we focus on the local aspect, which concerns a
single application under appropriate assumptions on (Vj , K j ). We give precise meaning
to the notion that Vj is a second-order approximation of Z j and that K j is a third-order
remainder. The global aspect is discussed in Sect. 7; this is the requirement that the
assumptions on (Vj , K j ) continue to remain valid as the two scales j and N increase
indefinitely. It is the global aspect that requires the careful choice of the initial parameters
z0 and ν0 in Theorem 4.1.

6.1. Perturbative quadratic flow. In [6, (4.11)], an explicit quadratic map ϕ(0)pt, j : R3 →
R
3 is defined and discussed. This map defines V (0)pt, j+1 = ϕ(0)pt, j (Vj ) in such a way that

the formal power series identity (5.24) is satisfied. The map ϕ(0)pt, j is a second-order
approximation to the V -component of the full renormalisation group map, (Vj , K j ) �→
(Vj+1, K j+1). It gives the dominant contribution to the renormalisation group map, and
it must be understood in detail.

It is useful to re-express the V -component of the renormalisation group map in
transformed coordinates. In [6, Proposition 4.3], we define quadratic polynomials Tj :
R
3 → R

3 and consider the change of variables Vj �→ V̌ j = Tj (Vj ). The transformation
Tj satisfies

T0(V ) = V, Tj (V ) = V + O(‖V ‖2), (6.1)

with error estimate uniform in j . Since the Tj are polynomials, this implies that they
are invertible in a neighbourhood of 0 that is independent of j . The composite maps
Tj+1 ◦ϕ(0)pt, j ◦ T−1j are equal, up to an error O(‖V ‖3), to ϕ̄ j : R3 → R

3, given explicitly
by (ḡ j+1, z̄ j+1, μ̄ j+1) = ϕ̄ j (ḡ j , z̄ j , μ̄ j ) with

ḡ j+1 = ḡ j − β j ḡ
2
j , (6.2)

z̄ j+1 = z̄ j − θ j ḡ2j , (6.3)

μ̄ j+1 = L2μ̄ j (1− γβ j ḡ j ) + η j ḡ j − ξ j ḡ2j − π j ḡ j z̄ j , (6.4)

where β j , θ j , η j , ξ j , π j are real coefficients defined precisely in [6, (3.24), (3.27)–
(3.28)]. These coefficients, and also those of the transformations Tj , depend contin-
uously on the mass m2 appearing in the covariance decomposition of Sect. 5.1, but are
independent of the size N of the torus.

The effect of the transformation Tj is to triangularise the evolution equation to second
order: the ḡ-equation does not depend on z̄ or μ̄, the z̄-equation depends only on ḡ, and
the μ̄-equation depends both on ḡ and z̄. This second-order triangularisation is the natural
coordinate system to study the evolution of Vj . For example, we emphasise the explicit
occurrence of the parameter γ = 1

4 in (6.4) which, in Sect. 8, gives rise to the power of
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the logarithm in Theorem 1.1. This parameter is not apparent in the original equations
before transformation by Tj (cf. [6, (3.31)] where an additional term proportional to gμ
appears).

The sequence (β j )0≤ j<∞ plays a key role in the analysis. It is defined in [6, (3.27)]
by

β j = 8
∑
x∈Zd

(
w2

j+1,x − w2
j,x

)
, with w j,x =

j∑
i=1

Ci;0,x . (6.5)

Them2-dependence ofβ j is suppressed in the notation. Since eachCi is positive-definite,
the above definition implies thatβ j > 0 for all j .Moreover, it is shown in [6, Lemma 6.3]
that lim j→∞ β j = log L/π2 for m2 = 0, so β j is bounded away from 0 for sufficiently
large j . On the other hand, for m2 > 0, by (5.13), β j decays extremely rapidly to 0 for
j ≥ jm where jm is the mass scale, i.e., the smallest j such that L2 jm2 ≥ 1. The mass
scale is natural for our specific sequence (6.5), but we apply below a general dynamical
system result from [7], in which there is no explicit mass parameter with which to define
a mass scale.

To prepare for the application of the main result of [7], given Ω > 1 we define the
Ω-scale jΩ ∈ N ∪ {∞}, by

jΩ = jΩ(m
2) = inf{k ≥ 0 : |β j | ≤ Ω−( j−k)‖β‖∞ for all j}. (6.6)

For the remainder of the paper, we fix Ω > 1 arbitrarily, e.g., Ω = 2. According to
[6, Proposition 4.4], jm and jΩ are equivalent for the sequence (6.5), in the sense that
| jm − jΩ | is bounded uniformly as m2 ↓ 0. Thus we may regard the mass scale and
Ω-scale as essentially equivalent. We define

χ j = χ j (m
2) = Ω−( j− jΩ)+ . (6.7)

In [6, Proposition 4.4], it is verified that the coefficients θ j , η j , ξ j , π j are bounded by
O(χ j ) and that they depend continuously on m2. In particular, it is shown that the
following two assumptions are satisfied.

Assumption (A1). The sequence β: The sequence (β j ) is bounded, namely βmax =
sup j∈N0

|β j | < ∞. There exists c > 0 such that β j ≥ c for all but c−1 values of
j ≤ jΩ .

Assumption (A2). The other parameters of ϕ̄: Each of θ j , η j , ξ j , and π j is bounded in
absolute value by O(χ j ), with a constant that is independent of both j and jΩ .

The above Assumption (A1) is the same as [7, Assumption (A1)], and the above
Assumption (A2) is a specialised form of [7, Assumption (A2)] (where in the notation
of [7], ζ j = 0, υggj = ξ j , υgzj = π j , υgμj = L2γβ j , and υzzj = υzμj = 0). We apply
Assumptions (A1)–(A2) in the proof of Proposition 7.1 below, where we apply the main
result of [7].

We interpret the scale parameter j as time, and thus view ϕ̄ = (ϕ̄ j ) j∈N0 as a time-
dependent dynamical system on R

3 which we call the quadratic flow. The exponential
decay of the coefficients beyond jΩ has the interpretation that the evolution essentially
stops at j = jΩ . The dynamical system ϕ̄ j has the fixed point (0, 0, 0). This fixed
point is not hyperbolic: there are two unit eigenvalues of Dϕ̄ j (0) corresponding to the
g- and z-equations. In [7], such non-hyperbolic fixed points are studied in a general
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infinite-dimensional setting. The flow of ϕ̄ near the fixed point 0 is elementary, and can
be understood via explicit analysis using the triangular structure of the equations (6.2)–
(6.4). In particular, the following proposition is a special case of [7, Proposition 1.2]. In
its statement, z∞ denotes the limit z∞ = lim j→∞ z j , and similarly for μ∞.

Proposition 6.1. If ḡ0 > 0 is sufficiently small, then there exists a unique global flow
V̄ = (V̄ ) j∈N0 = (ḡ j , z̄ j , μ̄ j ) j∈N0 of ϕ̄, i.e., a solution to V̄ j+1 = ϕ̄ j (Vj ) defined for
all j ∈ N0, with initial condition ḡ0 and final condition (z̄∞, μ̄∞) = (0, 0). This flow
satisfies, for any real p ∈ [1,∞),

χ j ḡ
p
j = O

(
ḡ0

1 + ḡ0 j

)p

, z̄ j = O(χ j ḡ j ), μ̄ j = O(χ j ḡ j ), (6.8)

with constants independent of jΩ and ḡ0, and dependent on p in the first bound. Fur-
thermore, V̄ j is continuously differentiable in the initial condition ḡ0 and continuous in
the mass parameter m2, for every j ∈ N0.

The main difficulty in the analysis of the renormalisation group map (5.29) lies in
the control of the non-perturbative coordinate K j : P j (Λ) → N (Λ), and we address
this next.

6.2. Non-perturbative coordinate. The coordinate Vj is identified with an element of
the spaceV = R

3, which is independent ofΛ. The remainder coordinate K j , however, is
a map K j : P j (Λ)→ N (Λ) and therefore does depend onΛ. In this section, we discuss
the definition of K j in more detail, summarising full details given in [24]. Of particular
importance are locality properties of K j which allow for the definition of a natural
limiting space asΛN ↑ Z

d . We require some understanding of this infinite volume limit.
In Sect. 8.1, we use results about the infinite volume limit to obtain estimates for finite
ΛN .

To discuss both the finite and infinite volume simultaneously, let V denote eitherΛN
or Z

d , and set N (ΛN ) = N and N (Zd) = ∞. We interpret the inequality j ≤ N (V) to
mean that j <∞ if N (V) = ∞. Given a finite set X ⊂ V, recall thatN (X) denotes the
space of even differential forms defined in Sect. 3.1. We identifyN (X) as a subalgebra
of N (Y ) if X ⊂ Y . We define N (V) to be the union over N (X) for all finite subsets
X ⊂ V. As in [24, Definition 1.4], we say that a polymer X ∈ P j (V) is a small set if
it is connected and if |X | j , the number of j-blocks it contains, satisfies |X | j ≤ 2d . We
write S j for the set of all small sets inP j (V). Given any polymer X ∈ P j (V), we define
its small set neighbourhood X� by

X� =
⋃

Y∈S j :X∩Y �=∅

Y. (6.9)

We write Comp j (X) ⊂ P j (V) for the set of connected components of X ∈ P j (V).
From [24, Definition 1.7], we recall the definition of the space K j (V), as follows.

The non-perturbative coordinate K j is an element of the space K j (Λ).

Definition 6.2. For j ≤ N (V), let K j = K j (V) be the real vector space of functions
K : P j (V)→ N (V) with the properties,
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– Field locality: K (X) ∈ N (X�,V) for each connected X ∈ P j ,
– Symmetry: K is supersymmetric and Euclidean invariant,
– Component Factorisation: K (X) = ∏

Y∈Comp j (X)
K (Y ) for all X ∈ P j .

The symmetries mentioned in Definition 6.2 are discussed above [24, Definition 1.7],
and also in [6,22,23]. They do not play an explicit role in this paper, but they are needed
in results we use from [6,22–24]. We do not discuss them further here.

The analysis of [6,22–24] permits the inclusion of observables which break certain
symmetries and are employed in [5,60] to study the decay of critical correlation func-
tions. Observables are not needed in the present paper.We only need the case σ = σ̄ = 0
of results in [6,22–24], we identify K and π∅K , with π∗K = 0 in the notation of those
papers, and make no further references to observables here. In particular, Definition 6.2
has been specialised to the case where observables are not present.

6.3. Norms. For the analysis of K j , we employ a family of norms on the spacesK j (V),
both forV = ΛN andV = Z

d . These norms,which are defined in [24, (1.45)], give rise to
Banach spacesW j (s̃,V) ⊂ K j (V) indexed by a parameter s̃ = (m̃2, g̃) ∈ [0, δ)×(0, δ)
with fixed small δ > 0. The parameter s̃ is chosen depending on the mass m2 and on
g0. The use of m̃2 allows us the option to choose the norm parameter close to but not
necessarily equal to themassm2 of the covariance (−Δ+m2)−1, which permits variation
of m2 without changing the norm. The choice of g̃ is discussed below.

In the present paper, we do not need and therefore do not recall the definition of the
norm from [24, (1.45)], needed for the propagation of estimates of K from one scale
to the next. We provide some general indication of the origin of these norms in the
following discussion, with reference to [21,23,24] for further details.

We discuss the norms for the case V = Λ, the extension to V = Z
d is discussed in

[24]. Consider first a single differential form F ∈ N (Λ)which, as in Sect. 3.2, we regard
as a function of the boson field φ and the fermion field ψ . For example, the degree-0
part F0 is a function F0 : C

Λ → Λ of φ, in the ordinary sense. The degree-1 part of
F can be written as

∑
x∈Λ Fx (φ)ψx +

∑
x̄∈Λ Fx̄ (φ)ψ̄x̄ , and each term can be viewed

as an ordinary function of φ times a monomial of degree 1 in ψ . The coefficient Fx (φ)
has the interpretation of a derivative of F with respect to ψx evaluated at ψ = 0. The
semi-norm ‖F‖T0, j provides a means to measure the size of these derivatives of F with
respect to φ and ψ at φ = 0. Definitions of these and other norms, and development of
their properties, is given in [21].

To prove Theorem 1.1, we only make use of the specialised set-up of [23, Sec-
tion 1.1.6], omitting the parts that concern observables. In particular, we consider
four copies of Λ, denoted Λb, Λ̄b, Λ f , and Λ̄ f , corresponding to the components
of φ, φ̄, ψ, ψ̄ , respectively, and setΛΛΛb = Λb  Λ̄b,ΛΛΛ f = Λ f  Λ̄ f ,ΛΛΛ =ΛΛΛb ΛΛΛ f , and

we let �ΛΛΛ∗ denote the set of finite ordered sequences ofΛΛΛ. A test function is a function
g : �ΛΛΛ∗ → R.

In [23, Section 1.1.6] (see also [21, Section 3.3]), we define linear spaces of test
functionsΦ j = Φ j (� j ). We set � j = �0L− j[φ] for an appropriate constant �0 (large and
L-dependent), fix an integer pΦ ≥ 1

2d + 2, and fix an integer pN ≥ 10. The Φ j (� j )

norm of a test function g is defined by

‖g‖Φ j (� j ) = sup
z∈ �ΛΛΛ∗:pb(z)≤pN

sup
α:|α|≤pΦ

�−zj L j |α||∇αgz|, (6.10)
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where pb(z) ≤ pN means that z has at most pN boson components, �−zj denotes �−qj
when z = (z1, . . . , zq) with each zi in a copy of Λ, and the restriction |α| ≤ pΦ limits
the number of finite-difference derivatives to be at most pΦ in each of the q components
of z. The number of fermion components of z is unrestricted. For example, for a test
function φ :ΛΛΛb → R with only one boson component,

�−10 L− j[φ]L j |α|1 |∇αφx | ≤ ‖φ‖Φ j (6.11)

for any multi-index α such that |α|1 ≤ pΦ . According to the discussion in Sect. 5.2, the
fluctuation field at scale j , i.e., the Gaussian field with covariance C j , when regarded as
a test function inΦ j (� j ) thus typically has norm O(1). The scaling used in the definition
of the norm has been designed to make this happen.

