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Abstract: Non-periodic tilings and local rules are commonly used to model the long
range aperiodic order of quasicrystals and the finite-range energetic interactions that
stabilize them. This paper focuses on planar rhombus tilings, which are tilings of the
Euclidean plane, which can be seen as an approximation of a real plane embedded in a
higher dimensional space. Our main result is a characterization of the existence of local
rules for such tilings when the embedding space is four-dimensional. The proof is an
interplay of algebra and geometry that makes use of the rational dependencies between
the coordinates of the embedded plane. We also apply this result to some cases in a
higher dimensional embedding space, notably tilings with n-fold rotational symmetry.
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1. Introduction

A tiling is a covering of some space by non-overlapping compact sets called tiles. Local
rules are constraints on the way neighbour tiles of a tiling can fit together. Jigsaw puzzles
provide a graphic example, with the dents and bumps as local rules. Tilings and local
rules only relatively recently went beyond recreational mathematics. The first major
step occurred in the early 1960s, when the logician Hao Wang asked in [28] if there
exists an algorithm that decides whether any given finite set of tiles can tile the whole
plane (each tile can be used several times). His student Robert Berger gave a negative
answer in [4], with a key ingredient of his proof being the first-ever tile set that can tile
the plane but only in a non-periodic way (that is, no tiling is invariant by a non-trivial
translation). Such tile sets are said to be aperiodic. Some other examples were since
then discovered, with the most celebrated one probably being the Penrose tiles [25].
The second major step occurred twenty years later, with the ground-breaking discovery
by Dan Shechtman of quasicrystals, which are non-periodic but nevertheless ordered
materials [26]. The link with (ordered) non-periodic tilings was indeed quickly done,
with local rules modeling the energetic finite-range interactions between atoms [23].
A primordial issue in mathematical physics then became determining which type of
quasicrystalline structure can exist.

In this paper, we focus on the case of the rhombus tilings of the plane. Such tilings
can indeed profitably be seen as digitizations of surfaces in higher dimensional spaces.
Among them are the plane digitizations obtained by the so-called canonical cut and
projection method (see [5,9]). They are said to be planar and aim to model the long-
range order of quasicrystals. This connects the algebraic parameters of a plane with the
geometry of its digitization, and one of the main issues is: which planes have a digitization
characterized by local rules? Note that rhombus tilings are surely far from comprising all
the existing tilings, but they nevertheless provide a large family that can notably model
all the quasicrystalline symmetries yet experimentally observed, with the exception of
the icosahedral one (which requires rhombohedra tilings of the three-dimensional space;
we actually checked that our method extends to this specific case).

We also focus on a special kind of local rules, namely uncolored weak ones. Formally,
local rules can be expressed as a finite set of finite patterns that must be avoided (forbidden
patterns). They are colored when the same tile can appear in different colors in the
forbidden patterns, thus playing different roles. Colored local rules are more powerful
but also less realistic from the physical viewpoint (the model is even more complicated).
This could explain why uncolored ones have retained the attention of many authors.
Weak local rules have been introduced for planar rhombus tilings by Leonid Levitov in
[24], as opposed to strong local rules. Whereas strong local rules enforce a tiling to be a
specific digitization of a plane, weak ones only require the digitization to stay at bounded
distance from a plane. In other words, weak local rules allow short-range disorder (some
authors speak about bounded perp-space fluctuations).

So, which planar rhombus tilings do admit weak uncolored local rules? This had
been an issue of much debate in mathematical physics during the early 1990s (see,
e.g., [6,17–22,24,27]). Several conditions have been found, usually stated in terms of
algebraic properties of the digitized plane, but no complete characterization has yet
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emerged. At a minimum, examples of non-periodic tilings do exist (e.g., the Penrose
tilings). At the other extreme, Thang Le has proved in [21] that digitized plane admitting
weak uncolored local rules are always generated by vectors whose entries are algebraic
numbers. Let us mention, in comparison, that a plane digitization is proven in [7] to
admit weak colored local rules if and only if the plane can be generated by computable
vectors (that is, their entries can be computed to within any desired precision by a finite,
terminating algorithm).

Our results are along those lines. We rely on the notion of subperiod, which is
related to the SI-condition introduced by Leonid Levitov in [24]. The idea is that the
vectors which generate an irrational plane can nevertheless have rational dependencies
between their entries. The subperiods catch such kind of dependencies, which turn out
to easily translate into equations on the Grassmann coordinates of the plane, yielding
a system of polynomial equations. The point is that the subperiods can be enforced
by specific local rules. Our main result, roughly stated, is that the existence of such
specific local rules is equivalent to the zero-dimensionality of the corresponding system
of polynomial equations (at least when the digitized plane lives in R

4, Corollary 1).
Actually, a fruitful approach turned out to isolate the subquestion of planarity: when
do the local rules associated with the subperiods of a plane allow only rhombus tilings
which are digitizations of (any) planes? Theorem 1 gives an answer when, again, the
plane lives in R

4. This is further used in higher dimensional cases (Proposition 8 and
Corollary 2). The general goal of reducing the existence of local rules to the resolution
of a system of equations remains to be achieved.

The paper is organized as follows. Section 2 gives formal definitions of the above
mentioned notions (planar rhombus tilings, local rules, subperiods…). In Sect. 3, we
consider plane digitization in R

4, we state and prove the main result (Theorem 1), as
well as provide illustrative examples. We show in Sect. 4 how this result can, under some
conditions, be extended to higher dimensional spaces. In particular, we apply our method
to so-called n-fold tilings, which play a prominent role in modelling quasicrystals. We
show that there are local rules when n is an odd multiple of 5 or 7 (Corollary 2). Although
it has been already proven by Socolar [27] that local rules exist for any odd n, our proof is
more algebraic and does not rely on the specific geometry of n-fold tilings. Moreover, we
also get some new cases if we in addition allow a minimization principle (Proposition 9).

2. Settings

2.1. Planar rhombus tilings. Let �v1, . . . , �vn be n ≥ 3 pairwise non-collinear unitar
vectors of the Euclidean plane. They define the

(n
2

)
rhombus prototiles

Ti j = {λ�vi + μ�v j | 0 ≤ λ,μ ≤ 1}.
A tile is a translated prototile (tile rotation or reflection are forbidden). A rhombus tiling
is a covering of the Euclidean plane by interior-disjoint tiles satisfying the edge-to-edge
condition: whenever the intersection of two tiles is not empty, it is either a vertex or an
entire edge. It is said to be non-degenerated if each tile Ti j appears at least one time. A
pattern is a finite (usually connected) union of tiles which appears in some tiling.

