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Abstract: We show that the orthogonal separation coordinates on the sphere Sn are
naturally parametrised by the real version of the Deligne–Mumford–Knudsen moduli
space M̄0,n+2(R) of stable curves of genus zero with n + 2 marked points. We use
the combinatorics of Stasheff polytopes tessellating M̄0,n+2(R) to classify the different
canonical forms of separation coordinates and deduce an explicit construction of sepa-
ration coordinates, as well as of Stäckel systems from the mosaic operad structure on
M̄0,n+2(R).

1. Introduction

Separation of variables is one of the oldest techniques in mathematical physics, and still
remains one of the most effective and powerful tools in the theory of integrable systems.
Its quantum version initiated by Lamé [17] is actually more natural than the classical
one developed approximately at the same time by Jacobi [12], when one has to consider
the Hamilton–Jacobi equation rather than the equations of motion.

The general theory of separation coordinates goes back to Stäckel [27] and Levi-
Civita [19] and was developed further by Eisenhart [10]. In the particular case of the
sphere Sn , which we will be interested in, the first (and the most important) example,
that of elliptic coordinates, was introduced already in 1859 by Neumann [23]. The
classification problem of all separation coordinates on Sn had been studied in detail by
Olevski [24] and Kalnins and Miller [13]. In particular, in the last paper to describe the
answer the authors used a sophisticated graphical procedure similar to the one developed
by Vilenkin to describe the polyspherical coordinates [30].

Despite all these advances almost nothing has been known about the global geometry
of the space of separation coordinates. In the present paper we fill this gap by describing
the topology and algebraic geometry of this space in the case of Sn . In particular, we
link the graphical procedures from [13] and [30] with the rich combinatorial theory of
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associahedra, or Stasheff polytopes, introduced by Stasheff in 1963 in homotopy theory
[28].

The reason this had not been done before is probably that the algebraic equations
involved seemed far too complicated for a direct solution. Interestingly, Stäckel already
commented on this in his habilitation thesis from 1891, where he notes [27, p. 6]:

Die Diskussion dieser Gleichungen ergab, dass es für n = 2 drei wesentlich
verschiedene Formen der Gleichung H = 0 giebt, bei denen diese notwendigen
Bedingungen erfüllt sind, und da diese Gleichungen auch wirklich Separation der
Variabeln gestatten, ist die Frage für den Fall n = 2 vollständig erledigt. Aber
schon für n = 3 werden die algebraischen Rechnungen so umständlich, dass mir
eine weitere Verfolgung dieses Weges aussichtslos erschien.1

In a sense, our goal in this paper is to accomplish Stäckel’s computations for arbitrary
n, using the substantial progress made in the theory of moduli spaces in the last few
decades. More precisely, we prove the following result.

Main Theorem. The Stäckel systems on Sn with diagonal algebraic curvature tensor
form a smooth projective variety isomorphic to the real Deligne–Mumford–Knudsen
moduli space M̄0,n+2(R) of stable genus zero curves with n + 2 marked points.

As a corollary,we have that the set Xn of equivalence classes of separation coordinates
on the sphere Sn modulo the orthogonal group is in one-to-one correspondence with the
quotient space Yn = M̄0,n+2(R)/Sn+1. Since the real version of the Deligne–Mumford–
Knudsen moduli space M̄0,n+2(R) is known to be tessellated by (n + 1)!/2 copies of
the Stasheff polytope Kn after Kapranov [15] and Devadoss [7], we can use the known
results about M̄0,n+2(R) and associahedra [8] to describe the combinatorial structure
of Xn . In particular, we use the mosaic operad [7] to give an explicit construction for
Stäckel systems and separation coordinates.

Note that in this way we establish (and exploit) a surprising correspondence between
two seemingly completely unrelated objects—separation coordinates on a sphere on one
hand and stable genus zero curves with marked points on the other hand—revealing yet
another guise of the famous moduli space M̄0,n(R).

The algebraic nature of the problem of separation of variables was explicitly revealed
in [25], where the Nijenhuis integrability conditions for Killing tensors were reduced to
purely algebraic equations for the associated algebraic curvature tensors. The statement
of the Main Theorem stems from a thorough analysis of these equations in the first
non-trivial case n = 3, done in [26]. Its proof is based on the recent work by Aguirre,
Felder and the second author [1], where the moduli space M̄0,n+2 was identified with
the set of the Gaudin subalgebras in the Kohno–Drinfeld Lie algebra tn+1. We show that
the Killing tensors on Sn with diagonal algebraic curvature tensor satisfy the defining
relations of the Kohno–Drinfeld Lie algebra, which allows us to make the link with the
main result of [1].

1 “For n = 2 the discussion of these equations yielded three essentially different forms of the equation
H = 0 [the Hamilton–Jacobi equation], for which the necessary conditions are satisfied, and since these
equations indeed allow a separation of variables, the question is completely settled in the case n = 2. However,
already for n = 3 the algebraic computations become so cumbersome, that it seemed hopeless to me to pursue
this approach further.”
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2. Separation Coordinates, Killing Tensors and Stäckel Systems

2.1. Separation coordinates. Recall that the Hamilton–Jacobi equation

1
2gi j ∂W

∂xi

∂W

∂x j
= E

separates in local coordinates x1, . . . , xn on a Riemannian manifold Mn if it admits a
solution of the form

W (x1, . . . , xn; c) = W1(x1; c) + · · · + Wn(xn; c), det

(
∂2W

∂xi∂c j

)
�= 0,

depending on n parameters c = (c1, . . . , cn). Note that if we reparametrise each coor-
dinate xi with a strictly monotonic function �i , the Hamilton–Jacobi equation is still
separable in the new coordinates �i (xi ). The same is true for a permutation of the vari-
ables. In order to avoid this arbitrariness, we consider different coordinate systems as
equivalent if they are related by such transformations. By abuse of language we will
call a corresponding equivalence class simply separation coordinates. Equivalently, we
can think of separation coordinates as the (unordered) system of coordinate hypersur-
faces defined by the equations xi = constant. The separation coordinates are called
orthogonal, if the normals of these hypersurfaces are mutually orthogonal.

