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Abstract: In this paper we summarise the localisation calculation of 5D super Yang-
Mills on simply connected toric Sasaki-Einstein (SE) manifolds. We show how various
aspects of the computation, including the equivariant index, the asymptotic behaviour and
the factorisation property are governed by the combinatorial data of the toric geometry.
We prove that the perturbative partition function on a simply connected SE manifold
corresponding to an n-gon toric diagram factorises to n copies of perturbative part
(zero instanton sector) of the Nekrasov partition function. This leads us to conjecture a
prescription for the computation of the complete partition function, by gluing n copies
of the full Nekrasov partition functions. This work is a generalisation of some earlier
computation carried out on Y p,q manifolds, whose moment map cone has a quadrangle
base and our result is valid for manifolds whose moment map cones have pentagon base,
hexagon base, etc. The algorithm we used for dealing with general cones may also be
of independent interest.
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1. Introduction

Starting from Pestun’s work [1] there has been an explosion in the applications of
localisation technique for supersymmetric gauge theories in diverse dimensions. The
calculations were mainly concerned with the evaluation of partition functions and the
expectation values of the supersymmetricWilson loops on (squashed) Sd and on Sd×S1,
while other geometries were not investigated in detail. However, in order to understand
the geometrical properties of partition functions, it is important to perform calculations
on more general geometries. Five dimensional supersymmetric gauge theories on SE
manifolds offer us this possibility, and this is the subject of this paper.

In order to be able to localise 5D supersymmetric Yang-Mills theory we need at least
two supersymmetries. Indeed we can construct the supersymmetric gauge theory on any
simply connected Sasaki-Einstein manifold and the theory preserves two supersymme-
tries. In particular there exist very nice examples of suchmanifolds, toric Sasaki-Einstein
manifolds (their cones are toricCalabi-Yaumanifolds). The goal of thiswork is to present
the uniform treatment of localisation calculation for perturbative partition function of 5D
supersymmetric Yang-Mills on any simply connected toric Sasaki-Einstein manifolds
(for the earlier related work in 4D see [2]). Every such manifold is described in terms
of an n-gon toric diagram and topologically corresponds to (n − 3)(S2 × S3)which is
(n − 3)-fold connected sums of S2 × S3 (see Proposition 11.4.3 in [3] or Corollary 5.4
in [4]) and they are known as the Smale manifolds. This work is a natural continuation
and generalisation of the previous calculations for Y p,q -spaces [5,6].

Let us summarise our main results. Let X be a simply connected toric SE manifold
(we will give a brief review in Sect. 2 of some features of such manifolds), with moment
map cone Cμ(X) defined by

Cμ(X) = {�r ∈ R
3|�r · �vi ≥ 0, i = 1, . . .n},

where �vi are the inward pointing normals of the n faces of this cone; for example,
see Fig. 1. The SE condition also implies that there exists a primitive vector �ξ , such that

�ξ · �vi = 1, ∀i, (1.1)

known as the 1-Gorenstein condition. Up to an SL(3,Z) rotation, we can make �ξ =
[1, 0, 0], we will use this convention throughout the paper.

Next let �R be a three vector parameterising the Reeb vector field, satisfying the dual
cone condition (see the Eq. (2.2)). The perturbative partition function of 5D SYM with
a hypermultiplet of mass m and representation R on X is given by the matrix model
integral

Z pert =
∫

t

da e
− 8π3r

g2YM
� Tr[a2]· det′ad j SX

3 (ia; �R)
detR SX

3 (ia + im + R1/2; �R) , (1.2)
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Fig. 1. The polygon base of a polytope cone. Over the interior of the polygon there is a T 3 fibre, but over the
faces the T 3 degenerates into T 2, which further degenerates over the vertices to S1, drawn as the circles in
the figure. These circles are the only generic closed Reeb orbits

where a is the Coulomb branch parameter, integrated over t, the Cartan subalgebra. Here
we have defined a generalised triple sine associated to X

SX
3 (x; �R) =

∏
�m∈Cμ(X)∩Z3

( �m· �R + x
)( �m· �R + �ξ · �R − x

)
, (1.3)

where �ξ is defined in (1.1), if we take �ξ = [1, 0, 0] as above, then �ξ · �R is simply R1, the
first component of �R. The product is taken over integer points inside the cone Cμ(X).
Once we have computed the answer (1.2), we may allow �R to have complex components.
Keeping the real part of �R within the dual cone, but giving it a generic imaginary part,
we can then factorise the above partition function into

Z pert =
∫

t

da e
− 8π3r

g2YM
� Tr[a2]+Bvec(ia)+Bhyp(ia) ·

n∏
i=1

det′ad j
(
e−aβi

∣∣eiβi εi , eiβi ε′
i
)
∞

n∏
i=1

detR
(
e−(a+m∗)βi

∣∣eiβi εi , eiβi ε′
i
)
∞

,

(1.4)

where m∗ = m − i R1
2 .

We now explain the notations. The index i labels the n closed Reeb orbits in X . Each
such orbit has circumference βi and the special function

(
e−aβi

∣∣eiβi εi , eiβi ε′
i
)
∞, defined

in Appendix A by (A.1), is the perturbative part of the Nekrasov partition function on
C
2 × S1 with equivariant parameters εi and ε′

i . The Nekrasov partition function [7,8] is
defined as counting of states on C

2 × S1

Z f ull
C2×S1

= TrH
(
(−1)2( jL+ jR)e−βH−i(ε−ε′)J 3L−i(ε+ε′)J 3R−i(ε+ε′)J 3I

)
,

where H is the Hamiltonian, jL and jR generates the rotations of the first and second
factor of C in C

2 × S1, and J 3I is the generator of the R-symmetry group SU (2).
The quantity m∗ is the effective mass m∗ = m − i R1/2, and R1 here comes from the
combination �R· �ξ and the choice �ξ = [1, 0, 0]. Finally the quantities β, ε, ε′ are defined
as follows. Let i label the corner of the intersection of faces i and i + 1 in Fig. 1, and
choose �n such that det[�vi , �vi+1, �n] = 1, then

βi

2π
= det[�vi , �vi+1, �R]−1, εi = det[�R, �vi+1, �n], ε′

i = det[�vi , �R, �n]. (1.5)
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It is important to stress that the identification of parameters ε, ε′ is not unique, one may
always add to ε, ε′ integer multiples of 2πβ−1. The terms Bvec(x) and Bhyp(x) are
polynomials defined in Appendix A by (4.22) and (4.23).

The above manner of presenting the factorisation for Y p,q was used in [6], but it has
one drawback, namely the piece we call the perturbative Nekrasov partition function,
in particular, the denominator of (1.4), is not manifestly symmetric under exchange
R → R̄, namely under a + m → −a − m, and it only becomes so when combined
with the piece Bhyp. However, this symmetry is expected since the denominator of (1.2)
does possess this symmetry. The reason that the Nekrasov partition function lacks this
symmetry is that in the trace, one must let ε ε′ be complex in order to define the index
as a formal power series. In doing so the matter fields of representations R and R̄ are
treated unequally leading to the lack of symmetry. However, we can follow the work [9]
and factorise also the Bernoulli pieces Bvec, Bhyp and make the symmetry manifest. So
a second way of presenting the factorisation is

Z pert =
∫

t

da e
− 8π3r

g2YM
� Tr f [a2] ·

n∏
i=1

(
det′ad j

(
e−βi a

∣∣eiβi εi ,eiβi ε′i )∞
(
a→−i R1−a

))1/2
n∏

i=1

(
detR

(
e−βi (a+m−i R1/2)

∣∣eiβi εi ,eiβi ε′i )∞
(
a+m→−a−m

))1/2 .

(1.6)

In this way, the partition function is presented as the product of n blocks, each of
which corresponds to a copy of the partition function associated to C2 × S1, for further
investigations of the properties of these blocks see [9,10]. At this point it is natural to
conjecture that the full partition function on X is given by the same gluing of n-copies
of the full Nekrasov partition functions.

The paper is organised as follows: in Sect. 2 we give an overview of the 5D toric SE
manifolds, with emphasis on how to read off the geometry from the toric data. In Sect. 3
we present the derivation of the full perturbative partition function for any toric simply
connected SE manifolds. We explain that the answer can be written in two equivalent
ways, either using the restricted lattice or using the cone description. The result is given
in terms of some new special function that is a generalisation of the triple sine function.
Section 4 contains the detailed technical proof of the factorisation of the perturbative
partition function in terms of Nekrasov’s partition functions on C

2 × S1. In Sect. 6 we
summarise our paper and we conjecture the full nonperturbative answer, which contains
instantons. We also point out some puzzles and open problems in that section. The paper
is supplemented by two appendices. In Appendix A we collect some basic facts and
conventions of the special functions. We also prove a property of a special function that
we used in the main text. In Appendix B we make some comments on the description
of the good cone condition.

2. Toric Sasaki-Einstein Manifolds

In this section we briefly review some background material concerning the 5D toric
Sasaki-Einstein geometry. In particular we concentrate on how one may read off from
the toric diagram information about the geometry. The reader may find similar review
in [6] and for more detailed exposition one may consult [3,4].

Take a manifold X and consider its metric cone C(X) = X × R
�0 with metric

G = dr2 + r2gX , with r being the coordinate of R�0. If C(X) is Kähler, then one
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says that X is a Sasaki manifold, if further C(X) is Calabi-Yau, then X is said to be
Sasaki-Einstein (SE). In particular, its Ricci tensor satisfies

Rmn = 4gmn

for dimension 5.
Given a Sasaki manifold, one has the metric contact structure, with the Reeb vector

field �R and contact 1-form κ given by

R = J (r∂r), κ = i(∂̄ − ∂) log r, (2.1)

where J is the complex structure over C(X). If there is an effective, holomorphic and
Hamiltonian action of the torus T 3 on the metric coneC(X), and the Reeb vector field is
a linear combination of the torus action, then one says that X is toric. Our main examples
S5, Y p,q -spaces discovered in [11] and La,b,c-spaces discovered in [12] are all toric SE
manifolds. Next we turn to the toric description of these examples and more general
toric SE manifolds.

