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Abstract: The paper contains two main parts: in the first part, we analyze the general
case of p ≥ 2 matrices coupled in a chain subject to Cauchy interaction. Similarly to
the Itzykson-Zuber interaction model, the eigenvalues of the Cauchy chain form a multi
level determinantal point process. We first compute all correlations functions in terms of
Cauchy biorthogonal polynomials and locate them as specific entries of a (p+1)×(p+1)
matrix valued solution of a Riemann–Hilbert problem. In the second part, we fix the
external potentials as classical Laguerre weights. We then derive strong asymptotics for
the Cauchy biorthogonal polynomials when the support of the equilibrium measures
contains the origin. As a result, we obtain a new family of universality classes for
multi-level random determinantal point fields, which include the Besselν universality
for 1-level and the Meijer-G universality for 2-level. Our analysis uses the Deift-Zhou
nonlinear steepest descent method and the explicit construction of a (p + 1) × (p + 1)
origin parametrix in terms of Meijer G-functions. The solution of the full Riemann–
Hilbert problem is derived rigorously only for p = 3 but the general framework of the
proof can be extended to the Cauchy chain of arbitrary length p.

1. Introduction

The general study of universal behaviors in randommatrixmodels consists in identifying
statistical properties of the fluctuations of eigenvalues near a point of the spectrum; for
instance, the celebrated Tracy–Widom distribution was first derived [32] in studying
the fluctuations of the largest eigenvalue of a n × n Gaussian unitary ensemble (GUE)
matrix around the edge of the limiting (macroscopic) density (which obeys the Wigner
semicircle law). They connected the probability (for the rescaled eigenvalues xi =√
2n

2
3 (λi −

√
2)) that xmax < s to a special solution (Hastings-McLeod) of the second

Painlevé equation,
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lim
n→∞Prob

(
λmax ≤ √

2 +

√
2s

2n
2
3

)
= Prob

(
no xi ’s in [s,∞)

)

= exp

[
−

∫ ∞

s
(x − s)q(x)2dx

]

q ′′ = sq + 2q3 , (′) = d

ds
; q(s) ∼ Ai(s) , s→+∞.

For the Laguerre unitary ensemble (LUE) of positive definite matrices, the analogous
question deals with the fluctuations of the smallest eigenvalues; in this case the origin
z = 0 of the spectrum is a “hard-edge” because thematrices are conditioned to be positive
definite. Tracy and Widom also connected these fluctuations to a special solution of the
Painlevé III equation [33] (see also [22] for a different direct derivation).

The universal character of these fluctuations is encoded in the determinantal structure
of the correlation functions; in both cases these distributions are obtained from the
Fredholm determinant of a kernel. To prove these results (cf. [27] for a recent review on
the subject) it is sufficient to show that the correlation kernels, in a suitable scaling, tend
to a special form; for example, the Airy kernel in the GUE case or the Besselν kernel in
the LUE case.

It is then a fundamental step to identify the possible types of kernels occurring in
the scaling limit. A general question in the study of universality issues related to multi-
matrix models (as opposed to single-matrix models) is whether they exhibit, in the
suitable scaling limit, different types of statistical behaviors for their eigenvalues; this
can be addressed by investigating their limiting kernels. The literature on the subject is
ever growing and we mention [1–5,17,18,28]. The present work is precisely addressing
the question of limiting kernels (thus leading to addressing fluctuations in a future pub-
lication) for a multi-matrix model that naturally generalizes the LUE; the model shall be
termed “Cauchy-chain matrix model". The Cauchy two-matrix model was introduced
in [8], as a random matrix model defined in terms of a probability measure on the space
of pairs M1, M2 of n × n positive definite Hermitian matrices. We now consider an
extension of the setting to an arbitrary number p of positive definite Hermitian matrices
M1, . . . , Mp. Their joint probability distribution function depends on the choice of p
scalar functions Uj : R+ → R, j = 1, . . . p, called the potentials, and is defined as

dμ(M1, . . . , Mp) = c
e−tr

∑p
j=1Uj (Mj )∏p−1

j=1 det(Mj + Mj+1)n
dM1 · . . . · dMp,

dM =
∏
j<k

d	Mjk d
Mjk

∏
�

dM��

(1.1)

Themodel under study is an instance of a “multi-matrixmodel”; a different one,which
is also actively studied, was introduced in [19]. The difference consists in the choice of
interaction between subsequent matrices in the chain: instead of det(M1 +M2)

−n , it was
the exponential interaction e−τ tr(M1M2) commonly known as the “Itzykson-Zuber” (IZ)
interaction.

Following [19] we shall show here that the eigenvalues of the p matrices constitute
what is known as a “multi-level” determinantal point field; the correlation functions are
computed in terms of determinants constructed from certain biorthogonal polynomials
(see Sect. 2).

The present paper has the following main goals:
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(1) formulate the general properties of themodelwith p-matrices inCauchy interaction
(1.1);

(2) introduce the relevant biorthogonal polynomials (Definition 2.1) and express them
in terms of the solution of a Riemann–Hilbert problem (Theorem 2.5);

(3) express all kernels of the correlation functions in termsof the solution of the problem
above (Theorem 2.8);

(4) for a simple choice of potentials, we study the correlation function in the scaling
limit near the origin; we complete the analysis for p = 3 but indicate how it can
be extended to p = 4, 5, 6.

(5) the limiting scaling fields can be expressed in terms of special functions, theMeijer-
G functions. The method allows us to extend (at least conjecturally) the resulting
formulæ to the Cauchy-chain of arbitrary length p (Definition 2.9, Conjecture 2.10
and Theorem 2.12).

(6) we show how, in suitable limits, the limiting statistics at the origin of the p-chain
decouples into two independent chains (Theorem 2.13).

The results above allow one to express the joint fluctuation statistics of the smallest
eigenvalues of the matrices in the chain in terms of a suitable Fredholm determinant with
a matrix-valued kernel constructed from Definition 2.9. In the next section we introduce
the necessary notation to formulate the results in a precise form. The proofs of these
results constitute the remainder of the paper.

2. Statement of Results

Consider the space Mp
+ (n), p, n ∈ Z≥2 consisting of p-tuples (M1, . . . , Mp) of n × n

positive-definite Hermitian matrices Mj . Equipped with the probability measure (1.1)
the probability space (Mp

+ (n), dμ) is referred to as the Cauchy chain-matrix model.
Here, the external potentials Uj : (0,∞) → R are chosen so that

lim inf
x→+∞

Uj (x)

ln x
= +∞, − lim sup

x↓0
Uj (x)

ln x
= a j ,

with parameters a j ∈ R which satisfy

ak� ≡
�∑

j=k

a j > −1, ∀ 1 ≤ k ≤ � ≤ p. (2.1)

The reason for the constraint (2.1) is simply that the measure (1.1) be normalizable.
Consider now the weight functions ηp(x, y), p ≥ 2 on R2

+, given by

η2(x, y) = e−U1(x)−U2(y)

x + y
,

ηp(x, y) =
∫ ∞

0
· · ·

∫ ∞

0

e−U1(x)

x+ξ1

⎛
⎝ e−

∑p−1
j=2 Uj (ξ j−1)∏p−3

j=1 (ξ j + ξ j+1)

⎞
⎠

× e−Up(y)

ξp−2 + y
dξ1 · . . . · dξp−2, p≥3.

The natural generalization of the biorthogonal polynomials introduced in [8] to general
p ≥ 2 is then given by:
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Definition 2.1. The monic (Cauchy) biorthogonal polynomials {ψn(x), φn(x)}n≥0 are
defined by the requirements

∫ ∞

0

∫ ∞

0
ψn(x)φm(y)ηp(x, y) dxdy = hnδnm (2.2)

ψn(x) = xn + O
(
xn−1

)
, x → ∞;

φn(x) = xn + O
(
xn−1

)
, x → ∞.

The pair {ψn(x), φn(x)}, n ≥ 1 can always (see. e.g. [29]) be constructed in terms
of the bimoment matrix I = [I j�]n−1

j,�=0 with

I j� =
∫ ∞

0

∫ ∞

0
x j y�ηp(x, y) dxdy, j, � ≥ 0 (2.3)

The convergence of the multiple integrals I j� also mandates condition (2.1) and it is
here simply a statement that allows the application of Fubini’s theorem on the iterated
integral in any order. In terms of (2.3), the biorthogonal polynomials can be written as

ψn(x) = 1

�n
det

[
I j� | x j ]n,n−1

j,�=0 , φn(y) = 1

�n
det

[
I j�
y�

]n−1,n

j,�=0
;

�n = det[I j�]n−1
j,�=0. (2.4)

It is clear that the existence of the sequence of polynomials requires that all the principal
minors of the bimoment matrix I j� be nonzero. More is true, in fact, as in the given case
(1.1) of the Cauchy interaction they are known to be positive.

Proposition 2.2. All moment determinants �n = det[I j�]n−1
j,�=0 are strictly positive, i.e.

�n > 0 for all n ≥ 1.

Proof. As observed in [8], the Cauchy kernel K (x, y) = 1
x+y is totally positive on R

2
+.

But total positivity is stable under convolution [25], thus ηp(x, y) is totally positive and
therefore �n > 0. ��

2.1. Part I: general structure. We shall now describe all correlation functions in terms
of the solution of a Riemann–Hilbert problem (RHP); this is conceptually parallel to the
case of the unitary ensemble, see for example [30]. In the following we shall use χA for
the indicator function of a set A.

Riemann-Hilbert Problem 2.3. Let W2 j+1(x) ≡ U2 j+1(x) for x > 0 and W2 j (x) =
U2 j (−x) for x < 0. Determine the piecewise analytic (p + 1) × (p + 1) matrix valued

function (z) ≡ (z; n) = [
 j�(z; n)

]p+1
j,�=1 such that
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• (z) is analytic in C\R
• (z) admits boundary values ±(z) for z ∈ R\{0} which are related via

+(z) = −(z)

⎡
⎢⎢⎢⎢⎢⎣

1 w1(z) 0 0
0 1 w2(z) 0

0 1
. . . 0

. . .
. . . wp(z)

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ , z ∈ R\{0}. (2.5)

Here,

w j (z) = e−Wj (z)χ(−1) j+1R+
(z)

and the orientation of the jump contour is as shown in Fig. 1 below.
• The columns of (z) have the following singular behavior near z = 0;

•,1(z) = O(1), z → 0 (2.6)

and the precise behavior of the subsequent columns •,�+1(z) is the same as the
behavior of the iterated Cauchy transforms

C�+1(z) =
∫ 1

0
· · ·

∫ 1

0

⎛
⎝�−1∏

j=1

x
a j
j

x j − x j+1

⎞
⎠ xa�

�

x� − z
dx1 · . . . · dx�, 1 ≤ � ≤ p

(2.7)

as z → 0 (compare Remark 2.4 below for further clarification).
• As z tends to infinity we have the asymptotic behavior

(z) = (
I + O

(
z−1

) )
⎡
⎢⎢⎢⎢⎣
zn 0

1
. . .

1
0 z−n

⎤
⎥⎥⎥⎥⎦ (2.8)

Remark 2.4. We preferred to state the behavior at the origin in a slightly cryptic form
(2.7) rather than explicitly because it would entail too many case distinctions; in general,
the behavior of iterated Cauchy transforms as in (2.7) near z = 0 follows from Chapter
1, section 8.6 of [21]. For example;

(1) if all a j are positive, then all columns are O(1);
(2) if all a j = 0 then the �-th column behaves like O((ln z)�−1);

z = 0

−
+ −

+

Fig. 1. The jump contour for (z) with fixed orientation: the half-ray [0,∞) is oriented towards +∞whereas
(−∞, 0] is oriented towards −∞
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(3) if all the a j are negative (but still with condition (2.1) in place), then the �-th column
has behavior O(|z|a1,�−1).

The problem arises when trying to describe compactly all possible cases where the
exponents can be positive, negative or zero.

The solvability issue of the RHP 2.3 and the connection to the biorthgonal polyno-
mials {ψn(x), φn(x)}n≥0 is addressed in the following Theorem, our first result.

Theorem 2.5. The Riemann–Hilbert problem 2.3 for (z) = [ j�(z; n)]p+1j,�=1 has a
unique solution if and only if �n �= 0. If (z) is the solution of the problem, then

ψn(z) = 11(z; n) , φn(z) = (−1)n(p+1)−1
p+1,p+1

(
(−1)p+1z; n)

. (2.9)

Remark 2.6. The assumption�n �= 0 of course applies in our case in view of Proposition
2.2 if the potentials U j are real; however one may also want to consider more general
settings in Theorem 2.5 where the potentials are complex-valued (of course this would
undermine any probabilistic application).

We now turn our attention towards eigenvalue correlations. In [19], Eynard andMehta
analyzed the Itzykson-Zuber chain of matrices, defined through the probability measure

dν(M1, . . . , Mp) ∝ exp

⎡
⎣−tr

⎛
⎝ p∑

j=1

Uj (Mj ) −
p−1∑
j=1

τ j M j M j+1

⎞
⎠

⎤
⎦ dM1 · . . . · dMp

on the real vector space of n×nHermitianmatriceswith coupling constants τ j ∈ R. They
proved that a general correlation function for the Itzykson-Zuber chain can be written
in closed determinantal form. But for this to work, the precise form of the interaction
was not used at all. What is important for the determinantal reduction is the fact that in
both models, Itzykson-Zuber and Cauchy, the underlying distribution functions are of
the form

dλ(M1, . . . , Mp) ∝ e−tr
∑p

j=1Uj (Mj )
p−1∏
j=1

I j (Mj , Mj+1) dM1 · . . . · dMp

with the interaction functions

I j (A, B) =
{
eτ j tr(AB), A, B Hermitian Itzykson− Zuber
det(A + B)−n, A, B positive-definite Hermitian Cauchy,

which are invariant under unitary conjugations I j (A, B) = I j (U AU
T
,UBU

T
). In

eithermodelwe can then integrate out the angular variableswith the help of a generalized
Harish-Chandra formula: there exists a function F(x, y) such that for any diagonal
matrices X = diag[x1, . . . , xn] and Y = diag[y1, . . . , yn] we have

∫
U(n)

I (X,UYU
T
) dU ∝

det
[
F(x j , yk)

]n
j,k=1

�(X)�(Y )
, �(X) =

∏
i< j

(x j − xi ).
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This is the crucial step for the reduction to a biorthogonal polynomial ensemble and thus
the result of [19] for the corresponding correlation function can serve as our guideline.
To be more precise, consider the probability density for the eigenvalues of all pmatrices

P({x1 j }nj=1, . . . , {xpj }nj=1

) = 1

Zn
�(X1)�(X p)e

−∑p
m=1

∑n
j=1 Um (xmj )

×
p−1∏
α=1

det
[
K (xαi , xα+1,k)

]n
i,k=1 (2.10)

with the Vandermonde determinants �(Xk) = ∏
i< j (xk j − xki ), the Cauchy kernel

K (x, y) = 1
x+y and the partition function

Zn =
∫
R
n
+

· · ·
∫
R
n
+

�(X1)�(X p) exp

⎡
⎣−

p∑
m=1

n∑
j=1

Um(xmj )

⎤
⎦

×
p−1∏
α=1

det
[
K (xαi , xα+1,k)

]n
i,k=1

p∏
j=1

n∏
�=1

dx j�.

Identity (2.10) is a direct adjustment of formula (1.5) of [19] to the given Cauchymatrix-
chain, moreover the (�1, . . . , �p)-point correlation function equals, see formula (1.6) in
loc.cit,

R(�1,...,�p)
({x1 j }�1j=1, . . . , {xpj }

�p
j=1

)
=

⎡
⎣ p∏

j=1

n!
(n − � j )!

⎤
⎦ ∫

R
n−�1
+

· · ·
∫
R
n−�p
+

P({x1 j }nj=1, . . . , {xpj }nj=1

)

×
p∏

j=1

n∏
m j=� j+1

dx jm j . (2.11)

Introduce the collection of functions {��n(x),��m(x)}p�=1 for m, n ≥ 0 and x > 0,
given by

�1n(x) = ψn(x)e
− 1

2U1(x), ��n(x) =
∫ ∞
0

��−1,n(y)w�−1(y, x) dy, � = 2, . . . , p

�pm(x) = φm(x)e− 1
2Up(x), ��m(x) =

∫ ∞
0

��+1,m(y)w�(x, y) dy, � = 1, . . . , p − 1

where

w�(x, y) = e− 1
2U�(x)− 1

2U�+1(y)

x + y
. (2.12)

Although the functions��n(x),��m(x) are in general non-polynomial, they are orthog-
onal by construction, namely with (2.2) for 1 ≤ � ≤ p∫ ∞

0
��n(x)��m(x) dx =

∫ ∞

0

∫ ∞

0
ψn(x)φm(y)ηp(x, y) dxdy = hnδnm . (2.13)



1084 M. Bertola, T. Bothner

Remark 2.7. If the potentials admit analytic continuation outside of R+ (as it will be the
case) then the functions {��n(z),��m(z)}p�=1 can be analytically extended as well.

Introduce also the kernel functions, i.e. for 1 ≤ i, j ≤ p,

Ki j (x, y) = Hi j (x, y) − Ei j (x, y), Hi j (x, y) =
n−1∑
�=0

�i�(x)� j�(y)
1

h�

(2.14)

Ei j (x, y)

=

⎧⎪⎪⎨
⎪⎪⎩
0, for i ≥ j

wi (x, y), for i = j − 1∫ ∞

0
· · ·

∫ ∞

0
wi (x, ξ1)wi+1(ξ1, ξ2) · · ·w j−1(ξ j−i−1, y)dξ1 · · · dξ j−i−1, for i < j − 1.

The main result in [19]—tailored here to the Cauchy chain—shows that the correlation
function (2.10) is equal to

R ≡ R(�1,...,�p)
({x1 j }�1j=1, . . . , {xpj }

�p
j=1

) = det
[
Ki j (xir , x js)

]p
i, j=1; r=1,...,�i

s=1,...,� j

.

This identity involves a determinant of size (
∑p

1 � j ) × (
∑p

1 � j ), more precisely

R = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K11(x1r , x1s)
1≤r≤�1,1≤s≤�1

K12(x1r , x2s)
1≤r≤�1,1≤s≤�2

· · · K1p(x1r , xps)
1≤r≤�1,1≤s≤�p

K21(x2r , x1s)
1≤r≤�2,1≤s≤�1

K22(x2r , x2s)
1≤r≤�2,1≤s≤�2

· · · K2p(x2r , xps)
1≤r≤�2,1≤s≤�p

...
...

. . .
...

Kp1(xpr , x1s)
1≤r≤�p,1≤s≤�1

Kp2(xpr , x2s)
1≤r≤�p,1≤s≤�2

· · · Kpp(xpr , xps)
1≤r≤�p,1≤s≤�p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(
∑

�i )×(
∑

�i )

(2.15)

where each block Ki j (xir , x js) is a matrix of size �i × � j . If the eigenvalues {x jr } of
a matrix Mj are not observed, i.e. if � j = 0, then no row or column corresponding
to them appears in (2.15). Identity (2.15) shows how general correlation functions in
the Cauchy chain model can be computed explicitly for finite n in terms of (Cauchy)
biorthogonal polynomials. However, in order to analyze the behavior of the eigenvalue
correlations asymptotically as the sizes n of matrices tend to infinity, it is preferable to
express the kernel functions in terms of the solution of the RHP stated in Definition 2.3.
This connection constitutes our second main result: rewrite (2.15) as

R =
⎛
⎝ p∏

j=1

� j∏
α j=1

e−Uj (x jα j )

⎞
⎠ det

[
Mi j (xir , x js)

]p
i, j=1; r=1,...,�i

s=1,...,� j

. (2.16)

where K and M are related as follows

K j�(x, y) = e−
1
2Uj (x)− 1

2U�(y) M j�(x, y), x, y > 0. (2.17)
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More explicitly and for future reference, we have

Mp1(x, y) =
n−1∑
�=0

φ�(x)ψ�(y)
1

h�

,

Mp,i+1(x, y) =
∫ ∞

0
Mpi (x, z)

e−Ui (z)

z + y
dz, i = 1, . . . , p − 1 (2.18)

Mi,i+1(x, y) =
∫ ∞

0
Mi+1,i+1(z, y)

e−Ui+1(z)

x + z
dz − 1

x + y
,

i = 1, . . . , p − 1 (2.19)

Mi j (x, y) =
∫ ∞

0
Mi+1, j (z, y)

e−Ui+1(z)

x + z
dz, i = 1, . . . , p − 1,

j = 1, . . . , p, i + 1 �= j. (2.20)

In particular all kernels can be constructed from Mp1(x, y) by means of suitable trans-
formations and we notice that Mp1(x, y) is a reproducing kernel, i.e.∫ ∞

0

∫ ∞

0
Mp1(x, ξ1)Mp1(ξ2, y)ηp(ξ1, ξ2) dξ1dξ2 = Mp1(x, y),∫ ∞

0

∫ ∞

0
Mp1(x, y)ηp(y, x) dxdy = n. (2.21)

The connection to the solution of the RHP for = (z; n) in Definition 2.3 is as follows

Theorem 2.8. Let x, y > 0. The correlation kernels (2.18), (2.19) and (2.20) equal

M j�(x, y) = (−1)�−1

(−2π i) j−�+1

[
−1(w; n)(z; n)

w − z

]
j+1,�

∣∣∣∣
w=x(−1) j+1

z=y(−1)�−1

, 1 ≤ j, � ≤ p

(2.22)

where the choice of limiting values (±) in the matrix entry upon evaluation at w =
x(−1) j+1, z = y(−1)�−1 is immaterial.

2.2. Part II: asymptotic eigenvalue distribution near the origin in the p-Laguerre case..
After establishing the general results in Theorem 2.5 and 2.8 we intend to analyze the
correlation kernels asymptotically as n → ∞ for the specific choice of Laguerre-type
weights, i.e. for the choice of external potentials

Uj (x) = NVj (x) − a j ln x, a j > −1 : ak� =
�∑

j=k

a j > −1; lim
x→+∞

Vj (x)

ln x
= +∞

(2.23)

with Vj (x) real-analytic on [0,∞) and N independent. The parameter N > 0 is a scaling
parameter: in the study of the large-size limit n → ∞ it is chosen in such a way that
n
N → T ∈ R+. In the asymptotic study here we shall simply choose n = N and therefore
T = 1.
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We derive an asymptotic solution of the RHP for  = (z; n) as n → ∞ through
the nonlinear steepest descent method of Deift and Zhou, cf. [14–16]. As opposed to the
Riemann–Hilbert analysis carried out in [9], the choice of potential (2.23) allows for an
overlap of the supports of the equilibrium measures (compare Sect. 4 below). Hence we
face the necessity to carry out a local analysis near the overlap point and we consider
the construction of the new parametrix the main technical contribution of the paper to
the nonlinear steepest descent literature. The relevant parametrix is constructed for the
general (p + 1) × (p + 1) RHP using Meijer G-functions. These special functions have
appeared recently in a variety of problems [1–5,28] analyzing the statistics of singular
values of products of Ginibre random matrices. In particular, they also appeared in
the context of the Cauchy-Laguerre two-matrix model, i.e. with p = 2 in (1.1) and
Uj (x) = Nx − a j ln x, a1, a2 > −1, a1 + a2 > −1. In fact, it was shown in [10]
that the biorthogonal polynomials in Definition 2.1 can be written explicitly as Meijer
G-functions. Thus for the Cauchy-Laguerre two chain one can analyze the correlation
kernels asymptoticallywithout anyRiemann–Hilbert analysis.However this feature does
not seem to carry over to general p ≥ 2, which motivates our current initiative based
on nonlinear steepest descent techniques. In order to state our results for the scaling
analysis, we first pose the following Definition:

Definition 2.9 (Meijer-G random point field for p-chain). Let {a j }pj=1 ⊂ R satisfy the
condition (2.1) with a10 ≡ 0 and define the polynomial K (u)

K (u) = (−1)p
p∏

s=0

(u − a1s) . (2.24)

The Meijer-G random point field consists of the (multi-level) determinantal random
point field of p point fields in R+ with correlation functions

G(�1,...,�p)
(
ξ11, . . . , ξ1�1; . . . ; ξp1, . . . , ξp�p

) = det
[G(p)

i j (ξir , ξ js)
]p
i, j=1; r=1,...,�i

s=1,...,� j

.

(2.25)

with the determinant above analogous to (2.15). The kernels appearing above are defined
as follows:

G(p)
j� (ξ, η; {a1, . . . , ap}) = 1

(−1)�η − (−1) jξ

× 1

(2π i)2

∫
L

∫
L̂

∏�−1
s=0 (u − a1s)∏p

s=� (1 + a1s − u)

∏p
s= j (a1s − v)∏ j−1

s=0 (1− a1s + v)

× K (u) − K (v)

u − v
ξvη−u dv du. (2.26)

Here, the integration contours for u ∈ L , v ∈ L̂ are chosen so as to leave all the poles
of the integrand in u, v to the left, right and to extend to ∞ in the left, right half plane.
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Alternatively, and equivalently, we have the formula

G(p)
j� (ξ, η; {a1, . . . , ap}) = 1

(2π i)2

∫
L

∫
L̂

∏�−1
s=0 (u − a1s)∏p

s=� (1 + a1s − u)

∏p
s= j (a1s − v)∏ j−1

s=0 (1− a1s + v)

× ξvη−u

1− u + v
dv du +

∑
s∈P∪{0}

res
v=s

∏�−1
s=0 (1 + v − a1s)∏p

s=� (a1s − v)

×
∏p

s= j (a1s − v)∏ j−1
s=0 (1 + v − a1s)

ξvη−v

(−1) jξ − (−1)�η
(2.27)

where now the contours are meant to be small circles around the poles of the integrands,
with the circles in the v variable smaller than those in the u variable, and where P =
{a1�, 1 ≤ � ≤ p}.

We now state our second result, in the form of a conjecture which is then proven for
p = 3 (and we indicate how to prove it also for p = 4, 5, 6 in Remark 4.4).

Conjecture 2.10 (Universality). For any p ∈ Z≥2, there exists c0 = c0(p) > 0 and
{� j }pj=1 which depend on the parameters {a j }pj=1 introduced in (2.23) such that

lim
n→∞

c0
n p+1 n

��−� jK j�

( c0
n p+1 ξ,

c0
n p+1 η

)

= c
��−� j

p+1
0 ξ

1
2 a j η

1
2 a�ξ−a1 j ηa1�−1G(p)

j� (ξ, η; {a1, . . . , ap}) (2.28)

with G(p)
j� as in Definition 2.9. The limit holds uniformly for ξ, η chosen from compact

subsets of (0,∞).

Remark 2.11. The correlation functions of the kernels on the right side of (2.28) are
the same as those of the kernels G(p)

j� (2.25) because the corresponding matrices in the
determinants (2.15) are conjugate of each other by a diagonal matrix.

Conjecture 2.10 expresses our belief that the Meijer-G random point field (2.26) is
universal in the scaling limit z �→ z c0n−(p+1) within the Cauchy p-chain (1.1) for the
choice (2.23). This expectation is based on a rigorous proof of the following Theorem

Theorem 2.12. Conjecture 2.10 holds for p = 2, 3 and potentials as in (2.29).

The case p = 2 for the Cauchy-Laguerre chain was addressed completely in [10]
without the necessity of a complicated asymptotic analysis because of a lucky occurrence
by which the biorthogonal polynomials for any n can be expressed exactly in terms of
Meijer G-functions, and therefore the asymptotic analysis follows from relatively simple
estimates on their integral representations. Clearly, we have verified that our conjecture
matches the existing result, see Sect. 4.2.4. In addition, in Sect. 4.2.5, we show that
the limiting kernel of Kuijlaars and Zhang [28, Theorem 5.3.], which appears in the
analysis of the singular values of products of Ginibre random matrices, is exactly one
of the kernels in the family (2.27).
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We have stated the Conjecture 2.10 based on our rigorous analysis of the Cauchy-
Laguerre p = 3 chain with the choice of external potentials

Uj (x) = Nx − a j ln x, a j > −1 : ak� =
�∑

j=k

a j > −1, ∀ 1 ≤ k ≤ � ≤ p.

(2.29)

Indeed, we will solve the relevant 4× 4 Riemann–Hilbert problem asymptotically and
prove (2.28) with explicit values for c0 and � j . The reader with some experience in
the Deift-Zhou steepest-descent analysis will know that the method relies on two main
hinges:

• the construction of appropriate equilibrium measures representing the asymptotic
densities of eigenvalues of the matrices of the chain (replacing theWigner semicircle
law for GUE or the Marčhenko–Pastur law);

• the construction of local parametrices near the points where the equilibrium densities
vanish or diverge.

For the first point it is known that the equilibriummeasuresminimize a certain functional
[6] and that their Stieltjes transforms then solve a certain algebraic equation that can be
viewed as a Riemann surface (algebraic plane curve). The logic can be turned on its head
in special cases: one can (and often does), based on a body of experience and heuristic
expectations, postulate an appropriate Riemann-surface-Ansatz and subsequently verify
that the Ansatz leads to the appropriate equilibrium measures by verifying a certain
set of equalities and inequalities that characterize the equilibrium measures. We have
followed this second route and postulated the Ansatz of the algebraic equation (4.3),
and then verified the appropriate necessary and sufficient properties in Proposition 4.1.
Although not completely satisfactory from a general point of view, the approach is quite
effective in these special cases. Given that this is not the main focus of the paper, it
would be however too long and possibly even too vague to try and formulate a clear set
of guiding principles that lead to an effective Ansatz. We did, nonetheless, follow the
same principles to postulate the algebraic curves for the cases p = 4, 5, 6 in Remark 4.4;
in these cases we did not provide the corresponding analog of Proposition 4.1 because
we are not using those results in the sequel. We believe that the reader, if interested, can
easily adapt the idea of Proposition 4.1 since it amounts to a straightforward exercise in
calculus.

For the second point the crux of the matter is the construction of a local parametrix,
G(ζ ), that solves a suitable local model RHP near the origin. We shall detail this con-
struction for general p ≥ 2 in Sect. 4.2.1 in terms ofMeijer G-functions. The connection
to the “physical", i.e. spectral variable z of the RHP is carried out only for p = 3 with
the specific choice (2.29). The main reason for this lies in the use of a (vector) g-function
transformation, which we achieve through the spectral curve method rather than via the
analysis of the underlying equilibrium problem. However, as universality theorems have
been established in many areas of random matrix theory, we expect the specific choice
of the potentials Vj (z) in (2.23) not to violate the scaling behavior near the origin, thus
our conjecture (2.28).

The key ingredient for the explicit construction of the vector-equilibrium solution for
p = 4, 5, 6 is given (without proof) in Remark 4.4. The reason we cannot fully claim
to have proven (2.28) also for p = 4, 5, 6 is simply because we are not providing the
necessary error analysis of the final approximation in the Riemann–Hilbert problem. On
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the other hand we believe that it should be clear to the experienced reader that such a
proof can be obtained by simply repeating the steps we are taking now for p = 3.

2.3. Chain separation in the p-chain Meijer-G case. Consider the p-chain Meijer-G
randompoint field ofDefinition 2.9.We refer to the randompoint fields of the eigenvalues
of the three chain as the ( j)-fields, j = 1, 2, 3. The (2)-field interacts with both the (1)-
field and (3)-field. For a longer p-chain the ( j)-field for 2 ≤ j ≤ p − 1, interacts with
both the ( j − 1) and ( j + 1) fields.

In the general chain, the exponent aq , 1 ≤ q ≤ p measures the strength of the
repulsion of the (q)-field from the origin: the larger aq is, the more suppressed is the
empirical statistics of the (q)-field at the origin. This simply follows from the observation
that the probability measure dμ in (1.1) is proportional to det(Mq)

aq . For the scaling
field at the origin, therefore, the (q)-field becomes statistically irrelevant as aq → ∞:
thus it is expectable that if a1 or ap tend to infinity, the corresponding field will disappear
and the remaining ones obey the same limiting statistics as the chain of one unit shorter.
If one of the aq , corresponding to a field in middle of the chain, tends to infinity, then we
should observe that the remaining fields obey the statistics of two independent chains
of length q − 1 and p− q, respectively: i.e. the p-chain is broken into two independent
subchains.

The formalization of the above discussion is contained in the following Theorem
2.13; for the case p = 3 we have either q = 1, 3 or q = 2; in the former case Theorem
2.13 states that the remaining parts of the field obey the same statistics as the 2-level
Meijer-G field obtained in [10]. In the latter case, p = 2, the chain is split into two
“one-chains” of equal length. In this case we show in Sect. 4.2.3 that the p = 1-chain
is nothing but the Bessel field appearing in the scaling limit of the Laguerre Unitary
Ensemble.

Theorem 2.13 (Chain separation). Let 1 ≤ q ≤ p and consider the kernels G(p)
j� (ζ, η;

{a1, . . . , aq}). In the limit as � = aq → ∞ we have the following behaviors;

�p−q+1
[
G(p)
j� (�p−q+1ζ,�p−q+1η; {a1, . . . , aq})

]p

j,�=1

=

⎡
⎢⎢⎣

G(q−1)
j� (ξ, η; {a1, . . . , aq−1})

1≤ j,�≤q−1
O(1)

O (
�−1

) O (
λ−1

)
⎤
⎥⎥⎦ ,

�q
[
G(p)
j� (�qζ,�qη; {a1, . . . , aq})

]p

j,�=1

=

⎡
⎢⎢⎣

O(�−1) O(1)

O(�−1)

(
ξ
η

)a1qG(p−q)
j� (ξ, η; {aq+1, . . . , ap})

1≤ j,�≤p−q

⎤
⎥⎥⎦ .

That is, the p-chain random point field split into two independent multi-level random
point fields corresponding to two subchains of lengths q − 1, p − q with scaling at the
indicated rates. In the case that p − q = q − 1 (i.e. p is odd and p = 2q − 1) so that
the two subchains scale at the same rate, we have
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�q
[
G(p)
j� (�qζ,�qη; {a1, . . . , aq})

]p

j,�=1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

G(q−1)
j� (ξ,η;{ak }q−1

k=1 )

1≤ j,�≤q−1
O(1) O(1)

O(�−1) O(�−1) O(1)

O(�−1) O(�−1)
(

ξ
η
)
a1qG(p−q)

j� (ξ,η;{ak }pk=q+1})
1≤ j,�≤p−q

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

and hence they still are independent subchains because the correlation functions factor-
ize to leading order.

Remark 2.14. We would like to offer an explanation regarding the scalings in Theorem
2.13; this is based on the heuristics (see Conjecture 2.10) that for a chain of length p the
scaling of the eigenvalues at the origin is n−p−1. The chain separation occurs when one
of the exponents aq in the potentials (2.23) scales as aq = nβ. Then the chain separates
into two independent chains of lengths p − q and q − 1. The q − 1 subchain should be
now scaled by n−q ; but since the variables ζ, η had been previously scaled as n p+1 then
the effective scaling in aq ∝ n is n p−q+1, exactly as in the latter Theorem. A similar
argument explains the scaling of the other subchain.

Remark 2.15. For the single-matrix case and a1 scaled with n in the Marčenko–Pastur
density, one also observes that the spectrum gets “detached” from the origin. This de-
tachment is the underlying mechanism of the chain separation.

We conclude this introduction with a short outline for the remainder of the article. In
Sect. 3 we prove Theorems 2.5 and 2.8. After that Sect. 4 contains the most technical
part of the paper, the rigorous asymptotical analysis of the Cauchy-Laguerre threematrix
chain (2.29): this includes in particular the construction of the vector g-function, a series
of explicit transformations (including the construction of the origin parametrix) and a,
somewhat tedious, error analysis at the end. After that we are ready to prove Theorem
4.21 which forms an intermediate step on the way to Theorem 2.12. Followed by that, we
complete the proof of Theorem 2.12 by deriving double contour integral representations
for the entries under scrutiny in (4.75). This step is again carried out for the general
p ≥ 2 chain and it allows us to derive Theorem 2.13.

3. Part I. Correlation Kernels for Finite N: Proof of Theorems 2.5 and 2.8

Lemma 3.1. The determinant of (z) is constant and equal to 1.

Proof. The usual argument is that det (z) has no jumps in C\{0} with a possible
isolated singularity at the origin. Then one estimates the possible growth near z = 0; if
det (z) = o(z−1), the possible singularity at z = 0 has to be removable. Thus det (z)
is an entire function that tends to 1 at infinity (compare (2.8)) and hence identically equal
to 1 by Liouville’s theorem.

However for negative a j ’s, we have det (z) = O(z
∑p

�=1 a1� ), z → 0 but from
(2.1) it only follows that

∑p
�=1 a1� > −p, hence the above argument fails. To cover

also these cases we use a different argument: if −p <
∑p

�=1 a1� ≤ −q, q ∈ N we
can only argue that det (z) = Q(z)/zq with Q(z) a monic polynomial of degree q
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(so that det (z) → 1 as z → ∞). Suppose q ≥ 1 and let z0 ∈ C be a root of
Q(z); then there is a linear combination of the rows 1,•(z), . . . , p+1,•(z) of (z)
such that r(z) = ∑

j r j j,•(z) vanishes at z = z0 but is otherwise not identically
zero (if z0 ∈ R, since we have assumed the potential real-analytic, a simple argument
shows that both boundary values of r(z) vanish at z = z0). Then r(z)/(z − z0) is a
bounded row-solution of the jump condition (2.5) which at infinity has the behavior
(O(zn−1),O(z−1), . . . ,O(z−1),O(z−n−1)). But this implies that we could add any
multiple of r(z) to the first row, therefore altering its entries. But as we shall see in a
few moments (without using the unique solvability of the RHP 2.3) the first row 1,•(z)
contains the polynomialψn(x), which is uniquely determined, compare Proposition 2.2.
Hence we must have q = 0 and unimodularity of (z) follows. ��
Proof of Theorem 2.5. Uniqueness of the solution follows in the standardway.ByLemma
3.1, det (z) is an entire function and by (2.8) with Liouville’s theorem, det (z) ≡ 1.
This shows that the ratio of two solutions, 1(z) and 2(z), is first well-defined and
secondly from (2.5), 1(z)

−1
2 (z) is analytic in C\{0} with a removable singularity at

the origin. Hence by another application of Liouville’s theorem, we have1(z) ≡ 2(z).
For existence, the jump condition (2.5) and behavior (2.6), (2.7) imply that the first

column of (z) = (z; n) must consist of entire functions; on the other hand from the
asymptotic behavior at infinity, the first column •,1(z) of (z) consists of polynomials,
more precisely

•,1(z) = (
πn(z), ψ

(1)
n−1(z), . . . , ψ

(p)
n−1(z)

)T (3.1)

where πn(z) is a monic polynomial of exact degree n and

ψ
( j)
n−1(z) =

n−1∑
m=0

ψ̂
( j)
m zm, j = 1, . . . , p (3.2)

are polynomials of degree≤ n− 1 whose coefficients will be determined uniquely later
on. The jump condition (2.5) and asymptotics (2.8) imply the following formulæfor the
remaining columns

•, �+1(z) = e�+1+
1

2π i

∫ ∞

0
•,�−

(
(−1)�+1w

)
e−U�(w) dw

w + z(−1)�
, 1≤�≤ p−1

•, p+1(z) = 1

2π i

∫ ∞

0
•, p−

(
(−1)p+1w

)
e−Up(w) dw

w + z(−1)p
. (3.3)

where e j denotes the j-th cartesian unit (column) vector. Here and in the following,
all integrals are ordinary Lebesgue integrals, not oriented line integrals. The asymptotic
behavior (2.8) for the (p + 1)st column poses certain conditions on the polynomials
πn(z), ψ

( j)
n−1(z) which we now read off:

∫ ∞

0
· · ·

∫ ∞

0
•,1(w1)w

�
p

e−
∑p

j=1Uj (w j )∏p−1
j=1 (w j + w j+1)

dw1 · . . . · dwp

=

⎡
⎢⎢⎢⎢⎢⎣

0
−(2π i)J�,2

...

−(2π i)p−1 J�,p
(−2π i)p(−1)(p+1)�δ�,n−1

⎤
⎥⎥⎥⎥⎥⎦ , (3.4)
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valid for 0 ≤ � ≤ n − 1 and where

J�,m =
∫ ∞

0
· · ·

∫ ∞

0
w�

p
e−

∑p
j=m U j (w j )∏p−1

j=m(w j + w j+1)
dwm · . . . · dwp, m = 1, . . . , p.

Let us consider the first row in (3.4), it reads as

0 =
∫ ∞

0
· · ·

∫ ∞

0
πn(w1)w

�
p

e−
∑p

j=1 Uj (w j )∏p−1
j=1 (w j + w j+1)

dw1 · . . . · dwp

=
∫ ∞

0

∫ ∞

0
πn(x)y

�ηp(x, y) dxdy (3.5)

and has to hold for any � ∈ {0, . . . , n − 1}, i.e. πn(x), which is a monic polynomial of
exact degree n, must be the nth monic orthogonal polynomial ψn(x) subject to (2.2).
The next (p − 1) rows in (3.4) can be written as

n−1∑
m=0

ψ̂
( j−1)
m Im� = −(2π i) j−1 J�, j , j = 2, . . . , p (3.6)

and these equations have to hold for any � ∈ {0, . . . , n − 1}. A similar equation also
follows from the last row in (3.4), it differs from the latter only by a replacement of the
right hand side in (3.6). Fixing j in (3.6), we can rewrite the corresponding equation as an
n×n linear system of equations on the unknown coefficients ψ̂

( j−1)
0 , . . . , ψ̂

( j−1)
n−1 . In this

system however the coefficient matrix is given by the moment matrix [Im�]n−1
m,�=0. Hence

assuming �n �= 0 ensures solvability of (3.6), which in turn guarantees existence of the
polynomials in (3.2) and therefore the solution of the RHP 2.3. Conversely assuming
solvability of the RHP for (z) we have already seen that this solution has to be unique.
Hence following our previous logic, all resulting systems from (3.6) have to be uniquely
solvable, i.e. �n �= 0.

As for the remaining identity (2.9), we know from the previous part that ψn(z) =
11(z; n). In order to find φn(z), we let ̂(z) = −1(z), z ∈ C\R. This leads to the
following jump relation for ̂(z)

̂+(z) =

⎡
⎢⎢⎢⎢⎢⎣

1 −w1(z) 0 0
0 1 −w2(z) 0

0 1
. . . 0

. . .
. . . −wp(z)

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ ̂−(z), z ∈ R\{0}, (3.7)

which follows from (2.5), and adjusted behavior at infinity

̂(z) =

⎡
⎢⎢⎢⎢⎣
z−n 0

1
. . .

1
0 zn

⎤
⎥⎥⎥⎥⎦

(
I + O

(
z−1

))
, z → ∞.
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Solving this problem recursively as we did it before for (z) (here row by row, instead
of column by column), we first see that

̂p+1,•(z) = (
ψ̂

(1)
n−1(z), . . . , ψ̂

(p)
n−1(z), π̂n(z)

)
where π̂n(z) = ̂p+1,p+1(z; n) is a monic polynomial of exact degree n and ψ̂

( j)
n (z)

(uniquely determined) polynomials of degree ≤ n − 1. Next

̂�,•(z) = eT� − 1

2π i

∫ ∞

0
̂�+1,•−

(
(−1)�+1w

)
e−U�(w) dw

w + z(−1)�
, � = 2, . . . , p

̂1,•(z) = − 1

2π i

∫ ∞

0
̂2,•−(w)e−U1(w) dw

w − z
(3.8)

and recalling the behavior at infinity in the ̂-RHP therefore∫ ∞

0

∫ ∞

0
x� π̂n

(
(−1)p+1y

)
ηp(x, y) dxdy = 0, � ∈ {0, . . . , n − 1}, (3.9)

thus −1
p+1,p+1(z; n) = π̂n(z) = (−1)n(p+1)φn

(
(−1)p+1z

)
which completes the

proof. ��
We state several corollaries to the latter Theorem which are used later on.

Corollary 3.2. The entry (p + 1, 1) of the solution (z) = (z; n) of the RHP 2.3 is
given by

p+1,1(z) = (−2π i)p(−1)(n−1)(p+1) �n−1

�n
ψn−1(z)

and the “norms” hn in (2.2) equal

hn = �n+1

�n
. (3.10)

Proof. From (3.4) we see that the entry under scrutiny must be proportional to ψn−1(z),
on the other hand the representation (2.4) gives us∫ ∞

0

∫ ∞

0
ψn(x)y

mηp(x, y) dx dy = δnm
�n+1

�n
, m ≤ n

and therefore the claim follows from (3.4).