The main tool in studying orthogonal separation coordinates are Killing tensors that
satisfy a certain condition. The details of this relation will be explained in the rest of this
section, with emphasis on spheres.

2.2. Killing tensors.

Definition 1. A Killing tensor on a Riemannian manifold (M, g) is an element K ∈
�(S2T ∗M) satisfying, in any coordinate system xα (α = 1, . . . , n), the equation

∇α Kβγ + ∇β Kγα + ∇γ Kαβ = 0, (2.1)

where ∇ is the Levi-Civita connection of the metric g.

Note that the metric g is trivially a Killing tensor, because it is covariantly constant:
∇αgβγ = 0. Here we will be concerned with Killing tensors on the standard round
sphere Sn , regarded as the hypersurface

Sn = {x ∈ V : ‖x‖ = 1} ⊂ V

of unit vectors in an (n + 1)-dimensional Euclidean vector space V , equipped with the
induced metric g.

Definition 2. An algebraic curvature tensor on a vector space V is an element R ∈
(V ∗)⊗4 satisfying the usual (algebraic) symmetries of a Riemannian curvature tensor,
namely:

R jikl = −Ri jkl = Ri jlk (antisymmetry) (2.2a)

Rkli j = Ri jkl (pair symmetry) (2.2b)

Ri jkl + Rikl j + Ril jk = 0 (Bianchi identity). (2.2c)
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The space of Killing tensors K on Sn ⊂ V is naturally isomorphic to the space of
algebraic curvature tensors R on V [21]. This isomorphism is explicitly given by the
formula

Kx (v,w) := R(x, v, x, w) =
n+1∑

i, j,k,l=1

Ri jkl x
i xkv jwl , x ∈ Sn, v, w ∈ Tx Sn,

(2.3)
where we consider a point x ∈ Sn as well as the tangent vectors v,w ∈ Tx Sn as vectors
in V satisfying ‖x‖ = 1 and v,w ⊥ x . The above isomorphism is equivariant under the
natural actions of the isometry group O(V ) on Killing tensors and on algebraic curvature
tensors respectively.

2.3. Stäckel systems. In Definition 1, a Killing tensor is a symmetric bilinear form Kαβ

on the manifold M . In what follows we will interpret it in two other ways, each of which
gives rise to a Lie bracket and hence to a Lie algebra generated by Killing tensors. On
one hand, we can use the metric to identify the symmetric bilinear form Kαβ with a
symmetric endomorphism K α

β . Interpreted in this way, the space of Killing tensors
generates a Lie subalgebra of �(End(T M)) with respect to the commutator bracket

[K , L] = K L − L K . (2.4)

On the other hand, we can interpret a Killing tensor Kαβ as a function Kαβ pα pβ on
the total space of the cotangent bundle T ∗M which is quadratic in the fibres. Interpreted
in this way, the space of Killing tensors generates a Lie subalgebra of C∞(T ∗M) with
respect to the Poisson bracket

{K , L} =
n∑

α=1

(
∂K

∂xα

∂L

∂pα
− ∂L

∂xα

∂K

∂pα

)
. (2.5)

Definition 3. A Stäckel system on an n-dimensional Riemannian manifold is an n-
dimensional space of Killing tensors which mutually commute with respect to both
of the following brackets:

(1) the commutator bracket (2.4)
(2) the Poisson bracket (2.5)

Remark 1. In the initial definition given by Stäckel, condition (2) is replaced by an
integrability condition on the eigenspaces of the Killing tensors [27]. The equivalence
of both definitions is proven in [2].

It can be shown that every Stäckel system contains a Killing tensor with simple
eigenvalues [2]. Moreover, the n distributions given by the orthogonal complements
of its eigendirections are integrable. Hence they define n hypersurface foliations with
orthogonal normals or, equivalently, orthogonal coordinates. On the other hand, every
Killing tensor commutingwith the above and having simple eigenvalues defines the same
coordinates. In this manner each Stäckel system defines a unique coordinate system. It is
a classical result that these are separation coordinates and that every systemof orthogonal
separation coordinates arises in this way from a Stäckel system:

Theorem 1. [2,10,27] There is a bijective correspondence between Stäckel systems and
orthogonal separation coordinates.
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Remark 2. A priori, the above result is only a local result. However, any local Killing
tensor field on a sphere can be extended to a global one (see e.g. [4]). Hence the same
is true for the corresponding separation coordinates. That is why we can use the above
result for a global classification of orthogonal separation coordinates on Sn .

2.4. Killing tensors with diagonal algebraic curvature tensor. In the following we will
only consider Killing tensors on Sn whose algebraic curvature tensor is diagonal in the
following sense.

Definition 4. Due to the symmetries (2.2a) and (2.2b), we can interpret an algebraic
curvature tensor R on V as a symmetric bilinear form on�2V . We say that R is diagonal
in an orthonormal basis {ei : 1 � i � n + 1} of V , if it is diagonal as a bilinear form on
�2V in the associated basis {ei ∧ e j : 1 � i < j � n + 1}. In components, this simply
means that Ri jkl = 0 unless {i, j} = {k, l}.

Restricting to Killing tensors with diagonal algebraic curvature tensor does not mean
any loss of generality. The reason is the following refinement of Theorem 1 for spheres.

Theorem 2. [4] Necessary and sufficient conditions for the existence of an orthogonal
separable coordinate system for the Hamilton–Jacobi equation on Sn are that there are
n Killing tensors whose algebraic curvature tensors are diagonal in the same basis, one
of which is the metric, which are linearly independent (locally) and pairwise commute
with respect to the Poisson bracket.

Remark 3. By this theorem condition (2) in Definition 3 implies condition (1) on Sn . As
we will show in Sect. 5 below, both conditions are actually equivalent for Sn .

The restriction to separation coordinates which are orthogonal does not constitute a
loss of generality either, because of the following result.

Theorem 3. [13] All separation coordinates on Sn are equivalent to orthogonal sepa-
ration coordinates.

The equivalence corresponds to a linear change of the so-called ignorable coordinates,
on which the metric does not depend (see [13]). We will consider separation coordinates
up to this equivalence throughout this paper.

Theorems 2 and 3 reduce the classification of separation coordinates on spheres to
the purely algebraic problem of finding certain abelian subalgebras in the following two
Lie algebras.