Let �μ be the moment map for the three torus actions, then due to the cone structure
on C(X), the image of �μ will also be a cone in R

3, denoted as Cμ(X). From the cone
one can read off almost all information of the manifold, in fact, it is was shown in [13]
by Lerman, extending the well-known Delzant construction [14], that from a given good
cone (definition to come shortly), one can reconstruct the manifold itself. One will see
an inkling of how this is done in Sect. 3.2.

Lerman termed a cone to be good1 if at each intersection of its two adjacent faces Fi
and Fi+1, their inward pointing normals �vi , �vi+1 ∈ Z

3 can be completed into a basis of
Z
3. That is, there exists a third vector �n such that det[�vi , �vi+1, �n] = 1. A useful way of

viewing the manifold C(X) is the following: away from the boundary of the moment
map cone Cμ(X), one has the torus fibration T 3 → C(X)

∣∣
Cμ(X)◦ → Cμ(X)◦, where ◦

means the interior. While at face i , the particular torus as singled out by �vi degenerates.
TheReeb vector field is by definition a linear combination of the three torus actions, so

one can represent R as a 3-vector �R. The actual manifold X can be obtained by restricting
C(X) to the plane �y· �R = 1/2, and we shall call the intersection

{�y ∈ Cμ(X)|�y· �R = 1/2} = Bμ(X),

where B stands for ’base’. This base is a compact polygon iff the 3-vector �R is within
the dual cone

�R =
n∑

i=1

λi �vi , λi > 0, ∀i. (2.2)

This condition also appears later as the condition for the partition function to converge.
From this discussion, one may similarly view X as a torus fibration over Bμ(X)◦ and
again at the boundary of Bμ(X), different tori degenerates. An immediate consequence
of this view is that the fundamental group of X can be computed as

π1(X) ∼ Z
3/spanZ〈�v1, · · · , �vn〉. (2.3)

The meaning of this formula is clear: only those tori that cannot be written as a linear
combination of �vi are not contractible. As a technical remark, if X is simply connected,

1 The original formulation is slightly different from the one given here, and since the equivalence does not
seem obvious to us, we provide a short proof in the Appendix B.
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then it implies that the matrix [�v1, · · · , �vn] can be completed into an SL(n, Z) matrix.
Indeed, up to right multiplying by an SL(n,Z) matrix, one can put �v1,2,3 into [1, 0, 0],
[0, 1, 0] and [0, 0, 1], and the rest is clear.

Furthermore, if �R is generic, then the orbit of the Reeb vector field is not closed, except
at the corners of Bμ(X), where only one S1 is acting non-trivially. When restricted to a
neighbourhood of a corner, the manifold X is a solid torus, i.e. diffeomorphic to S1×C

2,
where S1 is the closed Reeb orbit over the corner point, for example see Fig. 1. But the
solid torus is twisted, as one completes a cycle along S1, the two planes also rotate by
some angles. The central message of this paper is that to compute the partition function,
one need only include one copy of the Nekrasov instanton partition function for each
closed Reeb orbit, where the twisting parameters appear as the equivariant parameters
of the Nekrasov partition function.

Let us focus now on the neighbourhood of one of the corners of, say, the intersection
of face i and face i + 1, let �n be an integer-entry 3-vector such that det[�n, �vi , �vi+1] = 1
(the existence of �n is a consequence of the moment map cone being good). One can
then decompose the Reeb vector as a linear combination of �n, �vi , �vi+1, that is one
decompose the Reeb into one U (1) that remains non-degenerate at the corner, which
gives the closed Reeb orbit there, plus two more that degenerate at the same corner,
giving the twisting parameter of the solid torus. This reasoning leads to the formulae
(1.5) for the circumference and twisting parameters.

The Calabi-Yau condition can also be phrased in terms of the data of the cone.
Assuming that the number of faces is larger than 3, then it turns out that if there exists an
integer vector �ξ such that �ξ · �vi = 1, ∀i , thenC(X) is Calabi-Yau. In fact, it is convenient
to choose a basis of the 3-tori so that the first component of �vi is 1 for all i and then
�ξ = [1, 0, 0]. This property plays a pivotal role in our calculation, in that it allows us to
perform a summation within the cone Cμ(X).

Next we give some examples, first the Y p,q space treated in [6], one chooses the four
normals to be

�v1 = [1, 0, 0], �v2 = [1,−1, 0], �v3 = [1,−2,−p + q], �v4 = [1,−1,−p], (2.4)

where p > q > 1 and gcd(p, q) = 1.
A generalisation to the Y p,q space is the La,b,c space, with d = a + b − c > 0 and

gcd(a, c) = gcd(a, d) = gcd(b, c) = gcd(b, d) = 1. The four normals are

�v1 = [1, c,−bn], �v2 = [1, a, bm], �v3 = [1, 0, 1], �v4 = [1, 0, 0], (2.5)

wherem, n are chosen so thatmc+na = 1. Themetric coneC(La,b,c) can be constructed
as Kähler quotient of C4 with U (1) with the charges (a, b,−c,−a − b + c).

As an example of a pentagon toric cone, one has the so called X p,q , p > q > 0
space, whose normals are

�v1 = [1, 0, 0], �v2 = [1, 1, 0], �v3 = [1, 0, p],
�v4 = [1,−1, p + q], �v5 = [1,−1, p + q − 1].

The metric cone of this space can be constructed from the Kähler quotient of C5 with
respect to two U (1)’s of charge [1, 0,−1, p,−p] and [1,−1, 1, q − 1,−q].

One can also use the following alternative description of C(X) as Kähler quotient
[31]

C(X) = C
n//(U (1)n−3 × 
), (2.6)
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where 
 is some discrete abelian group, and the U (1)’s act on C
n with the charges

�Qa = (Q1
a, . . . , Q

i
a, . . . , Q

n
a ), a = 1, . . . ,n − 3. These charges are determined from

the inward normals �vi according to the equation

n∑
i=1

�vi Qi
a = 0.

The CY condition translates to
n∑

i=1

Qi
a = 0. (2.7)

If X is a simply connected SE manifold (which is the only case we consider in this
paper) then 
 = 0.

The Kähler reduction picture is at timesmore suitable for index computation. And for
the construction of examples, it is also easier to start fromC

n and postulate n−3 charges
Q satisfying (2.7). To ensure the simply connectedness, one demands that one can pick
vectors �u1, �u2, �u3 ∈ Z

n such that A = [�u1, �u2, �u3, �Q1, · · · , �Qn−3] forms an SL(n,Z)

matrix. Then the inward normals of the original cone �v1, · · · , �vn are recovered as the
first 3 rows of A−1 (but not necessarily in the correct order). And then one necessarily
has span〈�v1, · · · , �vn〉 = Z

3, i.e. one gets a simply connected manifold.
The above two-way relation mirrors the Delzant and Lerman constructions [13,14],

that is, by embedding a cone in R
3 into R

n as the intersection of n − 3 hyperplanes
(whose normals are the �Qa’s), one can present the original manifold as a Kähler quotient
of Cn.

In what follows we concentrate only on simply connected SE toric manifolds which
topologically correspond to (n−3)(S2× S3), namely (n−3) connected sum of S2× S3.
We will make a few comments about non-simply connected SE manifolds in the last
Sect. 6.

3. Localisation of 5D SYM

In this sectionwe sketch briefly the actual localisation calculation.Our presentation is the
generalisation of the previous works [5,15,16] to the case of general simply connected
toric SE manifolds. We also discuss two different representations of the answer.

3.1. Localisation calculation. In [17] the SYM theory coupled to matter on the round
S5 was written down. Due to the SE structure over S5, one can find a pair of normalised
Killing spinors ξ1,2, such that the bilinear ξ1�mξ2 is proportional to the Reeb vector field
Rm on S5. The two Killing spinors will pick out a particular susy charge called δ that
satisfies the key relation

δ2 = −i L R + G, for the vector multiplet (3.1)

δ2 = −i Ls
R + G, for the hypermultiplet (3.2)

where G stands for gauge transformation and LR (Ls
R) is the (spinor) Lie derivative.

It turns out that a change of variables (which again involves the Killing spinors)
allows us to formulate the vector multiplet in terms of differential forms, and the only
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feature that is required from the geometry is the metric contact structure. This was called
the twisted SYM in [15], and the susy complex was called the cohomological complex.
Using the algebra (3.1), the path integral localises onto the so called contact instanton
configurations, and one needs to integrate over the Gaussian fluctuations around such
configurations. To calculate the full partition function from first principles appears to
be hard at the moment. However, the expansion around zero connection configuration
is doable and one obtains the perturbative partition function as a matrix model. Fur-
thermore, since the actual SE metric is not required once we pass to the cohomological
complex formulation, we can consider the partition function for the deformed Reeb vec-
tor field, i.e., the squashed five sphere. Equivalently, one can turn on extra background
gauge fields and put the original SYM theory directly on a squashed S5 and perform the
computation from there, see [18,19] (see also [20–22]), but the work load is consider-
ably heavier this way around. For the hypermultiplet, one would need in principle the
SE metric, however, once the result is obtained, it is obvious how to generalise it to the
squashed sphere.

Much of the story can be repeated for an infinite class of simply connected SE man-
ifolds Y p,q . The simply connectedness is there to ensure that the zero instanton config-
uration actually corresponds to the trivial connection. The calculation was completed in
[5] for the Y p,q manifolds. The main technical aspect of the calculation, the computa-
tion of an equivariant index, relies on using the known index structure on S3 × S3, and
imposing a lattice constraint, as we shall review shortly. This calculation carries over to
the La,b,c as a straightforward generalisation. But for toric SE manifolds with a more
complicated moment map cone, the method used there gets cumbersome, and it is more
systematic to employ the fixed point theorem [23], presented in the appendix of [5].

