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Abstract: The local well-posedness for the Cauchy problem of a system of semirela-
tivistic equations in one space dimension is shown in the Sobolev space H® of order
s > 0. We apply the standard contraction mapping theorem by using Bourgain type
spaces X*?. We also use an auxiliary space for the solution in L> = H°. We give the
global well-posedness by this conservation law and the argument of the persistence of
regularity.

1. Introduction

We study the local and global well-posedness of the following Cauchy problem for a
system of semirelativistic equations

i0u+vVm? — Au = Auv,
idv— M2 — Av=pu?, (1.1
(u(0), v(0)) = (u, vo),

where u, v are complex-valued functions of (f,x) € R x R, 9, = 9/9t, m, M € R,
rpeC, A= 8)% = (d/dx)? is the Laplacian in R, and % is the complex conjugate
of u. Such a semirelativistic equation is regarded as a model of relativistic quantum
mechanics. The system (1.1) is a model of a couple of relativistic quantum particles
with a quadratic interaction. We recall that semirelativistic equations with Hartree type
nonlinearity are regarded as models of Boson stars, see [4,6,13] and the references
therein.

There are some papers with regard to the single equation case of (1.1). Borgna
and Rial studied the Cauchy problem for a single semirelativistic equation with cubic
nonlinearity in [1] and they proved the existence of local solutions in H* with s > 1/2,
where HS = (1 — A)~*/2L%(R) is the usual Sobolev space. The method of proof
depends essentially on the uniform control H* — L°, that is just Sobolev embedding.
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Krieger, Lenzmann, and Raphaél studied the same problem in the massless case in
[12, Appendix D] and they proved the existence of local solutions in H'/? by using
compactness and Vladimirov type arguments [15,16,19]. We remark that the Sobolev
embedding H!/? < L fails.

In this paper, we study to what extent the Cauchy problem for a semirelativistic
equation with power-type nonlinearity is well-posed in Sobolev spaces of low order, by
which the uniform control breaks down. We study (1.1) as the Cauchy problem with a
quadratic nonlinearity, one of the simplest power-type nonlinearity. We add a remark that
Strichartz type estimates are not sufficient for a contraction argument for Cauchy prob-
lems for semirelativistic equations with power-type nonlinearity with positive exponent
unless the uniform control by H*® norm is available. The situation in which the Strichartz
type estimates are not sufficient to study the well-posedness for a Cauchy problem with
respect to the regularity threshold happens in the case of nonlinear Dirac equations in
one space dimension [3, 14]. To our knowledge, the well-posedness of Cauchy problems
for semirelativistic equations with power-type nonlinearity with positive exponent have
not been studied unless the uniform control by H* norm is available, where H* is not
the corresponding energy space. We also remark that neither can we apply the Delgado—
Candy trick which is the special technique for the Dirac equation in one dimension in
which the solution is divided into a free solution part and uniform bounded part. This
technique depends on the algebraic structure of the Dirac equation which the semirela-
tivistic equation does not have. We refer to [2,14] for the details of the Delgado—Candy
trick. Whereas, in the case where m = M = 0, the equations of (1.1) have space-time
dilation invariance under the scaling

uy(t, x) = pu(pt, px), vy(t, x) = pv(pt, px)

for p > 0. Then, H~'/? x H~!/? norm is scaling invariant. We say H~ /2 x H=1/%is
critical in the sense of dilation. It is well-known that the Cauchy problems for evolution
equations are expected to be well-posed in Sobolev spaces above the scaling-critical
regularity. So we expect the well-posedness of (1.1) can hold in Sobolev spaces with
lower regularity than the H'/? previously studied.

We apply the Bourgain method to study (1.1) in H* with s < 1/2. This method does
not use the Strichartz type estimate. This method also has been applied to the Dirac
equation and the Dirac—Klein—Gordon equation in those cases [5,7,18].

Our results are the following.

Theorem 1. Let s > 0 and let (ug, vo) € H® x HS. Then there exists T > 0 and a
unique pair of solutions (u, v) € C([0, T), H® x H?) to (1.1). For this pair of solutions,
we define the maximal existence time of solutions T (s) as

T(s) = TG, v.9) =sup{T > 0; sup (s + v(Ollr) < o0} (12
<t<

Then T (s) = T (0).

Remark 1. The definition of the maximal existence time (1.2) makes sense because of
the blow-up alternative argument. For any pair of initial data (ug, vo) € H® x H?, itis
obvious 7T'(s) < T(0). Theorem 1 implies the persistence of regularity 7 (s) > T (0).

Theorem 2. Let A and  satisfy . = ci with some constant ¢ > 0. Let s > 0. Then
the solutions of Theorem 1 extend globally and satisfy (u,v) € C(R; H* x H) N
L®R; L? x L?).
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We prove Theorem 1 by a contraction argument based on the Bourgain norm in X*-?.
We also use the auxiliary norm in Y* defined below especially for the case s = 0. We
give a bilinear estimate by means of those norms, which is applied to the arguments
of the well-posedness and the persistence of regularity 7' (s) = 7 (0). Particularly, we
prove that the H* norms of the solutions never blow up before L2 norms may blow up.

The widest space L? x L? in which the well-posedness of the Cauchy problem (1.1)
is guaranteed in Theorem 1 is far from the critical space in the sense of dilation. It is
not clear whether it is optimal. We provide a counterexample for the bilinear estimate
in Proposition 3 in Appendix B to show the condition s > 0 of Theorem 1 is necessary
in the method based only on the Bourgain method at least.