Definition 5. We denote by dn+1 ⊂ �(End(T Sn)) and by Dn+1 ⊂ C∞(T ∗Sn) the Lie
subalgebras generated by Killing tensors with diagonal algebraic curvature tensor under
the commutator bracket (2.4) and the Poisson bracket (2.5) respectively.

By definition, a diagonal algebraic curvature tensor R is uniquely determined by the
diagonal elements Ri ji j for 1 � i < j � n+1. Indeed, the symmetries (2.2a) and (2.2b)
determine the components Ri ji j = −Ri j ji = R ji ji = −R jii j for i < j . And if we set
all other components to zero, the resulting tensor R satisfies all symmetries (2.2) of an
algebraic curvature tensor. For fixed i and j , let Ki j be the Killing tensor with diagonal
algebraic curvature tensor R given by

Ri ji j = −Ri j ji = R ji ji = −R jii j = 1 (2.6)
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and all other components zero. Then Ki j with i < j form a basis of the space of Killing
tensors on Sn with diagonal algebraic curvature tensor and constitute a set of generators
for both Lie algebras, dn+1 and Dn+1. The following two propositions show that they
satisfy the same relations in dn+1 and in Dn+1.

Proposition 1. Let Ki j , 1 � i < j � n + 1 be the basis of the space of Killing tensors
on Sn with diagonal algebraic curvature tensor, as defined above. For convenience we
set K ji := Ki j . Then Ki j satisfy the following relations in dn+1:

[Ki j , Kkl ] = 0 if i, j, k, l are distinct (2.7a)

[Ki j , Kik + K jk] = 0 if i, j, k are distinct. (2.7b)

Proof. We can extend the Killing tensor K on Tx Sn to a symmetric tensor K̂ on V =
Tx Sn⊕Rx by omitting the restriction v,w ⊥ x in (2.3). The antisymmetry (2.2a) implies
that Kx (v, x) = 0 for any v ∈ V , so K̂ is the extension of K by zero. Consequently, we
have [K̂i j , K̂kl ] = ̂[Ki j , Kkl ], so that it is sufficient to check the above relations on the
corresponding extensions. To do so, consider the Killing tensor Ki j at a point x ∈ Sn .
By (2.3) and the definition (2.6) of the diagonal algebraic curvature tensor of Ki j we
have

K̂i j (v,w) =
n+1∑

a,b=1

(Rababxa xavbwb + Rabba xa xbvbwa)

= xi xiv jw j + x j x jviwi − xi x jviw j − xi x jv jwi .

Let us put all indices down for convenience. Then we have

K̂i j =
(

x2j −xi x j

−xi x j x2i

)
,

where we left only non-zero (i-th and j-th) rows and columns. This already proves
relation (2.7a). To check the remaining relation (2.7b), we compute

[K̂i j , K̂ jk] =
⎡
⎣

⎛
⎝ x2j −xi x j 0

−xi x j x2i 0
0 0 0

⎞
⎠ ,

⎛
⎝0 0 0
0 x2k −x j xk

0 −x j xk x2j

⎞
⎠

⎤
⎦

= xi x j xk

⎛
⎝ 0 −xk x j

xk 0 −xi
−x j xi 0

⎞
⎠ . (2.8)

Here we omitted rows and columns other than i, j, k, because they are zero. In the same
way we compute [K̂i j , K̂ik] and verify (2.7b). 
�
Proposition 2. As elements of Dn+1 the generators Ki j satisfy the following relations:

{Ki j , Kkl} = 0 if i, j, k, l are distinct (2.9a)

{Ki j , Kik + K jk} = 0 if i, j, k are distinct. (2.9b)
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Proof. The function on T ∗Sn given by Ki j is

Ki j (x, p) = x2j p2i + x2i p2j − 2xi x j pi p j = (xi p j − x j pi )
2. (2.10a)

This already proves relation (2.9a). In order to verify relation (2.9b), we compute

{Ki j , K jk} = ∂Ki j

∂x j

∂K jk

∂p j
− ∂Ki j

∂p j

∂K jk

∂x j

= 4(xi p j − x j pi )(x j pk − xk p j )(xk pi − xi pk), (2.10b)

which is clearly antisymmetric with respect to i and j . 
�
The next proposition says that there are no more relations between the generators

and their brackets, both in dn+1 as well as in Dn+1, provided n � 2.

Proposition 3. The generators Ki j and the commutator brackets [Ki j , K jk] with 1 �
i < j < k � n + 1 are linearly independent in dn+1 for n � 2. The same is true for Ki j
and the Poisson brackets {Ki j , K jk} as elements of Dn+1.

Proof. Since Ki j are symmetric and [Ki j , K jk] are antisymmetric, it suffices to check
the linear independence of both sets independently. The elements Ki j are linearly inde-
pendent by definition. To prove the linear independence of [Ki j , K jk] suppose that

∑
1�i< j<k�n+1

λi jk[Ki j , K jk] = 0.

For each triple (p, q, r) with 1 � p < q < r � n + 1 consider a point x ∈ Sn with
xm = 0 if and only if m �∈ {p, q, r}. Due to (2.8) we have that [Ki j , K jk] = 0 at this
point x for all i < j < k unless (i, j, k) = (p, q, r). Hence all λpqr = 0.

In the case of Dn+1 we note that Ki j are quadratic in momenta while {Ki j , K jk} are
cubic; the rest of the proof is the same. 
�

2.5. Stäckel systems generated from special conformal Killing tensors. The generic
Stäckel systems on a sphere can be constructed from special conformal Killing tensors.

Definition 6. A special conformal Killing tensor on a Riemannian manifold is a sym-
metric tensor Lαβ satisfying

∇γ Lαβ = λαgβγ + λβgαγ λ = 1
2∇ tr L .

The space of special conformal Killing tensors parametrises geodesically equivalent
metrics, which are metrics having the same set of unparametrised geodesics. Their
importance in our context stems from the fact that

K := L − (tr L)g

defines a Killing tensor, as one immediately checks, and the fact that every Killing
tensor of this form is contained in a Stäckel system. The latter follows easily from the
Nijenhuis integrability conditions applied to K (see for example [26]). Thus, in the
generic case where L (and hence K ) has pairwise different eigenvalues, it defines a
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system of separation coordinates. The corresponding Stäckel system is spanned by the
coefficients of the polynomial

Adj(L − λId) =
n−1∑
i=0

Kiλ
i , (2.11)

where Adj X denotes the adjugate matrix, i.e. the transpose of the cofactor matrix
of X [3].

