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Abstract: A multiparametric family of 2D Toda τ -functions of hypergeometric type
is shown to provide generating functions for composite, signed Hurwitz numbers that
enumerate certain classes of branched coverings of the Riemann sphere and paths in
the Cayley graph of Sn . The coefficients Fc1,...,cl

d1,...,dm
(μ, ν) in their series expansion over

products Pμ P ′
ν of power sumsymmetric functions in the two sets of Todaflowparameters

and powers of the l + m auxiliary parameters are shown to enumerate |μ| = |ν| =
n fold branched covers of the Riemann sphere with specified ramification profiles μ

and ν at a pair of points, and two sets of additional branch points, satisfying certain
additional conditions on their ramification profile lengths. The first group consists of l
branch points, with ramification profile lengths fixed to be the numbers (n −c1, . . . , n −
cl); the second consists of m further groups of “coloured” branch points, of variable
number, for which the sums of the complements of the ramification profile lengths
within the groups are fixed to equal the numbers (d1, . . . , dm). The latter are counted
with signs determined by the parity of the total number of such branch points. The
coefficients Fc1,...,cl

d1,...,dm
(μ, ν) are also shown to enumerate paths in the Cayley graph of

the symmetric group Sn generated by transpositions, starting, as in the usual double
Hurwitz case, at an element in the conjugacy class of cycle type μ and ending in the
class of type ν, with the first l consecutive subsequences of (c1, . . . , cl) transpositions
strictly monotonically increasing, and the subsequent subsequences of (d1, . . . , dm)

transpositions weakly increasing.

1. Introduction

In [14] a general method for interpreting 2D Toda τ -functions [34–36] of hypergeo-
metric type [20,32] as combinatorial generating functions for certain classes of paths
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in the Cayley graph of the symmetric group Sn was introduced. Examples included
Okounkov’s generating function for double Hurwitz numbers [28], which count the
number of inequivalent n-fold branched covers of the Riemann sphere P1 having a pair
of branch points at 0 and ∞ with specified ramification profile types μ and ν, and l
additional branch points with simple ramification type. The equivalent combinatorial
interpretation is the enumeration of k-step paths in the Cayley graph of Sn generated by
transpositions, starting at an element in the conjugacy class of cycle type μ and ending
in the class of cycle type ν.

Several similar examples of 2DToda τ -functions of hypergeometric typewere studied
in [11,12,14] and interpreted combinatorially in terms of counting paths in the Cayley
graph generated by transpositions that are either strictly or weakly monotonically in-
creasing, or some combination thereof. These included several cases that, by restriction
of the flow variables to trace invariants of a pair of matrices, could be interpreted as
matrix integrals of the Itzykson–Zuber–Harish–Chandra (HCIZ) type [11,12,15,16], or
variants thereof [17, Appendix A], [14]. In [37] a generating function was given for
Grothendieck’s dessins d’enfants, which is equivalent to the enumeration of branched
covers of Riemann surfaces with three branch points, or Belyi curves, one of which has
specified ramification profile, and the other two specified profile lengths. This was sub-
sequently shown to be a KP τ -function, satisfying Virasoro constraints and topological
recursion relations [2,19] and to have several equivalent representations as matrix inte-
grals [3]. Other works concerned with relating matrix models to coverings with three
branch points include [4,25]. The relations between Hurwitz numbers and Gromov-
Witten invariants, together with the use of τ -functions as generating functions for the
latter was further developed in [29].

In [32] a large class of hypergeometric 2D Toda τ -functions was studied, including
a family that, when the flow variables are restricted to the trace invariants of a pair of
N × N matrices, can be interpreted as hypergeometric functions of matrix arguments
[10]. (This was in fact the origin of the term “τ -function of hypergeometric type”.) It
follows, moreover, from the results of [20,30,31] and [17, Appendix A] that these may
all be represented as matrix integrals. In [1,2] a subclass of this family was noted to have
the form of generating functions for Hurwitz numbers, but no general combinatorial or
geometric interpretation was given. The combinatorial significance of the coefficients
in the double power sum symmetric function expansions for these was indicated briefly
in [14], as counting paths in the Cayley graph consisting of k strictly increasing subse-
quences of transpositions having given lengths.

In the present work, we view these as special cases of the more general class of
hypergeometric 2D Toda τ -functions introduced in [32], and interpret them as gener-
ating functions for the enumeration of certain classes of branched covers of P1, and
certain paths in the Cayley graph of Sn satisfying specified geometric and combinatorial
constraints. The main results are stated in Theorems 2.1 and 2.2, which give both the
geometric and combinatorial significance of the coefficients F (c1,...,cl )

(d1,...,dm )(μ, ν) for the ex-
pansions of these τ -functions in a basis of products of power sum symmetric functions
and monomials in the additional parameters.

Their enumerative geometrical significance, given in Theorem 2.1, is that they count,
with signs, the n-sheeted branched covers of P1, having again a pair of branch points
(0,∞), with ramification profiles given by a pair of partitions (μ, ν), plus two further
families of branch points, satisfying specific conditions. The first family consists of l
branch points whose ramification profiles have specified lengths {n − ca}a=1,...k . The
second consists of m “coloured” groups, each containing a variable number of branch
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points, but constrained so that the sums of the complements of the lengths of the ramifi-
cation profiles of the points within each colour group are equal to the specified numbers
{db}b=1,...m . The sign in the counting is (−1)mn+

∑m
b db times the parity of the total number

of coloured branch points.
The combinatorialmeaningof the coefficients F (c1,...,cl )

(d1,...,dm )(μ, ν), given inTheorem2.2,
is the following: these again enumerate paths in the Cayley graph, starting at an element
in the conjugacy class of cycle typeμ and ending at one in the class of type ν, constrained
so that the first k consecutive subsequences of transpositions of lengths (c1 . . . , cl) are
each monotonically strictly increasing with respect to their larger elements, while those
in the next successive subsequences of lengths (d1, . . . , dm) are weakly monotonically
increasing.