In [21], a pairing between forms and test functions is defined by

〈F, g〉0 =
∑

z∈ �ΛΛΛ∗:pb(z)≤pN

1

z! Fz(0)gz . (6.12)

The pairing can be thought of as a kind of generalised Taylor expansion, to all orders in
the fermion field, and to order pN in the boson field. We define a semi-norm on N (Λ)
by

‖F‖T0, j = ‖F‖T0, j (� j ) = sup
g∈Φ j :‖g‖Φ j≤1

|〈F, g〉0|. (6.13)

The pairing of F with test functions g of norm 1 is intended to mimic how large F
should be when evaluated at typical small fields (φ̄, φ, ψ̄, ψ), whose size is dictated by
the scale- j covariance.

It is also essential to have some control over large fields; this issue is addressed in
detail in [23]. As motivation, consider the probability measure on R given by

μ(ds) ∝ e−gs4 ds, (6.14)

which has mean 0 and variance proportional to g−1/2. More informally, typically |s| =
O(g−1/4). The expectationE j+1θ(I j ◦K j (Λ)) contains a factor e−g j |φ|4 which suggests
that typically |φ| = O(g−1/4j ). Since we do not know a priori the value of g j , we design
the norm ‖K j‖W j (s̃,V) so that, in addition to taking small fields into account, it also

measures the size of K j when evaluated on fields of size |φ| = O(g̃−1/4j ) with g̃ j

an approximate guess for g j . We then show a posteriori that the guess does what is
required. The sequence ḡ j = ḡ j (m2, g0) determined by ḡ0 = g0 and the recursion (6.2)
is a natural candidate for g̃ j , but is one that introduces dependence of the norms on the
two parametersm2 and g0. The dependence on g0 cannot be avoided, but it is convenient
to use a family of norms that minimises the dependence on m2. To accomplish this, we
set

g̃ j (m
2, g0) = ḡ j (0, g0)1 j≤ jm + ḡ jm (0, g0)1 j> jm , (6.15)

where the mass scale jm is the smallest integer j such that L2 jm2 ≥ 1. Thus g̃ j (m2, g0)
is the massless sequence ḡ j (0, g0) with its evolution shut down at the mass scale. We
show in Lemma 7.4 that g̃ j (m2, g0) = ḡ j (m2, g0) + O(ḡ2j (m

2, g0)), so the sequences
g̃ j and ḡ j are close to being equal.

A property of the norms that we use in the proof of Theorem 4.1 (see Sect. 8.4) is
the fact given by [24, (1.46)] that the WN norm dominates the T0,N semi-norm, in the
sense that

‖F(Λ)‖T0,N ≤ ‖F‖WN (s̃,Λ). (6.16)
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Fig. 2. The dashed line illustrates the interval I j = [0, δ) for j < N . The intervals Ĩ j (m̃
2) are given by

[ 12 m̃2, 2m̃2] if m̃2 ∈ (0, 12 δ) and are illustrated below the dashed line. As m̃2 ↓ 0, the length of these intervals

shrinks to 0, but Ĩ j (0) is given by the non-empty interval [0, L−2( j−1)]

6.4. Specification of renormalisation group map. For both choices V = ΛN and V =
Z
d , explicit definitions of maps (5.29) are constructed in [24]. For V = Λ, the maps

achieve the objective (5.30). The significance forV = Z
d is discussed in Sect. 6.5 below.

To simplify the notation, we write (5.29) as (V, K ) �→ (V+, K+), typically dropping
subscripts j and writing + in place of j +1, and also leaving the dependence of the maps
on the mass parameter m2 implicit. As discussed in Sect. 6.3, it is necessary to make
assumptions on (V, K ), in order for these definitions to be well-defined and to obtain
useful estimates for (V+, K+). These assumptions are stated in terms of domains, defined
as follows.

Given CD > 1, α > 0, δ > 0, and s̃ = (m̃2, g̃) ∈ [0, δ)× (0, δ), let
D j (s̃,V) = {(g, z, ν) : C−1D g̃ < g < CD g̃, |z|, |μ| < CD g̃} × BW j (s̃,V)(αχ̃ j g̃

3),

(6.17)
where BX (r) is the open ball of radius r around the origin in the Banach space X , and
χ̃ j = χ j (m̃2) with χ j defined by (6.7). Roughly speaking, the domain (6.17) permits
small g > 0 that is bounded away from zero, with z, μ = O(g), and with K bounded in
a precise but non-trivial fashion by O(g3). The domain D j (s̃,V) is equipped with the
norm of V ×W j (s̃,V).

The parameter m̃2 that appears in the definition of the domain (6.17) would ideally
be set equal to the mass m2 appearing in the covariance, but this would be problematic
for the discussion of continuity of the renormalisation group map as a function of m2.
Thus we decouple m2 from the domain by using m̃2 in the domain and requiring m2 to
be close to but not necessarily equal to m̃2. For this, we recall the interval I j defined in
(5.12), and set

Ĩ j = Ĩ j (m̃
2) =

{
[ 12 m̃2, 2m̃2] ∩ I j (m̃2 �= 0)
[0, L−2( j−1)] ∩ I j (m̃2 = 0).

(6.18)

For j < N , these intervals are illustrated in Fig. 2.
For s̃ = (m̃2, g̃) ∈ [0, δ) × (0, δ), the maps V+ = V+,V and K+ = K+,V with mass

m2 ∈ Ĩ+(m̃2) are maps

V+ : D(s̃,V)→ V, K+ : D(s̃,V)→ K+(V), (6.19)

such that, given (V, K ) ∈ D j (s̃,Λ),

E+θ(I (V ) ◦ K )(Λ) = (I+(V+(V, K )) ◦ K+(V, K ))(Λ). (6.20)

There is no analogue of (6.20) for the case V = Z
d , and we postpone discussion of

infinite volume to Sect. 6.5. The renormalisation group map is defined by (6.19). As
mentioned in Sect. 5.5, there are trivial choices of maps that make (6.20) hold. The maps
of [24] provide a nontrivial and good choice, a choice which obeys the useful estimates
discussed below.

In the present paper, we do not need or use the precise definitions of the maps
(V+, K+), so we discuss only their existence and certain of their important properties
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Fig. 3. The map K+ of Theorem 6.3 maps the centred ball of radius αg̃3 to a ball of smaller radius Mg̃3+ (in
our application α = 4M)

from [24]. Since themaps are given by explicit formulas, not depending on the parameter
s̃ appearing their domains in (6.19), the maps viewed as maps on different domains
coincide on their intersections, and wewill apply this property without further comment.

ThemapV+ is a perturbation of themapϕ(0)pt discussed in Sect. 6.1, and it is convenient
to describe it in terms of the difference

R+(V, K ) = V+(V, K )− ϕ(0)pt (V ). (6.21)

The following theorem, which is illustrated by Fig. 3, provides estimates for the maps
R+, K+, combining [24, Theorems 1.10–1.11, 1.13] into a single statement. In particular,
we apply the result of [24, Theorem 1.10] in the form given in [24, (1.61)]. For the
statement of the theorem, we view R+, K+ as maps jointly on (V, K ,m2) ∈ D(s̃) ×
Ĩ+(m̃2). The L p,q norm is the operator norm of a multi-linear operator from V p ×Wq

to V or to W+, for R+ or K+, respectively, and χ̃ = χ j (m̃2) where χ j is given by
(6.7). We have replaced occurrences of χ3/2 and χ1/2 from [24] by χ here; this amounts
to an unimportant redefinition of the parameter Ω . Also, in (6.22), s̃+ = (m̃2, g̃+)
for any choice of g̃+ ∈ [ 12 g̃, 2g̃] (as required by [24, (1.30)]). It is straightforward to
verify that the sequence defined by (6.15) obeys this constraint. For application of a
single renormalisation group step in Theorem 6.3, there is considerable flexibility in the
definition of g̃. However, indefinite iteration of the renormalisation group map requires
a careful choice of the sequence g̃ j , and (6.15) provides a choice that works.

Theorem 6.3. Let d = 4 and V = ΛN . Let CD and L be sufficiently large, and let
p, q ∈ N0. There exist M > 0 (depending on p, q), δ > 0, and κ = O(L−1) such that
for g̃ ∈ (0, δ) and m̃2 ∈ I+, and with the domain D defined using any α > M, the maps

R+ : D(s̃,Λ)× Ĩ+(m̃
2)→ V, K+ : D(s̃,Λ)× Ĩ+(m̃

2)→W+(s̃+,Λ) (6.22)

are analytic in (V, K ), and satisfy the estimates

‖Dp
V D

q
K R+‖L p,q ≤

⎧⎪⎨
⎪⎩
Mχ̃ g̃3−p

+ (p ≥ 0, q = 0)

Mg̃1−p−q
+ (p ≥ 0, q = 1, 2)

0 (p ≥ 0, q ≥ 3),

(6.23)

‖Dp
V D

q
K K+‖L p,q ≤

⎧⎪⎨
⎪⎩
Mχ̃ g̃3−p

+ (p ≥ 0, q = 0)
κ (p = 0, q = 1)

Mg̃−p
+ (χ̃ g̃10/4+ )1−q (p ≥ 0, q ≥ 1).

(6.24)

In addition, R+, K+, and every Fréchet derivative in (V, K ), when applied as a multi-
linear map to directions V̇ in V p and K̇ in Wq , is jointly continuous in all arguments,
m2, V, K , V̇ , K̇ .
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We emphasise that when m̃2 = 0 in Theorem 6.3, the continuity statement includes
right-continuity at m2 = 0. The bounds for (p, q) = (0, 0) show that R+ and K+ are
third-order in g̃ and thus third-order in V . The (p, q) = (0, 1) bound of (6.24) shows
that the K -coordinate is contracting, since κ < 1. Thus, viewed as a dynamical system,
(V, K ) �→ (V+, K+) has two centre directions g and z, one expanding direction μ, and
an infinite-dimensional contracting direction K . Theorem 6.3 is the deepest ingredient in
our analysis; its proof occupies most of [23,24]. The development of the norms defined
in [21] culminates in theW norm needed for Theorem 6.3, and the operator Loc defined
in [22] is designed to achieve the contraction in K .

6.5. Renormalisation group map in infinite volume. In our context, the renormalisation
group map is most naturally defined to be a map in the setting of a torus, since a defining
property is that it should preserve the circle product under expectation as in (6.20). We
have no analogue of (6.20) for the infinite volumeZ

d , for which we have defined neither
the expectation nor the circle product. Nevertheless, there is a natural definition of a
map (V, K ) �→ (V+, K+) which is set on Z

d rather than on a torus Λ, as an appropriate
inductive limit of the corresponding maps on the family of all tori. The infinite volume
map has the advantage that it is defined for all scales j ∈ N, with no restriction due
to finite volume. In particular, we can study the limit j → ∞, which we use in an
important way to apply the main result of [7] to the dynamical system defined by the
renormalisation group.

The definition of the renormalisation group map on Z
d is discussed in detail in [24,

Section 1.8.3]. There a correspondence is established between elements of the family of
spaces K j (Λ) indexed by Λ which obey a compatibility property called Property (Zd),
and the space K j (Z

d). In brief, given X ∈ P j (Z
d) and any Λ whose period is at least

twice the diameter of X , there is a map ι : X → Λ such that nearest neighbours in X are
mapped to nearest neighbours in Λ and the preimages of nearest neighbours in Λ are
nearest neighbours in X . The above-mentioned correspondence permits identification of
K j,Λ(ιX) with K j,Zd (X) for allΛ whose period is at least twice the diameter of X . The
diameter restriction causes information to be lost in going from the finite volume K to
its infinite volume version, as there is no infinite volume counterpart to K (U ) ∈ K(Λ)
whenever U is comparable in size toΛ, and in particular if U “wraps around” the torus
Λ. This does not cause difficulties since our analysis shows that the scale- j norm of
K (U ) decays exponentially in the number of scale- j blocks in U , and the significant
information is maintained by the correspondence.

It is shown in [24, Proposition 1.17] that

if the family (KΛ) has Property (Z
d) then so does the family (K+,Λ), (6.25)

and this permits the definition of a map (V, KZd ) �→ K+,Zd . Moreover, it is shown in
[24, Proposition 1.18] that the map V+ can be regarded as a map on (V, KZd ) ∈ D(Zd),
and in addition

if the family (KΛ) has Property (Z
d) then V+,Λ(V, KΛ) = V+,Zd (V, KZd ) for all Λ.

(6.26)
In particular, this shows that the loss of information in going from (KΛ) to KZd does
not affect the flow of coupling constants.

The following theorem is proved in [24, Theorem 1.19]. In particular, it shows that
R+,Zd and K+,Zd (in the space W(0, g̃)) are right-continuous at m2 = 0 for all j <∞.
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Theorem 6.4. All statements of Theorem 6.3 hold, including domains and estimates,
with the same parameters and constants, when V = Λ is replaced by V = Z

d .

6.6. Renormalisation group map in transformed variables. In Sect. 6.1, we introduced
the transformation Tj , and discussed its effect on the perturbative quadratic part of the
renormalisation group flow. We now show that its effect on the nonperturbative part
is insignificant. The transformed renormalisation group flow is important in proofs in
Sects. 7–8.