We can deduce the corresponding separation coordinates directly from the special
conformal Killing tensor L , since its eigenvalues are constant on the corresponding
coordinate hypersurfaces [5]. This means that the eigenvalues of L can be taken as
coordinate functions. On Sn ⊂ V the situation is further simplified. The reason is that
under certain conditions, which are met in this case, every special conformal Killing
tensor L on M is the restriction of a covariantly constant symmetric tensor L̂ on the
metric cone over M and vice versa (see for example [20]). Here the metric cone over
Sn ⊂ V is nothing but V , so the determination of separation coordinates on Sn ⊂ V
arising from a special conformal Killing tensor reduces to computing the eigenvalues of
the restriction L of a constant symmetric tensor L̂ on V .

2.6. Two extremal cases: elliptic and polyspherical coordinates. As amatter of example,
let us consider two extremal cases. The generic case of orthogonal separation coordinates
on the sphere consists of elliptic coordinates and canbeobtained froma special conformal
Killing tensor L with simple eigenvalues as described above. For L̂ with (constant)
eigenvalues �1 < �2 < . . . < �n+1 the eigenvalues λ1(x), . . . , λn(x) of L at a point
x = (x1, . . . , xn+1) ∈ Sn are the solutions of the equation

n+1∑
k=1

x2k
�k − λ

= 0, ‖x‖2 = 1, (2.12)

which can be ordered to satisfy

�1 < λ1(x) < �2 < λ2(x) < · · · < λn(x) < �n+1.

This is nothing else but the defining equation for the classical elliptic coordinates on the
sphere Sn introduced in 1859 by Neumann [23]. Note that shifting or multiplying the
parameters �1 < �2 < · · · < �n+1 by a constant results in a mere reparametrisation of
the same coordinate system. Therefore elliptic coordinates form an (n − 1)-parameter
family of separation coordinates on Sn .

The other extreme, having no continuous parameters at all, are polyspherical coor-
dinates considered by Vilenkin [30,31]. Each of these coordinate systems is given in
terms of Cartesian coordinates by starting with x(∅) := 1 on S0 ⊂ R

1 and then defin-
ing recursively z = z(ϕ1, . . . , ϕn−1) on Sn−1 ⊂ R

n from x = x(ϕ1, . . . , ϕn1−1) on
Sn1−1 ⊂ R

n1 and y = y(ϕn1 , . . . , ϕn1+n2−2) on Sn2−1 ⊂ R
n2 by setting

z = (x cosϕn−1, y sin ϕn−1) (2.13)

for n = n1 + n2. Since this involves a choice of a splitting n = n1 + n2 in each step,
polyspherical coordinates on Sn−1 are parametrised by planar rooted binary trees with
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n leaves.2 For example, the standard spherical coordinates correspond to the binary tree
where each right child is a leaf.

2.7. The residual action of the isometry group. Theorem 2 implies that for a Stäckel
system on a sphere we can always find an isometry which takes all Killing tensors in
this Stäckel system to Killing tensors having a diagonal algebraic curvature tensor. This
means that the space of Killing tensors with diagonal algebraic curvature tensor defines a
slice for the action of the isometry group. If wewant to classify separation coordinates up
to isometries, we have to take into account that the stabiliser of this slice in the isometry
group is not trivial.

Due to the symmetries (2.2a) and (2.2b), the space of algebraic curvature tensors is
a subspace of the space S2�2V of symmetric forms on �2V . The natural action of the
isometry group O(V ) on this space is given as follows. Mapping an orthonormal basis
{ei : 1 � i � n + 1} of V to the basis {(ei ∧ e j )/

√
2 : 1 � i < j � n + 1} of �2V

defines a map
O(V ) → O(�2V ), (2.14)

since the latter basis is orthonormal with respect to the scalar product on �2V induced
from the one on V . Via the action of O(�2V ) on �2V this defines an action of O(V )

on S2�2V and hence on algebraic curvature tensors.
In general, the subgroup in O(V ) leaving the space of diagonal bilinear forms on V

invariant is the subgroup of signed permutation matrices, acting by permutations and
sign changes of the chosen basis {ei } in V . This group is the symmetry group of the
hyperoctahedron in V with vertices ±ei and is isomorphic to the semidirect product
SN � Z

N
2 , where N = dim V = n + 1.

The stabiliser in O(V ) of the space of diagonal algebraic curvature tensors is now
the preimage under (2.14) of the stabiliser of diagonal bilinear forms on �2V . Since the
latter consists of permutations and sign changes of the basis {ei ∧ e j } in �2V , this is
just the group of permutations and sign changes of the basis elements ei , i.e. the group
described in the preceding paragraph. Note that the normal subgroup of sign changes,
which is isomorphic to Z

N
2 , acts trivially on diagonal bilinear forms. Hence the action

descends to the quotient (SN � Z
N
2 )/Z

N
2

∼= SN . Summarising the above, we have:

Proposition 4. The stabiliser in the isometry group O(V ) of the space of Killing tensors
on Sn ⊂ V with diagonal algebraic curvature tensor is the hyperoctahedral group and
isomorphic to the semidirect product SN � Z

N
2 , where N = n + 1. This action descends

to an action of SN given by

σ(Ki j ) = Kσ(i)σ ( j), σ ∈ SN . (2.15)

3. Gaudin Subalgebras of the Kohno–Drinfeld Lie Algebra
and the Moduli Space M̄0,n+1

We describe now the result of [1], which plays a key role for us. The (real version of)
the Kohno–Drinfeld Lie algebra tn (n = 2, 3, . . . ) is defined as the quotient of the free

2 When Vilenkin introduced polyspherical coordinates in [30], he used trees which are not binary. The
description with binary trees appeared in Vilenkin and Klimyk [31, Chap. 10.5] and both are completely
equivalent.
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Lie algebra over R with generators ti j = t j i , i �= j ∈ {1, . . . , n}, by the ideal generated
by the relations

[ti j , tkl ] = 0, if i, j, k, l are distinct, (3.1)

[ti j , tik + t jk] = 0, if i, j, k are distinct. (3.2)

This Lie algebra appeared in Kohno’s work as the holonomy Lie algebra of the comple-
ment to the union of the diagonals zi = z j , i < j in C

n (which is also a configuration
space of n distinct points on the complex plane) and in Drinfeld’s work as the value
space of the universal Knizhnik–Zamolodchikov connection (see the references in [1]).