All previously studied examples of generalized Hurwitz numbers can be recovered as
special cases within this extended family of combinatorial/geometric generating func-
tions.

2. The Hypergeometric 2D Toda τ -Functions τ (q,w,z)(N, t, s)

2.1. 2D Toda τ -functions of hypergeometric type. A 2D Toda τ -function [34–36] con-
sists of a lattice of functions τ 2DT(N , t, s), labelled by the integers N ∈ Z, depending
differentiably on two infinite sequences of complex flow variables

t = (t1, t2, . . . ), s = (s1, s2, . . . ), (2.1)

and satisfying the infinite set of Hirota bilinear differential-difference equations, which
are constant coefficient bilinear differential equations in the (t, s) variables, and finite
difference equations in the lattice variable N . These can be concisely expressed through
the following formal contour integral equality [34–36]

∮

z=∞
zN ′−N e−ξ(δt,z)τ 2DT(N , t + [z−1], s)τ 2DT(N ′, t + δt − [z−1], s + δs)

=
∮

z=0
zN ′−N e−ξ(δs,z−1)τ 2DT(N − 1, t, s + [z])τ 2DT(N ′ + 1, t + δt, s + δs − [z])

(2.2)

for any pair N , N ′ ∈ Z, where

ξ(t, z) :=
∞∑

i=1

ti z
i , [z]i := 1

i
zi , (2.3)

understood as satisfied identically in the doubly infinite set of parameters

δt = (δt1, δt2, . . . ), δs := (δs1, δs2, . . . ). (2.4)

These imply, in particular, the full set of KP (Kadomtsev–Petviashvili) Hirota bilinear
relations [6] for either of the two sets of flow variables t and s, for each N , as well as
an infinite set of bilinear nearest neighbour difference equations linking the lattice sites
N , N ′ to their neighbours. Such general 2DToda τ -functionsmay be understood in terms
of infinite abelian group actions on infinite flag manifolds [34,36]. Using the Plücker
embedding, they may be given a standard fermionic Fock space representation [35] as
vacuum state expectation values. Theymay also be given an infinite series representation
as sums over products Sλ(t)Sμ(s) of Schur functions, in which the coefficients are
interpreted as Plücker coordinates of the associated infinite flag manifold [17,35].
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Remark 2.1. To clarify notational conventions, when Schur functions are expressed in
this way, it is understood that their arguments t and s are related to the monomial sum
symmetric functions as follows:

pi = i ti , p′
i = isi , (2.5)

and therefore

Pμ(t) =
�(μ)∏

i=1

pμi =
�(μ)∏

i=1

μi tμi . (2.6)

For the present work, only the special subfamily of τ -functions of hypergeometric
type [20,32] will be needed, for which this expansion reduces to a diagonal sum over
products Sλ(t)Sλ(s) of Schur functions of the same type. Further details and various
applications of this subclass of 2D Toda τ -functions may be found in [17,18,20,31,32].
We give here only a brief summary of the essentials regarding the diagonal double Schur
function series representation as needed in the present work.

For any map

ρ : Z → C×
ρ : j �→ρ j , (2.7)

we may define the following content product associated to the partition λ

rλ(N ) := r0(N )
∏

(i j)∈λ

rN+ j−i , (2.8)

where

r j := ρ j

ρ j−1
, r0(N ) :=

N−1∏

j=0

ρ j , r0(0) := 1, r0(−N ) =
N∏

i=1

ρ−1
− j , N ∈ N+.

(2.9)
As will be detailed further in Sects. 4 and 5, this may be viewed as the eigenvalues
of a certain family of operators acting either on the direct sum ⊕∞

n=1Z(C[Sn]) of the
centers of the group algebras of Sn , n ∈ N or, equivalently, on a fermionic Fock space
F , and used thereby to define a 2D Toda τ -function of hypergeometric type. This may
be expressed as a formal diagonal sum over products of Schur functions

τr (N , t, s) :=
∑

λ

rλ(N )Sλ(t)Sλ(s), (2.10)

where Sλ denotes the Schur function labelled by the integer partition λ = (λ1 ≥
· · · λ�(λ) > 0, 0 . . . ) of length �(λ), and weight |λ| = ∑�(λ)

i=1 λi . It follows from the
fermionic representation (see [32,35] and Sect. 5) that any such lattice of functions
τr (N , t, s) satisfies the Hirota bilinear relations (2.2).