We distinguish versions of the renormalisation group coordinates and maps in trans-
formed variables by writing, e.g., V̌ = T (V ), and (V̌+, Ǩ+) for versions of the maps
(V+, K+)which act on transformed variables (V̌ , K ). Since the transformation acts triv-
ially for j = 0, i.e., T0(V ) = V , we do not distinguish between V0 and V̌0 and use both
interchangeably. In more detail, the maps V̌+, Ǩ+ are defined by

V̌+(V̌ , K ) = T+(V+(T
−1(V̌ ), K )), Ǩ+(V̌ , K ) = K+(T

−1(V̌ ), K ), (6.27)

and we also set
Ř+(V̌ , K ) = V̌+(V̌ , K )− ϕ̄(V̌ ). (6.28)

As in Sect. 6.4, dependence on m2 is left implicit in the notation, and the subscript + is
shorthand for scale j + 1.

We extend T, T−1 to act trivially on K , i.e., T (V, K ) = (T (V ), K ), T−1(V, K ) =
(T−1(V ), K ), and set Ď = T (D). Since T is invertible for V sufficiently small (which
we assume), also T−1(Ď) = D.

Corollary 6.5. All statements of Theorems 6.3–6.4 (namely regularity, domains,
estimates) hold when R+, K+ are replaced by Ř+, Ǩ+.

Proof. We first note that since T is a polynomial with T (V ) = V + O(‖V ‖2), for
bounded p,

‖DpT (V )‖ ≤ O(1), ‖DpT−1(V )‖ ≤ O(1). (6.29)

The chain rule and (6.29) imply

‖Dp

V̌
Dq

K Ǩ+(V̌ , K )‖ ≤ C
p∑

k=1
‖Dk

V D
q
K K+(T

−1(V̌ ), K )‖, (6.30)

and the claim for Ǩ+ immediately follows from (6.24) since the bound on the derivative
of K+ is largest for k = p.

To bound the derivatives of Ř+, we write Ř+ = Řpt + Ř∗, where

Řpt(V̌ ) = T+(ϕ
(0)
pt (T

−1(V̌ )))− ϕ̄(V̌ ) (6.31)

Ř∗(V̌ , K ) = T+
(
ϕ
(0)
pt (T

−1(V̌ )) + R+(T
−1(V̌ ), K )

)
− T+(ϕ

(0)
pt (T

−1(V̌ )))
)
. (6.32)

It suffices to show that Řpt, Ř∗ both satisfy the bounds claimed for R+ in (6.23). As dis-

cussed below (6.1), T+◦ϕ(0)pt ◦T−1 = ϕ̄+O(‖V ‖3). Sinceϕ(0)pt , ϕ̄, T, T+ are polynomials,
it follows that

Dp

V̌
(T+ ◦ ϕ(0)pt ◦ T−1) = Dp

V̌
ϕ̄ + O(‖V̌ ‖3−p). (6.33)
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In particular, since Řpt is independent of K , this shows that Řpt satisfies (6.23). For
Ř∗, we write the quadratic polynomial T+ as T+(V ) = V + B+(V, V ) with B+(V1, V2)
bilinear, and we set f = ϕ(0)pt (T

−1(V̌ )) and r = R+(T−1(V̌ ), K ). Then

Ř∗ = r + B+(r, f ) + B+( f, r) + B+(r, r). (6.34)

The first term is bounded exactly as (6.30) and the others can be seen to be smaller in a
similar way. This completes the proof. �

7. Renormalisation Group Flow

We now discuss the global aspect of the renormalisation group: the enabling of indefi-
nitely repeated application of the renormalisation group map, as the scale j increases.
It is this global aspect that requires the careful choice of (νc0, z

c
0) in Theorem 4.1, and

that leads to the identification of the critical point. We restrict throughout Sect. 7 to the
infinite volume case, V = Z

d . In Sect. 8, we return to the case V = ΛN .

7.1. Existence and regularity of global flow. We say that (Vj , K j ) j∈N0 is a global flow
of the infinite volume renormalisation group if

(Vj+1, K j+1) = (Vj+1(Vj , K j ), K j+1(Vj , K j )) for all j ∈ N0. (7.1)

In (7.1), on the left-hand side (Vj+1, K j+1) is an element in the sequence (Vj , K j ),
and on the right-hand side it denotes the map (V+, K+) = (Vj+1, K j+1) of Sect. 6; the
interpretation should be clear from context. We suppress the dependence on the mass
parameter m2 in our notation.

The following proposition, which sits at the centre of our analysis, constructs a
sequence with the desired properties. For its statement, we fix the parameter α in the
definition of the domainsD in (6.17) asα = 4M , whereM is the constant in Theorem 6.3
(this choice is convenient, but somewhat arbitrary).

Proposition 7.1. Let d = 4 and V = Z
d , and let δ > 0 be sufficiently small. There

are continuous functions of (m2, g0), namely zc0, μ
c
0 : [0, δ)2 → R, with zc0(m

2, 0) =
μc
0(m

2, 0) = 0, continuously differentiable in g0 ∈ (0, δ) with uniformly bounded
derivatives, such that for all (m2, g0) ∈ [0, δ)× (0, δ), the global flow (7.1) with mass
parameter m2 and initial condition given by

V0 = (g0, zc0(m2, g0), μ
c
0(m

2, g0)), K0 = 1∅, (7.2)

exists, and (Vj , K j ) ∈ D j (s j ,Zd) for all j ∈ N0. Here s j = (m2, g̃ j (m2, g0)) with g̃ j

given by (6.15). In particular, ‖K j‖W j (s j ) = O(χ j ḡ3j ) and ǧ j , g j = O(ḡ j ). In addition,
ž j , μ̌ j , z j , μ j = O(χ j ḡ j ).

Proposition 7.1 can be extended to replace its initial condition K0 = 1∅ by a more
general condition on K0. The extension is not required for our present purposes, so is not
pursued here, but a more general initial condition is needed for the analysis of weakly
self-avoiding walk with nearest-neighbour attraction [4].

The proof of Proposition 7.1 is based an application of the main result of [7], which
concerns a class of non-hyperbolic dynamical systems. For this, it is advantageous to
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workwith the transformed variables V̌ j = Tj (Vj ) defined in (6.1)–(6.4), as this produces
a triangular system to second order. We therefore reformulate the renormalisation group
map (V, K ) �→ (V+,Zd , K+,Zd ) of Sect. 6.5 in terms of the transformed variables. This

was anticipated in Sect. 6.6, where maps V̌+, Ǩ+, Ř+ are defined. Thus we define the
evolution map

Φ j (V̌ j , K j ) = (V̌ j+1(V̌ j , K j ), Ǩ j+1(V̌ j , K j ))

= (ϕ̄ j (V̌ j ) + Ř j+1(V̌ j , K j ), Ǩ j+1(V̌ j , K j )). (7.3)

The map ϕ̄ is given by (6.2)–(6.4), and its global flow with initial condition ḡ0 and final
condition (z̄∞, μ̄∞) = (0, 0) is determined by Proposition 6.1. Precise statements about
the domains of the Φ j are deferred to Sect. 7.3.

We interpret Φ j as the time-dependent evolution map of a dynamical system, which
is an infinite-dimensional perturbation of the 3-dimensional dynamical system ϕ̄ on
V = R

3. The maps (Φ j ) are between different spaces, since K j and K j+1 are functions
of polymers defined in terms of blocks of different side lengths L j and L j+1, respectively,
but this aspect is unimportant. Althoughwe have not defined (V+, K+) at (V, K ) = (0, 0)
in Sect. 6.4, it is natural to extend it to act trivially on (0, 0), which can thus be regarded
a fixed point of the dynamical system Φ. We are interested in the behaviour of Φ near
this fixed point. In particular, we wish to construct a sequence (V̌ j , K j ) that satisfies the
flow equation

(V̌ j+1, K j+1) = Φ j (V̌ j , K j ), (7.4)

with good estimates on the sequence (V̌ j , K j ) and with boundary conditions

K0 = 1∅, ǧ0 > 0 small, ž∞ = μ̌∞ = 0. (7.5)

The condition ǧ0 > 0 is related to the stability problem discussed around (6.14); because
of it the fixed point can be approached from one side only.

7.2. Non-hyperbolic dynamical system. The dynamical system (7.4) is not hyperbolic
near the fixed point (0, 0), due to the two unit eigenvalues of ϕ̄ corresponding to the
variables g, z. To study it, we apply themain result of [7], which considers a general class
of dynamical systems Φ = (Φ j ) with non-hyperbolic fixed point and with contractive
coordinate K j lying in a given sequence of Banach spacesW j . The result of [7] shows
that, under appropriate assumptions on Φ j , there exists a global flow satisfying the
boundary conditions (7.5). We now recall this result in the form we require. Because we
apply the result to the renormalisation group flow in the transformed variables discussed
in Sect. 6.1, we state it in the notation of transformed variables (ǧ, ž, μ̌, K ) rather than
the variables (g, z, μ, K ) used in [7].

The dynamical system studied in [7] involves a quadratic flow map ϕ̄, of which the
flow defined by (6.2)–(6.4) is an instance. This flow map in [7] is required to obey
the Assumptions (A1)–(A2) stated in Sect. 6.1, with a fixed Ω > 1 which defines
jΩ as in (6.6). Any such quadratic flow has a unique global flow which obeys the
boundary conditions of our interest, and this global flow obeys the estimates of Propo-
sition 6.1; this is proved in [7, Proposition 1.2]. We have already seen that the specific
quadratic flow (6.2)–(6.4) obeys Assumptions (A1)–(A2) and Proposition 6.1. In this
section, we consider any quadratic flow that obeys Assumptions (A1)–(A2), not neces-
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sarily our specific example (6.2)–(6.4), and we replace Φ of (7.3) by the more general
map

Φ j (V̌ j , K j ) = (ϕ̄ j (V̌ j ) + ρ j (V̌ j , K j ), ψ j (V̌ j , K j )), (7.6)

where (ρ j , ψ j ) satisfy Assumption (A3) stated below.
To formulate the theorem, let V = R

3, let (W j ) j∈N0 be a sequence of Banach spaces,
and set X j = V⊕W j (compared with [7] we have reversed the order of the components
V,W j ). We define domains Dj ⊂ X j on which (ρ j , ψ j ) is assumed to be defined,
and an assumption which states estimates for (ρ j , ψ j ), as follows. The domain and
estimates depend on the initial condition g0 and an external parameter m2 (here we
write m2 instead of m as in [7]). For parameters a, h > 0 and sufficiently small g0 > 0,
let (ḡ j , z̄ j , μ̄ j ) j∈N0 be the sequence determined by Proposition 6.1 with initial condition
ḡ0 = g0 and mass m2, and define the domain Dj = Dj (m2, g0, a, h) ⊂ X j by

Dj = {x j = (ǧ j , ž j , μ̌ j , K j ) ∈ X j : |ǧ j − ḡ j | ≤ hḡ2j | log ḡ j |,
|ž j − z̄ j | ≤ hχ j ḡ

2
j | log ḡ j |,

|μ̌ j − μ̄ j | ≤ hχ j ḡ
2
j | log ḡ j |,

‖K j‖W j ≤ aχ j ḡ
3
j }. (7.7)

Assumptions (A1)–(A2) for the quadratic flow are supplemented with the following
assumption for the perturbation (ρ j , ψ j ).

Assumption (A3). The perturbation: The maps ρ j : Dj → V ⊂ X j+1 and ψ j :
Dj → W j+1 ⊂ X j+1 are three times continuously Fréchet differentiable, and there
exist κ ∈ (0,Ω−1), R ∈ (0, a(1− κΩ)), M > 0 such that, for all x j = (Vj , K j ) ∈ Dj ,

‖Dp
V D

q
Kρ j (x j )‖L p,q ≤

⎧⎪⎨
⎪⎩
Mχ j+1ḡ

3−p
j+1 (p = 0, 1; q = 0)

M(ḡ2j+1| log ḡ j+1|)−p(χ j+1ḡ3j+1)
1−q

( p = 0, q = 1
or p + q = 2, 3

)
,

(7.8)

‖Dp
V D

q
Kψ j (x j )‖L p,q ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Rχ j+1ḡ3j+1 (p = q = 0; K j = 0)

Mχ j+1ḡ2j+1 (p = 1; q = 0)

κ (p = 0, q = 1)
M(ḡ2j+1| log ḡ j+1|)−p(χ j+1ḡ3j+1)

1−q (p + q = 2, 3).
(7.9)

The following theorem, which is illustrated by Fig. 4, is a restatement of [7, The-
orem 1.4] (with [7, Remark 1.5] for part (iii)), and its corollary is a restatement of [7,
Corollary 1.8]. We make the simplifying assumption that K0 = 0, which corresponds
to our application with K0(X) = 0 for all non-empty polymers X . In the theorem, the
sequence (K̄ j ) j∈N0 is defined inductively by K̄ j+1 = ψ j (K̄ j , V̄ j ), with K̄0 = 0. The
existence of this sequence is established in [7, Lemma 1.3], which also gives

‖K̄ j‖W j ≤ a∗χ j ḡ
3
j (7.10)

for any a∗ ∈ (R/(1− κΩ), a], if ḡ0 is chosen sufficiently small (depending on a∗).
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Fig. 4. Schematic phase portrait of the global flow of Theorem 7.2. In the renormalisation group flow of
Proposition 7.1, the portion of the stable manifold near the fixed point (V = (0, 0, 0), K = 0) restricted to
K = 0 consists of the points V = (g0, μc0(g0), zc0(g0)), g0 ∈ [0, δ]

Theorem 7.2. Fix a sequence of Banach spacesW j . Suppose that (A1)–(A3) hold with
parameters given by (a, h, κ,Ω,M, R) and with ḡ0 = g̃0. Let a∗ ∈ (R/(1− κΩ), a),
b ∈ (0, 1). There exists h∗ > 0 such that for any h ≥ h∗, there exists g∗ > 0 such that if
g̃0 ∈ (0, g∗], there exists a neighbourhoodN = N(g̃0) ⊂ R of g̃0 such that the following
conclusions hold.