Now our goal is to generalise the result from [5] to any simply connected toric
SE manifold. Following the logic presented in [5,15,16] for any simply connected SE
manifold the perturbative partition function of N = 1 SYM with a hypermultiplet in
representation R and mass m is written as the superdeterminant of the two operators in
(3.1) and (3.2), taken over the 

0,•
H -complex2

Z pert =
∫

t

da e
− 8π3r

g2YM
� Tr[a2] ·

det′ad j sdet0,•
H

(−ir L R − ia)

detR sdet0,•
H

(−ir Ls
R − ia − im)

, (3.3)

where r is a parameter controlling the overall size of X , � is the squashed volume of X
normalised against VolS5 = π3. The actual non-trivial calculation is centred around the
explicit evaluation of superdeterminants in (3.3).

Sasaki manifolds have a transverse Kähler structure, that is, one can write the 5D
metric as

g = κ ⊗ κ + gH

with gH being a local Kähler metric, see Sect. 1.2 of [4]. Thus one has the complex
of horizontal (0, i) forms, with i = 0, 1, 2, which we denoted as 

0,•
H . The differential

for this complex is obtained by projecting the de Rham differential to its component
that increase the degree (0, i) → (0, i + 1). We call this differential the transverse
Dolbeault differential ∂̄H . The cohomology of this complex is called the Kohn-Rossi

2 In writing this expression we skipped a few technical steps, in particular, the integral of a within the Lie-
algebra of the gauge group is written as the integral over Cartan times a determinant factor, which combines
with the contribution from the ghost sector to give this neat expression (3.3).
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(KR) cohomology. The various fields in the vector-, hypermultiplet can be reduced to
the horizontal (0, i) forms using Fierz identity, and fit nicely into the

0,•
H complex. This

is why the localisation computation reduces to the super determinants in (3.3), see either
[15] or [16] for details of the reduction.

In our setting of toric SEmanifolds, the operator ∂̄H is a transversally elliptic operator
and one can evaluate the super determinant in (3.3) by employing the index theorem for
such operators, as was done in [5]. But here we shall use the approach of Schmude [24],
see also [25,26].

As is standard for localisation, only those modes that are in the KR cohomology
(which we denote simply as H0,•) make a net contribution to the superdeterminant, so
the final answer is

Z pert =
∫

t

da e
− 8π3r

g2YM
� Tr[a2] × det′ad j sdetH0,•(−ir L R − ia)

detR sdetH0,•(−ir Ls
R − ia − im)

. (3.4)

In writing Z pert , we ignore some possible (a independent) phases coming from the
determinant factors.

It was pointed out by Schmude that the KR cohomology can be reduced to
H0(O(C(X))), with O(C(X)) being the sheaf of holomorphic functions on the metric
cone of X . We will go over this argument here. Since the Reeb is Killing with respect to
the metric, the operator LR will commute with ∂̄H , and we can analyse the cohomology
of ∂̄H with definitive −i L R eigenvalues (this eigenvalue is in fact the R-charge). Now
one can find a map relating the horizontal (0, i) forms on X to those on the metric cone
C(X). Assuming X is embedded in C(X) at r = 1, the Dolbeault differential ∂̄ on C(X)

is related to ∂̄H in local coordinates by

∂̄ = ∂̄H +
1

2
(d log r − iκ)(r∂r + i∂θ ), (3.5)

where θ is the local coordinate such that ∂θ is the Reeb vector, and we have used the
relation (2.1) between the homothetic vector and the Reeb. Assuming that ω ∈ 

0,i
H has

eigenvalue ζ under −i L R , then we can extend it to a form on the C(X) as

ext : ω → ωrζ ,

the extension makes sense since the point r = 0 is removed. Furthermore if ω is closed
(exact) under ∂̄H then ωrζ is closed (exact) under ∂̄ , thus the extension induces a map of
the corresponding cohomology. Conversely a (0, i)-form on C(X) can be restricted to
X , themap ext composedwith the restriction gives the identitymap res◦ext = 1. Sowe
see that the induced map on cohomology induced by ext must be injective. This implies
immediately that H0,1(X) is zero since H1(O(C(X))) = 0. For the zeroth cohomology
H0,0(X), since there are no exact forms, we need only focus on the holomorphic func-
tions on C(X). If a nonzero function f is holomorphic on C(X), its restriction to r = 1
is non-zero, as can be seen from (3.5) (for example, in f the modes of different powers
in r must have different −i L R-eigenvalue and hence cannot cancel out at r = 1). So we
actually get a bijection

ext : H0,0(X) � H0(O(C(X))),

For the (0, 2) forms, one can use the holomorphic volume form  on C(X) to construct
a pairing between (0, 0) and (0, 2) forms. Since  is a top holmorphic form, it is closed,
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and its restriction to X (also denoted as ) is closed as well. The restriction of  has
the property that κ ∧  = 0 and ιR is in 

2,0
H (X). From these properties, we see that

the integration

〈 f, ω〉 =
∫

X

 f ω, f ∈ 0,0(X), ω ∈ 
0,2
H (X)

is a non-degenerate paring. It is also a non-degenerate pairing between H0,0(X) and
H0,2(X), to see this, let f ∈ H0,0(X), and ω = ∂̄H ζ, ζ ∈ 

0,1
H , then

〈 f, ∂̄H ζ 〉 =
∫

X

 f ∂̄H ζ =
∫

X

 f dζ =
∫

X

d f ζ =
∫

X

∂̄H f ζ = 0,

where κ ∧  = 0 and ιR ∈ 
2,0
H (X) is used. From these considerations H0,2(X) �

(H0,0(X))∗.
To summarise, to obtain the KR cohomology for our specific problem, it suffices to

compute H0(O(C(X))), i.e. the holomorphic functions on C(X). But the latter object
has a combinatorial description, one simply enumerates the integral points within the
moment map cone (this follows almost directly from the definition of a toric Kähler
manifold) and each such point gives a holomorphic function on C(X). What is more,
the three coordinates of these points give the charges of these functions under the three
U (1)’s. In particular, one can also read off their LR eigenvalue. To figure out the U (1)
charges of H0,2 groups, one needs to get the charges of . To do this, let �ξ be the
3-vector such that �ξ · �vi = 1 (see (1.1)), then the charges of  are the 3-components of
�ξ , which is also a standard fact of toric geometry. Then in particular, the R-charge of 

(the−i L R eigenvalue) is �ξ · �R. In all of the examples given earlier, this vector �ξ is chosen
to be [1, 0, 0], and so the R-charge is R1.

With these preparation, one can write the superdeterminant in (3.4) as

sdetH0,•(−ir L R + x) =
∏

�n∈Cμ(X)∩Z3

(�n· �R + x
)(�n · �R − x + �ξ · �R) = SX

3 (x; �R), (3.6)

where the second factor comes from H0,2 and we have as usual discarded overall
multiplicative constants. The superdeterminant of −i Ls

R is similar, one makes a shift
x → x + R1/2, which originates from expressing Ls

R in terms of LR [5]. In (3.6) we
defined a new special function SX

3 (x; �R) associated with the moment map cone of any
5D simply connected toric SE manifold X . This function is a generalisation of the usual
triple sine function, since by taking X = S5, whose moment map cone Cμ(S5) = R

3≥0,
one recovers the definition of the standard triple sine function (A.6).

To summarise, the perturbative partition function of N = 1 supersymmetric Yang-
Mills over a 5D simply connected toric SE manifold, with hypermultiplet in represen-
tation R is given by

Z pert =
∫

t

da e
− 8π3r

g2YM
� Tr[a2]· det′ad j SX

3 (ia; �R)
detR SX

3 (ia + im + R1/2; �R) , (3.7)

where we have fixed �ξ = [1, 0, 0]. Let us make a couple of concluding remarks. In
the setup of the supersymmetric Yang-Mills, especially for the hypermultiplet, we have
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used the SE metric, and so in particular, the classical action evaluated at the localisation
locus (the term in the exponent above) should be −8rg−2

YMVolXSE Tr[a2] with VolXSE

computed with the SE metric. However the superdeterminant of the operator LR may
be computed for a Reeb being any combination of the three U (1)’s, provided �R is in the
dual cone. These Reebs do not give rise to an SE metric, and so we have also replaced
the volume factor in the exponent by the squashed volume

VolX = �π3.

For a self-contained justification of this replacement, one should set up the supersymmet-
ric Yang-Mills with a general Reeb, which then entails turning on an extra background
connection to maintain supersymmetry. Alternatively we may adopt the cohomologi-
cal complex as the starting point, as in [15], and then this classical term appears as∫
X κdκ2Tr[σ 2], which is a supersymmetry completion of the Chern-Simons like observ-

able
∫
X κFF . Since the integral of 1/2κdκdκ leads to the squashed volume, it is natural

to make the replacement as we did above.
Using these arguments the answer given above should be regarded as a general

equivariant answer. This is valuable since the equivariant parameters that enter into
the �R can tell us about how the geometry of the underlying manifold affect the partition
function. In particular, since the result (3.7) only depends on the Reeb vector, which is
the complex structure moduli of the Kähler cone C(X), we can argue that the partition
function is independent of the Kähler moduli. However, in our case, the independence
of the Kähler moduli is only visible after the computation, yet one probably can use
arguments similar to [27] and demonstrate this directly.

The independence of the partition function on the Kähler moduli is presumably what
lies behind the factorisation phenomenon that we shall show presently. Namely, one can
go to a point in the Kähler moduli where the closed Reeb orbits are widely separated,
so that at each closed orbit, the local geometry is C2 × S1. Then for each closed Reeb
orbit, one can insert a copy of the Nekrasov partition function on C

2 × S1, which is
computed in the Coulomb branch, i.e. the asymptotic value of the σ field is fixed. And
the final complete answer is obtained by taking all these copies and integrating over
their common Coulomb branch parameter. What we do next is an explicit check that this
prescription is correct for the perturbative part of the partition function.

3.2. Relation between the restricted lattice and the cone descriptions. In this section
we show that the original presentation of the partition function in [5] in terms of a
constrained lattice is equivalent to the cone description given above. For those familiar
with toric geometry, the equivalence is probably quite obvious and he may skip to the
next section.