Corollary 3.3. The solution of the RHP 2.3 is such that

(z; n) =
(
I +

Y1n
z

+
Y2n
z2

+ O
(
z−3

))
zn(E11−Ep+1,p+1), E j� = [

δ jαδβ�

]p+1
α,β=1

(3.11)

where

[Y1n]1,p+1 = (−1)n(p+1)

(−2π i)p
�n+1

�n
= (−1)n(p+1)hn

(−2π i)p
(3.12)
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Proof. The matrix entry [Y1n]1,p+1 is the coefficient in z−n−1 of the asymptotic expan-
sion of 1,1(z; n) in the proof of Theorem 2.5, namely

1

(−2π i)p

∫ ∞

0
· · ·

∫ ∞

0
ψn(w1)(−1)n(p+1)wn

p
e−

∑p
j=1Uj (w j )∏p−1

j=1 (w j + w j+1)
dw1 · . . . · dwp

= (−1)n(p+1)

(−2π i)p

∫ ∞

0

∫ ∞

0
ψn(x)y

nηp(x, y) dxdy = (−1)n(p+1)hn
(−2π i)p

.

��
We will prove Theorem 2.8 by induction on n ∈ Z≥0 and for that we need to analyze

the action of the shift n �→ n + 1 on (z; n). In the Riemann–Hilbert problem, this shift
corresponds to an elementary Schlesinger transformation in the sense of [24] which
takes on the following form. We first observe that (z; n + 1)−1(z; n) is a linear affine
function, more precisely

(z; n + 1)−1(z; n) = zAn + Bn ≡ Rn(z), z ∈ C. (3.13)

Indeed, the expression on the right side of (3.13) is immediately seen to have no jumps
on the real axis, and an isolated singularity at the origin. However, due to (2.1) one
finds that this singularity is o(z−1) and thus concludes that the expression is analytic at
z = 0. The asymptotic behavior at z = ∞ implies that the expression grows at most
linear and by Liouville’s theorem we conclude that it must be an affine function in z.
The coefficients An and Bn are determined from the asymptotics (2.8), we have (see [24,
formula (A.1)])

An = E11, Bn =

⎡
⎢⎢⎢⎢⎣
B11 B12 · · · B1p B1,p+1
B21 1 . . . 0 0
...

. . .
...

Bp1 0 1 0
Bp+1,1 0 . . . 0 0

⎤
⎥⎥⎥⎥⎦ ,

B1� = −[Y1n]1�, 2 ≤ � ≤ p + 1

and

B11 =
∑p+1

j=2[Y1n]1 j [Y1n] j,p+1 − [Y2n]1,p+1
[Y1n]1,p+1 , Bp+1,1 = 1

[Y1n]1,p+1 ,

B�,1 = −[Y1n]�,p+1
[Y1n]1,p+1 , 2 ≤ � ≤ p

where we recall from (3.12) that [Y1n]1,p+1 �= 0. By similar reasoning as above, one
also finds that

R−1
n (z) = zEp+1,p+1 + Cn (3.14)

with

Cn =

⎡
⎢⎢⎢⎢⎣
0 0 · · · 0 C1,p+1
0 1 . . . 0 C2,p+1
...

. . .
...

0 0 1 Cp,p+1
Cp+1,1 Cp+1,2 . . . Cp+1,p Cp+1,p+1

⎤
⎥⎥⎥⎥⎦
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where

C�,p+1 = [Y1n]�,p+1, � ∈ {1, . . . , p}; Cp+1,� = − [Y1n]1�
[Y1n]1,p+1 , � ∈ {2, . . . , p}

and

Cp+1,1 = − 1

[Y1n]1,p+1 , Cp+1,p+1 = [Y1n]p+1,p+1 − [Y2n]1,p+1
[Y1n]1,p+1 .

Using the previous identities, we derive the following Proposition, which will be impor-
tant in the proof of Theorem 2.8

Proposition 3.4. For any n ∈ Z≥0

R−1
n (w)Rn(z) = I − (z − w)

Ep+1,1

[Y1n]1,p+1 , z, w ∈ C. (3.15)

At this point we are ready to derive Theorem 2.8.

Proof of Theorem 2.8. We use induction on n ∈ Z≥0 and apply (3.15). During this we
employ the notation

[
−1(x(−1) j+1)(y(−1)�−1)

]
j+1,� ≡ [

−1± (w)±(z)
]
j+1,�

∣∣∣∣
w=x(−1) j+1, z=y(−1)�−1

and M j�(x, y) ≡ M j�(x, y; n) to indicate the n-dependency.

First case: 1 ≤ � ≤ j ≤ p. In the base case, use that both, (z; 0) and −1(z; 0) are
upper triangular, thus[

−1(x(−1) j+1; 0)(
y(−1)�−1; 0)]

j+1,�
= 0

which matches the left hand side in (2.22), since by (2.18) and (2.20) the corresponding
kernels M j�(x, y) always contain an empty sum. For the induction step, apply (3.13),
thus[

−1(x(−1) j+1; n + 1
)


(
y(−1)�−1; n + 1

)]
j+1,�

=
[
−1(x(−1) j+1; n)


(
y(−1)�−1; n)]

j+1,�
− (

y(−1)�−1−x(−1) j+1
)

×
[
−1(x(−1) j+1; n)

Ep+1,1
(
y(−1)�−1; n)]

j+1,�

1

[Y1n]1,p+1
= (

x(−1) j+1 − y(−1)�−1){
M j�(x, y; n)(−2π i) j−�+1(−1)�−1

+ −1
j+1,p+1

(
x(−1) j+1; n)1�

(
y(−1)�−1; n)

(−2π i)p(−1)n(p+1) 1

hn

}
(3.16)

where we used the induction hypothesis as well as (3.12) in the last equality. For j = p
and 1 ≤ � ≤ p, (compare (3.3), (3.8))

−1
p+1,p+1(z; n) = (−1)n(p+1)φn

(
(−1)p+1z

)
, 11(z; n) = �n(z)

1�(z; n) = 1

2π i

∫ ∞

0

(
1,�−1

(
(−1)�w; n))

−
e−U�−1(w)

w + z(−1)�−1 dw, 2 ≤ � ≤ p
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and therefore with (2.18) back in (3.16)[
−1(x(−1)p+1; n + 1

)


(
y(−1)�−1; n + 1

)]
p+1,�

= (−2π i)p−�+1(−1)�−1
Mp�(x, y; n + 1)

×(
x(−1)p+1 − y(−1)�−1)

in accordance with (2.22). Similarly, for 1 ≤ j ≤ p − 1 and 1 ≤ � ≤ j , we use in
addition

−1
j+1,p+1(z; n) = − 1

2π i

∫ ∞

0

(
−1

j+2,p+1

(
(−1) j+2w; n))

−
e−Uj+1(w)

w + z(−1) j+1
dw

and obtain from (2.18) and (2.20) back in (3.16)[
−1(x(−1) j+1; n + 1

)


(
y(−1)�−1; n + 1

)]
j+1,�

= (−2π i) j−�+1(−1)�−1
M j�(x, y; n + 1)

(
x(−1) j+1 − y(−1)�−1).

This completes the induction for 1 ≤ � ≤ j ≤ p.

Second case: � = j + 1. In the base case, we have to take into account that[
−1(x(−1) j ; 0)(

y(−1) j ; 0)]
j+1, j+1

= 1.

But from (2.19), we get

M j, j+1(x, y; 0) = − 1

x + y
= (−1) j

1

x(−1) j+1 − y(−1) j
,

i.e. the base case is completed. The induction step is as before:[
−1(x(−1) j+1; n + 1

)


(
y(−1) j ; n + 1

)]
j+1, j+1

= (
x(−1) j+1 − y(−1) j

)
×

{
M j, j+1(x, y; n)(−1) j + −1

j+1,p+1

(
(−1) j+1x; n)

1, j+1
(
(−1) j y; n)

× (−2π i)p(−1)n(p+1) 1

hn

}
= (−1) jM j, j+1(x, y; n)

(
x(−1) j+1 − y(−1) j

)
where all three identities (2.19), (2.18) and (2.20) are used in the last equality. This
completes the induction in case � = j + 1.

Third case: � > j + 1. We need to use that

(z; 0) =

⎡
⎢⎢⎢⎢⎣
1 W11 W12 · · · W1p
0 1 W22 W2p
... 0

. . .
. . .

...

Wpp
0 0 · · · 1

⎤
⎥⎥⎥⎥⎦
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with

Wj�(z)= 1

(2π i)�− j+1

∫ ∞

0
. . .

∫ ∞

0

e−
∑�

m= j Um (wm )∏�−1
m= j (wm + wm+1)

dw j · · · dw�

w� + z(−1)�
, 1≤ j≤�≤ p,

and also

−1(z; 0) =

⎡
⎢⎢⎢⎢⎢⎣

1 Ŵ11 Ŵ12 · · · Ŵ1p
0 1 Ŵ22 Ŵ2p
... 0

. . .
. . .

...

Ŵpp
0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

where

Ŵ j�(z) = 1

(−2π i)�− j+1

∫ ∞

0
· · ·

∫ ∞

0

e−
∑�

m= j Um (wm )∏�−1
m= j (wm + wm+1)

dw j · · · dw�

w j + z(−1) j
,

1 ≤ j ≤ � ≤ p.

Hence certain combinations of Ŵ j�(w) and Wj�(z) will appear in the base case. On
the other hand (2.19) gives additional terms inside the integrals and using partial frac-
tion decomposition, we can verify the base case. The induction step is again a direct
application of (3.15) combined with (2.18), (2.19) and (2.20). ��

4. Part II: Asymptotics for the p-Laguerre Chain

In the rest of the paper we specialize the potentials to the choice (2.29); due to the form
of the potentials, we shall refer this chain model as the Cauchy-Laguerre p-chain. In
the interest of concreteness, we also choose p = 3, that is the first case which is not
analyzed already in the literature. This choice is dictated mostly by convenience, as the
overall logic can be carried out along similar lines for arbitrary p. The only step where
a general theorem would be needed is in the construction of the so-called g-function.
One of the key features (which is verified here) would be that the macroscopic densities
ρ j (x) of the eigenvalues of the matrices Mj should have the following local behavior
near the origin

ρ j (x) ∼ C |x |− p
p+1 . (4.1)

For p = 1 (i.e. the ordinary Laguerre unitary ensemble) the density is the arcsine law
and has precisely the behavior (4.1). For p = 2 this is verified in [10]; for p = 3 it is
verified in the present paper and for p = 4, 5, 6 see Remark 4.4. For general p (and
general potential) a proof of this can only follow from potential theoretic methods. On
a different note, the same singular behavior (4.1) has also been found in the analysis of
products of random matrices, cf. [12,34].

4.1. Riemann–Hilbert analysis for the Cauchy-Laguerre three-chain. We shall now ad-
dress the asymptotic analysis of Problem 2.3 for p = 3 and choice of potentials (2.29)
to be analyzed in the limit n = N → ∞.
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Following the well established nonlinear steepest descent method of Deift and Zhou
[14–16] a sequence of explicit and invertible transformations is carried out to simplify
the initial problem for  = (z; n) and to derive an iterative solution valid as n → ∞.
The overall logic for this is well-known in the literature and we shall begin with a
normalization transformation, the introduction of the (vector) g-functions.

4.1.1. g-function transformation. We transform the initial problem

Y (z) = L(z)G(z)L−1, z ∈ C\R
L = diag

[
e−

n
4 l1, e−

n
4 l2 , e−

n
4 l3 , e−

n
4 l4

]
, (4.2)

G(z) = diag
[
e−ng(1)(z), e−ng(2)(z), e−ng(3)(z), e−ng(4)(z)

]
.

The diagonalmatricesG(z) andL contain functions and normalization parameters which
are constructed as follows. Start from the algebraic equation

y4 − z − 2

2z
y2 +

(3z + 4)(3z − 8)2

432z3
= 0. (4.3)

The algebraic equation (4.3) will be used to construct the g function and all the required
equalities and inequalities will be rigorously verified in Proposition 4.1. The equation
itself was the result of an Ansatz based on heuristic guidelines and then subsequent
rigorous verification of its suitability. The Eq. (4.3) defines a Riemann surface X =
{(y, z) : satisfy (4.3)} which consists of four sheets X j , j = 1, . . . , 4 glued together in
the usual crosswise manner along [a, 0] and [0, b] where

a = −4

3
, b = 64

27
(4.4)

are zeros of the discriminant of (4.3). We denote with y : X → CP
1 the bijective

mapping such that y j = y|X j , j = 1, 2, 3, 4 are the four roots of (4.3). Since we usually
identify the sheets X j with copies of the complex plane, y j = y j (z) are defined on C

with appropriate cuts. In more detail, we have

y1(z) = 1

2z

(
z2 − 2 (z(z − b))

1
2 − 2z

) 1
2
, y4(z) = −y1(z),

y2(z) = − 1

2z

(
z2 + 2 (z(z − b))

1
2 − 2z

) 1
2
, y3(z) = −y2(z)

with principal branches for all fractional exponents, in particular (z(z − b))
1
2 is defined

and analytic for z ∈ C\(0, b) such that (z(z − b))
1
2 ∼ z as z → +∞, arg z = 0 and

y1(z) = 1

2
− 1

z
− 11

27z2
+ O

(
z−3

)
, y2(z) = −1

2
+

16

27z2
+ O

(
z−3

)
, z → ∞.

(4.5)

Notice that y1(z) is analytic for z ∈ C\(0, b)whereas y2(z) is analytic for z ∈ C\(a, b).
In particular,

y1+(z) = y2−(z), y1−(z) = y2+(z), z ∈ (0, b); y4+(z) = y3−(z),

y4−(z) = y3+(z), z ∈ (0, b)
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X1

X2

X3

X4

Fig. 2. The four sheeted Riemann surface X . The endpoint of the cuts are z = a on the left and z = b on the
right

and

y2+(z) = y3−(z), y2−(z) = y3+(z), z ∈ (a, 0).

We can visualize this behavior as shown in Fig. 2.
Moreover, the Riemann surface X is of genus g = 0 with a rational uniformization

given by

z = − 1

210

t4

(t − 1)(t − 8
7 )(t − 8

5 )(t − 2)
, y = −99

2
+
210

t
− 288

t2
+
128

t3
, t ∈ CP

1

which defines a bijective map T : CP1 → X, t �→ (z(t), y(t)) with branch points
{t∗j }4j=1 where

0︸︷︷︸
=t∗1

< 1 <
96

67
− 8

67

√
10︸ ︷︷ ︸

=t∗2

<
8

7
<

4

3︸︷︷︸
=t∗3

<
8

5
<

96

67
+

8

67

√
10︸ ︷︷ ︸

=t∗4

< 2. (4.6)

In particular, under the map T = T(t), we have the following correspondences:

1 �→
{
z = ∞1

y = 1
2 ;

8

7
�→

{
z = ∞2

y = − 1
2 ;

8

5
�→

{
z = ∞3

y = 1
2 ;

2 �→
{
z = ∞4

y = − 1
2 ,

(4.7)

and we depict the partitioning of CP1 � t into the four sheets under the uniformization
mapT−1 : X → CP

1 in Fig. 3.With the jump behavior of the y j ’s in mind, we introduce
the functions

g(1)(z) = l1

4
+
z

2
−

∫ z

0
y1(λ) dλ, g(4)(z) = l4

4
− z

2
−

∫ z

0
y4(λ) dλ, z ∈ C\(0, b),

g(2)(z) = l2

4
− z

2
−

∫ z

0
y2(λ) dλ, g(3)(z) = l3

4
+
z

2
−

∫ z

0
y3(λ) dλ, z ∈ C\(a, b).

The integration contours are chosen in the upper half plane and avoid crossing the branch
cuts (a, 0) ∪ (0, b). Furthermore, the constants l j , j = 1, . . . , 4 are chosen in such a
way as to ensure the normalization
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∞3∞1

∞2 ∞4

Fig. 3. Schematics of the mapping of the sheets X j to the complex t plane. All sheets meet at the branch point
t∗1 shown as black box on the very left. The other branch points t∗j correspond to the other boxes. We give the

boundary pieces C±
j = C j ∩ {
 t, ≷ 0}, j = 1, 2, 3 the same orientation as the branch cuts shown in Fig. 2,

i.e they are oriented from t∗1 to t∗j , j �= 1. The labeling of C±
j is according to the labeling of sheets X j

g(1)(z) = ln z + O
(
z−1

)
, g(4)(z) = − ln z + O

(
z−1

)
, g( j)(z) = O

(
z−1

)
,

j = 2, 3 z → ∞. (4.8)

As can be seen from (4.5), this is achieved by

l1

4
= ln b − b

2
+

∫ b

0
y1+(λ) dλ +

∫ ∞

b

(
y1(λ) − 1

2
+
1

λ

)
dλ, l4 = −l1

l2

4
= b

2
+

∫ b

0
y2+(λ) dλ +

∫ ∞

b

(
y2(λ) +

1

2

)
dλ, l3 = −l2.

We summarize certain analytical properties of the g-functions which are consequences
of the jumps of y j (z) in the following Proposition.

Proposition 4.1. Let

ω j, j+1(z) = g
( j)
− (z) − g

( j+1)
+ (z) − (−1) j+1z − l j

4
+
l j+1

4
, z ∈ R, j = 1, 2, 3.

(4.9)

Then

ω12(z) = ω34(z) = 0, z ∈ (0, b); ω23(z) = 0, z ∈ (a, 0) (4.10)

and

ω12(z) = −1

2

∫ z

b

(√
λ2 + 2

√
λ(λ − b) − 2λ +

√
λ2 − 2

√
λ(λ − b) − 2λ

)
dλ

λ
< 0,

z > b,

ω23(z) = −
∫ a

z

√
λ2 − 2

√|λ(λ − b)| − 2λ
dλ

|λ| < 0, z < a,

ω34(z) = −1

2

∫ z

b

(√
λ2 + 2

√
λ(λ − b) − 2λ +

√
λ2 − 2

√
λ(λ − b) − 2λ

)
dλ

λ
< 0,

z > b.
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In order to perform subsequent steps in the Riemann–Hilbert analysis, we also require

Definition 4.2. We introduce the effective potentials

ϕ1(z) = z +
l1

4
− l2

4
− g(1)(z) + g(2)(z) =

∫ z

0

(
y1(λ) − y2(λ)

)
dλ

ϕ2(z) = −z +
l2

4
− l3

4
− g(2)(z) + g(3)(z) =

∫ z

0

(
y2(λ) − y3(λ)

)
dλ

ϕ3(z) = z +
l3

4
− l4

4
− g(3)(z) + g(4)(z) =

∫ z

0

(
y3(λ) − y4(λ)

)
dλ = ϕ1(z)

Lemma 4.3. There is a neighborhood of (0, b) for which 	 (ϕ1(z)) < 0,	 (ϕ3(z)) < 0
away from the interval (0, b). Similarly there is a neighborhood of (a, 0) for which
	 (ϕ2(z)) < 0 away from the interval (a, 0).

Proof. Let π j (z) = g
( j)
+ (z) − g

( j)
− (z), z ∈ R and notice that

π1(z) = −ϕ1+(z) = ϕ1−(z), π4(z) = ϕ3+(z) = −ϕ3−(z), z ∈ (0, b), (4.11)

π2(z) = −ϕ2+(z) = ϕ2−(z), π3(z) = ϕ2+(z) = −ϕ2−(z), z ∈ (a, 0). (4.12)

Thus the continuations of ϕ j (z) into the upper and lower half plane are ensured and
since 
(π1(z)), z ∈ (0, b) and 
(π2(z)), z ∈ (a, 0) are both strictly decreasing on
(0, b), resp. on (a, 0), the sign conditions on 	(

ϕ1(z)
)
and 	(

ϕ2(z)
)
follow from the

Cauchy-Riemann equations. ��
Remark 4.4. We state here, without proof, the spectral curves to use for the analysis of
the longer chains p = 4, 5, 6. They have been obtained by an educated guess starting
from a uniformization of the Riemann sphere of degree p+1 and subsequent verification
that they define positive equilibrium measures. A general existence proof for arbitrary p
(and in general arbitrary potentials) requires a vector-potential theoretic approach. This
framework is partly contained in [6]; however, the potentials that are of interest here
do not satisfy all the properties in loc. cit.: in particular those requirements which were
invoked to guarantee that the supports of the equilibrium measures have a finite distance
from the origin. In all cases the behavior of the various branches of the solutions y(z)

near z = 0 is y(z) ∼ cz−
1
p+1 . The spectral curves below and their corresponding vector-

equilibrium measures could be used as a starting point for a steepest descent analysis in
the corresponding p = 4, 5, 6 cases.

E4 = y5 − 3

5
y3 +

(
2 z2 − 25

)
y2

25z2
+

(
12 z2 − 25

)
y

125z2
− 288 z4 − 3000 z2 + 3125

12500z4
(4.13)

E5 = y6 +
(−3 z + 4) y4

4z
+

(
75 z3 − 200 z2 + 256

)
y2

400z3
+

(4− 5 z)
(
25 z2 − 40 z − 64

)2
200000z5

(4.14)

E6 = y7 − 6

7
y5 +

(2 z − 7) (2 z + 7) y4

49z2
+

(
87 z2 − 98

)
y3

343z2

−
(
2916 z4 − 30429 z2 + 19208

)
y2

64827z4
− 8

(
54 z2 − 49

) (
27 z2 − 49

)
y

453789z4

+
16

(
236196 z6 − 2250423 z4 + 2722734 z2 − 823543

)
600362847z6

(4.15)
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Remark 4.5. For p = 3 we can consider the following more general case where the
exponent a2 is allowed to scale with n according to a2 = nβ, β > 0. In this case the
spectral curve is the following one

y4 − z2 − 2z + β2

2z2
y2 +

Q0(z)

16z4
= 0

Q0(z) = z4 − 4z3 − 2z2β(β + 4) + 4z
(
(1 + β)2q − β2

)
+ β4 (4.16)

where q = q(β) is the unique positive root of the following polynomial (in q)

27(1 + β)2q3 − 16(9β2 + 9β + 4)q2 + 16β2(β2 + β + 8)q − 64β4. (4.17)

The existence of q(β) > 0 follows from the following reasoning: the discriminant
of (4.17) equals � = −4096 (1 + β) (1 + 2 β)2

(
3β2 + 3β + 32

)3
β5 and hence it is

negative for β > 0. Therefore there must be at least one pair of complex roots. Since
the degree of (4.17) is three there is only one (positive) real root. The condition (4.17)
guarantees that the spectral curve (4.16) is of genus 0 (with one nodal point). The
solutions of (4.16) are the four sheets

y1,2,3,4(z) = ±1

2
,

√
z2 − 2 z + β2 ± 2 (1 + β)

√
z (z − q)

z
(4.18)

and thus z = 0, q are branchpoints connecting two pairs of sheets; the other two branch-
points are the zeros of the radicand of the outer root, which turn out to be the roots of
Q0(z) in (4.16); the Eq. (4.17) is simply the vanishing of the discriminant w.r.t. z of
Q0(z), which guarantees that one root of Q0(z) is double. A full inspection (left to the
reader) reveals in turn that the roots of Q0(z) are all real: the simple ones are negative,
and the positive one is double and greater than q(β). These observations can be used
to obtain a complete proof that (4.16) is the correct spectral curve for the construction
of the relevant g-functions; since we do not need them for our paper, the proof is also
omitted for general β > 0. Only the case β = 0 is needed and proved in Proposition 4.1.

Moreover, for β = 0 the curve reduces to (4.3) (with q = 64
27 ). As β → +∞ we

have q → 4. The plots of the relevant densities are shown in Fig. 4; the density on the
negative axis is the density of the spectrum of M2 while the densities of M1, M2 are
equal to each other and equal to the density on the positive axis.

Returning now to (4.2), we obtain a transformed Y -RHP with jump matrices

GY (z) =
[
e−nπ1(z) za1enω12(z)

0 e−nπ2(z)

]
⊕

[
e−nπ3(z) za3enω34(z)

0 e−nπ4(z)

]
, z > 0

GY (z) = e−nπ1(z) ⊕
[
e−nπ2(z) (−z)a2enω23(z)

0 e−nπ3(z)

]
⊕ e−nπ4(z), z < 0

which can be simplified using Proposition 4.1 and Lemma 4.3,

GY (z) =
[
e−nπ1(z) za1

0 enπ1(z)

]
⊕

[
e−nπ3(z) za3

0 enπ3(z)

]
, z ∈ (0, b),

GY (z) =
[
1 za1enω12(z)

0 1

]
⊕

[
1 za3enω34(z)

0 1

]
, z > b,
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Fig. 4. The limiting densities of eigenvalues for the p = 3 separated chain for a2 = nβ and different values
of β and a1 is independent of n. Note that the support of the density of the matrix M2 is separated from the
origin. By comparison we also show the densities for β = 0 (connected chain). The profile of the density on
the negative axis is the asymptotic macroscopic density of the eigenvalues of M2 reflected about the origin,
while on the positive axis the profile corresponds to the densities of M1, M3 (they are identical)

as well as

GY (z) = 1⊕
[
e−nπ2(z) (−z)a2

0 enπ2(z)

]
⊕ 1, z ∈ (a, 0);

GY (z) = 1⊕
[
1 (−z)a2enω23(z)

0 1

]
⊕ 1, z < −a.

In the latter, we also used that (compare earlier)

π1(z) = −π2(z), π3(z) = −π4(z), z ∈ (0, b); π2(z) = −π3(z), z ∈ (a, 0)

and we emphasize the normalization Y (z) = I + O (
z−1

)
, z → ∞, following from

(4.8) and (4.2).

Remark 4.6. From now on the notation A⊕B⊕C . . . with A, B,C, . . . square matrices
(each of different sizes in general), stands for a block diagonal matrix with A, B,C, . . . ,

along the diagonal.
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γ+
1

z = 0

Ω−
2 Ω+

1

γ−
1

γ+
2

γ−
2

z = bΩ+
2 Ω−

1z = a

Fig. 5. Opening of lenses and the resulting jump contours in the S-RHP

Next, we factorize the jumpmatrices on the segments (a, 0)∪(0, b). For the correspond-
ing 2× 2 blocks this means (recall Lemma 4.3)

[
e−nπ1(z) za1

0 enπ1(z)

]
=

[
1 0

z−a1en(ϕ1(z))− 1

] [
0 za1

−z−a1 0

] [
1 0

z−a1en(ϕ1(z))+ 1

]
,

z ∈ (0, b),[
enπ4(z) za3

0 e−nπ4(z)

]
=

[
1 0

z−a3en(ϕ3(z))− 1

] [
0 za3

−z−a3 0

] [
1 0

z−a3en(ϕ3(z))+ 1

]
,

z ∈ (0, b),[
e−nπ2(z) (−z)a2

0 enπ2(z)

]

=
[

1 0
z−a2− eiπa2en(ϕ2(z))− 1

] [
0 |z|a2

−|z|−a2 0

] [
1 0

z−a2
+ e−iπa2en(ϕ2(z))+ 1

]
,

z ∈ (a, 0).

4.1.2. Opening of lenses. If we let

S(±)
L1

(z) =
⊕
j=1,3

[
1 0

z−a j en(ϕ j (z))± 1

]
,

S(±)
L2

(z) = 1⊕
[

1 0
z−a2± e∓iπa2en(ϕ2(z))± 1

]
⊕ 1,

Lemma 4.3 allows us to perform “opening of lenses", i.e. we consider the transformation
(compare Fig. 5)

S(z) =

⎧⎪⎨
⎪⎩
Y (z)

(
S(+)
L j

(z)
)−1

, z ∈ �
(+)
j

Y (z)
(
S(−)
L j

(z)
)
, z ∈ �

(−)
j

Y (z), else

, j = 1, 2 (4.19)

which leads to the following RHP

Riemann-Hilbert Problem 4.7. Determine the 4× 4 piecewise analytic function S(z)
such that

• S(z) is analytic for z ∈ C\(R ∪ γ +
1 ∪ γ−

1 ∪ γ +
2 ∪ γ−

2 )
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• The jump conditions are as follows

S+(z) = S−(z)
⊕
j=1,3

[
0 za j

−z−a j 0

]
, z ∈ (0, b)

S+(z) = S−(z)

(
1⊕

[
0 (−z)a2

−(−z)−a2 0

]
⊕ 1

)
, z ∈ (a, 0)

S+(z) = S−(z)S(±)
L j

(z), z ∈ γ±
j , j = 1, 2

S+(z) = S−(z)
⊕
j=1,3

[
1 za j enω j, j+1(z)

0 1

]
, z > b

S+(z) = S−(z)

(
1⊕

[
1 (−z)a2enω23(z)

0 1

]
⊕ 1

)
, z < a

• The behavior at the origin is dictated as in (2.6) and (2.7) as long as we approach
z = 0 from the exterior of the lenses �

(±)
j . From within the behavior is slightly

changed due to the effect of S(±)
L j

, compare (4.19)
• For z → ∞, we have S(z) → I

As ω j, j+1(z) < 0 for z ∈ R\[a − δ, b + δ] with any fixed δ > 0 and S(±)
L j

(z) → I
as n → ∞ exponentially fast away from the real line, we are naturally lead to the
construction of the following model functions.

4.1.3. Outer parametrix. Weconsider the following auxiliaryRHP.FindM : C\[a, b] →
C
4×4 such that

• M(z) is analytic for z ∈ C\[a, b]
• We have jumps

M+(z) = M−(z)
⊕
j=1,3

[
0 za j

−z−a j 0

]
, z ∈ (0, b), (4.20)

M+(z) = M−(z)

(
1⊕

[
0 (−z)a2

−(−z)−a2 0

]
⊕ 1

)
, z ∈ (a, 0) (4.21)

• As z → ∞,

M(z) = I + O
(
z−1

)
(4.22)

Jump conditions in the form of (4.20), (4.21) have appeared in the literature before, we
shall use ideas similar to [26] in the proof of the following Proposition.

Proposition 4.8. Put

M(z) =
[
Mj

(
T
−1 (z, yk(z))

)]4
j,k=1

where T = T(t) denotes the map T : CP1 → X introduced in (4.6) and

Mj (t) = m j

∏4
k=1,k �= j (t − tk)

(t3(t − t∗2 )(t − t∗3 )(t − t∗4 ))
1
2

D(t),
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with

m1 = 35

3

i√
67

(D(t1)
)−1

, m2 = −40

3

√
2

67

(D(t2)
)−1

, m3 = −56

3

√
2

67
i
(D(t3)

)−1
,

m4 = 70

3

1√
67

(D(t4)
)−1

.

Here {t j }4j=1 = {t1 = 1, t2 = 8
7 , t3 = 8

5 , t4 = 2} and the square root function

(
∏4

j=2 t (t−t∗j ))
1
2 is defined and analytic for t ∈ C\∪3

1C−
j such that (

∏4
j=2 t (t−t∗j ))

1
2 ∼

t3 as t → +∞. Moreover the scalar Szegö function D(t) is given by

D(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

( t−t2
βt

)a1( t−t3
βt

)a12( t−t4
βt

)a13, t ∈ U
−1(X1)( βt

t−t1

)a1( t−t3
βt

)a2( t−t4
βt

)a23 , t ∈ U
−1(X2)( βt

t−t1

)a12( βt
t−t2

)a2( t−t4
βt

)a3 , t ∈ U
−1(X3)( βt

t−t1

)a13( βt
t−t2

)a23( βt
t−t3

)a3 , t ∈ U
−1(X4).

(4.23)

which involves the normalization factor β = 4
√
− 1

210 . Then, M(z) has jumps as in (4.20),
(4.21), and we have the behavior

M(z) = O
(
z−

3
8 z

A
4

)
, z → 0, M(z) = I + O

(
z−1

)
, z → ∞, (4.24)

where

A = diag [−(3a1 + 2a2 + a3), a1 − 2a2 − a3, a1 + 2a2 − a3, a1 + 2a2 + 3a3]

= [
A jδ jk

]4
j,k=1. (4.25)

Proof. The stated jump conditions (4.20) and (4.21) imply for the first row entries of
M(z), ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
M11+(z) = −z−a1M12−(z), z ∈ (0, b)
M12+(z) = za1M11−(z), z ∈ (0, b)
M13+(z) = −z−a3M14−(z), z ∈ (0, b)
M14+(z) = za3M13−(z), z ∈ (0, b)⎧⎪⎪⎪⎨

⎪⎪⎪⎩
M11+(z) = M11−(z), z ∈ (a, 0)
M12+(z) = −(−z)−a2M13−(z), z ∈ (a, 0)
M13+(z) = (−z)a2M12−(z), z ∈ (a, 0)
M14+(z) = M14−(z), z ∈ (a, 0)

We lift the problem to the Riemann surface X and treat M11(z) = M11(z, y1(z)) as
defined on the first sheet X1, similarly M12 on X2, M13 on X3 and M14 on X4. Using
the uniformization map T−1 : X → CP

1, define

M1(t) =

⎧⎪⎪⎨
⎪⎪⎩

M11(z(t), y(t)), t ∈ T
−1(X1)

M12(z(t), y(t)), t ∈ T
−1(X2)

M13(z(t), y(t)), t ∈ T
−1(X3)

M14(z(t), y(t)), t ∈ T
−1(X4).

(4.26)
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With this the jumps for M1 j , j = 1, 2, 3, 4 are translated into the t-plane (compare
Fig. 3) as follows

M1+(t) = ±z±a1M1−(t), t ∈ C±
1 ; M1+(t) = ±(−z)±a2M1−(t), t ∈ C±

2 ;
M1+(t) = ±z±a3M1−(t), t ∈ C±

3

where z = z(t) as in (4.6). We also enforce the normalization M11(z) → 1, M1�(z) →
0, � = 2, 3, 4 as z → ∞. In terms of t , this means that

M1(1) = 1, M1

(
8

7

)
= 0, M1

(
8

5

)
= 0, M1(2) = 0.

We will seek M1(t) in the form

M1(t) = c1
(t − 8

7 )(t − 8
5 )(t − 2)

(t3(t − t∗2 )(t − t∗3 )(t − t∗4 ))
1
2

D(t), t ∈ C\ ∪3
1 C−

j

with a cut along C−
1 ∪C−

2 ∪C−
3 . But this means that D(t) should be analytic inC\∪3

1 C−
j

with jumps

D+(t) = z±a1D−(t), t ∈ C±
1 ; D+(t) = (−z)±a2D−(t), t ∈ C±

2 ;
D+(t) = z±a3D−(t), t ∈ C±

3

where z = z(t). By straightforward computation, we check that D(t) as given in (4.23)
indeed satisfies the latter jumps and in order to ensure the correct normalization for
M1(t) we must have

1 = c1

(
− 3

35

)√−67D(1) ⇔ c1 = 35

3

i√
67

(D(1)
)−1

.

To get back from (4.26) to M11(z), M12(z), M13(z) and M14(z) we use

M1�(z) = M1
(
T
−1(z, y�(z))

)
, � = 1, 2, 3, 4.

The strategy for the remaining second, third and fourth row is identical to the previous,
we obtain jumps for M2(t), M3(t) and M4(t) as before, but we enforce slightly different
normalizations, namely Mj (tk) = δ jk . The remaining behavior at the origin follows

from the observation that Mj (t)(D(t))−1 = O(t− 3
2 ) as t → 0 and this combined with

(4.6) gives (4.24). ��
Remark 4.9. A somewhat more detailed representation for M(z) near z = 0 than (4.24)
is given by the following identity

M(z) = M̂(z)z−
1
8λ4U (z)z

A
4 , |z| < r, z /∈ R (4.27)

where we choose principal branches for fractional exponents. Then, M̂(z) is analytic at
z = 0 and we have

λ4=diag [3, 1,−1,−3] ; U (z)=
⎧⎨
⎩
U+

(
e−i π

4 A1σ3 ⊕ ei
π
4 A4σ3

)
, arg z∈(0, π)

U−
(
ei

π
4 A1σ3⊕e−i π

4 A4σ3
)
, arg z∈(−π, 0)

(4.28)
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with

U+ =

⎡
⎢⎢⎣
−ω−3 ω3 −ω−1 ω

ω−1 −ω ω− 1
3 −ω

1
3

−ω ω−1 −ω
1
3 ω− 1

3

ω3 −ω−3 ω −ω−1

⎤
⎥⎥⎦ , ω = ei

3π
8 ,

U− = U+

⎡
⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎤
⎥⎦ . (4.29)

4.1.4. Local RHP at the origin z = 0. Near the origin we are looking for 4× 4 matrix
valued function Q(z) defined inside the disk D(0, r) = {z ∈ C : |z| < r} with
0 < r < 4

3 sufficiently small such that

• Q(z) is analytic for z ∈ D(0, r)\((−r, r) ∪ γ±
j )

• It satisfies the boundary relations (see Fig. 5 for the orientations; all roots are prin-
cipal)

Q+(z) = Q−(z)
⊕
j=1,3

[
1 0

z−a j enϕ j (z) 1

]
, z ∈ γ±

1 ;

Q+(z) = Q−(z)
⊕
j=1,3

[
0 za j

−z−a j 0

]
, z ∈ (0, r);

Q+(z) = Q−(z)

(
1⊕

[
1 0

z−a2e∓iπa2enϕ2(z) 1

]
⊕ 1

)
, z ∈ γ±

2 ;

Q+(z) = Q−(z)

(
1⊕

[
0 (−z)a2

−(−z)−a2 0

]
⊕ 1

)
, z ∈ (−r, 0)

• Near the origin it has the singular behaviour as in the RHP 4.7 for S(z)
• As n → ∞, we have uniformly for |z| = r ,

Q(z) = (
I + o(1)

)
M(z). (4.30)

Our first step consists inmodeling the jump behavior shown in Fig. 6 near the origin—we
construct a bare parametrix G(3)(ζ ).

This construction makes use of the Meijer G-function, cf. [31], which can be defined
through the Mellin-Barnes integral formula

G m,n
p,q

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣ ζ

)
= 1

2π i

∫
L

∏m
�=1 (b�+s)∏q−1

�=m (1−b�+1−s)

∏n
�=1 (1− a� − s)∏p−1

�=n (a�+1+s)
ζ−s ds

(4.31)

where a j , b j ∈ C, we have 0 ≤ m ≤ q, 0 ≤ n ≤ p and the integration contour L
is chosen in such a way that it separates the poles of the factors (b� + s) from those
of the factors (1 − a� − s). The general construction for G(p)(ζ ) with p ∈ Z≥2 is
accomplished in Sect. 4.2.1, Theorem 4.23. We avoid repeating the construction for
the special case p = 3, compare Theorem 4.23, and only list the relevant analytical
properties of G(3)(ζ ) at this point.
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1 0
ζ−a1 1 ⊕ 1 0

ζ−a3 1

1 ⊕ 0 (−ζ)a2

−(−ζ)−a2 0 ⊕ 1 0 ζa1

−ζ−a1 0 ⊕ 0 ζa3

−ζ−a3 0

1 ⊕ 1 0
ζ−a2e−iπa2 1 ⊕ 1

1 ⊕ 1 0
ζ−a2eiπa2 1 ⊕ 1

1 0
ζ−a1 1 ⊕ 1 0

ζ−a3 1

Fig. 6. A jump behavior near ζ = 0 which can be constructed explicitly using Meijer G-functions

Corollary 4.10. Let

G
(±)(ζ ) = [

(�ζ − a1,k−1)
j−1g(±)

k (ζ )
]4
j,k=1, ζ ∈ C\(−∞, 0]; �ζ = ζ

d

dζ

with

g(±)
m (ζ ) = cm

2π i

∫
L

∏m
�=1 (s + a�, j−1)∏p

�=m (1 + a j� − s)
e±iπsσm ζ−s ds, ζ ∈ C\(−∞, 0],

1 ≤ m ≤ 4.

Here, σm ≡ (m + 1) mod 2 and cm = 2(2π i)4−m(2π)− 3
2 . With

G(ζ ) =
{
G

(+)(ζ ), 0 < arg ζ < π

G
(−)(ζ ), −π < arg ζ < 0

, (4.32)

the bare parametrix

G(3)(ζ )=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(ζ ), arg ζ ∈(− 3π
4 ,−π

4 )∪( π
4 , 3π

4 )

G(ζ )

(
1⊕

[
1 0

ζ−a2eiπa2 1

]
⊕ 1

)
, arg ζ ∈ ( 3π4 , π)

G(ζ )

([
1 0

−ζ−a1 1

]
⊕

[
1 0

−ζ−a3 1

])
, arg ζ ∈ (0, π

4 )

G(ζ )

(
1⊕

[
1 0

−ζ−a2e−iπa2 1

]
⊕ 1

)
, arg ζ ∈ (−π,− 3π

4 )

G(ζ )

([
1 0

ζ−a1 1

]
⊕

[
1 0

ζ−a3 1

])
, arg ζ ∈ (−π

4 , 0)

(4.33)

has jumps on the six rays arg ζ = 0, π,±π
4 ,± 3π

4 as shown in Fig. 6. It has the same
singular behavior at ζ = 0 as the one stated in the RHP 4.7 (we are allowed to locally
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deform the lens boundaries γ±
j as to match the aforementioned six rays). Moreover, as

ζ → ∞ with ε > 0 fixed,

G(3)(ζ ) = ζ− 1
8λ4U (ζ )

(
I + O

(
ζ− 1

4

))
ζ

A
4

⎧⎨
⎩e−4ζ

1
4 �, ε ≤ arg ζ ≤ π − ε

e−4ζ
1
4 �̃, −π + ε ≤ arg ζ ≤ −ε

(4.34)

where λ4,U (ζ ) and A have appeared in (4.27) and

� = diag
[
ei

3π
4 , e−i 3π4 , ei

π
4 , e−i π

4

]
, �̃ = diag

[
e−i 3π4 , ei

3π
4 , e−i π

4 , ei
π
4

]
.

Remark 4.11. The functions g(±)
m (ζ ),m = 1, . . . , 4 involved in the latter construction

are all Meijer G-functions, in fact

g(±)
4 (ζ ) = 2

(2π)
3
2

G 4,0
0,4

( −−
0, a3, a23, a13

∣∣∣∣ e∓iπζ

)
,

g(±)
3 (ζ ) = 2i√

2π
G 3,0

0,4

( −−
0, a2, a12,−a3

∣∣∣∣ ζ

)
,

and

g(±)
2 (ζ ) = −2

√
2π G 2,0

0,4

( −−
0, a1,−a2,−a23

∣∣∣∣ e∓iπζ

)
,

g(±)
1 (ζ ) = −2i(2π)

3
2 G 1,0

0,4

( −−
0,−a1,−a12,−a13

∣∣∣∣ ζ

)
.

We now connect the ζ -plane to the z-plane. The effective potentials in Definition
(4.2) satisfy

ϕ1(z) = ϕ3(z) = 4b
1
4 e±i π

2

[
z
1
4 e1(z) −

√
3

16
z
3
4 e2(z)

]
, z ∈ γ±

1 ∩ D(0, r)

ϕ2(z) = 4
√
2 b

1
4 e±i π

2

[(
e±iπ z

) 1
4
e1(z) +

√
3

16

(
e±iπ z

) 3
4
e2(z)

]
, z ∈ γ±

2 ∩ D(0, r)

for 0 < r < 4
3 sufficiently small. We have chosen principal branches for z

1
4 and both

functions e1(z) and e2(z) are analytic at z = 0; in fact

e1(z) = 1− z

40b
+ O

(
z2

)
, e2(z) = 1 +

3

14

(
1

2b
− 1

)
z + O

(
z2

)
, z → 0.

The expansions for ϕ j (z) motivate the use of the locally conformal change of variables

ζ = ζ(z) = 16

27
n4z

(
e1(z)

)4
, −π < arg ζ ≤ π, z ∈ D(0, r)

⇔ ζ
1
4 (z) = 2n

3
3
4

z
1
4 e1(z), −π < arg z ≤ π
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as well as the definition of the origin parametrix

Q(z) = B0(z)G
(3)(ζ(z)

) (
2n

3
3
4

e1(z)

)−A
⎧⎨
⎩ e4�ζ

1
4 (z)+ n

2 3
− 1
4 z

3
4 e2(z)�̃, 0 < arg z<π,

e4�̃ζ
1
4 (z)+n2 3

− 1
4 z

3
4 e2(z)�, −π <arg z<0.

(4.35)

with G(3)(ζ ) as in Corollary 4.10. In (4.35) we have chosen

B0(z) = M(z)z−
A
4 U−1(ζ(z)

)(
ζ(z)

) 1
8λ4 , |z| < r

= M̂(z)z−
1
8λ4

(
ζ(z)

) 1
8λ4 , z → 0 (4.36)

to be analytic at the origin, compare (4.27).

Remark 4.12. In order to achieve a control over the matching condition (4.30) on the
boundary of the disk D(0, r) it will be necessary to re-define the multiplier B0(z) in
(4.36). This shall be accomplished in (4.55). See Proposition 4.17.

By the jump properties G(3)(ζ ), compare Corollary 4.10, the function Q(z) has the
following jumps near the origin (we match the jump contours in the S-RHP near the
origin with those in the definition of the bare parametrix by a local contour deformation)

Q+(z) = Q−(z)

([
1 0

z−a1enϕ1(z) 1

]
⊕

[
1 0

z−a3enϕ3(z) 1

])
, z ∈ γ±

1 ∩ D(0, r)

Q+(z) = Q−(z)

([
0 za1

−z−a1 0

]
⊕

[
0 za3

−z−a3 0

])
, z ∈ (0, r)

Q+(z) = Q−(z)

(
1⊕

[
1 0

z−a2e∓iπa2enϕ2(z) 1

]
⊕ 1

)
, z ∈ γ±

2 ∩ D(0, r)

Q+(z) = Q−(z)

(
1⊕

[
0 (−ζ )a2

−(−ζ )−a2 0

]
⊕ 1

)
, z ∈ (−r, 0).

This matches exactly the jumps of S(z) in the RHP 4.7 near the origin. Also, as another
consequence of Theorem 4.23, Q(z) and S(z) have the same singular behavior at the
origin. Thus, by construction, the function Q(z) is related with the exact solution S(z)
of the RHP 4.7 by a left analytic multiplier N (z),

S(z) = N (z)Q(z), |z| < r. (4.37)

Let us now turn towards the matching between the local model functions Q(z) and
M(z). From (4.34), as n → ∞ (hence |ζ | → ∞) for 0 < |z| < r with r sufficiently
small,

Q(z)
(
M(z)

)−1 ∼ M̂(z)z−
1
8λ4

[
I +

∞∑
j=1

K j ζ
− j

4

]
H(z)z

1
8λ4

(
M̂(z)

)−1 (4.38)

where we introduced the function H(z), z ∈ C\R given by

H(z)U (z) = U (z)

⎧⎨
⎩e

n
2 3

− 1
4 z

3
4 e2(z)�̃, 0 < arg z < π

e
n
2 3

− 1
4 z

3
4 e2(z)�, −π < arg z < 0

(4.39)
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withU (z) as in (4.27) and the 4×4 matrix valued coefficients K j depend polynomial on
{ak}3k=1 but are independent of ζ and z. We could, in principle, compute all coefficients
K j explicitly, however our analysis requires only a certain structural information which
is stated after the next Proposition.

Proposition 4.13. Let zγ be defined for −π < arg z ≤ π such that zγ > 0 for z > 0.

Then z− 1
8λ4H(z)z

1
8λ4 is an entire function with

z−
1
8λ4H(z)z

1
8λ4 = I + hn(0)E14 − z

2
h2n(0)(E13 + E24)

− z3

120
h5n(0)E14 + En(z), z → 0, (4.40)

where ∣∣En(z)∣∣ ≤ cn3|z|2, c > 0, |z| < r; hn(z) = n

2
3−

1
4 e2(z).

Proof. Notice that z− 1
8λ4H(z)z

1
8λ4 has no jump on the real line, since

U+�̃k(U+)−1 = U−�k(U−)−1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
E14 − E21 − E32 − E43, k = 1
−E13 − E24 + E31 + E42, k = 2
E12 + E23 + E34 − E41, k = 3
−I, k = 4,

(4.41)

where E jk are again matrix units, i.e. E jk = [δ j�δ�k]4�=1, and also

e−i π
4 λ4U+�̂k(U+)−1

ei
π
4 λ4 = U−�k(U−)−1

, �̂ = diag
[
ei

3π
4 , e−i π

4 , e−i 3π4 , e−i π
4

]
.

This means z− 1
8λ4H(z)z

1
8λ4 could only have an isolated singularity at the origin z = 0,

but with the help of (4.41) we can compute its expansion at z = 0, in fact

z−
1
8λ4H(z)z

1
8λ4 =

∞∑
m=0

Am(−z)m (4.42)

with coefficients

Am =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h4m (z)
(4m)! I +

h4m+1(z)
(4m+1)! E14 + Bm(z), m ≡ 0 mod 3

h4m+1(z)
(4m+1)! (−E21 − E32 − E43) +

h4m+2(z)
(4m+2)! (−E13 − E24), m ≡ 1 mod 3

h4m+2(z)
(4m+2)! (E31 + E42) +

h4m+3(z)
(4m+3)! (E12 + E23 + E34), m ≡ 2 mod 3,

(4.43)

where

h(z) = hn(z) = n

2
3−

1
4 e2(z), Bm(z) =

{
0, m = 0
h4m−1(z)
(4m−1)! E41, m ≡ 0 mod 3, m ≥ 3.

Thus z− 1
8λ4H(z)z

1
8λ4 is analytic at z = 0 and we obtain the first terms written

in (4.40). ��
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Remark 4.14. Subsequently wewill make use of the following structure of the error term
En(z),1

En(z) = z2

6
h3n(0)(E12 + E23 + E34) +

{
zh′

n(0)E14 − zhn(0)(E21 + E32 + E43)
}

+O
(
r4n6

)
(E13 + E24) + O

(
r3n4

)
, 0 ≤ |z| < r.

Proposition 4.15. The matrix coefficients {K j }∞j=1 appearing in the asymptotic expan-
sion (4.38) display the following structure,

K j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

0 0 0 ∗
∗ 0 0 0

0 ∗ 0 0

0 0 ∗ 0

⎤
⎥⎥⎦ , j≡1 mod 4

⎡
⎢⎢⎣

0 0 ∗ 0

0 0 0 ∗
∗ 0 0 0

0 ∗ 0 0

⎤
⎥⎥⎦ , j ≡ 2 mod 4

and K j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

0 ∗ 0 0

0 0 ∗ 0

0 0 0 ∗
∗ 0 0 0

⎤
⎥⎥⎦ , j≡3 mod 4

⎡
⎢⎢⎣

∗ 0 0 0

0 ∗ 0 0

0 0 ∗ 0

0 0 0 ∗

⎤
⎥⎥⎦ , j≡4 mod 4

(4.44)

Proof. The line of argument is almost identical to the last Proposition. Notice that
Q(z)

(
M(z)

)−1 has no jump onR\{0}. Hence the coefficients in the asymptotic equality

(4.38) have to be meromorphic in z. As we have just seen, z− 1
8λ4H(z)z

1
8λ4 is an entire

function, thus the coefficients in the formal series

z−
1
8λ4

[
I +

∞∑
j=1

K jζ
− j

4

]
z
1
8λ4

can contain only integer powers of z. Since ζ− 1
4 = 3

3
4 (2ne1(z))−1z− 1

4 where e1(z)

is analytic, we obtain (4.44) by simply conjugating the formal series by z− 1
8λ4 and

collecting integer powers. ��
Our goal is to achieve a matching relation between the model functions Q(z) and

M(z) as n → ∞, valid on a disk boundary ∂D(0, r), compare (4.30). As can be seen
from (4.38) and (4.39) the presence of the function H(z) forces us to work with a
contracting radius r = rn

rn = n−2+ε, 0 < ε <
1

7
fixed. (4.45)

Shrinking the radius in thiswaywe obtain from (4.13), as n → ∞ uniformly for |z| = rn ,

z−
1
8λ4H(z)z

1
8λ4 = I + O(n)E14 + O (

nε
)
(E13 + E24) + O

(
n−1+3ε

)
E14 + En(z),

(4.46)

1 If an error estimate O is not multiplied by a matrix from the right, we interpret the error estimate entry
wise on the full 4× 4 matrix.
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with |En(z)| ≤ c n−1+2ε, c > 0. This estimate contains terms which are unbounded in n,
but which are all analytic functions in the spectral variable z. Now following Proposition
4.15, we find the bound

z−
1
8λ4

[
I +

∞∑
j=1

K j ζ
− j

4

]
z
1
8λ4 = I + k141 E14

α

nz
+ (k132 E13 + k242 E24)

α2

n2z

+(k211 E21+k
32
1 E32+k

43
1 E43−k141 E14β)

α

n
+(k123 E12+k

23
3 E23+k

34
3 E34)

α3

n3z
+ Ên(z),

valid as n → ∞ for z ∈ ∂D(0, rn)with |Ên(z)| ≤ cn−1−2ε, c > 0.We used the notation
K j =

[
km�
j

]4
m,�=1 and

α = 3
3
4

2e1(0)
, β = e′1(0)

e1(0)
. (4.47)

Remark 4.16. Also here, we require more detail on the structure of the error term Ên(z),
as n → ∞ uniformly for z ∈ ∂D(0, rn),

Ên(z)=k145 E14
α5

n5z2
+
{
(k312 E31 + k422 E42) − 2(k132 E13 + k242 E24)β

}α2

n2
+ O

(
n−2−ε

)
(4.48)

Let us summarize, as n → ∞ uniformly for z ∈ ∂D(0, rn),

z−
1
8λ4H(z)z

1
8λ4 = I + O(n) + O (

nε
)
+ O

(
n−1+3ε

)
,

z−
1
8λ4

[
I +

∞∑
j=1

K jζ
− j

4

]
z
1
8λ4 = I + O

(
n1−ε

)
+ O (

n−ε
)
+ O

(
n−1

)
+ O

(
n−1−ε

)
.

We fix r = rn as in (4.46) and first eliminate the unbounded terms in z− 1
8λ4H(z)z

1
8λ4 by

successively redefining the left analytic multiplier B0(z). This shall be accomplished in
the three steps detailed below.

Changing B0(z)-step one. Recall (4.40) and move from B0(z) as in (4.36) to B0,1(z)
given by

B0,1(z) = M̂(z)

(
I − hn(0)E14 +

z

2
h2n(0)(E13 + E24) +

z3

120
h5n(0)E14

)

×(
M̂(z)

)−1
B0(z). (4.49)

The parametrix Q(z) defined as in (4.35) but with B0,1(z) instead of B0(z) still has the
same analytical properties near z = 0, however the matching (4.38) is replaced by

Q(z)
(
M(z)

)−1= M̂(z)
[
I +k141 E14

α

nz
+zh2n(0)E13+

(
k211 E24−k431 E13−k141 E13

)α

n
hn(0)

−zhn(0)E21 + Ẽn(z)
](
M̂(z)

)−1
, n → ∞, z ∈ ∂D(0, rn) (4.50)
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where the error term Ẽn(z) has the following structure

Ẽn(z) = O
(
n−1+3ε

) [
0 0 0 ∗
0 0 0 0
0 0 0 0
0 0 0 0

]
+ O

(
n−1+2ε

) [
0 ∗ 0 ∗
0 0 ∗ 0
0 0 0 ∗
0 0 0 0

]

+O
(
n−1+ε

) [
0 ∗ 0 ∗
0 0 ∗ 0
0 ∗ 0 ∗
0 0 ∗ 0

]
+ O

(
n−1

) [
0 ∗ 0 ∗∗ 0 ∗ 0
0 ∗ 0 ∗
0 0 ∗ 0

]
+ O

(
n−1−ε

)
.

This information is derived by directly applying Proposition 4.13 and recalling Remarks
4.14 and 4.16, in principle we could compute Ẽn(z) explicitly. Still, estimation (4.50) is
not of the form (4.30) since, as n → ∞ uniformly for z ∈ ∂D(0, rn),

k141 E14
α

nz
+ zh2n(0)E13 +

(
k211 E24 − k431 E13 − k141 E13

)α

n
hn(0)

= O
(
n1−ε

)
+ O (

nε
)
+ O(1). (4.51)

We now “peel off” the analytic terms in the latter expression by redefining the multiplier
for a second time.

Changing B0(z)-step two. Replace B0,1(z) by

B0,2(z) = M̂(z)
(
I−zh2n(0)E13−(k211 E24−k431 E13−k141 E13)

α

n
hn(0) + zhn(0)E21

)
×(

M̂(z)
)−1

B0,1(z). (4.52)

Again, the analytical properties of the parametrix Q(z) with B0,2(z) instead of B0(z)
remain unchanged, only the matching relation now reads as

Q(z)
(
M(z)

)−1 = M̂(z)
[
I + k141 E14

α

nz
+ k141 E24hn(0)

α

n
+ Ėn(z)

](
M̂(z)

)−1
,

(4.53)

and the error term Ėn(z) has to leading order the same structure as Ẽn(z), i.e.

Ėn(z) = O
(
n−1+3ε

) [
0 0 0 ∗
0 0 0 0
0 0 0 0
0 0 0 0

]
+ O

(
n−1+2ε

) [
0 ∗ 0 ∗
0 0 ∗ 0
0 0 0 ∗
0 0 0 0

]

+O
(
n−1+ε

) [
0 ∗ 0 ∗
0 0 ∗ 0
0 ∗ 0 ∗
0 0 ∗ 0

]
+ O

(
n−1

)
(4.54)

as n → ∞, uniformly for z ∈ ∂D(0, rn). The leading growth in (4.53) originates from
the term k141

α
nz = O(n1−ε) which is not analytic in the disk D(0, rn), hence we cannot

absorb it by another change of the analytic multiplier B0(z) – we can only remove the
constant term k141 hn(0)α

n in this way.

Changing B0(z)-step three. In this final step, we replace B0,2(z) by

B0,3(z) = M̂(z)
(
I − k141 E24hn(0)

α

n

) (
M̂(z)

)−1
B0,2(z), (4.55)

and summarize our estimations in the following Proposition.
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Proposition 4.17. Let rn = n−2+ε with 0 < ε < 1
7 fixed. The origin parametrix

Q(z), z ∈ D(0, r) is given by (4.35) with B0(z) replaced by B0,3(z) as in (4.49), (4.52)
and (4.55). Moreover, as n → ∞, we have an asymptotic matching relation between
the model functions Q(z) and M(z) of the form

Q(z)
(
M(z)

)−1 = M̂(0)

[
I + k141 E14

α

nz
+ Ėn(z)

] (
M̂(0)

)−1
, (4.56)

uniformly for z ∈ ∂D(0, rn) where Ėn(z) is estimated in (4.54).

The last Proposition completes the construction of the origin parametrix. We now
briefly discuss

4.1.5. Parametrices near z = a and z = b. Two remaining parametrices need to be
constructed inside the disks

D(a, r) = {
z ∈ C : |z − a| < r

}
, D(b, r) = {

z ∈ C : |z − b| < r
}

with r > 0 sufficiently small and fixed. As for z ∈ D(b, r) ∩ (b,∞),

ω12(z) = ω34(z) = −C(z − b)
3
2 (1 + O(z − b)) , C > 0

with similar expansions for z ∈ γ±
1 ∩ D(b, r) as well as on the jump contours near

z = a, the relevant model functions are constructed with the help of Airy functions.
These constructions are well known in the literature, see [15] for the standard Airy
parametrices in the 2 × 2 context.2 We skip the details as they are not relevant for our
purposes and only list the matching relations between the endpoint parametrices Pj (z)
and the outer parametrix M(z),

Pj (z) =
(
I + O

(
n−1

))
M(z), n → ∞, (4.57)

uniformly for z ∈ ∂D(a, r) ∪ ∂D(b, r).

4.1.6. Ratio problem and final transformation. We introduce

R(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
S(z)

(
P1(z)

)−1
, |z − a| < r

S(z)
(
P2(z)

)−1
, |z − b| < r

S(z)
(
Q(z)

)−1
, |z| < rn

S(z)
(
M(z)

)−1
, |z| > rn, |z − a| > r, |z − b| > r

(4.58)

where Q(z) is in (4.35) (with B0(z) replaced by B0,3(z) as in (4.55)), P1,2(z) as in (4.57)
and M(z) in Proposition 4.8. The radius 0 < r < 2

3 remains fixed and rn = n−2+ε with
0 < ε < 1

7 . This transformation leads to a ratio-RHP for R(z) on a contour �R which
is depicted in Figure 7 below.

Riemann-Hilbert Problem 4.18. Determine the 4×4 piecewise analytic function R(z)
such that

2 The Airy parametrices of [15] were embedded in [9] into the 3 × 3 situation of the Cauchy two matrix
model, here we would simply embed them into the given 4× 4 context.
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γ̂−
1

γ̂+
1

C0
γ̂+
2

γ̂−
2

C2C1

Fig. 7. Jump contour �R in the ratio problem for R(z)

• R(z) is analytic for z ∈ C\�R with �R = (−∞, a − r) ∪ (b + r,∞) ∪ C0 ∪ C1 ∪
C2 ∪ ⋃2

j=1 γ̂±
j

• The jumps on �R are as follows

R+(z) = R−(z)M(z)S(±)
L j

(z)
(
M(z)

)−1
, y ∈ γ̂±

j , j = 1, 2

R+(z) = R−(z)M(z)

⎛
⎝ ⊕

j=1,3

[
1 za j enω j, j+1(z)

0 1

]⎞
⎠ (

M(z)
)−1

, z > b + r

R+(z) = R−(z)M(z)

(
1⊕

[
1 (−z)a2enω23(z)

0 1

]
⊕ 1

) (
M(z)

)−1
, z < a − r

R+(z) = R−(z)Q(z)
(
M(z)

)−1
, z ∈ C0

R+(z) = R−(z)Pj (z)
(
M(z)

)−1
, z ∈ C j , j = 1, 2

• We emphasize that R(z) is analytic at z = 0, this follows from (4.37) and definition
(4.58)

• As z → ∞, we have R(z) → I .

In order to proceed, we estimate the behavior of the latter jumps GR(z, n) as n → ∞
and z ∈ �R : on the contours of �R which extend to infinity, this is done by recalling
Proposition 4.1. Since 0 < r1 < 2

3 remains fixed, we have there

‖GR(·, n) − I‖L2∩L∞(b+r,∞) ≤ d1e
−d2n,

‖GR(·, n) − I‖L2∩L∞(−∞,a−r) ≤ d3e
−d4n, d j > 0. (4.59)

Next for the parts γ̂±
j which are part of the original lens boundaries: we notice that

sup
z∈γ±

j

∣∣GR(z, n) − I
∣∣ = sup

z∈C0∩γ±
j

∣∣GR(z, n) − I
∣∣

and

‖S(±)
L1

(z, n) − I‖ ≤ d5|z|−max{a1,a3}en	ϕ1(z), z ∈ γ̂±
1 ;

‖S(±)
L2

(z, n) − I‖ ≤ d6|z|−a2en	ϕ2(z), z ∈ γ̂±
2 .

Thus with (4.25),

‖GR(·, n) − I‖L2∩L∞(γ±
1 ) ≤ d7n

3
2 (1− ε

2 )e−d8n
1
2 +

ε
4
,

‖GR(·, n) − I‖L2∩L∞(γ±
2 ) ≤ d9n

3
2 (1− ε

2 )e−d10n
1
2 +

ε
4
, (4.60)
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which ensures that, even with a shrinking disk C0, the lens boundary contributions are
exponentially close to the identitymatrix in the limit n → ∞. On the circlesC j , j = 1, 2
we obtain a power like decay from (4.57),

‖GR(·, n) − I‖L2∩L∞(C j )
≤ d11

n
, n → ∞, j = 1, 2. (4.61)

As for the corresponding estimation onC0, we have already seen in (4.56), thatGR(z, n)

= Q(z)
(
M(z)

)−1
, z ∈ C0 is not uniformly close to the identity matrix. We resolve this

issue with another transformation: note that (with M̂(z) as defined in (4.27))

F(z, n)=
[
M̂(0)

(
I + k141 E14

α

nz

) (
M̂(0)

)−1
]−1

= M̂(0)

(
I − k141 E14

α

nz

) (
M̂(0)

)−1

exists and

F(z, n) = I + O
(
z−1

)
, z → ∞.

We define

X (z) =
{
R(z), |z| ≤ rn
R(z)F(z, n), |z| > rn,

with rn = n−2+ε, 0 < ε <
1

7
fixed

(4.62)

and obtain a RHP for X (z) which is posed on the same contour �R as shown in Fig. 7

Riemann-Hilbert Problem 4.19. Determine the 4×4 piecewise analytic function X (z)
such that

• X (z) is analytic for z ∈ C\�R
• The jumps equal

X+(z) = X−(z)GR(z)F(z, n), z ∈ C0

X+(z) = X−(z)
(
F(z, n)

)−1
GR(z)F(z, n), z ∈ �R\C0

• X (z) is analytic at the origin
• As z → ∞,

X (z) = I + O
(
z−1

)
, z → ∞.

Since for n → ∞,(
F(z, n)

)±1 = I + O
(
n−1

)
, z ∈ C j , j = 1, 2;(

F(z, n)
)±1 = I + O

(
n1−ε

)
, z ∈ C0,

we obtain

‖GX (·, n) − I‖L2∩L∞(γ̂±
j ) ≤ d12n

5
2 (1− 7

10 ε)e−d13n
1
2 +

ε
4
, j = 1, 2 (4.63)

as well as estimations on C j , j = 1, 2 and (−∞, a− r)∪ (b+ r,∞) which are identical
to (4.61) and (4.59). For the relevant estimation on C0, we recall (4.56) and in particular
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(4.54). The latter expansion shows that right multiplication of Ėn(z) with E14 does not
affect the terms in (4.54) up to O (

n−1
)
. But this means that we have the following

estimation

‖GX (·, n) − I‖L2∩L∞(C0)
≤ d14

nε
, n ≥ n0, (4.64)

which, combined with (4.59), (4.61) and (4.63), guarantees the unique solvability of the
X -RHP (cf. [16]) for sufficiently large n.

4.1.7. Iterative solution of the X-RHP. The X -RHP is equivalent to solving the singular
integral equation

X−(z) = I +
1

2π i

∫
�R

X−(λ)
(
GX (λ) − I

) dλ

λ − z
, z ∈ �R . (4.65)

As we have seen in the latter subsection, there exists n0 > 0 such that

‖GX (·, n) − I‖L2∩L∞(�R) ≤
c

nε
, ∀ n ≥ n0, 0 < ε <

1

7
fixed

and therefore (4.65) can be solved uniquely in L2(�R) via iteration. The solution satisfies

‖X−(·, n) − I‖ ≤ c

nε
, n ≥ n0

and we have

X (z) = O
(

n−ε

1 + |z|
)

, n ≥ n0, z ∈ C\�R . (4.66)

The latter estimation completes the asymptotical analysis of the initial RHP 2.3 for
p = 3 and the choice (2.29).

4.2. Proof of conjecture 2.10 for the Cauchy-Laguerre three matrix model. Following
our general discussion in Sect. 2, we need to analyze nine correlation kernels, compare
(2.15) and (2.22). We scale x and y as

x = 27

16

ξ

n4
, y = 27

16

η

n4
, ξ, η > 0, (4.67)

and are now interested in the n → ∞ behavior of K j�(x, y) given in (2.17), Theorem
2.8. We need to unravel the sequence of transformations

(z; n = N ) �→ Y (z) �→ S(z) �→ R(z) �→ X (z)

to solve the initial -RHP. Through the first transformation (4.2),

K j�(x, y) = (−1)�−1

(−2π i) j−�+1 e
− 1

2Uj (x)− 1
2U�(y)e

n
4 (lj+1−l�)en(g(�)

+ (y(−1)�−1)−g
( j+1)
+ (x(−1) j+1))

×
[
Y−1
+ (w)Y+(z)

w − z

]
j+1,�

∣∣∣∣
w=x(−1) j+1, z=y(−1)�−1

= (−1)�−1

(−2π i) j−�+1 x
1
2 a j y

1
2 a� exp

[
n

∫ w

0
y j+1,+(λ)dλ − n

∫ z

0
y�,+(λ)dλ

]
.

×
[
Y−1
+ (w)Y+(z)

w − z

]
j+1,�

∣∣∣∣
w=x(−1) j+1, z=y(−1)�−1

(4.68)
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To obtain (4.68), one uses the explicit expressions for the g(k)(z) functions. With the
help of the transformation sequence Y (z) �→ S(z) �→ R(z) �→ X (z), we have for z ∈ R

with |z| = O(n−4),

Y+(z) = X (z)B0,3(z)G
(+)(ζ(z))

(
2n

3
3
4

e1(z)

)−A

×

⎧⎪⎪⎨
⎪⎪⎩
exp

[
4ζ

1
4
+ (z)� + n

2 3
− 1

4 z
3
4
+ e2(z)�̃

]
, z > 0

exp

[
4ζ

1
4
+ (z)�̃ + n

2 3
− 1

4 z
3
4
+ e2(z)�

]
, z < 0

(4.69)

as the effect of the opening of lenses transformation Y (z) �→ S(z) is compensated in the
definition of the origin parametrix Q(z), more precisely through (4.33), the conjugation
with (· · · )−A and the piecewise defined exponential factors in the last equality. Also,
we chose to approach z ∈ R from the (+) side, as this choice was immaterial, compare
Theorem 2.8. Thus for |z|, |w| = O(n−4),

[
Y−1
+ (w)Y+(z)

]
j+1,�

=
(
2n

3
3
4

e1(w)

)A j+1
(
2n

3
3
4

e1(z)

)−A�

×

⎧⎪⎨
⎪⎩
e−4ζ

1
4
+ (w)� j+1− n

2 3
− 1
4 w

3
4
+ e2(w)�̃ j+1, w > 0

e−4ζ
1
4
+ (w)�̃ j+1− n

2 3
− 1
4 w

3
4
+ e2(w)� j+1, w < 0

×

⎧⎪⎨
⎪⎩
e4ζ

1
4
+ (z)��+

n
2 3

− 1
4 z

3
4
+ e2(z)�̃� , z > 0

e4ζ
1
4
+ (z)�̃�+

n
2 3

− 1
4 z

3
4
+ e2(z)��, z < 0

×
[(
G

(+)(ζ(w))
)−1

B−1
0,3(w)X−1(w)X (z)B0,3(z)G

(+)(ζ(z))
]
j+1,�

(4.70)

where we use the notation � = [� jδ jk]4j,k=1 and similarly �̃ = [�̃ jδ jk]4j,k=1. Now we

check that for w > 0 and w = O(n−4),

∫ w

0
y1+(λ) dλ = − 8

3
3
4

e−i π
4 w

1
4 e1(w) − 3− 1

4

2
ei

π
4 w

3
4 e2(w)

∫ w

0
y2+(λ) dλ = − 8

3
3
4

ei
π
4 w

1
4 e1(w) − 3− 1

4

2
e−i π

4 w
3
4 e2(w)

as well as for w < 0 and w = O(n−4),

∫ w

0
y1+(λ) dλ = − 8

3
3
4

|w| 14 e1(w) +
3− 1

4

2
|w| 34 e2(w)

∫ w

0
y2+(λ) dλ = 8

3
3
4

ei
π
2 |w| 14 e1(w) +

3− 1
4

2
ei

π
2 |w| 34 e2(w).
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Combining the latter in (4.70) with (4.68),

K j�(x, y) = (−1)�−1

(−2π i) j−�+1 x
1
2 a j y

1
2 a�

(
2n

3
3
4

e1(w)

)A j+1
(
2n

3
3
4

e1(z)

)−A� 1

x(−1) j+1 − y(−1)�−1

×
[(
G

(+)(ζ(w))
)−1

B−1
0,3(w)X−1(w)X (z)B0,3(z)G

(+)(ζ(z))
]
j+1,�

∣∣∣∣
w=x(−1) j+1, z=y(−1)�−1

(4.71)

valid for x, y = O(n−4). For the remaining matrix use (4.66) and recall the definitions
of the analytic multipliers B0,k(z), thus for w = x(−1) j+1 and z = y(−1)�−1

(
G

(+)(ζ(w))
)−1

B−1
0,3(w)X−1(w)X (z)B0,3(z)G

(+)(ζ(z))

= (
G

(+)(ξ(−1) j+1)
)−1

G
(+)(η(−1)�−1) + O

(
ξ(−1) j+1 − η(−1)�−1

nε+ 5
4

)
.

It is important to observe that in the last equality the choice of the limiting values (±)

would lead to different results as we are not choosing specific entries of the matrix
product (G(±)(w))−1

G
(±)(z). This is however irrelevant for our purposes since (4.71)

selects concrete entries.
Notice now that all explicit n dependent terms in the right hand side of (4.71) are

taken to the exponent

κ j� = −1

2
(p + 1)(a j + a�) + A j+1 − A�, 1 ≤ j, � ≤ p, (4.72)

in (4.71) with the special choice p = 3. In order to complete the proof of Theorem 2.12
for this special choice as well as to state the general conjecture 2.10, we require the
following Lemma

Lemma 4.20. Let {A j }p+1j=1 be solutions of the linear system A j+1 − A j = (p + 1)a j

which add up to zero. Then

κ = [
κ j�

]p
j,�=1 : κ j� = −1

2
(p + 1)(a j + a�) + A j+1 − A� , 1 ≤ �, j ≤ p

(4.73)

is a skew-symmetric p × p matrix and

κ j� = � j − ��, with � j = (p + 1)
(
a1 j − a j

2

)
. (4.74)

Proof. If j = � it is immediately seen that κ j j = 0. Assume now � < j , then

κ j� = − p + 1

2
(a j + a�) + A j+1 − A� = − p + 1

2
(a j + a�) + (p + 1)

j∑
k=�

ak

= (p + 1)
j−1∑
k=�

ak +
1

2
(p + 1)(a j − a�) = (p + 1)

(
a1 j − a j

2

)
− (p + 1)

(
a1� − a�

2

)
= � j − ��.
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κ�j = − p + 1

2
(a� + a j ) − (A j − A�+1) = − p + 1

2
(a� + a j ) − (p + 1)

j−1∑
k=�+1

ak

= −(p + 1)
j−1∑
k=�

ak − 1

2
(p + 1)(a j − a�) = −κ j�

which implies the stated skew-symmetry. ��
Up to this point we have thus proven

Theorem 4.21. For any 1 ≤ j, � ≤ p, p = 3 with c0 = 27
16 ,

lim
n→∞

c0
n p+1 n

η�−η jK j�

( c0
n p+1 ξ,

c0
n p+1 η

)

= (−1)�−1c
1
p+1 (��−� j )

0

(−2π i) j−�+1 ξ
1
2 a j η

1
2 a�

[
G

−1(w)G(z)

w − z

]
j+1,�

∣∣∣∣
w=ξ(−1) j+1

z=η(−1)�−1

(4.75)

where the choice of limiting values (±) in the matrix entries upon evaluation at w =
ξ(−1) j+1 and z = η(−1)�−1 is immaterial and the stated convergence is uniform for
ξ, η chosen from compact subsets of the half line (0,∞) ⊂ R.

Proof. We only need to address the independence of choice of the limiting values and
here our argument already appeared (implicitly) in the computations which lead to
Theorem 2.8. Also the same logic applies to the general p ∈ Z≥2 bare parametrixG(ζ )

which is constructed in the next section. Note that (compare Theorem 4.23 below, in
particular (4.84), or also (4.32))

G+(ζ ) = G−(ζ )

(
1⊕

[
1 (−ζ )a2

0 1

]
⊕ 1

)
, ζ < 0

G+(ζ ) = G−(ζ )

([
1 ζ a1

0 1

]
⊕

[
1 ζ a3

0 1

])
, ζ > 0

which shows the same (block) jump structure as the original -RHP. Qualitatively it
tells us that the first column of G(ζ ) is an entire function and subsequently all even
numbered columns are analytic in C\[0,∞) while all odd numbered ones are analytic
in C\(−∞, 0]. For (G(ζ ))−1 the situation is reversed, there the last row is entire and
subsequently all even numbered rows are analytic in C\(−∞, 0] and all odd numbered
in C\[0,∞). But since the entries under consideration are as follows

j, � ≡ 1 mod 2 :
[(
G(w)

)−1
G(z)

)]
j+1,�

∣∣∣∣
w=ξ>0
z=η>0

j ≡ 1, � ≡ 0 mod 2 :
[(
G(w)

)−1
G(z)

)]
j+1,�

∣∣∣∣
w=ξ>0
z=−η<0

j ≡ 0, � ≡ 1 mod 2 :
[(
G(w)

)−1
G(z)

)]
j+1,�

∣∣∣∣
w=−ξ<0
z=η>0

j, � ≡ 0 mod 2 :
[(
G(w)

)−1
G(z)

)]
j+1,�

∣∣∣∣
w=−ξ<0
z=−η<0
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it is now evident that the choice of limiting values in the matrix entries upon evaluation
is immaterial. ��

The latter Theorem proves that all local scaling limits of the correlation kernels in
the given Cauchy-Laguerre three matrix chain are determined by specific entries of
G

−1(w)G(z), with G(ζ ) being constructed out of Meijer G-functions, compare Corol-
lary 4.10. We expect that for general p ∈ Z≥2 similar identities as (4.75) hold, compare
Conjecture 2.10, that is the limits of the correlation functions K j�(x, y) to be propor-
tional to the ratio [

G
−1(w)G(z)

w − z

]
j+1,�

∣∣∣∣
w=ξ(−1) j+1, z=η(−1)�−1

.

For w, z ∈ C\R the explicit computation of G−1(w)G(z) is achieved in the following
section.

4.2.1. General origin parametrix. The analog of the RHP for the bare parametrix
G(p)(ζ ) in the general p ≥ 2 chain can be evinced by repeating the steps that we
have taken for p = 3.

Riemann-Hilbert Problem 4.22. (Bare Meijer-G parametrix for p-chain) Let G(p)(ζ )

be a (p + 1) × (p + 1) piecewise analytic matrix function analytic in C minus the rays

r0 = R+, r5 = −R+ r1,2 = e±i π
4 R+ , r3,4 = e±i 3π4 R+ which are all oriented from the

origin towards ζ = ∞. With

λp+1 = diag [p, p − 2, p − 4, . . . ,−p] , A = diag
[
A1, . . . , Ap+1

]
, (4.76)

where A j+1 − A j = (p + 1)a j , 1 ≤ j ≤ p such that
∑p+1

j=1 A j = 0, the jumps on the 6
rays r j equal

G(p)
+ (ζ ) = G(p)

− (ζ )J� for ζ ∈ r�, � = 0, . . . , 5.

As ζ → 0, we have a singular behavior as in (2.6) and (2.7) approaching the origin
from the top and bottom sectors. Furthermore, the asymptotic behavior at infinity in the
half planes is given by:

G(p)(ζ ) = ζ
− λp+1

2(p+1)U± (
I + O

(
ζ
− 1

p+1

))
ζ

A
p+1 exp

[
−(p + 1)ζ

1
p+1 �±

]
, ζ ∈ H

±.

(4.77)

Here the constants U± and �± as well as the jump matrices take the following forms
depending on the parity of p.

For p ≡ 1 mod 2 we have,

J1,2 =
1
2 (p−1)⊕
k=0

[
1 0

ζ−a2k+1 1

]
, J3,4 =

⎛
⎜⎝1⊕

1
2 (p−3)⊕
k=0

[
1 0

ζ−a2k+2e±iπa2k+2 1

]
⊕ 1

⎞
⎟⎠,

J0 =
1
2 (p−1)⊕
k=0

[
0 ζ a2k+1

−ζ−a2k+1 0

]
, J5 =

⎛
⎜⎝1⊕

1
2 (p−3)⊕
k=0

[
0 (−ζ )a2k+2

−(−ζ )−a2k+2 0

]
⊕ 1

⎞
⎟⎠ ;
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U+ =
[
(−1)k+ j−1ω(−1)k (p−2 k−1

2 ")
ω

(−1)k−1 2
p (p−2 k−1

2 ")( j−1)
]p+1

j,k=1

1
2 (p+1)⊕
k=1

ω
2
p (

∑p+1
j=2k A j )σ3 ,

U− = U+

⎛
⎜⎝

1
2 (p+1)⊕
k=1

(−iσ2)

⎞
⎟⎠ , �± =

1
2 (p−1)⊕
k=0

ω
± 2

p (p−2k)σ3 , ω ≡ e
i π
2

p
p+1 .

On the other hand, for p ≡ 0 mod 2:

J1,2 =
⎛
⎜⎝

1
2 (p−2)⊕
k=0

[
1 0

ζ−a2k+1 1

]
⊕ 1

⎞
⎟⎠ , J3,4=

⎛
⎜⎝1⊕

1
2 (p−2)⊕
k=0

[
1 0

ζ−a2k+2e±iπa2k+2 1

]⎞⎟⎠,

J0 =
⎛
⎜⎝

1
2 (p−2)⊕
k=0

[
0 ζ a2k+1

−ζ−a2k+1 0

]
⊕ 1

⎞
⎟⎠ , J5 =

⎛
⎜⎝1⊕

1
2 (p−2)⊕
k=0

[
0 (−ζ )a2k+2

−(−ζ )−a2k+2 0

]⎞
⎟⎠ .

U+ =
[
(−1) j−1ω(−1)k (p−2 k−1

2 ")
ω

(−1)k−1 2
p (p−2 k−1

2 ")( j−1)
]p+1

j,k=1

⎛
⎜⎝

p
2⊕

k=1

ω
2
p (

∑p+1
j=2k A j )σ3 ⊕ 1

⎞
⎟⎠

U− = U+

⎛
⎜⎝

p
2⊕

k=1

(−iσ2) ⊕ 1

⎞
⎟⎠ , �± =

1
2 (p−2)⊕
k=0

ω
± 2

p (p−2k)σ3 ⊕ 1.

Theorem 4.23 (Solution of the RHP 4.22). Let σ j = ( j + 1) mod 2 and

g(±)
j (ζ ) = c j

2π i

∫
L

∏ j
�=1 (s + a�, j−1)∏p
�= j (1+a j� − s)

e±iπsσ j ζ−s ds, 1≤ j≤ p + 1 ζ ∈C\(−∞, 0].

(4.78)

c j = (2π i)p+1− j

√
p + 1

(2π)p
, (4.79)

and the contour of integration L leaves all possible singularities of the integrands in
(4.78) to the left. Let

G
(±)(ζ ) =

[(
�ζ − a1,k−1

) j−1
g(±)
k (ζ )

]p+1
j,k=1

, ζ ∈ C\(−∞, 0], �ζ := ζ
d

dζ
.

and assemble G(ζ ) =
{
G

(+)(ζ ), ζ ∈ H
+

G
(−)(ζ ), ζ ∈ H

− . With this, the solution G(p)(ζ ) to the bare

RHP 4.22 is given by

G(p)(ζ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(ζ ), arg ζ ∈ (− 3π
4 ,− π

4 ) ∪ ( π
4 , 3π

4 )

G(ζ )

(
1⊕ ⊕ 1

2 (p−3)
k=0

[
1 0

ζ−a2k+2eiπa2k+2 1

]
⊕ 1

)
, arg ζ ∈ ( 3π4 , π)

G(ζ )
⊕ 1

2 (p−1)
k=0

[
1 0

−ζ−a2k+1 1

]
, arg ζ ∈ (0, π

4 )

G(ζ )

(
1⊕ ⊕ 1

2 (p−3)
k=0

[
1 0

−ζ−a2k+2e−iπa2k+2 1

]
⊕ 1

)
, arg ζ ∈ (−π,− 3π

4 )

G(ζ )
⊕ 1

2 (p−1)
k=0

[
1 0

ζ−a2k+1 1

]
, arg ζ ∈ (− π

4 , 0)

(4.80)



Universality Conjecture and Results for a Model of Several Coupled Positive Matrices 1125

in case p ≡ 1 mod 2, and for even p ≡ 0 mod 2 by

G(p)(ζ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(ζ ) arg ζ ∈ (− 3π
4 ,− π

4 ) ∪ ( π
4 , 3π

4 )

G(ζ )

(
1⊕ ⊕ 1

2 (p−2)
k=0

[
1 0

ζ−a2k+2eiπa2k+2 1

] )
, arg ζ ∈ ( 3π4 , π)

G(ζ )

( ⊕ 1
2 (p−2)
k=0

[
1 0

−ζ−a2k+1 1

]
⊕ 1

)
, arg ζ ∈ (0, π

4 )

G(ζ )

(
1⊕ ⊕ 1

2 (p−2)
k=0

[
1 0

−ζ−a2k+2e−iπa2k+2 1

] )
, arg ζ ∈ (−π,− 3π

4 )

G(ζ )

( ⊕ 1
2 (p−2)
k=0

[
1 0

ζ−a2k+1 1

]
⊕ 1

)
, arg ζ ∈ (− π

4 , 0)

(4.81)

We will split the proof of Theorem 4.23 in several parts, starting with the jump
conditions and the singular behavior at the origin ζ = 0.

Lemma 4.24. The function g(±)
1 (ζ ), ζ ∈ C is an entire function, whereas {g(±)

j (ζ )}p+1j=2
are defined and analytic for ζ ∈ C\(−∞, 0]. In particular, for 2 ≤ j ≤ p + 1, we have
the monodromy relations

g(+)
j

(
ζe2π i

)
− g(+)

j (ζ ) = −ζ a j−1eiπa j−1σ j−1g(+)
j−1

(
ζe2π iσ j−1

)
, (4.82)

valid on the entire universal covering of the punctured plane. Also, the behavior of
g(±)
�+1(ζ ) at ζ = 0 for 1 ≤ � ≤ p is the same as the behavior of the iterated Cauchy

transforms C�+1 given in (2.7).

Proof. The singularities in the integrand of g(±)
1 (ζ ) are solely located at ζ = −n, n ∈

Z≥0. Thus retracting the contour L to −∞ we pick up a residue at each nonpositive
integer point equal to

res
s=−n

(s) = (−1)n

n! .

Since the remainder of the integral tends to zero by the properties of theGamma function,
we get

g(±)
1 (ζ ) = c1

∞∑
k=0

(−1)k∏p
�=1 (1 + a1� + k)

ζ k

k! , ζ ∈ C,

which implies that g(±)
1 (ζ ) is entire. The same argument applied to the remaining

{g(±)
j (ζ )}p+1j=2 shows directly that they are analytic inCwith a cut along the negative real

axis. Suppose now that 2 ≤ j ≤ p + 1 and start with

g(+)
j

(
ζe2π i

)
− g(+)

j (ζ ) = c j
2π i

∫
L

∏ j
�=1 (s + a�, j−1)∏p

�= j (1 + a j� − s)
eiπsσ j ζ−s

(
e−2π is − 1

)
ds.

(4.83)

Since

e−2π is − 1 = −e−iπs 2π i

(s)(1− s)
,

j∏
�=1

(s + a�, j−1) = (s)
j−1∏
�=1

(s + a�, j−1),
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we can change the variable of integration in (4.83) as s = u − a j−1, j−1 ≡ u − a j−1,
and are lead to

g(+)
j

(
ζe2π i

)
− g(+)

j (ζ )

= −c j−1

2π i

∫
L+a j−1

∏ j−1
�=1 (u + a�, j−1 − a j−1)∏p
�= j (1 + a j� + a j−1 − u)

eiπuσ j

(1 + a j−1 − u)
e−iπuζ−u du

× ζ a j−1eiπa j−1σ j−1

(
2π i c j
c j−1

)

= −ζ a j−1eiπa j−1σ j−1
c j−1

2π i

∫
L+a j−1

∏ j−1
�=1 (u + a�, j−2)∏p

�= j−1 (1 + a j� − u)
eiπuσ j−1

(
ζe2π iσ j−1

)−u
du

= −ζ a j−1eiπa j−1σ j−1g(+)
j−1

(
ζe2π iσ j−1

)
.

In the last equality we used that there are no singularities of the integrand between
L + a j−1 and L since a j−1 > −1. As for the singular behavior at ζ = 0, we simply

use analyticity of g(±)
1 (ζ ) and apply the monodromy relations iteratively. This combined

with the Plemelj-Sokhotskii formula leads to a behavior as in (2.7). ��
We are now ready to derive the jump behavior of G(p)(ζ ) as stated in Theorem 4.23

Proof of Theorem 4.23-jump and singular behavior. The matrix G(ζ ) is analytic in the
upper/lower half plane and thus the jumps on the four rays r1,2,3,4 follow at once from
the definition of G(p)(ζ ). Now it follows from σ j ≡ ( j + 1) mod 2 that for odd j the

functions g(±)
j (ζ ) coincide. For even j = 2k we have instead that

g(+)
2k (ζe2π i ) = g(−)

2k (ζ ), ζ ∈ C\(−∞, 0]

and thus with Lemma 4.24

g(+)
2k (ζ ) = g(−)

2k (ζ ) + ζ a2k−1g(−)
2k−1(ζ ), ζ ∈ C\(−∞, 0].