The system (1.1) is also regarded as a semirelativistic approximation of the
Schrodinger system

2m

i0u + I Au = Auv,
(1.3)

10V + 35 Av = wu?,

where o; € {—1, 1}. We refer the reader to [8-11] for recent results on the Cauchy
problem for (1.3). In the case of the Cauchy problem in L? x L? for (1.3), the signs of
o1, o7 are not essential [10]. On the other hand, in this paper the combination (o7, 02) =
(1, —1) or (—1, 1) is essential in (1.1) in connection with the quadratic interactions on
the right hand sides as far as one tries to apply the Bourgain method in L2 x L?. For other
cases, see Remark 4. We also observe that it seems difficult to close our contraction map
by using only X*” norms in the case s = 0. In Appendix B, we prove the fact that the
bilinear estimate with X% norms fails. If s > 0, we give a simpler proof which ensures
the contraction argument depending exclusively on X** norms.

Under the constraint A = cjt, we have the following conservation law of charge,
namely, the conservation law of the L? norm;

2 2 2 2
w72 +cllv@liz2 = lluollz2 +cllvoll7- (1.4)

for any t € R. Equation (1.4) can be shown by an approximation argument. Then we
have the global existence of the solutions in L2, and also H®, s > 0, since T(s) = T(0)
in Theorem 1. Also we can show (1.4) by the argument by one of us [17], which need
not take smooth approximation of solutions. In Appendix A, we give the proof of the
charge conservation law with weak solutions guaranteed in X 0_’1/ 2% Xg’l/ 2,

We introduce some notation to be used below. For a function u of two variables (time
and space), §[u] denotes the Fourier transform in space variable x and u denotes the
Fourier transform in space-time variables. We also write f for the Fourier transform of
a one-variable function f. For m,t € R, U,,(t) = exp[—it~/m? — A] denotes the free
propagator for the semirelativistic equation

iov —vVm? — Av=0.
Fors € R, HS = (—A)™/2L%(R) is the homogeneous Sobolev space of order s. For
a,b € R,a Vv banda A b are the maximal and minimum, respectively. For two normed

spaces X and Y, we define anorm | - ||xny as

lallxny = llallx V llally.
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Form,a,b e R, Ty € R,and T > 0, we define Bourgain norms

lull oo, = |(6)°(x £ V2 + 820z, 6|

2 9
1212

m

w'(t,x) =u(t,x)on [Ty, To+ T] x R, ]

el ys.0 =inf { ||| s ;
Xon£T0,To+T1 ] Xz supp u’ C [Ty — 2T, To +2T] x R

where (x) = 1 + |x|, and auxiliary norms

lullys,, = &) (c £ Vm?+82) "7

9
LFL

w'(t,x) =u(t,x)on [Ty, To+T] x R,
Ynt " supp u’ C [Ty — 2T, To +2T] x R ‘

lullys, , 170,70+ = inf { |

We note ”u”Xf,;f’i = ”u”Xff; and ||u||Y;Li = ||u||y;l; for any s, b, m € R. In addition,

we abbreviqte these spaces as : X ib = X(S):l:’t, Yi = Y; .. In our proof, the following
space is basic for the pair of solutions (u, v);

XS5BTy, To + T1 = X5P[To, To + T1 x X5 [T, To + T

We use X*-°[Ty, Ty + T] for the proof of Theorem 1.
Let i be a cut off function, namely, a smooth function with 0 < ¢ < 1, ¥ (¢) = 1 if
[t] < land y(¢) =0if |[t{| >2.For T > 0, Y7 (t) = w(T_lt).

Remark 2. For s,b > 0, T > 0 and m, Tp € R, function space Xf,;{’i[To, To+T]isa
quotient of a closed linear subspace of a weighted L?(R?) by another closed subspace.
Since, for s, b > 0, functions whose support is restricted on a closed subset of R x R
compose a closed linear subspace on X f,;f’i[To, To + T] because L2(R?) is continuously
embedded into them. Then || - || XSb, [Ty, Tos T
> i A os
a Banach space as long as for s, b > 0. However, we use the notation of || - || X5b[To. To+T)
even if b < 0. We also use the notation || - ”Y,i,,i[To,To+T]’ even when || - ||Y,i,,i[To,To+T] is
only a semi-norm.

| is a quotient norm and Xf,fi[To, To+T]is

We give a brief outline of the remainder of this article. We prepare the linear and
bilinear estimates in Sects. 2 and 3, respectively. We give the proof of Theorem 1 in
Sect. 4. We describe the direct proof of the L conservation law (1.4) in Appendix A.
We give a simpler proof of the local existence in the case s > 0 and we show that the
bilinear estimate fails with s = 0 in Appendix B.

2. Linear Estimates

Here we collect some basic estimates. We consider the scalar equations

i0u FvVm? — Au= f(u), 2.1)
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where u and f are complex-valued functions. The Cauchy problem for (2.1) with initial
data u (0, -) = uo is rewritten in the form of the integral equations

t
u(t) = Uy (Et)ug — i/ Un (£ — 1) f(u(@)dr'.
0

To state the proof of our theorems, the following basic estimates are necessary. From
now on, the letter ¥ is used exclusively for the cut-off function determined in the intro-
duction.

Lemma 1 [7, (2.19)]. Let m € R. Forany s,b > 0 and ug € H°,
1V O Un (DUl g = 1|0l 2 2.2)
In addition, forany 0 < T < 1,
IIWT(I)Um(it)MOIIX;}f S lluoll s (2.3)

Proof. The equality (2.2) is easily seen. The estimate (2.3) follows form scaling invari-
ance of H'/2. 1O

Proposition 1 [7, Lemma 2.1]. Letm € R,0 < T < 1 and let s > 0. Then

t
H Yr (1) /O Un (£t — ") F(t') di’

(2.4)

< NE s )
o S I ”X}i;,il/zﬁY,i,,i’
m,+

for F e X3, M2 NY3 o Inaddition, let § > 0 and b satisfy —1/2 < b—1+8 < 0 < b.