In [5] the superdeterminant for Y p,q is given in terms of a generalised triple sine
function, which is defined through the ζ -function regularised infinite product on a lattice

sdetH0,•(−ir L R + x) = S

(p,q)

3 (x |ω1, ω2, ω3, ω4)

=
∏

(i, j,k,l)∈
+
(p,q)

(
iω1+ jω2+kω3+lω4 + x

)(
iω1+ jω2+kω3+lω4 +

∑
ωi − x

)
,

(3.8)
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where the lattice 
+
(p,q) is defined as


+
(p,q) = {

i, j, k, l ∈ Z≥0 | i(p + q) + j (p − q) − kp − lp = 0
}
, (3.9)

and ω1, ω2, ω3, ω4 are equivariant parameters which are related to the Reeb vector as
follows

R
1 =

∑
ωi , R

2 = −ω1 − ω2 − 2ω4, R
3 = −pω2 + (q − p)ω4, (3.10)

If one replaces the constraint (3.9) for the lattice by


+
(a,b,c) = {

i, j, k, l ∈ Z≥0 | ia + jb − kc − l(a + b − c) = 0
}
, (3.11)

one obtains the generalised triple sine function S

(a,b,c)
3 that gives the perturbative par-

tition function for the La,b,c manifolds. Next we shall see how to get these relations for
a general toric SE manifold.

In general situation for any toric simply connected X we assume that we have a lattice
of Zn≥0, obeying n − 3 > 0 constraints


+ = {ni ≥ 0, i = 1, . . . ,n |
n∑

i=1

Qi
ani = 0, a = 1, . . . ,n − 3}. (3.12)

The charges Qi
a are the same as in the description of C(X) as Kähler quotient in (2.6).

Introducing the squashing parameters �ω = (ω1, ..., ωn) we define the generalised triple
sine associated with the lattice 
+

S

3 (x; �ω) =

∏
�n∈
+

(�n· �ω + x
)(�n· �ω − x +

n∑
i=1

ωi
)
. (3.13)

This was how the result was presented in [5], next we show that this is equivalent with
the function SX

3 defined in (1.3), which is a more intrinsic description.
According to the discussion at the end of section 2, for X simply connected, we can

pick the basis vectors �u1, �u2, �u3 ∈ Z
3 such that A = [�u1, �u2, �u3, �Q1, . . . , �Qn−3] forms

an SL(n,Z) matrix. Apply A to the lattice 
+, then the n conditions ni ≥ 0 in (3.12)
turn into

∑3
a=1 vai ma ≥ 0, where vai are the first 3 rows of A−1. We denote these by

�v1, . . . , �vn, i.e. �vi are 3-vectors, and the conditions
∑3

a=1 vai ma ≥ 0 describes a cone
inside R3.

As an illustration, take the lattice (3.9), then �Q is the 4-vector [−p−q, q − p, p, p].
One can complete it into an SL(4,Z) matrix

A =
⎛
⎜⎝
0 −1 a −p − q
0 0 −a − 2b q − p
1 1 b p
0 0 b p

⎞
⎟⎠ , (a + b)p + bq = 1.

Its inverse is

A−1 =
⎛
⎜⎝

1 1 1 1
−1 −1 0 −2
0 −p 0 q − p
0 b 0 a + 2b

⎞
⎟⎠ ,
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and from the first three rows of A−1 one finds the four inward normals given in (2.4).
Also the first three rows give the relation of the Reeb vector with ωi as in (3.10).

Continuing with our manipulation of the lattice, we let �ω be an n-vector, by inserting
AA−1 into �n· �ω, we see that the summation over the constrained lattice can be written as

∑

+

�n · �ω =
∑

ma∈Cμ(X)∩Z3

3∑
a=1

ma(A
−1 �ω)a . (3.14)

Thus we have proved the equality of the two products∏
�n∈
+

(�n· �ω + x
) =

∏
�m∈Cμ(X)∩Z3

( �m· �R + x
)
, where Ra = (A−1 �ω)a .

Also notice that since �ξ · �vi = 1, ∀i , and that [�v1, . . . , �vn] constitutes the first three rows
of A−1, so the quantity �ξ · �R can be written as

�ξ · �R =
3∑

a=1

ξa Ra =
3∑

a=1

ξa(A
−1 �ω)a =

n∑
i=1

ωi .

By comparing the definition (3.13) and (1.3) of S

3 (x, �ω) and SX

3 (x, �R), we get the
equality

S

3 (x; �ω) = SX

3 (x; �R),
and also the equivalence between the constrained lattice presentation and the cone rep-
resentation.

Next we shall work with a general good cone that corresponds to a 5D simply con-
nected toric SE manifold. Assume that the moment map cone has n ≥ 4 faces, and that
the normals are chosen so that their first component is 1.

The perturbative partition is given in (3.7) and
our central task is to evaluate the two products

I :
∏

�m∈Cμ(X)∩Z3

(
�m· �R + x

)
, (3.15)

I I :
∏

�m∈Cμ(X)∩Z3

(
�m· �R − x + R

1
)
. (3.16)

4. Derivation of Factorisation

4.1. Conversion to the triple sine functions. Since the real part of the Reeb vector �R is
assumed to be within the dual cone, and that x has a small but positive real part, the real
part of the factors in (3.15) is bounded away from zero and tends to infinity, so one can
use ζ -function regularisation to make sense of the infinite product. Bearing this in mind,
one can treat the infinite product at its face value, and do the usual manipulations.

The product or summation over the integral points within the cone is investigated in
[28] through subdividing the cone into smaller portions. We will use similar strategies
that work for any cone that gives rise to simply connected toric SE manifolds. We fix
the inward normals of the cone to be �vi = [1,−�Li ], i = 1, . . . ,n for some two vectors�Li = [L2

i , L
3
i ].
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y

z

1

2

3
4

5

( )

z
v1

v2

v3 v4

v5

Fig. 2. The polytope cone, projected onto the plane y = 1, depending on the specific case, one of the faces
may move off to infinity, that its two neighbouring faces turn parallel. The circles represent the closed Reeb
orbits. The right panel is the inward pointing normals of the cone

W1

W2

W3
W4

W5

Fig. 3. The division of the m2-m3 plane, each W corresponds to a face of the moment map cone

From the constraint �vi · �m ≥ 0, the limit of m1 is ∞ > m1 ≥ L2
i m2 + L3

i m3, which
changes as i increments. So we need to divide the m2-m3 plane into n (5, in the case of
Fig. 2) wedges, one for each edge, and we get the picture of Fig. 3. So in Wi the lower
limit of m1 is m1 ≥ L2

i m2 + L3
i m3.

The product within each wedge reads

I
∣∣
Wi

=
∏

(m2,m3)∈Wi

∏
m1≥L2

i m2+L3
i m3

(
�m· �R + x

)

=
∏

(m2,m3)∈Wi

∏
m1≥0

( (
R
2 + R

1L2
i

)
m2 +

(
R
3 + R

1L3
i

)
m3 + R

1m1 + x
)
. (4.1)

We will denote by R̃i the 2-vector

R̃i = (R2 + R
1L2

i , R
3 + R

1L3
i ), (4.2)

which changes from one wedge to another.
The product over m1 is now straightforward, and we have reduced the problem to

the following. Consider two lines in R
2 with rational slopes that bound Wi , how do we

perform the summation (or the product, all the same) of the weight �ξ · �n = ξ1n1 + ξ2n2
over the integral points between these two lines? We assume that the normals of the two
lines are v1, v2, which are primitive integer 2-vectors, see Fig. 4. Then we have the sum
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v2

v1

[−23, 17]

[−4, 3]

[−1, 1]

[0,1]

Fig. 4. Sum between the two blue lines, depicted in the left panel. One can add more lines in between, as
in the right panel. The numbers label the normal of each line. The slopes of the lines are not drawn to scale
(colour figure online)

i

W1

W2

W3
W4

W5

k k + 1
· · ·

i− 1

i+ 1

...

. . .

...

Fig. 5. Further division of the m2-m3 plane, by adding lines. The normals of all lines are pointing counter-
clockwise ∑

�n·v1≥0; �n·v2≤0

�ξ · �n.

The strategy is to add more lines between the two given lines, so that the two normals
of each pair of neighbouring lines form an SL(2,Z)matrix, then one can, by an SL(2,Z)

matrix, transform the two lines into the x- and y-axis, in which situation the sum would
be simple. Surely, one cannot know how many lines one would need to add, but so long
as the process contains only finite number of steps, which we show next, the lack of
explicitness need not hinder us.

Without loss of generality, one can assume v1 = [0, 1], i.e. the first line is the x-axis
(by applying an SL(2,Z) transformation, since v1 is primitive). For definiteness, we
also assume v2 = [−p, q] with gcd(p, q) = 1, p, q > 0, the other possibilities can
be treated entirely similarly, see Fig. 4. One simply observes that given two numbers
p, q > 0 coprime, one can find s, t > 0 such that pt−qs = 1 and that p > s, q > t . The
proof is a simple exercise and is left for the reader, otherwise consult [29]. Then it is easy
to see that p/q > s/t so the new line has a smaller slope. Further det[−s, t;−p, q] = 1,
which is part of we set out to achieve. One can continue this process, since the size s, t
as well as the slope decreases each time, the process will stop after finitely many steps.
It is not at all important to know exactly about the lines added, so long as they exist.

We will now further subdivide each wedge of Fig. 3 using the algorithm described
above, and get Fig. 5. We denote by �uk the normals (counterclockwise pointing) of all
the lines.

Now we have myriads of wedges over which we need to do the sum, as an example
we consider first the product of (4.1) from (and including) the line k up to (but excluding)
the line k + 1
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I
∣∣[k,k+1) =

∏
�n·�uk≥0,�n·�uk+1<0

∏
m≥0

(
R̃1· �n + R

1m + x
)
, (4.3)

where R̃ is defined in (4.2). Since by assumption det[�uk, �uk+1] = 1, the product is simply

I
∣∣[k,k+1) =

∏
�n·�uk≥0,�n·�uk+1<0

∏
m≥0

(
(�n· �uk)(R̃1 × �uk+1) − (�n· �uk+1)(R̃1 × �uk) + R

1m + x
)

=
∏

m1,2,3≥0

(
m2(R̃1 × �uk+1) + m3(R̃1 × �uk) + m1

R
1 + x + (R̃1 × �uk)

)

= �3
(
x + (R̃1 × �uk)

∣∣R̃1 × �uk+1, R̃1 × �uk, R
1)−1

,

where we use the short hand notation �u × �v = det[u, v] for 2-vectors.
Before we do the product of the second factor in (3.16), we need to make a technical

remark. From the way all the dividing lines are chosen, one has

�L1 + �ui = �L2. (4.4)

To see this, note the line [y, z] separatingW1 andW2 satisfies [y, z]· ( �L1 − �L2) = 0,
so its normal �ui is parallel to �L1 − �L2. From the goodness of the cone, the 2-vector
�L1 − �L2 is primitive, thus �ui = ±( �L1 − �L2), and a little more thought would reveal the
right sign. This relation holds for every line that separates two wedges Wl and Wl+1.

