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Abstract: We construct Hadamard states for the Yang–Mills equation linearized around
a smooth, space-compact background solution. We assume the spacetime is globally
hyperbolic and its Cauchy surface is compact or equal R

d .
We first consider the case when the spacetime is ultra-static, but the background so-

lution depends on time. By methods of pseudodifferential calculus we construct a para-
metrix for the associated vectorial Klein–Gordon equation. We then obtain Hadamard
two-point functions in the gauge theory, acting on Cauchy data. A key role is played
by classes of pseudodifferential operators that contain microlocal or spectral type low-
energy cutoffs.

The general problem is reduced to the ultra-static spacetime case using an extension
of the deformation argument of Fulling, Narcowich and Wald.

As an aside, we derive a correspondence between Hadamard states and parametrices
for the Cauchy problem in ordinary quantum field theory.

1. Introduction

The construction of a sufficiently explicit parametrix for the Klein–Gordon equation is
essential in Quantum Field Theory on curved spacetime, where two-point functions of
physically admissible states (Hadamard states) are required to be distributions with a
specified wave front set. By using methods of pseudodifferential calculus it is possible
to control at the same time the propagation of singularities and the additional properties
of the parametrix, which are needed to treat physical conditions such as positivity (or
purity) of states. As shown in the scalar case in [J,GW] for a large class of spacetimes,
this allows one to construct a large class of Hadamard states.

The generalization to gauge theories poses difficulties that are due to two main
obstacles.

First of all, the equations of motions are given by a non-hyperbolic differential op-
erator P . This is usually coped with by identifying the space of solutions of P with a
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quotient VP of subspaces of solutions of some hyperbolic operator D1. Although one
is essentially reduced to constructing two-point functions for D1, one has to make sure
that their restriction to VP is well defined. This entails a compatibility condition that will
be termed gauge-invariance.

Secondly, the hyperbolic operator D1 is formally self-adjoint w.r.t. a hermitian prod-
uct that is typically non-positive on fibers. This results in a conflict between the Hadamard
condition and positivity of states for D1. Although one can still expect positivity to hold
on the subspace VP , it is not obvious how this can be controlled.

An additional difficulty are infrared problems, which are inherent to any massless
theory, but also have their special incarnations in the context of gauge-invariance and
positivity on VP .

In the present paper we study those issues in the case of the Yang–Mills equation,
linearized around a (possibly non-vanishing) background solution Ā.

Framework for gauge theories. We work (when possible) in the abstract framework
for gauge theories proposed recently by Hack and Schenkel [HS]. More precisely, we
consider its simplified version, in which the classical theory is determined by:

(1) two vector bundles V0, V1 over a globally hyperbolic manifold (M, g), both equipped
with a hermitian structure,

(2) a formally self-adjoint operator P ∈ Diff(M; V1), which accounts for the equations
of motion,

(3) a non-zero operator K ∈ Diff(M; V0, V1) s.t. P K = 0, which accounts for gauge
transformations u → u + K f .

We then assume D1 ··= P + K K ∗ is hyperbolic and define the physical space by iden-
tifying solutions of P with those solutions of D1 that satisfy the additional constraint
K ∗u = 0 (cf. Sect. 2 for precise definitions). The latter is often called subsidiary con-
dition in the physics literature, we will thus term this approach the subsidiary condition
framework.1 The version we consider applies to the Maxwell and Yang–Mills equations,
K being then the covariant differential d̄ (note, however, that for other gauge theories
one would have to use the more extended version from [HS]).

Hadamard two-point functions. In our framework, a pair of operatorsλ±1 : �c(M; V1)→
�(M; V1) induces two-point functions2 of a Hadamard state on the phase space of P if
it satisfies

D1λ
±
1 = λ±1 D1 = 0, λ+

1 − λ−1 = i−1G1, (1.1)

where G1 is the causal propagator of D1 and if moreover:

(μsc) WF′(λ±1 ) ⊂ N± ×N±,
(g.i.) (λ±1 )

∗ = λ±1 and λ±1 : Ran K → Ran K ,

(pos) λ±1 ≥ 0 on Ker K ∗.
1 Because we are working in a purely algebraic setting, the terminology is rather ambiguous. We refer

the interested reader to [Der] for a review on the flat case that explains the terminology used in the physics
literature.

2 We work with complex fields rather than with real ones, therefore it is natural to speak of a pair of two-
point functions, cf. [Hol,GW,W2]. It should be noted that the real and complex approaches are equivalent,
see for instance [GW] for the bosonic case.
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Condition (μsc) is just the same as the Hadamard condition in ordinary (i.e., hyperbolic)
field theory. What differs is the non-trivial requirement of gauge-invariance (g.i.). More-
over, positivity (pos) is no longer required to hold on all test sections, but on a specified
subspace instead.

Main results. Our main result is the construction of Hadamard states for the Yang–Mills
equation linearized around a smooth background solution Ā, under various assumptions
on Ā and the spacetime (M, g). Let us first formulate some hypotheses.

1.0.1. Spacetimes.

Hypothesis 1.1. (M, g) is a globally hyperbolic spacetime with a Cauchy surface �
diffeomorphic either to R

d for d ≥ 3, or to a compact, parallelizable manifold.

Hypothesis 1.2. If � = R
d , hi j (x)dxi dx j is a smooth Riemannian metric on � such

that:

c−11 ≤ [hi j (x)] ≤ c1, c > 0, |∂αx hi j (x)| ≤ Cα, ∀α ∈ N
d , x ∈ R

d .

1.0.2. Background Yang Mills connections.

Hypothesis 1.3. G is a linear Lie group with compact Lie algebra g.

We consider the trivial principal bundle (M × G,M,G) and the associated trivial
vector bundle (M × g,M, g). Using the horizontal connection on M ×G, a connection
on M × g can be identified with a section Ā of the bundle T ∗M × g, i.e., with a Lie
algebra valued 1−form Ā.

Hypothesis 1.4. If� = R
d , Ā is a smooth global solution of the non-linear Yang–Mills

equation (2.14) on Rt ×� such that

(i) Ā is in the temporal gauge i.e., Āt = 0,
(ii) |∂αx Ā�(t, x)| ≤ Cα, locally uniformly in t,
(iii) |∂αx δ̄� F̄�(0, x)| ≤ Cα〈x〉−1, |∂αx F̄t (0, x)| ≤ Cα〈x〉−2 α ∈ N

d , x ∈ R
d ,

where the components Ā� , Āt , F̄� , F̄t of Ā and the curvature F̄ = d̄ Ā are defined in
4.4.1.

Our first theorem deals with ultra-static background metrics and background solutions
Ā satisfying conditions near infinity in the case � = R

d .

Theorem 1.1. Let us assume Hypotheses 1.1, 1.3 and if � = R
d also Hypotheses 1.2,

1.4. Let g = −dt2+hi j (x)dxi dx j on M = Rt×�. Then there exist quasi-free Hadamard
states for the linearized Yang Mills equation on (M, g) around Ā.

Our next theorem covers the general case, with a space-compact background solution
Ā. We will deduce it from Theorem 1.1 by a deformation argument explained in Sect. 3.5.
This deformation relies on the global solvability of the non-linear Yang–Mills equation,
which requires that dim M ≤ 4.

Theorem 1.2. Let us assume Hypotheses 1.1, 1.3 and dim M ≤ 4.
Let Ā ∈ E1

sc(M)⊗ g a smooth, space-compact solution of the non-linear Yang–Mills
equation (2.14) on (M, g). Then there exist quasi-free Hadamard states for the linearized
Yang Mills equation around Ā.

Let us emphasize that the case Ā = 0 differs substantially from the case of a vanishing
background solution (or of an abelian gauge group), as was so far assumed in other works
on Hadamard states. Indeed, if Ā = 0 then the deformation argument cannot be used to
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reduce the problem to the situation when (M, g) is ultra-static and the coefficients of
D1, P do not depend on time.

As further explained in Sect. 3.5, the difficulty comes from the fact that the back-
ground Ā must be a solution of the non-linear Yang–Mills equation and therefore cannot
be arbitrarily deformed. This is our main motivation for considering the case of a time-
dependent Klein–Gordon operator D1 on an ultra-static spacetime.

Known results. In the literature, other constructions were already considered in the
special case of the Maxwell equations or Yang–Mills linearized around Ā = 0.

In these cases the deformation argument yields a time-independent problem, and it is
possible to use arguments from spectral theory, at least if the Cauchy surface� has special
properties that make the infrared problems less serious. For the Maxwell equations, this
strategy was employed in [FP] for � compact with vanishing first cohomology group
(extending some earlier results of [Fur]), and in [FS] for � subject to an ‘absence of
zero resonances’ condition for the Laplace–Beltrami operator on 1-forms. This condition
appears to be more general but similar in nature to our assumptions, as it involves the
behaviour of � at infinity.3 The Yang–Mills equation with Ā = 0 was considered in
[Hol2] (in the BRST framework) for� compact with vanishing first cohomology group.

Another approach was studied in [DS] on asymptotically flat spacetimes, where the
use of spectral theory arguments is made possible by considering a characteristic Cauchy
problem.

Summary of the construction. Let us summarize the strategy adopted in the paper.
The construction of the parametrix by pseudodifferential calculus is a generalization

of the arguments used in [GW] in the scalar case. As an output, we obtain Hadamard
two-point functions λ±1 that satisfy (g.i.) only ‘modulo smooth terms’. Moreover, they
are positive on some subspace (the space of ‘purely spatial’ 1-forms on M) that needs
not to coincide with KerK ∗.

To solve this, we work with quantities on a fixed Cauchy surface �. We define a
Cauchy-surface analogue K� of the operator K , and deduce that the Cauchy-surface
version of the phase space for P can be expressed as a quotient KerK †

�/RanK� [where
† is the symplectic adjoint, defined in (2.9)].

Next, we argue that gauge-invariance can be obtained by modifying λ±1 with the help
of a projection � that maps to a complement of RanK� . The whole task that remains
then is to show that:

• The range of� is a space on which λ±1 is positive (after restricting to the phase space
of P).

• The modification of λ±1 does not affect (μsc).

Both tasks are unfortunately made difficult by infrared problems. For example, the
projection � can contain terms such as (δ̄� d̄�)−1δ̄� (see Sect. 8.2), whose definition is
already ambiguous, not to mention boundedness between Sobolev spaces of appropriate
order.

One way we deal with such problems is to use a Hardy’s inequality on R
d for the

Hodge Laplacian on 0-forms.

3 The two methods are difficult to compare: in [FS] the infrared problem amounts to an obstruction to
invertibility of the Laplacian, whereas in our approach the Laplacian is effectively replaced by an invertible
operator and an infrared problem occurs in attempts of restoring gauge-invariance.
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The essential novelty is the systematic use of two classes of pseudodifferential oper-
ators

	 p
as(�; Vα, Vβ), 	 p

reg(�; Vα, Vβ),

that contain infrared regularizations of different type—either a simple ‘microlocal’ cut-
off in the low frequencies (for the 	 p

as class), or in addition to that a ‘spectral’ cutoff
(the 	 p

reg class), defined using (functions of) some elliptic self-adjoint operators. More-
over, the norm of the regularization is controlled by a parameter R that can be chosen
arbitrarily large. This allows one to obtain exact inverses in situations where standard
pseudodifferential calculus gives only inverses modulo regularizing remainders. Using
this method, we first construct a reference projection, establish its boundedness as an
operator between appropriate (weighted) Sobolev spaces, and then perturb it in order to
finally get the positivity.

Auxiliary results. Besides what is of direct interest for Maxwell and Yang–Mills fields,
let us mention some auxiliary results obtained in the present work.

First of all, in the context of ordinary field theory (without gauge), we derive a direct
relation between (bosonic) Hadamard two-point functions and parametrices that satisfy
certain special properties (Sect. 3.3). This allows us to generalize and simplify results
in [GW] that tell how to obtain more Hadamard states out of an already given one.

We also derive a number of results for the classical Yang–Mills theory linearized
around a non-vanishing background; for instance our formula for the phase space of P
in terms of Cauchy data appears to be new (see 2.4.1).

Outlook. An evident limitation of our method is that we have to assume that the Cauchy
surface � is either compact or equal R

d , as the construction is based on standard
pseudodifferential operator classes. We also use Hardy’s inequality in the case� = R

d .
We expect, however, that it would be possible to extend our results to other Cauchy sur-
faces by considering extensions of the standard pseudodifferential calculus on classes
of non-compact manifolds on which a generalized form of Hardy’s inequality still holds
true.

Let us also stress that all our results are formulated in the subsidiary condition frame-
work to gauge theories. Especially for applications in perturbative Quantum Field The-
ory, a different approach—the BRST framework, is commonly believed to be more ef-
ficient [Hol2]. We do not consider it here, although it seems plausible that one can
transport Hadamard states from one framework to the other, as illustrated in [FS, Ap-
pendix B]. Another assumption that we implicitly make is that Ā is a connection on a
trivial principal bundle and one can ask whether the methods of this paper can be applied
to the non-trivial case. We plan to address these issues in a future work.

Structure of the paper. The paper is structured as follows.
Section 2 concerns the classical theory. We first recall well-known facts on ordinary

field theories, then in Sect. 2.4 review gauge theories on curved spacetime in the (sim-
plified) subsidiary condition framework. We introduce the corresponding quantities on
a Cauchy surface in 2.4.1 and then in Sect. 2.5 we show how the linearized Yang–Mills
equation fits into this framework.

Section 3 discusses Hadamard states for both ordinary field theories and for gauge
theories in the subsidiary framework in general terms. We introduce in Sect. 3.2 the
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definition of Hadamard states that we use for ordinary field theories. We then set up
in Sect. 3.3 a correspondence between Hadamard states and parametrices subject to
special conditions. Next, we discuss in Sect. 3.4 two-point functions in gauge theory,
and formulate the conditions (μsc), (g.i.), (pos) and the Cauchy surface analogues of the
latter two. In the same subsection we outline our method to cope with (g.i.) and (pos),
and discuss the main technical obstructions. The section ends with an extended version
of the Fulling, Narcowich and Wald argument in Sect. 3.5, which allows us to reduce
the construction of Hadamard states for the Yang–Mills equation to a situation where
the spacetime is static, but the equations of motions still depend on the time coordinate.

Section 4 reviews the vector and scalar Klein–Gordon equations on ultra-static space-
times.

In Sect. 5 we give a detailed construction of the parametrix for the vector Klein–
Gordon equations considered in Sect. 4, generalizing results from [GW].

In Sect. 6, using the results of Sect. 5 we obtain two-point functions for the vector and
scalar Klein–Gordon equations on an ultra-static spacetime and study their properties. At
this point, the properties (g.i.) and (pos) are not satisfied and only their weaker versions
are available.

As a byproduct of our constructions, we prove that for vector Klein–Gordon equa-
tions, where the natural hermitian product is not positive-definite on the fibers, there
does not exist Hadamard states, but only Hadamard pseudo-states.

In Sect. 7, we study the relationship between the two-point functions constructed in
Sect. 6 in the vector and scalar case. In particular Theorem 7.3 will be important later
on.

In Sect. 8 we prove Theorem 1.1 by the method described in Sect. 3.4. This is the
most technical part of the paper.

In Appendix A we introduce the necessary background on pseudodifferential cal-
culus. It includes amongst others a version of Egorov’s theorem adapted to the case of
matrices of pseudodifferential operators.

Appendix B gathers independent results, used in several parts of the main text. In
B.1 we prove a version of Hardy’s inequality adapted to our applications for the Yang–
Mills equation. In B.2 we recall the transition to the temporal gauge for the non-linear
Yang–Mills equation. In B.3 we discuss the constraint equations on Cauchy data for
the non-linear Yang–Mills equation and show how to construct examples of solutions
satisfying our hypotheses. In B.4 we sketch the proof of Proposition 3.19.

2. Classical Gauge Field Theory

2.1. Notation. Let V be a finite rank vector bundle over a smooth manifold M . We de-
note by �(M; V ), respectively �c(M; V ), �sc(M; V ) the space of smooth, respectively
smooth with compact, space-compact support sections of V , the later notation requiring
that M is equipped with some causal structure.

If V1, V2 are two vector bundles, the set of differential operators (of order m)
�(M; V1) → �(M; V2) is denoted Diff(M; V1, V2) (Diffm(M; V1, V2)), we also use
the notation Diff(M; V ) = Diff(M; V, V ).

By a bundle with hermitian structure we will mean a vector bundle V equipped with a
fiber wise non-degenerate hermitian form (in the literature the name ‘hermitian bundle’
is usually reserved for positive definite hermitian structures).

Suppose now that (M, g) is a pseudo-Riemannian oriented manifold. If V is a bun-
dle on M with hermitian structure, we denote V ∗ the anti-dual bundle. The hermitian
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structure on V and the volume form on M allow to embed �(M; V ) into �′c(M; V ),
using the non-degenerate hermitian form on �c(M; V )

(u|v)V ··=
∫

M
(u(x)|v(x))V dVolg, u, v ∈ �c(M; V ). (2.1)

Therefore, we have a well-defined notion of the formal adjoint A∗ : �c(M;W ) →
�(M; V ) of an operator A : �c(M; V )→ �(M;W ).

If E, F are vector spaces, the space of linear operators is denoted L(E, F). If E, F
are additionally endowed with some topology, we write A : E → F if A ∈ L(E, F) is
continuous.

To distinguish between the same operator A acting on different spaces of functions and
distributions, for instance A : �c(M; V )→ �′c(M;W ) and A : �(M; V )→ �(M;W ),
we use the notation A|�c and A|� .

2.2. Quotient spaces. In the sequel we will frequently encounter operators and sesquilin-
ear forms on quotients of linear spaces, we recall thus the relevant basic facts.

2.2.1. Operators on quotient spaces. Let Fi ⊂ Ei , i = 1, 2 be vector spaces and let
A ∈ L(E1, E2). Then the induced map

[A] ∈ L(E1/F1, E2/F2),

defined in the obvious way, is

• well-defined if AE1 ⊂ E2 and AF1 ⊂ F2;
• injective iff A−1 F2 = F1;
• surjective iff E2 = AE1 + F2.

2.2.2. Sesquilinear forms on quotients. Let now E ⊂ F be vector spaces and let C ∈
L(E, E∗), where E∗ is the anti-dual space of E . Then the induced map

[C] ∈ L(E/F, (E/F)∗),
defined as before, is

• well-defined if C E ⊂ F◦ (where F◦ ⊂ E∗ denotes the annihilator of F) and F ⊂
Ker C ;

• non-degenerate iff F = Ker C .

If C is hermitian or anti-hermitian (which will usually be the case in our examples)
then the condition F ⊂ Ker C implies the other one C E ⊂ F◦ (and vice versa).

2.3. Ordinary classical field theory. We recall now some standard results, see e.g. [BGP,
HS]. Let (M, g) be a globally hyperbolic spacetime (we use the convention (−,+, . . . ,+)
for the Lorentzian signature). If V is a vector bundle over M , we denote �sc(M; V ) the
space of space-compact sections, i.e. sections in �(M; V ) such that their restriction to
a Cauchy surface has compact support.

One says that D ∈ Diff(M; V ) is Green hyperbolic if D and D∗ possess retarded and
advanced propagators—the ones for D will be denoted respectively G+ and G− (for the
definition, see [BGP]). The causal propagator (or Pauli-Jordan commutator function) of
D is then by definition G ··= G+−G−. Normally hyperbolic and prenormally hyperbolic
operators (defined below) are Green hyperbolic.
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Definition 2.1. (1) An operator D ∈ Diff(M; V ) is normally hyperbolic if its principal
symbol equals −ξμξμ1V .

(2) An operator D ∈ Diff(M; V ) is prenormally hyperbolic if there exists D̃ ∈
Diff(M; V ) s.t. DD̃ is normally hyperbolic.

This terminology is slightly more general than the one used in e.g. [Muh], cf. [W,W2]
for examples.

Proposition 2.2. If D, D̃ ∈ Diff(M; V ) are such that DD̃ is Green hyperbolic then D
is Green hyperbolic and their retarded/advanced propagators G± and G±

DD̃
are related

by

G± = D̃G±
DD̃
.

The proof of Proposition 2.2 is a straightforward generalization of the arguments of
Dimock [Dim,Muh].

Before discussing gauge theories, let us recall the basic data that define an ordinary
classical field theory (i.e., with no gauge freedom built in) on a globally hyperbolic
manifold (M, g).

Hypothesis 2.1. Suppose that we are given:

(1) a bundle V over M with hermitian structure;
(2) a Green hyperbolic operator D ∈ Diff(M; V ) s.t. D∗ = D.

Proposition 2.3. As a consequence of Hypothesis 2.1,

(1) the induced map

[G ] : �c(M; V )

Ran D|�c

−→ Ker D|�sc

is well defined and bijective.
(2) (G±)∗ = G∓ and consequently G∗ = −G.

To fix some terminology, by a phase space we mean a pair (V, q) consisting of a
complex vector space V and a sesquilinear form q on V . Actual physical meaning can
be associated to (V, q) if q is hermitian. The classical phase space associated to D is
(V, q), where

V ··= �c(M; V )

Ran D|�c

, u qv ··= i−1(u|[G ]v)V . (2.2)

By (2) of Proposition 2.3 the sesquilinear form q is hermitian, and it is not difficult to
show that it is non-degenerate. As a rule, we will work with hermitian forms rather than
with real symplectic ones, but it should be kept in mind that the two approaches are
equivalent.
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2.3.1. Phase space on Cauchy surface. Let us fix a Cauchy surface � of (M, g). Con-
sider a Green hyperbolic operator D ∈ Diffm(M; V ). Let Vρ be a vector bundle over �
and ρ : �sc(M; V )→ �c(�; Vρ) an operator which is the composition of a differential
operator of order ≤ m with the pullback ı ∗ of the embedding ı : � ↪→ M .

We equip Vρ with a hermitian structure (·|·)Vρ , which extends to �c(�; Vρ) as in
(2.1), using the volume form on � induced by g. It is convenient to assume that this
hermitian structure is positive definite. The adjoint map:

ρ∗ : �c(�; Vρ)→ �′(M; V )

is defined using the two hermitian structures (·|·)V and (·|·)Vρ .

Hypothesis 2.2. Assume that for each initial datum ϕ ∈ �c(�; Vρ), the Cauchy problem
{

D f = 0, f ∈ �sc(M; V )
ρ f = ϕ,

(2.3)

has a unique solution.

In other words, the map ρ : Ker D|�sc → �c(�; Vρ) is a bijection. If D satisfies
Hypothesis 2.2, we will say that it is Cauchy hyperbolic (for the map ρ). It can be proved
that if D is Green hyperbolic then there exists ρ s.t. D is Cauchy hyperbolic,4 cf. the
reasoning in [K, Sect. 4.3].

By Hypothesis 2.2, assuming additionally D = D∗ and using (2.3) of Proposition
2.3 we deduce that the phase space (V, q) is isomorphic to (V�, q�), defined in the
following way:

V�
··= �c(�; Vρ), u q�v ··= i−1(u|G�v)Vρ , (2.4)

where G� is uniquely defined by

G =·· (ρG )∗G�(ρG ).

(Let us stress again that the stars refer to formal adjoints using the hermitian structures of
V and Vρ , the latter can be chosen quite arbitrarily.) As a consequence of this definition,

1 = G∗ρ∗G�ρ on Ker D|�sc . (2.5)

This also implies ρ = ρG∗ρ∗G�ρ on Ker D|�sc , hence

1 = ρG∗ρ∗G� on �c(�; Vρ). (2.6)

It is useful to introduce the Cauchy evolution operator:

U ··= G∗ρ∗G�. (2.7)

By (2.5) and (2.6), it satisfies ρU = 1 and Uρ = 1 (on space-compact solutions of D).
Moreover, since G∗ = −G we get DU = 0. Applying both sides of (2.5) to f we obtain
a formula for the solution of the Cauchy problem (2.3).

Proposition 2.4. Assume D is Cauchy hyperbolic for ρ and D = D∗. Then the unique
solution of the Cauchy problem (2.3) equals

f = Uϕ = G∗ρ∗G�ϕ = −Gρ∗G�ϕ.

4 Of course one has to choose ρ sensibly, cf. the example in [BG, Sect. 2.7].
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2.4. Gauge theory in subsidiary condition formalism. The following data is used to
define a classical linearized gauge field theory on a globally hyperbolic manifold (M, g).
This is a special case of the setting proposed by Hack and Schenkel in [HS], well suited
for the case of Yang–Mills fields.

Hypothesis 2.3. Suppose that we are given:

(1) bundles with hermitian structures V0, V1 over M;
(2) a formally self-adjoint operator P ∈ Diff(M; V1);
(3) an operator K ∈ Diff(M; V0, V1), such that K = 0 and

(a) P K = 0,
(b) D0 ··= K ∗K ∈ Diff(M; V0) is Green hyperbolic,
(c) D1 ··= P + K K ∗ ∈ Diff(M; V1) is Green hyperbolic.

The operator P accounts for the equations of motion, linearized around a background
solution. The operator K defines the linear gauge transformation f �→ f + K g, and the
condition P K = 0 states that P is invariant under this transformation, which entails that
P is not hyperbolic. Making use of the assumption on D0, the non-hyperbolic equation
P f = 0 can be reduced by gauge transformations to the subspace K ∗ f = 0 of solutions
of the hyperbolic problem D1 f = 0. The equation K ∗ f = 0 is traditionally called
subsidiary condition and can be thought as a covariant fixing of gauge.

The canonical example is the Maxwell theory, in which case K is the differential
d acting on 0-forms on M and P = δd, where δ is the codifferential. The subsidiary
condition K ∗ f = 0 is then simply the Lorenz gauge. This example will be further
discussed in Sect. 2.5 as a special case of Yang–Mills theory.

Let us first observe that the differential operators from Hypothesis 2.3 satisfy the
algebraic relations

K ∗D1 = D0 K ∗, D1 K = K D0.

These have the following consequences on the level of propagators and spaces of solu-
tions, proved in [HS].

Proposition 2.5. As a consequence of Hypothesis 2.3,

(1) K ∗G±
1 = G±

0 K ∗ on �c(M; V1) and K G±
0 = G±

1 K on �c(M; V0);
(2) For all ψ ∈ �sc(M; V1) there exists h ∈ �sc(M; V0) s.t. ψ − K h ∈ Ker K ∗|�sc . If

moreover ψ ∈ Ker P|�sc then ψ − K h ∈ Ker P|�sc ∩ Ker K ∗|�sc;
(3) We have

Ker P|�sc ∩ Ker K ∗|�sc ⊂ G1Ker K ∗|�c + G1Ran K |�c;
(4) Ran P|�c = Ker K ∗|�c ∩ G−1

1 Ran K |�sc .

Since the auxiliary operators D1, D0 are Green hyperbolic, we can associate to them
phase spaces (V1, q1), (V0, q0) as in the previous subsection.

In the ‘subsidiary condition’ framework, the physical phase space associated to P ,
denoted (VP, qP), is defined by

VP ··= Ker K ∗|�c

Ran P|�c

, u qPv ··= i−1(u|[G1]v)V1 .

The first thing to check is that the propagator G1 of D1 induces a well-defined linear
map on the quotient space above.
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Proposition 2.6. The sesquilinear form qP is well defined on VP .

Proof. We need to show that (u|G1v)V 1 = 0 if u ∈ Ker K ∗|�c and v = P f for some
f ∈ �c(M; V1). We have in such case

G1 P f = −G1 K K ∗ f = −K G0 K ∗ f,

hence (u|G1 P f )V 1 = −(K ∗u|G0 K ∗ f )V 0 = 0. ��
The definition of the phase space VP agrees with the one considered in [Dim2,FP,

P,HS] and is arguably the most natural one. Other possible definitions are discussed in
[DHK,HS,B]. Let us also mention that the form qP needs not be non-degenerate on VP ,
cf. examples and further discussion in [DHK,HS,B].

It is possible to give different generalizations of Proposition 2.3, (2.3) (claim a) below
is proved in [HS]).

Proposition 2.7. The induced maps

(a) [G1] : Ker K ∗|�c

Ran P|�c

−→ Ker P|�sc

Ran K |�sc

,

(b) [G1] : Ker K ∗|�c

Ran P|�c

−→ Ker D1|�sc ∩ Ker K ∗|�sc

Ran G1 K |�c

,

are well defined and bijective.

Proof. (b): For well-definiteness we check that G1Ker K ∗|�c ⊂ KerD1 which is easy,
and G1Ker K ∗|�c ⊂ KerK ∗, which follows from K ∗G1 = G0 K ∗. We need also to
check that G1RanP ⊂ RanG1 K which follows from Hypothesis 2.3 (c).

For injectivity we see that if K ∗u = 0 and G1u = G1 Kv, then u − Kv = D1 f for
f ∈ �c(M; V1), hence D0(v + K ∗ f ) = 0, which implies that v + K ∗ f = 0 and hence
u = P f .

Surjectivity amounts to showing

Ker D1|�sc ∩ Ker K ∗|�sc = G1KerK ∗|�c + G1Ran K |�c .

The inclusion ‘⊃’ is easy, the other one follows from Proposition 2.5 (3). ��
Finally, let us quote another useful result, shown in the present context in [HS], and

often called the time-slice property (or time-slice axiom). Below, J +(O) (resp. J−(O))
denotes the causal future (resp. causal past) of O ⊂ M .

Proposition 2.8. Let �+, �− be two Cauchy surfaces s.t. J−(�+) ∩ J +(�−) contains
properly a Cauchy surface. Then for all [ f ] ∈ Ker K ∗|�c/Ran P|�c there exists f̃ ∈
Ker K ∗|�c s.t.

[ f ] = [ f̃ ], supp f̃ ⊂ J−(�+) ∩ J +(�−).

2.4.1. Phase spaces on a Cauchy surface. Let us now discuss the corresponding phase
spaces on a fixed Cauchy surface� ⊂ M . Recall that in Hypothesis 2.3 we have required
that the operators D1 and D0 are Green hyperbolic, and thus Cauchy hyperbolic. The
corresponding maps will be denoted
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ρ1 : �(M; V1)→ �c(�; Vρ1),

ρ0 : �(M; V0)→ �c(�; Vρ0).

We also recall that we have defined operators Gi� such that Gi = (ρi Gi )
∗Gi�(ρi Gi )

and Cauchy evolution operators Ui for i = 0, 1.
To the operator K we associate an operator K� ∈ Diff(�; Vρ0 , Vρ1):

K�
··= ρ1 KU0. (2.8)

It is useful to introduce the adjoint K †
� ∈ Diff(�; Vρ1 , Vρ0)w.r.t. the hermitian forms

q1� and q0� (the so-called symplectic adjoint), i.e.

G0�K †
�
··= K ∗

�
G1�. (2.9)

The notation † is used to avoid confusion with the formal adjoint ∗ w.r.t. the hermitian
structures on the bundles Vρ0 , Vρ1 , appearing for instance in the LHS of the above
equation.

Lemma 2.9. As a consequence of Hypothesis 2.3,

(1) KU0 = U1 K� and K ∗U1 = U0 K †
�;

(2) ρ1 K = K�ρ0 on Ker D0|�sc and ρ0 K ∗ = K †
�ρ1 on Ker D1|�sc ;

(3) Ker K †
�|�c = ρ1G∗

1Ker K ∗|�c;
(4) Ran K�|�c = ρ1G∗

1Ran K |�c;

(5) K †
�K� = 0.

Proof. (1): Let us prove the second assertion (the first one is trivial). By (2.9) and
Proposition 2.5 (1),

U0 K †
� = G∗

0ρ
∗
0 G0�K †

� = G∗
0ρ
∗
0 K ∗

�
G1� = G∗

0ρ
∗
0U∗

0 K ∗ρ∗1 G1�

= G∗
0 K ∗ρ∗1 G1� = K ∗G∗

1ρ
∗
1 G1� = K ∗U1.

(2): By (1) we have ρ0 K ∗ = ρ0 K ∗U1ρ1 = ρ0U0 K †
�ρ1 = K †

�ρ1. The other assertion
is trivial.

(3): If u = ρ1G∗
1 f with f ∈ Ker K ∗|�c then K †

�u = ρ0 K ∗G∗
1 f = ρ0G∗

0 K ∗ f = 0.

Conversely, if u ∈ Ker K †
�|�c then using that 1 = ρ1G∗

1ρ
∗
1 G1� we get u = ρ1G∗

1 f with
f = ρ∗1 G1�u and

K ∗ f = K ∗ρ∗1 G1�u = ρ∗0 K ∗
�

G1�u = ρ∗0 G0�K †
�u = 0.

(4): If u = ρ1G∗
1 K f then u = ρ1 K G1 f = K�ρ0G0 f . Conversely, if u = K�h then

using that 1 = ρ1G∗
1ρ
∗
1 G1� we get

u = ρ1G∗
1ρ
∗
1 G1�K�h = ρ1G∗

1 Kρ∗0 G0�h.

(5): By (1), K †
�K� = ρ0U0 K †

�K� = ρ0 K ∗U1 K� = ρ0 K ∗KU0 = 0. ��
Proposition 2.10. The induced map

[ρ1] : Ker D1|�sc ∩ Ker K ∗|�sc

Ran G1 K |�c

−→ Ker K †
�|�c

Ran K�|�c

is well defined and bijective.
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Proof. Recall that we proved Ker D1|�sc ∩Ker K ∗|�sc = G1KerK ∗|�c + G1Ran K |�c .
For well-definiteness and surjectivity of [ρ1] it is thus sufficient to check that

ρ1(G1KerK ∗|�c + G1Ran K |�c) = Ker K †
�|�c ,

which follows directly from (2) and (3) of Lemma 2.9 (using G∗
1 = −G1).

For injectivity we need to show that if u ∈ G1KerK ∗|�c + G1Ran K |�c and ρ1u ∈
Ran K�|�c then u ∈ Ran G1 K |�c . This follows from (4) of Lemma 2.9. ��

We deduce from Propositions 2.7 and 2.10 that the map ρ1G1 induces an isomor-
phism between the phase space (VP, qP) and the phase space (VP�, qP�), defined in the
following way:

VP� ··= Ker K †
�|�c

Ran K�|�c

, u qP�v ··= i−1(u|[G1�]v)Vρ1
.

2.5. Linearized Yang–Mills. We now recall how the formalism of Sect. 2.4 applies to
Yang–Mills equations linearized around a background solution Ā. We follow [MM,HS].

Let g be a real compact Lie algebra as in Hypothesis 1.3. We still denote by g its
complexification. The complexification of the Killing form yields a sesquilinear form

k ∈ L(g, g∗), k > 0.

For simplicity we will work in a geometrically trivial situation.5

As in [HS] we take V0 to be the trivial bundle

V0 ··= M × g,

equipped with the hermitian structure induced by k, and V1 the corresponding 1-form
bundle

V1 ··= T ∗M × g.

We equip V1 with the hermitian structure given by the tensor product of the canonical
hermitian structure on T ∗M with k.

Note that under Hypothesis 1.1 this bundle is trivial since � and hence M is then
parallelizable.

Let us denote by E p(M) the space of smooth p-forms on M and by E⊕(M) =⊕
p E p(M) the space of smooth forms on M . As explained in 1.3, the spaces of sections

�(M; Vi ) i = 0, 1 can be identified respectively with E0(M)⊗ g and E1(M)⊗ g. The
exterior product on E⊕(M)⊗ g is defined by

(α ⊗ a) ∧ (β ⊗ b) ··= (α ∧ β)⊗ [a, b] a, b ∈ g, α, β ∈ E⊕(M),
(note that in the physics literature a bracket notation is sometimes used instead). The
interior product is defined by

(α ⊗ a) � (β ⊗ b) ··= (α �β)⊗ [b, a], a, b ∈ g, α, β ∈ E⊕(M).
5 Otherwise one has to use the language of principal bundles, some indications can be found in [MM,Z].
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We also define

A � · : E⊕(M)⊗ g � B �→ B � A ∈ E⊕(M)⊗ g.

It holds that

(B ∧ · )∗ = B � ·, B ∈ E p(M)⊗ g

where the bar stands for ordinary complex conjugation. Note also that for 0-forms the
interior product reduces to

f � · = − f ∧ ·, f ∈ E0(M)⊗ g. (2.10)

Let d : E p(M)→ E p+1(M) be the ordinary differential and let Ā ∈ E1(M)⊗ g (the
thick bar is designed to distinguish Ā from dynamical variables A, it should not to be
confused with complex conjugation A). The covariant differential d̄ : E p(M) ⊗ g →
E p+1(M)⊗ g respective to Ā is defined by

d̄ f ··= d f + Ā ∧ f, f ∈ E p(M)⊗ g.

Despite its name, it is in general not a differential in the sense that d̄d̄ would vanish,
instead it holds that

d̄d̄ = F̄ ∧ ·, (2.11)

where F̄ ··= d Ā+ Ā∧ Ā ∈ E2(M)⊗g is the curvature of Ā. The covariant co-differential
δ̄ : E p+1(M)⊗g → E p(M)⊗g is by definition the formal adjoint d̄∗ of d̄. The covariant
differential satisfies

d̄(A ∧ B) = (d̄ A) ∧ B + (−1)p A ∧ (d̄ B), A ∈ E p(M)⊗ g, B ∈ Eq(M)⊗ g.

This can be written as an identity for operators and by taking their adjoints, one gets

A � δ̄B = (d̄ A) � B + (−1)p δ̄(A � B), A ∈ E p(M)⊗ g, B ∈ Eq(M)⊗ g. (2.12)

A consequence of the definition F̄ = d̄ Ā is the Bianchi identity

d̄ F̄ = 0. (2.13)

The non-linear Yang–Mills equation for Ā reads

δ̄d̄ Ā (= δ̄ F̄) = 0. (2.14)

This system can be linearized as follows. We fix a real-valued section Ā ∈ E1(M)⊗g
and assume it is on-shell, i.e. satisfies the Yang–Mills equation (2.14). The linearized
Yang–Mills operator is

P ··= δ̄d̄ + F̄ � ∈ Diff2(M; V1), (2.15)

where d̄ , δ̄ and F̄ refer to the background solution Ā. The linearized Yang–Mills equation
is

P A = 0. (2.16)

Gauge transformations are described in this linearized setting by the differential
operator

K ··= d̄ ∈ Diff1(M; V0, V1).
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It is not difficult to see that Hypothesis 2.3 is satisfied by P and K . More precisely, the
operators D0 = K ∗K and D1 = P + K K ∗ equal

D0 = δ̄d̄ ∈ Diff2(M; V0),

D1 = d̄ δ̄ + δ̄d̄ + F̄ � ∈ Diff2(M; V1).

To show P K = 0, we compute using (2.11), (2.12) and (2.10)

P K f = δ̄d̄ d̄ f + F̄ � (d̄ f ) = δ̄(F̄ ∧ f ) + (d̄ f ) � F̄

= δ̄( f � F̄) + (d̄ f ) � F̄ = f � (δ̄ F̄) ∀ f ∈ E0(M)⊗ g.

By the assumption that Ā is on-shell (2.14) this vanishes.

2.5.1. Adapted Cauchy data. Let us denote by n the future directed unit normal vector
field to a Cauchy surface �.

Since D1, D0 are normally hyperbolic, they are Cauchy hyperbolic for the maps
ρ1, ρ0 defined by taking the restriction to � of a given section and of its first derivative
along n.

For many purposes it will however be more convenient to consider different maps
ρF

1 , ρF
0 , which appear to be due to Furlani [Fur2] (cf. also [P]), and which are defined as

follows.6

We equip E p
c (�)⊗g with their standard (positive) hermitian scalar products, obtained

from k and the Riemannian metric h induced by g on�. We also recall that ı ∗ : E p
sc(M)⊗

g → E p
c (�)⊗ g is the pullback map induced by the embedding ı : �→ M .

Definition 2.11. If ζ ∈ E1
sc(M)⊗ g, we set:

g0
t ··= ı ∗n�ζ ∈ E0

c (�)⊗ g,

g0
�
··= ı ∗ζ ∈ E1

c (�)⊗ g,

g1
t ··= i−1ı ∗δ̄ζ ∈ E0

c (�)⊗ g,

g1
�
··= i−1ı ∗n�d̄ζ ∈ E1

c (�)⊗ g.

For gi ··= (gi
t , gi

�
) ∈ E0

c (�)⊗ g⊕ E1
c (�)⊗ g we set:

g ··= (g0, g1) =·· ρF
1 ζ.

Analogously, if ζ ∈ E0
sc(M)⊗ g, we set

g0 ··= ı ∗ζ ∈ E0
c (�)⊗ g,

g1 ··= i−1ı ∗n�d̄ζ ∈ E0
c (�)⊗ g,

and

g ··= (g0, g1) =·· ρF
0 ζ.

6 To be precise, reference [Fur2] uses Cauchy data which are denoted (A(n), A(0), A(δ), A(d)) therein and

are related to ours by g0
t = A(n), g0

�= A(0), g1
t = i−1 A(δ), g1

�= i−1 A(d).
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In the terminology of Sect. 2.4.1, ρF
i : �c(M; Vi )→ �c(�; VρF

i
) where the bundles

VρF
1
= (T ∗� ⊕ T ∗�)× g, VρF

0
= (� ⊕�)× g

are equipped with their canonical hermitian structures inherited from the inverse Rie-
mannian metric on � and the Killing form k.

As in [Fur2,P], it can be checked that the corresponding Cauchy problems are well-
posed and that the operators Gi� (defined using the ρF

i data) can be written as

G1� = i−1

⎛
⎜⎝

0 0 −1 0
0 0 0 1
−1 0 0 0
0 1 0 0

⎞
⎟⎠ , G0� = i−1

(
0 1
1 0

)
. (2.17)

We denote by d̄�, δ̄� the covariant differential and co-differential on � respective to
Ā�

··= ı ∗ Ā, i.e.

d̄� ··= d� + Ā� ∧ · : E p
c (�)⊗ g → E p+1

c (�)⊗ g,

δ̄� ··= d̄∗
�
: E p

c (�)⊗ g → E p−1
c (�)⊗ g,

where now the adjoint is computed using the inverse metric on � and the Killing form
k.

The ρF
i Cauchy data are particularly useful to express the operators K� = U F

1 KρF
0

and K †
� (where U F

1 is defined as U1 but with ρF
1 instead of ρ1).

Lemma 2.12. We have:

K� =
⎛
⎜⎝

0 i
d̄� 0
0 0

i−1a 0

⎞
⎟⎠ , K †

� =
(

0 0 i 0
0 i a∗ 0 δ̄�

)
,

where a ··= ı ∗(n�F̄) ∧ ·.
Proof. The formula for K� is a routine computation. To obtain the formula for K †

� we
use (2.17) and (2.9). ��

Using Lemma 2.12 and the identity K †
�K� = 0 [Lemma 2.9 (5)], we obtain the

following important identity:

δ̄� ◦ a = a∗ ◦ d̄� in L(E0(�)⊗ g). (2.18)

3. Hadamard States

In this section we discuss Hadamard states both in ordinary field theory and the subsidiary
condition framework. In Sect. 3.1 we recall basic facts on quasi-free states on complex
symplectic spaces. The Hadamard condition in ordinary field theory is recalled in Sect.
3.2. Section 3.3 contains a streamlined version of the arguments in [GW], dealing with
the correspondence between Hadamard states and parametrices for the Cauchy problem
in the ordinary framework. In Sect. 3.4 we consider the subsidiary gauge framework. We
explain there in detail the strategy we will follow in later sections to construct Hadamard
states in this case, thereby proving Theorem 1.1.

Finally in Sect. 3.5 we explain the version of the Fulling–Narcowich–Wald defor-
mation argument adapted to the Yang–Mills case, which we use to deduce Theorem 1.2
from Theorem 1.1.
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3.1. Quasi-free states. Let V a complex vector space, V∗ its anti-dual and Lh(V,V∗)
the space of hermitian sesquilinear forms on V . If q ∈ Lh(V,V∗) then we can define the
polynomial CCR ∗-algebra CCRpol(V, q) (see eg [DG, Sect. 8.3.1]). 7 The (complex)
field operators V � v �→ ψ(v), ψ∗(v), which generate CCRpol(V, q) are anti-linear,
resp. linear in v and satisfy the canonical commutation relations

[ψ(v), ψ(w)] = [ψ∗(v), ψ∗(w)] = 0, [ψ(v), ψ∗(w)] = vqw1, v, w ∈ V .
The complex covariances �± ∈ L(V,V∗) of a (gauge-invariant8) state ω on CCRpol

(V, q) are defined in terms of the abstract field operators by

v�+w ··= ω(ψ(v)ψ∗(w)), v�−w ··= ω(ψ∗(w)ψ(v)), v,w ∈ V
By the canonical commutation relations, one has �+ −�− = q.

In what follows we will consider only quasi-free states, which means that they are
uniquely determined by their covariances �± (since �+ −�− = q it suffices to know
one of them).

Definition 3.1. A pair �± of hermitian forms on V such that �+ − �− = q will be
called a pair of pseudo-covariances.

Let us recall the following characterization of covariances of quasi-free states on
CCRpol(V, q) (cf. [AS,GW]).

Proposition 3.2. Pseudo-covariances �± ∈ Lh(V,V∗) are covariances of a (bosonic,
gauge-invariant) quasi-free state on CCRpol(V, q) iff

�± ≥ 0. (3.1)

If q is non-degenerate then this is equivalent to ±qc± ≥ 0, where c± ··= ±q−1�±. If
moreover, (c+)2 = c+ on the completion of V w.r.t. �+ +�−, then the associated state
is pure.

Hence a pair of (pseudo-)covariances �± ∈ Lh(V,V∗) uniquely define a (pseudo-
)state on CCRpol(V, q), where by pseudo-state we mean a ∗−invariant linear functional
on CCRpol(V, q).

Definition 3.3. A (bosonic) charge reversal on (V, q) is an anti-linear operator κ on
V such that κ2 = ±1 and κ∗qκ = −q , where the bar stands for ordinary complex
conjugation. A quasi-free state on CCRpol(V, q) with two-point function �+ is said to
be invariant under charge reversal if�− = −κ∗�+κ . If q is non-degenerate then this is
equivalent to c− = −κc+κ .

Clearly, if�+ is a covariance of a quasi-free state invariant under charge conjugation
then one of the two conditions in (3.1) implies the other. Note that one can always obtain
a state invariant under charge reversal by taking 1

2 (�
+−κ∗�−κ) instead of�+. For this

reason, we will disregard this issue and consider states that need not be invariant under
a charge reversal (contrarily to most of the literature on Hadamard states).

7 See [GW,W2] for remarks on the transition between real and complex vector space terminology.
8 Here by gauge invariance we mean invariance w.r.t. transformations generated by the complex structure.

We always consider states that are gauge-invariant in this sense and not mention it anymore in order to avoid
confusion with other possible meanings of gauge invariance.
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3.2. Hadamard two-point functions.

3.2.1. Two-point functions. Let D ∈ Diffm(M; V ) be prenormally hyperbolic and for-
mally selfadjoint for (·|·)V . Let us introduce the assumptions:

(i) λ± : �c(M; V )→ �(M; V )
(ii) λ± = λ±∗ for (·|·)V on �c(M; V ),
(iii) λ+ − λ− = i−1G,
(iv) Dλ± = λ±D = 0,

(3.2)

λ± ≥ 0 for (·|·)V on �c(M; V ). (3.3)

Note that (3.2) implies that λ± : �′(M; V )→ �′c(M; V ). Let us set

u�±v ··= (u|λ±v)V , u, v ∈ �c(M; V ).

If (3.2) hold, then �± define a pair of complex pseudo-covariances on the phase space
(V, q) defined in (2.2), hence define a unique quasi-free pseudo-state on CCRpol(V, q).
If additionally (3.3) holds, they are (true) covariances, and define a unique quasi-free
state on CCRpol(V, q).

Definition 3.4. A pair of maps λ± : �c(M; V ) → �(M; V ) satisfying (3.2) will be
called a pair of spacetime two-point functions.

3.2.2. Hadamard condition. The (primed) wave front set of λ± is by definition the
(primed) wave front set of its Schwartz kernel. For x ∈ M , we denote V±∗

x the posi-
tive/negative energy cones, dual future/past light cones and set

N± ··= {(x, ξ) ∈ T ∗x M \ {0} : gμν(x)ξμξν = 0, ξ ∈ V±∗
x }, N ··= N + ∪N−.

Definition 3.5. A pair of two-point functions λ± satisfying (3.2) is Hadamard if

WF′(λ±) ⊂ N± ×N±. (Had)

This form of the Hadamard condition is taken from [SV,Hol], see also [W2] for a
review on the equivalent formulations.

Remark 3.6. Assume that there exists an anti-linear operator κ : �(M; V )→ �(M; V )
with κ2 = ±1 and Dκ = κD. It follows that κ induces a charge reversal on (V, q)
defined in (2.2). If moreover κ has the property that

κ( f u) = f κu, f ∈ �(M), u ∈ �(M; V )

then it is easy to see that

WF(κu) = WF(u), u ∈ �′c(M; V )

where

� ··= {(x,−ξ) : (x, ξ) ∈ �}, for � ⊂ T ∗M.

If λ± are the two-point functions of a (pseudo-)stateω invariant under the charge reversal
κ , then the relation between λ+ and λ− shows that the two conditions in (Had) are
equivalent. Most of the literature on Hadamard states deals only with the charge-reversal
invariant case, see however [Hol,W2].
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3.3. Correspondence between Hadamard states and parametrices. One of the methods
to impose (μsc) is to construct a sufficiently explicit parametrix for the Cauchy problem
on a given Cauchy surface�, as was done in [GW] for the scalar Klein–Gordon equation.
In the present subsection, we will derive the precise relation between two-point functions
of Hadamard states in ordinary field theory and parametrices.

3.3.1. Two-point functions on a Cauchy surface. Let D ∈ Diffm(M; V ) be prenormally
hyperbolic, formally selfadjoint on �c(M; V ) and Cauchy hyperbolic for some map ρ
as in 2.3.1.

Lemma 3.7. The operator ρG extends continuously to a surjection

ρG : �′(M; V )→ �′(�; Vρ)

with KerρG|�′ = RanD|�′ .
Proof. To show that ρG : �′(M; V )→ �′c(�; Vρ) is well-defined and continuous, it
suffices to use the well-known fact that

WF′(G) ⊂ N ×N (3.4)

and the rules for composition of distributional kernels in terms of the wavefront set
(see [Hor]). The fact that ρG : �′(M; V )→ �′(�; Vρ) follows then from the support
properties of G. To prove the surjectivity it suffices to show that the identity

1 = −ρGρ∗G� valid on �c(�; Vρ)

extends to �′(�; Vρ). This is indeed the case because G� is a differential operator (this
is usually shown using Green’s formula) and consequently acts continuously from �′ to
�′, hence ρ∗G� : �′(�; Vρ)→ �′(M; V ).

The fact that KerρG|�′ = KerG|�′ = RanD|�′ follows by the same proof as
before. ��

Let us introduce the assumptions:

(i) λ±� : �c(�; Vρ)→ �(�; Vρ),
(ii) λ±� = (λ±� )∗ for (·|·)Vρ ,
(iii) λ+

�
− λ−� = i−1G�.

(3.5)

Definition 3.8. A pair of maps λ±� satisfying (3.5) will be called a pair of Cauchy surface
two-point functions.

In the proposition below we recall a well known bijection between spacetime and
Cauchy surface two-point functions.

Proposition 3.9. The maps:

λ±
�
�→ λ± ··= (ρG)∗λ±

�
(ρG), (3.6)

and
λ± �→ λ±

�
··= (ρ∗G�)

∗λ±(ρ∗G�) (3.7)

are bijective and inverse from one another. Moreover, λ± are the two-point functions of
a quasi-free state iff

λ±
�
≥ 0 for (·|·)Vρ .
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Proof. (1): let λ±� satisfy (3.5). Clearly λ± is well defined as a map from �c(M; V ) to
�′c(M; V ). If u ∈ �c(M; V ), then f ± ··= λ±� ρGu ∈ �(�; Vρ), hence WF(ρ∗ f ±) ⊂
N∗
�

M , the conormal bundle to � in M . We use now (3.4), the fact that � is non-
characteristic i.e. N∗

�
M ∩ N = ∅ and standard arguments with wave front sets (see

[Hor]) to obtain that λ±u = −Gρ∗ f ± ∈ �(M; V ). The other conditions in (3.2) are
straightforward.

(2): letλ± satisfies (3.2). Sinceλ±D = 0, we have WF′(λ±) ⊂ T ∗M×N which implies
that λ±(ρ∗G�) : �c(�; Vρ) → �(M; V ). Next we use that G� is a differential
operator hence G� : �(�; Vρ) → �(�; Vρ) to obtain that λ±� : �c(�; Vρ) →
�(�; Vρ). The other conditions in (3.5) are straightforward.

The fact that the two maps are inverse from each other follows fromρU=ρG∗ρ∗G�=
1. The last statement about positivity is obvious. ��

Proposition 3.9 leads to the following definition:

Definition 3.10. A pair λ±� of Cauchy surface two-point functions is Hadamard if the
associated spacetime two-point functions λ± are Hadamard.

3.3.2. Hadamard two-point functions and parametrices. Let us now discuss the link
between Hadamard two-point functions and parametrices for the Cauchy problem. Let
λ± be the two-point functions of a state. We set9

H0(�; Vρ) ··=
(
�c(�; Vρ))

cpl (3.8)

where the completion is taken w.r.t. (·|(λ+
�

+ λ−� )·)Vρ .

Theorem 3.11. Let D ∈ Diffm(M; V ) be prenormally hyperbolic, formally self-adjoint
and Cauchy hyperbolic. Let λ± be the two-point functions of a quasi-free Hadamard
state and define

U± ··= Uc± : �′(�; Vρ)→ �′c(M; V ),

where c± = ±iG−1
� λ±� . Then

(1) U + + U− = U.
(2a) The spaces Ker U +|H0 and Ker U−|H0 are orthogonal for q� .
(2b) if the state is pure then

H0(�; Vρ) = Ker U +|H0 ⊕ Ker U−|H0 .

(3) ±i−1G� is positive on Ker U±|H0 for (·|·)Vρ .
(4) WF(U± f ) ⊂ N± for all f ∈ �′(�; Vρ).

Proof. (1) follows from c+ + c− = 1. To prove (2a) we note that for u± ∈ Kerc∓ and
q� defined in (2.4) one has:

(u+ + zu−)q�u+ = (u+ + zu−)q�c+(u+ + zu−) ∈ R, ∀ z ∈ C,

9 For instance, if λ± are the two-point functions of the vacuum for the scalar Klein–Gordon equation on

Minkowski space then H0(�; Vρ) = H
1
2 (Rd )⊕ H− 1

2 (Rd ), where Hm (Rd ) are the usual Sobolev spaces.



Hadamard States for the Yang–Mills Equation on Curved Spacetime 273

which implies that u−q�u+ = 0. (2b) follows from the fact that c± are bounded projec-
tions on H0 if the state ω is pure, (3) follows from the conditions λ±� ≥ 0. To show (4),
observe that for all u ∈ �′(M; V )

λ+u = (ρG )∗λ+
�
ρGu = U +ρGu.

Thus, the Hadamard condition entails that WF(U +ρGu) ⊂ N +. Since ρG is surjective
this means WF(U + f ) ⊂ N + for all f ∈ �′(�; Vρ). The proof for U− is analogous. ��

To obtain a converse statement, we need spaces that can replace the space H0(�; Vρ),
and that will allow to compose operators.

To this end, suppose H(�; Vρ) is a topological vector space s.t.

�c(�; Vρ) ⊂ H(�; Vρ) ⊂ �(�; Vρ).

Examples of such spaces are (intersections of) scales of Sobolev spaces associated to
a positive, elliptic pseudodifferential operator. The dual space of H(�; Vρ), denoted
H′(�; Vρ), satisfies

�′(�; Vρ) ⊂ H′(�; Vρ) ⊂ �′c(�; Vρ).

We will denote B−∞(�; Vρ) the class of operators that map H′(�; Vρ) into �(�; Vρ).
We assume that

G�, G−1
�
: H(�; Vρ)→ H(�; Vρ), (3.9)

which since i−1G� is selfadjoint for (·|·)Vρ implies of course

G�, G−1
�
: H′(�; Vρ)→ H′(�; Vρ),

The corresponding natural assumption for a pair of Cauchy surface two-point functions
λ±� is

λ±� : H(�; Vρ)→ H(�; Vρ),
λ±� : H′(�; Vρ)→ H′(�; Vρ),

(3.10)

where as before one of the above conditions implies the other.

Theorem 3.12. Assume that there exist operators U± : H′(�; Vρ)→ �′c(M; V ) such
that U± : H(�; Vρ)→ �(M; V ) and

DU± = 0, U + + U− = U,

up to remainders that map H′(�; Vρ)→ �(M; V ).
Assume moreover that

(1) the spaces Ker U +|H and Ker U−|H are orthogonal for q� and

H(�; Vρ) = Ker U +|H ⊕ Ker U−|H.
(2) WF(U± f ) ⊂ N± for all f ∈ �′(�; Vρ).

Let c± : H(�; Vρ)→ H(�; Vρ) be the projection s.t.

Ran c± = Ker U∓|H, Ker c± = Ker U±|H.
Then λ±� ··= ±i−1G�c± are Hadamard Cauchy surface two-point functions. If moreover
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(3) ±i−1G�c± ≥ 0 for (·|·)Vρ ,

then λ±� are the Cauchy surface two-point functions of a Hadamard state.

Proof. (1) implies c+ + c− = 1. By duality, c± : H′(�, Vρ)→ H′(�, Vρ). Next, for
all f ∈ �′(�; Vρ) we have:

Uc± f = (U + + U−)c± f = U±c± f = U±(1− c∓) f = U± f mod C∞.
Therefore,

λ±u = ±i−1Uc±ρGu = ±iU±ρGu mod C∞, u ∈ �′(M; V ).

Let a± be a properly supported pseudodifferential operator, non-characteristic on N±
and with essential support disjoint from N∓. From (2) and the relation above it follows
that a±λ± is smoothing, hence WF′(λ±) ⊂ N± ×N . Since λ± = (λ±)∗ this implies
WF′(λ±) ⊂ N± ×N±. This proves the first statement of the proposition. The second
statement is obvious. ��

Theorem 3.12 allows to simplify the construction of Hadamard states for the scalar
Klein–Gordon equation given in [GW]—it is in fact not difficult to check properties
(1)–(3) directly from the construction of the parametrix therein. The space H(�; Vρ) is
taken there to be the intersection of usual Sobolev spaces on R

d . The next proposition
is an abstract version of a result from [GW].

Proposition 3.13. Assume that λ±� , λ̃±� satisfy (3.10) and are the Cauchy surface two-
point functions of two quasi-free states, and suppose the first of them is pure and
Hadamard. Then the other one is Hadamard iff

c−c̃+c−, c+c̃+c−, c+c̃−c+ ∈ B−∞(�; Vρ) (3.11)

or, equivalently, iff

c̃± − c± ∈ B−∞(�; Vρ) (3.12)

Proof. ⇐: if (3.11) or (3.12) holds then

Uc̃± −Uc±c̃±c± : H′(�; Vρ)→ �(M; V ).

By Theorem 3.11, it follows that WF(Uc̃± f ) ⊂ N± for all f ∈ �′(�; Vρ) and conse-
quently λ̃ is Hadamard by Theorem 3.12.
⇒: for all f ∈ �′(�; Vρ),

Uc−c̃+c± f = Uc̃+c± f −Uc+c̃+c± f.

By Theorem 3.11, the wave front set of the LHS is contained in N−, and the wave front
set of the RHS is contained in N +. This shows that the operators Uc−c̃+c± are smoothing,
therefore c−c̃+c± = ρUc−c̃+c± are smoothing. The assertion c+c̃−c+ ∈ B−∞(�; Vρ)
is shown similarly.

Moreover, (3.11) entails that

c̃+ − c+ = (c+ + c−)c̃+(c+ + c−)− c+ = c+c̃+c+ − c+

= c+(c̃+ − 1)c+ = −c+c̃−c+ mod B−∞(�; Vρ),

where the last term belongs to B−∞(�; Vρ). This proves (3.12). ��
Corollary 3.14. If λ±� satisfying (3.10) are Hadamard Cauchy surface two-point func-
tions then so are v∗λ±� v for any v ∈ 1 + B−∞(�; Vρ) s.t. v∗G�v = G� .
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3.4. Hadamard states in the subsidiary condition formalism.

3.4.1. Hadamard states in the subsidiary condition formalism. Definition 3.5 can be
generalized to gauge theories in the ‘subsidiary condition’ framework. Recall that to a
given non-hyperbolic operator P we have assigned a hyperbolic operator D1 and intro-
duced phase spaces VP = KerK ∗/RanP , V1 = �c/RanD. We consider the following
definition, which generalizes the one used by [FP,FS].

Definition 3.15. A quasi-free state ω on CCRpol(VP, qP) is Hadamard if there exists
Hadamard two-point functions λ±1 on �c(M; V1) such that the complex covariances of
ω are given by:

[u]�±[v] = (u|λ±1 v)V , u, v ∈ KerK ∗|�c ,

where KerK ∗|�c � u �→ [u] ∈ KerK ∗/RanP is the canonical map.

We say that λ±1 are the two-point functions of the Hadamard state ω on CCRpol(VP, qP).
The following lemma is straightforward.

Lemma 3.16. λ±1 : �c(M; V1)→ �(M; V1) are the two-point functions of a Hadamard
state on CCRpol(VP, qP) if:

(μsc) D1λ
±
1 = λ±1 D1 = 0, WF′(λ±1 ) ⊂ N± ×N±,

(g.i.) (λ±1 )
∗ = λ±1 and λ±1 : Ran K |�c → Ran K |�′c ,

(pos) λ±1 ≥ 0 on Ker K ∗|�c .

(3.13)

It is worth mentioning that in perturbative interacting Quantum Field Theory, some
constructions seem to survive if one replaces gauge-invariance (g.i.) by a condition
‘modulo smooth terms’ [Rej]. Nevertheless, (μsc) and positivity (pos) are still essential
(cf. [DF] and [Hol2, Sect. 4.1.2] for discussion on the latter), and gauge-invariance (g.i.)
is needed to have a reasonable non-interacting theory, we will thus aim at solving all of
them when possible.

We now discuss gauge-invariance and positivity on the level of Cauchy surface two-
point functions λ±1� . We explain the main steps of the construction of Hadamard states
for the linearized Yang–Mills equations, leading to a proof of Theorem 1.1, which will
be completed in Sect. 8.

The construction is somewhat complicated by the need to justify that various operators
can be composed. These technical points can be bypassed on the first reading.

We fix spaces H(�; Vρi ), i = 0, 1 as in Sect. 3.3 and assume that Gi� satisfy (3.9).
The corresponding assumption on K� is:

K� : H(�; Vρ0)→ H(�; Vρ1),

K� : H′(�; Vρ0)→ H′(�; Vρ1).
(3.14)

The operator K †
� has then the same properties as K� .

3.4.2. Cauchy surface two-point functions. Assume that we are given Cauchy surface
two-point functions λ±i� for i = 0, 1 satisfying (3.5) and (3.10) for V = Vi .

To λ±i� we associate as before operators c±i ··= ±iG−1
i� λ

±
i� which by the above as-

sumptions satisfy:
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(i) c±i : H(�; Vρi )→ H(�; Vρi ),

(ii) c±i : H′(�; Vρi )→ H′(�; Vρi ),

(iii) c+
i + c−i = 1.

(3.15)

Conditions (pos), (g.i.) on λ±1 in (3.13) can be rewritten as

(pos) λ±1� = ±i−1G1�c±1 ≥ 0 for (·|·)Vρ1
on KerK †

�,

(g.i.) (c±1 )† = c±1 , c±1 : RanK� → RanK�.

Note that the last condition can be rewritten as:

(g.i.) (c±1 )
† = c±1 , c±1 : KerK †

� → KerK †
�.

Let us now set:
c±1 K� − K�c±0 =·· ±R−∞. (3.16)

Condition (g.i.) is clearly satisfied if R−∞ = 0.
The operators c±i are obtained from parametrices U±

i for the Cauchy problems for Di

as in Theorem 3.12, in order to enforce the Hadamard condition for λ±1 . The construction
of parametrices done in Sect. 5 relies on pseudodifferential calculus, from which we will
only be able to obtain that R−∞ is smoothing.

Nevertheless, it is possible to ensure (g.i.) by subtracting to c±1 a term c±1 reg, which
is expected to be smoothing, and hence will not invalidate the Hadamard property.

The method works as follows.

3.4.3. Construction of a projection. Let � be a projection s.t.

Ker� = Ran K�,

� : H(�; Vρ1)→ H(�; Vρ1),

� : H′(�; Vρ1)→ H′(�; Vρ1).
(3.17)

Clearly �† has the same mapping properties as �. Moreover one has:

Ran�† = KerK †
�, Ran(1−�) = RanK�, Ker(1−�†) = KerK †

�. (3.18)

Since RanK� ⊂ KerK †
� we also have:

�† K� = K�, K †
�� = K †

�. (3.19)

3.4.4. Construction of a right inverse to K� . Let also B : �c(�; Vρ1)→ �(�; Vρ0) an
operator such that

K�B = 1−�, and hence B† K †
� = 1−�†. (3.20)

The operator B is typically unbounded from H(�; Vρ1) to H(�; Vρ0), because of in-
frared problems. To control its unboundedness, we introduce a smooth positive function
〈x〉 : � → R and still denote by 〈x〉 the operator of multiplication by 〈x〉, acting on
�(�; Vρi ). If � is compact the weight is unnecessary and one can take 〈x〉 = 1.

We assume that:

(i) 〈x〉Gi�〈x〉−1 : H(�; Vρi )→ H(�; Vρi ), i = 0, 1,
(ii) 〈x〉−1 K�〈x〉 : H(�; Vρ0)→ H(�; Vρ1),

(iii) 〈x〉−1c±0 〈x〉 : H(�; Vρ0)→ H(�; Vρ0),

(3.21)
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Concerning the operator B we assume that:

B : H(�; Vρ1)→ 〈x〉H(�; Vρ0),

B : H′(�; Vρ1)→ 〈x〉H′(�; Vρ0),
(3.22)

Theorem 3.17. Let c±i , �, B be as above. Let us set:

c̃±1 ··= �†c±1 � + B†c±0 K †
� + K�c±0 B,

c±1 reg
··= ±(B† R−∞ +�† R−∞B),

λ̃±1� ··= ±i−1G1� c̃±1 .

Then:

(1) c̃±1 : 〈x〉−1H(�; Vρ1)→ 〈x〉H(�; Vρ1), hence c̃±1 : �c(�; Vρ1)→ �(�; Vρ1).
(2) One has:

(i) (c̃±1 )† = c̃±1 ,
(ii) c̃+

1 + c̃−1 = 1,
(iii) c̃±1 : KerK †

� → KerK †
�,

(iv) ( f |λ̃±1�g)Vρ1
= (� f |λ±1��g)Vρ1

, f, g ∈ KerK †
�,

(v) c±1 = c̃±1 + c±1 reg,

in particular λ̃±1� satisfy (g.i.).
(3) If the projection � is such that

λ±1� ≥ 0 on �KerK †
�, (3.23)

then λ̃±1� satisfy also (pos).
(4) If moreover

c±1 reg : �′c(�; Vρ1)→ �(�; Vρ1)

and λ±1� are Hadamard, then λ̃±1� are Hadamard.

Proof. Let us first prove (1). Clearly �†c±1 � : H(�; Vρ1) → H(�; Vρ1), by (3.15),
(3.17). Next we obtain that K�c±0 B : H(�; Vρ1) → 〈x〉H(�; Vρ1), by (3.22), (3.21).

Using the same assumptions and duality we obtain that B†c±0 K †
� : 〈x〉−1H(�; Vρ1)→H(�; Vρ1).

Let us now prove (2). (i) is easy. To prove (ii) we write

c̃+
1 + c̃−1 = �†� + B† K †

� + K�B

= �†� + B† K †
�� + K�B

= �†� + (1−�†)� + (1−�) = 1,

using successively c+
i + c−i = 1, (3.19), and (3.20). (iii) follows from Ran�† = KerK †

�

(see 3.18), and RanK� ⊂ KerK †
� . (iv) follows from the definition of λ̃±1� . To prove (v)
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we write:

c̃±1 = �†c±1 � + B†c±0 K †
� + K�c±0 B

= �†c±1 � + B†c±0 K †
� +�† K�c±0 B

= �†c±1 � + B† K †
�c±1 +�†c±1 K�B ∓ B† R†

−∞ ∓�† R−∞B

= �†c±1 � + (1−�)†c±1 +�†c±1 (1−�)∓ B† R†
−∞ ∓�† R−∞B

= c±1 − c±1 reg.

(3) follows from the fact that (·|λ̃±1�·)Vρ1
= (·|λ±1�·)Vρ1

on KerK †
� .

Under the hypotheses of (4) λ±1� − λ̃1� is smoothing, hence so is λ±1 − λ̃±1 . This
completes the proof of the theorem. ��
Remark 3.18. If B satisfies additionally BK� = 1 (as will be the case in Sect. 8), then
c̃±1 satisfies a stronger version of gauge-invariance, namely

c̃±1 K� = K�c±0 . (3.24)

Such property is needed to construct two-point functions in the BRST framework, cf.
[Hol2] for discussion in the case of Yang–Mills fields with flat background connection
and [WZ] for generalization and computations on the Cauchy surface.

3.5. Reduction to ultra-static spacetimes by deformation. A well-known argument due
to Fulling, Narcowich and Wald [FNW] allows one to reduce the construction of
Hadamard states for the Klein–Gordon equation to the special case of an ultra-static
spacetime, and an extension of this method can be used for the Maxwell equations [FP]
and Yang–Mills linearized around Ā = 0 [Hol2].

Let us first recall the FNW deformation argument for ordinary field theory: let g, g′
be Lorentzian metrics on M such that (M, g) and (M, g′) are globally hyperbolic and
� ⊂ M a Cauchy surface for (M, g) and (M, g′). Assume that g = g′ on a causal
neighborhood O(�) of �. Assume also that D, D′ ∈ Diffm(M; V ) are normally hy-
perbolic operators satisfying the assumptions in Sect. 2.3 such that D = D′ on O(�).
Then by the time-slice property and Hörmander’s propagation of singularities theorem,
the restriction of a Hadamard state for D′ to O(�) yields a Hadamard state for D.

In the subsidiary condition formalism, one has to assume the existence of operators
P, K , P ′, K ′ as in Hypothesis 2.3 such that P = P ′, K = K ′ on O(�). The same
argument using the gauge invariant version of the time slice property, i.e. Proposition 2.8,
shows that the restriction of a Hadamard state for (P,′ K ′) to O(�) yields a Hadamard
state for (P, K ).

In the ordinary case one fixes an ultra-static metric gus, a normally hyperbolic operator
Dus, an interpolating metric g′ sharing a Cauchy surface� with g and a Cauchy surface
�us with gus, and finally a normally hyperbolic operator D′ with D′ = D near O(�)
and D′ = Dus near O(�us). Applying twice the above argument, one obtains a one-to-
one correspondence between Hadamard states for D and Hadamard states for Dus. The
construction of Hadamard states for Dus is easier since Dus can be chosen in such way
that its coefficients are independent on the time coordinate and then it admits a natural
vacuum state which can be shown to be Hadamard.
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3.5.1. Deformation argument for Yang–Mills. In the subsidiary condition formalism,
it is not obvious how to find interpolating operators P ′, K ′ equal to P, K near O(�)
and satisfying Hypothesis 2.3 globally on M . Moreover even if (M, g′) is ultra-static
on some O(�us), this does not imply in general that P ′, K ′ will be independent on the
time coordinate on O(�us).

For linearized Yang–Mills equations, it is possible to find interpolating operators
P ′, K ′ if we can find a 1−form Ā′ on (M, g′) such that δ̄′ F̄ ′ = 0 and Ā′ = Ā near
O(�). This will follow in turn from a result of global existence of smooth solutions
of the non-linear Yang–Mills equation, on the spacetime (M, g′), with smooth Cauchy
data on �.

Assuming this problem is solved, there is another issue that we need to consider:
by the deformation argument explained above, to prove the existence of Hadamard

states for the linearized Yang–Mills equations on (M, g), we may assume that (M, g) is
ultra-static, i.e. g = gus = −dt2 + hi j (x)dxi dx j on M = Rt ×�x .

Recall that we assume that � is either a compact manifold or � = R
d . The Rie-

mannian metric hi j (x)dxi dx j on � can be chosen as we wish, in particular if � = R
d

is not compact, we may assume that it satisfies Hypothesis 1.2. However if � = R
d ,

we need also to ensure Hypothesis 1.4 on the (non necessarily time-independent) back-
ground solution Āus (recall that this is a decay condition at spatial infinity). Moreover
we have to assume that Āus is in the temporal gauge, i.e. that Āus,t ≡ 0.

If our model problem is obtained from the above deformation argument, Āus is ob-
tained by solving two Cauchy problems for non-linear Yang–Mills equations:

in the first step one has to solve it on (M, g′), from a Cauchy surface � in the future
(where g′ = g) to a Cauchy surface �us in the past (where g′ = gus). In a second step
one has to solve it globally on (M, gus)with the Cauchy data on�us obtained in the first
step.

Clearly if the Cauchy problem for the Yang–Mills equation (2.14) on a globally
hyperbolic spacetime (M, g) can be globally solved in the space of smooth space-
compact solutions, then all the intermediate background fields Ā′ and Āus will be space
compact, and hence Āus will satisfy the decay condition (1.4). As a consequence the
FNW deformation argument can be applied, giving the existence of Hadamard states if
the background field Ā is space-compact.

Fortunately it is not very difficult to deduce the result we need in dimensions lower
than 4, from the existing literature, in particular from the work by Chruściel and Shatah
[CS, Thm. 1.1]. The proof of the following proposition will be sketched in Appendix B.4.

Proposition 3.19. Assume that dim M ≤ 4 and (M, g) is globally hyperbolic. Let Ā ∈
E1

sc(M; g) a local solution of the Yang–Mills equation (2.14) near some Cauchy surface
�. Then there exists Ā′ ∈ E1

sc(M; g) such that:

(1) Ā′ ∼ Ā near �, where ∼ denotes gauge equivalence,
(2) Ā′t ≡ 0, ie A

′
is in the temporal gauge,

(3) Ā′ is a global solution of (2.14).

Combining Proposition 3.19 with the above discussion, we see that Theorem 1.2
follows from Theorem 1.1.

4. Vector and Scalar Klein–Gordon Equations on Ultra-Static Spacetimes

In this section we consider a general framework containing the operators D0 = δ̄d̄ and
D1 = d̄ δ̄ + δ̄d̄ + F̄ � associated to the Yang–Mills equation (defined in Sect. 2.5) on
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ultra-static spacetimes. This will provide a basis for the construction of the parametrix
in Sect. 5.

4.1. Preparations. The operator D1, (resp. D0) acts on E1(M)⊗ g (resp. E0(M)⊗ g).
Since by Hypothesis 1.1 M = Rt ×� is parallelizable, we fix a global trivialization of
T ∗M and identify E1(M)⊗ g (resp. E0(M)⊗ g) with C∞(M;W ) for

W ··= V ⊗ g and V = C
1+d (resp. V = C). (4.1)

We refer to the two cases as the vector case (resp. scalar case).
The background metric is ultra-static:

g = −dt2 + hi j (x)dxi dx j ,

on M = R×�, with either � = R
d or � a compact manifold. We obtain a splitting

V = Vt ⊕ V�, Wt,� ··= Vt,� ⊗ g, W = Wt ⊕ W�, (4.2)

by writing a 1-form as A = At dt + A�dx , and we identify Vt with C. In the scalar case
we take Vt = {0}, V� = C. Defining J ∈ L(V ) by

J ··=
(−1 0

0 1

)
if V = C

1+d , J ··= 1 if V = C, (4.3)

we see that Vt = Ker(J + 1), V� = Ker(J − 1).
We denote by (·|·) the canonical positive definite scalar product on C∞

0 (M;W ). In
the scalar case we set:

(u|v) ··=
∫

M
u(t, x)kv(t, x)|h| 1

2 dtdx,

in the vector case we set:

(u|v) ··=
∫

M
u(t, x)Jg−1(x)⊗ kv(t, x)|h| 1

2 dtdx,

To avoid introducing too much notation, we also denote by (·|·) the analogous scalar
product on C∞

0 (�;W ), i.e.:

(u|v) ··=
∫
�

u(x)⊗ kv(x)|h| 1
2 dx, resp.

(u|v) ··=
∫
�

u(x)Jg−1(x)⊗ kv(x)|h| 1
2 dx,

(4.4)

which is also positive definite.
We denote by �a ∈ C∞(�; L(V )) the coefficients of the Levi-Civita connection for

(M, g). Since this connection is metric for g−1, we have:

∂ag−1 = �∗a g−1 + g−1�a . (4.5)

Since the metric is ultra-static we have moreover �0 = 0, and �i are the Levi-Civita
connection coefficients for (�; hi j dxi dx j ).
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We denote by Ma = adAa
∈ C∞(R × �; L(g)) the connection coefficients for

the algebra degrees of freedom. They can also depend on x0 because the background
Yang–Mills solution is in general time-dependent. We have of course M∗

a k + kMa = 0.
In the vector case we set

Ta ··= �a ⊗ 1g + 1V ⊗ Ma ∈ C∞(R×�; L(W )),

and Ta := Ma in the scalar case.
In the vector case we also fix a map ρ ∈ C∞(R × �; L(W )) representing the term

F� such that

ρ∗(g−1 ⊗ k) = (g−1 ⊗ k)ρ,

in the scalar case we take ρ = 0. We set:

∇T
a ··= ∂a + Ta, D ··= −|g|− 1

2∇T
a |g|

1
2 gab∇T

b + ρ. (4.6)

The charge q defined in (2.2) equals:

ζqζ ··=
∫
{t}×�

i−1∇T
0 ζ · g−1 ⊗ k ζ + ζ · g−1 ⊗ k i−1∇T

0 ζ |h|
1
2 dx, (4.7)

in the vector case and

ζqζ ··=
∫
{t}×�

i−1∇T
0 ζ · k ζ + ζ · k i−1∇T

0 ζ |h|
1
2 dx, (4.8)

in the scalar case.

4.2. Temporal gauge. The temporal gauge is Ā0(t, x) ≡ 0, which since Ma = ad Āa

implies that T0 = 0, i.e. ∇T
0 = ∂t . It is well known that one can always assume that one

is in the temporal gauge, cf. Appendix B.2.
In this case the operator D takes the form:

D = ∂2
t + a(t, x, Dx ), a(t, x, Dx ) = −|h|− 1

2∇T
i hi j (x)|h| 1

2∇T
j + ρ(t, x). (4.9)

Denoting by a∗ the formal adjoint of a for the positive scalar product (·|·) , we deduce
from the fact that q defined in (4.7), (4.8) is independent on t that:

a∗ J = Ja, (4.10)

for J defined in (4.3). In other terms, D is self-adjoint for (·|·)V ··= (·|J ·). In the next
sections we will use primarily the product (·|·).



282 G. Gérard, M. Wrochna

4.3. Cauchy problem. The standard Cauchy problem for the operator D is
{

Dζ = 0,
ρζ = f, (4.11)

for ρζ(x) = (ζ(0, x), i−1∂tζ(0, x)), f = ( f 0, f 1). We denote by ζ = U f the solution
of (4.11). We will denote by f i

t , f i
�

, i = 0, 1 the time and space components of f i ,
according to the decomposition W = Wt ⊕ W� .

Denoting still by q the charge expressed in terms of Cauchy data we obtain that in
the vector case:

f q f = ( f 1|J f 0) + ( f 0|J f 1)

= ( f 1
�
| f 0
�
) + ( f 0

�
| f 1
�
)− ( f 1

t | f 0
t )− ( f 0

t | f 1
t ). (4.12)

In the first line above the positive scalar product (·|·) is defined in (4.4), the positive
scalar products in the second line are equal to

( f�| f�) ··=
∫
�

f�h−1 ⊗ k f�|h| 1
2 dx, ( ft | ft ) ··=

∫
�

ft · k ft |h| 1
2 dx . (4.13)

In the scalar case we have instead

f q f = ( f 1| f 0) + ( f 0| f 1), for (u|v) =
∫
�

u · kv|h| 1
2 dx .

4.4. Adapted Cauchy data. The above choice of Cauchy data is the usual one for an
operator obtained from a metric connection. In the vector case, however, it will often be
more convenient to work with the adapted Cauchy data ρF

i defined in Sect. 2.5.1. In this
subsection we discuss the transition from one choice of Cauchy data to the other.

4.4.1. Identifications. The space E1
sc(M)⊗ g equals C∞

sc (M;W ).
For A ∈ E1

sc(M)⊗ g we set:

A =·· At dt + A�, (4.14)

for At ∈ C∞(R, E0
c (�) ⊗ g), A� ∈ C∞(R, E1

c (�) ⊗ g), which corresponds to the
decomposition ζ = ζt ⊕ ζ� , using (4.2). We will use the corresponding identifications
for restrictions to �, i.e.:

C∞
0 (�;W ) ∼ C∞

0 (�;Wt )⊕ C∞
0 (�;W�) ∼ (E0

c (�)⊗ g)⊕ (E1
c (�)⊗ g). (4.15)

We have also corresponding decompositions for 2-forms. Namely, if F ∈ E2
sc(M)⊗g

we set:

F =·· dt ∧ Ft + F�, (4.16)

for Ft ∈ C∞(R, E1
c (�)⊗ g), F� ∈ C∞(R, E2

c (�)⊗ g).
We recall that Ā ∈ E1

sc(M)⊗ g is the background connection, which we assume to
be in the temporal gauge. We introduce the derivative and co-derivative on �:

d̄� ··= d� + Ā� ∧ · : E p
c (�)⊗ g → E p+1

c (�)⊗ g,

δ̄� ··= d̄∗
�
: E p

c (�)⊗ g → E p−1
c (�)⊗ g,
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and one has d̄� d̄� = F̄� ∧· using the notation in (4.16). An easy computation using that
Āt ≡ 0 shows that:

d̄u = ∂t udt + d̄�u, u ∈ E0
sc(M)⊗ g,

d̄ A = dt ∧ (∂t A� − d̄� At ) + d̄� A�, A ∈ E1
sc(M)⊗ g,

δ̄A = ∂t At + δ̄� A�, A ∈ E1
sc(M)⊗ g,

δ̄F = −(δ̄�Ft )dt + ∂t Ft + δ�F�, F ∈ E2
sc(M)⊗ g.

(4.17)

Using (4.17), we see that

F̄t = ∂t Ā�, F̄� = d̄� Ā�,

and that the Yang–Mills equation δ̄ F̄ = 0 is equivalent to:

δ̄� F̄t = 0, ∂t F̄t + δ̄� F̄� = 0, (4.18)

where of course (4.18) holds for all t ∈ R.

4.4.2. Transition to adapted Cauchy data. The adapted Cauchy data were defined in
Sect. 2.5.1. Using (4.17) we obtain the following relation between the standard Cauchy
data ρ1 and the adapted ones ρF

1 .

Lemma 4.1. Let RF ··= ρF
1 ◦ ρ−1

1 . Then:

(1)

RF =
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 −iδ̄� 1 0

id̄� 0 0 1

⎞
⎟⎠ , R−1

F =
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 iδ̄� 1 0

−id̄� 0 0 1

⎞
⎟⎠ .

(2) We have:

R∗Fq RF = q,

i.e. RF is symplectic.

Note that the precise form of RF relies on the assumption that the spacetime is
ultra-static. It enjoys some good properties particular to that case, like for instance
J RF = RF J , which is used implicitly in some computations in Sect. 8.

5. Parametrices for the Cauchy Problem

In this section we give a construction of the parametrix for the Cauchy problem (4.11),
by adapting arguments in [GW] to vector-valued Klein–Gordon equations. In the rest of
the paper, the principal part of the operator a(t, x, Dx ) below is time-independent, since
the background metric is ultra-static. In this section however we treat the more general
case where the principal part is time-dependent, which corresponds to the case when the
Riemannian metric hi j (t, x)dxi dx j is time-dependent. The completely general situation
of a metric −β(t, x)dt2 + hi j (t, x)dxi dx j could be treated as well by our methods.

The construction of a parametrix for the Cauchy problem given later on will rely
heavily on pseudodifferential calculus. For the necessary basic facts and definitions we
refer the reader to Appendix A.
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5.1. Setup and notation. We consider an operator

D = ∂2
t + a(t, x, Dx ), a(t, x, Dx ) = −|h|− 1

2∇T
i hi j (t, x)|h| 1

2∇T
j + ρ(t, x),

where T , ρ etc. are as in Sect. 4.
We assume that the metric hi j (t, x)dxi dx j satisfies Hypothesis 1.2, locally uniformly

in t , and that the background Yang–Mills solution Ā satisfies Hypothesis 1.4 (ii).
In the sequel we denote a(t, x, Dx ) simply by a(t) ∈ C∞(R, 	2(�;W )) (see Ap-

pendix A for the definition of pseudodifferential operators classes 	m , 	m
scal). One has:

σpr(a(t)) = ki h
i j (t, x)k j ⊗ 1W , (5.1)

hence a(t) has a scalar principal part. For V a finite dimensional vector space, we set

H(�; V ) ··=
⋂
m∈Z

Hm(�; V ), H′(�; V ) ··=
⋃
m∈Z

Hm(�; V ), (5.2)

equipped with their natural topologies, where Hm(�; V ) are the Sobolev spaces, which
are canonically defined since � is equal either to R

d or to a compact manifold. We set
also

L2(�;W ) = H0(�;W ),

where in the situation considered in Sect. 4, L2(�;W ) is equipped with the scalar
product (4.4).

5.2. Some classes of pseudodifferential operators. In this subsection we introduce some
special classes of pseudodifferential operators which will play an important role later
on.

5.2.1. High momenta localization. A first problem that we have to face is the need to
construct exact inverses to some elliptic operators, not only inverses modulo smoothing
errors. Let us explain the well-known way to solve this problem on a simple scalar
example:

if r ∈ 	−1(Rd), the operator 1 + r is not necessarily invertible on L2(Rd). However
if we fix some cutoff function χ ∈ C∞(R), with χ(s) ≡ 0 for |s| < 1, χ(s) ≡ 1 for
|s| ≥ 2 and set

rR(x, k) ··= χ(R−1|k|)r(x, k), rR ··= rR(x, Dx ), (5.3)

then r − rR ∈ 	−∞(Rd) and rR → 0 in 	0(Rd) as R → +∞. It follows that

1 + rR is invertible on L2(Rd) for R ! 1, (1 + rR)
−1 ∈ 1 +	−1(Rd). (5.4)

We formalize this method by introducing the following definition.

Definition 5.1. Let V1, V2 be finite dimensional hermitian spaces. We denote by
	

p
as(�; V1, V2) the space of R−dependent pseudodifferential operators cR such that:

(i) cR is uniformly bounded in 	 p(�; V1, V2),
(ii) cR → 0 in 	 p+ε(�; V1, V2) when R → +∞ for some (and hence for all) ε > 0.

The space 	 p
as(�; V, V ) will be simply denoted by 	 p

as(�; V ).
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We now collect some easy properties of the above classes [the meaning of statement (2)
below is explained in the proof].

Lemma 5.2. (1)
(
	

p
as(�; V1, V2)

)∗ = 	
p
as(�; V2, V1),

(2) 	 p(�; V1, V2) ⊂ 	
p
as(�; V1, V2) +	−∞(�; V1, V2),

(3) let cR ∈ 	−εas (�; V ) for ε > 0 and let α ∈ R. Then for R ≥ R0 we have:

(1 + cR)
α ∈ 1 +	−εas (�; V ).

Proof. (1) follows from the definition. If c ∈ S p(�; V1, V2) we set cR(x, k) =
χ(R−1|k|)c(x, k), for χ as in (5.3), and obtain that cR(x, Dx ) ∈ 	

p
as(�; V1, V2),

c(x, Dx ) − cR(x, Dx ) ∈ 	−∞(�; V1, V2), which proves (2). Let us now prove (3).
We obtain that cR → 0 in	0(�; V ), hence in B(L2(�; V )). It follows that for R ≥ R0
(1 + cR)

α is well defined by the holomorphic functional calculus of bounded operators.
The map cR �→ (1 + cR)

α − 1 is then continuous on 	−ε(�; V ) for all ε > 0, from
which we deduce that (1 + cR)

α ∈ 1 +	−εas (�; V ). ��

5.2.2. Infrared cutoffs. Some operators will need to contain additional low energy (in-
frared) cutoffs, defined using some selfadjoint operators. These cutoffs will play an
important role in Sect. 8.

In the rest of the paper we denote by χ<, χ> ∈ C∞(R) two cutoff functions with

χ< + χ>= 1, suppχ>⊂] −∞,−1] ∪ [1,+∞[, suppχ<⊂ [−2, 2]. (5.5)

Definition 5.3. Let V1, V2 be finite dimensional hermitian spaces and hi ∈ Diff2(�; Vi )

be elliptic, selfadjoint and bounded from below. We denote by	 p
reg(�; V1, V2) the space

of R−dependent pseudodifferential operators cR such that:

(i) cR ∈ 	 p
as(�; V1, V2),

(ii) cR = χ>(h2)cRχ>(h1) for some χ> as in (5.5).

The space 	 p
reg(�; V, V ) will be simply denoted by 	 p

reg(�; V ).

Lemma 5.4. (1)
(
	

p
reg(�; V1, V2)

)∗ = 	
p
reg(�; V2, V1),

(2) 	 p(�; V1, V2) ⊂ 	
p
reg(�; V1, V2) +	−∞(�; V1, V2),

(3) let cR ∈ 	−εreg (�; V ) for ε > 0 and let α ∈ R. Then for R ≥ R0 we have:

(1 + cR)
α ∈ 1 +	−εreg (�; V ).

Proof. (1) follows from the definition. (2) follows from Lemma 5.2 (2) and the fact
that χ<(hi ) ∈ 	−∞(�; Vi ), since hi is elliptic and bounded below. Next (1 + cR)

α is
well defined for R large enough by Lemma 5.2. For f (λ) = (1 + λ)α we have (denoting
χ>(h) simply by χ>):

f (cR) = f (χ>cRχ>) = 1 + f ′(0)χ>cRχ> + χ>cRχ>g(χ>cRχ>)χ>cRχ>,

for g(λ) = λ−2( f (λ)−1− f ′(0)λ). Since g is analytic near 0, we obtain that g(χ>cRχ>) ∈
	0(�; V ) and moreover that g(χ>cRχ>) is uniformly bounded in 	0(�; V ). This im-
plies (3). ��

We will use the above operators classes for V = Wt , W� , W or W ⊕W . We start by
defining the operators h that will be used in our case.
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Definition 5.5. We set:

ht ··= δ̄� d̄� : E0
c (�)⊗ g → E0

c (�)⊗ g,

h� ··= δ̄� d̄� + d̄�δ̄� + F̄� � · : E1
c (�)⊗ g → E1

c (�)⊗ g,

and denote still by ht , h� their selfadjoint extensions, with domains H2(�;Wt ),
H2(�;W�). We set:

h ··= ht ⊕ h� acting on L2(�;W ).

Note that from Hypothesis 1.2 we obtain that ht , resp. h� belong to 	2(�; Vt ), resp.
	2(�; V�) with principal symbol equal to hi j (0, x)ki k j . It is well-known that this
implies that their closures are selfadjoint with domains equal to H2(�;Wt ), respectively
H2(�;W�).

We equip then the spaces Wt , W� , W and W ⊕W with the elliptic operators ht , h� ,
h and h ⊕ h and define the various spaces 	 p

reg using the above operators.
Finally we choose a number C ! 1 such that h + C1 ≥ 1 and set:

ε ··= (h + C1)
1
2 = εt ⊕ ε�, (5.6)

where εt ··= (ht + C1)
1
2 , ε� ··= (h� + C1)

1
2 . Let us collect some useful properties of the

above operators.

Lemma 5.6. (1) h ∈ Diff2(�;W ) is an elliptic differential operator with principal
symbol

σpr(h)(x, k) = ki h
i j (0, x)k j ⊗ 1W .

(2) ε ∈ 	1(�;W ) is an elliptic pseudodifferential operator with principal symbol:

σpr(ε)(x, k) = (ki h
i j (0, x)k j )

1
2 ⊗ 1W .

(3)

(i) h = h∗, ε = ε∗, [h, J ] = [ε, J ] = 0,
(ii) h� d̄� = d̄�ht + δ̄� F̄� ∧ · , δ̄�h� = ht δ̄� + δ̄� F̄�� · .

Proof. (1) and (3) (i) are straightforward. (2) follows from Proposition A.1. (3) (ii)
follows from the Riemannian version of the computations at the end of Sect. 2.5. ��

5.3. Construction of generators. In this subsection we construct the two generators for
the parametrix of the Cauchy problem, by modifying arguments from [GW].

We first introduce a convenient family R � t �→ ε(t) ∈ C∞(R, 	1(�;W )) with the
properties below. The operators ε(t) will serve as elliptic ‘weight’ operators.

(i) σpr(ε(t)) = (ki hi j (t, x)k j )
1
2 ⊗ 1W ,

(ii) ε(t) is selfadjoint on L2(�;W ) with domain H1(�;W ),

(iii) ε(t) ≥ 1, ε(t)J = Jε(t), ε(0) = ε,

(5.7)

where ε is defined in (5.6). It is easy to construct such a family ε(t), one way being
to introduce the operator h(t) as in Definition 5.5 using the metric hi j (t, x)dxi dx j

and connection coefficients Ta(t, x) at time t instead of at time 0, and to set ε(t) =
(h(t) + C(t))

1
2 for some C(t)! 1.
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Proposition 5.7. There exists for R ≥ 1 a family R � t �→ bR(t) such that:

(ia) bR(t) = ε(t) + C∞(R, 	0(�;W )),

(ib) i∂t bR(t)− b2
R(t) + a(t) = r−∞(t) ∈ C∞(R, 	−∞(�;W )),

(ic)

{
bR(t) + Jb∗R(t)J : H1(�;W )→ L2(�;W ) is invertible,

bR(t) + Jb∗R(t)J = ε(t)
1
2 (21 + C∞(R, 	−1(�;W )))ε(t)

1
2 ,

(id) (bR(t) + Jb∗R(t)J )
− 1

2 = ε(t)− 1
2 ( 1

2 1 + C∞(R, 	−1(�;W )))ε(t)− 1
2 .

Moreover we have:

(ii) bR(0) + Jb∗R(0)J = ε
1
2 (21 +	−1

reg (�;W ))ε
1
2 ,

(iii) (bR(0) + Jb∗R(0)J )−1 = ε− 1
2 ( 1

2 1 +	−1
reg (�;W ))ε− 1

2

(iv) bR(0) = ε
1
2 (1 + r−1,R)ε

1
2 , r−1,R ∈ 	−1

reg (�;W ).

Remark 5.8. It is easy to see that the equation

i∂t b(t)− b2(t) + a(t) = r−∞(t)

is equivalent to

(∂t + ib(t)) ◦ (∂t − ib(t)) = ∂2
t + a(t)− r−∞(t) (5.8)

The idea of factorizing the Klein–Gordon operator modulo a smoothing error term was
already used in [J] to construct Hadamard states in the scalar case. However, in contrast
to [J], instead of solving (5.8) on the level of symbols we work with the operators and
supplement arguments from microlocal analysis by Hilbert space techniques (cf. [GW]
for the scalar case).

Proof. Step 1: in Step 1 the parameter R will be absent, so we suppress the subscript R
to simplify notation. We look for b(t) of the form:

b(t) =·· ε(t) + b0(t), b0(t) ∈ C∞(R, 	0(�;W )). (5.9)

Using that a(t) = ε2(t) + r1(t) by (5.7) (i), we obtain that b0(t) should solve:

b0 = (2ε)−1i∂tε + (2ε)−1(r1(t)− 1) + (2ε)−1(i∂t b0 − b2
0 + [ε, b0])

= (2ε)−1(i∂tε + r1 − 1) + F(b0), (5.10)

Since ε(t) as a scalar principal symbol, we have ε(t) ∈ C∞(R, 	1
scal(�;W )) +

C∞(R, 	0(�;W )). Therefore we obtain that [ε, c] ∈ C∞(R, 	m(�;W )) for any op-
erator c ∈ C∞(R, 	m(�;W )). It follows that we can apply [GW, Lemma A.1] and find
b(t) = ε(t) + b0(t), unique modulo C∞(R, 	−∞(�;W )) such that

i∂t b(t)− b2(t) + a(t) ∈ C∞(R, 	−∞(�;W )), (5.11)

hence we have satisfied conditions (ia), (ib).

Step 2: in Step 2 we modify b(t) by subtracting an R−dependent term in 	−∞(W ) to
ensure the remaining conditions. We first write b(t) as

b(t) = ε(t)
1
2 (1 + r−1(t))ε(t)

1
2 , r−1(t) ∈ C∞(R, 	−1(�;W )).
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We fix a cutoff function χ ∈ C∞(R), with χ(λ) = 0 for |λ| ≤ 1, χ(λ) = 1 for |λ| ≥ 2,
and set for R ≥ 1 and a function λ ∈ C∞(R) to be determined later:

r−1,R(t) = χ

(
ε(t)

Rλ(t)

)
r−1(t)χ

(
ε(t)

Rλ(t)

)

We know that for fixed t we have χ
(
ε(t)
λ

)
r−1(t)χ

(
ε(t)
λ

)
→ 0 in 	0(�;W ), when

λ→ +∞. Therefore we can find a smooth function R � t �→ λ(t) ∈ R such that

‖r−1,R(t)‖B(L2(�;W )) ≤
1

2
, ∀ t ∈ R, R ≥ 1. (5.12)

Moreover we have

r−1(t)− r−1,R(t) = r−∞,R(t) ∈ C∞(R, 	−∞(�;W )).

Finally we set

bR(t) = ε(t)
1
2 (1 + r−1,R(t))ε(t)

1
2 ,

so that bR(t) = b(t) + C∞(R, 	−∞(�;W )), hence bR(t) still satisfies (ia), (ib).
To verify the remaining conditions, we write:

bR(t) + Jb∗R(t)J = ε(t)
1
2 (21 + r−1,R(t) + Jr∗−1,R(t)J )ε(t)

1
2 ,

since ε(t) is selfadjoint and [J, ε(t)] = 0, by (5.7). Since ‖r−1,R(t)‖+‖Jr∗−1,R(t)J‖ ≤ 1
by (5.12), we have

(bR(t) + Jb∗R(t)J )−
1
2 = ε(t)−

1
2 (21 + r−1,R(t) + Jr∗−1,R(t)J )

−1ε(t)−
1
2

= ε(t)−
1
2 (

1

2
1 + C∞(R, 	−1(�;W )))ε(t)−

1
2 ,

by Proposition A.1. This proves conditions (ic), (id).
It remains to check (ii), (iii), (iv). This follows from the fact that ε(0) = ε, hence

r−1,R(0) ∈ 	−1
reg (�;W ). It suffices then to apply the properties of the space	−1

reg (�;W )

recalled in Lemma 5.4. ��

5.4. Parametrices for the Cauchy problem. It is well known that if f ∈ H(�;W ⊕W ),
then the Cauchy problem (4.11) has a unique solution ζ = U (t) f ∈ C∞(R,H(�;W )).
In this subsection we give a representation of U (t) by generalizing to vector-valued wave
equations the constructions in [GW, Sect. 6] for the scalar case.

Theorem 5.9. Let b(t) = bR(t) ∈ C∞(R, 	1(�;W )) be the operator constructed in
Proposition 5.7 and let us set:

b+(t) ··= b(t), b−(t) ··= −Jb∗(t)J,
u±(t) ··= Texp(i

∫ t
0 b±(σ )dσ)

r0± ··= ∓(b+(0)− b−(0))−1b∓(0) ∈ 	0(�;W ),

r1± ··= ±(b+(0)− b−(0))−1 ∈ 	−1(�;W ),
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and

r± f ··= r0± f 0 + r1± f 1, f ∈ H(�;W ⊕ W ). (5.13)

Then

U (t) = u+(t)r+ + u−(t)r− + r−∞(t), r−∞(t) ∈ C∞(R, 	−∞(�;W ⊕ W ,W )).

Proof. It is convenient to generalize slightly the situation and to denote by U (t, s) the
Cauchy evolution operator for initial data at time s, so that U (t) = U (t, 0). We set also

T (t, s) ··=
(

U (t, s)
i−1∂tU (t, s)

)
: H(�,W ⊕ W )→ H(�;W ⊕ W ),

so that

i−1∂t T (t, s) = A(t)T (t, s), A(t) =
(

0 1
a(t) 0

)
. (5.14)

Note that the operators r±(t), defined as in (5.13) with b±(0) replaced by b±(t) are well
defined, by Proposition 5.7. Similarly we set u±(t, s) = Texp(i

∫ t
s b±(σ )dσ), and

Ũ (t, s) ··= u+(t, s)r+(s) + u−(t, s)r−(s),

T̃ (t, s) ··=
(

Ũ (t, s)
i−1∂t Ũ (t, s)

)
=

(
u+(t, s)r+(s) + u−(t, s)r−(s)

b+(t)u+(t, s)r+(s) + b−(t)u−(t, s)r−(s)

)
.

An easy computation shows that

T̃ (s, s) = 1, u±(t, s)r±(s) = r±(t)T̃ (t, s), (5.15)

which implies that (t, s) �→ T̃ (t, s) is a two-parameter group. From Proposition 5.7

i−1∂t
(
b±(t)u±(t)

) = i−1∂t b
±(t) + b±2(t) = a(t)− r±−∞(t),

for r±−∞(t) ∈ C∞(R, 	−∞(�;W )). Using then (5.15) we obtain that

i−1∂t T̃ (t, s) = Ã(t)T̃ (t, s),

for

Ã(t) = A(t)− R−∞(t),

R−∞(t) =
(

0
r+−∞(t)

)
◦ r+(t) +

(
0

r−−∞(t)

)
◦ r−(t) ∈ C∞(R2, 	−∞(�;W ⊕ W )).

We can then express T (t, s) in terms of T̃ (t, s) by setting

T (t, s) =·· T̃ (t, s) ◦ R(t, s), (5.16)

where R(t, s) solves the equation
{

i−1∂t R(t, s)− T̃ (s, t)R−∞(t)T̃ (t, s) ◦ R(t, s) = 0,
R(s, s) = 1.

(5.17)
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By Lemma A.5 we first obtain that

R̃−∞(t, s) ··= T̃ (s, t)R−∞(t)T̃ (t, s) ∈ C∞(R2, 	−∞(�;W ⊕ W )).

The solution of (5.17) is then given by

R(t, s) = Texp(i
∫ t

s R̃−∞(σ, s)dσ) = 1 + i
∫ t

s
R̃−∞(σ, s)R(σ, s)dσ. (5.18)

By the argument in the proof of Proposition A.3 (see the properties of m(t, s) in the
proof), we first obtain that R(t, s) ∈ C∞(R2, 	0(�;W ⊕W )). (5.18) then implies that

R(t, s) = 1 + C∞(R2, 	−∞(�;W ⊕ W )).

By Lemma A.5 we obtain finally that

T (t, s) = T̃ (t, s) + C∞(R2, 	−∞(�;W ⊕ W )),

hence

U (t, s) = Ũ (t, s) + C∞(R2, 	−∞(�;W ⊕ W,W )).

Setting s = 0 completes the proof of the theorem. ��
At this point, we could set

U± ··= U (t)r± = u±(t)r± + C∞(R, 	−∞(�;W )),

and prove directly that these are parametrices that satisfy the properties listed in Theorem
3.12, with the exception of positivity (positivity w.r.t. the product (·|·)V does not hold
if J = 1, instead one gets positivity w.r.t. the ‘non-physical’ inner product (·|·)). Thus,
we could associate to them (non-positive) pseudo-covariances λ± in an abstract manner
as in Theorem 3.12. However, we prefer to construct them in a more systematic way
in Sect. 6 in order to derive additional information needed to cope later on with the
conditions (g.i.) and (pos) in gauge theory.

6. Hadamard Two-Point Functions

6.1. Preparations. In the present section, we continue with the setup of Sect. 5 and
deduce expressions for Hadamard two-point functions from the construction of the
parametrix. This is done in a similar way as in [GW], i.e. we construct an operator
TR that diagonalizes the symplectic form and separates Cauchy data that propagate with
positive and negative energies in the wave front set. We also show in Sect. 6.3 that
Hadamard states do not exist for vector Klein–Gordon equations if the scalar product is
not positive-definite on the fibers.

In the sequel, if bR(t) is the operator constructed in Proposition 5.7 we denote bR(0)
simply by bR .

Lemma 6.1. There exists Z R ∈ 	 1
2 (�;W ) such that:

bR J + Jb∗R = Z∗R J Z R, (6.1)

and additionally:

Z R = (1 +	−1
reg (�;W ))(2ε)

1
2 , Z−1

R = (2ε)−
1
2 (1 +	−1

reg (�;W )).
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Proof. By Proposition 5.7 we have

JbR + b∗R J = (2ε)
1
2 (J + JcR + c∗R J )(2ε)

1
2 , cR ∈ 	−1

reg (�;W ).

We look for Z R in the lemma under the form Z R = SR(2ε)
1
2 for

SR = 1 + dR, dR ∈ 	−1
reg (�;W ). (6.2)

The identity (6.1) is satisfied if

S∗R J SR = J + JcR + c∗R J. (6.3)

Using W = Wt ⊕ W� (see 4.2), we can write:

SR =
(

stt,R st�,R
s�t,R s��,R

)
, cR =

(
ctt,R ct�,R
c�t,R c��,R

)
.

Let us now formulate the property that cR ∈ 	−1
reg (�;W ) in terms of the components of

cR .
If α, β are any of the symbols t or �, then since h = ht ⊕ h� , we obtain that

cαβ,R ∈ 	−1
reg (�;Wα,Wβ). We are looking for sαβ,R such that

sαβ,R − δαβ ∈ 	−1
reg (�;Wα,Wβ)

Let us now suppress the index R to simplify notation. The Eq. (6.3) is satisfied iff:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−s∗t t stt + s∗
�t s�t = 1− c∗t t − ctt ,

−s∗t t st� + s∗
�t s�� = −ct� + c∗

�t ,

−s∗t�stt + s∗
��

s�t = c�t − c∗t�,
s∗
��

s�� − s∗t�st� = 1 + c�� + c∗
��
.

(6.4)

To solve this system we first set st� = 0. The last equation of (6.4) can then be solved
for R large enough by

s�� = s∗
��
= (1 + c�� + c∗

��
)

1
2 ∈ 1 +	−1

reg (�;W�,W�),

using Lemma 5.4 (3). The second and third equations are then solved by

s�t = s−1
��
(c�t − c∗t�) ∈ 	−1

reg (�;W�,Wt ),

again by Lemma 5.4. Finally we solve the first equation by

stt = s∗t t = (1 + ctt + c∗t t + s∗
�t s�t )

1
2 ∈ 1 +	−1

reg (�;Wt ,Wt ).

This completes the proof of the lemma. ��
We now set

TR ··= Z R(b
+
R − b−R )

−1 ⊗ 1C2 ◦
(−b−R 1

b+
R −1

)
∈ 	∞(�;W ⊕ W ), (6.5)

so that TR f =
(

Z Rr+
R f

Z Rr−R f

)
, where r±R are defined in (5.13). We have:

T−1
R =

(
1 1

b+
R b−R

)
◦ Z−1

R ⊗ 1C2 . (6.6)
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Proposition 6.2. We have:

(T−1
R )∗ ◦ q ◦ T−1

R =
(

J 0
0 −J

)
, (6.7)

TR = 1√
2
(1 +	−1

reg (�;W ⊕ W ))

(
1 1
1 −1

) (
ε

1
2 0

0 ε− 1
2

)
. (6.8)

Proof. Let us suppress again the subscript R and denote b±R simply by b±. Set f ± = r± f ,
so that

f 0 = f + + f −, f 1 = b+ f + + b− f −.

An easy computation using that b+ = b, b− = −Jb∗ J yields:

f q f = ( f +|(Jb + b∗ J ) f +)− ( f −|(Jb + b∗ J ) f −).

By Lemma 6.1 we have Jb + b∗ J = Z∗R J Z R . This implies (6.7) by the definition of TR .
Let us now prove (6.8). From Lemma 6.1 and Proposition 5.7 we have

Z R = (1 +	−1
reg (�;W ))(2ε)

1
2 ,

(b+
R − b−R )−1 = (bR + Jb∗R J )−1 = (2ε)− 1

2 (1 +	−1
reg (�;W ))(2ε)− 1

2 .

Similarly we have

(−b−R 1
b+

R −1

)(
ε− 1

2 0

0 ε
1
2

)
=

(
Jb∗R Jε− 1

2 ε
1
2

bε− 1
2 −ε 1

2

)

= ε
1
2 (1 +	−1

reg (�;W ⊕ W ))

(
1 1
1 −1

)
.

Then (6.8) follows by applying formula (6.5). ��

6.2. Hadamard two-point functions. In this subsection we construct pairs of Hadamard
two-point functions.

Proposition 6.3. Let us define c± : H(�;W ⊕ W )→ H(�;W ⊕ W ) by:

c+ ··= T−1
R ◦

(
1 0
0 0

)
◦ TR, c− ··= T−1

R ◦
(

0 0
0 1

)
◦ TR, (6.9)

Then the following holds:

(1) One has

c± f =
(

r± f
b±r± f

)
, f ∈ H(�;W ⊕ W ),

(2)

(i) c+ + c− = 1, (c±)2 = c±,
(ii) (c±)† = c±,
(iii) r± ◦ c± = r±.
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Proof. (1) is a routine computation using (6.5), (6.6). (2) follows from (6.7). ��
Theorem 6.4. Let c± be defined by (6.9) and set

λ±
�
··= ±q ◦ c± ∈ B(H(�;W ⊕ W ), H′(�;W ⊕ W )). (6.10)

Then

(1) λ±� is a pair of Hadamard Cauchy surface two-point functions;
(2) one has:

λ+
�
= T ∗R

(
J 0
0 0

)
TR, λ−

�
= T ∗R

(
0 0
0 J

)
TR . (6.11)

Proof. The proof of (1) is identical to the proof of [GW, Thm. 7.1]. Note that only
the proof of the implication ⇒ in [GW, Thm. 7.1] needs to be copied. (2) follows from
(6.7), (6.9). ��
Remark 6.5. Statement (1) of Theorem 6.4 still holds if we replace c± by c±± r−∞, for
r−∞ ∈ 	−∞(�;W ⊕ W ).

6.3. Non-existence of Hadamard states for vector Klein–Gordon equations. In this sub-
section we consider a vector Klein–Gordon operator D as above, assuming that J = 1,
i.e. that the hermitian form on W is not positive definite. We show that under a mild
additional condition on its two-point functions, there does not exist any Hadamard state,
but only Hadamard pseudo-states.

Theorem 6.6. Assume that J = 1. Then there does not exist spacetime two-point func-
tions λ̃± for D satisfying (μsc) and (pos) such that additionally the Cauchy surface
two-point functions λ̃±� map continuously H(�;W ⊕ W ) into itself.

Proof. Let λ̃±� the Cauchy surface two-point functions of the stateω. Since by assumption
λ̃±� preserve H(�;W ⊕ W ) we can apply [GW, Thm. 7.1], which generalizes directly
to the vector case. We obtain that if (μsc) holds then λ̃±� − λ±� is smoothing. Let us set

Ã ··= (T ∗R)−1
(
λ̃+
�

+ λ̃−
�

)
T−1

R , A ··=
(

J 0
0 J

)
.

By (6.11) we obtain that Ã = A + R∞ where R∞ is smoothing. We may choose a
sequence fn ∈ L2(�;W ⊕ W ) with ‖ fn‖ = 1, ( fn|A fn) = −1, w− lim fn = 0, with
support in some fixed compact K ⊂ �. Let us denote 1lK the characteristic function
of K , understood as a multiplication operator. Since 1lK R∞1lK is compact we obtain
that limn→∞( fn| Ã fn) = −1. But this contradicts the positivity condition (pos), which
implies that Ã ≥ 0. ��

6.4. Positivity of Hadamard two-point functions on subspaces. We saw in Theorem 6.6
that it is impossible to construct Hadamard two-point functions for D1, since in this case
J = 1. However there exist subspaces of H(�;W ⊕ W ) on which λ±1� are positive.
This will follow from the fact that J is positive on W� = (Ker(J − 1))⊗ g.
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Proposition 6.7. Let λ1± be defined in (6.10), for D = D1. Then there exists r−1,R ∈
	−1

reg (�;W ⊕ W ) such that:

λ±1 ≥ 0 on (1 + r−1,R)H(�;W� ⊕ W�).

Proof. From (6.8) we obtain that

TR = 1√
2

(
1 1
1 −1

) (
ε

1
2 0

0 ε− 1
2

)
(1 +	−1

reg (�;W ⊕ W )). (6.12)

This implies, using also Lemma 5.4 (3) that for R large enough there exists r−1,R ∈
	−1

reg (�;W ⊕ W ) such that

TR = 1√
2

(
1 1
1 −1

)(
ε

1
2 0

0 ε− 1
2

)
(1 + r−1,R)

−1.

We note next that

(
J 0
0 0

)
and

(
0 0
0 J

)
are positive on H(�;W� ⊕ W�), since

J is positive on W� . The operators

(
1 1
1 −1

)
and

(
ε

1
2 0

0 −ε 1
2

)
preserve the space

H(�;W� ⊕ W�), since ε = εt ⊕ ε� . The proposition follows then from (6.11) and
(6.12). ��

7. Pair of Hadamard Pseudo-Covariances

In this section we consider the pair of operators D0 = δ̄d̄ , D1 = d̄ δ̄ + δ̄d̄ + F̄ � as in
Sect. 2.5. After going to the temporal gauge, we may assume that both operators fit into
the framework of Sect. 5, i.e. that:

Di = ∂2
t + ai (t, x, Dx ),

where ai (t) ∈ C∞(R;	2(�;Wi )) for W1 = V1⊗ g, and W0 = g. The operator K = d̄
becomes in this framework:

K = K0(t)∂t + K1(t), (7.1)

where K j (t) ∈ C∞(R,Diff j (�;W0,W1)) is a differential operator in x , such that

(∂2
t + a1(t)) ◦ K = K ◦ (∂2

t + a0(t)). (7.2)

It is easy to check that

K0(t, x) ∈ L(W0,W1) = 0, ∀ (t, x) ∈ R×�. (7.3)

We recall that

K�
··= ρ1 ◦ K ◦U0 ∈ Diff(W0 ⊕ W0,W1 ⊕ W1),

where ρi , Ui are the trace and Cauchy evolution operators.
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7.1. Some preparations. Let us denote by u±i (t), i = 0, 1 the operators constructed in
Theorem 5.9.

Lemma 7.1. There exist m±
1 ∈	1(�;W0,W1)andr±−∞(t)∈C∞(R, 	−∞(�;W0,W1))

such that:

K ◦ u±0 (t) = u±1 (t)m
±
1 + r±−∞(t).

Proof. We consider only the + case and suppress the + superscripts to simplify notation.
We also denote by r−∞(t) a generic operator in C∞(R, 	−∞(�; V1, V2)) for appropri-
ate V1, V2. We will use repeatedly the following consequence of Proposition A.3: the
map

m(t) �→ ui (t)m(t)u j (t)
−1 is bijective on C∞(R, 	 p(�;W j ,Wi )). (7.4)

This follows from the fact that bi (t) have a scalar principal symbol equal to (ki hi j (t, x)

k j )
1
2 .
We recall the following equivalent identities from Proposition 5.7:

(i) i∂t bi (t)− b2
i (t) + ai (t) + r−∞(t) = 0,

(ii) (∂t + ibi (t)) ◦ (∂t − ibi (t)) = ∂2
t + ai (t) + r−∞(t), i = 0, 1.

(7.5)

Since u0(t) = Texp(i
∫ t

0 b0(s)ds), we obtain from (7.1) that:

K ◦ u0(t) = (iK0b0(t) + K1) ◦ u0(t).

Composing this identity to the left with ∂t − ib1 and using (7.5) (i) we obtain:

(∂t − ib1) ◦ K ◦ u0(t)

= (−K0(a0 + r−∞,0) + ∂t K1 + i(∂t K0 + K1)b0 + b1(K0b0 − iK1)) ◦ u0(t)

= m2(t) ◦ u0(t), for m2(t) ∈ C∞(R, 	2(�;W0,W1)). (7.6)

By (7.4) we obtain that:

m2(t) ◦ u0(t) = u1(t) ◦ m̃2(t), where m̃2(t) ∈ C∞(R, 	2(�;W0,W1)). (7.7)

Combining (7.6) and (7.7), we obtain that:

(∂t − ib1) ◦ K ◦ u0(t) = u1(t) ◦ m̃2(t).

We compose the above identity with ∂t + ib1(t), using again (7.5) and obtain:

(∂2
t + a1) ◦ K ◦ u0(t) = (∂t + ib1) ◦ u1(t) ◦ m̃2(t) + r−∞(t)K u0(t)

= 2ib1 ◦ u1(t) ◦ m̃2(t) + u1(t)∂t m̃2(t) + r−∞(t)K u0(t)

= u1(t) ◦
(
∂t m̃2(t)− ib̃1(t)m̃2(t) + r−∞(t)

)
,

where in the last line we use (7.4), and b̃1(t) ∈ C∞(R, 	1(�;W1)) is again elliptic
with a real principal symbol.

On the other hand since (∂2
t + a1) ◦ K = K ◦ (∂2

t + a0), we have by (7.5)

(∂2
t + a1) ◦ K ◦ u0(t) = K ◦ r−∞(t)u0(t) = u1(t) ◦ r−∞(t),
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again by (7.4). Summarizing we obtain that m̃2(t) solves

∂t m̃2(t) + ib̃1(t)m̃2(t) = r−∞(t),

hence

m̃2(t) = Texp(i
∫ t

0
b̃1(σ )dσ)m̃2(0) + Texp(i

∫ t

s
b̃1(σ )dσ)r−∞(s)ds

= Texp(i
∫ t

0
b̃1(σ )dσ)m̃2(0) + r−∞(t). (7.8)

By Lemma 7.2 below this implies that m̃2(t) ∈ C∞(R, 	−∞(�;W0,W1)), hence by
Lemma A.5 that m2(t) ∈ C∞(R, 	−∞(�;W0,W1)). The identity (7.6) becomes

(∂t − ib1) ◦ K ◦ u0(t) = r−∞(t).

As in (7.8) this implies that

K ◦ u0(t) = u1(t) ◦ (K ◦ u0)(0) + r−∞(t),

and completes the proof of the lemma. ��
Lemma 7.2. Let b1(t) ∈ C∞(R, 	1(�;W1)) satisfying the assumptions of Proposition
A.3 and m(t) ∈ C∞(R, 	 p(�;W0,W1)), p ∈ R such that:

m(t) = Texp(i
∫ t

0 b1(s)ds)m(0) + r−∞(t), r−∞(t) ∈ C∞(R, 	−∞(�;W0,W1)).

Then m(t) ∈ C∞(R, 	−∞(�;W0,W1)).

Proof. We have ∂t m(t)− ib1(t)m(t) ∈ C∞(R, 	−∞). By induction we obtain

∂k
t m(t)− pk(t)m(t) ∈ C∞(R, 	−∞), k ∈ N,

where pk(t) ∈ C∞(R, 	k(�;W1)), σpr(pk) = (iσpr(b1))
k . Note that b1 is ellip-

tic in 	1(�;W1) hence pk is elliptic in 	k(�;W1) and since ∂k
t m(t) belongs to

C∞(R, 	 p(�;W0,W1))by assumption we obtain that m(t) ∈ C∞(R, 	 p−k(�;W0,W1)).
This completes the proof. ��

7.2. Compatibility of Hadamard pseudo-covariances. We prove now the main result of
this section, which will be important later on.

Theorem 7.3. Let c±i ∈ B(H(�;Wi ⊕ Wi )), i = 0, 1 be as in Proposition 6.3. Then

c±1 K� − K�c±0 ∈ 	−∞(�;W0 ⊕ W0,W1 ⊕ W1).

Proof. Since c+
i + c−i = 1, it suffices to prove the + case, which amounts to show that

c−1 K�c+
0 ∈ 	−∞(�;W0 ⊕ W0,W1 ⊕ W1). (7.9)

In the sequel we denote simply by r−∞(t) an error term in C∞(R, 	−∞(�; V1, V2))

for appropriate V1, V2. We recall from Theorem 5.9 and Proposition 6.3 that:

Ui (t) = u+
i (t)r

+
i + u−i (t)r

−
i + r−∞(t), r±i c±i = r±i .



Hadamard States for the Yang–Mills Equation on Curved Spacetime 297

Using Lemma 7.1 this gives first:

U1(t)K�c+
0 = KU0(t)c

+
0 = K u+

0(t)r
+
0 + r−∞(t) = u+

1(t)m
+
1r+

0 + r−∞(t)

for some m+
1 ∈ 	1(�;W0,W1). On the other hand:

U1(t)K�c+
0 = u+

1(t)r
+
1 c+

1 K�c+
0 + u−1 (t)r

−
1 c−1 K�c+

0 + r−∞(t).

It follows that

u−1 (t)r
−
1 c−1 K�c+

0 = u+
1(t) ◦ (m+

1r+
0 − r+

1 c+
1 K�c+

0 ) + r−∞(t). (7.10)

We claim that if n±1 ∈ 	 p(�;W0 ⊕ W0,W1) satisfy

u+
1(t)n

+
1 − u−1 (t)n

−
1 ∈ C∞(R, 	−∞(�;W0 ⊕ W0,W1)),

then n±1 ∈ 	−∞(�;W0 ⊕ W0,W1). Taking first t = 0 we obtain that n+
1 − n−1 ∈

	−∞(�;W0 ⊕ W0,W1). Next taking derivatives in t at t = 0 we obtain that (b+
1 (0)−

b−1 (0))n+
1 ∈ 	−∞(�;W0 ⊕ W0,W1), hence n+

1 ∈ 	−∞(�;W0 ⊕ W0,W1) by the
ellipticity of b+

1 (0)− b−1 (0). This also implies that n−1 ∈ 	−∞(�;W0 ⊕ W0,W1).
Applying this remark to (7.10) we obtain that r−1 c−1 K�c+

0 ∈ 	−∞(�;W0⊕W0,W1).
This implies (7.9) since from Proposition 6.3 and r+

1 c−1 = 0 we obtain:

c−1 =
(

r−1
b−1 (0)r

−
1

)
◦ c−1 .

This completes the proof of the theorem. ��

8. Proof of Theorem 1.1

As before,� is assumed to be compact or equal to R
d . If� = R

d we assume Hypothesis
1.4.

In this case it follows from Proposition B.1 that ht satisfies a Hardy inequality:

ht = δ̄� d̄� ≥ C〈x〉−2, (8.1)

which will be very important in the sequel.
Our goal in this section is to construct a projection� acting on Cauchy data with the

following two properties:

(i) Ker� = RanK�

(ii) λ±1� are positive on Ran� ∩ KerK †
�.

We will ensure (ii) by choosing � in such a way that

Ran� ∩ KerK †
� ⊂ (1 + r−1,R)H(�;W� ⊕ W�), (8.2)

where the operator r−1,R appears in Proposition 6.7.
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8.1. Notations.

– As before, if E, F are two topological vector spaces, we write A : E → F if A is
linear continuous from E to F . We write A : E ∼→ F if additionally A is bijective
and both A−1 is linear continuous.

– We denote 〈x〉Hm(�; V ) the Sobolev space of order m with weight 〈x〉 = (1 + |x |) 1
2

(of course this is just the same as Hm(�; V ) if � is compact) and 〈x〉L2(�; V ) =
〈x〉H0(�; V ) the weighted L2 space.

– We will denote B−∞(�; V1, V2) the space of operators that are bounded from
H−m(�; V1) to Hm(�; V2) for any m ∈ R.

8.2. The reference projection for � = R
d . In this subsection we assume that � = R

d .
We define a reference projection �0, which will be used to construct the projection �.
We first state an easy consequence of the Hardy inequality.

Lemma 8.1. The following operators are bounded:

(i) h
− 1

2
t δ̄� : L2(�;W�)→ L2(�;Wt ),

(ii) d̄�h
− 1

2
t : L2(�;Wt )→ L2(�;W�),

(iii) h
− 1

2
t 〈x〉−1 : L2(�;Wt )→ L2(�;Wt )

Proof. (i) and (ii) follow from the definition of ht . To prove (iii) we use the Hardy
inequality (8.1) and the Kato–Heinz theorem which yield h−1

t ≤ C〈x〉−2. ��
Definition 8.2. We set:

π ··= d̄�h−1
t δ̄� : L2(�;W�)→ L2(�;W�),

b ··= h−1
t δ̄� : L2(�;W�)→ 〈x〉L2(�;Wt ),

a ··= F̄t ∧ · : 〈x〉L2(�;Wt )→ L2(�;W�).

The above operators are well defined by Lemma 8.1 and Hypothesis 1.4.
Clearly π is the orthogonal projection on Rand̄� , where d̄� is considered as a closed

operator on L2(�;Wt ) with domain H1(�;Wt ). Moreover one has:

d̄� ◦ b = π, b ◦ d̄� = 1. (8.3)

We will construct � by modifying a reference projection �0. We denote by �0 the
operator defined in the adapted Cauchy data by the matrix:

�0 ··=
⎛
⎜⎝

0 0 0 0
0 1− π 0 0
0 0 1 0
0 ia ◦ b 0 1

⎞
⎟⎠ . (8.4)

Since a〈x〉 : L2(�;Wt )→ L2(�;W�) by Hypothesis 1.4 we see that

�0 : L2(�;W ⊕ W )→ L2(�;W ⊕ W ).

Let us consider the operator K� given in Lemma 2.12 as an unbounded operator

K� : L2(�;Wt ⊕ Wt )→ L2(�;W� ⊕ W�),

DomK� = H1(�;Wt )⊕ L2(�;Wt ).
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Lemma 8.3. �0 is a bounded projection on L2(�;W ⊕ W ) with Ker�0 = RanK� .

Proof. The fact that�0 is a projection is a routine computation, using that b(1−π) = 0.
Since ab is bounded by Lemma 8.1 and Hypothesis 1.4 we see that �0 is bounded. To
prove the second statement we note first that �0 K� = 0, using (8.3). This implies that
RanK� ⊂ Ker�0. Conversely let g ∈ Ker�0, i.e.

g0
�
= πg0

�
, g1

t = 0, g1
�
= −iabg0

�
.

From the first equation we get g0
�
= d̄�u0 for u0 = bg0

�
∈ H1(�; g), and hence

g1
�
= −iau0, i.e. g = K�u, for u = (u0, i−1g0

t ). ��
We end this subsection by constructing an operator B0 such that (1−�0) = K�B0

(see the discussion at the end of Sect. 3.4).

Lemma 8.4. Let B0 : L2(�;W ⊕ W )→ 〈x〉L2(�;Wt )⊕ L2(�;Wt ) be given by:

B0 ··=
(

0 b 0 0
−i 0 0 0

)
. (8.5)

Then one has

(1−�0) = K�B0, B0 K� = 1.

Proof. The proof is a direct computation that uses d̄�b = π . ��

8.3. The reference projection for � compact. In this subsection, we assume that � is
compact. This implies that Kerht = Kerd̄� is not necessarily trivial. Therefore we need
to change the definition of π , b and �0. We set now:

Definition 8.5.

π ··= d̄�h−1
t 1lR\{0}(ht )δ̄� : L2(�;W�)→ L2(�;W�),

b ··= h−1
t 1lR\{0}(ht )δ̄� : L2(�;W�)→ L2(�;Wt ),

a ··= F̄t ∧ · : L2(�;Wt )→ L2(�;W�),

where 1lR\{0} stands for the characteristic function of R\{0}.
Note that since ht has compact resolvent, we know that

π ∈ 	0(�;W�), b ∈ 	−1(�;W�,Wt ), a ∈ 	0(�;Wt ,W�). (8.6)

We also denote by π1 : L2(�;W�)→ L2(�;W�) a bounded projection with

Ker π1 = a(Kerht ), (8.7)

like for example the orthogonal projection for the natural Hilbertian scalar product on
L2(�;W�) along aKerht . By the ellipticity of ht , we know that Kerht ⊂ C∞(�;Wt ),
hence aKerht ⊂ C∞(�;W�) and these two spaces are finite dimensional.

This implies first that there exists a right inverse a−1 ∈ L(Ker π1,Kerht ) such that

a ◦ a−1 = 1 on Ker π1. (8.8)

Moreover since Ker π1 is a finite dimensional subspace of C∞(�;W�) we have:

π1 ∈ 1 +	−∞(�;W�), a−1(1− π1) ∈ 	−∞(�;W�,Wt ). (8.9)
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We set now:

�0 ··=
⎛
⎜⎝

0 0 0 0
0 1− π 0 0
0 0 1 0
0 iπ1a ◦ b 0 π1

⎞
⎟⎠ . (8.10)

Lemma 8.6. �0 is a bounded projection on L2(�;W ⊕ W ) with Ker�0 = RanK� .
Moreover �0 ∈ 	0(�;W ⊕ W ).

Proof. The fact that �0 is bounded follows from the properties of π , a, b stated
in Definition 8.5 and from (8.9). Again the fact that �0 is a projection follows from
b(1− π) = 0. Let us now prove that �0 K� = 0 hence RanK� ⊂ Ker�0. By a routine
computation this amounts to show that (1− π)d� = 0 and that π1a(bd̄� − 1) = 0. The
first identity is immediate. To prove the second, we use that bd̄� − 1 = 1l{0}(ht ). Then
π1a1l{0}(ht ) = 0 since Ker π1 = a(Kerht ).

Let us now prove that Ker�0 ⊂ RanK� . Let g ∈ Ker�0 i.e.

g0
�
= πg0

�
, g1

t = 0, π1(g
1
�

+ iabg0
�
) = 0.

Then g = K�u for u = (u0, u1) if

iu1 = g0
t , d̄�u0 = g0

�
, −iau0 = g1

�
. (8.11)

We take u1 = i−1g0
t and u0 = bg0

�
+v0 for v0 ∈ Kerht , so that d̄�u0 = d̄�bg0

�
= πg0

�
=

g0
�

. It remains to satisfy the third identity in (8.11), which yields −iav0 = g1
�

+ iabg0
�

.
Since π1(g1

�
+ iabg0

�
) = 0, we can find v0 ∈ Kerht satisfying the above condition, using

that Ker π1 = aKerht . The fact that �0 ∈ 	0 follows from (8.6) and (8.9). ��
We need the analog of Lemma 8.4 in the compact case.

Lemma 8.7. Let B0 : L2(�;W ⊕ W )→ L2(�;Wt )⊕ L2(�;Wt ) be given by:

B0 ··=
(

0 b− a−1(1− π1)ab 0 ia−1(1− π1)

−i 0 0 0

)
, (8.12)

where a−1 : Ker π1 → Kerht is defined in (8.8). Then one has

(1−�0) = K�B0, B0 K� = 1. (8.13)

Moreover B0 ∈ 	∞(�;W ⊕ W,Wt ⊕ Wt ).

Proof. Again the first property of B0 is a direct computation, the fact that B0 ∈ 	∞
follows from (8.6), (8.9). ��

8.4. Change of Cauchy data. In this section we systematically work with the adapted
Cauchy data, in which the operators K� and K †

� take simple forms. Therefore the operator
r−1,R ∈ 	−1

reg (�;W ⊕W ) appearing in Proposition 6.7 is replaced by RF ◦ r−1,R ◦ R−1
F .

Moreover it is convenient to perform another change of Cauchy data, corresponding
to putting different weights on the two components f 0, f 1 or g0, g1 of a set of Cauchy
data. The need for these weights is already apparent from the presence of the matrix

S ··=
(
ε

1
2 0

0 ε− 1
2

)
, (8.14)
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in the expression of the operator TR in Proposition 6.2. It can also be seen from the fact
that the natural space of Cauchy data appearing for example in the quantization of the

scalar Klein–Gordon equation is H
1
2 (�) ⊕ H− 1

2 (�). It is convenient to treat the two
components of the Cauchy data as follows: If f ∈ H(�;W ⊕ W ) and g = RF f we
will set

f̃ ··= S f, g̃ ··= Sg. (8.15)

Note that S maps H
1
2 (�;W )⊕ H− 1

2 (�;W ) into L2(�;W ⊕ W ). Let us now collect
a few properties of S. Clearly

S∗q1S = q1,

i.e. S is symplectic. Moreover:

S	 p
as(�;W ⊕ W )S−1 = 	

p
as(�;W ⊕ W ),

S	 p
reg(�;W ⊕ W )S−1 = 	

p
reg(�;W ⊕ W ).

(8.16)

If f̃ , g̃ are as in (8.15), then g̃ = R̃F f̃ for

R̃F ··= S RF S−1 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 −iδ̃� 1 0

id̃� 0 0 1

⎞
⎟⎟⎠ ∈ 	0(�;W ⊕ W ), (8.17)

and

δ̃� ··= ε
− 1

2
t δ̄�ε

− 1
2

� , d̃� ··= ε
− 1

2
� d̄�ε

− 1
2

t . (8.18)

Finally let us express the transformed reference projection. If � = R
d then:

�̃0 ··= S�0S−1 =

⎛
⎜⎜⎜⎝

0 0 0 0

0 1− ε
1
2
� πε

− 1
2

� 0 0
0 0 1 0

0 iε
− 1

2
� a ◦ bε

− 1
2

� 0 1

⎞
⎟⎟⎟⎠ , (8.19)

and if � is compact:

�̃0 ··= S�0S−1 =

⎛
⎜⎜⎜⎝

0 0 0 0

0 1− ε
1
2
� πε

− 1
2

� 0 0
0 0 1 0

0 iε
− 1

2
� π1a ◦ bε

− 1
2

� 0 ε
− 1

2
� π1ε

1
2
�

⎞
⎟⎟⎟⎠ . (8.20)
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8.5. Operator classes for adapted Cauchy data. It follows from the above discussion that
after going to the adapted Cauchy data and conjugating by S, the class	−1

reg (�;W ⊕W )

appearing in Sect. 5 should be replaced by R̃F	
−1
reg (�;W ⊕W )R̃−1

F , which is different

from 	−1
reg (�;W ⊕ W ). In this subsection we introduce classes of pseudodifferential

operators in which the operator equation δ̃� ◦v = r can be solved in v (see Lemma 8.10)
and which contain the class R̃F	

−1
reg (�;W ⊕W )R̃−1

F . We first introduce some notation.
In the sequel i, j are indices equal to either 0 or 1, and α, β are indices equal to either

t or �. If α = t , respectively �, we set α =�, resp. t and:

sα =
{

d̃�, if α = t,
δ̃�, if α = �,

so that sα ∈ 	0(�;Wα,Wα).
If c ∈ 	 p(�;W ⊕ W ) we denote by ciα, jβ its matrix entries according to the

decomposition

W ⊕ W = (Wt ⊕ W )⊕ (Wt ⊕ W�) = W0t ⊕ W0� ⊕ W1t ⊕ W1�.

Recall also that χ> denotes a cutoff function as in (5.5).

Definition 8.8. Let p ∈ R.

(1) We set

	̃ p
reg,r(�;Wβ,Wα) ··= 	 p

as(�;Wβ,Wα)χ>(hβ) +	 p
as(�;Wβ,Wα)sβ,

	̃
p
reg,l(�;Wβ,Wα) ··= χ>(hα)	

p
as(�;Wβ,Wα) + sα	

p
as(�;Wβ,Wα),

	̃ p
reg(�;Wβ,Wα) ··= χ>(hα)	

p
as(�;Wβ,Wα)χ>(hβ) + sα	

p
as(�;Wβ,Wα)χ>(hβ)

+ sα	
p
as(�;Wβ,Wα)χ>(hβ) + sα	

p
as(�;Wβ,Wα)sα.

(2) We say that c ∈ 	̃ p
reg,�(�;W ⊕ W ) for � = l, r, if ciα, jβ ∈ 	̃ p

reg,�(�;Wα,Wβ) for
all i, α, j, β.

The next lemma shows that the above classes have similar properties to	 p
reg(�;W⊕W ).

Lemma 8.9. The following properties hold:

(1) R̃F	
p
as(�;W ⊕ W )R̃−1

F = 	
p
as(�;W ⊕ W ),

(2) R̃F	
p
reg(�;W ⊕ W )R̃−1

F ⊂ 	̃
p
reg(�;W ⊕ W ) ