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Abstract: We prove that a Poisson–Newton formula, in a broad sense, is associated
to each Dirichlet series with a meromorphic extension to the whole complex plane of
finite order. These formulas simultaneously generalize the classical Poisson formula
and Newton formulas for Newton sums. Classical Poisson formulas in Fourier analysis,
explicit formulas in number theory and Selberg trace formulas in Riemannian geometry
appear as special cases of our general Poisson–Newton formula.

1. Introduction

All classical Poisson formulas for functions in Fourier analysis result from the general
distributional Poisson formula

∑

n∈Z

ei 2π
λ

nt = λ
∑

k∈Z

δλk, (1)

which is an identity of distributions identifying an infinite sum of exponentials, con-
verging in the sense of distributions, and a purely atomic distribution. This distributional
formula is related to the simplest finite Dirichlet series

f (s) = 1 − e−λs .

It is interesting to observe that on the left hand side of (1) we have an exponential
sum

W ( f ) =
∑

ρ

eρt ,

where the sum runs over the zeros ρn = 2π i
λ

n, n ∈ Z, of f , and on the right hand side
of (1) we have a sum of atomic masses at the multiples of the fundamental frequency λ.
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One can say that the frequencies associated to the zeros are resonant at the fundamental
frequencies. Taking the Fourier transform we obtain the dual Poisson formula that is
of the same form where we exchange zeros and fundamental frequencies. Thus the
fundamental frequencies are also resonant at the zeros.

The main purpose of this article is to show that this type of formulae are general
and to each meromorphic Dirichlet series f we can associate a distributional Poisson
formula

W ( f ) =
∑

ρ

nρeρt =
∑

k

〈λ,k〉bk δ〈λ,k〉, (2)

where the first sum of exponentials runs over the divisor of f , i.e., zeros and poles ρ with
multiplicities nρ , and the second sum runs over non-zero sequences k = (k1, k2, . . .) ∈
N

∞ of non-negative integers, all of them zero but finitely many, and 〈λ,k〉 = ∑
λ j k j .

The coefficients bk are determined by the formula − log f (s) = ∑
k bke−〈λ,k〉s . The

equality holds in R
∗
+. Conversely, we prove that any such Poisson formula comes from

a Dirichlet series.
The distribution

W ( f ) =
∑

ρ

nρeρt

is well defined in R
∗
+ and is called the Newton–Cramer distribution of f . We name it

after Newton because it appears as a distributional interpolation of the Newton sums to
exponents t ∈ R, since in the complex variable1 z = es the zeros are the α = eρ so, for
simple zeros such that ρ − ρ′ �= 2π ik, k ∈ Z,

W ( f )(t) =
∑

α

αt ,

and for integer values t = m ∈ Z we recognize (in case of convergence) the Newton
sums

W ( f )(m) = Sm =
∑

α

αm .

There is a precise theorem behind this observation. We show that our Poisson–Newton
formula for a finite Dirichlet series f with a single fundamental frequency is strictly
equivalent to the classical Newton relations. This is the reason why we also name after
Newton our general Poisson formulas.

Writing ρ = iγ we see that the sum W ( f ) on the left hand side of (2) is the Fourier
transform of the atomic Dirac distributions δγ and we can formally write

∑

γ

niγ δ̂γ =
∑

k

〈λ,k〉bk δ〈λ,k〉.

The form of this formula, relating zeros to fundamental frequencies, strongly recalls
other distributional formulas in other contexts. In number theory, more precisely in
the theory of zeta and L-functions, the same type of identities do appear as “explicit
formulas” associated to non-trivial zeros of the zeta and other L-functions. These explicit
formulas, when written in distributional form, reduce to a single distributional relation

1 The variable z = es or better z = e−s is the proper variable when dealing with Dirichlet series.
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that identifies a sum of exponentials associated to the divisor of the zeta or L-function and
an atomic distribution associated to the location of prime numbers. Usually the sum runs
over non-trivial zeros, and the sum over trivial zeros appears hidden in other forms as a
Weil functional, which is classically interpreted as corresponding to the “infinite prime”.2

For that reason, Delsarte labeled this formula as “Poisson formula with remainder” (see
[7]), the “remainder” refers to the sum over the trivial part of the divisor. More precisely,
for the Riemann zeta function, we have in R

∗
+ (see [13])

∑

ρ

nρeρt + W0( f ) = −
∑

p

∑

k≥1

log p δk log p,

where the sum on the left runs over the non-trivial (i.e., non-real) zeros ρ, and the sum
over p runs over prime numbers. Conjecturally, the non-trivial zeros are simple, i.e.,
nρ = 1. The term W0( f ) is the sum over the trivial (real) divisor and is computable

W0( f )(t) = −et +
∑

n≥1

e−2nt = −et +
1

e2t − 1
,

and corresponds to Delsarte “remainder”, or to the Weil functional of the infinite prime.
Also we have in this case

∑

ρ

nρeρt = et/2V (t) + et/2V (−t),

where

V (t) =
∑


γ>0

eiγ t ,

is the classical Cramer function, studied by Cramer [6], where ρ = 1
2 +iγ . This motivates

that we name our distribution W ( f ) also after Cramer.
In Riemannian geometry, we have the same structure for the Selberg trace formula

for compact surfaces with constant negative curvature. With the relevant difference
that Selberg zeta function is of order 2, which gives a “remainder” of order 2 also.
Selberg formula relates the length of primitive geodesics, which play the role of prime
numbers, and the eigenvalues of the Laplacian, which give the zeros of the Selberg zeta
function. For non-negative constant curvature, the formulas are of a different nature and
the distributions on the right side are no longer simple atomic Diracs, but also higher
order derivatives appear [8]. It is well known that one of Selberg’s motivations was
the analogy with the explicit formula in Number Theory that our approach explains.
According to Conrey [5]

“The trace formula resembles the explicit formula in certain ways. Many researchers
have attempted to interpret Weil’s explicit formula in terms of Selberg’s trace formula.”

In the context of dynamical systems and semiclassical quantization, we have
Gutzwiller trace formula (see [10]), which relates the periods of the periodic orbits
(frequencies of the zeta function) of a classical mechanical system to the energy levels
(zeros of the zeta function) of the associated quantum system.

2 It may be more appropriate to talk of the “prime” p = 1. Actually, Arakelov theory suggests that what is
usually understood as “prime” at infinity is better understood as “prime” 1 (cf. the “field” with one element).
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Our goal is to put in the proper context, generalize and make precise the analogy of
Poisson and trace formulas, and derive a general class of Poisson formulas that contain
all such instances. More precisely, to each meromorphic Dirichlet series of finite order
we associate a Poisson–Newton formula. All relevant known formulas can be generated
in this way. On the other hand the fact that explicit formulas in number theory and
Selberg trace formula can be seen as a generalization of Newton formulas seems to be
a new interpretation. It is important to remark that in our general setting the Poisson–
Newton formulas are independent from a possible functional equation for the Dirichlet
series f , contrary to what happens in classical formulas (see Remark 7.4 for the precise
formulation).

2. Newton–Cramer Distribution

Let f be a meromorphic function on the complex plane s ∈ C of finite order (see [1]
for classical results on meromorphic functions). We denote by (ρ) the set of zeros and
poles of f , and the integer nρ is the multiplicity of ρ (positive for zeros and negative
for poles, with the convention nρ = 0 if ρ is neither a zero nor pole). The convergence
exponent of f is the minimum integer d ≥ 0 such that

∑

ρ �=0

|nρ | |ρ|−d < +∞. (3)

We have d = 0 if and only if f is a rational function. We shall assume henceforth
that d ≥ 1. The order o of f satisfies d ≤ [o] + 1. We shall also assume that there is
some σ1 ∈ R such that 
ρ ≤ σ1 for any zero or pole ρ of f .

Associated to the divisor div( f ) = ∑
nρ ρ, we define a distribution

W ( f ) =
∑

nρ eρt (4)

on R
∗
+ =]0,∞[, called the Newton–Cramer distribution. Moreover, we define a distrib-

ution on the whole of R, vanishing on R
∗− =]−∞, 0[. This means that we have to make

sense of the structure of W ( f ) at 0 ∈ R.
We start by fixing the space of distributions we will be working on, which are the

distributions Laplace transformable in the terminology of [20, Section 8]. We denote
D = C∞

0 so D′ is the space of all distributions. The space S of C∞-functions of rapid
decay on R consists of those ϕ such that for any n,m > 0, |tn dm

dtm ϕ| ≤ Cnm . The dual
space S ′ is the Schwartz space of tempered distributions. Then we say that a distribution
W ∈ D′ is (right) Laplace transformable if its support is included in ]− M,∞[, for some
M ∈ R, and there exists some c ∈ R such that W e−ct ∈ S ′. The topology is as follows:
a sequence Wk of Laplace transformable distributions converge to some W if there exists
some uniform M, c such that Supp(Wk) ⊂]−M,∞[ and Wk e−ct → W e−ct in S ′. Note
also that the space of Laplace transformable distributions is stable by differentiation, and
differentiation is continuous in this space (and the same constant c works for the sequence
of derivatives).

To make sense of (4), we are going to construct explicitly a d-th primitive of it which
is a continuous function. For this, we introduce a parameter σ ∈ C which serves as
origin for defining the primitive of W ( f ). The relevant function is

Kd,σ (t) =
(

nσ
td

d!
)

1R+ +
∑

ρ �=σ

(
nρ

(ρ − σ)d
e(ρ−σ)t

)
1R+ .
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This is a Laplace transformable distribution (see Lemma 2.1 below). Set

Wσ ( f ) = eσ t Dd

Dtd

(
(Kd,σ (t)− Kd,σ (0))1R+

)
, (5)

where D
Dt denotes the distributional derivative. The following justifies our definition of

the Newton–Cramer distribution (4).

Lemma 2.1. For finite sets A, consider the family of locally integrable functions

W̃A( f ) =
⎛

⎝
∑

ρ∈A

nρeρt

⎞

⎠ 1R+ .

There is a family of Laplace transformable distributions WA,σ ( f ) which coincides with
W̃A( f ) in R

∗, and which converges in R (over the filter of finite sets A), to the Laplace
transformable distribution Wσ ( f ) (converging as Laplace transformable distributions).

Proof. We prove first the lemma whenσ is not a zero nor pole of f . Letα = σ1−
σ ∈ R.
We define

K
(t) =
∑

ρ

(
nρ

(ρ − σ)

e(ρ−σ)t

)
1R+ . (6)

(We drop the subscript σ from the notation during this proof.) Then for 
 ≥ d, K
 is
absolutely convergent for t ∈ R+, since

∣∣∣e(ρ−σ)t
∣∣∣ = e
(ρ−σ)t ≤ eαt ,

and

|e−α t K
| ≤
∑

ρ

|nρ |
|ρ − σ |
 < ∞.

So K
 is a uniformly convergent on compact subsets of R+, and hence it is continuous
in R

∗. The function

F
(t) = (K
(t)− K
(0))1R+

is a continuous function on R, for 
 ≥ d.
For a finite set A, denote by

K
,A(t) =
∑

ρ∈A

(
nρ

(ρ − σ)

e(ρ−σ)t

)
1R+

the corresponding sum over ρ ∈ A, and F
,A(t) = (K
,A(t) − K
,A(0))1R+ . Then
F
,A → F
 uniformly on compact subsets of R. More precisely, |F
,A − F
| ≤ cAeαt

with cA → 0. In particular, e−(α+ε)t F
,A → e−(α+ε)t F
 in S ′, for some ε > 0. On R
∗,

W̃A( f ) =
⎛

⎝
∑

ρ∈A

nρ eρt

⎞

⎠ 1R+ = eσ t dd

dtd
Fd,A(t).
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We consider

WA,σ ( f ) = eσ t Dd

Dtd
Fd,A,

taking the distributional derivative.
Let K be a smooth function on R. It is easy to check that D

Dt (K 1R+) = K ′1R+ +
K (0)δ0, as distributions in D′. This formula holds also for Laplace transformable dis-
tributions. We apply this to F
,A, using that K ′


,A = K
−1,A. We get

Dd

Dtd
Fd,A = K0,A(t) + K1,A(0)δ0 + K2,A(0)δ

′
0 + · · · + Kd−1,A(0)δ

(d−2)
0

= K0,A(t) +

⎛

⎝
∑

ρ∈A

nρ
ρ − σ

⎞

⎠ δ0 +

⎛

⎝
∑

ρ∈A

nρ
(ρ − σ)2

⎞

⎠ δ′0

+ · · · +

⎛

⎝
∑

ρ∈A

nρ
(ρ − σ)d−1

⎞

⎠ δ
(d−2)
0 .

Thus the difference between W̃A( f ) and WA,σ ( f ) is a distribution supported at {0}.
We have the convergence Fd,A → Fd as Laplace transformable distributions (with

c = α + ε fixed uniformly). Then differentiating, we have WA,σ ( f ) → Wσ ( f ) as
Laplace transformable distributions, where

Wσ ( f ) = eσ t Dd

Dtd
Fd ,

which is a Laplace transformable distribution with support on R+, as stated.
When σ is part of the divisor, then we do the same proof with

K
(t) =
(

nσ
t



!
)

1R+ +
∑

ρ �=σ

(
nρ

(ρ − σ)

e(ρ−σ)t

)
1R+ ,

which adds to Wσ ( f ) a term nσ eσ t . ��
Definition 2.2. We call Wσ ( f ) defined in (5) the Newton–Cramer distribution associated
to f (with parameter σ ∈ C).

We can write

W ( f ) = Wσ ( f )|R∗
+

= lim
A

W̃A( f )|R∗
+

=
∑

ρ

nρ eρt ,

as a distribution on R
∗
+. Note that W ( f ) is independent of σ , since the only dependence

on σ of Wσ ( f ) is located at 0.

Proposition 2.3. The distribution Wσ ( f ) has support contained in R+, and it is Laplace
transformable (with c > σ1).

Proof. By definition, Wσ ( f ) is a Laplace transformable distribution. By the proof of
Lemma 2.1, we have that e−ct Fd ∈ S ′ with c = α + ε, α = σ1 − 
σ , σ1 = sup{
ρ}.
As Wσ ( f ) = eσ t Dd

Dtd Fd , we have that e−(
σ)t e−ct Wσ ( f ) ∈ S ′. So this means that
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e−(σ1+ε)t Wσ ( f ) ∈ S ′

This means that we can pair Wσ ( f ) with e−st for 
s > σ1,

〈Wσ ( f ), e−st 〉 := 〈e−(σ1+ε)t Wσ ( f ), λ(t)e−(s−(σ1+ε))t 〉,
where λ(t) is any infinitely smooth function with support bounded on the left which
equals 1 over a neighborhood of the support of Wσ ( f ) (see [20, p. 223]). ��

Let f (s) be a meromorphic function with exponent of convergence d, and fix σ as
before. We have defined a distribution Wσ ( f )(t) supported on R+. If we make the change
of variables t �→ −t , we have the distribution Wσ ( f )(−t) defined as

Wσ ( f )(−t) = (−1)de−σ t Dd

Dtd

(
(Kd,σ (−t)− Kd,σ (0))1R−

)
.

This is independent of σ on R
∗− and has a contribution at zero dependent on the

parameter.

Definition 2.4. We define the symmetric Newton–Cramer distribution as Ŵσ ( f ) =
Wσ ( f )(t) + Wσ ( f )(−t).

The symmetric Newton–Cramer distribution is a distribution supported on the whole
of R and symmetric. It satisfies that there is some c > 0 such that h(t)Ŵσ ( f ) ∈ S ′,
where h is smooth with h = e−(c+ε)|t | for |t | ≥ 1. Note also that the only dependence
on σ is at zero.

Formally, Wσ ( f )(t) = (∑
nρeρt

)
1R+ and Wσ ( f )(−t) = (∑

nρe−ρt
)

1R− , so we
can write

Ŵσ ( f ) =
∑

ρ

nρeρ|t |.

3. Poisson–Newton Formula

Let f be a meromorphic function on C of finite order. Let (ρ) be the divisor defined by
f , and assume that the convergence exponent is d, that is, (3) is satisfied. We have the
Hadamard factorization of f (see [1, p. 208])

f (s) = sn0 eQ f (s)
∏

ρ �=0

Em(s/ρ)
nρ ,

where m = d − 1 ≥ 0 is minimal for the convergence of the product with

Em(z) = (1 − z)ez+ 1
2 z2+···+ 1

m zm
,

and Q f is a polynomial uniquely defined up to the addition of an integer multiple of
2π i . The genus of f is defined as the integer

g = max(deg Q f ,m),

and in general we have d ≤ g + 1 and g ≤ o ≤ g + 1 (see [1, p. 209]).
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The origin plays no particular role, thus we may prefer to use the Hadamard product
with origin at some σ ∈ C,

f (s) = (s − σ)nσ eQ f,σ (s)
∏

ρ �=σ
Em

(
s − σ

ρ − σ

)nρ
. (7)

This can be obtained as follows: translate the divisor (ρ) to (ρ − σ), consider the
usual Hadamard factorization, and then do the change of variables s �→ s − σ .

Taking the logarithmic derivative of (7), we obtain

f ′(s)
f (s)

= Q′
f,σ (s) + G(s), (8)

where

G(s) = nσ
s − σ

−
∑

ρ �=σ
nρ

(
1

ρ − s
−

d−2∑

l=0

(s − σ)l

(ρ − σ)l+1

)

= nσ
s − σ

+
∑

ρ �=σ
nρ
(s − σ)d−1

(ρ − σ)d−1

1

s − ρ
.

is a meromorphic function on C, which has a simple pole with residue nρ at each ρ.
Note that Pf,σ = −Q′

f,σ is a polynomial of degree ≤ g−1. We call it the discrepancy
polynomial of f . We have

Pf,σ = G − f ′

f
.

The main result of this section is the following Poisson–Newton formula for a general
meromorphic function f of finite order and with divisor contained in a left half plane,
as above. Denote by L the Laplace transform and by L−1 the inverse operator.

Theorem 3.1. Let f be a meromorphic function of finite order with convergence expo-
nent d and its divisor contained in a left half plane. Fix σ ∈ C. Let Wσ ( f ) be its
Newton–Cramer distribution and Pf,σ (s) = c0(σ ) + c1(σ )s + · · · + cg−1(σ )sg−1 be the
discrepancy polynomial. We have (as distributions on R),

Wσ ( f ) =
g−1∑

j=0

c j (σ )δ
( j)
0 + L−1( f ′/ f ).

Proof. We prove the theorem by taking the right-sided Laplace transform of Wσ ( f ).
Here we have to choose 
s > σ1.

L(Wσ ( f )) = 〈Wσ ( f ), e−st 〉R+ =
〈

Dd

Dtd
Fd(t), e(σ−s)t

〉

R+

=
∫ ∞

0
(−1)d(Kd(t)− Kd(0))

dd

dtd
e(σ−s)t dt

= nσ (−1)d
(σ − s)d

d!
∫ +∞

0
tde(σ−s)t dt

+
∑

ρ

nρ
(ρ − σ)d

(−1)d(σ−s)d
(∫ +∞

0
e(ρ−σ)t e(σ−s)t dt−

∫ +∞

0
e(σ−s)t dt

)
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= nσ
s − σ

−
∑

ρ

nρ
(s − σ)d

(ρ − σ)d

(
1

ρ − s
− 1

σ − s

)

= nσ
s − σ

−
∑

ρ

nρ
(s − σ)d−1

(ρ − σ)d−1

1

ρ − s
= G(s) = f ′(s)

f (s)
+ Pf,σ (s) .

By uniqueness of the Laplace transform for Laplace transformable distributions (see
[20, Theorem 8.3-1]), we have

Wσ ( f ) = L−1( f ′/ f ) + L−1(Pf,σ ),

where L−1(Pf,σ ) is the inverse Laplace transform of the polynomial Pf,σ . This is a
distribution supported at {0}. If Pf,σ (s) = c0 + c1s + · · · + cg−1sg−1, then

L−1(Pf,σ ) = c0δ0 + c1δ
′
0 + · · · + cg−1δ

(g−1)
0 ,

where c j = c j (σ ). ��
Note in particular that

W ( f ) = Wσ ( f )|R∗
+

= L−1( f ′/ f )|R∗
+
.

The inverse Laplace transform L−1(F) is a well defined distribution of finite order
when F has polynomial growth on a half plane [20, Theorem 8.4-1]. For f a meromorphic
function of finite order whose divisor is contained on a left half plane, F = f ′/ f has
polynomial growth on a half plane (see [14]), hence L−1(F) is well-defined (although
this is also clear from Theorem 3.1).

Let us recall how to compute L−1(F) from [20, p. 236]. Take m0 which is two units
more than the order of growth of F , that is F(s)|s|−m0 ≤ C/|s|2 for 
s ≥ σ2 > 0.
Define

L(t) =
∫ +∞

−∞
F(c + iu)

(c + iu)m0
e(c+iu)t du

2π
.

This is a continuous function, which vanishes on R−. It is independent of the choice
of c (subject to c > max{σ1, σ2} and for F holomorphic). Then

L−1(F)(t) = Dm0

Dtm0
L(t),

which is a distribution of order at most m0 − 2.
More explicitly, for an appropriate test function ϕ, letting ψ(t) = ϕ(t)ect , we have

〈L−1(F), ϕ〉 = 〈L(t), (−1)m0ϕ(m0)(t)〉
=

∫

R

∫ +∞

−∞
F(c + iu)

(c + iu)m0
(−1)m0ϕ(m0)(t)e(c+iu)t du

2π
dt

=
∫ +∞

−∞
(−1)m0

F(c + iu)

(c + iu)m0

(∫

R

ϕ(m0)(t)e(c+iu)t dt

)
du

2π

=
∫ +∞

−∞
F(c + iu)

(c + iu)m0

(∫

R

(c + iu)m0ϕ(t)e(c+iu)t dt

)
du

2π
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=
∫ +∞

−∞

∫

R

F(c + iu)ϕ(t)e(c+iu)t dt
du

2π

=
∫ +∞

−∞
F(c + iu)ψ̂(−u)

du

2π
, (9)

doing m0 integrations by parts in the fourth line.
We can give a symmetric version of the Poisson–Newton formula for

Ŵ ( f ) =
∑

nρeρ|t |.

Theorem 3.2. We have, as distributions on R,

Ŵσ ( f ) = 2

g−1
2∑

l=0

c2l(σ ) δ
(2l)
0 +

(L−1( f ′/ f )(t) + L−1( f ′/ f )(−t)
)
.

Proof. It follows from the definition Ŵσ ( f )(t) = Wσ ( f )(t) + Wσ ( f )(−t) and
Theorem 3.1. Note that doing the change of variables t �→ −t on

∑g−1
l=0 cl δ

(l)
0 , we

get
∑g−1

l=0 (−1)l cl δ
(l)
0 . ��

Furthermore, we have a parameter version of our main theorem by doing the change
of variables s �→ αs +β, with α > 0 and β ∈ C. Take σ ′ = σ−β

α
. We denote, as a slight

abuse of notation,

e− β
α
|t |Ŵσ ( f )(t) = e− β

α
t Wσ ( f )(t) + e

β
α

t Wσ ( f )(−t).

(multiplication of a distribution by a non-smooth function is not defined in general, so
we have to give an explicit meaning to the left hand side). Note that formally,

e− β
α
|t |Ŵσ ( f )(t/α) =

∑

ρ

nρe(ρ−β)|t |/α .

Corollary 3.3. We have the equality of distributions on R

e− β
α
|t |Ŵσ ( f )(t/α) = 2

g−1
2∑

l=0

c′
2l δ

(2l)
0 +

(
e− β

α
tL−1( f ′/ f )(t/α) + e

β
α

tL−1( f ′/ f )(−t/α)
)
,

for some c′
j explicitly determined in the proof below.

Proof. Consider the meromorphic function g(s) = f (αs +β), which has all its zeros in
a half-plane. The zeroes of g are ((ρ − β)/α). By the definition (5), we have

Wσ ′(g)(t) = e− β
α

t Wσ ( f )(t/α).

The discrepancy polynomials satisfy Qg,σ ′(s) = constant + Q f,σ (αs +β). Therefore

Pg,σ ′(s) = αPf,σ (αs + β)

Write c′
0 + c′

1s + · · · + c′
g−1sg−1 = α(c0 + c1(αs + β) + · · · + cg−1(αs + β)g−1). The

penultimate line of Eq. (9) implies that

L−1(g′/g)(t) = e− β
α

tL−1( f ′/ f )(t/α).

Then Theorem 3.2 applied to g implies the result. ��
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We end up with an application for a real analytic function. Note that for a non-
holomorphic function h, with polynomial decay in the right half-plane, the Laplace
transform depends on the line of integration. We denote L−1

β (h) for the integration
along 
s = β, with β large enough.

Corollary 3.4. For a real analytic function f and β ∈ R to the right of all zeroes of f ,
we have as distributions on R,

e− β
α
|t |Ŵσ ( f )(t) = 2

g−1
2∑

l=0

c′
2l δ

(2l)
0 + e− β

α
tL−1
β

(
2
( f ′/ f )

)
(t/α).

Proof. We only have to prove that, for a real analytic function F , and γ to the right of
the zeroes, we have

e−γ tL−1(F)(t) + eγ tL−1(F)(−t) = e−γ tL−1
γ (2
F) (t).

By (9), we have

〈e−ctL−1(F)(t), ϕ(t)〉 =
∫ +∞

−∞
F(c + iu)ϕ̂(−u)

du

2π

Analogously,

〈ectL−1(F)(−t), ϕ(t)〉 = 〈e−ctL−1(F)(t), ϕ(−t)〉 =
∫ +∞

−∞
F(c + iu)ϕ̂(−u)

du

2π

=
∫ +∞

−∞
F(c − iu)ϕ̂(u)

du

2π
=

∫ +∞

−∞
F(c + iv)ϕ̂(−v) dv

2π
.

Adding both, we get
∫ +∞

−∞
2 (
F(c + iv)) ϕ̂(−v) dv

2π
= 〈e−ctL−1

c (2
F), ϕ(t)〉,

as required. ��
For later use, we also need to determine the relation between Q f,σ and Q f,0 = Q f .

In particular, the relation between the coefficients c0(σ ) and c0(0) = c0.
Let f be of finite order and consider the Hadamard factorization of f

f (s) = sn0 eQ f (s)
∏

ρ �=0

Em(s/ρ)
nρ ,

and the corresponding Hadamard factorization centered at σ ∈ C,

f (s) = (s − σ)nσ eQ f,σ (s)
∏

ρ �=σ
Em

(
s − σ

ρ − σ

)nρ
.