Gaudin subalgebras of Kohno–Drinfeld Lie algebras were introduced in [1] as the
abelian Lie subalgebras of maximal dimension contained in the linear span t1n of the
generators ti j . The main class of examples is provided by Gaudin’s models of integrable
spin chains

gn(z) =
⎧⎨
⎩

∑
1�i< j�n

bi − b j

zi − z j
ti j , b ∈ R

n

⎫⎬
⎭ . (3.3)

Note that they are parametrised by z ∈ �n/Aff, where

�n = R
n

�

⋃
i< j

{z ∈ R
n | zi = z j }

is the configuration space of n distinct ordered points on the real line and Aff is the
group of affine maps z �→ az + b, a �= 0, acting diagonally on R

n . A different type of
example, which came from the representation theory of the symmetric group, is given
by the Jucys–Murphy subalgebras spanned by

t12, t13 + t23, t14 + t24 + t34, . . . (3.4)

(see [29] and references therein).
The main result of [1] is the following.

Theorem 4. [1]Gaudin subalgebras in tn form a nonsingular algebraic subvariety of the
Grassmannian G(n−1, n(n−1)/2) of (n−1)-dimensional subspaces in t1n, isomorphic
to the moduli space M̄0,n+1 of stable curves of genus zero with n + 1 marked points.

In fact, the result holds for any quotient of tn where both the generators ti j , 1 � i <

j � n, and the brackets [ti j , t jk], 1 � i < j < k � n, are linearly independent (see
remark 2.6 in [1]), and over any field.

The most popular version of the moduli space M̄0,n+1—appearing, for example,
in the celebrated Witten’s conjecture—is defined over C. It is a particular (Deligne–
Mumford) compactificationof the configuration space M0,n+1(C)ofn+1distinct labelled
points in CP1 modulo PGL2(C) studied by Knudsen [16], who proved that it is a
smooth projective variety. The compactification M̄0,n+1(C) includes the singular rational
curves with double point singularities and with the following properties: the graph of
components is a tree (genus zero) and each irreducible component contains at least three
marked or singular points (stability condition).

However, we need the real version M̄0,n+1(R), which we discuss next.



Separation Coordinates, Moduli Spaces and Stasheff Polytopes 1265

4. The Real Version M̄0,n+1(R) and Stasheff Polytopes

4.1. Topology. The real version M̄0,n+1(R)was studied in more detail by Kapranov [15]
and Devadoss [7]. By Knudsen’s theorem, which works over R as well, M̄0,n+1(R) is a
smooth real manifold of dimension n − 2. It can be described as an iterated blow-up of
RPn−2 [6,7,15]. M̄0,4(R) is simply RP1 and M̄0,5(R) is a non-orientable surface with
Euler characteristic −3, which is a connected sum of five copies of RP2.

The topology of M̄0,n+1(R) becomes increasingly complicated when n grows. It is
known to be aspherical (Davis et al. [6]). The Euler characteristic can be given explicitly
by

χ
(
M̄0,n+1(R)

) = (−1)
n−2
2 (n − 1)!!(n − 3)!!

for even n (and zero for odd n), see [7]. A description of the cohomology is more
complicated than in the complex case, as found by Etingof et al. in [11].

4.2. Combinatorics. Fortunately, a lot of information about M̄0,n+1(R) is encapsulated
in a well studied remarkable polytope known as associahedron, or Stasheff polytope Kn .
Namely, M̄0,n+1(R) is tessellated by n!/2 copies of Kn , see [7,15].

Kn was first described by Stasheff as a combinatorial object in the homotopy theory
of H -spaces [28] (see the history of this in Stasheff’s contribution to [22]). Its first
realisation as a convex polytope is usually ascribed to Milnor. By now we have several
geometric realisations of Stasheff polytopes, see e.g. [9] and references therein. Kn is a
convex polytope of dimension n − 2: K3 is a segment, K4 is a pentagon and K5 is the
polyhedron shown in Fig. 1, which can be obtained combinatorially by cutting off three
skew edges from a cube.

The faces of Kn of codimension d are in one-to-one correspondence with dissections
of a based (n + 1)-gon by d non-intersecting diagonals (see e.g. [8]). In particular, the
vertices of Kn correspond to the triangulations of the (n + 1)-gon by non-intersecting
diagonals and their number is Cn−1, where

Cn = 1

n + 1

(
2n

n

)

is the Catalan number.

(a) K3 (b)K4 (c) K5

Fig. 1. Stasheff polytopes
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Fig. 2. Labellings of K4 by dissections of a based pentagon (left) and planar rooted trees with four leaves
(right)

Alternatively, the faces of Kn can be labelled by non-isomorphic planar rooted trees
with n leaves (see e.g. [7]). These are simply the dual graphs of the dissected polygons,
cut off at the edges of the polygon. In particular, the vertices of Kn correspond to binary
rooted trees. For n = 4 this is depicted in Fig. 2.

The Stasheff polytope Kn admits a realisation with the dihedral symmetry Dn+1,
which is the symmetry group of a regular (n + 1)-gon [18].

4.3. Operad structure. The sequence of moduli spaces M̄0,n+1(R) for n = 1, 2, . . .
carries a natural operad structure, called the “mosaic operad” [7].

Definition 7. An operad structure on a sequence of objects O(n) is a composition map

◦ : O(k) × O(n1) × · · · × O(nk) −→ O(n1 + · · · + nk)

(y, x1, . . . , xk) �→ y ◦ (x1, . . . , xk)

together with a right action

� : O(n) × Sn −→ O(n)

(x, π) �→ x � π

of the permutation group Sn on each object O(n), satisfying the following axioms:

Identity: There is a distinguished element 1 ∈ O(1) satisfying

y ◦ (1, . . . , 1) = y = 1 ◦ y.