The previous observation has the consequence that

R̃1 × �ui = R̃2 × �ui , (4.5)

and thus it does not matter if one includes the contribution along the line i in W1 or W2.
Now for the second product (3.16), we use this freedom to perform the product from
(but excluding) the line k up to (and including) the line k + 1

I I
∣∣
(k,k+1] =

∏
�n·�uk>0,�n·�uk+1≤0

∏
m≥0

(
R̃1· �n + R

1m + R
1 − x

)

=
∏

m1,2,3≥0

(
m2(R̃1 × �uk+1) + m3(R̃1 × �uk) + m1

R
1 + R

1 − x + (R̃1 × �uk+1)
)

= �3
( − x + R

1 + (R̃1 × �uk+1)
∣∣R̃1 × �uk+1, R̃1 × �uk, R

1)−1
.

Now one can combine I
∣∣[k,k+1) and I I

∣∣
(k,k+1], one gets the triple sine function

I
∣∣[k,k+1) × I I

∣∣
(k,k+1] = S3

(
x + (R̃1 × �uk)

∣∣R̃1 × �uk+1, R̃1 × �uk, R
1). (4.6)

Note that in this way of dividing the cone, one always misses the points in (4.3) with
�n = 0, m ≥ 0, but this can be done easily, and one gets

I0 =
∏
m≥0

(
R
1m + x

)
(4.7)

and for the factor I I

I I0 =
∏
m≥1

(
R
1m − x

)
. (4.8)
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These two terms give

I0· I I0 ∼ sin(
πx

R1
) ∼ e−π i x

R1 (1 − e2π i
x
R1 ). (4.9)

where ∼ means up to an overall multiplicative constant. For the hypermultiplet, instead
of (4.9), we will get

eπ i (x+im+R1/2)
R1 (1 − e2π i

(x+im+R1/2)
R1 )−1. (4.10)

Later on, the second factors of (4.9) and (4.10) will cancel against terms coming from
the S3 function, while the first will be combined with the Bernoulli factors.

4.2. Factorisation of the Triple Sines. Wewill use the factorisation formula for the triple
sine [30]

S3(z|ω1, ω2, ω3) = e− π i
6 B3,3(x |ω1,ω2,ω3)(e2π i z/ω2; e2π iω1/ω2 , e2π iω3/ω2)∞

× (e2π i z/ω1; e2π iω3/ω1 , e2π iω2/ω1)∞(e2π i z/ω3; e2π iω1/ω3 , e2π iω2/ω3)∞, (4.11)

and in what follows we will write (x |y, z) instead of (e2π i x ; e2π iy, e2π i z)∞.
Now the expression (4.6) can be factorised

(4.6) = B · ( x + R̃1 × �uk
R1

∣∣ R̃1 × �uk
R1

,
R̃1 × �uk+1

R1

)
( x + R̃1 × �uk

R̃1 × �uk
∣∣ R1

R̃1 × �uk ,
R̃1 × �uk+1
R̃1 × �uk

)( x + R̃ × �uk
R̃1 × �uk+1

∣∣ R1

R̃1 × �uk+1 ,
R̃1 × �uk

R̃1 × �uk+1
)

= B · ( x

R1

∣∣ − R̃1 × �uk
R1

,
R̃1 × �uk+1

R1

)−1

( x

R̃1 × �uk
∣∣ R1

R̃1 × �uk ,
R̃1 × �uk+1
R̃1 × �uk

)( x

R̃1 × �uk+1
∣∣ R1

R̃1 × �uk+1 ,− R̃1 × �uk
R̃1 × �uk+1

)−1
,

(4.12)

where B is the Bernoulli polynomial that we shall collect in Sect. 4.3 and we have also
used (A.2). One can also use the factorisation in (A.10), then the Bernoulli polynomials
do not occur.

The second factor of the first line of (4.12) can be simplified into

∏
k

( x

R1

∣∣ − R⊥ × �uk
R1

,
R⊥ × �uk+1

R1

)−1
,

where R⊥ is the second and third component of �R, i.e. R⊥ = R̃i − R1 �Li = [R2, R3]. This
manipulation is justified by using the periodicity of (−|−,−). In Appendix A.2 this
product is shown to be

∏
k

( x

R1

∣∣ − R⊥ × �uk
R1

,
R⊥ × �uk+1

R1

)−1 = (
1 − exp

(2π i x
R1

))−1
. (4.13)

This factor will cancel the second factor in (4.9) (or (4.10) in the case of hypermultiplet).
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In the rest of this section, we focus on the second line of (4.12), which will give us
a copy of the Nekrasov partition function for each corner of the moment map cone. For
every three neighbouring lines, say, k − 1, k and k + 1 that are in the same wedge W1,
we will get the contribution

( x

R̃1 × �uk
∣∣ R1

R̃1 × �uk ,
R̃1 × �uk+1
R̃1 × �uk

)( x

R̃1 × �uk
∣∣ R1

R̃1 × �uk ,− R̃1 × �uk−1

R̃1 × �uk
)−1

.

Here we make the observation that since �uk−1 × �uk = �uk × �uk+1 = 1, one has

�uk−1 + �uk+1 = Z�uk . (4.14)

Consequently R̃1 × �uk+1 + R̃1 × �uk−1 = ZR̃1 × �uk , and the above combination cancels
by using the periodicity of the special function (−|−,−).

In contrast, take three lines as i − 1, i and i + 1 with i straddling two wedges W1,
W2, then one gets instead the contribution

� = ( x

R̃2 × �ui
∣∣ R1

R̃2 × �ui ,
R̃2 × �ui+1
R̃2 × �ui

)( x

R̃1 × �ui
∣∣ R1

R̃1 × �ui ,−
R̃1 × �ui−1

R̃1 × �ui
)−1

.

One uses then (4.14) and (4.5) to get

� = ( x

R̃1 × �ui
∣∣ R1

R̃1 × �ui ,−
R̃2 × �ui−1

R̃1 × �ui
)( x

R̃1 × �ui
∣∣ R1

R̃1 × �ui ,−
R̃1 × �ui−1

R̃1 × �ui
)−1

,

and that

− R̃2 × �ui−1

R̃1 × �ui = − (R̃1 + R1�ui ) × �ui−1

R̃1 × �ui = − R̃1 × �ui−1 − R1

R̃1 × �ui . (4.15)

Now one invokes (A.4) and combine the two factors of �

� = ( x

R̃1 × �ui
∣∣ − R̃2 × �ui−1

R̃1 × �ui ,
R̃1 × �ui−1

R̃1 × �ui
) = ( x

R̃1 × �ui
∣∣ R̃2 × �ui+1

R̃1 × �ui ,
R̃1 × �ui−1

R̃1 × �ui
)
.

(4.16)

To conclude, apart from the Bernoulli polynomials, the partition function receives a
contribution of (4.16), for every corner of the moment map cone. If one were to use the
factorisation (A.10), then the second factor there combines in a similar fashion into

�′ = ( − x

R̃1 × �ui
∣∣ R̃1 × �ui−1 − R1

R̃1 × �ui ,− R̃1 × �ui−1

R̃1 × �ui
)

= ( R1 − x

R̃1 × �ui
∣∣ − R̃1 × �ui−1 − R1

R̃1 × �ui ,
R̃1 × �ui−1

R̃1 × �ui
)
. (4.17)

The same manipulation applies to the hypermultiplet, one needs only replace in the
above formulae x → x + R1/2 + im.

Next we will show that this factor is the perturbative Nekrasov partition function
on S1 × C

2. Since the wedges W correspond to the faces of the moment map cone,
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one observes that if the normals to face 1 and 2 are �v and �v′, i.e. �v = [1,−�L1] and
�v′ = [1,−�L2], then

det[�v, �v′, �R] = det

⎛
⎜⎝

1 1 R1

−L2
1 −L2

2 R2

−L3
1 −L2

2 R3

⎞
⎟⎠ = R̃1 × �ui .

Thus one recognizes the quantity R̃1 × �ui as the inverse circumference 2π/β of the Reeb
orbit above the corner at the intersection of face 1 and 2 (see Fig. 2).

For the equivariant parameters, let �n = [0,−�ui+1], one observes that

det[�v, �v′, �n] = det

(
1 1 0

−�L1 −�L2 −�ui+1
)

= det

(
0 1 0
�ui −�L2 −�ui+1

)
= 1.

Then from the recipe (1.5) for ε, ε′, one gets

ε = det[�n, �R, �v′] = R̃2 × �ui+1,
ε′ = det[�v, �R, �n] = −R̃1 × �ui+1 = R̃1 × �ui−1 + ZR̃1 × �ui .

From this we see that the partition function receives one copy of the perturbative
Nekrasov partition function for each corner of the toric moment cone, or for each closed
Reeb orbit, with the expected equivariant parameters

� = ( β

2π
x
∣∣ β

2π
ε,

β

2π
ε′), �′ = ( β

2π
(R1 − x)

∣∣ β

2π
ε,

β

2π
ε′).

If we adopt the second factorisation of the triple sine (A.10), wewill get the following

Z pert =
∫

t

da e
− 8π3r

g2YM
� Tr[a2] ·

n∏
i=1

(
det′ad j

(
i

βi
2π a

∣∣ βi
2π εi ,

βi
2π ε′

i

)(
a→−i R1−a

))1/2
n∏

i=1

(
detR

(
i

βi
2π (a+m−i R1/2)

∣∣ βi
2π εi ,

βi
2π ε′

i

)(
a+m→−a−m

))1/2
(4.18)

where the index i runs over all the n closed Reeb orbits. This way of writing the factor-
ization, though involving a square root, is manifestly symmetric under R → R̄.