Lemma 3.5. For d = 2 we have

c0(σ ) = c0 +
n0

σ
+

nσ
σ

+
∑

ρ �=0,σ

nρ
−σ

ρ(ρ − σ)
(10)
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Proof. We need to understand the difference between these two factorizations. We take
logarithmic derivatives to get

nσ
s − σ

+ Q′
f,σ +

∑

ρ �=0,σ

nρ
(s − σ)m

(ρ − σ)m

1

s − ρ
+ n0

(s − σ)m

(−σ)m
1

s

= n0

s
+ Q′

f +
∑

ρ �=0,σ

nρ
sm

ρm

1

s − ρ
+ nσ

sm

σm

1

s − σ

Therefore

Q′
f,σ − Q′

f = n0
(−σ)m − (s − σ)m

(−σ)ms
+ nσ

sm − σm

σm(s − σ)

+
∑

ρ �=0,σ

nρ
sm(ρ − σ)m − (s − σ)mρm

ρm(ρ − σ)m

1

s − ρ

For m = 1 this reduces to

Q′
f,σ − Q′

f = n0

σ
+

nσ
σ

+
∑

ρ �=0,σ

nρ
−σ

ρ(ρ − σ)
.

��

4. Dirichlet Series

We consider a non-constant Dirichlet series

f (s) = 1 +
∑

n≥1

an e−λns, (11)

with an ∈ C and

0 < λ1 < λ2 < · · ·
with λn → +∞ or (λn) is a finite set (equivalently, take the sequence (an) with all
but finitely many elements being zero). Suppose that we have a half plane of absolute
convergence (see [11] for background on Dirichlet series), i.e., for some σ̄ ∈ R we have

∑

n≥1

|an| e−λn σ̄ < +∞ .

It is classical [11, p. 8] that

σ̄ = lim sup
log(|a1| + |a2| + · · · + |an|)

λn
.

The Dirichlet series (11) is therefore absolutely and uniformly convergent on right
half-planes 
s ≥ σ , for any σ > σ̄ .

We assume that f has a meromorphic extension of finite order to all the complex
plane s ∈ C. We denote by (ρ) the set of zeros and poles of f , and the integer nρ is the
multiplicity of ρ. We have, uniformly on 
s,

lim
s→+∞ f (s) = 1,

thus

σ1 = sup
ρ


ρ < +∞,
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so f (s) has neither zeros nor poles on the half plane 
s > σ1. Sometimes in the
applications σ1 is a pole of f because when the coefficients (an) are real and positive
then f contains a singularity at σ̄ by a classical theorem of Landau (see [11, Theorem
10]). The singularity is necessarily a pole by our assumptions, and in general σ1 = σ̄ .

On the half plane 
s > σ1, log f (s) is well defined taking the principal branch of
the logarithm. Then we can define the coefficients (bk) by

− log f (s) = − log

⎛

⎝1 +
∑

n≥1

an e−λns

⎞

⎠ =
∑

k∈�
bk e−〈λ,k〉s, (12)

where � = {k = (kn)n≥1 | kn ∈ N, ||k|| = ∑ |kn| < ∞, ||k|| ≥ 1}, and 〈λ,k〉 =
λ1k1 + · · ·+λl kl , where kn = 0 for n > l. Note that the coefficients (bk) are polynomials
on the (an). More precisely, we have

bk = (−1)||k||

||k||
||k||!∏

j k j !
∏

j

a
k j
j . (13)

Note that if the λn are Q-dependent then there are repetitions in the exponents of (12).
The main result is the following Poisson–Newton formula associated to the Dirichlet

series f .

Theorem 4.1. As Laplace transormable distributions in R we have

Wσ ( f ) =
g−1∑

k=0

ck(σ )δ
(k)
0 +

∑

k∈�
〈λ,k〉 bk δ〈λ,k〉.

Proof. By Theorem 3.1, we only have to prove that the (right) Laplace transform of the
distribution

V =
∑

k

〈λ,k〉 bk δ〈λ,k〉

equals f ′/ f . We compute

〈V, e−ts〉R+ =
〈
∑

k

〈λ,k〉 bk δ〈λ,k〉, e−ts

〉

R+

=
∑

k

〈λ,k〉 bke−〈λ,k〉s = (log f (s))′ = f ′(s)
f (s)

,

as required. ��
Recalling that W ( f ) = Wσ ( f )|R∗

+
, we have the Poisson–Newton formula on R

∗
+,

W ( f ) =
∑

k∈�
〈λ,k〉 bk δ〈λ,k〉, (14)

as distributions on R
∗
+.
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Consider a Dirichlet series f (s) = 1 +
∑

aneλns and let

f̄ (s) = f (s̄) = 1 +
∑

āneλns

be its conjugate. Then f̄ is a Dirichlet series whose zeros are the {ρ̄} and nρ̄ = nρ . Also
bk( f̄ ) = bk( f ). The Poisson–Newton formula for f̄ is

Wσ̄ ( f̄ )(t) =
g−1∑

l=0

c̄l δ
(l)
0 +

∑

k∈�
〈λ,k〉bk δ〈λ,k〉 .

Corollary 4.2. For a real analytic Dirichlet series f , that is f̄ (s) = f (s), we have that
for σ ∈ R, the numbers cl and bk are real. The converse also holds.

Proof. For a real analytic Dirichlet series, an are real. Hence bk are real numbers. The
discrepancy polynomial has also real coefficients, so the cl are real. The last point is due
to the fact that the association f �→ Wσ ( f ) is one-to-one, as its inverse is the Laplace
transform. ��

We also have a symmetric Poisson–Newton formula for

Ŵσ ( f )(t) = Wσ ( f )(t) + Wσ ( f )(−t) =
∑

ρ

nρeρ|t |.

Theorem 4.3. For a Dirichlet series f , we have as distributions on R,

Ŵσ ( f )(t) = 2

g−1
2∑

l=0

c2l(σ ) δ
(2l)
0 +

∑

k∈�∪(−�)
〈λ, |k|〉 b|k| δ〈λ,k〉,

where we denote |k| = −k, for k ∈ −�. ��
For completeness, we also give parameter versions of the Poisson–Newton formulas

for Dirichlet series. Observe that the space of Dirichlet series is invariant by the change
of variables s �→ αs +β, with α > 0 and β ∈ C. We have the following Poisson–Newton
formula for

e− β
α
|t |Ŵσ ( f )(t/α) =

∑

ρ

nρe(ρ−β)|t |/α.

Corollary 4.4. Let α > 0 and β ∈ R. We have as distributions on R,

e− β
α
|t |Ŵσ ( f )(t/α) = 2

g−1
2∑

l=0

c′
2l δ

(2l)
0 +

∑

k∈�∪(−�)
α 〈λ, |k|〉e−〈λ,|k|〉β b|k| δα〈λ,k〉,

where c′
j are given by c′

0+c′
1s+· · ·+c′

g−1sg−1 = α(c0+c1(αs+β)+· · ·+cg−1(αs+β)g−1).

Proof. This results by applying Corollary 3.3 to the Dirichlet series f (s). ��
In particular, for α = 1 and g = 1 that we use in the applications, we get

∑

ρ

nρe(ρ−β)|t | = 2c0(σ ) δ0 +
∑

k∈�∪(−�)
〈λ, |k|〉e−〈λ,|k|〉β b|k| δ〈λ,k〉.
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Here we determine c′
0 explicitly: we have g(s) = f (s + β) and σ ′ = σ − β. Then

c′
0 = c′

0(g, σ
′) = c0( f, σ ).

5. Basic Applications

5.1. Classical Poisson formula. The Poisson–Newton formula that we have proved in
Sect. 4 is a generalization of the well-known classical Poisson formula

∑

k∈Z

ei 2π
λ

kt = λ
∑

k∈Z

δλk . (15)

where λ > 0. Actually this Poisson formula is associated to a Dirichlet series of only
one frequency.

We derive the classical Poisson formula from the symmetric Poisson–Newton for-
mula. It is also interesting to clarify the structure of the Newton–Cramer distribution at
0. It helps to understand why the Dirac δ0 appearing in the right side of the classical
Poisson formula is of a different nature than the other δλk for k �= 0, something that was
intuitively suspected from the analogy with trace formulas (see a comment on this in
[4, p. 2]).

In order to use the symmetric Poisson–Newton formula we compute the discrepancy
polynomial Pf for f (s) = 1 − e−λs . We have that σ = 0 is a zero. From the classical
Hadamard factorization

sinh(πs) = πs
∏

k∈Z∗

(
1 − s

ik

)
e

s
ik ,

we get the Hadamard factorization for f ,

f (s) = 2e−λs/2 sinh(λs/2) = sλe−λs/2
∏

k∈Z∗

(
1 − s

ρk

)
e

s
ρk .

Note that this is equivalent to

G(s) = 1

s
−

∑

k∈Z∗

(
1

ρk − s
− 1

ρk

)
= λ/2

tanh (λs/2)
.

Thus Q f (s) = (log λ + 2π in)− λ
2 s, with n ∈ Z, and

Pf (s) = −Q′
f (s) = c0 = λ

2
.

Therefore we can apply the symmetric Poisson–Newton formula (Theorem 4.3) and
we get

∑

k∈Z

ei 2π
λ

k|t | = 2c0δ0 + λ
∑

k∈Z∗
δλk = λδ0 + λ

∑

k∈Z∗
δλk = λ

∑

k∈Z

δλk .

We finally observe that

∑

k∈Z

ei 2π
λ

k|t | = 1 + 2
+∞∑

k=1

cos

(
2π

λ
k|t |

)
= 1 + 2

+∞∑

k=1

cos

(
2π

λ
kt

)
=

∑

k∈Z

ei 2π
λ

kt ,

because we can reorder freely a converging (in the distribution sense) infinite series of
distributions.
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5.2. Newton formulas. We show now how the Poisson–Newton formula is a general-
ization to Dirichlet series of Newton formulas which express Newton sums of roots of
a polynomial equation in terms of its coefficients (or elementary symmetric functions).

Let P(z) = zn + a1zn−1 + · · · + an be a polynomial of degree n ≥ 1 with zeros
α1, . . . , αn repeated according to their multiplicity. For each integer m ≥ 1, the Newton
sums of the roots are the symmetric functions

Sm =
n∑

j=1

αm
j .

From the fundamental theorem on symmetric functions, these Newton sums can be
expressed polynomially with integer coefficients in terms of elementary symmetric func-
tions, i.e., in terms of the coefficients of P . These are the Newton formulas. For instance,
if for k ≥ 1

�k =
∑

1≤i1<···<ik≤n

αi1 . . . αik = (−1)kak,

then we have

S1 = �1

S2 = �2
1 − 2�2

S3 = �3
1 − 3�2�1 + 3�3

S4 = �4
1 − 4�2�

2
1 + 4�3�1 + 2�2

2 − 4�4

...

We recover them applying the Poisson–Newton formula to the finite Dirichlet series

f (s) = e−λns P(eλs) = 1 + a1e−λs + · · · + ane−λns .

The zeros of f are the (ρ j,k) with j = 1, . . . , n, k ∈ Z, and

eρ j,k = α
1/λ
j e

2π i
λ

k .

Thus, using the classical Poisson formula (with σ = 0), its Newton–Cramer distrib-
ution can be computed in R as

∑

ρ

eρ|t | =
n∑

j=1

α
(1/λ)t
j

∑

k∈Z

e
2π i
λ

kt =
n∑

j=1

α
(1/λ)t
j λ

∑

m∈Z

δmλ

= λ
∑

m∈Z

⎛

⎝
n∑

j=1

αm
j

⎞

⎠ δmλ = λ
∑

m∈Z

Sm δmλ.

Now, using the Poisson–Newton formula in R
∗
+

∑

ρ

eρt =
∑

k∈�
〈λ,k〉 bk δ〈λ,k〉,

taking into account the repetitions in the right side, and that λ = (λ1, . . . , λn) =
(λ, 2λ, . . . , nλ), we have, using the formula (13) for the bk,
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Sm = m
∑

k1+2k2+···+nkn=m

bk = m
∑

k1+2k2+···+nkn=m

(||k|| − 1)!∏
j k j

∏

j

�
k j
j ,

which gives the explicit Newton relations. Moreover, Newton relations are equivalent to
the Poisson–Newton formula in R

∗
+ in this case.

For example, for m = 4,

S4 = 4 (b(4,0,0,0) + b(2,1,0,0) + b(1,0,1,0) + b(0,2,0,0) + b(0,0,0,1)),

and from b(4,0,0,0) = 1
4�

4
1 , b(2,1,0,0) = −�2

1�2, b(1,0,1,0) = �1�3, b(0,2,0,0) = 1
2�

2
2

and b(0,0,0,1) = −�4, we get

S4 = �4
1 − 4�2�

2
1 + 4�3�1 + 2�2

2 − 4�4.

6. Functional Equations

When a Dirichlet series satisfies a functional equation, we can deduce a constraint on
the structure at zero of Wσ ( f ) for σ the center of symmetry (Theorem 6.9). We start
by giving a precise definition of the property of “having a functional equation”, as we
know of no reference in the classical literature. We start with a simple remark.

Lemma 6.1. For θ1 < θ2, θ2 − θ1 < π , denote by C(θ1, θ2) the cone of values of s ∈ C

with θ1 < Arg s < θ2. If {ρ} is contained in a cone α + C(θ1, θ2), α ∈ R, then

W ( f )(t) =
∑

ρ

nρeρt ,

is a holomorphic function on the variable t in C(π/2 − θ1, 3π/2 − θ2).

Proof. For t ∈ C(π/2 − θ1, 3π/2 − θ2) we have 
((ρ − α) t) < 0, whence
∣∣eρt

∣∣ < eαt ,

and the series K
(t) defined in (6) is holomorphic in that region, so the result follows.
��

From this we obtain the following straightforward corollary:

Corollary 6.2. The divisor of any Dirichlet series cannot be contained in a cone α +
C(θ1, θ2) for π/2 < θ1 < θ2 < 3π/2.

Proof. From the Poisson formula (14), we get that the distribution W ( f ) is an atomic
distribution on R

∗
+. Thus the sum of exponentials associated to the zeros cannot be a

convergent series for t ∈ R
∗
+. But Lemma 6.1 gives the analytic convergence of the sum

if the divisor is contained in the cone α + C(θ1, θ2). ��
We say that the divisor D1 is contained in the divisor D2, and denote this by D1 ⊂ D2

if any zero, resp. pole, of D1 is a zero, resp. pole, of D2, and |nρ(D1)| ≤ |nρ(D2)|
for all ρ ∈ C. Also if D1 = ∑

nρ ρ and D2 = ∑
mτ τ are two divisors, then the

sum and difference are defined by D1 + D2 = ∑
nρ ρ +

∑
mτ τ and D1 − D2 =∑

nρ ρ +
∑
(−mτ ) τ .
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Definition 6.3. The meromorphic function f has a functional equation if there exists
σ ∗ ∈ R and a divisor D ⊂ div( f ) contained in a left cone α + C(θ1, θ2), with π/2 <
θ1 < θ2 < 3π/2, such that div( f ) − D is infinite and symmetric with respect to the
vertical line 
s = σ ∗.

Proposition 6.4. If f has a functional equation and the divisor of f is contained in a
left half plane then σ ∗ ∈ R is unique.

Proof. Otherwise, if they were two distinct values σ ∗, then div( f )would have an infinite
subdivisor invariant by a real translation and this contradicts the hypothesis that the
divisor of f is contained in a left half plane. ��
Proposition 6.5. If f has a functional equation and the divisor of f is contained in
a left half plane then div( f ) − D is contained in a vertical strip. The minimal strip
{σ− < 
s < σ+}, σ+ ≤ σ1, with this property is the critical strip and σ ∗ = σ−+σ+

2 is its
center.

Proof. Since div( f ) has no zeros nor poles for 
s > σ1, the divisor of div( f ) − D is
contained in a vertical strip due to the symmetry. The minimal vertical strip has to be
compatible with the functional equation, hence σ ∗ = σ−+σ+

2 . ��
Proposition 6.6. If f has a functional equation and the divisor of f is contained in a left
half plane then there is a unique minimal divisor D (i.e., with |nρ(D)| minimal for all
ρ ∈ C), and a unique decomposition D = D0 + D1, D0 and D1 with disjoint supports,
with D0 contained in a left cone σ ∗ + C(θ1, θ2), with π/2 < θ1 < θ2 < 3π/2, and D1 a
finite divisor contained in the half plane 
s > σ ∗, such that div( f )− D is infinite and
symmetric with respect to the vertical line 
s = σ ∗.

Proof. We start with D minimal as in the definition, and we define D0 to be the part of
D to the left of 
s = σ ∗ and D1 the remaining part. It is easy to see that D0 is contained
in a left cone with vertex at σ ∗. ��
Proposition 6.7. If f has a functional equation and the divisor of f is contained in a
left half plane then there exists a meromorphic function χ with div(χ) = D ⊂ div( f ),
such that the function g(s) = χ(s) f (s) satisfies the functional equation

g(2σ ∗ − s) = g(s).

Moreover, we can write χ = χ0 · R with div(χ0) = D0 − τ ∗ D1 and div(R) =
D1 + τ ∗ D1, where τ is the reflexion along 
s = σ ∗, and R is a unique rational function
up to a non-zero multiplicative constant.

The meromorphic function χ (or χ0) is uniquely determined up to a factor exp h(s −
σ ∗) where h is an even entire function. If f has convergence exponent d < +∞, then we
can take χ of convergence exponent d, and then χ is uniquely determined up to a factor
exp P(s − σ ∗) where P is an even polynomial of degree less than d. In particular, when
f is of order 1 then χ and χ0 are uniquely determined up to a non zero multiplicative
constant.