In the following, we assume some familiarity with properties of the algebra 	 of
symmetric functions in an arbitrary number of variables [24], the group algebra C[Sn],
and irreducible characters χλ(μ) of Sn [8]. The Frobenius character formula expresses
the Schur functions Sλ linearly in terms of the power sum symmetric functions {Pμ},

Sλ =
∑

μ
|μ|=|λ|

χλ(μ)Pμ

Zμ

, (2.11)
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where χλ(μ) is the irreducible character of Sn corresponding to the partition λ, evaluated
on the conjugacy class of cycle type given by the partition μ, and

Zμ :=
n∏

i=1

i ji ( ji )! = | stab(μ)|, ( ji = number of parts of μ equal to i), (2.12)

is the order of the stabilizer of any of the elements of the conjugacy class.
Substituting this into formula (2.10) gives an expansion over products of pairs of

monomial sum symmetric functions

τr (N , t, s) =
∑

μ,ν
|μ|=|ν|

Gr (μ, ν)Pμ(t)Pν(s) (2.13)

where
Gr (μ, ν) = (ZμZν)

−1
∑

λ
|λ|=|μ|=|ν|

rλ(N )χλ(μ)χλ(ν). (2.14)

We also use the notation

hλ = |λ|!
dλ

(2.15)

to denote the product of hook lengths [24], where

dλ = χλ(1
|λ|) = |λ|! det

(
1

(λi − i + j)!
)

(2.16)

is the dimension of the irreducible representation of Sn with character χλ(μ).

2.2. The family of hypergeometric τ -functions τ (q,w,z)(N , t, s). Choosing a set of 1 +
l + m complex parameters (q,w, z),

w := (w1, . . . , wl), z := (z1, . . . , zm), (2.17)

Let ρ(q,w,z)
0 = 1 and, for j > 0,

ρ
(q,w,z)
j := q j

l∏

a=1

m∏

b=1

j∏

k=1

(
1 + kwa

1 − kzb

)

, (2.18)

ρ
(q,w,z)
− j := q− j

l∏

a=1

m∏

b=1

j−1∏

k=0

(
1 + kzb

1 − kwa

)

. (2.19)

Then

r (q,w,z)
j := q

l∏

a=1

m∏

b=1

(
1 + jwa

1 − j zb

)

for all j ∈ Z (2.20)

and
r (q,w,z)
λ (N ) = r (q,w,z)

0 (N )
∏

(i, j)∈λ

r (q,w,z)
N+ j−i , (2.21)
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where

r (q,w,z)
0 (N ) = q

1
2 N (N−1)

N−1∏

j=1

(
1 + (N − j)wa

1 − (N − j)zb

) j

, N > 0, r0(0) = 1, (2.22)

r (q,w,z)
0 (−N ) = q

1
2 N (N+1)

N∏

j=1

(
1 − (N − j)wa

1 + (N − j)zb

) j

, N > 0. (2.23)

The resulting hypergeometric 2D Toda τ -function is denoted

τ (q,w,z)(N , t, s) =
∑

λ

r (q,w,z)
λ (N )Sλ(t)Sλ(s) (2.24)

=
∑

λ

r (q,w,z)
λ (N )

∑

μ,ν,|μ|=|ν|=n

(ZμZν)
−1χλ(μ)χλ(ν)Pμ(t)Pν(s).

(2.25)

Remark 2.2. Since τ (q,w,z)(N , t, s) can be expressed in terms of τ (q,w,z)(0, t, s) by a
simple transformation of parameters

τ (q,w,z)(N , t, s) = T (q, N ,w, z)τ (q̃,w̃,z̃)(0, t, s), (2.26)

where

w̃a := wa

(1 + Nwa)
, z̃b := z̃b

(1 − N zb)
, q̃ = q

∏l
a=1(1 + Nwa)

∏m
b=1(1 − N zb)

, (2.27)

and

T (q, N ,w, z) = q
1
2 N (N−1)

l∏

a=1

m∏

b=1

(
1 + Nwa

1 − N zb

) 1
2 N (N−1)

(2.28)

we henceforth only consider the case N = 0, and simplify the notation to

τ (q,w,z)(0, t, s) =: τ (q,w,z)(t, s), r (q,w,z)
λ (0) =: r (q,w,z)

λ . (2.29)

Remark 2.3. If a positive integer M > 0 is chosen, and the flow variables (t, s) are
restricted to be the trace invariants

ti = 1

i
tr(Xi ) := [X ]i , si = 1

i
tr(Y i ) := [Y ]i (2.30)

of a pair (X, Y ) of M × M hermitian matrices whose eigenvalues are {xi }i=1,...,M ,
{y j } j=1,...,M , respectively, the series (2.24) for N = 0 only involves sums over Schur
functions Sλ for which �(λ) ≤ M , and may be related to the so-called hypergeometric
function ofmatrix arguments [10,32] as follows.Wemay consistently choose z1 = − 1

M ,
since the restriction �(λ) ≤ M implies that there is no value of j appearing in which
the denominator factor in r (q,w,z)

j vanishes. Choosing the remaining parameters to be
nonvanishing, and defining

ua = 1

wa
, a = 1, . . . , l and vb−1 := − 1

zb
, b = 2, . . . , m, (2.31)
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we have

τ (q,w,z)(0, [X ], [Y ]) = l�m−1(u1, . . . , ul; v1, . . . , vm−1|q X, Y )

:=
det

(
l Fm−1(u1, . . . , ul; v1, . . . , vm−1|qxi y j )

)
i, j=1,...,m

�(x)�(y)
,

(2.32)

where l Fm is the usual general hypergeometric function

l Fm(u1, . . . , ul; v1, . . . , vm |x) =
∞∑

n=0

∏l
a=1 (ua)n

∏m
b=1 (vb)n

xn

n! . (2.33)

Here l�m(a1, . . . , al; v1, . . . , vm |X, Y ) is what is known as the hypergeometric function
of two matrix arguments [10].