Then

t
H Vr (1) /0 Un (£t — ) F(t') di’

S T5||F||Xx,1;i_|+s (2.5)
Xon e "

for F € Xf,;{’;“a.

Lemma 2 [7, Lemma 2.2]. Let m € R.If F € Y, 4, then JoUn(- = thF)dt' €
C(R; H®) and it satisfies the estimate

To extract a positive power of T, we use the following lemma.

/ Un(E( — ) F(&)de’
0

SIFlys .
C(R;HS) '

Lemma3 [7, Lemma 3.1]. Lets e R, 0 < b < b, T > Oand let f € X5 satisfy
suppf C [T, T] x R. Then

1o STV PN o (2.6)

where

b —b if b <1/2,
y',b)y=310 =) —b) if b =1/2,
1/2 —b/2b if »>1/2

with ¢ > 0 sufficiently small.
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3. Bilinear and Trilinear Estimates

In this section, we derive nonlinear estimates for X, i and Y, . by the method proposed
in [18]. Due to the next lemma, we may putm = 0 ‘without loss of generality.

Lemma 4. For anym, M € R, Xm e M + Yo 1 = Yy, 4 with equivalent norms.

Proof. The lemma follows from the following inequalities

(v £ m? +€2) 1. (v £ Vm2+€2) — (v £ /M2 +£2)

(r:l:\/W)_ (r:l:\/7+§2)

Ir £ Vm? +87) — |t + VM2 + 2]
1::|:\/7+§2

1+|m— M|.

=1+

IA

In addition, we need the following bilinear estimates for Sobolev norms.
Lemma 5. Let «, B, y € R. Then the inequality

luvll g S Null gellvliay

holds if and only if

a+B+y > and a+p8, B+y, y+a >0,

1
2
or

1
a+,3+y>§ and a+8, B+y, y+a>0.

Lemma 6. Let p > 1 and let o, B, y > 0 satisfy a + B+ y > 1/p. Then there exists a
positive constant C such that the inequality

Iz +81)"f * gllr < Cl(T+82)F Fllp2 (T +83)" gl 2

holds for any real numbers §1, &2, 83 and any f, g such that all the norms on the right
hand side are finite.

Proof. By the Holder and Young inequalities,
Iz +80) " fxg(@ll e SIS * gl Lpasserssen
< 6z + 82 F@ll 2T +83)7 gDl .2
from which we obtain the lemma. O

For s > 0, we define A(s) as

0 if s <172,
() = 1
(s) [s—1/2+8 if s>1/2, G-

where ¢ > 0 is sufficiently small. Here we state our main nonlinear estimates.
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Proposition 2. Let s > 0 and 0 < p < 1/2. Then the inequality

luvll gs 12y S Nutllgroraz N0l gsao—o + lull grw.z-p 0l g2 (3.2)

)l(s)’l/Z and v € Xiln.

holds for any u € X
We remark that the regularity A(s) in the both terms of u on the right hand side

is less than the regularity s on the left hand side. Therefore, the estimate (3.2) with
s > 0 does not follow directly from (3.2) with s = 0 and the Peetre’s inequality

(S)x/ N n)s, + (n)s/) for s’ > 0. We can exchange the smoothness with regards to
the space-time variables into the smoothness with regards to the space variable by using
(3.4) from the nice combination of signs =& in (3.2). This technique is found in Lemma
5 of [18].
The symmetry inequality
luvllygsm12pys S Nl groarn vl gso-e + llull gro2-p 0l g2
holds by (3.2) with taking complex conjugate of u# and v.
Proof. Tt is enough to show
luvll gs.-12 S Mull g2 W0l gsaz=p + lutll gacoiz=p 0l go1r2
and
luvllyy S llull ooz ol gsaz=p + Nl grora2- [0l o2
Let
Mt & 0.m) =t +[El| V|t —o =& =nl| Vo —nll. (3.3)
Then the triangle inequality implies
1E1+1& —nl+Inl =3M(7,§,0,n). 34

Also, we decompose the integral region as follows;

A ={(.E0.n); M(t.E,0.n) =t +E]|},
Ay={(r.&,0.m); M(z,E,0.n) = |t —0o —§ —nl|},
Az={(r.6,0.n); M(t.E,0,n) = |0 —Inl|}.

(a) X norm estimate with s > 0.
By the Minkowski inequality,

H <s>8//<r +1E) T2 x4, (T — 0, & — 1) V(o, n) dodn

2
121}

’

< H / €21, ) dn

2
Lg
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where

L&, n) = H/

S I R DREICA )

it —0,& —n) o, n)( do

L2

(r — In)/*o(z, )

L3 L3

by Lemma 6. Since

)

N =

1

——S5s+A(s)+s >
5 s (s)+s >
1

——s+A 0,
> s (s) >

and Lemma 5,

H / )21 (&, ) dn

S Mell yooraz=o 01l sz
L} - -

Similarly, for j =2, 3,

H € [[ (4160 2, e - 008 — ) T ) dod

1217

’

< H / (€121, m) dn

2
Lg

where

B = (@417 [ (e —a =15 =) [ - 0.8~ ) T, )| do

L3

N

[CEPIREECND

| = I — ) iz s = | L

& ) = |(z+ |s|>—1/2/<o = n) "2tz = o, = n) T, )| do

L2

(v — In)*o(x, n)

< |1 —an'2 i -y

b
L L

by Lemma 6. Then, we obtain by Lemma 5

H / (&) V2 158, mdn

L S lullgrorarn vllysan=p + lull yao.ao-o 10l 72
é

(b) X norm estimate with s = 0.

3
IIlelxg,fl/z < Z
Jj=1

//<M(r, E.oom)Pxa (T +IENT V(M (e, E 0 m) 2

U(t — o0, —n)v(o, n)dodn

2
L2113
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2/\

3
Z/ Ay A & ) dn
L2
Jj=1 €
|

S llu

[0z vl yoar2-p + lluell yoar2-p [0l o112,
where M is defined in (3.3) and the last estimate follows from Lemmas 5 and 6.

(c) Y norm estimate with s > 0.
By the Minkowski inequality,

H(S)X//U +1&) " xa, B(x — 0, & — ) U(o, n) dodn

LIL)
S H/(f)*‘—”?h(s, mdn| .
L
where
NEm = |(r+ |&|>—”2/ it — 0, — ) 5o, )| do
< | = 1g =i |- |n|>”2
by Lemma 6. Then we obtain
H / EVPRE n dn| Sl oz vl g
L} - -
by Lemma 5. Similarly, for j = 2, 3,
H//(f +1&1) " xa, ii(r — 0,& — ) T(o, n) dodn
LIL}

< ” / &) ~127;, ) dn

9
Lg

where

hE ) = <r+|s|>—1/<r — o — g =)/

u(t —o,& —n) v(o, n)‘ do

AN

| = I — ) e, &

(T —1nl)

JE ) = <r+|s|>—1/<o—|n|>”2

it — 0, & —n)io, n)’ do|
L

< T =18 =)' /> Uz, &

[(x = )35

Then we obtain from Lemma 5

H / ()20 (€ ) dn

L S Nl grora [vllysan=p + lull yao.ao-o 10l /2.
§
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(d) Y norm estimate with s = 0.
By Lemmas 5 and 6,

| )" xas 4 ED T M 8 )

cu(t —o,& —nv(o, n)dodn

L7L

3
<2
]1

ul

/ Ay VAT ) dy

2
Lg

[ o2 vl yo.r2-p + llull yo12-p [Vl yo12 .

O
Corollary 1. Let s > 0,0 < p’ < 1/2andlet T > 0. Then
luvllys12nyy ST Ml 2 1012 3.5)
foranyu e XMY) 12 and v e X;’l/z such that supp u, suppv C [-T,T] x R.

Proof. By Proposition 2 with p > p’ and Lemma 3 with ¢ > 0 such that (1 —&)p = o/,
we obtain (3.5). O

Remark 3. Here we observe that Proposition 2 is optimal in some sense. We show the
estimates in X*? fail for s < 0 in Proposition 3 below. This is the reason why we
require s > 0 in our X** argument for the proof of Theorem 1, even though the critical
exponent in the sense of dilation is —1/2. >From the simple consideration, the X**
argument requires the following bilinear estimate

vl gt S Nl o ol o

with some b € R since the gain of regularity with respect to time-space is at most 1 from
the point of view of Proposition 1. We shall observe this inequality in Proposition 3, and
see also Proposition 6.

Proposition 3. For any b > 0 and s < 0, there exists a pair u, v € X‘i’b such that
||uv||X.;,b_| = 0. (3.6)
Proof. Suppose b > 1/2.Let0 < ¢ < —s/2 and let

1’71(7:1 5) = 171(1', é) = (.5;~'>7571/2*€<-L— _ |$|>7b71/27s.
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Ift>2,7—1<&<71+1,then
(&) ‘L’+|$|b 1// )~ s—1/2— s — ) —s—1/2—¢
o — )T T — o — 15 — )PP dodn

3
&) (0! /0 () VA =) TR = g =l = ) T2y

26/3
(é—)-S—l—zé‘(r)b—l/ dn
§/3

vV

RV

Z (02

s,b—1

This implies ujv; ¢ X~ . Moreover, suppose 0 < b < 1/2. Let b and § satisfy

0<2e<1/2-b and et
(1, &) = <é>—s—1/2—8<1, _ |.‘;_.|>—b—1/2—‘s7
Do (7, £) = <%—>—S—1/2—8 (t — |§|>_h(1’ + |%_|>_1/2_8.

Since for any real number a and b, (a + b) < (a)(b), for & > 0,

€ el [ [t -y —
(t—o —[E—n) "t —o+|§ —n))"V*"dodn
2 (r+IgN"T! //(n)‘”“(é — )P o — A
(T —o g =) dody

0
2iees ™ [T - g
2+ T2 g L (D).

Therefore, urvy ¢ Xi)’bfl. We complete the proof of (3.6). O

Remark 4. The trick of exchanging smoothness above is not applicable to the bilinear

estimate XJ7X%5? < x3P7! nor X*P X% <5 X*P7! For example, the estimate
s,b—1

x5P x5 s x5 corresponds to the investigation for the Cauchy problem

i0u+vm? — Au=\uv,
idv+vVM2— Av=pu?,
(@(0), v(0)) = (uo, vo).

Indeed, forany s < 1/2and b € R, let i = (v + &)~0~1(£)=5~1/2 Jog(£)~3/*. Then
ut € X5 and

sl o1 = Nt || ys.p-1 = 00
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These estimates are calculated as follows;

(€)S (z +1&pP! //<r —o+1E—n) "o + )0t

||M+M+||Xibfl =

(g =SV 2 loglg — )Ty TV 2 10g(n) T 4 doan

L1212
& —n+1
> <s>S<r+s>b—1// (t—o+E—n o +n~o7!
0 J—n—-1
(g =SV 2 log(g — )Ty TV 2 10g(n) T 4 doan
L2 L2
E>27—E—1<t=<-¢&+1
&
2 &)1 10g(6)3/4 / (=" log(n) = dn
70 L522
> &)~ 10ge)7 12|,
LE.,
luasulyso1 = <s>s<r+|s|>b*1//<r—a+|s—n|>*‘7*1<a—|n|>*‘7*1
(g =)V 2 1og(g — )Ty TV 2 10g(n) T 4 doan
L2172

v

0 —n+1
"<5>S<r+s>”—l/§/ r—oag—n e
)

(g —m) S 2 logig — )Ty TV 2 10g(n) T 4 doan

2 2
LisoLlZs 1<r<—ta1

= 00,

&
> H<s>—1/210g<s>—3/4 /0 iy~ tog(m ~4dn

2
Leso

and the remainders are estimated similarly.