Associativity: For z ∈ O(k), yi ∈ O(ni ), i = 1, . . . , k, and xi ∈ O(mi,1) × · · · ×
O(mi,ni ) we have

z ◦ (y1 ◦ x1, . . . , yk ◦ xk) = (
z ◦ (y1, . . . , yk)

) ◦ (x1, . . . , xk).
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Equivariance:

(y � π) ◦ (x1, . . . , xk) = y ◦ (
(x1, . . . , xk) � π

)
y ◦ (x1 � π1, . . . , xk � πk) = (

y ◦ (x1, . . . , xk)
)
� (π1, . . . , πk),

where Sk acts on (x1, . . . , xk) by permutation and (π1, . . . , πk) on O(n1 + · · · + nk)

under the inclusion Sn1 × · · · × Snk ↪→ Sn1+···+nk .

In terms of dissected polygons, the operad structure on O(n) := M̄0,n+1(R) is given
by gluing the k (ni +1)-gons xi with their base to the k non-base edges of the (k +1)-gon
y to form the (n1 + · · · + nk + 1)-gon y ◦ (x1, · · · , xk) with the base of y as base. If y is
dissected by d0 diagonals and xi by di diagonals, then y ◦ (x1, . . . , xk) is dissected by
d0 + d1 + · · · dk + k diagonals, namely the diagonals of y and x1, . . . , xk plus the k glued
pairs of edges which become diagonals after gluing. On planar trees, the composition
y ◦ (x1, . . . , xk) is given by grafting the k trees xi with their root to the leaves of the
tree y.

The operad structure on Stasheff polytopes defines a map

◦ : Kk × Kn1 × · · · × Knk ↪→ Kn1+···+nk

whose image is a codimension k face of Kn1+···+nk . This yields a decomposition of the
faces of a Stasheff polytope into products of Stasheff polytopes [28].

5. The Correspondence

After these preparationswe are now in a position to state ourmain result. By Propositions
1 and 2 the defining relations of the Kohno–Drinfeld Lie algebra tn are satisfied in the Lie
algebras dn and Dn (c.f. Definition 5). This provides surjective Lie algebra morphisms

tn −→ dn tn −→ Dn, (5.1)

given by mapping the generator ti j to the Killing tensor Ki j . Under these morphisms
the linear span t1n of the ti j is isomorphic to the space of Killing tensors—interpreted as
endomorphisms in dn respectively as quadratic functions on the cotangent bundle inDn .
Thus the above morphisms map Gaudin subalgebras in the Kohno–Drinfeld Lie algebra
tn to Stäckel systems on Sn−1 with diagonal algebraic curvature tensor. Proposition 3
now shows that this defines an isomorphism between Gaudin subalgebras and Stäckel
systems. Now using Theorem 4 we have the following correspondence:

Theorem 5. The Stäckel systems on Sn with diagonal algebraic curvature tensor form a
nonsingular algebraic subvariety of the Grassmannian G(n, n(n + 1)/2) of n-planes in
the space of Killing tensors with diagonal algebraic curvature tensor, which is isomor-
phic to the real Deligne–Mumford–Knudsen moduli space M̄0,n+2(R) of stable genus
zero curves with n + 2 marked points.

Note that since M̄0,n+2(R) can be considered as a compactification of the configu-
ration space �n+1/Aff of n + 1 ordered distinct points on a real line modulo the affine
group, we have a natural action of the symmetric group Sn+1 on M̄0,n+2(R).

Corollary 1. The space Xn of equivalence classes of orthogonal separation coordinates
on the sphere Sn modulo the orthogonal group O(n + 1) is naturally homeomorphic to
the quotient space Yn = M̄0,n+2(R)/Sn+1.
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Proof. This follows directly from Theorems 1 and 5. It suffices to note that by Propo-
sition 4 the morphisms (5.1) are equivariant with respect to the Sn+1-action on tn+1 and
dn+1 respectively Dn+1. Therefore the isomorphism in Theorem 5 is Sn+1-equiviariant,
so that the corresponding quotients are homeomorphic. Note that while the space of
Stäckel systems on Sn ⊂ V with diagonal algebraic curvature tensor depends on the
choice of an orthonormal basis in the ambient space V (for which the algebraic cur-
vature tensors are diagonal), the quotient does not. Therefore the homeomorphism is
natural. 
�

Since M̄0,n+2(R) is tessellated by (n + 1)!/2 copies of the Stasheff polytope Kn+1,
we can use it to describe the quotient. The interior of Kn+1 corresponds to the clas-
sical elliptic coordinates (2.12) on the sphere Sn . The n + 1 distinct real parameters
(�1, . . . , �n+1) ∈ �n+1 they depend on are the eigenvalues of the symmetric tensor
L̂ on R

n+1 which restricts to the corresponding special conformal Killing tensor L on
Sn . Shifting or scaling them only reparametrises the corresponding coordinates. Hence
the actual parameter space is the quotient �n+1/Aff, which is nothing else but the open
moduli space M0,n+2(R). Thus we have the following important

Corollary 2. All orthogonal separation coordinates on Sn belong to the closure of the
Neumann family of elliptic coordinates. The possible degenerations of the Neumann
family correspond to the faces of the Stasheff polytope Kn+1.

The first part is probably not surprising for the experts (see the similar claim in
the complex case in [14]), but we have not seen it explicitly stated and proved in the
literature. In Sect. 6.2 we will show that rather than by actually performing the limiting
process explicitly (as in [14]), the limiting cases can be better understood by composing
generic separation coordinates (that is elliptic coordinates) of lower dimensions under
the operad composition. The same holds true for the corresponding Stäckel systems.

Because we have (n + 1)!/2 Stasheff polytopes Kn+1 tiling M̄0,n+2(R), the quotient
Yn = M̄0,n+2(R)/Sn+1 is actually only “a half” of Kn+1 with some identification between
the faces. In the interior of the polytope the identification is given by the action of
Z2 ⊂ Dn+2, corresponding to a reflection in the dihedral group, realised as an isometry
of Kn+1 (see above). If we are using the blow-up description of M̄0,n+2(R) [6,7,15],
then it corresponds to the longest element (1, 2, . . . , n, n + 1) �→ (n + 1, n, . . . , 2, 1) in
the symmetric group Sn+1, mapping the An Weyl chamber into the opposite one. For K4
this is just a reflection symmetry of the pentagon as indicated in Fig. 4.