Proof. From Proposition 6.5 we know that σ ∗ is uniquely determined as the center of the
critical strip (which is defined only in terms of the divisor of f ). Translating everything
by σ ∗ we can assume that σ ∗ = 0. By minimality the divisor ofχ is uniquely determined.
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Then χ is uniquely determined up to a factor exp h(s) where h is an entire function. If
χ̂ (s) = (exp h(s))χ(s) gives also a functional equation for f , then we have

f (s) = χ(−s)

χ(s)
f (−s) = χ(−s)

χ(s)

χ̂(s)

χ̂(−s)
f (s).

Therefore

exp(h(s)− h(−s)) = 1,

so for some k ∈ Z,

h(s)− h(−s) = 2π ik.

Specializing for s = 0 we get k = 0 and h is even.
When f is of convergence exponent d < +∞, and since the divisor of χ is contained

in the divisor of f , then we can take χ of convergence exponent at most d. ��
If f is real analytic, then it is easy to see that χ must be real analytic up to the

Weierstrass factor. We will always choose χ to be real analytic. Then g = χ f is real
analytic, and we have a four-fold symmetry and g is symmetric with respect to the
vertical line 
s = σ ∗.

Example 6.8. For the Riemann zeta function f (s) = ζ(s) we have σ ∗ = 1/2, σ− = 0,
σ+ = 1, D0 = −2N

∗, D1 = {1}, and

χ(s) = π−s/2�(s/2)s(s − 1),

χ0(s) = π−s/2�(s/2),

R(s) = s(s − 1).

Note that

g(s) = χ(s)ζ(s) = π−s/2�(s/2)s(s − 1)ζ(s) = 2ξ(s)

(using Riemann’s classical notation for ξ ).

Let f be a meromorphic function of finite order which has its divisor contained in a
left half plane and which has a functional equation. In order to simplify we assume that
σ ∗ is not part of the divisor. For g(s) = χ(s) f (s) we have

g(2σ ∗ − s) = g(s),

and when we express this symmetry in the Hadamard factorization, we get

Qg,σ ∗(2σ ∗ − s) = Qg,σ ∗(s),

hence if we write

Qg,σ ∗(s) =
∑

k

ak(s − σ ∗)k,

the symmetry implies that all odd coefficients are zero a1 = a3 = · · · = 0.
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Theorem 6.9. Let f be a meromorphic function of exponent of convergence d = 2,
which has its divisor contained in a left half plane and has a functional equation. We
assume that σ ∗ is not part of the divisor. Write g = χ f as before, and χ = χ0 R, where
R is a rational function symmetric with respect to σ ∗. Then we have

c0(χ0, σ
∗) + c0( f, σ ∗) = 0.

Proof. We observe that

Qg,σ ∗ = Qχ,σ ∗ + Q f,σ ∗ ,

and for the discrepancy polynomials

Pg,σ ∗ = Pχ,σ ∗ + Pf,σ ∗ .

By the above considerations, Qg,σ ∗(s) = ∑
2k≤g a2k(s − σ ∗)2k . Taking derivatives,

Pg,σ ∗(s) = c0 + c1s + · · · + cg−1sg−1 = −
∑

2k≤g

2ka2k(s − σ ∗)2k−1.

If the exponent of convergence is d = 2, then g = 1, so the discrepancy polynomial
is constant and we have c0(g) = 0. Also c0(g) = c0(χ) + c0( f ) and

Therefore we obtain the result. ��
Another important property which follows from the definition of having a functional

equation is the following.

Proposition 6.10 (Group property). Dirichlet series having a functional equation with
a fixed axis of symmetry form a multiplicative group.

Next, we determine when a finite Dirichlet series satisfies a functional equation.

Proposition 6.11. A finite Dirichlet series

f (s) = 1 +
N∑

n=1

ane−λns,

satisfies a functional equation if and only if it is of the form

f (s) = eμs
[(N−1)/2]∑

n=0

ai (e
(−λn+μ)s + ce(λn−μ)s),

where c = 1 if N is even, c = ±1 if N is odd.

Proof. The Dirichlet series f (s) is of order 1. Suppose that there is some χ(s) of order 1
with zeros and poles in a left cone such that g(s) = χ(s) f (s) is symmetric with respect
to 
s = σ ∗. By translating, we can assume σ ∗ = 0.

The zeros of f (s) lie in a strip, since e−λns f (−s) is also a Dirichlet series. There-
fore χ(s) has finitely many zeros and poles, and hence χ(s) = Q1(s)

Q2(s)
eμs , for some

polynomials Q1(s), Q2(s). The functional equation g(s) = g(−s) reads

Q1(s)Q2(−s)
N∑

n=0

ane(μ−λn)s = Q2(s)Q1(−s)
N∑

n=0

ane(λn−μ)s,

where we have set a0 = 1, λ0 = 0.
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From this it follows that Q1(s)Q2(−s) = c Q2(s)Q1(−s), c ∈ C
∗. It follows easily

that c = ±1. Also 0, λ1, . . . , λN is a sequence symmetric with respect to μ = λN/2.
So λN−i = 2μ− λi and aN−i = ai .

If N even, then λN/2 = μ, c = 1, and

N∑

n=0

ane−λns = eμs
N/2−1∑

i=0

ai (e
(−λi +μ)s + e(λi −μ)s) + aN/2eμs .

If N is odd, then

N∑

n=0

ane−λns = eμs
(N−1)/2∑

i=0

ai (e
(−λi +μ)s + c e(λi −μ)s),

where if c = −1, we have χ(s) = s eμs . ��
An example without functional equation. Consider the elementary Dirichlet series

f (s) = 1 + a1e−λ1s + a2e−λ2s (16)

with 0 < λ1 < λ2 and a j �= 0. It is an entire function on C of order 1.

If λ1, λ2 are rationally dependent, then we may write f (s) = 1 + a1
(
eλs

)k1 +

a2
(
eλs

)k2 , for λ1 = k1λ, λ2 = k2λ, k1, k2 > 0 and coprime. We can compute the
zeros solving the algebraic equation 1 + a1 Xk1 + a2 Xk2 = 0. Therefore, the zeros of
f (s) lie in at most k2 vertical lines, and they form k2 arithmetic sequences of the same
purely imaginary step.

If λ1, λ2 are rationally independent, then we cannot compute explicitly the zeros in
general. We know that they lie in a half-plane 
s < σ1. Also a−1

2 eλ2s f (s) converges to
1 for 
s → −∞. So the zeros of f (s) are located in a half-plane 
s > σ2. Hence in a
strip. By Corollary 6.2, there are infinitely many zeros in that strip.

Now, let (ρ) be the set of zeros. Then � = {k = (k1, k2) ∈ N
2 | (k1, k2) �= (0, 0)},

and

bk = (−1)k1+k2

k1 + k2

(
k1 + k2

k1

)
ak1

1 ak2
2

and the Poisson–Newton formula on R
∗
+ is

∑

ρ

nρeρt =
∑

k

(λ1k1 + λ2k2)bkδλ1k1+λ2k2 .

By Proposition 6.11, the Dirichlet series (16) does not have a functional equation
unless λ2 = 2λ1.

Examples of infinite Dirichlet series with no functional equation. Consider an infinite
Dirichlet series g with meromorphic extension to C satisfying a functional equation
with an infinite number of poles (taking any infinite Dirichlet series g satisfying a
functional equation, either g or g−1 has this property). For example we can take g = 1/ζ .
Consider also the previous example f (s) = 1 + a1e−λ1s + a2e−λ2s , with a1, a2 �= 0,
with frequencies λ1 and λ2 rationally independent with those of g, and λ2 �= 2λ1 so that
f does not have a functional equation.
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Then the product h = f g is an infinite Dirichlet series with meromorphic extension
to C. If h had a functional equation then the axes of symmetry would be the same as
the one for g (because of the symmetry of the poles), but then f = h g−1 will have a
functional equation from the group property 6.10, which is a contradiction.

These functions without functional equation do have a Poisson–Newton formula, but
in general the lack of knowledge about the location of its divisor, and the lack of structure
of the set of frequencies makes the explicit formula of limited usefulness.

An interesting question is to determine when a classical Hurwitz zeta function has a
functional equation.

7. Explicit Formulas for Riemann Zeros

In this section we apply our Poisson–Newton formula to the Riemann zeta function.
We obtain a non-classical form of the Explicit Formula in analytic number theory. The
classical forms can be derived from our distributional formula.

Explicit formulas in analytic number theory go back to the original memoir of Rie-
mann [15] on the analytic properties of Riemann zeta function where it is the central
point of the derivation of Riemann’s asymptotic formula for the growth of the number of
primes. It relates prime numbers with non-trivial zeros of Riemann zeta function. Despite
the mystery about the precise location of the non-trivial zeros, many of such formulas
were developed at the end of the XIX century and the beginning of the XX century (see
[12]). Later, general explicit formulas were developed by Guinand [9], Delsarte [7], Weil
[19] and Barner [3], these last ones in general distributional form. A classical form of
this Explicit Formula is the following by Barner [3].

The Riemann zeta function is defined for 
s > 1 by

ζ(s) =
∑

n≥1

n−s =
∑

n≥1

e−s log n,

which is a Dirichlet series with λn = log(n + 1) and σ1 = 1 in our notation. It has a
meromorphic extension to the complex plane s ∈ C with a single simple pole at s = 1.
It has order o = 1, convergence exponent d = 2, and genus g = 1 (see [17]).

The Riemann zeta function has a single simple pole at ρ = 1, and simple real zeros
at ρ = −2n, for n = 1, 2, . . ., and non-real zeros in the critical strip 0 < 
s < 1,
ρ = 1/2 + iγ . The Riemann Hypothesis conjectures that γ ∈ R, i.e., that all non-real
zeros have real part 1/2.

Theorem 7.1. We have
∑

ρ

nρe(ρ−1/2)|t | = 2c0(ζ, 1/2) δ0 −
∑

p,k≥1

(log p)p−k/2 (
δk log p + δ−k log p

)
,

where

c0(ζ, 1/2) = − logπ

2
− π

4
− γ

2
− 3

2
log 2.

Proof. For 
s > 1 we have the Euler product which gives the relation of the zeta
function with prime numbers,

ζ(s) =
∏

p

(1 − p−s)−1,



Explicit and Trace Formulas via Poisson–Newton Formula 1223

where the product is running over the prime numbers p. Thus

− log ζ(s) = −
∑

p, k≥1

p−ks

k
= −

∑

p, k≥1

1

k
e−k(log p)s .

The vector of fundamental frequencies is λ = (log 2, log 3, log 4, . . .). We have
bk = −1/k for 〈λ,k〉 = k log p, and bk = 0 otherwise. Therefore the stated formula
follows by applying the Poisson–Newton formula with parameters, Corollary 4.4, for
β = 1/2 and σ = 1/2.

For computing the value of c0(ζ, 1/2), we use that the Riemann zeta function has a
functional equation with σ ∗ = 1/2, σ− = 0 and σ+ = 1. We have, using the notations
of Sect. 6,

g(s) = g(1 − s),

g(s) = χ(s)ζ(s),

χ(s) = π−s/2�(s/2)s(s − 1),

χ0(s) = π−s/2�(s/2),

R(s) = s(s − 1).

By Theorem 6.9, c0(ζ, 1/2) = −c0(χ0, 1/2). The value of

c0(χ0, 0) = logπ

2
+
γ

2

follows from the Hadamard factorization of the �-function

1

�(s/2)
= s

2
e
γ
2 s

∏

n≥1

E1(s/(−2n)), (17)

thus

c0 (1/�(s/2), 0) = −γ
2
. (18)

The zeros of χ0 are the negative integers −2n, n ≥ 0, and are simple. Hence the
formula (10) reads (for σ not a pole of χ0)

−c0(χ0, σ ) + c0(χ0, 0) = − 1

σ
+

∞∑

n=1

(−1)
−σ

(−2n)(−2n − σ)

= − 1

σ
+

∞∑

n=1

(
1

2n
− 1

2n + σ

)
= 1

2

�′(σ/2)
�(σ/2)

+
γ

2
,

where the last formula follows from the expression for the logarithmic derivative of the
�-function, the digamma function ψ ,

ψ(s) = �′(s)
�(s)

= −1

s
− γ +

+∞∑

n=1

(
1

n
− 1

n + s

)
, (19)

which results from (17).
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Finally we have, for σ /∈ −2Z

c0(χ0, σ ) = logπ

2
− 1

2
ψ(σ/2).

In particular, for σ = 1/2, we have (see [2], combine entries 6.3.3, 6.3.7 and 6.3.8,
p. 258) that ψ(1/4) = −π

2 − 3 log 2 − γ . Hence

c0(ζ, 1/2) = −c0(χ0, 1/2) = − logπ

2
− π

4
− γ

2
− 3

2
log 2.

��
Note that our “explicit formula” (Theorem 7.1) is more concise than the classical

formulation. Even more if we use Corollary 4.4 with β = 0, as follows:

Theorem 7.2. We have
∑

ρ

nρeρ|t | = 2c0(ζ, 0) δ0 −
∑

p,k≥1

(log p)
(
δk log p + δ−k log p

)
,

and

c0(ζ, 0) = − log(2π).

Proof. We can compute c0(ζ, 0) from the known Hadamard factorization of the Riemann
zeta function. We have (see [17, p. 31])

ζ(s) = ebs

2(s − 1)�(s/2 + 1)

∏

ρ

E1(s/ρ)
nρ = ebs

s(s − 1)�(s/2)

∏

ρ

E1(s/ρ)
nρ ,

where the product is over the non-trivial zeros and b = log(2π)− 1 − γ /2.
Now, we have

1

s − 1
= −es (E1(s/1))

−1 ,

thus

c0(ζ, 0) = −Qζ = −b − 1 + c0 (1/�(s/2), 0) .

Using (18) we get c0(ζ, 0) = − log(2π). ��
We can compute explicitly the contribution of the real divisor to the distribution on

the left handside of Theorem 7.1,

W0(t) = −e|t |/2 + e−|t |/2 ∑

n≥1

e−2n|t | = −e|t |/2 + e−5|t |/2 1

1 − e−2|t |

= −e|t |/2 + e− 3
2 |t | 1

2 sinh |t | .

So the associated Poisson–Newton formula on R is
∑

γ

eiγ |t | + W0(t) = 2c0(ζ, 1/2) δ0 −
∑

p,k≥1

(log p)p−k/2 (
δk log p + δ−k log p

)
,

where ρ = 1/2 + iγ run over the non-trivial zeros of ζ , the p over prime numbers.
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Following the tradition we repeat these zeros according to their multiplicity, so we
may skip the multiplicities nρ = 1.

Let us see now how one can recover the classical formulation from our Poisson–
Newton formula.

Theorem 7.3. For a test function ϕ such that h(t)ϕ(t) ∈ S, where h is smooth with
h(t) = e−(1/2+ε)|t | for |t | ≥ 1, we have

∑

γ

ϕ̂(γ ) = ϕ̂(i/2) + ϕ̂(−i/2) +
1

2π

∫

R

�(t)ϕ̂(t) dt

−
∑

p,k≥1

(log p)p−k/2 (ϕ(k log p) + ϕ(−k log p)),

where

�(t) = − logπ + 

(
�′

�
(1/4 + i t/2)

)
.

Proof. We want to pair the distributional formula in Theorem 7.1 with a test function
ϕ. By our construction, the Poisson–Newton formula in Theorem 7.1 is associated to
ζ(s − 1

2 ), which has σ1 = 1
2 . Hence we take ϕ such that h(t)ϕ(t) ∈ S, with h smooth

with h = e−(1/2+ε)|t | for |t | ≥ 1.
Consider the Fourier transform

ϕ̂(x) =
∫

R

ϕ(t)e−i xt dt.

Observe that

ϕ̂(γ ) =
∫

R

ϕ(t)e−iγ t dt =
∫

R+

(
ϕ(t)e−iγ t + ϕ(−t)e−i(−γ )t) dt.

By the real analyticity of ζ(s), the set of non-trivial zeros is real symmetric, (γ ) =
(−γ ), hence

∑

γ

ϕ̂(γ ) =
∫

R+

(ϕ(t) + ϕ(−t))

⎛

⎝
∑

γ

eiγ t

⎞

⎠ dt.

Thus applying now our Poisson–Newton formula to the test function ϕ we get
∑

γ

ϕ̂(γ ) + W0[ϕ] = 2c0(ζ, 1/2)ϕ(0)−
∑

p,k≥1

(log p)p−k/2(ϕ(k log p) + ϕ(−k log p)),

where W0[ϕ] is the functional

W0[ϕ] =
∫

R

W0(t)ϕ(t) dt.

We compute more precisely this functional. We have

W0(t) = −e−|t |/2(W (χ)(t) + W (χ)(−t))

= −e−|t |/2(W (χ0)(t) + W (χ0)(−t) + W (R)(t) + W (R̄)(−t)).
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Note that by our assumptions, ϕ̂ is holomorphic in a neighborhood of the strip |�t | ≤
1/2. Then we have by the general symmetric Poisson–Newton formula (or by direct
computation)

〈−e−|t |/2(W (R)(t) + W (R)(−t)), ϕ〉 = −
∫

R

e−|t |/2(e|t | + 1)ϕ(t) dt

= −
∫

R

2 cosh(|t |/2)ϕ(t) dt = −
∫

R

2 cosh(t/2)ϕ(t) dt

= −
∫

R

ϕ(t)et/2 dt −
∫

R

ϕ(t)e−t/2 dt = −ϕ̂(i/2)− ϕ̂(−i/2).

Now, again using Corollary 3.4 with α = 1 and β = 1/2 applied to χ0 that is real
analytic, we have

e−|t |/2(W (χ0)(t) + W (χ0)(−t)) = 2c0(χ0, 1/2)δ0 + L−1
1/2

(
2


(
χ ′

0

χ0

))
.