Let �e1, . . . , �en be the canonical basis of R
n . Following Levitov [24], a rhombus tiling

is lifted in R
n as follows: an arbitrary vertex is first mapped onto the origin R

n , then each
tile Ti j is mapped onto the 2-dimensional face of a unit hypercube of Z

n generated by �ei
and �e j , with two tiles adjacent along an edge �vi being mapped onto two faces adjacent
along an edge �ei . This lifts the boundary of a tile—and by induction the boundary of
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Fig. 1. Planar codimension one rhombus tiling with decreasing thickness (from left to right). Tile are colored
to help to visualize the lift in R

3

any patch of tiles—onto a closed curve of R
n and hence ensures that the image of a

tiling vertex do not depends on the path followed to get from the origin to this vertex.
The lift of a tilings is thus a “stepped” surface of codimension n − 2 in R

n (unique up
to the choice of the initial vertex). By extension, such a rhombus tiling is said to have
codimension n − 2.

The lift is the graph of a function from R
2 to R

n which is Lipschitz continuous, with
a Lipschitz constant that can be chosen to depend only on the �vi ’s. Indeed, the limit in
how fast this function can change between two points in a tile depends only on the way
this tile is lifted in R

n , and this then extends to any two points of the tiling. Given the
tiles, the set of lifts of all the possible tilings of the plane are thus uniformly Lipschitz
continuous.

A rhombus tiling is said to be planar if there is t ≥ 1 and an affine plane E ⊂ R
n such

that the tiling can be lifted into the tube E + [0, t]n (we need t ≥ 1 to have tiles into the
tube). The smallest suitable t is called the thickness of the tiling, and the corresponding
E is called the slope of the tiling. Both are uniquely defined. Following Levitov [24],
one speaks about strong or weak planarity depending on whether t = 1 or t > 1. A
planar rhombus tiling is thus an approximation of its slope: the less the thickness, the
better the approximation.

Figure 1 illustrates this in the codimension one case. Examples in higher codimen-
sions shall be further provided.

Strongly planar rhombus tilings are also referred to as canonical cut and project
tilings. They are uniformly recurrent, that is, whenever a pattern occurs once, there exists
R ≥ 0 such that this pattern reoccurs at distance at most R from any point of the tiling.
Weakly planar rhombus tilings are not necessarily uniformly recurrent. Nevertheless, in
any planar rhombus tiling, the ratio of a given prototile among the prototiles occuring
at distance at most R from a point of the tiling admits a limit when R goes to infinity,
called its frequency, which depends only on the slope (see Proposition 4).
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2.2. Local rules. Draw a disk of diameter r on a tiling and consider the pattern formed
by all the tiles which intersect this disk: this is called a r-map of the tiling. The r-atlas
of a tiling is the set of all its r -maps. We use this to define the weak uncolored local rules
mentioned in the introduction, that we shall simply refer to as local rules since they are
the only type further considered:

Definition 1. A strongly planar rhombus tiling of slope E is said to admit local rules of
diameter r and thickness t if, whenever its r -atlas contains the r -atlas of another rhombus
tiling, this latter is planar with slope E and thickness at most t . By extension, the slope
E itself is said to admit local rules.

When a tiling admits local rules of diameter r , the patterns of the r -atlas are them-
selves called local rules. Since r -atlas of rhombus tilings are finite, it is equivalent and
sometimes more convenient to define local rules by giving a set of patterns which are
not allowed to occur in these local rules. These patterns are said to be forbidden.

As for planar rhombus tilings, one speaks about strong or weak local rules depending
on whether t = 1 or t > 1. This paper aims to characterize the slopes which admit local
rules. Before focusing on totally irrational slopes, let us first dispose of the matter on
slopes which contain rational directions. Consider, first, the case of a rational slope:

Proposition 1. A slope with two rational directions admits strong local rules.

Proof. To each rational direction of a slope corresponds a period of the corresponding
strongly planar tilings, that is, a translation vector which leaves them invariant. If there
are two (independent) such directions, then the tilings have a bounded fundamental
domain and it suffices to consider local rules whose diameter is greater than the one of
this fundamental domain. ��
Consider, now, the case of a slope which is neither rational nor irrational:

Proposition 2. A slope with exactly one rational direction admits no local rules.

Proof. Let T be a strongly planar tiling with exactly one rational direction. Let r > 0
be given. Consider a period �p of T and consider the pattern S formed by the tiles at
distance less than r from the segment �p. Since T is uniformly recurrent, there exists
�q �= �0 such that a translation by �q maps S onto one of its reoccurrences. This yields two
periodic parallel and equal “sticks” respectively formed by the tiles at distance less than
r from R �p and R �p + �q . Consider now the patterns Tλ formed by the tiles at distance less
than r of the segment joining λ �p and λ �p + �q , for λ ∈ R. Since there is a finite number of
different patterns of a given size, there are λ1 and λ2 such that Tλ1 = Tλ2 . Consider now
the tiling T ′ with fundamental domain the parallelogram with vertices λ1 �p, λ1 �p + �q ,
λ2 �p + �q and λ2 �p. It has two rational directions and thus cannot have the slope of T .
However, by construction, any r -map of T ′ is also a r -map of T . This shows that T
does not admit local rules of any diameter r . ��
The case on which we shall focus is thus the one of irrational slopes.

2.3. Subperiods. Let us introduce this central notion:

Definition 2. The i jk-shadow of a rhombus tiling is the orthogonal projection of its lift
onto the space generated by �ei , �e j and �ek . An i jk-subperiod of a rhombus tiling is a
prime period of its i jk-shadow, hence an integer vector. A lift of such a subperiod is any
vector of R

n which projects on it in the i jk-shadow.
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Fig. 2. A codim. 3 tiling (left; actually it is a Penrose tiling). By orthogonally projecting along a basis vector
of R

5 we get a codim. 2 tiling (center). By orthogonally projecting along a second basis vector we get a codim.
1 tiling (right) which is periodic: its prime period is a subperiod of the previous tilings

Fig. 3. A codim. 1 rhombus tiling without any occurence of the two forbidden patterns in the rightmost
box must have the same period as the rightmost tiling on Fig. 2. Both tilings can however greatly differ. In
particular, these two forbidden patterns do not enforce planarity. Then, a codim. 2 (resp. codim. 3) rhombus
tiling which, in addition, avoids the forbidden patterns in the central box (resp. in all the boxes) must have
the same subperiod as the central tiling (resp. the rightmost tiling) on Fig. 2. Not all the tilings with the same
subperiod as the tilings on Fig. 2 are allowed, but at least these latter do

A rhombus tiling has thus
(n

3

)
shadows, which are codimension one surfaces in R

3. By
extension, we call subperiods of a slope the subperiods of the strongly planar rhombus
tiling with this slope. Figure 2 illustrates the notion of subperiod, while Fig. 3 illustrates
the following proposition.