Further expanding the coefficients in the formula (2.25) for τ (q,w,z)(t, s) as power
series in the parameters (q,w, z), using multi-indices c = (c1, . . . , cl) ∈ Nl , d =
(d1, . . . , dm) ∈ Nm , gives

τ (q,w,z)(t, s) =
∞∑

n=0

qn
∑

μ,ν
|μ|=|ν|=n

∑

c∈Nl

∑

d∈Nm

wczdFc
d (μ, ν)Pμ(t)Pν(s). (2.34)

We are now ready to state the two main theorems:

Theorem 2.1 (Geometric interpretation: generalizedHurwitz numbers). The coefficients
Fc
d (μ, ν) in the expansion (2.34) are equal to the number of n-sheeted inequivalent

branched coverings of the Riemann sphere by a surface of genus g given by the Riemann–
Hurwitz formula

2g = 2 +
l∑

a=1

ca +
m∑

b=1

db − �(μ) − �(ν), (2.35)

counted with signs, as indicated below, such that the branch points consist of three
classes:

(i) A pair of branch points (0,∞), with ramification profiles (μ, ν).
(ii) A set of l further branch points {qa}a=1,...,l , with ramification profiles {μ(a)}a=1,...,l ,

the complement of whose lengths are

n − �(μ(a)) = ca, a = 1, . . . , l (2.36)

(iii) A set of m further groups of branch points, {pb,ib } b=1,...m
ib=1,... jb

, labeled by “colours”

b = 1, . . . m, with ramification profiles {ν(b,ib)}b=1,...,m;ib=1,... jb , where jb is the
number of points in the bth coloured group, such that the sum of the complements
of the lengths of the ramification profiles at the points {pb,ib }ib=1,... jb within the bth
group is equal to db

jb∑

ib=1

(
n − �(ν(b,ib )

)
= db, b = 1, . . . , m. (2.37)
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Each such covering is counted with a sign (−1)mn+C+D, where

C :=
m∑

b=1

jb, (2.38)

is the total number of coloured branched points and

D :=
m∑

b=1

db = nC −
m∑

b=1

jb∑

ib=1

�(ν(b,ib)) (2.39)

is the sum of the complements of the lengths of the ramification profiless of the
coloured branch points.

Remark 2.4. Note that the number of branch points in each of the groups is variable,
but the sum is only over those in group (ii) for which the lengths �(μ(a)) are fixed and
those in group (iii) for which the sum of the complements of the lengths D are fixed.
These therefore only involve signed sums over a finite number of individual Hurwitz
numbers. It is also understood that, when applied to coverings by orientable surfaces,
this interpretation of Fc

d (μ, ν), is valid only if the genus g given by formula (2.35) is an
integer. The case when it is a half integer is applicable to counting nonorientable covers.

Theorem 2.2 (Combinatorial interpretation:multimonotonic paths in theCayley graph).
The coefficients Fc

d (μ, ν) in the expansion (2.34) are equal to the number of paths in the
Cayley graph of Sn generated by transpositions (a b), a < b, starting at an element in
the conjugacy class with cycle type given by the partition μ and ending in the conjugacy
class with cycle type given by partition ν, such that the paths consist of a sequence of

k :=
l∑

a=1

ca +
m∑

b=1

db (2.40)

transpositions (a1b1) · · · (akbk), divided into l + m subsequences, the first l of which
consist of {c1, . . . , cl} transpositions that are strictly monotonically increasing (i.e.
bi < bi+1 for each neighbouring pair of transpositions within the subsequence), fol-
lowed by {d1, . . . , dm} subsequences within each of which the transpositions are weakly
monotonically increasing (i.e. bi ≤ bi+1 for each neighbouring pair).

Evaluating at t∞ := (1, 0, 0, . . . ) we have

Sλ(t∞) = 1

hλ

, Pν(t∞) = δν,(1)|ν| . (2.41)

Therefore setting s = t∞ in (2.24) and (2.34), τ (q,w,z)(t, s) restricts to the KP τ -function

τ (q,w,z)(t, t∞) =
∑

λ

h−1
λ r (q,w,z)

λ Sλ(t) =
∞∑

n=0

qn
∑

μ,
|μ|=n

∑

c∈Nl

∑

d∈Nm

wczdFc
d (μ, (1)n)Pμ(t),

(2.42)
where the coefficients Fc

d (μ, (1)n) are the particular values corresponding to no branch-
ing at ∞. We therefore have the following corollary.
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Corollary 2.3 (Reduction to KP τ -function). The KP τ -function τ (q,w,z)(t, t∞) is the
generating function for the numbers Fc

d (μ, (1)n) counting branched covers satisfying the
same conditions as Theorem 2.1, but with no branch point at ∞. Equivalently, they are
equal to the number of paths in the Cayley graph of Sn from an element in the conjugacy
class with cycle type μ to the identity element (i.e. the number of factorizations of an
element in the class μ as a product of transpositions) that satisfy the conditions of
Theorem 2.2.

As special cases, consider (l, m) = (1, 0) and (0, 1). For any positive integer c ∈ N+,
and pair of partitions (μ, ν) with |μ| = |ν| = n, let F+

c (μ, ν) and F−
c (μ, ν) denote the

number of n-sheeted branched covers of the Riemann sphere P1, up to automorphisms,
with Euler characteristic

χ = 2 − 2g = �(μ) + �(ν) − c, (2.43)

having either an even (F+
c (μ, ν)) or an odd (F−

c (μ, ν)) total number of branch points,
including a pair (0,∞) with ramification profiles (μ, ν).