And using Theorem 6.9, c0(χ0, 1/2)+c0(ζ, 1/2) = 0. The Poisson–Newton formula
applied the test function ϕ is

∑

γ

ϕ̂(γ ) = ϕ̂(i/2) + ϕ̂(−i/2) +

〈
L−1

1/2

(
2


(
χ ′

0

χ0

))
, ϕ

〉

−
∑

p,k≥1

(log p)p−k/2(ϕ(k log p) + ϕ(−k log p)),

Now, we have

χ ′
0(s)

χ0(s)
= −1

2
logπ +

1

2

�′(s/2)
�(s/2)

,

so
〈
L−1

1/2

(
2


(
χ ′

0

χ0

))
, ϕ

〉
= 1

2π

∫

R

�(t)ϕ̂(t) dt,

where

�(t) = − logπ + 

(
�′

�
(1/4 + i t/2)

)
.

Thus we recover the classical form of the Explicit formula given in the statement.
��

Historically this form is due to Barner that gave a new form of the Weil functional.
Barner’s derivation is based on an integral formula, Barner formula, that can be directly
derived from our general Poisson–Newton formula.

Remark 7.4. The functional equation for ζ only serves in Theorem 7.1 to compute
c0(ζ, 1/2).
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Without it, we obtain Theorem 7.3 except for the value of the constant in the function
�(t).

Remark 7.5 (General explicit formulas). The derivation given of the classical distribu-
tional Explicit Formula is general and applies to any Dirichlet series of order 1 with the
required conditions. In this sense the Poisson–Newton formula can be seen as the general
Explicit Formula associated to a Dirichlet series. The structure at 0 needs to be computed
in general. But when we have a functional equation, one can apply the Poisson–Newton
formula with the parameter well chosen so that the structure at 0 vanishes (using Theorem
6.9). The divisor on the left cone gives the general “Weil functional” and again, by appli-
cation of the general Poisson–Newton formula with parameters we get a general Barner
integral formula for the functional. Thus we get a general Explicit Formula with the
same structure as for the classical one for the Riemann zeta function.

8. Selberg Trace Formula

It is well known that Selberg trace formula was developed by analogy with the Explicit
Formulas in analytic number theory and that this was the original motivation by Selberg
(see [4,16]). In this section we explain this folklore analogy by showing that Selberg
Trace Formula results from the Poisson–Newton formula applied to the Selberg zeta
function. The approach is very similar to that of the previous section and we have a
unified treatment of both formulas. The only relevant difference is that Selberg zeta
function is of order 2.

We consider a compact Riemannian surface X of genus h ≥ 2 with a metric of
constant negative curvature. Let P be the set of primitive geodesics. The Selberg zeta
function is defined in the half plane 
s > 1 by the Euler product

ζX (s) =
∏

p∈P

∏

k≥0

(
1 − eτ(p)(s+k)

)
,

where τ(p) is the length of the geodesic p.
We have

− log ζX (s) =
∑

p

∑

k≥0

∑

l≥1

1

l
e−τ(p)(s+k)l =

∑

p,l≥1

1

l
e−τ(p)ls 1

1 − e−τ(p)l

=
∑

p,l≥1

1

l
eτ(p)l/2

1

2 sinh(τ (p)l/2)
e−τ(p)ls .

Thus we get the coefficients

bp,l = 1

l
eτ(p)l/2

1

2 sinh(τ (p)l/2)
,

and the frequencies

〈λ, (p, l)〉 = λp,l = τ(p)l.

One of the fundamental results of the theory is that ζX has a meromorphic extension
to the complex plane of order 2, exponent of convergence d = 3, thus genus g = 2 (see
[14]), has a functional equation with σ ∗ = 1/2, and its zeros are the following (see [18,
p. 129]):
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• Trivial zeros at s = −k with k = 0, 1, 2, . . . with multiplicity 2(h − 1)(2k + 1).
• Non-trivial zeros s = 1/2 ± iγn , n = 0, 1, 2, . . ., where 1/4 + γ 2

n are the eigenvalues
of the positive Laplacian −�X on X counted with multiplicity. The lowest eigenvalue
0 yields two zeros, s = 1 that is simple, and the trivial zero s = 0 with multiplicity
2(h − 1) (we exclude the case of 1/4 as eigenvalue).

For n < 0 write γn = −γ−n . In the sense of Sect. 6, ζX satisfies a functional
equation with σ ∗ = 1/2 and ζX = χ g, where g(2σ ∗ − s) = g(s). The Newton–Cramer
distribution decomposes as

W (ζX ) = W (χ) + W (g),

where W (χ) is the contribution of the trivial zeros and W (g) of the non-trivial ones. We
compute on R

∗ with β = 1/2 and σ = 1/2,

Ŵ (χ)(t) =
∑

n∈Z

2(h − 1)(2n + 1)e(−n−1/2)|t |

= 4(h − 1)
∑

n≥0

(n + 1/2)e−(n+1/2)|t |

= −4(h − 1)
d

d|t |
(

1

2 sinh(|t |/2)
)

= (h − 1)
cosh(t/2)

(sinh(t/2))2
,

Ŵ (g)(t) =
∑

n∈Z

eiγn |t | = 2
∑

n≥0

cos(γnt).

Now we apply the symmetric Poisson–Newton formula with parameter (Corollary
4.4) with β = 1/2, and we get

Ŵ (ζX ) = Ŵ (χ) + Ŵ (g) = 2c′
0(ζX , 1/2)δ0

+
∑

p,l∈Z∗
|〈λ, (p, l)〉|e−|〈λ,(p,l)〉|/2 bp,|l| δ〈λ,(p,l)〉.

To compute c′
0(ζX , 1/2), we use the Hadamard factorisation of ζX . We are assuming

that s = 1/2 is not part of the divisor (n1/2 = 0). According to (8) with σ = 1/2, we
write PζX ,1/2(s) = c0 + c1s with

−(log ζX )
′(s) = c0 + c1s −

+∞∑

n=0

2(h − 1)(2n + 1)
(s − 1/2)2

(−n − 1/2)2
1

s + n

−
∞∑

n=0

(
(s − 1/2)2

(iγn)2

1

s − 1/2 − iγn
+
(s − 1/2)2

(−iγn)2

1

s − 1/2 + iγn

)
.

Equivalently,

−(log ζX )
′(s + 1/2)

= c0 + c1(s +
1

2
) +

+∞∑

n=0

(2 − 2h)(2n + 1)
s

−n − 1/2

(
1

s + n + 1/2
− 1

n + 1/2

)

− 2s
∞∑

n=0

(
1

s2 + γ 2
n

− 1

γ 2
n

)
.
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Now, by formulas (4.9), (4.12) and (4.17) in [4] (formula (4.17) follows from formula
(2.27) therein which can be obtained from the resolvent of the elliptic operator −�X ),
we have

−(log ζX )
′(s + 1/2) = (2 − 2h)2s(log�)′(s + 1/2)− 2bs − 2s

∞∑

n=0

(
1

s2 + γ 2
n

− 1

γ 2
n

)
,

for some b ∈ C. Using (19), we have

(log�)′(s + 1/2) = − 1

s + 1/2
− γ +

+∞∑

n=1

(
1

n
− 1

s + n + 1/2

)
.

Multiplying by (2 − 2h)2s and rearranging, we get

(2 − 2h)2s(log�)′(s + 1/2)

= (2 − 2h)4s − 2s(2 − 2h)γ + 2s(2 − 2h)
+∞∑

n=1

(
1

n
− 1

n + 1/2

)

+
+∞∑

n=0

(2 − 2h)(2n + 1)
s

−n − 1/2

(
1

s + n + 1/2
− 1

n + 1/2

)
.

Putting everything together, this means that

c0 + c1(s + 1/2) = b′s,
for some b′ ∈ C. This means that c1 = −2c0 and hence PζX ,1/2(s) = c1(s − 1/2).

Now we use Corollary 4.4 applied to ζX with α = 1, β = 1/2 (in which case we
have c′

1 = c1 = b′ and c′
0 = c0 + c1β = 0), obtaining

∑

γ

eiγ t + (h − 1)
cosh(t/2)

(sinh(t/2))2
= 2

∑

p,l∈Z∗

τ(p)

4 sinh(τ (p)|l|/2) δτ(p)l .

This yields the classical Selberg Trace Formula as stated in [4].

Theorem 8.1 (Selberg trace formula). We have on R,

1

2

∑

γ

eiγ t = −1

2
(h − 1)

cosh(t/2)

(sinh(t/2))2
+

∑

p,l∈Z∗

τ(p)

4 sinh(τ (p)|l|/2) δτ(p)l .

Remark 8.2. We can now manipulate the integral expression for the “Weil functional” à
la Barner, using the general Poisson–Newton formula as we have done in the previous
section. These computations will be done elsewhere.

Remark 8.3 (Gutzwiller Trace Formula). The Selberg trace formula is just a particular
case of the Gutzwiller Trace formula in quantum chaos (see [10]). The Gutzwiller Trace
Formula, that is the central formula in quantum chaos, results from the application of
the Poisson–Newton formula to the dynamical zeta function of the Dynamical System
when this zeta function has an analytic extension to the whole complex plane. Thus non-
trivial zeros are related to the quantum energy levels and the frequencies to the classical
periodic orbits. This will be treated elsewhere.
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