(i) For initial condition g0 ∈ N, there exists a global flow x̌ of Φ = (ϕ̄ + ρ,ψ) with
(ž∞, μ̌∞) = (0, 0) such that, with x̄ the unique flow of Φ̄ = (ϕ̄, ψ) determined by
the same boundary conditions,

|ǧ j − ḡ j | ≤ bhḡ2j | log ḡ j |, (7.11)

|ž j − z̄ j | ≤ bhχ j ḡ
2
j | log ḡ j |, (7.12)

|μ̌ j − μ̄ j | ≤ bhχ j ḡ
2
j | log ḡ j |, (7.13)

‖K j − K̄ j‖W j ≤ b(a − a∗)χ j ḡ
3
j . (7.14)

The sequence x̌ is the unique solution to (7.4)which obeys these boundary conditions
and the bounds (7.11)–(7.14).

(ii) For every j ∈ N0, the map (V̌ j , K j ) : N→ V ⊕W j is C1 and obeys

∂ ž0
∂g0

= O(1),
∂μ̌0

∂g0
= O(1). (7.15)

(iii) The neighbourhoodN(g̃0) can be taken to be an interval centred at g̃0, whose length
ε(g̃0) > 0 depends only on g̃0, the constants in (A1)–(A3), and a∗, b, h, and with
ε(g̃0) bounded below away from 0 uniformly on compact subsets of g̃0 > 0.

In particular, (7.10) and (7.14) imply that ‖K j‖W j ≤ aχ j ḡ3j for all j ∈ N0. Theo-
rem 7.2 concerns a single dynamical systemΦ = (Φ j ) j∈N0 . Let Mext be a metric space
of external parameters and assume now that the Φ j depend continuously on an external
parameterm2 ∈ Mext, in the sense that theΦ j are continuous maps X j ×Mext → X j+1.
We say that Φ satisfies (A1)–(A3) uniformly if Φ j (·,m2) satisfies (A1)–(A3) for para-
meters (a, h, κ,Ω, R,M) independent of m2 ∈ Mext. For the proof of Theorem 4.1, we
apply the following extension to Theorem 7.2, with Mext ⊂ [0, δ).
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Fig. 5. To construct a continuous solution on (m2, g0) ∈ (0, δ)2, we first construct solutions in small neigh-
bourhoods of a fixed (m̃2, g̃0), and show compatibility of these solutions

Corollary 7.3. Assume that the Φ j depend continuously on an external parameter
m2 ∈ Mext and that Assumptions (A1)–(A3) hold uniformly in m2. Let x = x(m2, g0) =
(V (m2, g0), K (m2, g0)) be the global flow for external parameter m2 and initial con-
dition g0 ∈ N(g̃0) guaranteed by Theorem 7.2. Then x j is continuous in (m2, g0)
for each j ∈ N0, i.e., (m2, g0) �→ Vj (m2, g0) is a continuous function into R

3, and
(m2, g0) �→ K j (m2, g0) is a continuous function into W j .

7.3. Proof of Proposition 7.1. We prove Proposition 7.1 by applying Theorem 7.2 to the
infinite volume evolution map (7.3) for the transformed variables, with the verification
of (A3) via Theorem 6.4. The proof is divided into three main steps:

Step 1. Construction of the maps zc0, μ
c
0 and proof of the estimates for (Vj , K j ) for all

j ∈ N.
Step 2. Proof of continuity of zc0, μ

c
0 in the interior of their domains, i.e., (m2, g0) ∈

(0, δ)2.
Step 3. Proof that zc0, μ

c
0 are continuous on [0, δ)2.

For the regularity statements of steps 2–3, a difficulty is that Theorem 6.4 involves the
restrictions m̃2 ∈ I+ = [0, δ) and m2 ∈ Ĩ+(m̃2), which maintain the mass m̃2 appearing
in the norm close to the mass m2 appearing in (7.3) through its implicit dependence on
the original covariance (−Δ+m2)−1. To prove mass continuity of zc0, μ

c
0 inm

2 ∈ [0, δ),
we must prove some compatibility in this respect. Similarly, Theorem 7.2 permits only
local variation of g0, whereas we must prove continuity in g0 ∈ [0, δ). This is illustrated
by Fig. 5. To deal with these difficulties, although we aim to prove (Vj , K j ) ∈ D j (s j )
with s j = (m2, g̃ j (m2, g0)), we consider a wider class of parameters and spaces. To
simplify the notation, we write

W0
j (m̃

2, g̃0) =W j (m̃
2, g̃ j (m̃

2, g̃0),Z
d), (7.16)

where (m̃2, g̃0) defines the sequence (g̃ j ) via (6.15).

7.3.1. Preliminaries: the sequence g̃ and norms The proof uses the properties estab-
lished in the next lemma, for the sequence g̃ j defined in (6.15). The proof of Lemma 7.4
uses elementary calculus only.

Lemma 7.4. (i) There exists δ > 0 such that uniformly in (m2, g0) ∈ (0, δ)2 and in
j ∈ N0,

g̃ j (m
2, g0) = ḡ j (m

2, g0) + O(ḡ2j (m
2, g0)). (7.17)
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(ii) For sufficiently small θ > 0, if |m2 − m̂2| ≤ θm̂2 and |g0 − ĝ0| ≤ θ ĝ0, then

|g̃ j (m
2, g0)− g̃ j (m̂

2, ĝ0)| ≤ (θ + O(g0))g̃ j (m̂
2, ĝ0). (7.18)

(iii) For j ∈ N0, g̃ j (m2, g0) is monotone increasing in each of m2 and g0.

Proof. (i) We use dots to denote derivatives with respect to m2. By [6, Lemma 6.3(b)],
β̇l = O(L2l) (with L-dependent constant). Differentiation of (6.2) gives ˙̄g j+1 = ˙̄g j (1−
2β j ḡ j )− β̇ j ḡ2j . We solve the recursion and then apply [7, Lemma 2.1(iii)] to obtain

˙̄g j = −
j−1∑
l=0

j∏
k=l
(1− 2β j ḡ j )β̇l ḡ

2
l = −(1 + O(g0))

j−1∑
l=0

(
ḡ j

ḡl

)2

β̇l ḡ
2
l = O(ḡ2j L

2 j ).

(7.19)
By continuity, ḡ j achieves its maximum on [0, m̂2] at some m2∗ (depending on j). For
j ≤ jm , by integrating the derivative we obtain

|ḡ j (0)− ḡ j (m
2)| ≤ O

(
ḡ2j (m

2∗)
)
. (7.20)

Thus ḡ j (m2∗) ≤ ḡ j (0) + O(ḡ j (m2∗)2). Since ḡ j (m2∗) = O(ḡ0) (by [7, Lemma 2.1(i)]), it
follows that ḡ j (m2∗) ≤ (1 + O(ḡ0))ḡ j (0), and hence ḡ j (m2) = ḡ j (0) + O(ḡ j (0)2) for
j ≤ jm as claimed.

For j ≥ jm , we iterate (6.2), and use ḡl ≤ ḡ jm for l ≥ jm (which is immediate from
βk ≥ 0) and

∑∞
l= jm |βl | = O(1) (by [6, Lemma 6.2]), to obtain

ḡ j = ḡ jm

j−1∏
l= jm

(1−βl ḡl)= ḡ jm exp

⎛
⎝

j−1∑
l= jm

O(βl ḡl)

⎞
⎠= ḡ jm exp(O(ḡ jm )) = ḡ jm +O(ḡ

2
jm ),

(7.21)
and the proof of (i) is complete.

(ii) Using log(1 + t) ≤ t for t ≥ 0, we first observe that for sufficiently small θ > 0,

| jm̂ − jm | ≤ 1 + | logL2 m̂2 − logL2 m2| ≤ 1 +
|m̂2 − m2|
m2 log L2 ≤ 1 + O(θ) < 2. (7.22)

Thus, since jm is an integer, | jm̂ − jm | ≤ 1. Let j∗m( j) = jm if j ≥ jm and j∗m( j) = j
otherwise. Then also | j∗m − j∗m̂ | ≤ | jm − jm̂ | ≤ 1. By (6.15) and the triangle inequality,

g̃ j (g0,m
2)− g̃ j (ĝ0, m̂

2) = ḡ j∗m (g0)− ḡ j∗m̂ (ĝ0)

≤ |ḡ j∗m (g0)− ḡ j∗m̂ (g0)| + |ḡ j∗m̂ (g0)− ḡ j∗m̂ (ĝ0)|. (7.23)

By (6.2), |ḡ j∗m−ḡ j∗m̂ | ≤ O(ḡ2j∗m̂
). Also, it is shown in [7, Lemma 2.1(iv)] that if |g0−ĝ0| ≤

θ ĝ0 then

|ḡ j (g0)− ḡ j (ĝ0)| ≤ θ(1 + O(g0))ḡ j (g0). (7.24)
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The combination of the above estimates gives

|g̃ j (g0,m
2)− g̃ j (ĝ0, m̂

2)| ≤ (θ + O(g0))g̃ j (ĝ0, m̂
2) (7.25)

which is (7.18).
(iii) The sequence ḡ is monotone increasing in g0 (by [7, (2.50)]), and thus the

sequence g̃ is also monotone increasing in g0. Also, the sequence ḡ is decreasing in j
since βk ≥ 0 for all k, while jm is decreasing in m2, so g̃ is increasing in m2. �

In preparation for step 2, we make the following observation. It is proved in [24,
Lemma 1.9] (with 1 + O(g̃ − g̃′) ≤ 2) that there exists δ > 0 such that, whenever
m̃2 ≤ m̃′2 and g̃′ ≤ g̃ ≤ (1 + δ)g̃′,

‖ · ‖W j (m̃2,g̃) ≤ 2‖ · ‖W j (m̃′2,g̃′). (7.26)

Therefore, by Lemma 7.4(ii–iii), there exists δ > 0 such that if m̃2 ≤ m2 and g0 ≤ g̃0 ≤
(1 + δ)g0, then, for all g0 ∈ (0, δ),

‖ · ‖W0
j (m̃

2,g̃0) ≤ 2‖ · ‖W0
j (m

2,g0), (7.27)

withW0 defined in (7.16).
In preparation for step 3, we recall from [24, Lemma 1.9] that it is the case that

‖·‖W j (m̃,g̃) = ‖·‖W j (0,g̃) if j ≤ jΩ . In addition, if j ≤ jm then g̃ j (m2, g0) = g̃ j (0, g0)
by definition in (6.15). Therefore the scale- j norm is independent of m2 as long as
j ≤ min{ jΩ, jm}. As discussed below (6.6), the mass scale jm differs from jΩ by at
most a constant, so we conclude that there is a constant c such that

‖ · ‖W0
j (m

2,g0) = ‖ · ‖W0
j (0,g0)

for m2 ≤ cL−2 j . (7.28)

7.3.2. Step 1: construction of the maps zc0, μ
c
0

Step 1. We construct the maps zc0, μ
c
0 and show that for initial conditions (7.2), (7.1) is

valid and (Vj , K j ) ∈ D j (s j ) for all j ∈ N0. As explained in Sect. 6.6, this is equivalent to
showing that there exist (V̌ j , K j ) ∈ Ď j (s j ) satisfying (7.4). We also show the estimates
stated for Vj , V̌ j .

We fix (m̃2, g̃0) ∈ [0, δ) × (0, δ). To apply Theorem 7.2 to the maps (7.3) with
theW j spaces given byW0

j (m̃
2, g̃0), we must verify Assumptions (A1)–(A3) with this

choice. Assumptions (A1)–(A2) for the maps ϕ̄ have already been seen to be satisfied in
Sect. 6.1. We apply Theorem 6.4 to verify (A3) withW j =W0

j (m̃
2, g̃0). Application of

Theorem 7.2 with a single value (m̃2, g̃0) then produces a local solution, i.e., sequences
(V̌ j , K j ) ∈ Ď j defined for each (m2, g0) in a neighbourhood of (m̃2, g̃0). In steps 2–3,
we subsequently show that these local solutions can be combined into a single continuous
solution of (m2, g0) ∈ [0, δ)2. The details are as follows.
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Recall the domainD j of (6.17).WewriteD
0
j (m̃

2, g̃0) instead ofD j (m̃2, g̃ j (m̃2, g̃0)).

Recall also the domain Dj of (7.7). Explicitly, with χ̃ j = χ j (m̃2),

D
0
j (m̃

2, g̃0) = {(g j , z j , μ j ) : C−1D g̃ j < g j < CD g̃ j , |z j |, |μ j | < CD g̃ j }
× BW0

j (m̃
2,g̃0)(αχ̃ j g̃

3
j ), (7.29)

Dj (m̃
2, g̃0) = {(ǧ j , ž j , μ̌ j ) : |ǧ j − ḡ j | ≤ hḡ2j | log ḡ j |,

|ž j − z̄ j |, |μ̌ j − μ̄ j | ≤ hχ̃ j ḡ
2
j | log ḡ j |}

× BW0
j (m̃

2,g̃0)(aχ̃ j ḡ
3
j ). (7.30)

Set a = α. By Lemma 7.4(i), for any fixed CD > 1 and h > 0 (with δ chosen small
depending on h), the domains of (7.29)–(7.30) obey Dj ⊂ Tj (D

0
j ). Therefore, for any

(V̌ , K ) ∈ Dj , by Corollary 6.5, ρ = Ř+, ψ = Ǩ+ obey the bounds of Theorem 6.4
(namely those of Theorem 6.3). For convenience, we recall the bounds for Ǩ+ from
(6.24), which are more delicate than those for Ř+:

‖Dp
V D

q
K Ǩ+‖L p,q ≤

⎧⎪⎨
⎪⎩
Mχ̃ j+1g̃

3−p
j+1 (p ≥ 0, q = 0)

κ (p = 0, q = 1)

Mg̃−p
j+1(χ̃ j+1g̃

10/4
j+1 )

1−q (p ≥ 0, q ≥ 1).