Let Fc(μ, ν) and Fc(μ, ν) be the composite Hurwitz number Fc
d (μ, ν)with (l, m) =

(1, 0), c1 = c, and (l, m) = (0, 1), d1 = c), respectively. According to Theorem 2.2,
Fc(μ, ν) is the number of strictly monotonically increasing products of c transpositions
(a1b1) · · · (acbc) such that, if g ∈ Sn is in the conjugacy class with cycle type μ, the
product (a1b1) · · · (acbc)g is in the conjugacy class ν, while Fc(μ, ν) is the number of
products having the same property, but which are weakly monotonically increasing. The
following is an immediate consequence of Theorems 2.1 and 2.2 for these two cases.

Corollary 2.4 [The cases (l, m) = (1, 0) and (0, 1)].

(i) (l, m) = (1, 0): In this case, there are at most three branch points, the ones at (0,∞)

having ramification profiles (μ, ν) and a third one, whose profile λ has length

�(λ) = n − c. (2.44)

These are therefore Belyi curves [3,19,37]. The combinatorial meaning of Fc(μ, ν)

is that it equals the number of paths in the Cayley graph of Sn consisting of sequences
of c strictly monotonically increasing transpositions, starting at an element in the
conjugacy class of cycle type μ and ending in the class of type ν.

(ii) (l, m) = (0, 1):

Fc(μ, ν) = (−1)n+c(F+
c (μ, ν) − F−

c (μ, ν)). (2.45)

Thus, the number of weakly monotonically increasing paths of transpositions that
lead from an element in the conjugacy class of type μ to the class of type ν is equal to
the difference between the number of branched covers with an even or an odd number
of branch points, branching profiles (μ, ν) at (0,∞) and Euler characteristic given
by (2.43).

If ∞ is not a branch point; i.e., its profile is ν = (1)n , corresponding to the identity
class in Sn , Corollaries 2.3 and 2.4 imply that the number of factorizations of any
element g ∈ Sn in the class μ as a product of c strictly monotonically increasing
transpositions is equal to the number of Belyi curves with no branching at ∞ and c
pre-images of the additional branch point. The number of factorizations into weakly
increasing subsequences of transpositions is given by the difference (2.45) between the
number of branched covers having an even or an odd number of branch points, for the
Euler characteristic given by Eq. (2.45), and ν = (1)n .
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Remark 2.5 (Further particular cases). The coefficients Fc
d (μ, ν) with m = 0 (i.e. no

branch points of type (iii)) and all ca = 1 count those coverings that have simple ramifica-
tion at all the points {qa}a=1,...,l in group (ii), and hence these coincide with Okounkov’s
double Hurwitz number [28]. In the combinatorial interpretation, all the subsequences
contain a single transposition, therefore there is is no monotonicity imposed. Similarly,
if ca = 0 for all a’s, and db = 1 for all b’s, (or equivalently, if l = 0), it follows that there
can only be a single branch point in each colour group, and that it is simply ramified.
This must therefore also equal Okounkov’s double Hurwitz number, up to an overall
sign. In the combinatorial interpretation there is again only one transposition in each
sequence, so there is no condition of monotonicity. In fact, we may choose any subset
of the ca’s and all the db’s to equal 1, and the other ca’s to vanish, and the same result
holds.

When l = 0 and m = 1 we have, combinatorially, a single sequence of d1 weakly
monotonically increasing transpositions. Thiswas the case considered in [11,12], and the
τ -function shown to be identifiable with the Harish–Chandra–Itzykson–Zuber (HCIZ)
matrix integral [16] when the expansion parameter is identified as z = −1/N and the
flow parameters equated to the trace invariants of a pair of Hermitian matrices. The
case l = 1, m = 1 was explained combinatorially in [14], and given a matrix model
representation. The case when l is arbitrary and m = 0 was considered in [1,2], and its
combinatorial interpretation was given in [14], but no general enumerative geometric
interpretation seems previously to have been provided, except for the case of Belyi
curves where l = 2, m = 0 and μ is the trivial partition, which was studied in detail in
[3,19,37]

A further special case can be obtained by choosing l arbitrary, m = 0, and summing
over all coverings with l additional branch points and fixed genus. Letting

c :=
l∑

a=1

ca (2.46)

be the sum of the compliments of their ramification lengths (i.e. the number of pre-
images), the Riemann-Hurwitz formula (2.43) holds. Let

F (c,l)(μ, ν) =
∑

c1,...,cl∑l
a=1 ca=c

F (c1,...,cl )(μ, ν) (2.47)

be the total number of branched covers with up to 2 + l branch points, ramification
profiles (μ, ν) at (0,∞) and genus given by (2.43). The specialization of the τ -function
τ (q,w,z)(t, s) to the case m = 0, w1 = · · · = wl = w gives

τ (q,(w)⊗l )(t, s) =
∑

λ

q |λ|(r (1,w)
λ )l Sλ(t)Sλ(s)

=
∑

λ

q |λ| ∑

μ,ν
|μ=|ν|=|λ|

F (c,l)(μ, ν)wc Pμ(t)Pν(s). (2.48)

The combinatorial interpretation of F (c,l)(μ, ν) is that it equals the number of c-step
paths in the Cayley graph of Sn consisting of l sequential segments that are strictly
monotonically increasing, with segment lengths anywhere between 1 and n.