Proposition 3. The subperiods of a slope can be enforced by local rules.

Proof. Let �p ∈ R
3 be a subperiod of a slope E ⊂ R

n and π the orthogonal projection
on basis vectors such that �p ∈ π(E). The union A of the r -atlases of strongly planar
rhombus tilings of slope π(E) enforce their �p-periodicity as soon as r ≥ || �p||. Then,
the uniform recurrence of the strongly planar rhombus tilings of slope E ensures that
there is R ≥ 0 such that the image under π of the union B of their R-atlases contains all
the patterns of A. Now, if a rhombus tiling has a R-atlas included in B, then its image
under π has a r -atlas included in A and thus admits �p as a period. Hence, by definition,
the initial tiling admits �p as a subperiod (enforced by local rules of diameter R). ��
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2.4. Grassmann coordinates. Let us recall the notion of Grassmann coordinates in our
particular case (for a general presentation, see, e.g., [13], Chap. 7). The Grassmann
coordinates of a plane E generated by (u1, . . . , un) and (v1, . . . , vn) are the

(n
2

)
real

numbers

Gi j := uiv j − u jvi ,

for i < j . We write E = (Gi j )i< j , with the Grassmann coordinates being ordered
by lexicographic order on their indices. Grassmann coordinates are defined up to a
common multiplicative factor and turn out to not depend on the choice of the generating
vectors. They are moreover characterized: a non-zero

(n
2

)
-tuple of reals are the Grassmann

coordinates of some plane if and only if they satisfy the
(n

4

)
following quadratic equations,

called Plücker relations:

Gi j Gkl = Gik G jl − Gil G jk,

for i < j < k < l. By extension, we call Grassmann coordinates of a planar rhombus
tiling the Grassmann coordinates of its slope; they can actually be “read” on the tiles:

Proposition 4. The frequency of Ti j in a planar rhombus tiling is
|Gi j |∑

k<l |Gkl | .

In particular, if E has a zero Grassmann coordinate Gi j then the tile Ti j does not
appears in planar tilings of slope E , that is, those are degenerated tilings (we shall avoid
this case further). Note also that the sign of a Grassmann coordinate of a planar tiling
depends only on the �vi ’s (a slope with a different sign would yield a tiling which do not
project correctly onto a tiling of the plane). The proof of the above proposition, further
not used, is left to the reader. We will rather rely on the following:

Proposition 5. If a planar rhombus tiling has an i jk-subperiod (p, q, r), then

pG jk − qGik + rGi j = 0.

Proof. Consider the i jk-shadow of a planar rhombus tiling. It is a planar rhombus tiling
in R

3 whose slope is generated by (ui , u j , uk) and (vi , v j , vk), hence has normal vector
(G jk,−Gik, Gi j ). This vector thus has zero dot product with any vector in the slope, in
particular with (p, q, r): this yields the claimed relation. ��

To each subperiod thus corresponds a linear relation with integer coefficients on
Grassmann coordinates. Together with the Plücker relations, this yields a system of
polynomial equations. If this system has a unique solution, then subperiods—hence
local rules by Proposition 3—can enforce planar rhombus tiling to have this solution as
slope. Actually, this remains true if there are finitely many solutions, i.e., if the system of
polynomial equations is zero-dimensional, because one can always increase the diameter
of local rules to select one among finitely many slopes. One can then use very efficient
algorithms (usually relying on Gröbner bases) to determine whether this system is zero-
dimensional. However, in order to conclude that such a slope has local rules, it must
be proven that local rules can also enforce the planarity itself: this becomes the key
issue.
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3. Codimension Two

3.1. Statement of the main result. Subperiods are said to enforce planarity when the
rhombus tilings with all these subperiods are planar with a uniformly bounded thickness.
Let us stress that there is no restriction on the number of slopes: it can be infinite. The
planarity is said to be irrational if there is at least one planar rhombus tilings with an
irrational non-degenerated slope which has these subperiods (otherwise, we refer to
Propositions 1 and 2).

We here focus on codimension two rhombus tilings, as the most simple non-trivial
case. Codimension one tilings are indeed trivial: any subperiod is a period, whence the
only slopes that can be enforced by subperiods are rational ones (according to Propo-
sition 1). Higher codimension tilings shall be considered in the next section. The main
result we get is the following:

Theorem 1. The subperiods of a codimension two rhombus tiling enforce irrational
planarity if and only if three of them, each in a shadow with only one period, can be
lifted in an irrational non-degenerated plane onto pairwise non-collinear vectors. This
holds when subperiods characterize finitely many slopes.

With Propositions 1 and 3, this easily yields

Corollary 1. If a codimension two planar rhombus tiling has subperiods which charac-
terize finitely many slopes, then it admits local rules.

This sufficient condition can be algorithmically checked on a given slope E ⊂ R
4: it

suffices to find its subperiods and to check that the associated equations, together with
the Plücker relations, yield a zero-dimensional system. One can even bound the diameter
of the local rules by the length of the largest lift in E of the subperiods. Sharp bounds
on this thickness however remain to be found. In particular, when is it equal to one? The
proof of this theorem is postponed to the Sect. 3.4 and we shall first illustrate it on some
examples.

3.2. First example: Ammann–Beenker tilings. Independently introduced by Ammann in
the 1970s and Beenker in 1982 ([3,11]), the Ammann–Beenker tilings are the strongly
planar rhombus tilings of codimension two whose slope is generated by the two vectors
(cos(kπ/4))k and (sin(kπ/4))k , k = 0, . . . , 3. The Grassmann coordinates of this slope
are (1,

√
2, 1, 1,

√
2, 1). There are four subperiods:

• the 123-subperiod �p4 := �e1 − �e3 which corresponds to G12 = G23;
• the 124-subperiod �p3 := �e2 + �e4 which corresponds to G12 = G14;
• the 134-subperiod �p2 := �e1 + �e3 which corresponds to G14 = G34;
• the 234-subperiod �p1 := �e2 − �e4 which corresponds to G23 = G34.

Plugging this into the only one Plücker relation G12G34 = G13G24 − G14G23 with the
normalization G12 = 1 yields G13G24 = 2. The system has thus dimension one and
characterizes the family of planes

E0 := (0, 0, 0, 0, 1, 0), Et>0 := (1, t, 1, 1, 2/t, 1), E∞ := (0, 1, 0, 0, 0, 0).

In particular, the slope of the Ammann–Beenker tilings is obtained for t = √
2. The

subperiods lift in E√
2 onto the pairwise non-collinear vectors

�q1 = �p1 +
√

2�e1, �q2 = �p2 +
√

2�e2, �q3 = �p3 +
√

2�e3, �q4 = �p4 − √
2�e4.

Theorem 1 ensures that the rhombus tilings with these subperiods are planar.
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Fig. 4. Strongly planar tilings with slope E 1
4

, E1 and E√
2 (from left to right). They all have the same

subperiods. The rightmost is an Ammann–Beenker tiling and has the smallest proportion of square tiles

Note that local rules can only enforce such subperiods for t ranging in a closed
interval (because the subperiods become arbitrarily large for large t), but one can color
the local rules to enforce the whole family, see [2,15]. Note also that it would suffice
to enforce G13 = G24 (that is, according to Proposition 4, to enforce the square tiles
T13 and T24 to appear with the same frequency) in order to characterize the slope of the
Ammann–Beenker tilings. This however cannot be done by local rules, as first pointed
out by Burkov [6]: we need to use colored local rules, as first done by Ammann [1,11].
As an alternative, we can also obtain Ammann–Beenker tilings as the solution of an
optimization problem. Indeed, according to Proposition 4, the quantity G13 + G24 =
t +2/t is proportional to the frequency of the square tiles in Et and is minimal for t = √

2
(Fig. 4).

3.3. Second example: a golden octagonal tiling. Let us now consider an example where

subperiods characterize finitely many slopes. Let ϕ = 1+
√

5
2 be the golden ratio and E

the plane generated by

(−1, 0, ϕ, ϕ) and (0, 1, ϕ, 1).

Its Grassmann coordinates are E = (1, ϕ, 1, ϕ, ϕ, 1). There are four subperiods:

• the 123-subperiod �p4 := �e1 + �e2 which corresponds to G13 = G23;
• the 124-subperiod �p3 := �e2 + �e4 which corresponds to G12 = G14;
• the 134-subperiod �p2 := �e1 + �e3 which corresponds to G14 = G34;
• the 234-subperiod �p1 := �e3 + �e4 which corresponds to G23 = G24.

Plugging this into the Plücker relation G12G34 = G13G24 − G14G23 with the normal-
ization G12 = 1 yields 1 = x2 − x , where x = G13 = G23 = G24. Subperiods thus
characterize E and its algebraic conjugate,1 and Corollary 1 ensures that there are local

1 Only one really yields a tiling because their Grassmann coordinates have different sign.
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rules. One can check that the subperiods indeed lift in E onto the pairwise non-collinear
vectors

�q1 = �p1 + (1 − ϕ)�e1, �q2 = �p2 + ϕ�e2, �q3 = �p3 + ϕ�e3, �q4 = �p4 + (1 − ϕ)�e4.

These lifts have length at most
√

ϕ + 3: this bounds the diameter of local rules.

3.4. Proof of the main result. The proof of Theorem 1 is organized in three lemmas.
The first lemma gives a condition on subperiods to ensure planarity:

Lemma 1. If a rhombus tiling of codimension two has three subperiods, each in a shadow
with only one period, which can be lifted in an irrational non-degenerated plane E onto
pairwise non-collinear vectors, then it is planar.

Proof. Let T be a codim. two tiling satisfying the condition of the Lemma. Let �p1, �p2 and
�p3 denote the subperiods, each in a shadow with only one subperiod. For i ∈ {1, 2, 3},
let �qi denotes the lift of �pi in E .

Space parametrization. The polynomial system defined by the Plücker relation and
the linear relations associated with the subperiods of E has at least two irrational solu-
tions. Indeed, if there are only finitely many solutions, then they are algebraic and each
irrational one (e.g, E) yields by algebraic conjugation a different irrational solution.
Otherwise, that is, if there are infinitely many solutions, then they form a continuous
curve in the set of planes of R

4. Since the set of planes which contain a rational line has
measure zero (it is a countable union of dimension three subspaces of R

4), this curve
contains infinitely many irrational planes. Let thus E ′ be an irrational solution other
than E . We shall prove by contradiction that E ∩ E ′ = {0}. For i ∈ {1, 2, 3}, let Fi be
the plane generated by �qi and �ei . This defines three different rational planes. Assume
that E ∩ E ′ contains a line, necessarily irrational. Hence dim(E + E ′) = 3. This lines
belongs to at most one of the Fi ’s, say F3, because if two rational planes intersect along
a line, then it is a rational line. And since F1 and F2 intersects E and E ′ by lines which
generate it, one has F1 + F2 ⊂ E + E ′. We shall get the wanted contradiction by proving
that dim(F1 + F2) = 4. With �p1 = (a, b, c) and �p2 = (d, e, f ), one computes

F1 = (a, b, c, 0, 0, 0) and F2 = (−d, 0, 0, e, f, 0).

It is known (see, e.g., [13], p. 304) that if the intersection of two 2-planes of R
4 with

Grassmann coordinates (Ai j ) and (Bi j ) is not {0}, then

A12 B34 − A13 B24 + A23 B14 + B12 A34 − B13 A24 + B23 A14 = 0.

In our case, F1 ∩ F2 �= {0} would yield b f − ce = 0. But this is impossible because E ,
generated by �q1 and �q2, is non-degenerated and has the Grassmann coordinate E34 =
b f − ce. Hence F1 ∩ F2 = {0}, that is, dim(F1 + F2) = 4 (Fig. 5, 6).

Lift parametrization. For i ∈ {1, 2, 3}, let �ri denotes the lift of �pi in E ′. Let π denotes
the projection parallel to E ′ onto E . Up to a permutation of the vectors of the standard
basis of R

4, one can assume that the angle between π(�ei ) and π(�e j ) has the same sign
as the angle between �vi and �v j (the vectors defining the tile Ti j ). This way, if we let
S be a lift of T , then π is a homeomorphism from S onto E . On E , π(S) is indeed
nothing but the tiling T (up to a stretching of the edges of its tiles since π(�ei ) and �vi can
be different—they are however never parallel because of the irrationality of E ′). There
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Fig. 5. A strongly planar tiling with slope (1, ϕ, 1, ϕ, ϕ, 1). Since its subperiods characterize only finitely
many slopes, it admits local rules of diameter less than the one of the depicted circles

Fig. 6. Any codimension 2 tiling which avoids these 24 forbidden patterns has the same subperiods as a
strongly planar tiling with slope (1, ϕ, 1, ϕ, ϕ, 1) (Fig. 5), hence is planar with the same slope. Conversely,
any strongly planar tiling with this slope avoids these 24 forbidden patterns

are thus two continuous functions z1 and z2 defined on E such that S is the image of E
under

ρ : �x �→ �x + z1(�x)�r1 + z2(�x)�r2.

We shall now show that ρ stays at bounded distance from a plane.

From subperiods to bounded fluctuations. Let πi denote the projection onto the
shadow which contains �pi . For any �x ∈ E , since the projection parallel to E ′ is a
homeomorphism from S onto E , the plane πi (�x + E ′) intersects the shadow πi (S) along
a curve Ci (�x) (see Fig. 7). One has

Ci (�x) = {πi (�x) + z1(�x + λ�qi )πi (�r1) + z2(�x + λ�qi )πi ( �r2) | λ ∈ R}.
Since both πi (S) and πi (�x + E ′) are �pi -periodic, so is Ci (�x). In particular, it stays
at bounded distance from the line πi (�x) + R �pi . Moreover, the bound can be chosen
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Fig. 7. The projected lift πi (S) is �pi -periodic: it intersects the plane πi (E ′), which contains �pi , along a
�pi -periodic curve Ci

independently of �x because S is Lipschitz. For i = 1, since π1(�r1) = �p1, this ensures
thatλ �→ z2(�x+λ�q1) is uniformly bounded. In other words, z2 has bounded fluctuations in
the direction �q1. Similarly, for i = 2, π2(�r2) = �p2 yields that z1 has bounded fluctuations
in the direction �q2. For i = 3, note that, up to a rescaling, one has �q3 = �q1 + α�q2 for
some real α �= 0. This allows to write

C3(�x) = {π3(�x) + z1(�x + λ�q3)π3(�r3) + (z2 − αz1)(�x + λ�q3)π3( �r2) | λ ∈ R}.
Then, with π3(�r3) = �p3, the �p3-periodicity of C3(�x) yields that z2 − αz1 has bounded
fluctuations in the direction �q3.

From bounded fluctuations to functional equations. Since �q1 and �q2 form a basis of
E , let zi (λ, μ) stand for zi (λ�q1 + μ�q2), i ∈ {1, 2}, and write f ≡ g if the difference
of two functions f and g is uniformly bounded. The bounded fluctuations of z1 and
z2 in the directions �q1 and �q2 yield the existence of real functions f and g such that
z2(λ, μ) ≡ f (μ) and z1(λ, μ) ≡ g(λ). Further, since �q3 = �q1 + α�q2, the bounded
fluctuations of z2 − αz1 in the direction �q3 yield the existence of a real continuous
function h such that (z2 − αz1)(λ, μ) ≡ h(λ + αμ). Thus

f (μ) − αg(λ) ≡ h(λ + αμ).

From functional equations to planarity. Fix λ = 0 to get f (μ) ≡ h(αμ). Fix μ = 0
to get −αg(λ) ≡ h(λ). Hence

h(αμ) + h(λ) ≡ h(λ + αμ).

Since α �= 0, one can replace αμ by μ, getting the functional equation

h(μ) + h(λ) ≡ h(λ + μ).

This easily yields the linearity of h (up to bounded fluctuations), thus the linearity of f ,
g, z1, z2 and, finally, ρ. The thickness is moreover uniformly bounded because the lifts
are all Lipschitz surfaces with a common constant. This completes the proof. ��
The second lemma shows that the condition on subperiods is actually necessary:
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Lemma 2. If the subperiods of a codimension two rhombus tiling enforce irrational
planarity then three of them, each in a shadow with only one subperiod, can be lifted in
an irrational non-degenerated plane onto pairwise non-collinear vectors.

Proof. Let T be a planar codim. 2 tiling with an irrational non-degenerated slope E
whose subperiods �p1, . . . , �pk enforce planarity. As in Lemma 1, there is a plane E ′ with
at least the subperiods of E such that E ∩ E ′ = {0}. Let πi denote the projection onto
the shadow which contains �pi . Let �qi and �ri denote the lift of �pi respectively in E and
E ′. The proof shall be by contradiction. Let us separate two cases.

Case 1: The subperiods, once lifted in E , belong to at most two lines. Assume that
there are exactly two such lines, say R�q1 and R�q2 (this is all the more true if there are
only one line). For any two real functions of a real variable f and g, define

S f,g := {λ�q1 + μ�q2 + f (λ)�r1 + g(μ)�r2 | λ,μ ∈ R}.

For i such that the lift of �pi belong to R�q1, say �pi = αi �q1, one has

πi (S f,g) = {(λ + f (λ))
1

αi
�pi + μπi (�q2) + g(μ)πi (�r2) | λ,μ ∈ R}.

It follows that �pi is a period of πi (S f,g) as soon as {λ + f (λ) | λ ∈ R} is stable under
the translation x → x + αi . Similarly, for i such that the lift of �pi belong to R�q2, say
�pi = βi �q2, �pi is a period of πi (S f,g) as soon as {μ + g(μ) | μ ∈ R} is stable under the
translation x → x + βi . For such functions f and g, consider a tiling whose lift lies in
S f,g + [0, 1]n (that is, an approximation of S f,g). It has the same subperiods as T . But it
is not necessarily planar: take, for example, f (x) = g(x) = x3. This yields the wanted
contradiction.

Case 2: There are at most two shadows with only one subperiod. Assume that there are
exactly two such shadows, say those with subperiods �p1 and �p2 (this is all the more true
if there are less such shadows) For i ∈ {1, 2}, let �qi and �ri be the lifts of �pi , respectively
in E and E ′. We define S f,g as above. For i ∈ {1, 2}, πi (�qi ) = πi (�ri ) = �pi , so that
�pi is a period of πi (S f,g) as soon as {λ + f (λ) | λ ∈ R} is stable under the translation
x → x + 1. For i /∈ {1, 2}, πi (E) has at least one subperiod by definition of the πi ’s,
hence two because of our initial hypothesis. This is thus a rational plane of R

3, hence
equal to its algebraic conjugate πi (E ′). It follows that πi (S f,g) = πi (E) = πi (E ′). In
particular, πi (S f,g) is �pi -periodic. So, again, we can choose f and g to obtain a non
planar tiling which has the same subperiods as T . This yields the wanted contradiction.

��
The last lemma shows that the condition on subperiods is satisfied in particular when

superiods characterize only finitely many slopes (that is a necessary condition to have
local rules with our method):

Lemma 3. If the subperiods of a codimension two rhombus tiling characterize finitely
many slopes, then they enforce irrational planarity.

Proof. If the subperiods do not enforce irrational planarity, then one can take f (λ) = αλ

and g(μ) = βμ for any α �= −1 and β �= −1 in the proof of the previous lemma: this
yields infinitely many slopes with these subperiods. ��
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4. Higher Codimension

4.1. A partial result and a conjecture. In codimension two (that is, for tilings whose lift
lives in R

4), Theorem 1 provides a necessary and sufficient condition on the subperiods
of a tiling to ensure that it is planar. The codimension two case can then be helpful to
solve higher codimension cases. Indeed, consider the projections of a tiling onto the
space generated by four basis vector (those are a kind of generalization of the shadows,
Definition 2). This yields codimension two tilings to which Theorem 1 can be applied. We
can then use the (eventual) planarity of these projections to (eventually) get the planarity
of the original tiling. We shall see successful cases in the following sections, namely the
famous Penrose tilings (actually, a slightly generalized version) and a codimension four
tiling based on cubic irrationality (whose main interest, beyond illustrating the method,
is to show that cubic irrationality can be already obtained in codimension four).

However, we think that there are tilings whose subperiods enforce planarity, although
no projection on four basis vectors does have subperiods which enforce its planarity.
That is, the above method is not expected to always work. Moreover, this do not provide
a full characterization of planarity in higher codimension. Nevertheless, we conjecture
that Corollary 1 naturally extends:

Conjecture 1. If there are only finitely many slopes with the same subperiods as a given
slope, then this slope admits local rules.

In other words, we conjecture that if subperiods yield enough constraints on planar tilings
to enforce their slope, then they a fortioti yield enough constraints on tilings to enforce
their planarity.

4.2. First example: generalized Penrose tilings. Discovered by Penrose in the 70’s [25],
the Penrose tilings appear in a number of versions (see, e.g., [11]). Thoses with rhombus
tiles have been shown by de Bruijn [5] to be strongly planar with a lift in R

5 whose
slope is generated by the two vectors (cos(2kπ/5))k and (sin(2kπ/5))k , k = 0, . . . , 4.
This slope has Grassmann coordinates (ϕ, 1,−1,−ϕ, ϕ, 1,−1, ϕ, 1, ϕ), where ϕ is the
golden ratio, and can also be generated by

�u := (ϕ, 0,−ϕ,−1, 1) and �v := (−1, 1, ϕ, 0,−ϕ).

We here consider so-called generalized Penrose tilings, introduced in [16], which are
the strongly planar rhombus tilings whose slope is parallel to the one of Penrose tilings
(recall that the slope is an affine plane). They have ten subperiods (one in each shadow),
associated with the equations

G12 = G23 = G34 = G45 = −G15 and G13 = G35 = −G25 = G24 = −G14.

Let us normalize to G12 = 1 and write G13 = x . There are five Plücker relations, which
all reduce to the unique equation x2 = x + 1, so that x is equal to the golden ratio or its
algebraic conjugate. The subperiods thus characterize finitely many slopes: it suffices
to show that they also enforce planarity to prove that generalized Penrose tilings admit
local rules. For that, project the slope onto the first four basis vectors. It yields a slope
(ϕ, 1,−1, ϕ, 1, ϕ) which has four subperiods associated with the equations

G12 = G23 = G34 and G13 = −G14 = G24.
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Fig. 8. A generalized Penrose tilings (compare with Fig. 2), with circles bounding the diameter of the local
rules it admits

We can thus apply Theorem 1: this projection stays at bounded distance from the plane
(ϕ, 1,−1, ϕ, 1, ϕ). Consider now the cartesian product of this plane with the line gen-
erated by the fifth basis vector: it is a three-dimensional vectorial space from which
the tiling stays at bounded distance. The same holds (by circular permutation of the
indices) for the other projections on four of the five basis vectors, so that the tiling stays
at bounded distance from the intersection of five three-dimensional vector spaces. The
two-dimensionality of this intersection shall yields the planarity of the tilings. Consider
a point �x = (x1, x2, x3, x4, x5) in this intersection. There are real numbers λi and μi
such that πi (�x) = λiπi (�u) + μiπi (�v), where πi denotes the projection on the space
generated by all the basis vectors but �ei . One checks that the λi ’s are necessarily all
equal to −x4, and that the μi ’s are necessarily all equal to x2. This yields the wanted
two-dimensionality of the intersection. In conclusion, as conjectured in [16] and later
proven in [27], the generalized Penrose tilings admit local rules. Namely, the local rules
which enforce the subperiods of the generalized Penrose tilings (Proposition 3). One
also has a bound on the diameter of the local rules, namely the largest subperiod lift (in
the Penrose slope). A computation yields the bound

√
2 + 2ϕ2 � 2.69 (Fig. 8).

4.3. Second example: a cubic dodecagonal tiling. Let us consider an example in R
6,

namely the codimension four planes satisfying

G12 = G23 = G34 = G45 = G56,

G35 = G13 = G16 = G46 = G24,

G14 = G15 = G25 = G26 = G36.

According to Propositions 3 and 5, these relations on Grassmann coordinates can be
enforced by local rules (Fig. 9). One checks that, together with the

(6
4

)
Plücker relations,

this form a zero-dimensional system with three real solutions:

(1, a, b, b, a, 1, a, b, b, 1, a, b, 1, a, 1),

where a3 = a2 + 2a − 1 and b = a2 − 1. A basis is given by

(−1, 0, 1, a, b, b) and (0, 1, a, b, b, a).
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Fig. 9. A set of forbidden patterns (depicted up to rotation by an angle multiple of 2π
5 and mirror symmetry)

which enforce the subperiods of generalized Penrose tilings, hence their slope (compare with Fig. 3)

It remains to show that subperiods also enforce planarity. Fix a tiling T which has the
above subperiods. We shall consider two of its projections. First, project orthogonally
onto the space generated by �e1, �e2, �e3 and �e5. The subperiods yield

G12 = G23 and G35 = G13 and G15 = G25.

We can thus apply Theorem 1: this projection of T stays at bounded distance from
a plane, which can only be the projection of a solution of the whole system, that is,
(1, a, b, 1, b, a), which is generated, e.g., by (−1, 0, 1, b) and (0, 1, a, b). Second,
project orthogonally onto the space generated by �e1, �e4, �e5 and �e6. The subperiods
yield

G45 = G56 and G16 = G46 and G14 = G15.

We can thus apply Theorem 1: this projection of T stays at bounded distance from
a plane, which can only be the projection of a solution of the whole system, that is,
(b, b, a, 1, a, 1), which is generated, e.g., by (−b, 0, 1, a) and (0, b, b, a). Now, consider
the vectorial space V ⊂ R

6 which projects onto the two above slopes. The lift of T thus
stays at bounded distance from V . The planarity shall follow once we prove that V has
dimension at most two. Let (x1, x2, x3, x4, x5, x6) ∈ V . There are numbers λ1, μ1, λ2
and μ2 such that

x1 = −λ1 = −bλ2
x2 = μ1 =
x3 = λ1 + aμ1 =
x4 = = bμ2
x5 = bλ1 + bμ1 = λ2 + bμ2
x6 = = aλ2 + aμ2

One easily checks that these equations yield that x3, x4, x5 and x6 are completly deter-
mined by x1 and x2. This shows that V has dimension at most two, whence the planarity
of T .

In conclusion, the slope (1, a, b, b, a, 1, a, b, b, 1, a, b, 1, a, 1), where a is a root of
X3 − X2 − 2X + 1 and b = a2 − 1, does admit local rules. One also has a bound on
the diameter of the local rules, namely the largest subperiod lift (in the above slope): a
computation yields the upper bound 2, 821 (Fig. 10).
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Fig. 10. A codimension four strongly planar tiling whose slope is based on cubic irrationalities, with circles
bounding the diameter of the local rules it admits

Fig. 11. A sevenfold (left) and a ninefold (right) strongly planar tilings

4.4. Tilings with n-fold rotational symmetry.

Definition 3. A rhombus tiling is said do be n-fold if it is strongly planar with a slope
parallel to the plane generated by (cos(2kπ/n))k and (sin(2kπ/n))k , where k range
from 0 to either n − 1 if n is odd, or from 0 to n/2 − 1 if n is even.

The name comes from the fact that these tilings contain arbitrarily large balls with a n-
fold rotational symmetry (one speaks about local n-fold symmetry). Figure 11 illustrates
the cases n = 7 and n = 9. Let us stress that n-fold tilings lift in R

n for odd n, but in
R

n/2 for even n: this is because adopting the same definition for both cases would yield
n/2 pairs of collinear vectors for even n. We already met n-fold tilings in this paper:
the Ammann–Beenker tilings (Fig. 4) are indeed eightfold and the generalized Penrose
tilings (Fig. 8) are fivefold.

The Grassmann coordinates of a n-fold tiling are

Gi j = sin

(
2( j − i)π

n

)
.

It shall be convenient to set Gi, j+n = Gi, j for n odd, Gi, j+n/2 = −Gi, j for n even, and
G ji = −Gi j for any n. For i < j , there is a subperiod associated with

Gi j = G j,2 j−i .
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There are no other subperiod, except for n = 12p, where the rationality of sin(π/6)

yields for each i two subperiods associated with

Gi,i+3p = 2Gi,i+p and Gi,i+3p = 2Gi,i+5p.

We say that a set of Grassmann coordinates are free if each of them can be chosen
independently without violating the Plücker relations. We shall use:

Lemma 4. The Gi j ’s with | j − i | ≤ 2 are free and determine all the other ones.

Proof. We first prove by induction on δ that these Grassmann coordinates determine
those with | j − i | ≤ δ. There is nothing to prove for δ = 1 and δ = 2. Fix δ ≥ 3 and
assume that any Grassmann coordinate Gi j with | j − i | < δ is characterized. Then, for
| j − i | = δ, the Plücker relation

Gi,i+1G j−1, j = Gi, j−1Gi+1, j − Gi j Gi+1, j−1

shows that Gi j depends only on coordinates Gkl with |k − l| < | j − i | = δ. The
claim follows by induction. Now, since there are as many Grassmann coordinates with
| j − i | ≤ 2 as coordinates in two vectors which generate a plane (that is, twice the
dimension of the space), these Grassmann coordinates are free. ��

We first show that, except when n is a multiple of 4, the only planar rhombus tilings
with the same subperiods as the n-fold tilings are the n-fold tilings:

Proposition 6. If 4 does not divide n, then the Plücker relations and thoses associated
with the subperiods of a n-fold tiling form a zero-dimensional system.

Proof. Let m := n if n is odd, or m := n/2 if n is even. Subperiods enforce

G12 = G23 = G34 = . . . = Gm−1,m = Gm,m+1.

Since 4 does not divide n, m is odd, and subperiods enforce

G13 = G35 = . . . = Gm−2,m = Gm,m+2 = G24 = G46 = . . . = Gm−1,m+1.

The Plücker relation

G1,i Gi+1,i+2 = G1,i+1Gi,i+2 − G1,i+2Gi,i+1

can then be rewritten

G1,i G12 = G1,i+1G13 − G1,i+2G12.

With X := G13/(2G12) and Ui := G1,i+2/G12, this yields the recurrence relation

U0 = 1, U1 = 2X, Ui = 2XUi−1 − Ui−2,

which is exactly the one defining Chebyshev polynomials of the second kind. Thus X
is one of the finitely many solutions of Um−2 = G1,m/G12. The zero-dimensionality
follows from Lemma 4. ��

In contrast, when n is a multiple of 4, there is a one-parameter family of planar
rhombus tilings with the same subperiods as the n-fold tilings:

Proposition 7. If 4 divides n, then the Plücker relations and thoses associated with the
subperiods of a n-fold tiling form a one-dimensional system.
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Proof. Let m := n if n is odd, or m := n/2 if n is even. Subperiods enforce

G12 = G23 = G34 = . . . = Gm−1,m = Gm,m+1.

Since 4 divides n, m is even, and subperiods now only enforce

G13 = G35 = . . . = Gm−1,m+1 and G24 = G46 = . . . = Gm,m+2.

With X := G13/(2G12), Y := G24/(2G12) and Ui := G1,i+2/G12, the relation

G1,i Gi+1,i+2 = G1,i+1Gi,i+2 − G1,i+2Gi,i+1

now yields the recurrence relation

U0 = 1, U1 = 2X, U2i = 2YU2i−1 − U2i−2, U2i+1 = 2XU2i − U2i−1.

Hence Ui is obtained from the i th Chebyshev polynomial of the second kind by replacing
X2k+1 by Xk+1Y k and X2k by XkY k . In particular, since m − 2 is even, Um−2 contains
only powers of XY , so that XY is the square of a solution of Um−2 = G1,m/G12 = 1.
The one-dimensionality follows from Lemma 4. ��

The two previous propositions addressed the question of whether the subperiods of
a planar rhombus tilings enforce a particular slope or not. Now, we want to determine
whether subperiods enforce planarity itself:

Proposition 8. If 5, 7, 8 or 12 divides n, then the subperiods of the n-fold tilings enforce
planarity.

Proof. Let m := n if n is odd, or m := n/2 otherwise. For 1 ≤ i ≤ m, one has

• For m = 4p:

Gi,p+i = G p+i,2p+i = G2p+i,3p+i = Gi,3p+i .

• For m = 5p:

Gi,p+i = G p+i,2p+i = G2p+i,3p+i Gi,2p+i = G3p+i,i .

• For m = 6p:

Gi,p+i = G p+i,2p+i = G2p+i,3p+i Gi,3p+i = 2Gi,p+i .

• For m = 7p:

Gi,p+i = G p+i,2p+i Gi,2p+i = G2p+i,4p+i G p+i,4p+i = G4p+i,i .

Since each of the above equalities involves only three different indices, it corresponds to
a subperiod. Moreover, these subperiods lift in the slope of the n-fold tiling onto pairwise
non-collinear vectors. Hence, if T is a tiling with these subperiods and S a lift of it, then
Theorem 1 yields the planarity of the projections of S onto the four-dimensional space
(indices are taken modulo m)

Ri := R�ei + R�ep+i + R�e2p+i + R�eap+i ,

where a = 4 for m = 7p or a = 3 for m ∈ {4p, 5p, 6p}. Let Si be the slope of the
projection of S onto Ri . Let also S̃i be the (m − 2)-dimensional vectorial space whose
projection onto Ri is Si . The lift S stays at bounded distance from the vectorial space
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V := S̃1 ∩ . . . ∩ S̃m . We shall show dim V = 2 to prove the planarity of S. The slope Si
turns out to be generated by the vectors

�ui := (−Gi,p+i , 0, G p+i,2p+i , G p+i,ap+i ) and �vi := (0, Gi,p+i , Gi,2p+i , Gi,ap+i ).

Consider �x = (x1, . . . , xm) ∈ V . For each i , there are reals λi and μi such that the
projection of �x onto Ri writes λi �ui + μi �vi . In particular, this yields

xi = −λi Gi,p+i ,

x p+i = μi Gi,p+i = −λp+i G p+i,2p+i ,

x2p+i = λi G p+i,2p+i + μi Gi,2p+i = μp+i G p+i,2p+i = −λ2p+i G2p+i,ap+i ,

whence the second order recurrence relation on the λi ’s:

−G2p+i,3p+iλ2p+i = −Gi,2p+iλp+i + Gi,p+iλi .

Once two of the λi ’s are fixed, all the other ones are thus uniquely determined, and then
the μi ’s by μi Gi,p+i = −λp+i G p+i,2p+i . This proves dim V = 2. ��

In particular, if n is an odd multiple of 5 or 7, then Proposition 3 ensures that one
can enforce by local rules subperiods which in turn enforce planarity by Proposition 8
(because n is a multiple of 5 or 7), and the slope by Proposition 6 (because n is odd):

Corollary 2. The n-fold tilings admit local rules for odd n multiple of 5 or 7.

Actually, it is known that n-fold tilings admit local rules for any n which is not a
multiple of 4 [27]. Here, we managed to show that there are local rules which enforce the
n-fold symmetry of a planar tiling for any n which is not a multiple of 4 (Proposition 6),
but our general method failed to show that local rules can also enforce planarity in all these
cases (Proposition 8). This is because we relied on a codimension two result (Theorem 1)
whereas a general characterization of planarity in any codimension remains to be found
(which should in particular apply to n-fold tilings). Nevertheless, Propositions 7 and 8
deal with cases that are not considered in [27], namely n-fold tilings when n is a multiple
of 8 or 12. Indeed, these propositions allow to show that the slope of such n-fold tilings
can be obtained as the solution of a simple optimization problem, reminding discussions
about optimal cluster covering for non-periodic tilings and what is sometimes referred
to as maxing rules (see, e.g, [10,12,14]):

Proposition 9. When n is a multiple of 8 or 12, there are local rules such that the n-fold
tilings are the tilings satisfying these local rules and minimizing the proportion of tiles
Ti,i+2 (for all i ).

Proof. The planarity (and thus the existence of tile frequencies) is ensured by Proposi-
tion 8. In Proposition 7, we saw that in such a case the product XY is constant, where
X = Gi,i+2 for odd i and Y = Gi,i+2 for even i . The n-fold tilings correspond to X = Y .
This happens for X + Y minimal, that is, according to Proposition 4, for the minimal
proportion of tiles Ti,i+2. ��

We retrieve the fact that Ammann–Beenker eightfold tilings are characterized by
subperiods and minimization of the proportion of square tiles (end of Sect. 3.2). Figure 12
depicts the 12-fold case.

Actually, one can see in the proof of Proposiotion 8 that only a subset of the subperiods
are used to prove the planarity of the n-fold tilings. Hence, if we define local rules
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Fig. 12. The 12-fold tilings (rightmost) has subperiods which enforce planarity but allow a one-parameter
family of tilings (e.g. the leftmost and central ones). Among these tilings, the 12-fold minimize the proportion
of white tiles

that enforce these subperiods but not necessarily those used to prove the zero- or one-
dimensionality of the system (Propositions 6 or 7), then we can get local rules allowing
a many-parameters family of planar rhombus tilings, among which n-fold tilings satisfy
a similar optimization problem. This could be meaningful in the context of quasicrystal
modelization if we assume that complicated local rules means rather implausible atom
arrangements, while minimizing tile proportions simply means playing with molecular
concentrations.
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