The identification of the faces ismore sophisticated. Probably the bestway to describe
them is using the “twisting along the diagonal” operation for the dissected (n + 1)-gon
introduced in [7,8]. On planar trees this corresponds to reversing the ordering of a node’s
children. Trees which are equivalent under this operation are called “dyslexic”.

As a matter of illustration, let us consider the least non-trivial example n = 2,
depicted in Fig. 3. The parameter space M̄0,4(R) ∼= RP1 is just a circle, parametrised
by the affine-invariant cross ratio τ = �2−�1

�3−�1
. It is tessellated by three copies of the

Stasheff polytope K3, the tiles being the arcs between the points τ = 0, 1,∞. We
can identify K3 with the arc [0, 1], for which �1 < �2 < �3. The symmetry group
S3 acts by permuting �1, �2 and �3 and hence the points 0, 1 and ∞. The quotient
Y2 = M̄0,4(R)/S3 can be identified with the arc [0, 1

2 ]. This is “a half” of K3, where
τ = 0 corresponds to spherical coordinates and τ = 1/2 to the “lemniscatic” case,
which is just a particular case of elliptic coordinates when �2 = (�1 + �3)/2. In this
example there is no identification in place, because the dimension is too low.
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M̄0,4( ) ∼= P 1

∞

0

1
2

1

Fig. 3. Orthogonal separation coordinates on S2 parametrised by M̄0,4(R) ∼= RP1

6. Applications

6.1. Enumerating separation coordinates. For a Stasheff polytope, the number of non-
equivalent faces of a given dimension can be given by the following Devadoss-Read
formula [8]. Let A(x, y) = ∑

amn xm yn be the formal series solution of the functional
equation

A(x, y) = y +
1

2

(
A(x, y)2

1 − A(x, y)
+

(1 + A(x, y))A(x2, y2)

1 − A(x2, y2)

)
. (6.1)

There is no closed formula for A(x, y), but one uses Eq. (6.1) to find the coefficients
amn recursively. The claim is that the coefficient amn is the number of non-equivalent
faces of Kn of codimension m −1. Devadoss and Read proved this using a combinatorial
technique going back to Pólya [8].

Using Table 2 from [8], we get the number of non-equivalent canonical forms of
separation coordinates on Sn for n � 10, as listed in Table 1. The 1’s on the diagonal
correspond to elliptic coordinates, the numbers in the first column to polyspherical
coordinates. Note that the sequence 1, 2, 3, 6, 11, 23, . . . is the sequence ofWedderburn–
Etherington numbers, i.e. the number of non-planar binary rooted trees with n +1 leaves
[32]. This reflects the fact that we can parametrise polyspherical coordinates by planar
binary rooted trees and that the notions dyslexic and non-planar coincide for binary
trees.

In the first rowwe have 1 and 1, corresponding to spherical and elliptic coordinates on
S2 respectively, as discussed in Sect. 5. The numbers in the second row—2, 3, 1—are in
perfect agreement with the results of Eisenhart [10], Olevski [24] and Kalnins andMiller
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Table 1. Number of canonical forms for separation coordinates on Sn , ordered by increasing number of
independent continuous parameters

0 1 2 3 4 5 6 7 8 9 Total
S2 1 1 2
S3 2 3 1 6
S4 3 8 5 1 17
S5 6 20 22 8 1 57
S6 11 49 73 46 11 1 191
S7 23 119 233 206 87 15 1 684
S8 46 288 689 807 485 147 19 1 2482
S9 98 696 1988 2891 2320 1021 236 24 1 9275
S10 207 1681 5561 9737 9800 5795 1960 356 29 1 35,127

elliptic

cylindrical

spherical

spherical spherical

spherical

oblate
Lamé

Lamé
subgroup

prolate
Lamé

Lamé
subgroup

oblate
Lamé

Fig. 4. The Stasheff polytope K4, labelled by separation coordinates on S3

[13]. They correspond to spherical and cylindrical coordinates (2), two types of Lamé
rotational coordinates plus Lamé subgroup reduction (3) and elliptic coordinates (1)
respectively. Their identificationwith the faces of the Stasheff polytope K4 is indicated in
Fig. 4, in comparison to the different labellings shown inFig. 2. Polyspherical coordinates
comprise, for example, the usual spherical coordinates plus cylindrical coordinates. Note
that “the half” of K4, obtained as the quotient under the reflection symmetry indicated
in Fig. 4, is a quadrilateral and that for the quotient space Y3 = M̄0,5(R)/S4 we have
to identify its two adjacent vertices that are labelled by spherical coordinates and joined
by Lamé subgroup reduction.

In accordancewith our description, the total number of canonical forms for separation
coordinates on Sn , indicated in the last column in Table 1, is the number of dyslexic
planar rooted trees with n + 1 leaves [33].

6.2. Constructing separation coordinates via the mosaic operad. The correspondence in
Theorem 5 transfers the natural operad structure on M̄0,n+2(R) to orthogonal separation
coordinates on Sn and thereby yields a uniform construction procedure for separation
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coordinates on spheres. Implicitly this structure is already present in [13] (see, in partic-
ular, formula (3.14) therein). Let us now make this operad structure explicit. We begin
with the operad structure on O(n) := R

n given by

◦ : R
k × R

n1 × · · · × R
nk −→ R

n1+···+nk

( y, x1, . . . , xk) �→ y ◦ (x1, . . . , xk) := (y1x1, . . . , ykxk)

together with the permutation action of Sn on R
n . This operad structure descends to an

operad structure on O(n) := Sn−1 ⊂ R
n , since (y1x1)2 + · · · (ykxk)

2 = y21 + · · · y2k = 1
for y ∈ Sk−1 and xα ∈ Snα−1. Note that the composition map