The next two sections provide the proofs of Theorems 2.1 and 2.2.
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3. Geometric Interpretation: Generating Function for Generalized,
Signed Hurwitz Numbers

3.1. Double power sum expansion of τ (q,w,z)(t, s). The Hurwitz number
Hg0(μ

(1), . . . μ( j)), where |μ(a)| = n, a = 1, . . . , j is the number of n sheeted branched
covers, up to isomorphism, of a Riemann surface of genus g0, with j branch points
{q1, . . . , q j }, whose ramification profiles are given by the partitions {μ(a)}a=1,..., j . The
genus of the covering curve is given by the Riemann-Hurwitz formula

g = 1

2

⎛

⎝
j∑

a=1

�(μ(a)) − nj

⎞

⎠ + n(g0 − 1) + 1. (3.1)

Hurwitz numbers can be expressed as sums over products of the irreducible charactersχλ

of Sn evaluated at the conjugacy classes corresponding to the partitions using Frobenius’
formula, [9], [23, Appendix A] (see also [22]):

Hg0(μ
(1), . . . μ( j)) =

∑

λ, |λ|=n

h j+2g0−2
λ

j∏

a=1

χλ(μ
(a))

Zμ(a)

. (3.2)

We only consider the case where the base curve is the Riemann sphere, so g0 = 0 and
(3.2) becomes

H(μ(1), . . . μ( j)) =
∑

λ, |λ|=n

h j−2
λ

j∏

a=1

χλ(μ
(a))

Zμ(a)

. (3.3)

In order to apply this, we first express the content product formula (2.21) for r (q,w,z)
λ

in terms of the extended Pochhammer symbol for partitions:

(u)λ :=
�(λ)∏

i=1

(u − i + 1)λi , (u)i =
i−1∏

i=0

(u + i). (3.4)

Let

ua := 1

wa
, vb := − 1

zb
. (3.5)

Then

l∏

a=1

∏

(i j)∈λ

(1 + wa( j − i)) =
l∏

a=1

(ua)λ

u|λ|
a

m∏

b=1

∏

(i j)∈λ

(1 − zb( j − i)) =
m∏

b=1

(vb)λ

(va)|λ| . (3.6)

The Pochhammer symbolsmay bewritten in terms special evaluations of Schur functions
[24,32] as

(u)λ = Sλ(t(u))

Sλ(t∞)
= hλSλ(t(u)) (3.7)

where
t(u) := (u, u/2, . . . , u/ i, . . . ), t∞ := (1, 0, 0, . . . ), (3.8)
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while the power sum symmetric functions at these values are given by

Pμ(t(u)) = u�(μ), Pμ(t∞) = δ(μ,1|μ|) (3.9)

Using the Frobenius character formula (2.11), this gives

(u)λ = hλ

∑

μ,|μ|=|λ|

χλ(μ)

Zμ

u�(μ), (3.10)

and hence

l∏

a=1

∏

(i j)∈λ

(1 + wa( j − i)) =
l∏

a=1

⎛

⎝hλ

∑

μ,|μ|=|λ|

χλ(μ)

Zμ

w�∗(μ)
a

⎞

⎠ , (3.11)

m∏

b=1

∏

(i j)∈λ

(1 − zb( j − i)) =
m∏

b=1

⎛

⎝hλ

∑

ν,|ν|=|λ|

χλ(ν)

Zν

(−zb)
�∗(ν)

⎞

⎠ , (3.12)

where
�∗(μ) := |μ| − �(μ), �∗(ν) := |ν| − �(ν) (3.13)

are the complements of the lengths. Substituting into the content product formula gives

r (q,w,z)
λ = q |λ| ∏

(i, j)∈λ

(∏l
a=1(1 + wa( j − i))

∏m
b=1(1 − zb( j − i))

)

=
∏l

a=1 hλ

∑
μ,|μ|=|λ|

χλ(μ)
Zμ

w
�∗(μ)
a

∏m
b=1 hλ

∑
ν,|ν|=|λ|

χλ(ν)
Zν

(−zb)�
∗(ν)

.

(3.14)
In order to expand as a power series in the parametersw = (w1, . . . wl), z = (z1, . . . zm),
we express the factors appearing in the denominator as

hλ

∑

ν,|ν|=|λ|

χλ(ν)

Zν

(−zb)
�∗(ν) = 1 + hλ

∑′
ν,|ν|=|λ|

χλ(ν)

Zν

(−zb)
�∗(ν) (3.15)

where
∑′

ν,|ν|=|λ| means the sum with the identity class ν = 1|λ| omitted. Expanding
each denominator factor gives

1

1 + hλ

∑′
ν,|ν|=|λ|

χλ(ν)
Zν

(−zb)�
∗(ν)

=
∞∑

jb=0

(−1) jb

(

hλ

∑′
ν,|ν|=|λ|

χλ(ν)

Zν

(−zb)
�∗(ν)

) jb
.

(3.16)

3.2. Signed counting of constrained branched covers. We now combine the compu-
tations of the previous subsection for the content product formula expression r (q,w,z)

λ
with the Frobenius character formula (2.11) to expand the τ -function (2.25) in a se-
ries consisting of products of pairs of power sum symmetric functions with coefficients
that are Taylor series in the parameters (q, w1, . . . , wl , z1, . . . , zm). Substituting the
content product formulae (3.14) together with the denominator expansions (3.16) into
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(2.25), applying the Frobenius formula (3.3) for the Hurwitz numbers, and combining
all monomial terms in like powers of wa’s and zb’s, we obtain