4.3. Collection of the Bernoulli Polynomials. In this section we collect the Bernoulli
polynomials left over from (4.12). The Bernoulli polynomial B3,3 is defined in (A.8).
From the contribution from line k to line k + 1, one receives

−π i

6
B3,3

(
x + (R̃1 × �uk)

∣∣R̃1 × �uk+1, R̃1 × �uk, R
1)

= π i

6
B3,3

(
x
∣∣R̃1 × �uk+1,−R̃1 × �uk, R

1), (4.19)

where (A.9) is used.
We collect the x3 term first

coef of x3 = π i

6

1

R1(R̃1 × �uk+1)(−R̃1 × �uk) .
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k + 1

k ·R = 1/2

Fig. 6. The big triangle is the face 1, and we are interested in the area enclosed on face 1 by three planes:
�y· [0, �uk ] = 0, �y· [0, �uk+1] = 0 and �y· �R = 1/2

The right hand side is actually proportional to the area of the part of a face (face
1 in this particular instance, see Fig. 2) bounded by the three planes �y· [0, �uk] = 0,
�y· [0, �uk+1] = 0 and �y· �R = 1/2, �y ∈ R

3, see Fig. 6.
Indeed, the area is given by the expression

A = 1

8

|w2| det[w1, w3, w2]
det[w1, w2, �R]· det[w3, w2, �R] ,

where w1 = [0, �uk], w2 = [1,−�L1], w3 = [0, �uk+1].
Working this out, we have

A = 1

8

|[1,−�L1]|
(R̃1 × uk)(R̃1 × �uk+1) .

Coming back to the coefficient of x3, summing over k we get

coef of x3 = −4π i

3R1

n∑
i=1

1

|�vi | Ai ,

where Ai is the area of face i topped off by the plane �y· �R = 1/2, and i runs over all
faces.

We collect the x2 term next

coef of x2 = −π i

4

R1 + R̃1 × (�uk+1 − �uk)
R1(R̃1 × �uk+1)(−R̃1 × �uk)

= π i

4

( 1

(R̃1 × �uk+1)(R̃1 × �uk) +
1

R1(R̃1 × �uk) − 1

R1(R̃1 × �uk+1)
)
.

The last two terms will drop once we sum over all k (using again (4.5)). and summing
over all k, one gets

coef of x2 = 2π i
n∑

i=1

1

|vi | Ai .

For the x1 term, we get (remembering the extra contribution from (4.13) and (4.10))

coef of x1 = π i

12

( ω1

ω2ω3
+

1

ω1

(ω2

ω3
+

ω3

ω2
+ 3

)
+ 3(

1

ω3
+

1

ω2
)
) − π i

R1
,
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where ω1 = R1, ω2 = R̃1 × �uk+1 and ω3 = −R̃1 × �uk . Taking the sum over k, the last
term will drop, and the first term has been dealt with above. For the middle term, we
only need to investigate the following

∑
k

(
− 3 +

R̃1 × �uk+1
R̃1 × �uk +

R̃1 × �uk
R̃1 × �uk+1

)
.

Using (4.14),

R̃1 × (�uk−1 + �uk+1)
R̃1 × �uk ∈ Z

if k − 1, k and k + 1 are in the same wedge. Otherwise, if k separates W1 and W2 one
gets

R̃2 × �uk+1
R̃2 × �uk +

R̃1 × �uk−1

R̃1 × �uk = −R̃2 × �uk−1 + R̃1 × �uk−1

R̃1 × �uk + Z = R1

det[�R, �v1, �v2] + Z,

where (4.15) is used. And one recognize the last combination as proportional to the
circumference of the closed Reeb orbits at the corner of the intersection of faces 1 and
2. In total the x1 term gives

coef of x1 = π i

12

(
− 8R

1
n∑

i=1

1

|�vi | Ai − 1

2π

n∑
i=1

βi − c

R1
− 12

R1

)
,

where the undetermined integer is named c and it will be shown to be −12 at the end of
this section.

Finally we come to the x0 term. One might wonder why do we bother with this since
it is just a constant and we have been discarding constants all along, but the point is that
the same type of terms appearing here will appear in the asymptotic behaviour of the
partition function where they will be important. The B3,3 has the constant term

coef of x0 = −π i

24

(
3 +

ω1

ω2
+

ω2

ω1
+

ω2

ω3
+

ω3

ω2
+

ω3

ω1
+

ω1

ω3

)
,

with the same ω’s as above.
Taking the sum over k one gets

π i

24

(
R1

2π

n∑
i=1

βi + c
)
.

To summarise the collection of Bernoulli polynomials gives (with c = −12)

π i
( − 4x3

3R1
+ 2x2 − 2

3
R
1x

) n∑
i=1

1

|�vi | Ai + π i
( − 1

12
x +

1

24
R
1) 1

2π

n∑
i=1

βi − π i

2
.

As an aside when the cone corresponds to a CY toric manifold, which is the case we
are dealing with, one can write the sum of volume of faces above as the volume of the
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manifold X . One uses the fact that the end points of the normals �vi lie on a hyperplane,
the sum of the volume of the faces above can be written as

n∑
i=1

1

|vi | Ai = 6R
1vol

�
1/2
R

= R1

(2π)3
volX , (4.20)

where �
1/2
R is the intersection Cμ(X) ∩ {�r ∈ R

3|�r · �R ≤ 1/2}. The above relation is
derived in [31], it was also shown in that paper that

∫

C(X)1

RC(X) = (2R
1 − 6)volX , (4.21)

where RC(X) is the Ricci scalar of the metric cone C(X), and C(X)1 is the metric cone
cut off at r ≤ 1, see Sect. 2 for notations.

To apply this result to the vector multiplet, one can discard the odd powers of x , since
x = i〈a, λ〉, a ∈ t and λ runs over all the roots, so the odd powers of x cancel out. We
get

Bvec(x) = 2π i x2
n∑

i=1

1

|�vi | Ai +
π i

24

R1

2π

n∑
i=1

βi − iπ

2
. (4.22)

For a hypermultiplet with mass m, one gets

Bhyp(x) = 4π i

3

( 1

R1
(x + im)3 − 1

4
R
1(x + im)

) n∑
i=1

1

|�vi | Ai

+
π i

12

(
x + im

) 1

2π

n∑
i=1

βi +
π i

2
. (4.23)

We will now prove c = −12 (see page 44 [29]). First, one needs to establish that
given a subdivision of the plane, the number c is unchanged if one inserts further lines.
To see this, let �vi−2 �vi−1, �vi and �vi+1 be the normals to four consecutive lines such
that �vk × �vk+1 = 1, k = i − 2, . . . , i , and we can assume that �vi−1 = [−1, 0] and
�vi = [0, 1]. We insert a fifth line between i −1 and i , with normal �u, then one must have
�vi−1 + �vi = �u = [−1, 1]. Doing this would change c by

δc = R̃ × (�u − �vi−1)

R̃ × �vi − 3 +
R̃ × (�vi+1 + �vi−1)

R̃ × �u +
R̃ × (�u − �vi )

R̃ × �vi−1
= 1 − 3 + 1 + 1 = 0.

One can go further and establish that c does not change if we add k redundant lines in
between i − 1 and i . To see this, if one of the k lines we add has normal �u = [−1, 1],
then since �u × �vi−1 = �vi × �u = 1, and there are fewer lines between either �u, �vi−1 or �u,
�vi , and the proof follows from an induction. Next we show that such a line can always be
found among the k lines. Assume first that all k lines are between �u and �vi−1 (resp. �vi ),
then the last (resp. first) of these lines must have normal �u, and we are finished. In the
remaining case, that is, there are lines between �u, �vi−1 as well as between �u, �vi . Assume
that none of the k lines have normal �u, then the two lines right next to it must have
primitive normals [−a, b] and [−c, d] with a, b, c, d > 0 and a > b ≥ 1, d > c ≥ 1,
then det[−c, d;−a, b] = −bc + ad > 1 and we get a contradiction.
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It is also easy to check that for the case of three standard lines with normals [0, 1],
[−1, 0] and [1,−1], then c = −12. With this understanding, now given any subdivision
problem consisting of a set of n lines with normals �vi , i = 1, . . .n, one add to the list
three standard lines with the above normals. It does not matter if one of the original lines
happen to coincide with the standard lines, but for definiteness, let us assume otherwise.
Now one can follow the subdivision algorithm to add more lines to the list of n+3 lines.
This subdivision certainly solves the subdivision problem of the original list of n lines,
but it also can be viewed as adding redundant lines to the set of three standard lines, and
hence c = −12 from the above argument.

5. The Asymptotic Behaviour and Large N

Using the method of subdividing the moment map cone, we can now give a general
formula for the asymptotic behaviour, expressed in terms of the geometrical data from
the moment map cone.

In the two products of (3.15) and (3.16), we give x a small real part and send its
imaginary part to infinity. As usual, the infinite product is taken under the zeta-function
regularisation

log I = − ∂

∂s

1

�(s)

∞∫

0

∑
�m∈Cμ(X)∩Z3

e−( �m·�R+x)t t s−1 dt
∣∣∣
s=0

,

and log I I is obtained by replacing x = R1 − x . The summation will now be done as in
the earlier sections by dividing Cμ(X). In the i th wedge between line k and k + 1, one
gets (see 4.3 and Fig. 5 for the explanation of the notation)

log I
∣∣[k,k+1) = − ∂

∂s

1

�(s)

∞∫

0

e−(x+R̃1×�uk )t

(1 − e−R̃1×�uk+1t )(1 − e−R̃1×�uk t )(1 − e−R1t )
t s−1 dt

∣∣∣
s=0

,

log I I
∣∣
(k,k+1] = − ∂

∂s

1

�(s)

∞∫

0

e−(R1−x+R̃1×�uk+1)t

(1 − e−R̃1×�uk+1t )(1 − e−R̃1×�uk t )(1 − e−R1t )
t s−1 dt

∣∣∣
s=0

.