◦ : Sk−1 × Sn1−1 × · · · × Snk−1 −→ Sn1+···+nk−1

describes the k-fold join Sn1−1 � · · · � Snk−1 ∼= Sn1+···+nk−1 of the spheres Sn1−1, …,
Snk−1. This operad structure on spheres induces an operad structure on (local) coor-
dinates on spheres, since coordinates x0 = x0(ϕ0,1, . . . , ϕ0,k−1) on Sk−1 ⊂ R

k and
xα = xα(ϕα,1, . . . , ϕα,nα−1) on Snα−1 ⊂ R

nα for α = 1, . . . , k determine coordinates

x = x(ϕ0,1, . . . , ϕ0,k−1, ϕ1,1, . . . , ϕ1,n1−1, . . . , ϕk,1, . . . , ϕk,nk−1)

on Sn1+···+nk−1, given by setting

x := x0 ◦ (x1, . . . , xk). (6.2)

The interior of a Stasheff polytope corresponds to elliptic coordinates and its faces
are products of Stasheff polytopes. Therefore we can construct all orthogonal separation
coordinates on spheres (modulo isometries) from elliptic coordinates by composing
them in a recursive manner via the operad composition (6.2). Just start with trivial
coordinates x(∅) = 1 on a certain number of zero dimensional spheres S0 and take
elliptic coordinates for x0 in each step. The different choices one has when iterating this
composition are given by the trees labelling the corresponding separation coordinates.
That is, the rooted trees describe the hierarchy of iterated decompositions of a sphere as
joins of lower dimensional spheres. This parallels the decomposition of the faces of a
Stasheff polytope into products of lower dimensional Stasheff polytopes.

Note that the construction (2.13) of Vilenkin’s polyspherical coordinates on Sn−1

corresponds to the special case k = 2 of the above construction, starting from trivial
coordinates x(∅) = 1 on n copies of S0 and using the (elliptic) coordinates x0(ϕ) =
(cosϕ, sin ϕ) on Sk−1 = S1 in each step.

Moreover, this operad structure on separation coordinates also explains Kalnins and
Miller’s graphical procedure [13]. Namely, adding in an “irreducible block” a leaf to
each box which is not joined to another block and replacing each irreducible block by a
node, the graphs in [13] become the trees arising from the operad structure.

6.3. Constructing Stäckel systems via the mosaic operad. We now explain how this
operad structure manifests itself on the level of Stäckel systems. To this end, let I1 ∪
· · · ∪ Ik = I be a partition of I = {1, . . . , n} with |Iα| =: nα and set I0 := {1, . . . , k}.
We denote by d1n the space of Killing tensors on Sn−1 with diagonal algebraic curvature
tensor and define the injections

ι0 : d1k ↪→ d1n1+···+nk
ι0(Kαβ) :=

∑
a∈Iα,b∈Iβ

Kab α, β ∈ I0

ια : d1nα
↪→ d1n1+···+nk

ια(Ki j ) := Ki j i, j ∈ Iα.
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Proposition 5. Let �0 be a Stäckel system on Sk−1 and �α be Stäckel systems on Snα−1

for α = 1, . . . , k, all consisting of Killing tensors with diagonal algebraic curvature
tensor. Then

�0 ◦ (�1, . . . , �k) := ι0(�0) ⊕ ι1(�1) ⊕ · · · ⊕ ιk(�k) (6.3)

is a Stäckel system on Sn1+···+nk−1. Moreover, this operation together with the Sn-action
(2.15) defines an operad structure on those Stäckel systems on Sn−1 that consist of
Killing tensors with diagonal algebraic curvature tensor.

Proof. First observe that the sum on the right hand side of (6.3) is indeed a direct sum.
Hence its dimension is n1 + · · ·+nk −1. By Definition 3 and Remark 3, we have to show
that all Killing tensors in this subspace commute. That is, a Killing tensor from ιp(�p)

and another one from ιq(�q) commute for all p, q = 0, 1, . . . , k. For p, q �= 0 this is
evident. For p = q = 0 one readily checks that the inclusion ι0 preserves the relations
(2.7) and hence maps commuting Killing tensors to commuting Killing tensors. In the
remaining case p �= 0 = q the commutator

[ιp(Ki j ), ι0(Kαβ)] = [Ki j ,
∑

a∈Iα,b∈Iβ

Kab] i, j ∈ Ip, α �= β ∈ I0

is zero unless p = α or p = β. But if p = α, the sum over a ∈ Iα only contributes
non-zero terms for a = i and a = j . So the above commutator reduces to

∑
b∈Iβ

[Ki j , Kib + K jb] = 0

due to the relations (2.7), and similarly for p = β. This proves that (6.3) is a Stäckel
system.

To check that this composition defines an operad is straightforward. The identity
element is the empty Stäckel system on S0 and equivariance is obvious. Associativity
can be shown by taking subdivisions Iα = Iα1 ∪ · · · ∪ Iαkα of Iα for all α ∈ I0 and
considering the corresponding inclusions for Killing tensors. The details will be left to
the reader. 
�

To give an example, let us construct the Stäckel system for standard spherical coor-
dinates on Sn−1 by choosing k = 2 with the Stäckel system �0 on Sk−1 = S1 spanned
by K12, starting from empty Stäckel systems on n copies of S0 and taking n2 = 1 in
each step. This yields the Stäckel system spanned by

K12, K13 + K23, K14 + K24 + K34, . . .

and shows that the Jucys–Murphy subalgebras (3.4) in the Kohno–Drinfeld Lie algebra
correspond to standard spherical coordinates.

7. Outlook

Wehave shown that the theory of Deligne–Mumford–Knudsenmoduli spaces and Stash-
eff polytopes provides the right framework for the classification and construction of all
orthogonal separation coordinates on spheres. In particular, we elucidated the natural
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algebro-geometric structure of the parameter space classifying isometry classes of sep-
aration coordinates, which for a long time had only been known as a mere set, and gave
a precise description of its topology.

It would be very interesting to see if the same approach will work in a more general
situation. In particular, one can use the algebraic approach of [26] to study the orthogonal
separation coordinates for all (pseudo-)Riemannian constant curvature manifolds, such
as hyperbolic space H

n . The question is whether the corresponding moduli spaces of
separation coordinates are related to any known algebro-geometric moduli spaces or
families of polyhedra. This will be a subject for future research.
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