τ (q,w,z)(t, s) =
∞∑

n=1

qn
∑

μ,ν,|μ|=|ν|=n

∑

c∈Nl

∑

d∈(N+)m

Fc
d (μ, ν)wczdPμ(t)Pν(s), (3.17)

where multi-index notation has been used:

wc :=
l∏

a=1

wca
a , zd :=

m∏

b=1

zcb
b (3.18)

and

Fc
d (μ, ν) = (−1)mn+D

∑

μ(a), �∗(μ(a))=ca

ν(b,ib),
∑ jb

ib=1 �∗(ν(b,ib)=db

d1∑

j1=1

· · ·
dm∑

jm=1

j1∑

i1=1

· · ·
jm∑

im=1

(−1)C H(μ, ν, {μ(a)}, {ν(b,ib)}),

(3.19)

where

C =
m∑

b=1

jb, (3.20)

is the total number of coloured branch points and

D =
m∑

b=1

db =
m∑

b=1

jb∑

ib=1

�∗(ν(b,ib)) (3.21)

is the sum of the complements of their ramification profile weights, which proves The-
orem 2.1.

Remark 3.1. Note that because of the constraints

�∗(μ(a) = ca,

jb∑

ib=1

�∗(ν(b,ib)) = db (3.22)

and the fact that all partitions have the fixed weight

|μ(a)| = |ν(b,ib)| = |μ| = |ν| = n, (3.23)

the number of terms in the sum (3.17) is finite.

4. Combinatorial Interpretation: Multimonotonic Paths in the Cayley
Graph of Sn

4.1. The {Cμ} and {Fλ} bases for the center Z(C[Sn]) . The following is a brief version
of the method developed in Ref. [14], to which the reader is referred for further details.
We recall two standard bases for the center Z(C[Sn]) of the group algebra, both labelled
by partitions of weight n. The first consists of the cycle sums, defined by
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Cμ =
∑

g∈cycμ

g, for |μ| = n, (4.1)

where cycμ denotes the conjugacy class with cycle type μ. The second consists of the
orthogonal idempotents, which may be defined as

Fλ := h−1
λ

∑

μ,|μ|=|λ|
χλ(μ)Cμ. (4.2)

These satisfy the relations
FλFμ = δλμFλ, (4.3)

from which it follows that these are eigenvectors under multiplication by any element
of the center Z(C[Sn]). The Jucys-Murphy elements [5,21,26], defined as consecutive
sums of transpositions

Jb :=
b−1∑

a=1

(ab), b = 1, . . . , n (4.4)

generate a commutative subalgebra of C[Sn]. Moreover, if G ∈ 	 is a symmetric
function, the substitution of the Ja’s for the indeterminants gives an element of the
center Z(C[Sn])

G(J ) := G(J1, . . . ,Jn) ∈ Z(C[Sn]) (4.5)

whose eigenvalues, under multiplication of Fλ, are equal to the evaluation of G on the
content of the Young diagram of the partition λ

G(J )Fλ = G(cont(λ))Fλ, (4.6)

where cont(λ) denotes the n element set consisting of the numbers j −i , where (i, j) ∈ λ

are the locations of the boxes in the Young diagram.

4.2. Multimonotonic paths in the Cayley graph. In particular, if we choose G to be the
generating functions of the elementary and complete symmetric functions

E(w,J ) =
n∏

a=1

(1 + wJa) =
n∑

j=0

e j (J )w j (4.7)

H(z,J ) =
n∏

a=1

(1 − zJa)−1 =
∞∑

j=0

h j (J )w j , (4.8)

we obtain

E(w,J )Fλ =
∏

(i j)∈λ

(1 + w( j − i))Fλ (4.9)

H(z,J )Fλ =
∏

(i j)∈λ

(1 − z( j − i))−1Fλ. (4.10)

Combining these by multiplication gives

q |λ|
l∏

a=1

m∏

b=1

E(wa,J )H(zb,J )Fλ = r (q,w,z)
λ Fλ. (4.11)
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On the other hand, the expansions (4.7), (4.8), together with the fact that

ei (J ) =
∑

( j1,..., ji )⊂(1,...,n)

j1< j2 ···< ji

J j1 · · ·J ji (4.12)

fi (J ) =
∑

( j1,..., ji )⊂(1,...,n)

j1≤ j2 ···≤ ji

J j1 · · ·J ji (4.13)

and the definition (4.4) of the Jucys–Murphy elements implies that if this same element
is applied to the cycle sums, we obtain

q |λ|
l∏

a=1

m∏

b=1

E(wa,J )H(zb,J )Cμ = q |λ| ∑

ν,|ν|=|μ|
F̃c
d (μ, ν)wczdCν, (4.14)

where F̃c
d (μ, ν) is the number of products of k transpositions (a1b1) · · · (akbk),

k =
l∑

a=1

ca +
m∑

b=1

db (4.15)

satisfying
Cν = (a1b1) · · · (akbk)Cμ (4.16)

such that these may be grouped into successive sequences, corresponding to each of
the factors in the product

∏l
a=1

∏m
b=1 E(wa,J )H(zb,J ), expanded in powers of wa

and zb. These consist first of a sequence of l bands of transpositions having lengths ca ,
a = 1, . . . , l that are strictly monotonically increasing in the second factors of (ai bi ),
bi < bi+1, followed by m bands of lengths db, b = 1, . . . , m, in which they are weakly
monotonically increasing.

Substituting the change of basis formula (4.2) into (4.14) and equating the coefficients
in the sums over the Fλ basis gives:

χλ(μ)r (q,w,z)
λ = q |λ| ∑

ν,|ν|=|μ|=|λ|
Zνχλ(ν)

∑

c∈Nl

∑

d∈Nm

F̃c
d (μ, ν)wczd. (4.17)

By the orthogonality of group characters
∑

λ,|λ|=|μ|=|ν|
χλ(μ)χλ(ν) = Zμδμν (4.18)

this is equivalent to
∑

λ,|λ|=n

r (q,w,z)
λ χλ(μ)χλ(ν) = qn ZμZν

∑

d∈Nm

F̃c
d (μ, ν)wczd. (4.19)

Therefore, by Eqs. (2.25), (2.34) we have

F̃c
d (μ, ν) = Fc

d (μ, ν), (4.20)

which completes the proof of Theorem 2.2.

Remark 4.1. It follows from the results of [20] and [17, Appendix A] that all these
generating functions have representations as matrix integrals. They therefore also satisfy
Virasoro constraints, and their multitrace resolvent correlatorsmay be computed through
the methods of topological recursion [7].
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5. Fermionic Representation of τ (q,w,z)(t, s)

Finally, we give the fermionic representation of the 2D Toda τ -functions τ (q,w,z)(t, s),
following [6,17,18,32,35]. Any chain of 2D Toda τ -functions of hypergeometric type
may be represented, in the fermionic Fock space approach, as vacuum state expectation
values of the form

τr (N , t, s) = 〈N |γ̂+(t)Ĉργ̂−(s)|N 〉, (5.1)

where 〈N |, |N 〉 denote the left and right vacuum vectors in the N th charge sector,

γ̂+(t) := e
∑∞

i=1 ti Ji , γ̂−(s);= e
∑∞

i=1 si J−i , where Ji :=
∑

j∈Z
ψ jψ

†
i+ j , i ∈ Z, (5.2)

are the generators of the two infinite abelian Toda flows, {ψi , ψ
†
i , i ∈ Z} are Fermi

creation and annihilation operators that satisfy the usual anticommutation relations and
vacuum annihilation conditions

[ψi , ψ
†
j ]+ = δi j , ψi |N 〉 = 0 if i < N , ψ

†
i |N 〉 = 0 if i ≥ N (5.3)

and

Ĉρ = e
∑

j∈Z Tj :ψ j ψ
†
j : (5.4)

is an element of the infinite abelian group of diagonal elements that generate generalized
convolution flows [18]. The orthonormal Fermionic Fock basis states |λ; N 〉 are labelled
by pairs (λ, N ) consisting of a partition λ and an integer N .

|λ; N 〉 := (−1)
∑r

i=1 bi

r∏

i=1

ψai+N ψ
†
−bi −1+N |N 〉 (5.5)

where the partition λ, expressed in Frobenius notation [24], is (a1, . . . , ar |ba, . . . , br ).
The double Schur function expansion (2.10) follows from the fact that Schur functions

have the following fermionic matrix element expressions

Sλ(t) = 〈λ; N |γ̂−(t)|N 〉 = 〈N |γ̂+(t)|λ; N 〉 (5.6)

which, in turn, follow from Wick’s theorem. Defining

ρ j := eTj , (5.7)

it follows that the basis vectors |λ; N 〉 are eigenvectors of the convolution flow group
elements

Ĉρ |λ; N 〉 = rλ(N )|λ; N 〉, (5.8)

with eigenvalues rλ(N ) given by the content product formula (2.8). Inserting a sum over
a complete set of intermediate states gives the double Schur function expansion (2.10)
for τr (N , t, s).

The particular case (2.24) corresponding to our family τ (q,w,z)(N , t, s) of generating
functions is obtained by choosing the parameters ρ j to be ρ

(q,w,z)
j , as defined in (2.19).

The corresponding values of the convolution flow parameters are
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T (q,w,z)
j := j ln q +

j∑

k=1

l∑

a=1

ln(1 + kwa) −
j∑

k=1

m∑

b=1

ln (1 − kzb) for j > 0,

T (q,w,z)
0 = 0,

T (q,w,z)
− j := − j ln q +

j−1∑

k=0

m∑

b=1

ln(1 + kzb) −
j−1∑

k=0

l∑

a=1

ln(1 − kwa) for j > 0, (5.9)

which gives
τr (N , t, s) = τ (q,w,z)(N , t, s). (5.10)

Remark 5.1. Besides the N = 0 sector of the fermionic Fock space, with orthonormal
basis {|λ; 0〉}, on which the group of generalized convolution flows acts diagonally, and
the direct sum⊕∞

n=0Z(C[Sn]), where a corresponding infinite group acts diagonally,with
the same eigenvalues, on the basis {Fλ}, as detailed in Ref. [14], there is also the bosonic
Fock space representation, in which the τ -function is viewed as a symmetric function
of an infinite number of bosonic variables, with orthonormal basis given by the Schur
functions {Sλ}. A corresponding infinite abelian group of operators acts diagonally in
this space, with eigenvalues also given by a content product formula. Their infinitesimal
generators are expressible as differential operators in the flow parameters (t1, t2, . . . )
with polynomial coefficients, referred to sometimes as cut and join operators [2,13,27].
These may be viewed as generating an abelian group through exponentiation (i.e. the
solution of a diffusion-like equation), with a vacuum τ -function as initial condition. But
diagonal operators are not, in general, symmetries of the 2D Toda hierarchy and the
solutions are not necessarily 2D Toda τ -functions, even though they admit series repre-
sentations as diagonal sums over products of Schur functions. Only the smaller group,
consisting of operators acting as generalized convolution flows [18], whose eigenvalues
are of the content product form, give rise to hypergeometric τ -functions.
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