(7.31)

As stated above the statement of Proposition 7.1, we have made the choice α = 4M .
Also, since κ = O(L−1), we can and do assume that κ < 1

2Ω
−1. Then (7.31) implies

the bounds of Assumption (A3) for Ǩ , namely

‖Dp
V D

q
K Ǩ+‖L p,q ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R′χ j+1ḡ3j+1 (p = q = 0; K j = 0)

M ′χ j+1ḡ2j+1 (p = 1; q = 0)

κ (p = 0, q = 1)
M ′(ḡ2j+1| log ḡ j+1|)−p(χ j+1ḡ3j+1)

1−q (p + q = 2, 3),
(7.32)

with constants M ′ = 2M (to absorb a factor 2 in replacing g̃ j by ḡ j = ḡ j (1 + O(ḡ j )),
and R′ = 2M = 1

2a < a(1 − κΩ) (the factor 2 is again to replace g̃ j by ḡ j , the
second equality is our choice a = 4M , and the inequality follows since κΩ < 1

2 ).
Note that the powers in (7.32) are less restrictive than in (7.31). The conclusion of the
previous discussion is that, for any (m̃2, g̃0) ∈ [0, δ) × (0, δ), the maps Φ(·,m2) with
m2 ∈ Ĩ+(m̃2) satisfy (A3) with normsW0

j (m̃
2, g̃0) and parameters (a, h, κ,Ω, R′,M ′)

depending on the constants in Theorem 6.4, but not on any of m̃2,m2, g̃0, g0.
We choose b = 1

4 (somewhat arbitrarily), h > h∗ large enough, δ ≤ g∗, and
apply Theorem 7.2 to conclude that for each (m̃2, g̃0) ∈ (0, δ)2, there is a neigh-
bourhood N (m̃2, g̃0) = Ĩ+(m̃2) × N(g̃0) ⊂ (0, δ)2 of (m̃2, g̃0) such that, given
(m2, g0) ∈ N (m̃2, g̃0), there are solutions to (7.4) with maps Φ j = Φ j (·,m2) that
satisfy the boundary conditions (7.5) specified by the parameter g0. We denote these
solutions by x̌d(m̃2, g̃0;m2, g0) where the argument (m̃2, g̃0) indicates the dependence
on the Banach spacesW0

j (m̃
2, g̃0) to which we apply Theorem 7.2, and where (m2, g0)

refers to the mass parameter m2 of Φ j and the initial condition g0.
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Choosing (m̃2, g̃) = (m2, g), we define a map x̌ cj : [0, δ) × (0, δ)→ V ⊕ K j (Z
d)

by

x̌ cj (m
2, g0) = x̌dj (m

2, g0;m2, g0) ∈ V ⊕W0
j (m

2, g0) ⊂ V ⊕K j (Z
d). (7.33)

We extend this map to [0, δ)2 by setting x̌ cj (m
2, 0) = (0, 0). In particular, restriction

to the (z0, μ0)-component produces two real-valued maps zc0 : [0, δ)2 → R and μc
0 :

[0, δ)2 → R such that zc0(m
2, 0) = μc

0(m
2, g0) = 0, and the flow with initial condition

(7.2) satisfies (Vj , K j ) ∈ D j (s j ) for all j ∈ N0, as desired.
In particular, this implies ǧ j = O(ḡ j ). Since z̄ j , μ̄ j = O(χ j ḡ j ), by Proposition 6.1,

(7.12)–(7.13) also show ž j , μ̌ j = O(χ j ḡ j ). By (6.1), it then follows that g j = O(ḡ j ).
Furthermore, by [6, (6.92)–(6.93)], μ̌ j = μ j +O(μ j )

2 and ž j = z j +O(z jμ j )+O(μ2
j ),

and z j , μ j = O(χ j ḡ j ) follows. �

7.3.3. Step 2: regularity in the interior In preparation for step 2 of the proof, we make
the following two observations:

(a) The neighbourhood N (m̃2, g̃0) = Ĩ+(m̃2)×N(g̃0) in the proof of (i–ii) can be taken
instead to be of the form N (m̃2, g̃0) = (m̃2 − ε(m̃2, g̃), m̃2 + ε(m̃2, g̃)) × (g̃ −
ε(m̃2, g̃), g̃ + ε(m̃2, g̃)), with ε(m̃2, g̃) > 0 bounded away from 0 uniformly on
compact subsets of (0, δ)2.

(b) The flexibility to choose any b ∈ (0, 1) in Theorem 7.2 can be used to enhance the
statement of Theorem 7.2, as follows. We apply Theorem 7.2 with two choices of b,
namely b1 = 1

2 and b2 = 1
4 . The values of h∗, g∗ in Theorem7.2 depend on b, andwe

assume that h > max{h∗(b1), h∗(b2)} but otherwise the choice of h is arbitrary, and
δ ≤ min{g∗(b1), g∗(b2)}. As in the proof of (i–ii), for (m̃2, g̃0) ∈ (0, δ)2, there exists
a neighbourhood N (m̃2, g̃0) such that for each (m2, g0) ∈ N (m̃2, g̃0), there exists
a solution that satisfies (7.11)–(7.14) with b = b2 = 1

4 and W j = W0
j (m̃

2, g̃0),
by applying the existence statement of Theorem 7.2 with the latter parameters.
Moreover, any solution that satisfies (7.11)–(7.14) with b = b1 = 1

2 and W j =
W0

j (m̃
2, g̃0) is unique, by applying the uniqueness statement of Theorem 7.2 with

b = b1 = 1
2 , and hence must, in fact, satisfy (7.14) with the smaller value of the

parameter b = b2 = 1
4 and therefore be identical to the solution produced when

b = b2.

Step 2. We show that zc0, μ
c
0 are continuous in (m2, g0) ∈ (0, δ)2, differentiable in

g0 ∈ (0, δ), with uniformly bounded g0-derivative.
We set b = b2 = 1

4 as in step 1. We fix some (m̂2, ĝ0) ∈ (0, δ)2 and show that
zc0, μ

c
0 are continuous in both variables and differentiable in g0 at this (m̂2, ĝ0). By

Corollary 7.3, for any (m̃2, g̃0) ∈ (0, δ)2, x̌dj (m̃2, g̃0;m2, g0) is continuous in (m2, g0) ∈
N (m̃2, g̃0), as a map taking values in the Banach space V ⊕W0

j (m̃
2, g̃0). Moreover,

by Theorem 7.2(ii), this map is differentiable in g0, for fixed (m̃2, g̃0,m2), and its
derivative is bounded uniformly in (m̃2,m2, g̃0, g0). It therefore suffices to show that,
given (m̂2, ĝ0), there exists (m̃2, g̃0) such that (m̂2, ĝ0) ∈ N (m̃2, g̃0), and that for all
(m2, g0) in a neighbourhood of (m̂2, ĝ0), x̌dj (m

2, g0;m2, g0) = x̌dj (m̃
2, g̃0;m2, g0).

Such a neighbourhood is constructed in the next paragraph. Assuming its existence,
the continuity in (m2, g0) and the differentiability in g0 of x̌ cj (m

2, g0) follow from the

already established properties of x̌dj (m̃
2, g̃0; ·, ·).
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We now choose (m̃, g̃0) and the neighbourhood of (m̂2, ĝ0), discussed in the previous
paragraph. By item (a) above, given (m̂2, ĝ0), the radius of N (m̃2, g̃0) is uniformly
bounded below by some ε̂ > 0 on the compact set m̃2 ∈ [ 12 m̂2, m̂2], g̃0 ∈ [ĝ0, (1+δ)ĝ0].
We assume that ε̂ < max{δ, 12 } and choose m̃2 = m̂2 − 1

2 ε̂ and g̃0 = ĝ0 + 1
2 ε̂. Then

N (m̃2, g̃0) ⊃ [m̂2 − 1
4 ε̂, m̂

2 + 1
4 ε̂] × [ĝ0 − 1

4 ε̂, ĝ0 +
1
4 ε̂] = Q. By definition, m̃2 ≤ m2

and g0 ≤ g̃0 ≤ (1 + δ)g0 hold for all (m2, g0) ∈ Q. Thus, for (m2, g0) ∈ Q, by (7.27),

‖Kc(m2, g0;m2, g0)− K̄ (m2, g0)‖W0
j (m̃

2,g̃0)

≤ 2‖Kc(m2, g0;m2, g0)− K̄ (m2, g0)‖W0
j (m

2,g0)

≤ 2b2(a − a∗)ḡ3j = b1(a − a∗)ḡ3j , (7.34)

and the bounds (7.11)–(7.13) hold with b = b2 < b1. As discussed in item (b) above,
solutions for which (7.34) and (7.11)–(7.13) hold with b1 are unique, from which we
conclude that x̌d(m̃2, g̃0;m2, g0) = x̌d(m2, g0;m2, g0) as desired. �

7.3.4. Step 3: regularity at the boundary

Step 3. We show that zc0, μ
c
0 are continuous as g0 ↓ 0 or as m2 ↓ 0.

The bounds μc
0, z

c
0 = O(g0), which hold uniformly in m2, imply that μc

0, z
c
0 → 0

as (m2, g0) → (m̂2, 0) for some m̂2 ∈ [0, δ). The continuity in the limit g0 ↓ 0 is
immediate from this.

For continuity of μc
0, z

c
0 as (m2, g0) → (0, ĝ0) for some ĝ0 ∈ (0, δ), we show that

x̌0(m2, g0) → x̌0(0, ĝ0) by adapting the argument used in the proof of Corollary 7.3
(given in [7, Corollary 1.8]), as follows. First, we recall that

|ǧ j (m
2, g0)− ḡ j (m

2, g0)| ≤ bhḡ j (m
2)2| log ḡ j (m

2, g0)|, (7.35)

|μ̌ j (m
2, g0)− μ̄ j (m

2, g0)| ≤ bhχ j (m
2)ḡ j (m

2, g0)
2| log ḡ j (m

2, g0)|,
(7.36)

|ž j (m2, g0)− z̄ j (m
2, g0)| ≤ bhχ j (m

2)ḡ j (m
2, g0)

2| log ḡ j (m
2, g0)|,

(7.37)

‖K j (m
2, g0)− K̄ j (m

2, g0)‖W0
j (m

2,g0) ≤ b(a − a∗)χ j (m
2)ḡ j (m

2, g0)
3. (7.38)

By Proposition 6.1, V̄ j (m2, g0) is continuous in (m2, g20) ∈ [0, δ], and thus in particular
V̄0(m2, g20) is uniformly bounded for (m2, g20) ∈ [0, δ]2. With (7.35)–(7.37), we see that
V̌0(m2, g0) is therefore also uniformly bounded. Thus, for every sequence (m2, g0)→
(0, ĝ0), V̌0(m2, g0) has a limit point. It suffices to show that any such limit point is equal
to V̌0(0, ĝ0). To show this uniqueness, we fix an arbitrary limit point V ∗0 and a sequence
(m2, g0)→ (0, ĝ0) such that V̌0(m2, g0)→ V ∗0 . We also set K ∗0 = K0 = 0.

Then we define x∗j = (V ∗j , K ∗j ) by inductive application of Φ j (·, 0) starting from

x∗0 = (V ∗0 , K ∗0 ), as long as x∗j ∈ Dj (0, ĝ0). Form2 = 0, the continuity interval in Theo-

rem 6.3 is Ĩ j+1(0) = [0, L−2 j ] [recall (5.12) and (6.18)]. Since V̌0(m2, g0)→ V ∗0 , it fol-
lows by induction and the continuity of the maps ρ j = Ř j+1 :W0

j (0, ĝ0)×[0, L−2 j ] →
V and ψ j = Ǩ j+1 : W0

j (0, ĝ0) × [0, L−2 j ] → W0
j+1(0, ĝ0), that x j (m

2, g0)→ x∗j in
V ×W0

j (0, ĝ0). By an analogous induction, using continuity of V̄ j and ψ j , it follows
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that K̄ j (m2, g0)→ K̄ j (0, ĝ0) in W0
j (0, ĝ0). Since χ j (m2)→ χ j (0) = 1, we can now

take the limit of (7.35)–(7.38) along the sequence (m2, g0)→ (0, ĝ0) and obtain, with
(7.28),

|g∗j − ḡ j (0, ĝ0)| ≤ bhḡ j (0, ĝ0)
2| log ḡ j (0, ĝ0)|, (7.39)

|μ∗j − μ̄ j (0, ĝ0)| ≤ bhḡ j (0, ĝ0)
2| log ḡ j (0, ĝ0)|, (7.40)

|z∗j − z̄ j (0, ĝ0)| ≤ bhḡ j (0, ĝ0)
2| log ḡ j (0, ĝ0)|, (7.41)

‖K ∗j − K̄ j (0, ĝ0)‖W0
j (0,ĝ0)

≤ b(a − a∗)ḡ j (0, ĝ0)
3. (7.42)

This shows inductively that x∗j does remain in Dj (0, ĝ0) for all j , so the above inductions
can be carried out indefinitely. By the uniqueness assertion of Theorem 7.2, x∗j =
x̌ j (0, ĝ0). In particular, V ∗0 = V̌0(0, ĝ0), so V̌0(m2, g0) → V̌0(0, ĝ0) as (m2, g0) →
(0, ĝ0). This shows that zc0, μ

c
0 are continuous as m

2 ↓ 0, as claimed. �

8. Proof of Main Result

It is shown in Sect. 4 that the main result, Theorem 1.1, is a consequence of Theorem 4.1.
We now prove Theorem 4.1. Functions zc0 and νc0 = μc

0 with the regularity properties
required by Theorem 4.1 were constructed in Proposition 7.1. We now show that there
exists δ > 0 such that for m2, g0, ĝ0 ∈ (0, δ),

χ̂
(
m2, g0, ν

c
0(m

2, g0), z
c
0(m

2, g0)
)
= 1

m2 , (8.1)

∂χ̂

∂ν0

(
m2, g0, ν

c
0(m

2, g0), z
c
0(m

2, g0)
)
∼ − 1

m4

c(ĝ0)

(ĝ0Bm2)γ
as (m2, g0)→ (0, ĝ0),

(8.2)

with c(g0) continuous and equal to 1 + O(g0). This will complete the proof of Theo-
rem 4.1. From this, an elementary analysis yields also Theorem 1.2.