Hence, the functions G(±)(ζ ) are related by

G
(+)(ζ ) = G

(−)(ζ )

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⊕ 1
2 (p−1)
k=0

[
1 ζ a2k+1

0 1

]
, p ≡ 1 mod 2

⊕ 1
2 (p−2)
k=0

[
1 ζ a2k+1

0 1

]
⊕ 1, p ≡ 0 mod 2

(4.84)

From this, the remaining jumps on the real line, i.e. on r0,5, follow by matrix multipli-
cation applying the Definitions (4.80), (4.81) and using that ζ γ

+ = ζ
γ
− for ζ > 0 as well

as ζ
γ
+ = ζ

γ
−e−2π iγ for ζ < 0. As for the singular behavior near ζ = 0, this is dictated

by the result of Lemma 4.24 and the Definitions (4.80), (4.81). ��
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We move on to the asymptotics at ζ = ∞. Since

g(+)
p+1(ζ ) = cp+1G

p+1,0
0,p+1

( −−
a1p, a2p, a3p, . . . , app, ap+1,p

∣∣∣∣ e−iπσp+1ζ

)
,

we get from [7,20] that, as ζ → ∞ with |arg ζ | < π(p + 1),

g(+)
p+1(ζ ) = ζ

− p
2(p+1)+

1
p+1 (

∑p
1 a jp)ωσp+1ω

− 2
p (

∑p
1 a jp)σp+1

× exp
[
−(p + 1)ω− 2

p σp+1ζ
1
p+1

] (
1 + O

(
ζ
− 1

p+1

))
, (4.85)

Here we put

ω = ωp = ei
π
2

p
p+1 ,

and all subsequent expansions of {g(+)
j (ζ )}pj=1 at ζ = ∞ can now be derived from (4.85)

by substituting into (4.82). We summarize

Lemma 4.25. Let ε > 0 be fixed. As ζ → ∞,

g(+)
2k (ζ ) = ζ

− p
2(p+1) ω2+p−2k ζ

A2k
p+1 ω

− 2
p

∑p+1
2k A j

× exp
[
−(p + 1)ω− 2

p (2+p−2k)
ζ

1
p+1

] (
1 + O

(
ζ
− 1

p+1

))
uniformly for arg ζ ∈ (−π, π − ε] and any

k =
{
1, . . . , 1

2 (p − 1), p ≡ 1 mod 2
1, . . . , 1

2 p, p ≡ 0 mod 2.

Secondly with H± = {ζ ∈ C : sgn(
 ζ ) = ±1}, as ζ → ∞

g(+)
2k+1(ζ ) =

⎧⎪⎪⎨
⎪⎪⎩

ζ
− p

2(p+1) ωp−2kζ
A2k+1
p+1 ω

− 2
p

∑p+1
2k+2 A j exp

[
−(p + 1)ω− 2

p (p−2k)
] (

1 + O
(
ζ
− 1

p+1

))
, ζ ∈ H

−

(−1)pζ− p
2(p+1) ω−(p−2k)ζ

A2k+1
p+1 ω

2
p

∑p+1
2k+2 A j exp

[
−(p + 1)ω

2
p (p−2k)

ζ
1
p+1

] (
1 + O

(
ζ

1
p+1

))
, ζ ∈ H

+

uniformly for arg ζ ∈ (−π,−ε] in the lower half-plane, for arg ζ ∈ [ε, π) in the upper

half-plane and any k = 0, 1, . . . ,
⌊

p−1
2

⌋
In addition

Corollary 4.26. Let ε > 0 be fixed, then as ζ → ∞, uniformly for arg ζ ∈ [−π + ε, 0)

g(+)
2k (ζ ) − ζ a2k−1g(+)

2k−1(ζ ) = g(+)
2k

(
ζe2π i

)
= g(−)

2k (ζ )

= (−1)p−1ζ
− p

2(p+1) ω−(2+p−2k)ζ
A2k
p+1 ω

2
p

∑p+1
2k A j exp

[
−(p + 1)ω

2
p (2+p−2k)

ζ
1
p+1

]
×

(
1 + O

(
ζ
− 1

p+1

))
(4.86)

for any k = 1, . . . ,
⌊

p+1
2

⌋
.
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We can now complete the proof of Theorem 4.23

Proof of Theorem 4.23-asymptotic behavior at ζ = ∞. The sectorial asymptotics of
G

(±)(ζ ) follow from Lemma 4.25 and careful algebra. The jump-matrices do not affect
the sectorial asymptotic because by construction ofG(p)(ζ ), the asymptotics ofG(±)(ζ )

andG(p)(ζ ) are the same as ζ → ∞. This follows from the Definitions (4.80) and (4.81)
in the sectors arg ζ ∈ (− 3π

4 ,−π
4 ) ∪ (π

4 , 3π
4 ) and estimations of the form (here only for

p ≡ 1 mod 2)

ζ
A
p+1 e−(p+1)�ζ

1
p+1

⎛
⎜⎝

1
2 (p−1)⊕
k=0

[
1 0

−ζ−a2k+1 1

]⎞
⎟⎠ e(p+1)�ζ

1
p+1

ζ
− A

p+1

= I + O (
ζ−∞)

, arg ζ ∈
(
0,

π

4

)

ζ
A
p+1 e−(p+1)�ζ

1
p+1

⎛
⎜⎝1⊕

1
2 (p−3)⊕
k=0

[
1 0

ζ−a2k+2eiπa2k+2 1

]
⊕ 1

⎞
⎟⎠ e(p+1)�ζ

1
p+1

ζ
− A

p+1

= I + O (
ζ−∞)

, arg ζ

(
3π

4
, π

)

as ζ → ∞ with similar ones in the sectors in the lower half-plane. ��

4.2.2. Computation of the right hand side in (4.75) for general p ≥ 2. Our next goal is
to express the entries under consideration in the matrix product G−1(w)G(z) as double
contour integrals. To this end it is convenient to pass from the functions g(±)

j (ζ ) and

G
(±)(ζ ) to the functions { f (±)

j (ζ )}p+1j=1, F
(±)(ζ ) defined through

f (±)
j (ζ ) = ζ−a1, j−1g(±)

j (ζ ), ζ ∈ C\(−∞, 0], j = 1, . . . , p + 1, (4.87)

F
(±)(ζ ) =

[
�

j−1
ζ f (±)

k (ζ )

]p+1

j,k=1
= G

(±)(ζ )ζ D D :=diag
[
0, a1, a12, a13, . . . , a1p

]
.

(4.88)

Note in particular that all functions f (±)
j (ζ ) admit a contour integral representation, with

ζ ∈ C\(−∞, 0],

f (±)
j (ζ ) = c j

2π i

∫
L j

F(±)
j (s)ζ−s ds, F(±)

j (s) =
∏ j−1

�=0 (s − a1�)∏p
�= j (1 + a1� − s)

e±iπ(s−a1, j−1)σ j .

(4.89)

We also define for convenience the following functions

f̂ (±)
j (ζ ) = ĉ j

2π i

∫
L̂ j

F̂ (±)
j (s)ζ−s ds,

F̂ (±)
j (s) =

∏p
�= j−1 (s + a1�)∏ j−2

�=0 (1− s − a1�)
e±iπ(s+a1, j−1)σ j−1 ,

(4.90)
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and analogously as before,

F̂
(±)(ζ ) ≡ [� j−1

ζ f̂ (±)
k (ζ )]p+1j,k=1, ζ ∈ C\(−∞, 0].

The normalization constants ĉ j are defined through c j in (4.79) as

ĉ j+1 = −2π i ĉ j . (4.91)

The goal of this section is to prove

Theorem 4.27. For w, z ∈ R,[
G

−1(w)G(z)

]
jk

= c j ĉkw
−a1, j−1 za1,�−1

×
∫
L

∫
L̂
F (±)
k (u)F̂ (±)

j (−v)
K (u) − K (v)

u − v
wvz−u dv du

(2π i)2
, (4.92)

where the signs (±) are chosen according towhether the corresponding variable belongs
toH±. Also, the multi-valued functions ζ γ have to be evaluated with principal branches
and the integration contours are chosen as in Definition 2.9.

We split the proof of the latter Theorem into several steps

Proposition 4.28. The functions { f (±)
j (ζ )}p+1j=1 and { f̂ (±)

j (ζ )}p+1j=1 defined for
ζ ∈ C\(−∞, 0] are linearly independent solutions of the classically adjoint differential
equations

p∏
�=0

(
�ζ + a1�

)
f (ζ ) = −ζ f (ζ ) ,

p∏
�=0

(
�ζ − a1�

)
f̂ (ζ ) = −ζ f̂ (ζ ), �ζ = ζ

d

dζ

which follows from the functional relation of the kernel functions

F (±)
j (s + 1) = F (±)

j (s)K (s), F̂ (±)
j (s + 1) = F̂ (±)

j (s)K (−s),

K (s) = (−1)p
p∏

�=0

(s − a1�). (4.93)

Proof. The functional relations (4.93) follow simply from the standard relation (1 +
s) = s(s). The stated differential equations are then derived by differentiation in (4.89),
(4.90) and application of the latter functional relations for the integrands. ��
Definition 4.29 (Bilinear Concomitant, see [23]). For ζ ∈ C\(−∞, 0], introduce the
bilinear form,

B( f j , f̂k)(ζ ) = c j ĉk
(2π i)2

∫
L j

∫
L̂k

Fj (u)F̂k(v)

u + v

[
K (u) − K (−v)

]
ζ−u−v dv du,

1 ≤ j, k ≤ p + 1 (4.94)

or written equivalently without double integrals,

B( f j , f̂k)(ζ ) =
[
f̂k(ζ ),�ζ f̂k(ζ ),�2

ζ f̂k(ζ ), . . . ,�
p
ζ f̂k(ζ )

]
×K

[
f j (ζ ),�ζ f j (ζ ),�2

ζ f j (ζ ), . . . ,�
p
ζ f j (ζ )

]T
(4.95)
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where

K =
[
(−1)p+k−1 K

( j+k−1)(0)

( j + k − 1)!

]p+1

j,k=1

.

Here, f j (ζ ) or f̂k(ζ ) can be replaced by any function of the collection { f (±)
j (ζ )} or

{ f̂ (±)(ζ )}.
Proposition 4.30. The bilinear form in Definition 4.29 is piecewise constant in ζ .

Proof. From the functional equations of Fj (s) and F̂j (s) (here Fj (s) can represent any

of the F (±)
j (s), similarly for F̂j (s)),

d

dζ
B( f j , f̂k)(ζ ) = − c j ĉk

(2π i)2

∫
L

∫
L̂
Fj (u)F̂k(v)

[
K (u) − K (−v)

]
ζ−u−v−1 dv du

= − c j ĉk
(2π i)2

∫
L+1

Fj (u)ζ−u du
∫
L̂
F̂k(v)ζ−v dv

+
c j ĉk

(2π i)2

∫
L
Fj (u)ζ−u du

∫
L̂+1

F̂k(v)ζ−v dv

= − f j (ζ ) f̂k(ζ ) + f j (ζ ) f̂k(ζ ) ≡ 0, ζ ∈ C\(−∞, 0]
where we used Cauchy Theorem in the last equality. ��

The particular choice of the expressions (4.89), (4.90) is explained by the following
Proposition.

Proposition 4.31. For independent choices of signs (±), we have

B( f (±)
j , f̂ (±)

k )(ζ ) ≡ δ jk, j, k = 1, . . . , p + 1. (4.96)

Proof. The proof is technically simpler if we impose the non-resonance condition

ak� =
�∑

j=k

a j /∈ Z, 1 ≤ k ≤ � ≤ p. (4.97)

This condition can then be lifted a posteriori since the result is independent of the a j ’s.
As B( f j , f̂k)(ζ ) is defined through a double contour integral we shall apply residue
theorem to retract first the contour L̂k to −∞. This procedure amounts to picking up
the residues of the inner integrand which by assumption (4.97) are all originating from
simple poles of the expression F̂k(−v). Let P = {

a11, a12, . . . , a1p
}
: note that our

assumption (4.97) implies P ∩ Z = ∅. Then the poles of Fj (u) are in general located
on the lattice (P ∪ {0}) − N whereas the poles of F̂k(−v) are in general centered at
(P ∪ {0}) + N. Retracting the contours as indicated, we create certain double series of
the form

B( f (±)
j , f̂ (±)

k )(ζ ) =
∑

m∈(P∪{0})−N

∑
�∈(P∪{0})+N

R(±)
m,�; j,k ζ �−m (4.98)
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with coefficients R(±)
m,�; j,k determined through residue evaluations. The so obtained series

defines an analytic function in C\(−∞, 0]. Now we know that B( f (±)
j , f̂ (±)

k )(ζ ) is ζ -
independent and hence the computation of (4.98) only requires from us to inspect those
coefficients R(±)

m,�; j,k which can give a contribution to theO (
ζ 0

)
terms in (4.98). Also, as

(4.97) is in place, we only have to compute the residues of the integrand at the elements
of the finite set P . Concretely we obtain

B( f (±)
j , f̂ (±)

k )(ζ ) = c j ĉk
(2π i)2

∫
L

∫
L̂

∏ j−1
�=0 (u − a1�)∏p

�= j (1 + a1� − u)

×
∏p

m=k−1 (−v + a1m)∏k−2
m=0 (1 + v − a1m)

e±iπ(u−a1, j−1)σ j

× e±iπ(−v+a1,k−1)σk−1ζ−u+v K (u) − K (v)

u − v
dv du

≡c j ĉk

j−1∑
�=0

p∑
m=k−1

∏ j−1
n=0
n �=�

(a1� − a1n)∏p
n= j (1 + a1n − a1�)

∏p
n=k−1
n�=m

(−a1m + a1n)∏k−2
n=0 (1 + a1m − a1n)

K (a1�) − K (a1m)

a1�−a1m

×e±iπ(a1�−a1, j−1)σ j e±iπ(−a1m+a1,k−1)σk−1ζ a1m−a1� . (4.99)

Since by construction

K (a1�) − K (a1m)

a1� − a1m
= δ�mK

′(a1�), (4.100)

we see from (4.99) that B( f (±)
j , f̂ (±)

k )(ζ ) ≡ 0 for j < k in the corresponding half-
planes. For j = k,

B( f (±)
j , f̂ (±)

j )(ζ )

≡ c j ĉ j

∏ j−2
n=0 (a1, j−1 − a1n)∏p

n= j (1 + a1n − a1, j−1)

∏p
n= j (−a1, j−1 + a1n)∏ j−2

n=0 (1 + a1, j−1 − a1n)
K ′(a1, j−1)

= c j ĉ j

⎛
⎝ j−2∏

n=0

1

a1, j−1 − a1n

⎞
⎠

⎛
⎝ p∏

n= j

1

a1n − a1, j−1

⎞
⎠ K ′(a1, j−1)

= c j ĉ j e
iπσ j = 1,

where we used the normalization (4.91). Thus B( f (±)
j , f̂ (±)

j )(ζ ) ≡ 1 for all j =
1, . . . , p + 1 in the half-planes. It remains to consider the situation when j > k,

B( f (±)
j , f̂ (±)

k )(ζ ) = c j ĉk

j−1∑
m=k−1

∏ j−1
n=0
n �=m

(a1m−a1n)∏p
n= j (1 + a1n − a1m)

∏p
n=k−1
n�=m

(−a1m+a1n)∏k−2
n=0 (1+a1m−a1n)

K ′(a1m)

× e±iπ(a1m−a1, j−1)σ j e±iπ(−a1m+a1,k−1)σk−1

= c j ĉk

j−1∑
m=k−1

j−1∏
n=k−1
n �=m

(a1m − a1n)(a1n − a1m)
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× K ′(a1m)e±iπ(a1m−a1, j−1)σ j e±iπ(−a1m+a1,k−1)σk−1∏p
n= j (a1n − a1m)

∏k−2
n=0(a1m − a1n)

= c j ĉk

j−1∑
m=k−1

j−1∏
n=k−1
n �=m

π

sin π(a1m − a1n)

× K ′(a1m)∏p
n=0
n �=m

(a1n − a1m)
eiπσk e±iπ(a1m−a1, j−1)σ j e±iπ(−a1m+a1,k−1)σk−1

= c j
ck

e±iπ(a1,k−1σk−1−a1, j−1σ j )

j−1∑
m=k−1

e±iπa1m (σ j−σk−1)

×
j−1∏

n=k−1
n �=m

π

sin π(a1m − a1n)
. (4.101)

The last sum vanishes identically: to see that, we consider the meromorphic functions

ϕ
(±)
jk (z) = e±iπ z(σ j−σk−1)

j−1∏
n=k−1

π

sin π(z − a1n)
, j > k,

which are periodicϕ
(±)
jk (z+1) = ϕ

(±)
jk (z). In this latter expressionwe can assumewithout

loss of generality that a1n ∈ [0, 1) for all k−1 ≤ n ≤ j−1. Let BR,ε be the rectangular
box with sides{

1 + ε + i t, t ∈ [−R, R]} ∪ {
t + i R, t ∈ [ε, 1 + ε]} ∪ {

ε + i t, t ∈ [−R, R]}
∪{ − i R + t, t ∈ [ε, 1 + ε]}.

Then we can always find ε ∈ R such that

0 = 1

2π i

[∫ ε−i∞

ε+i∞
+

∫ 1+ε+i∞

1+ε−i∞

]
ϕ

(±)
jk (z) dz = lim

R→∞
1

2π i

∮
∂BR,ε

ϕ
(±)
jk (z) dz,

and the latter integrals yields the sum of residues inside, which equals exactly the sum
in (4.101). ��
The last result is now put into use in the following way: with

B(ζ ) = (̂
F(ζ )

)TKG(ζ )ζ−D, where F̂(ζ ) =
{
F

(+)(ζ ), ζ ∈ H
+

F
(−)(ζ ), ζ ∈ H

−

we get from (4.95) that

[B(ζ )
]
jk =

{
B( f (+)

k , f̂ (+)
j )(ζ ), 0 < arg ζ < π

B( f (−)
k , f̂ (−)

j )(ζ ), −π < arg ζ < 0

and thus (4.96) shows that B(ζ ) ≡ I in the separate half-planes. In other words, we have
computed the matrix inverse(

G(ζ )
)−1 = ζ−D (̂

F(ζ )
)TK, ζ ∈ C\R. (4.102)
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Remark 4.32. A direct computation in fact shows that ζ−D
(̂
F(ζ )

)T has the same jumps
on the real line as (G(ζ ))−1. For this we would notice that

ζ−D (̂F(+)(ζ ))T =
[
(�ζ + a1, j−1)

k−1ĝ (+)
j (ζ )

]p+1

j,k=1

where we introduced the “dual functions" {ĝ (+)
j (ζ )} to {g (+)

j (ζ )}, namely

ĝ (+)
j (ζ ) = ĉ j

2π i

∫
L̂ j

∏p
�= j−1 (s + a j�)∏ j−1

�=1 (1− s + a�, j−1)
eiπsσ j−1ζ−s ds, ζ ∈ C\(−∞, 0].

Here, ĝ (+)
p+1(ζ ) is an entire function whereas {ĝ (+)

j (ζ )}pj=1 are defined and analytic for
ζ ∈ C\(−∞, 0], also (compare (4.82)) we have a monodromy relation

ĝ (+)
j

(
ζe2π i

)
− ĝ (+)

j (ζ ) = ζ a j eiπa jσ j ĝ (+)
j+1

(
ζe2π iσ j

)
, 1 ≤ j ≤ p (4.103)

valid on the entire universal covering of the punctured plane. Then one checks with
(4.103) that the jumps of ζ−D (̂F(ζ ))T are indeed identical to the ones of (G(ζ ))−1.

In order to complete the proof of Theorem 4.27, we use (4.102), thus forw, z ∈ C\R
G

−1(w)G(z) = w−D (̂
F(w)

)TKF(z)zD.

This motivates the following generalization of (4.94)

Definition 4.33 (Generalized Bilinear Concomitant). For w, z ∈ C\(−∞, 0], let

B̄( f j , f̂k)(w, z) = c j ĉk
(2π i)2

∫
L

∫
L̂
Fj (u)F̂k(−v)

K (u) − K (v)

u − v
wvz−u dv du,

w, z ∈ C\(−∞, 0] (4.104)

where f j , f̂ j stand for any of f (±)
j , f̂ (±)

j , with integration contours chosen as in the

definition of B( f j , f̂k)(ζ ), compare (4.94). Equivalently, without any contour integrals,

B̄( f j , f̂k)(w, z) =
[
f̂k(w),�w f̂k(w),�2

w f̂k(w), . . . ,�p
w f̂k(w)

]
×K

[
f j (z),�z f j (z),�

2
z f j (z), . . . ,�

p
z f j (z)

]T
. (4.105)

Proof of Theorem 4.27. Let

B̄(w, z) = (̂
F(w)

)TKF(z), w ∈ C\R
and observe from (4.105), that

[B̄(w, z)
]
jk =

{
B̄( f (+)

k , f̂ (±)
j ), w ∈ H

±, z ∈ H
+

B̄( f (−)
k , f̂ (±)

j ), w ∈ H
±, z ∈ H

−.
(4.106)

Since

G
−1(w)G(z) = w−DB̄(w, z)zD

we have thus proven Theorem 4.27. ��
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An alternative formulation of the matrix (4.105), which is also used in Definition 2.9
is given below

Proposition 4.34. For any 1 ≤ j, k ≤ p+1, withP0 = P∪{0} = {0, a11, a12, . . . , a1p},

B̄( f j , f̂k)(w, z)

w − z
= c j ĉk

(2π i)2

∫
L

∫
L̂
F (±)
j (u)F̂ (±)

k (−v)
wvz−u

1− u + v
dv du

−c j ĉk
∑
s∈P0

res
v=s

Fj (v + 1)F̂k(−v)
wvz−v

w − z

Here the integrations around L , L̂ are taken in the indicated order and thus mean the
evaluation of the residues in the v variable first at the poles of F̂k(−v) followed by
evaluation of the residues in u at the poles of Fj .

Proof. Start from (4.104) and first use the functional equations for Fj (u) and F̂k(−v),
i.e.

B̄( f j , f̂k)(w, z) = c j ĉk
(2π i)2

∫
L

∫
L̂
Fj (u + 1)F̂k(−v)

wvz−u

u − v
dv du

− c j ĉk
(2π i)2

∫
L

∫
L̂
Fj (u)F̂k(1− v)

wvz−u

u − v
dv du ≡ I1 − I2

where each I j is now dependent on the order of integration. By the residue theorem,
with P0 = P ∪ {0},

I2 = c j ĉk
2π i

∑
s∈P0+1+N

res
v=s

F̂k(1− v)

∫
L
Fj (u)

wvz−u

u − v
du − c j ĉk

2π i

×
∫
L∩Int(L̂)

Fj (u)F̂k(1− u)wuz−u du

= c j ĉk
∑

s∈P0+1+N

∑
t∈P0−N

res
u=t

res
v=s

F̂k(1− v)Fj (u)
wvz−u

u − v

+ c j ĉk
∑

s∈(P0+1+N)∩Int(L)

res
v=s

F̂k(1− v)Fj (v)wvz−v

− c j ĉk
2π i

∫
L∩Int(L̂)

Fj (u)F̂k(1− u)wuz−u du. (4.107)

Notice that from the functional relations we have Fj (v)F̂k(1− v) = Fj (v + 1)F̂k(−v),

and thus,

s ∈ (P0 + 1 + N) ∩ Int(L) : res
v=s

F̂k(1− v)Fj (v)wvz−v

= 1

2π i

∫
∂D(s,ε)

Fj (v)F̂k(1− v)wvz−v dv = res
v=s

Fj (v + 1)F̂k(−v)wvz−v.



Universality Conjecture and Results for a Model of Several Coupled Positive Matrices 1135

Back to (4.107) with the help of the functional relations once more,

I2 = c j ĉk
∑

s∈P0+1+N

∑
t∈P−N

res
u=t

res
v=s

F̂k(1− v)Fj (u)
wvz−u

u − v
+ c j ĉk

×
∑

s∈(P0+1+N)∩Int(L)

res
v=s

Fj (v + 1)F̂k(−v)wvz−v

− c j ĉk
2π i

∫
L∩Int(L̂)

Fj (u + 1)F̂k(−u)wuz−u du

= c j ĉk
∑

s∈P0+N

∑
t∈P0−N

res
u=t

res
v=s

F̂k(−v)Fj (u)
wv+1z−u

u − v − 1
+ c j ĉk

×
∑

s∈(P0+1+N)∩Int(L)

res
v=s

F̂k(−v)Fj (v + 1)wvz−v

− c j ĉk
2π i

∫
L∩Int(L̂)

Fj (u + 1)F̂k(−u)wuz−u du.

Now move on to I1, by similar reasoning,

I1 = c j ĉk
∑

s∈P0+N

∑
t∈P0−N

res
u=t

res
v=s

F̂k(−v)Fj (u)
wvz−u+1

u − v − 1
+ c j ĉk

×
∑

s∈(P0+N)∩Int(L)

res
v=s

F̂k(−v)Fj (v + 1)wvz−v

− c j ĉk
2π i

∫
L∩Int(L̂)

Fj (u + 1)F̂k(−u)wuz−u du.

and subtracting, we have proven the Proposition. ��
In order to obtain the expression of the kernels in Definition 2.9 and also completely

prove Theorem 2.12, we need to express explicitly the right side in Theorem 4.21, that
is we have to compute

C j�(ξ, η) = (−1)�−1

(−2π i) j−�+1 c
��−� j

p+1
0 ξ

1
2 a j η

1
2 a�

[
G

−1(w)G(z)

w − z

]
j+1,�

∣∣∣∣
w=ξ(−) j+1

z=η(−)�−1

(4.108)

where j, � = 1, . . . , p and c0, ξ, η > 0 with {�k} as in (4.74). For this, we need to
use Theorem 4.27, the explicit formulæ for Fj (u), F̂j (v) (4.89), (4.90) combined with
(4.106), the expressions for c j , ĉ j in (4.79), (4.91) and then simplify so as to obtain the
expression in Conjecture 2.10.

4.2.3. The one-matrix “chain”. We show here that for p = 1 the Meijer-G field is
nothing but the ordinary Bessel random point field [10]. We make use of

Bν(ζ ) = 1

2π i

∫
γ

(u)

(1 + ν − u)
ζ−udu ≡ ζ− ν

2 Jν(2
√

ζ ) (4.109)
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with the Bessel function Jν(·) of first kind. Thus, using (2.27), we have

G(1)
11 (ξ, η) =

∫ ∫
(u)

(1 + a1 − u)

(−v + a1)

(1 + v)

ξvη−u

1− u + v

dv du

(2π i)2

=
∫ 1

0
Ba1(tη)Ba1(tξ)ta1 dt = 4KBess,a1(4ξ, 4η)

where we used the expression of the Bessel kernel as given in [10, formulæ (4.26) and
(4.27)] .

4.2.4. Comparison with [10], two matrix chain. In [10] (Theorem 2.2) the chain p = 2
was studied; we can compare those results with our situation. The four kernels defining
the Meijer-G field were introduced in [10] as

G00(ζ, ξ) = 1

(2π i)2

∫ ∫
γ 2

(u + a)

(1− u)(1 + b − u)

(v + b)

(1− v)(1 + a − v)

ζ−uξ−v

1− u − v
dv du,

G01(ζ, ξ) = 1

(2π i)2

∫ ∫
γ 2

(u + a)

(1− u)(1 + b − u)

(v)(v + b)

(1 + a − v)

ζ−uξ−v

1− u − v
dv du,

G10(ζ, ξ) = 1

(2π i)2

∫ ∫
γ 2

(u)(u + a)

(1 + b − u)

(v + b)

(1− v)(1 + a − v)

ζ−uξ−v

1− u − v
dv du,

G11(ζ, ξ) = 1

(2π i)2

∫ ∫
γ 2

(u)(u + a)

(1 + b − u)

(v)(v + b)

(1 + a − v)

ζ−uξ−v

1− u − v
dv du − 1

ζ + ξ
,

(4.110)

The indexing of the four kernels follows a different convention and thus we need to
compare

G00 ↔ G(2)
12 , G01 ↔ G(2)

11 , G10 ↔ G(2)
22 , G11 ↔ G(2)

21 .

It is then a simple verification that

G00(ξ, η) =
(

ξ

η

)a

G(2)
12 (η, ξ ; {a, b}) , G01(ξ, η) =

(
ξ

η

)a

G(2)
11 (η, ξ ; {a, b})

(4.111)

G10(ξ, η) =
(

ξ

η

)a

G(2)
22 (η, ξ ; {a, b}) , G11(ξ, η) =

(
ξ

η

)a

G(2)
21 (η, ξ ; {a, b}) .

(4.112)

This implies the equivalence of the determinantal point fields.

4.2.5. Comparison with [28], singular values of products of Ginibre matrices. In Kuijl-
laars and Zhang [28, Theorem 5.3.], obtained the following limiting kernel in the cause
of a local scaling analysis,

KM
ν (x, y)=

∫ 1

0
G 1,0

0,M+1

( −−
−ν0,−ν1 . . . ,−νM

∣∣∣∣ t x
)
G M,0

0,M+1

( −−
ν1, . . . , νM , ν0

∣∣∣∣ t y
)
dt
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where ν j = N j − N0 ∈ Z≥0 and M ∈ Z≥1. Recalling (4.31), we have equivalently

KM
ν (x, y) = 1

(2π i)2

∫∫
γ 2

(u)∏M
s=1 (1 + νs − u)

∏M
s=0 (νs + v)

(1− v)

y−vx−u

1− u − v
dv du

and thus with (2.27)

KM
ν (x, y) = G(M)

11

(
y, x; {ν1, ν2 − ν1, ν3 − ν2, . . . , νM − νM−1}

)
.

Here we observe that in [28] and in [4] only the correlation kernel of one product was
considered; thus we can only compare it to one (the (1, 1) specifically) of the kernels
we obtain. It is possible to speculate that if one could construct the joint correlation
functions for the singular values of all the intermediate products of Ginibre matrices
in [4,28], then also the remaining kernels G(M)

i j would match. This would reinforce the
universal character of these new kernels.

4.3. Limiting randompoint fields and chain separation. Wenowprovide the verification
of Theorem 2.13. In the study of these limits, we use Stirling’s approximation for the
Gamma functions

(z + δ) =
( z
e

)z
zδ(2π z)

1
2

(
1 + O

(
z−1

))
, z → ∞, |arg z| < π − ε

⇒ (z + δ)

(z + ρ)
= zδ−ρ

(
1 + O

(
z−1

))
.

Proof of Theorem 2.13. For the purposes of this proof we introduce the notation

p(u, v; {a}) ≡
∏�−1

s=0 (u − a1s)∏p
s=� (1 + a1s − u)

∏p
s= j (a1s − v)∏ j−1

s=0 (1 + v − a1s)

∇K (u, v) ≡ K (u) − K (v)

u − v

and K = K (u) as in (2.24). The expression ∇K (u, v) obeys the Leibniz rule

∇(K1K2)(u, v) = K1(u)∇K2(u, v) + K2(v)∇K1(u, v)

Now we shall write

Kp(u; a ) = (−1)p
p∏

s=0

(u − a1s) = (−1)q−1
q−1∏
s=0

(u − a1s)(−1)p−q−1
p∏

s=q

(u − a1s)

≡ Kq−1(u; {a1, . . . , aq−1})Kp−q(u − a1q; {aq+1, . . . , ap})
= Kq−1(u)Kp−q(u − a1q)

where in the last writing the parametric dependence on the a j ’s is understood. Note that
Kq−1(u), Kp−q(u) are independent of aq . We analyze the integrand in (2.26)

p(u, v; {a})∇K (u, v) =
∏�−1

s=0 (u − a1s)∏p
s=� (1 + a1s − u)

∏p
s= j (a1s − v)∏ j−1

s=0 (1− a1s + v)
∇K (u, v)

(4.113)
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and need to consider 9 types of situations, depending on the positioning of the indices:
j, � less, equal or greater than q. The large parameter in these computations is aq = �.

Case: j, � < q. We look at the asymptotic behavior of the integrand for the kernels
in this block under the two scalings; the computation requires to consider the following
steps

p(u, v; {a})∇K (u, v)

=

q−1(u,v;{a1,...,aq−1})︷ ︸︸ ︷∏�−1
s=0 (u − a1s)

∏q−1
s= j (a1s − v)∏q−1

s=� (1 + a1s − u)
∏ j−1

s=0 (1− a1s + v)

∏p
s=q (a1s − v)∏p

s=q (1 + a1s − u)

× (
Kp−q(u − a1q)∇Kq−1(u, v) + Kq−1(v)∇Kp−q(u − a1q , v − a1q)

)
= q−1(u, v; {a1, . . . , aq−1})∇Kq−1(u, v)�p−q+1�(p−q+1)(u−v−1)(1 + O(�−1)

)
= q−1(u, v; {a1, . . . , aq−1})∇Kq−1(u, v)�(p−q+1)(u−v)

(
1 + O(�−1)

)
(4.114)

If we plug (4.114) into the formula for the kernels we find

�p−q+1G(p)
j� (�p−q+1ξ,�p−q+1η; {a1, . . . , ap}) = 1

(−1)�η − (−1) jξ

× 1

(2π i)2

∫∫
q−1(u, v; {a1, . . . , aq−1})∇Kq−1(u, v)�(p−q+1)(u−v)

(
1 + O(�−1)

)
×

(
�p−q+1ξ

)v (
�p−q+1η

)−u
dv du = G(q)

j� (ξ, η; {a1, . . . , aq−1})
(
1 + O(�−1)

)
.

In the other scaling we need to show that the latter block of kernels tends to zero; to this
end we also need the behavior of the integrand p(u, v; {a})∇K (u, v) with the shift
u = u′ + a1q , v = v′ + a1q . In the computation below we use Euler’s reflection formula

∏�−1
s=0 (u′ + a1q − a1s)∏q−1

s=� (1 + a1s − a1q − u′)

∏q−1
s= j (a1s − v′ − a1q)∏p
s=q (1 + aq+1,s − u′)

×
∏p

s=q (aq+1,s − v′)∏ j−1
s=0 (1 + v′ + a1q − a1s)

∇K (u′ + a1q , v
′ + a1q)

=
p∏

s=q

(aq+1,s − v′)
(1 + aq+1,s − u′)

q−1∏
s=0

(a1q + u′ − a1s)

(1 + v′ + a1q − a1s)

×
∏q−1

s=� π−1 sin π(a1q + u′ − a1s)∏q−1
s= j (−π)−1 sin π(a1q + v′ − a1s)

O (
�q)

=
p∏

s=q

(aq+1,s − v′)
(1 + aq+1,s − u′)

∏q−1
s=� π−1 sin π(a1q + u′ − a1s)∏q−1

s= j (−π)−1 sin π(a1q + v′ − a1s)
�q(u′−v′)

×
(
O(1) + O

(
�−1

))
. (4.115)

Substituting (4.115) into the formula for the kernels, we obtain
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�qG(p)
j� (�qξ,�qη; {a1, . . . , ap}) = 1

(−1)�η − (−1) jξ

1

(2π i)2

×
∫∫ p∏

s=q

(aq+1,s − v′)
(1 + aq+1,s − u′)

×
∏q−1

s=� π−1 sin π(a1q + u′ − a1s)∏q−1
s= j (−π)−1 sin π(a1q + v′ − a1s)

�q(u′−v′)

× (
�qξ

)v′+a1q (
�qη

)−u′−a1q dv′ du′ O(1)
(
1 + O

(
�−1

))

= (ξ/η)a1q

(−1)�η − (−1) jξ

1

(2π i)2

∫∫ p∏
s=q

(aq+1,s − v′)
(1 + aq+1,s − u′)

×
∏q−1

s=� π−1 sin π(a1q + u′ − a1s)∏q−1
s= j (−π)−1 sin π(a1q + v′ − a1s)

dv′ du′ O(1)

In principle, at this point, one expects an expression that contributes to order O(1) in
�; but notice that the integrand is entire in the integration variable u′ and thus a simple
argument using Cauchy theorem shows that it vanishes. Thus the leading contribution
must come from the next order in �, namely, O(�−1).

Case: j, � > q. This is entirely analogous to the above and left to the reader.

Case: j < q < �. We proceed following the same logic as before.

∏q−1
s=0 (u − a1s)

∏q−1
s= j (a1s − v)∏ j−1

s=0 (1 + v − a1s)

�−1∏
s=q

π

sin π(u − a1s)

p∏
s=q

(a1s − v)

(1 + a1s − u)
∇K (u, v)

=
∏q−1

s=0 (u − a1s)
∏q−1

s= j (a1s − v)∏ j−1
s=0 (1 + v − a1s)

×
�−1∏
s=q

π

sin π(u − a1s)
�(p−q+1)(u−v−1)

(
1 + O

(
�−1

))
O

(
�p−q+1

)

=
∏q−1

s=0 (u − a1s)
∏q−1

s= j (a1s − v)∏ j−1
s=0 (1 + v − a1s)

�−1∏
s=q

π

sin π(u − a1s)
�(p−q+1)(u−v)O(1).

(4.116)

Substituting (4.116) into the formula for the kernels thus yields

�p−q+1G(p)
j� (�p−q+1ξ,�p−q+1η; {a1, . . . , ap})

= 1

(−1)� − (−1) jξ

∫∫ ∏q−1
s=0 (u − a1s)

∏q−1
s= j (a1s − v)

(2π i)2
∏ j−1

s=0 (1 + v − a1s)

×
�−1∏
s=q

π

sin π(u − a1s)
�(p−q+1)(u−v)

(
�p−q+1ξ

)v (
�p−q+1η

)−u O(1)dv du
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= 1

(−1)� − (−1) jξ

∫∫ ∏q−1
s=0 (u − a1s)

∏q−1
s= j (a1s − v)

(2π i)2
∏ j−1

s=0 (1 + v − a1s)

×
�−1∏
s=q

π

sin π(u − a1s)
ξvη−u O(1)dvdu = O(1)

For the other scaling we use again a shift of u, v, thus obtaining an estimate of O(1).
Details are omitted.

Case: � < q < j . The computation proceeds similarly to the previous case; this time
we obtain a leading order term O(1) in the integrand that is entire in one of the two
variables and thus vanishes by Cauchy’s theorem. Hence we get a leading order term of
order O(�−1).

Remaining cases. They are all handled along the same lines; the verification is left to
the reader because there is really no further surprise in the computation. ��

References

1. Akemann, G., Burda, Z.: Universal microscopic correlation functions for products of independent Ginibre
matrices. J. Phys. A: Math. Theor. 45, 465201 (2012)

2. Akemann, G., Burda, Z., Kieburg, M.: Universal distribution of Lyapunov exponents for products of
Ginibre matrices. J. Phys. A.Math. Theor. 47, 395202 (2014a)

3. Akemann,G., Burda, Z., Kieburg,M., Nagao, T.: Universalmicroscopic correlation functions for products
of truncated unitary matrices. J. Phys. A 47, 255202 (2014b)

4. Akemann, G., Ipsen, J., Kieburg, M.: Products of rectangular random matrices: singular values and
progressive scattering. Phys. Rev. E 88, 052118 (2013)

5. Akemann, G., Kieburg, M., Wei, L.: Singular value correlation functions for products of Wishart random
matrices. J. Phys. A Math. Theor. 46, 275205 (2013)

6. Balogh, F., Bertola, M.: Regularity of a vector potential problem and its spectral curve. J. Approx. Theory
161, 353–370 (2009)

7. Barnes, E.: The asymptotic expansion of integral functions defined by generalized hypergeometric se-
ries. Proc. London. Math. Soc 2(5), 59–116 (1907)

8. Bertola, M., Gekhtman, M., Szmigielski, J.: The Cauchy two-matrix model. Commun. Math. Phys.
287(3), 983–1014 (2009)

9. Bertola, M., Gekhtman, M., Szmigielski, J.: Strong asymptotics for Cauchy biorthogonal polynomials
with application to the Cauchy two-matrix model. J. Math. Phys. 54(4), 043517, 25 pp (2013)

10. Bertola,M.,Gekhtman,M., Szmigielski, J.: Cauchy-Laguerre two-matrixmodel and theMeijer-G random
point field. Commun. Math. Phys. doi:10.1007/s00220-013-1833-8

11. Beals, R., Szmigielski, J.: Meijer G-functions: a gentle introduction. Notices of the AMS, volume 60,
number 7, (2013)

12. Burda, Z., Jarosz, A., Livan, G., Nowak, M.A., Swiech, A.: Eigenvalues and singular values of products
of rectangular Gaussian random matrices. Phys. Rev. E 82, 061114 (2010)

13. Deift, P.: Orthogonal polynomials and random matrices: a Riemann–Hilbert approach. Courant Lecture
Notes in Mathematics, vol. 3. New York University, Courant Institute of Mathematical Sciences, New
York/American Mathematical Society, Providence, RI (1999)

14. Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R.: New results on equlibirum measure for logarithmic
potentials in the presence of an external field. J. Approx. Theory 95, 388–475 (1998)

15. Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., Zhou, X.: Uniform asymptotics for
polynomials orthogonal with respect to varying exponential weights and applications to universality
questions in random matrix theory. Commun. Pure Appl. Math. 52, 1335–1425 (1999)

16. Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics
for the MKdV equation. Ann. Math. 137, 295–368 (1993)

17. Duits, M., Kuijlaars, A.B.J., Mo, M.Y.: The Hermitian two matrix model with an even quartic poten-
tial. Mem. Amer. Math. Soc. 217(1022), v+105 (2012)

18. Duits, M., Kuijlaars, A.B.J.: Universality in the two-matrix model: a Riemann–Hilbert steepest-descent
analysis. Commun. Pure Appl. Math. 62(8), 1076–1153 (2009)

http://dx.doi.org/10.1007/s00220-013-1833-8


Universality Conjecture and Results for a Model of Several Coupled Positive Matrices 1141

19. Eynard, B., Mehta, M.: Matrices coupled in a chain. I. Eigenvalue correlations. J. Phys. A 31(19), 4457–
4464 (1998)

20. Fields, J.L.: The asymptotic expansion of the Meijer G-Function. Math. Comp. 26, 757–765 (1972)
21. Gakhov, F.: Boundary value problems. Translated from the Russian. Reprint of the 1966 translation.

Dover Publications, Inc., New York (1990)
22. Girotti, M.: Gap probabilities for the Generalized Bessel process: a Riemann–Hilbert approach. Math.

Phys. Anal. Geom. 17, 183–211 (2014)
23. Ince, E.: Ordinary Differential Equations. Dover Publications, New York (1944)
24. Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordinary differential equations with

rational coefficients. II. Physica D 2, 407–448 (1981)
25. Karlin, S.: Total positivity. Vol I. Stanford University Press, Stanford, Calif (1968) xii+576 pp
26. Kuijlaars, A., Van Assche,W.,Wielonsky, F.: Quadratic Hermite-Padé Approximation to the Exponential

Function: a Riemann–Hilbert Approach. Construct. Approx. 21, 351–412 (2005)
27. Kuijlaars, A.: Universality, Chapter 6 in The Oxford Handbook of Random Matrix Theory. Oxford

University Press, Oxford (2011)
28. Kuijlaars, A., Zhang, L.: Singular values of products of Ginibre random matrices, multiple orthogonal

polynomials and hard edge scaling limits. Commun. Math. Phys. 332, 759–781 (2014)
29. Mahoux, G., Mehta, M., Normand, J.-M.: Matrices coupled in a chain. II. Spacing functions. J. Phys.

A. 31(19), 4457–4464 (1998)
30. Mehta, M.: Random Matrices, Third edition. Pure and Applied Mathematics (Amsterdam), 142. Else-

vier/Academic Press, Amsterdam (2004)
31. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/
32. Tracy, C., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1),

151–174 (1994)
33. Tracy, C., Widom, H.: Level-spacing distributions and the Bessel kernel. Commun. Math. Phys. 161(2),

289–309 (1994)
34. Zhang, L.: A note on the limiting mean distribution of singular values for products of twoWishart random

matrices. J. Math. Phys. 54, 083303 (2013)

Communicated by P. Deift

http://dlmf.nist.gov/

	Universality Conjecture and Results for a Model of Several Coupled Positive-Definite Matrices
	Abstract:
	1 Introduction
	2 Statement of Results
	2.1 Part I: general structure
	2.2 Part II: asymptotic eigenvalue distribution near the origin in the p-Laguerre case.
	2.3 Chain separation in the p-chain Meijer-G case

	3 Part I. Correlation Kernels for Finite N: Proof of Theorems 2.5 and 2.8
	4 Part II: Asymptotics for the p-Laguerre Chain
	4.1 Riemann--Hilbert analysis for the Cauchy-Laguerre three-chain
	4.1.1 mathfrakg-function transformation.
	4.1.2 Opening of lenses.
	4.1.3 Outer parametrix.
	4.1.4 Local RHP at the origin z=0.
	4.1.5 Parametrices near z=a and z=b.
	4.1.6 Ratio problem and final transformation.
	4.1.7 Iterative solution of the X-RHP.

	4.2 Proof of conjecture 2.10 for the Cauchy-Laguerre three matrix model
	4.2.1 General origin parametrix.
	4.2.2 Computation of the right hand side in (4.75) for general p geq 2.
	4.2.3 The one-matrix ``chain''.
	4.2.4 Comparison with [10], two matrix chain.
	4.2.5 Comparison with [28], singular values of products of Ginibre matrices.

	4.3 Limiting random point fields and chain separation

	References