4. Proof of Theorem 1

We separate the proof for the existence and for the persistence of regularity.

4.1. Proof of existence. Lets > 0, (ug, vg) € H* x H® andlet0 < T < 1. We define
D (u,v) — (D1(u, v), Pr(u,v)) as

’(cbl(u, V)(0) = Up (=g — ik [y Un(t' — 1) u(@) v(t)dt',
(@2(u, v) (1) = Uy (t)vo — ip fo Up(t — 1) u(t)dt’.

We also define a metric space

4.1)

B*(R,[0,T]) = {(u, v) € XVV2[0, T [, )| ysa 20,77 < R}
with metric

d*((ur,v1), (uz,v2)) = (ur, v1) — (u2, v2)|l xs.1/2[0,7]

= llur = wallys.12gg oy + 101 =02l go1r2p6 7y -
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We see (B*(R, [0, T']), d%) is a complete metric space for any s > 0. We prove that @
is a contraction map on B* (R, [0, T']) for sufficiently large R and sufficiently small 7'.

Let (u,v) € B5(R, [0, T]) and let (u’, V) € X512 Xi’l/z satisf
y

u'=u on [0,T] xR, suppu’ C[-2T,2T] x R,
v =v on [0,T] xR, suppv’ C[-2T,2T] x R.

Then @1 (u, v) and @;(u, v) are defined on [0, T'] x RR. Moreover,
t t
V(1) / Un(t' =)y u' ) v'(t') di’ = / Un(t"— 1) u@’) v(t"dt',
0 0
t t
Ur (t)/ Up(t —t) u' (/) di’ = / Uyt —t") u(@)? dr’
0 0

on [0, T] x R and their supports are contained in [-27, 27'] x R. Then,

1Py G, V)l gs1r2( 7y

t
A/ Un(t' = 1) u(t) v(t)dt'
0

< NUp(—1) ugll os.12 + .
- X T .
-0 x*10,7]

By Proposition 1,
1Um (=) woll ys12g 7y < W7 @OUn (=) uoll 12 < Nluol s

By Proposition 1 and Corollary 1, for 0 < p < 1/2,

t
H/ Un(' =) u(@) (') dt’
0

x=1210,7]

t
Yr (1) / Un(t" — 1) u'(t) v'(t") dt’
0

< inf
u' v Xs_,l /2

< inf Wv/’
~ o x5 2y

< int 7 e ]

< TP ) i P p2
S TP Mullgs12gg py Wollysig 7y = TOR

for 0 < p < 1/2. Similarly,

2
||¢2(14, U)”Xi’]/z[O,T] fs ”‘UO”H& + TPR .

This implies that @ is a map from B*(R, [0, T']) into itself for some R and T'. Moreover,
let (uj,v;) € B(R,[0,T]) for j = 1,2 and let (u/j, v}) € X* x Xj satisfy

u’j =uj on [0,T] xR, supp u/j C [-2T,2T] x R,
vy =wv; on [0, T] xR, suppv} C [-2T,2T] x R.
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We have

@1, vi) = Prluz, V)l o2 7

S, inf [”(“1 ) v} ||X5 “ays H uy (v = x“*‘”zﬁYS]

ul,uz,vl
P . ! / _ 4
<T /in/f ) {||U1||Xi.1/2 ”ul u2||Xil/2}
1 uz,Ul

. / / /
+ TP , lr/lf , {||u2||Xil/2 HUI — UzHXi,Iﬂ}
20N

S TPR|[(ur, v1) — (2, v2)llysi2p0,77 -
Similarly,
[P2(ui, vi) — P2(u2, v2) |l s.1/2
+

< TP / /

ST 1/nf/ ”u1+u2|
1542

S TP lup +us| X512

x*1/2 ”u/l - u/2| x*1/2

0.77 1u1 —u2llys.12
S TPR (1, u2) — (i, v2)llysir2p0,77 -

[0,T]
Therefore @ is a contraction map on B*(R, [0, T']) with sufficiently small 7.

4.2. Proof of persistence regularity. Let s > 0 and let (1o, v9) € H® x H'. By the
previous subsection, we have the maximal existence time T(s’) > 0 for 0 < s’ <'s
such that there is a unique pair of local solutions (u, v) € C([0, T (s")), HY x HS,).

Since s > A(s), we have T (s) < T (\(s)), where A(s) is as in (3.1). We show that if
T(s) < T(\(s)), then

sup  |[(u, v)() | gsxHs < 00, 4.2)
1€[0,T(s5))

namely, T(s) = T(A(s)).Let T} =1 A w For sufficiently large c, we define
R > 0 as follows

R = 2c(1 + sup I (u, v)(t)lle)XHm)) < 0.
[

1€[0,T (s)+T1]
We have 0 < 75 < T such that forany 0 < Ty < T(s) andany 0 < T < T, @
is a contraction map on B*S)N (R, [To, To + T]). Let 0 < p < 1/2,and let (u;, v;) €
1 2 A(s5),1/2 172 A(s5),1/2
B*O(Ry. [To. To + T). Letu/; € X172 u e XXV e X312 00 e X300V
satisfy

u’jzuj on [To, To+T] x R, suppu’jc[To—ZT,To+2T]xR,
wi=uj on [Ty, To+T] xR, supp uj C [To — 2T, To +2T] x R,
v;. =v; on [Ty, To+T] x R, supp v} C [Ty — 2T, Ty +2T] x R,

v;’ =vj on [Ty, To+T] xR, supp uy C[To—2T, To+2T] xR
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for j =1, 2. Then by Proposition 2, for 0 < p < 1/2,
IPr@ur, vOll sz gy < WUm (OO g2 7o)

+

t
A/ Un(t' — Huy(t) vi(t) dt’

To

X527y, To+T]

. /
< cllu(To)llps +cT” 1,1{15,1 et 1l a2 o g2

< cllu(T)llas + TR il gs 12y -
Similarly,

P21, v o120 7wy S NUMOVTN o127 7y

+

t
u/‘UMU—ﬁﬁum/Pdﬂ
T

0

X3V 1y, 1+
< cllv(@)llas +cT? inf [u{ll oz llul s
u’l’ u’l XZ X

< cllv@)llas +cT? Rullurll ysarzg 7oy
Let
Ra(To) = 2¢{1 + u(To)ll s + |v(To) || s}
and let
T3 = To A (8¢R) VP A (T (s) — To).
Then for 0 < T < T3, @ is amap on
B*O(Ry, [To. To+ T1) N B* (Ry(To). [To. To + T1).

In addition,

[P, vi) = Prluz, vl ys12 iz 7y

t
< / Un (' — 0@ {o1 () — vat)} dr’
T X210, To+T]
t -
+ A/ Un(t' = Dua (") {ur (t') — ua (e} dt’
T X5V 110, To+T)

"

. /
<cT? H/lf7 / ||u1’||Xi(x>.1/2||v; - vé”Xi’l/z
Uy, v =

+cT? inf V5|l a2 i) — ubll 512
vy uh—ul 20x3 ! 20x%

G, vi) — (2, v2)ll sy, Te7] -

PN

=
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Similarly,

1P2 @, v1) = Pouz, V) o127, iy
<cT? ) i//nf/ , ||u/1/ + u/2/||Xx(.y).1/2 “u/l — u’2|
w s, uh -

x5 12

1
=7 G, vi) — (2, v2) | eszpgy, 7o+ -

Therefore @ is a contraction map and the pair of solutions (u, v) is guaranteed in both
X2 Ty + T and X5V2 [Ty, Ty + T). If (T(s) — To) < T A (8cR1)™'/?, then
T3 = T(s) — Tp and

sup | Ge, V| srzpr,, 7+ < R2(T0),
Te€[0,T (s)—To)

which together with Proposition 2 implies

sup {llﬁvllyj[To, To+T] + ||”2||Y;§[To, T0+T]} < cRy(Tp)%.
T€[0,7(s)—To)

Then by Lemma 2,

sup |G, v)(O) |l s xms < ¢*Ra(Tp)>.
t€[To,T (s))

Thus, we obtain (4.2) and T (s) = T (A(s)) = T (0).

Acknowledgement. The authors are grateful to the referee for important remarks and suggestions.

Appendix A: Proof of the L2 Conservation and Theorem 2

In this appendix, we prove the L? conservation for Theorem 2.

Although we can justify a formal proof of the L? conservation by the approximation
argument by smooth solutions, we give a different approach here. We derive the con-
servation laws without approximation. We derive it in the framework of the Bourgain
method, as we studied in the previous sections. For the Schrédinger equation, there is a
proof of the conservation laws in the framework of the Strichartz estimate [17]. To our
knowledge, the direct proof of conservation law without smooth approximation had not
been studied unless the Strichartz estimate holds. We have to justify each step of the
calculation. Especially we show the integrability of terms in the argument. We use the
following Lemma and Proposition for it.

Lemma 7. Let p and o satisfy p > 1 and 0 < o < 1/p. Let B, y, k satisfy 0 <
B,v.k <1/2anda+B+y+k =1/p+1/2+¢ewithe > 0. Then there exists a positive
constant C such that the inequality

Iz +81)" f g xhllr < Cl(T+82) fll2ll(z +83)7 gll 2 ll(x +84) Rl 2

holds for any real numbers 81, 82, 83, 84 and any f, g, h such that all the norms on the
right hand side are finite.
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Proof. By the Holder and the Young inequalities,

(T +80)7F g xhllyp S If % g *hlln
Sl llg %Al
S lre lghpes Ihlles
S +82)° Fll2ll( +83)7 gl I +89)hl 12,

where
1 1 1 1
— = — - i —:_+13_L’
P1 p a+B+y+k P2 2 a+pB+y+k
1 1 1 1 1 ye
—_— =+ —, — =ty - —
P3Pl P2 ps 2 a+B+y+k
1 . 1 K&
ps 2 a+B+y+i’

from which we obtain the lemma. O

Proposition 4.

| i@ = 0.6 = W0 (T 0. 8) o

S Mullyoir vl o llwll your

1/2
foranyu,v,w € Xi / .

Proof. Let

’

N, & 0.p,6)=|t|V]e—pxl§—nl|V]p£nl| V] -0 £l

Then we have |&| + |€ — 5| + |n| < 4N. We also separate the integral region as follows

B ={(t.0.&,p,n) i N(1.£,0,p,¢) = ||},
By={(t,0,6,p.,m): N, 0,p,8) =0 —p+[E—n
By ={(tr,0.&,p, ) N(t,& 0,p,8) = |pEnl}
By={(r.0.£.p.n): N(t.§,0,p.6) = |t —o £ [§]|}.

By Lemmas 5, 7 and the Holder inequality,

}.

o) o = s =T 0.0
o G e I n
a0 = p. & =, MW =0 )l pipiririn)
S @ = e £ 18 — ) e, & = w2l £ D20 il | 2,
I £ 16D 2B (. )l 2.2

<
S lullggrrz Il flwll oz
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Moreover,
lxs: ()"0 = p. & =B MW(T =0 Oy 1)1

S e AT o — p £ 1E -2
“u(o —p, & —no(p, Nu(r — o, S)”LIL‘;L},L},L%

S = e £ 1 — ) A & = il £ DT e g
T £ 18D 2B (T, )l 2.2
S lullyorrllvllyorn wllgoie.
The other integrations are estimated similarly. O

Then we show the charge conservation with Proposition 4.
Let (ug, vo) € L*> x L? and let T > 0 sufficiently small. Then we have a pair of

extensions (u,v) € X_ 0.172 Xy 0.172 of the solutions for the Cauchy problem (1.1) such
that for any ¢ € [0, T,

t
u(t) = Up(—t)ug — i/\/ Un(t' — Hu()v()dr,
0
t
v(t) = Un(t)vo — ic_lx/ Un(t —tu')?dr’.
0

Then

w72 = 1 Un(@ull;

/ 2
= llup —ix / U (Hu(tv(t)dt'
0 L2
1 —
= lluo]2; —2Im (ﬁo, x /0 8o [ Un@uyo ()] dr’)
2

t
A / S [Un (YRG0 d1
0

s

where (-, -) is the L2(R) inner product. We have
! itt] — 1 4
/ Fdr' = / ST L iy
0 T
for any f € L' such that f € Ll Moreover, the inequalities

1S Bavlll oy = llull 22 vl 22 < Nlullyoar2 vl yorr2

hold by the Holder inequality and

//// exP[”]_ (o —o,n—&)v(p, Ni(o — -, &)dédodndp € L'
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by Proposition 4. Then

2

t
”x / Fo [Un(Hua@ (] dt’
0 L

t t
= 2Re// AT [wv](t) A3y |:/ Uy (" — t’)ﬂ(t”)v(t”)dt”:| dr'de
0 0

t
— 2m / /O A2 [ )] B Om (=110 = 5 (@] i d
t
= 2Im (120, A/ Sx[Um(t’)u(t’)v(t/)]dt/)
0

+2Im A///// %ﬁ(p —o,n—8)v(p,Nu(c —1,&)drdédodndp.
i

Finally, we obtain

2 2
lu(@)l72 = lluollz2

= 2Im A///// exp[ltt] — l —o,n—8u(oc —1,8)v(p, n)dtdédadndp.

Similarly, we have

t
@112, = U (—1)v]25 = Jvoll2 — 2Im (ﬁo, % /0 5 [UM(—/)u(r/F]dﬂ)

t 2
I / 3, [UM(—t/)u(t’)zdﬂ]
0

L2

and

_ t
7 / 3, [UM(—t/)u(t’)Z] dt
0

L2

t t
= —2Im / / I [u(@)?] B [iclx / UM(t/—t”)u(t”)zdt”]dt’dé
0 0

t
— 2Im (ﬁo, I / 3. [UM(—I/)u(t/)z] dt’)
+ - Im A///// exp[ltr] — 1 —p, & —nulp,nv(c —t,&)drdédodndp.
Then

2 2
125 — o2

e explitt] —1_ _ -
¢ Im A Tu(o —p,&E—nu(p,n)v(c —t,&)drdédodndp.
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In addition,

Imk///// =P m] -1 (o —p, & —i(p, Nv(o — 7, &)drdédodndp

— Imx / / / / / °Xp[l_(”g_] G —p E =M. 30 — 7. E)dedodndpds

=t [[[[[ 22 l_(’_”i_l T+ = 0§~ Wi, ) 0o/, §)dedodndp'dr

explitt’] = ~ / /g
_Imk///// P u(p' —o’, & —nu(c’ —t/,n)v(p', §)dédo’dndp'dt
—Imk///// exp[ltt’] —1

xu(p' —o',n —§& )u(a -, &) (p', n') dE'do’dy'dp'd7’,

where p' =0 — 1,0’ =p—1,7" = —1,& =n,and ' = &. Finally we have

2 2 2 2
a2 +elo@)2, = lluol2> +cllvoll2

fort € [0, T].

Appendix B: Proof of Local Well-Posedness Independent of Y Norm

In this Appendix, we clarify why the auxiliary space Y is important in our argument.
We give an alternative proof of the existence of solutions for s > 0, without using the
auxiliary norm Y. On the other hand, we shall explain why we need the norm Y at least
in our argument in the case s = 0. It is important that § (s) in this proof below is strictly
positive. We exchange it into the positive power of 7. Then the contraction argument is
completed when T is sufficiently small.

For the alternative proof, we use the following proposition.

Proposition 5. Let ¢ > 0, p > 0, b, § € R satisfy

1
l+b—5>§+8+,0,

b+5+e, p+é+e =<1,
b—¢e, b—p=>0,
s+e>1/2.

Then

luvllyso-1es S Nullyso Nl gso—p + el yso-o (V] ys0 (B.1)
X% X3 X377 X377 X3

foranyu,v € XfF’b

Remark 5. b =1/2,5 =0, e = 1/2 are the only numbers that ensures (B.1) for s = 0.
For detail, see Proposition 6.
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Proof. We use the same notation as in the proof of Proposition 2. Since |&|, |§ — 7], |n| <
3M(t, &, 0,n) and Lemma 6,

H@V//h+EW‘”mnmt—mé—miwwﬁwm

L21]
5”/@?8“@—n>”%m€”Kum ,
L2
&
where
m==u+mw*””/ma—ms—mammuw 2
L'[
<[ —mrEe s —nf , o - mteen] .
Similarly, for j = 2, 3,
H@f//ﬁ+ﬁwqﬁngmf—mE—WJWWﬁwﬁ
L2L}

)

§”/@V%B@—Ur”%mﬂﬂKﬂm

2
L

where

&=:w+@w””/u—@—mfmu—ms—mvwwnda

L?

N

[ — I = n)’iCe. € — )

(@ = "5 )

L? L

K3 = u+mﬁ””/ﬁu—ms—mu—mwmmmhw

L2

A

[(x = I = ) iice. & = )|

(= I3z )|

L3 L?

We obtain (B.1) by Lemma 5. O

Proof [The alternative proof of Theorem 1 for s > 0]. Let s > 0, (19, vo) € H® x H®
andlet0 < 7 < 1. Wetake b(s) =3/4A(1+s)/2 > 1/2and §(s) = 1/4As5/2 >0
for Proposition 5.

Let

||u||x”fl:bi[T0,To+T] = inf { |u']

xib w'(t,x) =u(t,x)on [Ty, To+T] x R} .

and

XSP[To, To + T = X [Ty, To + T1 x X°[To, Ty + T

We define a metric space

B*(R,T) = {(u, v) € XPON0 T ull iy gy + 101y 7y < R}
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with metric
d'((uy,v1), (u2,v2)) = ll(u1, v1) — (u2, v2) | xs.brp0, 77 -

We see (B” (R, T), d’) is a complete metric space. We prove that @ defined as (4.1) is
a contraction map on B” (R, T) for sufficiently large R and sufficiently small T'.

Let (u,v) € B(R, T) and let (u', v') € X>P®) x X3P satisfy
W =uon [0,T] xR, v =v on [0,T] xR.
We have

@1 @, V)] rs.60)0 79

t
A / Un(t' — 1) u(t’) v(e"dt'
0

X5PO0. 71
By Lemma 1,

”Um(_t) uo'lx’i»b[O’T] S ”w(t)Um(_t) M()”ng 5 ”M()”HS

By Propositions 1 and 5, we obtain

t
H / Un(t' =) u(t’) v(t) dt’
0

X/s,b(s) [0 T]

t

< inf 1/;T/ U, —t)u @) v dt

u',v 0 5P

. 8(s) 15,7 .,/
S Ml,nf, r wv XHO-1456)

. 8(s) ||,/ /
S Inf T | oo 0] 0

§(s §( 2

ST Nl ysvorgg gy 101y 7y < TP R,

Similarly,
P2, V)| s 7y S llvollzs + T R2.

Thus, @ isamap from B (R, T')to B (R, T)) forsome R and T'. Moreover, let (1, v;) €

B*(R.T)for j = 1,2 and let (u;, v}) € X" x X3" satisfy

u’jzuj on [0, T] x R, v}:vj on [0, T] x R.

Then we have
@11, v1) = @1z, V)l yrbo g 7y

< ) inf T‘S(S){“ (u’1 — u’2) vi ||X.y,b(s)—l+5(.i) + “@ (U/l — vé) ||X.y,b(s)—l+5(.i)}
'y, v) ) - -

< 7(s) : / A / r_
ST “ﬁul/zng/lvé {||U1||Xi,b(s) ||’/l1 ’42||X§b(s) + ||”2||Xi-b<S> ||U1 v2”xf;b(")}

STPOR ([(ur, v1) = (2, v2) || xseoro 1) -
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Similarly,

P2 (u1, v1) — P2 (U2, v2)ll o0

< 199 inf ””‘/1 +u’2}
uy uh

I /
Xi’b(x) up — M2| Xi'b(s)

ST |luy + Uzl s py lr = w2ll g g 7
STPOR (1, u2) — (01, v2) | ysseo.7) -
Thus, @ is a contraction map on B (R, T) for sufficiently small T. O

The following proposition implies that we can not take § > O when s = 0 in the
above proof.

Proposition 6. For any b € [0, 1/2) U (1/2, 1], there exists a pair (u, v) € X°? x x%?
such that
||uv||X0,b71 = 00. (B.2)
Also for any § > 0, there exists a pair (u, v) € X(l’l/z X X(l’lﬂ such that
||uv||X0,—1/2+5 = 00. (B.3)

Remark 6. This is the reason why we use not only the norm X ib but also the norm Y3
and support restricted functions to obtain solutions of the Cauchy problem (1.1).

Proof. Suppose 1/2 < b < 1.Let0 < 2¢ <b —1/2 and let
_ ~ _1_ _h_ _
w1 (T, &) = 01(1, &) = (&) 2 F(x — |g|) /2
Ift>2,7—1<&<71+1,then
(T +]gn>!
~//<n>—1/2—8<s — ) 2o — )TV — o — & — )PP dodn

vV

2£/3
<r>”‘/g (V2 e — )TV — g — | — Inl)" T *dy

/3
26/3

(r)b =gy =1% / dn
&/3

Vv

Z (o2

This implies ujv; & Xg’b_l.
Moreover, suppose 0 < b < 1/2. Let b and § satisfy 0 < 2e < 1/2 — b and let

(T, &) = (&) /2 (r — gy 012,
B(t, &) = ()72 (r — jg) i + g T2
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Since for any real number a and b, (a + b) < (a)(b), for &€ > 0,

Therefore usvy & X'

(z+ €)™ //(n)‘”“(é A T e e

(r—o =g —nl) "t —o+|& —nl)""/*Fdodn
S | K R R e e
At —o+]E—n) " dodn
Z(r+e)! / ) gV gy gy
Z (T +s>—b—1:;§<s>—“2 ¢ L} o(L?).

9.6=1 e complete the proof of (B.2).

Suppose 6 > 0 and b = 1/2. Let ¢ satisfy 0 < 2e < § and let

w3(t, &) = U3(1, &) = (&) "V (r — g e

Ift>2,7—1<&<7+1,then

(v + &))"+

~//<n>—”2—8<s Sy o — ) e — o — | — ) ¢ dodn

2£/3
> (r)71/2# /w 72 — T2 e — g — gl — Inl) T dy

26/3

<T>_1/2+8<§)_1_28/ dn
§/3

Vv

2 (r)~ 2

This yields uzvz ¢ Xg’h_l and we obtain (B.3). O
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