8.1. Estimates for finite volume. Let (zc0(m
2, g0), μc

0(m
2, g0))be the functions of Propo-

sition 7.1, let
V c
0 (m

2, g0) = (g0, zc0(m2, g0), μ
c
0(m

2, g0)), (8.3)

and let Vj be the sequence determined by this initial condition in Proposition 7.1. Propo-
sition 7.1 considered the infinite volume flow, and we now wish to consider the finite
volume flow. The following proposition, which is the basis for the proof of Theorem 4.1,
constructs the finite volume flow. Its Vj component is identical to the above infinite vol-
ume sequence of Vj , though of course only j ≤ N is meaningful for ΛN . In particular,
the sequence (Vj )0≤ j≤N is independent of the volume, in the sense that it is the same
for ΛN as it is on any ΛN ′ with N ′ > N .

Proposition 8.1. Let d = 4, N ∈ N, g0 ∈ (0, δ) and m2 ∈ [0, δ). Let g̃ j = g̃ j (m2, g0)
and s j = (m2, g̃ j ). Let K0 = 1∅, and let Vj be the sequence in the infinite volume
global flow determined by the initial condition (8.3). Then, with the additional proviso
that for the case j + 1 = N we restrict to m2 ∈ [δL−2(N−1), δ), the finite volume
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renormalisation group flow (Vj , K j,N ) �→ (Vj+1, K j+1,N ) of Theorem 6.3 exists for all
j < N, with (Vj , K j ) ∈ D(s j ,ΛN ). In particular,

‖K j,N‖W j (s j ,ΛN ) ≤ O(χ j ḡ
3
j ) ( j ≤ N ), (8.4)

ǧ j , g j = O(ḡ j ), and ž j , μ̌ j , z j , μ j = O(χ j ḡ j ).

Proof. The proof is by induction on 0 ≤ j ≤ N . We write Vj,N for the perturbative
coordinate, and show in the course of the proof that it is equal to Vj = Vj,Zd as claimed.
The induction hypothesis is that (8.4) holds, that Vj,N = Vj,Zd , and that the family
(K j,Λ) has Property (Zd) discussed in Sect. 6.5. For j = 0, the fact that (8.4) holds is
true vacuously since K0 = 1∅, the fact that V0,N = V0,Zd holds by definition, and the
fact that (K0,Λ) has Property (Zd) is again vacuous. To advance the induction, it follows
from (6.25)–(6.26) that Vj+1,N = Vj+1,Zd , and that (K j+1,Λ) has Property (Zd). By
Proposition 7.1,Vj+1,N = Vj+1,Zd lies in the set appearing in the domainD j (m2, g̃ j ,Z

d)

of (6.17), which is the same set as in the domain D j (m2, g̃ j ,ΛN ). Together with the
induction hypothesis on K j,N , we conclude that (Vj,N , K j,N ) ∈ D j (m2, g̃ j ,Λ). By
Theorem 6.3 with m̃2 = m2, this implies that (8.4) holds when j is replaced by j + 1.
(The restriction on m2 at the last scale arises from IN of (5.12).) This completes the
induction and the proof. �

In particular, it follows from Proposition 8.1 and (6.20) that, with the initial choice
V0 = V c

0 (m
2, g0), and with I j = I j (Vj ),

Z j = (I j ◦ K j,N )(Λ) (0 ≤ j ≤ N ). (8.5)

This identity continues to hold for initial conditions V0 �= V c
0 , as long as the right-hand

side remains well-defined, which is the case in an N -dependent neighbourhood of V c
0 , by

continuity. In addition to the renormalisation group flow (Vj , K j ), it will be convenient
to use its transformed version, defined in Sect. 6.6. According to (7.1), the transformed
flow (V̌ j , K j ) = (Tj (Vj ), K j ) satisfies, for all j < N ,

(V̌ j+1, K j ) =
(
ϕ̄ j (V̌ j ) + Ř j+1(V̌ j , K j ), Ǩ j+1(V̌ j , K j )

)
, (8.6)

where, by Corollary 6.5, the maps Ř j+1 and Ǩ j+1 obey the estimates (6.23)–(6.24) for
0 ≤ j < N .

8.2. Continuous functions of the renormalisation group flow. We now show how the
regularity statements of Theorem 6.3, which apply in the local domains D(s̃)× Ĩ+(m̃2),
imply suitable regularity statements of functions of the flow of Proposition 8.1, on the
larger domain [0, δ) × (0, δ). We restrict attention here to the case of finite volume
V = ΛN .

Definition 8.2. (i) A map (V, K ,m2) �→ F(V, K ,m2) acting on a subset of V ×
K j × [0, δ) with values in a Banach space E is a continuous function of the
renormalisation group coordinates at scale- j , if its domain includes D j (s̃ j ) ×
Ĩ j+1(m̃2) for all s̃0 ∈ [0, δ)× (0, δ), and if its restriction to the domain D j (s̃ j )×
Ĩ j+1(m̃2) is continuous as a map F : D j (s̃ j ) × Ĩ j+1(m̃2) → E , for all s̃0 ∈
[0, δ) × (0, δ). We also say that F is a C0 map of the renormalisation group
coordinates.
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(ii) For k ∈ N, a map F is a Ck map of the renormalisation group coordinates at
scale- j , if it is a C0 map of the renormalisation group coordinates, its restrictions
to the domains D j (s̃ j ) × Ĩ j+1(m̃2) are k-times continuously Fréchet differentiable
in (V, K ), and every Fréchet derivative in (V, K ), when applied as a multilinear
map to directions V̇ in V p and K̇ in Wq , is jointly continuous in all arguments,
m2, V, K , V̇ , K̇ .

Two examples of Ck maps of the renormalisation group coordinates are the map
F(V, K ,m2) = V , and the map R+ of Theorem 6.3. The map K+ is a not a Ck map in
the above sense, since it does not act with a common target space E (its image space
W+ depends on s̃). In all our applications, E is finite-dimensional.

For s0 = (m2, g0) ∈ [0, δ) × (0, δ), recall the definition of V c
0 (s0) from (8.3). Let

(Vj , K j ) = (Vj (m2, V0), K j (m2, V0)) be the flow of (V+, K+) with initial condition V0
(not necessarily equal to V c

0 ) andmass parameterm2. By Proposition 8.1, this flow exists
for all j < N if V0 = V c

0 , and also exist for j = N if m2 ∈ [δL−2(N−1), δ). Given a
Ck map F of the renormalisation group coordinates at scale- j , let Dk

V0
F(s0) denote the

kth derivative of F(Vj (m2, V0), K j (m2, V0),m2) with respect to the initial condition
V0, evaluated at V0 = V c

0 (s). The following proposition shows that Dk
V0
F exists and is

continuous in s0.

Proposition 8.3. Let j < N (V), k ∈ N0, and let F be a Ck map of the renormalisation
group coordinates at scale- j . Then, for every p ≤ k, all s0 ∈ [0, δ)×(0, δ), the derivative
Dp
V0
F(s0) exists, and

s0 �→ Dp
V0
F(s0) is a continuous map [0, δ)× (0, δ)→ L p(V, E), (8.7)

where L p(V, E) is the space of p-linear maps from V to E with the operator norm.

In particular, with k = 0, continuous maps of the renormalisation group coordinates
at scale- j , in the sense of Definition 8.2, induce continuous functions in the ordinary
sense of the parameters (m2, g0) of the renormalisation group flow.

To give an example of an application of Proposition 8.3, it follows fromCorollary 6.5
that

ǧ j+1 = ǧ j − β j ǧ
2
j + r j with r j = O(χ j ǧ

3
j ). (8.8)

It also follows from Theorem 6.3 that the function F(Vj , K j ,m2) = g j+1 is a C∞ map
of the renormalisation group coordinates at scale- j . Therefore, by Proposition 8.3, we
conclude the continuity of g j in (m2, g0) ∈ [0, δ)× (0, δ), for all j ≤ N . Furthermore,
since g j = O(g0), the continuity extends to (m2, g0) ∈ [0, δ)2. From (8.8) and the
continuity of β j in m2 ∈ [0, δ), we therefore also have continuity of r j = r j (m2, g0) in
(m2, g0) ∈ [0, δ)2, for all j < N .

Proof of Proposition 8.3. Let s̃0 = (m̃2, g0) ∈ [0, δ) × (0, δ), and set s̃ j =
(m̃2, g̃ j (m̃2, g̃0)). For s0 ∈ [0, δ)×(0, δ) sufficiently close to s̃0, wewrite [Dk

V0
(Vj , K j )]

(s0) for the kth derivative of (Vj (m2, V0), K j (m2, V0)) with respect to the initial con-
dition V0, evaluated at V0 = V c

0 (s0) of (8.3), and with derivative taken in V ×W j (s̃ j ).
In particular, [D0

V0
(Vj , K j )](s0) = (Vj (s0), K j (s0)) is the renormalisation group flow

with initial condition determined by s0 in Proposition 8.1. To see that the derivatives
exist, we claim that for every s̃0 = (m̃2, g̃0) ∈ [0, δ)× (0, δ), k ∈ N0, and j < N ,

s0 �→ Dk
V0(Vj , K j ) is continuous in Lk(V,V ×W j (s̃ j )) as s0 → s̃0. (8.9)
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Weprove (8.9) as follows. First,weknowfromProposition8.1 that (Vj (s̃0), K j (s̃0)) ∈
D j (s̃ j ), and that zc0, μ

c
0 are continuous. Also, the maps (V+, K+) are continuous

by Theorem 6.3. Therefore, there exist neighbourhoods N j = N j (s̃0) of s̃0 with
(Vj (s0), K j (s0)) ∈ D j (s̃ j ) for s0 ∈ N j , and such that (Vj (s0), K j (s0)) is continu-
ous in s0 ∈ N j as a map with values in V ×W j (s̃ j ). In particular, for j < N , the case
k = 0 of (Vj , K j ) as s0 → s̃0 in (8.9) follows.

For k > 0, the existence and continuity of Dk
V0
(Vj , K j ) in (8.9) is a consequence

of the continuity the derivatives of the maps V+, K+ in D j (s̃ j ) × Ĩ j+1(m̃2) provided
by Theorem 6.3. By induction, we assume that the claim holds for some j < N . It is
vacuous for j = 0. To advance the induction, we consider, e.g., DV0K j+1. By the chain
rule,

DV0K j+1 = DV K j+1(Vj , K j ,m
2)DV0Vj + DK K j+1(Vj , K j ,m

2)DV0K j . (8.10)

By the inductive assumption, each of Vj , DV0Vj , K j , DV0K j is continuous as s0 → s̃0.
The continuity statement ofTheorem6.3 advances the induction.An analogous argument
applies to DV0Vj+1, and also to all higher derivatives. This completes the proof of (8.9).

The assumption that F is a continuous map of the renormalisation group coordinates
and (8.9) imply that F(Vj (s0), K j (s0),m2) → F(Vj (s̃0), K j (s̃0), m̃2) as s0 → s̃0.
Since s̃0 ∈ [0, δ) × (0, δ) is arbitrary, the claim (8.7) follows for k = 0. Similarly, for
k > 0, the proof of (8.7) follows from the chain rule and (8.9). �

8.3. Susceptibility and renormalisation group flow. As the first step in the analysis of
the susceptibility, we express χ̂N in terms of the renormalisation group coordinates. Let
N ∈ N and let m2 ∈ [δL−2(N−1), δ). Recall from (4.26) that

χ̂N = 1

m2 +
1

m4

1

|Λ|D
2Z0

N (0, 0; 1, 1), (8.11)

with Z0
N the degree-0 part of the form ZN = ECθ Z0. Let (Vj , K j,N ) be the finite volume

flow given by Proposition 8.1. With the abbreviation KN = KN ,N , it follows from (8.5),
together with the fact that BN (ΛN ) consists only of ∅,Λ, that

ZN = (IN ◦ KN )(Λ) = IN (Λ) + KN (Λ). (8.12)

Therefore,

χ̂N = 1

m2 +
1

m4

1

|Λ|D
2 I 0N (0, 0; 1, 1) +

1

m4

1

|Λ|D
2K 0

N (0, 0; 1, 1). (8.13)

By (5.22), IN (Λ) = e−VN (Λ)(1+WN (Λ)), so I 0N (Λ) = e−V 0
N (Λ)(1+W 0

N (Λ))where
V 0
N (Λ) andW

0
N (Λ) are the degree-0 parts of the forms VN (Λ) andWN (Λ), respectively.

Thus

D2 I 0N (Λ; 0, 0; 1, 1) = D2e−V 0
N (Λ; 0, 0; 1, 1) + D2W 0

N (Λ; 0, 0; 1, 1), (8.14)

since cross-terms cancel when φ = 0 becauseW 0
N is a polynomial in φ with nomonomi-

als of degree below two. The first term on the right-hand side of (8.14) can be evaluated
by direct calculation, using (5.21) and (3.8)–(3.9), to give

D2e−V 0
N (Λ; 0, 0; 1, 1) = −

∑
x,y

νN δxy1x1y −
∑
x,y

zN (−Δxy)1x1y = −νN |Λ|, (8.15)
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since the quartic term τ 2 does not contribute, and Δ1 = 0. This gives the identity

χ̂N = 1

m2 −
νN

m4 +
1

m4

1

|Λ|D
2W 0

N (0, 0; 1, 1) +
1

m4

1

|Λ|D
2K 0

N (0, 0; 1, 1). (8.16)

By Proposition 7.1, νN = O(χN L−2N ḡN ), which converges exponentially to 0, so
the second term in (8.16) does not contribute to the limit N →∞. We will prove (8.1)
by showing that the two rightmost terms in (8.16) are even smaller, by factors O(ḡN )
and O(ḡ2N ), respectively, so that the limit is m−2 as desired.