The large Im x behaviour is then given by taking the Laurent series of the denominator
at t = 0 up to t0 and then performing the integral. The details can be found in Sect. 6 of
[5], here we just give the result

− log I
∣∣[k,k+1) − log I I

∣∣
(k,k+1] = iπ

6
sgn(Im x)B3,3(x |ω1,−ω2, ω3).

where ω1 = R1, ω2 = R̃1 × �uk and ω3 = R̃1 × �uk+1.
To apply this result to the vector multiplet, one can discard the even powers of x ,

since x = i〈a, λ〉, a ∈ t and we shall be summing over all the roots λ, so the even powers
of x cancel out. We are left with

−(log I
∣∣[k,k+1) + log I I

∣∣
(k,k+1])

∣∣
vec

= iπsgn(Im x)

12ω1ω2ω3

(
2x3 + x(ω2

1 + ω2
2 + ω2

3 − 3ω1ω2 − 3ω2ω3 + 3ω3ω1)
)
.
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The assemblage of these contributions from all wedges is entirely similar to the treatment
of the Bernoulli polynomials in Sect. 4.3, we get

−(log I + log I I )
∣∣
vec

= iπsgn(Im x)
(( x3

3R1
+

R1x

6

)∑
i

4

|vi | Ai +
x

12

( 1

2π

∑
i

βi +
c

R1

))
.

The integer c = −12 was introduced in the previous section. One must not forget the
contribution from the factors of (4.9), which gives

− iπ

R1
sgn(Im x)x . (5.1)

and the total asymptotic behaviour from the vector multiplet is

V asymp
v (x) = −iπsgn(Im x)

(( x3

3R1
+

R1x

6

)∑
i

4

|vi | Ai +
x

12

1

2π

∑
i

βi

)
. (5.2)

For the hypermultiplet x = 〈σ,μ〉, but the weights of a general representation may
not be symmetric. Also remembering the shift x → x + R1/2, one gets

−(log I
∣∣[k,k+1) + log I I

∣∣
(k,k+1])

∣∣
hyp = iπsgn(Im x)

72ω1ω2ω3

(
12x3 + 18x2(ω2 − ω3)

−3x(ω2
1 − 2ω2

2 − 2ω2
3 + 6ω2ω3) − 3ω2ω3(ω2 − ω3) − 3

2
ω2
1(ω2 − ω3)

)
.

Now as we assemble the contributions from all wedges, the even powers of x drop again

−(log I + log I I )
∣∣
hyp

= iπsgn(Im x)
(( x3

3R1
− R1x

12

) ∑
i

4

|vi | Ai +
x

12

( 1

2π

∑
i

βi +
c

R1

))
,

The factors of (4.9) gives a similar contribution as in (5.1), and in total the asymptotic
behaviour from the hypermultiplet is

V asymp
h (x) = iπsgn(Im x)

(( x3

3R1
− R1x

12

)∑
i

4

|vi | Ai +
x

12

1

2π

∑
i

βi

)
. (5.3)

To summarise, asymptotically, the matrix model integral is given by

Z pert ∼
∫

t

da e
− 8π3r

g2YM
� Tr[a2]· eTrad j V aymp

v (ia)· eTrRV asymp
h (ia), (5.4)

with V aymp
v,h given in (5.2) and (5.3). This seems a better way of presenting the asymptotic

behaviour of the potential than the way it was done in [5], since the role played by the
geometry is more transparent now.

Using these asymptotics and following the analysis from [32] we get the free energy
at the large N limit for the vector multiplet coupled to a hypermultiplet in adjoint with
mass m

F = − log Z = −g2YM N
3

96πr
�
(1
4
(R1)2 + m2

)2
.
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for a squashed toric SE manifold. To go to the SE metric, one only needs to set R1 = 3
[31]. The result is identical to that of the theory on S5 up to a volume factor � as expected.

6. Summary

In this paper we have derived the full perturbative partition function for the SYMcoupled
to hypermultiplets on any 5D toric simply connected SEmanifold X . We have calculated
the equivariant answer, which keeps track of threeU (1) isometries on X . The actual 5D
calculation canbe reduced to the countingof holomorphic functions on the corresponding
CY cone C(X). Thus it is very natural to ask if there is anything deep in this relation
to 6D counting besides being a mere technical trick. It will be extremely interesting
to construct an intrinsically 6D theory that will do the same counting. Another natural
question is if the contact instantons (localisation locus for 5D theory) has a natural lift to
6D. Somehow it is conceivable that the counting of contact instantons on X also reduces
to some counting problems on C(X).

Another important result of this paper is the factorization property of the full pertur-
bative answer on X into copies of perturbative Nekrasov partition functions onC2 × S1,
with the twisting parameters controlled by the toric data of X . It is natural to conjecture
that the full partition function on X is given by gluing the copies of the full Nekrasov par-
tition function with the same set of twisting data as in the perturbative sector; however,
a constructive proof of this conjecture from the first principle is beyond us so far.

One is also led naturally to interpret the Nekrasov partition function associated to
C
2 × S1 as some kind of wave function associated to the theory quantized on this space,

analogous to the picture in 3d [33]. However this picture is obscured by our lack of under-
standing of surgery on 5-manifolds, it seems a very interesting direction to pursue, espe-
cially in light of a recent attempt in applying localisation tomanifoldswith boundary [34].

A puzzle that we do not completely clarify is the following. While proving the
factorisation, we have studied the special function SX

3 depending on X through its toric
data. When X is simply connected, the zero instanton localisation locus consists of just
the zero connection, and the answer is given in terms of SX

3 . When X is not simply
connected, one does not a priori have a Killing spinor. Moreover, we would need to take
into account all non-trivial flat connections to produce the complete perturbative partition
function. From physical considerations, one expects that the contribution of all the flat
connections together should factorise, but not individually. However, our proof of the
factorisability of SX

3 does not require the simply connectedness.Onepossible explanation
is that the contribution from the zero connection is special and factorises all by itself, but
we find this less appealing. Another explanation could be that in the absence of simply
connectedness, the 1-Gorenstein condition (1.1) only ensures c1(K ) = 0, where K is
the canonical bundle, but does not exclude the possibility of K being a flat but non-trivial
bundle. In this case, Schmude’s method in computing the super determinant has to be
modified since it relies on using the holomorphic volume form. We plan to investigate
the localisation for non-simply connected manifolds and the corresponding factorisation
properties in a separate paper.
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A. Special Functions

A.1. Definitions of special functions. The special function (x |a1, . . . , an)∞ was intro-
duced in [30]. It is defined differently in different domains

(x |a1, . . . , an)∞ =
∏

i1,...,in≥0

(
1 − xai11 . . . aik−1

k−1 a
−(ik+1)
k . . . a−(in+1)

n

)−(−1)n−k

,

|a1| < 1, . . . , |ak−1| < 1, |ak | > 1, . . . , |an| > 1. (A.1)

This function is symmetric in the n arguments ai , but it is not defined if any |ai | = 1.
These functions enjoy the property

(x |a1, . . . , ar )∞ = 1

(a−1
j x |a1, . . . , a−1

j , . . . , ar )∞
. (A.2)

Often we will use the short hand

(e2π i z |e2π iω1 , . . . , e2π iωn )∞ = (z|ω1, . . . , ωn). (A.3)

One needs to remember that when using the latter notation, the function is periodic
under shift by an integer of any of the arguments.

Lemma A.1.
(x |a, b)∞
(x |a, ab)∞

= (x |b−1, ab)−1∞ . (A.4)

Proof. We prove the lemma case by case, first let |a| < 1 and |b| < 1, then

(x |a, b)∞
(x |a, ab)∞

=

∏
i, j≥0

(1 − xaib j )

∏
i, j≥0

(1 − xai (ab) j )
=

∏
i≥0, j>i

(1 − xaib j )

=
∏
i, j≥0

(1 − xb(ab)i b j ) = (xb|ab, b)∞ = (x |ab, b−1)−1∞ .

If instead |a| < 1, |b| > 1 but |ab| < 1, then

(x |a, b)∞
(x |a, ab)∞

= 1∏
i, j≥0

(1 − xaib− j−1)
∏

i, j≥0
(1 − xai (ab) j )

= 1∏
i≥0, j≤i

(1 − xaib j )
= 1∏

i, j≥0
(1 − xb−i (ab) j )

= (xb|b, ab)∞ = (x |b−1, ab)−1∞ .

But if |ab| > 1

(x |a, b)∞
(x |a, ab)∞

=

∏
i, j≥0

(1 − xai (ab)− j−1)

∏
i, j≥0

(1 − xaib− j−1)
=

∏
j≥0,− j−1≤i<0

(1 − xaib− j−1)

=
∏
k,l≥0

(1 − xa−k−1bk+l+1) = (xb|ab, b)∞ = (x |ab, b−1)−1∞ .

By switching the role of a, b, ab one can obtain the other cases ��
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We will also make use of the multiple Gamma function, defined as a ζ -regulated
product

�r =
∞∏

n1,··· ,nr=0

(
n1ω1 + · · · + nrωr + x)−1, (A.5)

the domain of definition is that all ωi ∈ C should lie on the same side of some straight
line through the origin and x ∈ C.

The multiple sine function is defined as

Sr (x |ω1, . . . , ωr ) = �r (x |ω1, . . . , ωr )
−1�r (

r∑
i=1

ωi − x |ω1, . . . , ωr )
(−1)r . (A.6)

The multiple sine function has an important factorisation property, see property 5 in
[30], we shall only give the the case r = 3

S3(x |ω1, . . . , ωr ) = e− π i
6 B3,3(x |ω1,...,ω3)

(
e
2π i x

ω1
∣∣e2π i ω2

ω1 , e
2π i ω3

ω1
)
∞

(
e
2π i x

ω2
∣∣e2π i ω1

ω2 , e
2π i ω3

ω2
)
∞

(
e
2π i x

ω3
∣∣e2π i ω1

ω3 , e
2π i ω2

ω3
)
∞,

(A.7)

or one may have the factorisation

S3(x |ω1, . . . , ωr ) = e
π i
6 B3,3(x |ω1,...,ω3)

(
e
−2π i x

ω1
∣∣e−2π i ω2

ω1 , e
−2π i ω3

ω1
)
∞

(
e
−2π i x

ω2
∣∣e−2π i ω1

ω2 , e
−2π i ω3

ω2
)
∞

(
e
−2π i x

ω3
∣∣e−2π i ω1

ω3 , e
−2π i ω2

ω3
)
∞.

where B3,3 is the Bernoulli polynomial defined as

B3,3(z|ω1, ω2, ω3) = z3

ω1ω2ω3
− 3

2

ω1 + ω2 + ω3

ω1ω2ω3
z2

+
ω2
1 + ω2

2 + ω2
3 + 3ω1ω2 + 3ω2ω3 + 3ω3ω1

2ω1ω2ω3
z− (ω1+ω2+ω3)(ω1ω2 + ω2ω3 + ω3ω1)

4ω1ω2ω3
.

(A.8)

These polynomials satisfy

B3,3(z + ω2|ω1, ω2, ω3) = B3,3(z|ω1,−ω2, ω3). (A.9)

By comparing the two equivalent factorisations, one gets

e
π i
3 B3,3(x |ω1,...,ω3) =

(
e
2π i x

ω1
∣∣e2π i ω2

ω1 , e
2π i ω3

ω1
)
∞(

e
−2π i x

ω1
∣∣e−2π i ω2

ω1 , e
−2π i ω3

ω1
)
∞

· (cyc perm in ω1,2,3).

So one may also write the factorisation as

S3(x |ω1, . . . , ωr )

=
((
e
2π i x

ω1
∣∣e2π i ω2

ω1 , e
2π i ω3

ω1
)
∞· (e−2π i x

ω1
∣∣e−2π i ω2

ω1 , e
−2π i ω3

ω1
)
∞

)1/2
(cyc perm in ω1,2,3) (A.10)
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Im i+1

i+1

ui
i

j

j+1

Fig. 7. The black line is Im �r , for the lines � j above the dotted line, its normal satisfies Im �r × �u j > 0

without the Bernoulli polynomial but at the cost of having a square root. One can use
(A.2) to rewrite the above as

S3(x |ω1, . . . , ωr ) =
((
e
2π i x

ω1
∣∣e2π i ω2

ω1 , e
2π i ω3

ω1
)
∞· (x → −x + ω2 + ω3

))1/2
· (cyc perm in ω1,2,3).

A.2. A lemma concerning the special function. In this section we prove a useful identity,
which may be of independent interest. To recapitulate the problem, one divides a 2-plane
into a number of wedges with separating lines �i of rational slope. Assume that the
normals (counter clockwise pointing) of every two neighbouring lines form an SL(2,Z)

basis, i.e. det[�ui , �ui+1] = �ui × �ui+1 = 1 for all i . Let �r be a generic 2-vector in the sense
that its imaginary part has irrational slope. We will prove

∏
k

(
x
∣∣�r × �uk,−�r × �uk+1

) = 1 − e2π i x . (A.11)

First, we remind the reader that we are using the short hand (A.3). Moreover, one has
Im (�r × �ui ) �= 0 for all i , so the special function above is well defined. The following is
a direct proof, but it is also possible to prove this identity using (A.4) plus an induction
similar to the one used when proving c = −12 at the end of Sect. 4, which we leave to
the reader.

Proof. Consider the line on R2 perpendicular to Im �r , since Im �r is chosen generic, this
line does not land on any integral points. We will only be interested in the four �u’s next
to this line, see Fig. 7.

Let �w, �v be the normals of two lines (ordered counterclockwise), and assume first
Im �r · �w > 0, Im �r · �v > 0, consider the infinite product

P++ =
∏

�n· �w>0;�n·�v≤0

(
1 − e2π i x exp 2π i(�n· �r))

=
∏

�n· �w>0;�n·�v≤0

(
1 − e2π i x exp 2π i((�n· �w)(�r × �v) − (�n· �v)(�r × �w))

)

=
∏
i, j≥0

(
1 − e2π i x exp 2π i(( j + 1)(�r × �v) + i(�r × �w)

) = (x |�r × �w,−�r × �v)−1,
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i+1

− j+1

j

j+1

Fig. 8. One flips �u j+1, and the product is now between −�u j+1 and �u j

Similarly for Im �r × �w < 0, Im �r × �v < 0,

P−− =
∏

�n· �w≥0;�n·�v<0

(
1 − e2π i x exp 2π i(−�n· �r)) = (x |�r × u,−�r × v)−1,

and for Im �r × �w > 0, Im �r × �v < 0,

P+− =
∏

n· �w≤0;n·�v≤0

(
1 − e2π i x exp 2π i(�n· �r)) = (x |�r × u,−�r × v),

and finally if Im �r × �w < 0, Im �r × �v > 0

P−+ =
∏

n· �w>0;n·�v>0

(
1 − e2π i x exp 2π i(�n· �r)) = (x |�r × �w,−�r × �v).

With these preparations, we can finish the proof. The product from (x |�r × �ui+1,−�r ×
�ui+2) to (x |�r × �u j−1,−�r × �u j ) can be combined into a single product

P(�ui+1,�u j ] =
∏

n·�ui+1>0;n·�u j≤0

(
1 − e2π i x exp 2π i(�n· �r))−1

.

Similarly the factors from (x |�r × �u j+1,−�r × �u j+2) to (x |�r × �ui−1,−�r × �ui )

P[�u j+1,�ui ) =
∏

n·�u j+1≥0;n·�ui<0

(
1 − e2π i x exp 2π i(−�n· �r))−1

.

The factor (x |e2π i(�r×v j ), e−2π i(�r×v j+1)) can be written as

P[−�u j+1,�u j ] =
∏

n·�u j≤0;n·�u j+1≤0

(
1 − e2π i x exp 2π i(�n· �r))

=
∏

n·�u j≤0;n·(−�u j+1)≥0

(
1 − e2π i x exp 2π i(�n· �r)),

the situation is depicted as in Fig. 8, that is, one flips �u j+1 so that both �u j and −�u j+1
stays above the dotted line.
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i+1

i

− i

j

Fig. 9. One flips �ui , and the product is now between �ui+1 and −�ui

Then the combination

P(�ui+1,�u j ]P[−�u j+1,�u j ] =
∏

n·(−�u j+1)≥0;n·�ui+1≤0

(
1 − e2π i x exp 2π i(�n· �r)) = P[−�u j+1,�ui+1].

(A.12)

For the remaining factor (x |e2π i(�r×�ui ), e−2π i(�r×�ui+1)), consider the Fig. 9 and we get
the contribution

P(�ui+1,−�ui ) =
∏

�n·(−�ui )<0;�n·�ui+1>0

(
1 − x exp 2π i(�n· �r))

=
∏

�n·�ui<0;�n·(−�ui+1)>0

(
1 − e2π i x exp 2π i(−�n· �r)).

So the combination

P[�u j+1,�ui )P(�ui+1,−�ui ) =
∏

�n·�u j+1≥0;�n·(−�ui+1)≤0

(
1 − e2π i x exp 2π i(−�n· �r))−1· (1 − e2π i x )

=
∏

�n·(−�u j+1)≥0;�n·�ui+1≤0

(
1 − e2π i x exp 2π i(�n· �r))−1· (1 − e2π i x ).

Note that when one combines the two sums in two wedges, extra care is needed for
the origin, this is the reason one has an extra (1 − e2π i x ) factor above. What we get
here cancels the P[−�u j+1,�ui+1] term from (A.12), leaving us with the factor (1 − e2π i x ).
We have proved the cancellation assuming the particular arrangement of the four lines
�ui,i+1 �u j, j+1 as in Fig. 7, if they are arranged in a different relative position, the proof
still goes through with only minor modifications ��

B. A More Convenient Formulation of the Good Cone Condition

The original goodness condition of a cone given by Lerman is the following, at every
codimension-k face, the k-normals �vi1 , . . . �vik satisfies

spanR〈�vi1 , . . . �vik 〉 ∩ Z
m = spanZ〈�vi1 , . . . �vik 〉. (B.1)
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This condition is equivalent to saying that {�vi1 , · · · �vik } can be completed into an
SL(m,Z)-matrix. To see this, it is enough to consider m = 3.

At a codimension 1 face, we just have one normal, call it �v. For (B.1) to be true �v must
be primitive. This is also sufficient, indeed, suppose �v = [p, q, r ], gcd(p, q, r) = 1,
there exist two integers s, t such that sq − tp = gcd(p, q) (s, t can be found using
Euclid’s algorithm). Consider the SL(3,Z) matrix

A =
⎛
⎝ q̄ − p̄ 0

−t s 0
0 0 1

⎞
⎠ , p̄ = p/ gcd(p, q), q̄ = q/ gcd(p, q).

Clearly A�v = [0, gcd(p, q), r ]. Now since gcd(gcd(p, q), r) = 1, one can find
another SL(3,Z) matrix A′ such that A′A�v = [0, 0, 1]. Hence A′A�v satisfies (B.1), and
so �v also does. From this argument, we also see that �v can be completed into an SL(3,Z)

matrix. The above argument is quite a useful one, we restate it as, for any vector �v of
dimensionm, one can always find an SL(m,Z)matrix A so that A�v = [gcd(�v), 0, · · · , 0].

Now proceed to the codimension 2 face, which is the intersection of two codimension
1 faces with primitive normals �u, �v. One can find an SL(3,Z) matrix to put �v into
[0, 0, 1], denote by w = A�u. The span of A�u, A�v is the same as the span of [0, 0, 1]
and [w1, w2, 0], showing that gcd(w1, w2) = 1 if (B.1) is to be satisfied. Then another
SL(3,Z) transformation can put [�u, �v] into

[�u, �v] →
⎛
⎝ 0 0
1 0
∗ 1

⎞
⎠ ,

which can obviously be completed into an SL(3,Z) matrix.
With minor modifications, the proof extends to higher dimensions as well.
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