For (8.2), the constant term m−2 in (8.16) does not contribute because its derivative
is zero. We denote the derivative of (VN , KN ) with respect to ν0, evaluated at V0 = V c

0 ,
by V ′N = (g′N , z′N , μ′N ) and K ′N . We will show that−m−4ν′N in the derivative of (8.2) is
asymptotic to the right-hand side of (8.2), and that the derivatives of the last two terms
in (8.16) are again smaller by O(ḡN ) and O(ḡ2N ), respectively. To execute this strategy,
we use the following sequence of lemmas. The bubble diagram Bm2 = 8Bm2 defined in
(1.8), with its logarithmic divergence in d = 4, enters via Lemmas 8.4–8.5. The power
γ = 1

4 for the logarithmic correction to the susceptibility in d = 4 arises in Lemma 8.6.
Lemmas 8.5–8.6 involve extensions of arguments used in [7].

Lemma 8.4. For m2 > 0,
∞∑
j=0
β j = Bm2 . (8.17)

Proof. By the definition of β j in (6.5),

k−1∑
j=0
β j = 8

∑
x∈Zd

wk(x)
2, (8.18)

since the left-hand side is a telescoping sum. Since the terms in the covariance decom-
position are positive definite, the Fourier transforms satisfy 0 ≤ ŵk ≤ Ĉ , where
C = (−ΔZd +m2)−1 is theGreen function onZ

d . By the Parseval relation, the dominated
convergence theorem, and (1.8),

lim
k→∞

∑
x∈Zd

wk(x)
2 = lim

k→∞

∫
[−π,π ]d

ŵk(p)
2 dp

(2π)d
=

∫
[−π,π ]d

Ĉ(p)2
dp

(2π)d
= Bm2 .

(8.19)
Since Bm2 = 8Bm2 , the proof is complete. �

For the subsequent analysis, we note the following facts. First, in the upper bounds
of (6.23)–(6.24), g̃ j can be replaced by ǧ j or ḡ j due to Lemma 7.4, e.g.,

ǧ j+1 = ǧ j − β j ǧ
2
j + r j with r j = O(χ j ǧ

3
j ) = O(ḡ3j ). (8.20)

As argued below (8.8), r j = r j (m2, g0) is continuous on [0, δ)2. Secondly, it follows
from (8.20) that for any continuously differentiable function ψ : (0,∞)→ R,

k∑
l= j

(βl ǧ
2
l − rl)ψ(ǧl) =

∫ ǧ j

ǧk+1
ψ(t) dt + O

(∫ ǧ j

ǧk+1
t2|ψ ′(t)| dt

)
. (8.21)



Logarithmic Corrections for Weakly Self-Avoiding Walk 867

The formula (8.21) is proved in [7, (2.12)] for the special case r j = 0, but the same
proof applies when r j = O(χ j ǧ3j ). We also use the fact, proved in [7, Lemma 2.1(ii)],
that

k∑
l= j

χl ḡ
n
l ≤ Cn

{
| log ḡk | (n = 1)
χ j ḡ

n−1
j (n > 1).

(8.22)

Lemma 8.5. Let d = 4. For (m2, g0) ∈ (0, δ)2, the limit ǧ∞ = lim j→∞ ǧ j exists, is
continuous in (m2, g0), and extends continuously to [0, δ)2. For ĝ0 ∈ (0, δ), as m2 ↓ 0
and g0 → ĝ0,

ǧ∞ ∼ 1

Bm2
. (8.23)

Proof. As mentioned above, the remainder r j = r j (m2, g0) in (8.20) is a continuous
function of (m2, g0) ∈ [0, δ)2. The solution to the recursion (8.20) is given by

ǧ j+1 = g0

j∏
k=0
(1−βk ǧk− ǧ−1k rk) = g0 exp

⎛
⎝

j∑
k=0

log(1− βk ǧk − O(χk ḡ
2
k ))

⎞
⎠ . (8.24)

By the dominated convergence theorem and (8.22), the limit

ǧ∞ = lim
j→∞ ǧ j = g0 exp

( ∞∑
k=0

log(1− βk ǧk + O(χk ǧ
2
k ))

)
(8.25)

exists and is continuous in (m2, g0) ∈ [0, δ)2. It remains to prove (8.23). For this, we
set ψ(t) = t−2 in (8.21), and use that

∑k−1
l=0 rl ǧ

−2
l = O(

∑k−1
l=0 χl ḡl) = O(log ǧl) by

(8.22), to obtain

ǧ−1k = g−10 +
k−1∑
j=0
β j + O(log ǧk). (8.26)

Therefore, by Lemma 8.4, if (m2, g0) ∈ (0, δ)2 then
ǧ−1∞ + O(| log ǧ∞|) = g−10 + Bm2 . (8.27)

In particular ǧ∞ → 0 as m2 ↓ 0 or g0 ↓ 0, and ǧ∞ is right-continuous also at m = 0
and g0 = 0. Finally, (8.23) follows from (8.27). This completes the proof. �

In the proof of the following lemma, we use the fact that

l∏
k= j

(1− γβk ǧk)−1 =
(

ǧ j

ǧl+1

)γ
(c j + O(χl ḡl)), (8.28)

with c j = 1+O(χ j ḡ j ) a continuous function of (m2, g0) ∈ [0, δ)2. The product formula
(8.28) is a consequence of the recursion relation (8.20); its proof is identical to that of
[7, Lemma 2.1(iii-a)] where the same statement is proved with r j = 0. As in [7, Lemma
2.1(iii-a)], the continuity of c j follows from the continuity of β j and ǧ j [the latter was
established below (8.8)]. In the next lemma, we use primes to denote derivatives with
respect to the initial value νc0 = μc

0.
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Lemma 8.6. Let d = 4. Let (m2, g0) ∈ [0, δ) × (0, δ), (z0, μ0) = (zc0, μc
0), and s j =

(m2, g̃ j (m2, g0)). There exists a continuous function c : [0, δ)2 → R, which satisfies
c(m2, g0) = 1 + O(g0), such that for all j ∈ N0:

μ̌′j = L2 j
(
ǧ j

g0

)γ
(c(m2, g0) + O(χ j ǧ j )), ǧ′j = O

(
μ̌′j ǧ2j

)
, ž′j = O

(
χ j μ̌

′
j ǧ

2
j

)
.

(8.29)
Also, for N ∈ N0 and (m2, g0) ∈ [δL−2(N−1), δ)× (0, δ),

‖K ′j‖W j (s j ,ΛN ) = O
(
χ j μ̌

′
j ǧ

2
j

)
, (8.30)

with K j the sequence of Proposition 8.1 corresponding to (m2, g0).

Proof. For s0 = (m2, g0) ∈ [0, δ)2, let Vj = Vj (s0) be the infinite sequence of Propo-
sition 8.1 with initial condition specified by s0. Let V̌ j = Tj (Vj ) = (ǧ j , ž j , μ̌ j ) be the
transformed flow. For m2 ∈ [δL−2(N−1), δ), let K j = K j (s0) be the sequence given
by Proposition 8.1, so that (V̌ j , K j ) is a finite volume flow of (V̌+, Ǩ+), as in (8.6). (In
fact, K j is defined for all m2 ∈ [0, δ) if j < N .) Let (V̌ ′j , K ′j ) denote the sequence of
derivatives along this solution, with respect to the initial condition μ̌0 = μ0, and with
the derivative K ′j taken in the space W j (s j ) = W j (s j ,ΛN ). Since the sequence Vj is

independent of ΛN by Proposition 8.1, the sequence V̌ ′j is also independent of N and
can be extended inductively to all j ∈ N0 by choosing N > j .

We define Π j = Π j (m2, g0) by

Π j = L2 j
j−1∏
l=0
(1− γβl ǧl). (8.31)

By (8.28), there is a continuous function Γ∞(m2, g0) = O(g0) such that

Π j = L2 j
(
ǧ j

ǧ0

)γ
(1 + Γ∞(m2, g0) + O(χ j ǧ j )). (8.32)

We also define Σ j = Σ j (m2, g0) by

μ̌′j = Π j (1 +Σ j ) ( j ≥ 0), Σ−1 = 0. (8.33)

We make the inductive assumption that for j < N there exist M1 % M2 % 1 such
that

|Σ j−Σ j−1|≤O(M1+M2)χ j ḡ
2
j , |ǧ′j |, |ž′j |≤M1χ jΠ j ḡ

2
j , ‖K ′j‖W j (s j ,V)≤M2χ jΠ j ḡ

2
j .

(8.34)
Since (ǧ′0, ž′0, μ̌′0, K ′0) = (0, 0, 1, 0), the inductive assumption (8.34) is true for j = 0.
To advance the induction, we begin by applying (8.32)–(8.33) to conclude that, if L % 1,
if Ω ≤ L , and if g0 is sufficiently small, then

|μ̌′j | ≤ 2Π j , χ jΠ j ḡ
2
j ≤ 1

2χ j+1Π j+1ḡ2j+1. (8.35)
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We also use differentiated versions of the flow equation (8.6). By the chain rule, with
F = Ř j+1 or F = Ǩ j+1,

F ′(V̌ j , K j ) = DV̌ F(V̌ j , K j )V̌
′
j + DK F(V̌ j , K j )K

′
j . (8.36)

By the estimates of Theorem 6.3 (which apply as discussed below (8.6)) and by (8.34),
this gives

‖DV F(V̌ j , K j )V̌
′
j‖ ≤ O(χ j ḡ

2
j )(M1ḡ

2
j + 2)Π j ≤ O(χ jΠ j ḡ

2
j ), (8.37)

‖DK Ř j+1(V̌ j , K j )K
′
j‖ ≤ O(M2)χ jΠ j ḡ

2
j , (8.38)

‖DK Ǩ j+1(V̌ j , K j )K
′
j‖ ≤ M2χ jΠ j ḡ

2
j , (8.39)

where the norms on the left-hand sides are those of the appropriate V,W(s j ) spaces.
This implies, for M2 % 1,

‖Ř′j+1(V̌ j , K j )‖ ≤ O(M2)χ jΠ j ḡ
2
j , ‖Ǩ ′j+1(V̌ j , K j )‖ ≤ 2M2χ jΠ j ḡ

2
j . (8.40)

For μ̌, the induction is advanced using the recursion (8.6) with (6.4), (8.40), and

(η j ǧ j )
′, (ξ j ǧ2j )′, (ǧ j ž j )

′ = O(M1χ jΠ j ḡ
2
j ). (8.41)

It follows that

μ̌′j+1 = L2μ̌′j (1− γβ j ǧ j ) + O
(
(M1 + M2)χ jΠ j ḡ

2
j

)

= Π j+1(1 +Σ j ) + O
(
(M1 + M2)χ j+1Π j+1ḡ

2
j+1

)
. (8.42)

This enables us to advance the induction for μ̌, namely the first estimate of (8.34). The
advancement of the induction for ǧ and ž is similar, as follows. We use the recursion
relation (8.6) with (6.2)–(6.3) and (8.40), and choose M1 % M2 to obtain

|ǧ′j+1|, |ž′j+1| ≤ (M1(1 + O(ḡ j )) + O(M2))χ jΠ j ḡ
2
j

≤ 2M1χ jΠ j ḡ
2
j ≤ M1χ j+1Π j+1ḡ

2
j+1. (8.43)

This advances the induction for ǧ and ž.
We now complete the proof, having established that (8.34) holds for all j < N .

As discussed in the first paragraph of the proof, the bound for V̌ ′j in fact holds for all

j ∈ N0. Let F(V, K ,m2) = V . By Proposition 8.1 and Theorem 6.3, F is a C∞ map
of the renormalisation group coordinates at scale- j , in the sense of Definition 8.2, for
all j ∈ N0. Therefore, by Proposition 8.3, V ′j (s0) is continuous in s0 ∈ [0, δ) × (0, δ)
for each j ∈ N0. The same is therefore true for V̌ ′j (s0). As a consequence, since Π j

is continuous, it follows that Σ j (s0) is continuous in [0, δ) × (0, δ), for each j ∈ N0.
Since

∑∞
j=1 χ j ḡ2j = O(g0) by (8.22), it follows from (8.34) that the limit Σ∞ =

lim j→∞Σ j = ∑∞
j=1(Σ j −Σ j−1) exists withΣ∞ = O(g0). In particular,Σ j andΣ∞

extend continuously as g0 ↓ 0. Similarly, continuity of Σ∞ on [0, δ)2 follows from the
dominated convergence theorem, with (6.8). Also, again by (8.22),

Σ∞ −Σ j = O

⎛
⎝ ∞∑

k= j+1

χk ḡ
2
j

⎞
⎠ = O(χ j ḡ j ). (8.44)
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From (8.32)–(8.33) and (8.44), we obtain the equation for μ̌′j in (8.29), with

c(m2, g0) = (1 + Σ∞(m2, g0))(1 + Γ∞(m2, g0)). This c(m2, g0) is indeed continu-
ous, sinceΣ∞ and Γ∞ are. With this, (8.34) implies the last two equations in (8.29) and
(8.30). �

Lemmas 8.5–8.6 are stated in terms of the transformed variables. However, since
ǧ j = g j + O(g2j ), by (6.1), Lemma 8.5 also implies g∞ ∼ ǧ∞ ∼ 1/Bm2 . Moreover, we
note that (8.29) remains true if μ̌′j is replaced by μ′j . In fact, by [6, (6.93)], there exist
constants a j = O(1) such that

μ̌ j = μ j + a jμ
2
j . (8.45)

Since μ j = O(χ j ǧ j ), by Proposition 8.1, this indeed implies

μ′j = μ̌′j (1 + O(μ j )) = L2 j
(
ǧ j

g0

)γ
(c(m2, g0) + O(χ j ǧ j )). (8.46)

In particular, setting c(ĝ0) = c(0, ĝ0), and by Lemma 8.5,

lim
N→∞ ν

′
N = c(m2, g0)

(
ǧ∞
g0

)γ
∼ c(ĝ0)

(ĝ0Bm2)γ
as (m2, g0)→ (0, ĝ0). (8.47)

Similarly, by [6, (6.91)–(6.92)],

g′j = O(g jμ
′
j ), z′j = O(χ j g jμ

′
j ). (8.48)

8.4. Proof of Theorem 4.1.

Proof of Theorem 4.1. Let νc0 = μc
0 and z

c
0 be the functions of Proposition 7.1, which as

desired are continuous in (m2, g0) and differentiable in g0. As discussed at the beginning
of Sect. 8, it suffices to show that for χ̂ and χ̂ ′ evaluated at (m2, g0, νc0, z

c
0),

χ̂ = 1

m2 , χ̂ ′ ∼ − 1

m4

c(ĝ0)

(ĝ0Bm2)γ
as (m2, g0)→ (0, ĝ0), (8.49)

with c continuous and c(g0) = 1 + O(g0). We do this using the identity (8.16), which
asserts that

χ̂N = 1

m2 +
1

m4

(
−νN +

1

|Λ|D
2W 0

N (0, 0; 1, 1) +
1

|Λ|D
2K 0

N (0, 0; 1, 1)
)
, (8.50)

and is valid for initial conditions V0 in an N -dependent neighbourhood of V c
0 , as dis-

cussed below (8.5). In particular, this allows the identity to be differentiated in V0 at
V0 = V c

0 .
According to (5.19), we have ν j = L−2 jμ j , so Proposition 7.1 implies νN =

O(χN ḡN L−2N ) → 0. We prove χ̂ = m−2 by showing that the W and K terms in
(8.50) are even smaller than this, in fact by factors O(χN ḡN ) and O(χN ḡ2N ), respec-
tively. For χ̂ ′, by (8.47), the leading term−m−4ν′N obeys the asymptotic formula desired
for χ̂ ′. Thus it suffices to show that ν0-derivatives of the W and K terms in (8.50) are
relatively smaller as m2 ↓ 0.
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Recall the definitions of the V ,ΦN , and T0,N norms in (5.20), (6.10), and (6.13). The
bounds for W are more elementary than those for KN , and are developed in [23]. By
definition, Wj (V, Ṽ ) is bilinear in (V, Ṽ ), and by [23, (4.57)],

‖WN (V (Λ), Ṽ (Λ))‖T0,N ≤ O(χN )‖V ‖V‖Ṽ ‖V . (8.51)

We write WN = WN (VN (Λ), VN (Λ)) and W ′
N = ∂

∂ν0
WN . Differentiation gives

W ′
N = WN (Λ; VN , V

′
N ) +WN (Λ; V ′N , VN ), (8.52)

and it then follows from (8.48) that

‖WN‖T0,N ≤ O(χN g
2
N ), ‖W ′

N‖T0,N ≤ O(χN gNμ
′
N ). (8.53)

By definition of the Tφ norm (see (6.13), or [21] for full details), for a differential form
F ∈ N (Λ) with degree zero part F0,

|D2F0(0, 0; f, f )| ≤ 2‖F‖T0,N ‖ f ‖2ΦN
. (8.54)

The norm of the constant test function 1 ∈ ΦN is

‖1‖ΦN = �−1N sup
x
|1x | = �−1N = O(LN [φ]), (8.55)

where �N = �0L−N [φ] = �0L−N (d−2)/2. Since |Λ| = LdN , the bound on WN of (8.53)
therefore gives

|Λ|−1|D2W 0
N (Λ; 0, 0; 1, 1)| ≤ 2|Λ|−1‖WN‖T0,N ‖1‖2ΦN

≤ O(χN ḡ
2
N L

−2N ), (8.56)

and the right-hand side vanishes in the limit N → ∞. Similarly, the ν0-derivative
is bounded by O(χN ḡN L−2Nμ′N ) = O(χN ḡNν′N ), so it is smaller than the leading
contribution ν′N by a factor O(χN ḡN )→ 0.

Proposition 8.1 and Lemma 8.6 provide bounds on KN and K ′N analogous to (8.53)
with one more power of gN , namely

‖KN‖T0,N ≤ O(χN g
3
N ), ‖K ′N‖T0,N ≤ O(χN g

2
Nμ

′
N ). (8.57)

Thus the contribution due to K is also small relative to the contributions due to ν, and
the proof is complete. �

8.5. Proof of Theorem 1.2.

Proof of Theorem 1.2. Let g0 = g̃0(g, 0), with g̃0 the function of Proposition 4.2(ii).
Let νc0, z

c
0 be given by μc

0, z
c
0 of Proposition 7.1. By (4.4),

νc(g) = νc0(0, g0)

1 + zc0(0, g0)
= νc0(0, g0) + O(g20). (8.58)

Since g0 = g+O(g2)byProposition4.2, it suffices to show thatμc
0(0, g0) = −2C(0)g0+

O(g20) = −ag0 +O(g20) (all covariances havem2 = 0 in this proof). By Proposition 7.1,
μc
0 = μ̌0 where [see (6.4) and (8.6)] the sequence μ̌ j satisfies

μ̌ j+1 = L2μ̌ j (1− γβ j ǧ j ) + η j ǧ j + O(χ j ḡ
2
j ), (8.59)
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and where we have used ǧ j , ž j , μ̌ j = O(ḡ j ) for the higher order terms, but not for the
linear ǧ, μ̌ terms and not for the μ̌ǧ term. We also recall from [6, (3.24), (4.4)] that

η j = 2L2( j+1)C j+1;0,0. (8.60)

By Proposition 7.1, the sequence μ̌ j is bounded, so infinite iteration of (8.59) gives

μ̌0 = −
∞∑
l=0

(
L−2(l+1)

l∏
k=0
(1− γβk ǧk)−1

)
(ηl ǧl + O(χl ḡ

2
l )). (8.61)

By (8.28), we obtain from (8.60)–(8.61) that

μ̌0 = −2(1 + O(g0))g
γ
0

∞∑
l=0

(
Cl+1;0,0 ǧ1−γl + O(L−2lχl ḡ2−γl )

)
. (8.62)

Since C(0) = ∑∞
l=0 Cl+1;0,0, this gives

μ̌0 = −2C(0)g0(1 + O(g0))− 2(1 + O(g0))g
γ
0

∞∑
l=0

Cl+1;0,0(ǧ1−γl − g1−γ0 )

+gγ0

∞∑
l=0

O(L−2l ḡ2−γl ). (8.63)

We show that the last two terms are O(g20). By (8.21) with ψ(t) = (1− γ )−1t−γ ,

ǧ1−γl − g1−γ0 =
∫ ǧl

ǧ0
ψ(t) dt = (1− γ )−1

l−1∑
k=0
βk ǧ

2−γ
k + O(g2−γ0 ). (8.64)

Thus, by Fubini’s theorem andCl+1;0,0 = O(L−2l), the middle sum in (8.63) is bounded
by a multiple of

gγ0

∞∑
l=0

Cl+1;0,0(ǧ1−γl − ǧ1−γ0 ) = (1− γ )−1gγ0
∞∑
k=0
βk ǧ

2−γ
k

∞∑
l=k+1

Cl+1;0,0 + O(g20)

= (1− γ )−1gγ0
∞∑
k=0
βk ǧ

2−γ
k O(L−2k)+O(g20)=O(g20).

(8.65)

Similarly, the rightmost sum in (8.63) is bounded by O(g20), so

μ̌0 = −2C(0)g0 + O(g20), (8.66)

and the proof is complete. �
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A. Existence of Critical Value

The following lemma proves existence of a critical value in (−∞, 0]. For dimensions
d > 2, a simple proof rules out −∞. Although our main results pertain only to d ≥ 4,
we nevertheless show that the critical value is finite in all dimensions.

Lemma A.1. For all dimensions d > 0, there exists a critical value νc = νc(d, g) ∈
(−∞, 0] such that χ(g, ν) <∞ if and only if ν > νc. For d > 2, νc ∈ [−2C0(0)g, 0],
where C0(x) = (−Δ−1

Zd )0,x is the Green function of the simple random walk.

Proof. We first show that cT+S ≤ cT cS for all S, T ≥ 0. To prove this, let

I (S, T ) =
∫ T

S

∫ T

S
1XS1=XS2

dS1 dS2. (A.1)

Then
I (T ) = I (0, T ) ≥ I (0, S) + I (S, T ). (A.2)

By the Markov property, I (0, T ) and I (T, T + S) are conditionally independent given
X (T ). Using translation-invariance, it therefore follows that

cT+S ≤ E(e−gI (0,T )e−gI (T,T+S)) = E(e−gI (0,T ))E(e−gI (T,T+S)) = cT cS . (A.3)

A standard lemma for subadditive functions now yields the existence of a critical value
νc = νc(g) ∈ [−∞,∞) such that c1/TT → eνc and also cT ≥ eνcT (see, e.g., [51,
Lemma 1.2.2]). The inequality νc ≤ 0 is obvious from I (S, T ) ≥ 0. For d > 2, we
show that νc ∈ [−2C0(0)g, 0], as follows. By Jensen’s inequality,

cT = E(e−gI (T )) ≥ e−gE(I (T )). (A.4)

An elementary estimate shows that E(I (T )) ≤ 2TC0(0), and the Green function C0(x)
is finite for d > 2 (the estimate can be done as in the discrete case, see, e.g., [25,
Lemma 1.4]). This shows that νc ∈ [−2C0(0)g, 0].

To prove that νc > −∞ also in lower dimensions, we proceed as follows. Let ST,n
be the event that the path followed by X [0, T ] is an n-step strictly self-avoiding walk.
Then

χ(ν) =
∫ ∞

0
E(e−gI (T ))e−νT dT ≥

∞∑
n=0

∫ ∞

0
E(e−gI (T ) | ST,n)P(ST,n)e−νT dT .

(A.5)

Let sn denote the number of n-step (discrete-time) strictly self-avoiding walks that start
at the origin. The connective constant μ = limn→∞ s1/nn exists and lies in [d, 2d − 1].
Let YT denote the number of steps taken by X during the interval [0, T ]; this is a Poisson
random variable with mean 2dT . For any μ′ < μ there is a constant k such that

P(ST,n) = sn
(2d)n

P(YT = n) = sn
(2d)n

e−2dT (2dT )n

n! ≥ k
e−2dT (μ′T )n

n! . (A.6)

Also, by Jensen’s inequality,

E(e−gI (T ) | ST,n) ≥ e−gE(I (T )|ST,n). (A.7)
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To evaluate E(I (T ) | ST,n), we first observe that on the event ST,n the n jump times
of the walk are independent and uniformly distributed on [0, T ], and in particular the
lengths of the n + 1 subintervals of [0, T ] determined by the jump times are identically
distributed. LetU0 = 0,Un+1 = T , and letU1, . . . ,Un be independent uniform random
variables on [0, T ] with order statistics U(1), . . . ,U(n) (i.e., ordered from smaller to
larger values). Then

E(I (T ) | ST,n) = E

[
n+1∑
i=1
(U(i) −U(i−1))2

]
= (n + 1)EU 2

(1). (A.8)

The probability density function of U(1) is f (x) = nT−n(T − x)n−1, so

E(I (T ) | ST,n) = (n + 1)n

T n

∫ T

0
x2(T − x)n−1dx = 2T 2

(n + 2)
. (A.9)

By (A.7) and (A.9),

E(e−gI (T ) | ST,n) ≥ e−2gT 2/(n+2) ≥ e−2gT 2/n . (A.10)

Therefore, by (A.5)–(A.6) and with h = 2g,

χ(ν) ≥ k
∞∑
n=1

∫ ∞

0
e−hT 2/n e

−2dT (μ′T )n

n! e−νT dT

= k
∞∑
n=1

∫ ∞

0
e−hnT 2 e−2dnT (μ′nT )n

n! e−νnT ndT . (A.11)

Using Stirling’s formula and μ′T ≥ 1 in the restricted integration domain, we obtain

χ(ν) ≥ k
∞∑
n=1

nen√
2πn

∫ ∞

(μ′)−1
e−n(hT 2+(2d+ν)T )dT . (A.12)

We consider ν < −2d and complete the square to get

hT 2 + (2d + ν)T = h(T − cν)
2 − hc2ν, with cν = (|ν| − 2d)/(2h). (A.13)

We further assume that cν > (μ′)−1, i.e., that |ν| > 2d + 2h(μ′)−1, and use Laplace’s
method to get, as n →∞,

∫ ∞

(μ′)−1
e−n(hT 2+(2d+ν)T )dT ∼ const

enhc
2
ν√
n
. (A.14)

With (A.12), this gives a divergent lower bound on the susceptibility, so νc ∈ [−2d −
2h(μ′)−1, 0] and the proof is complete. �
Concerning explicit bounds on the critical value for d = 1, 2, since μ′ is an arbitrary

number less than μ, the above proof gives νc ∈ [−2d − 4gμ−1, 0]. Using μ = 1
for d = 1, and μ−1 ≤ 1

2 for d = 2, this gives νc ∈ [−2 − 4g, 0] for d = 1 and
νc ∈ [−4− 2g, 0] for d = 2.
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34. Gawȩdzki, K., Kupiainen, A.: Massless lattice ϕ44 theory: rigorous control of a renormalizable asymptot-
ically free model. Commun. Math. Phys. 99, 199–252 (1985)
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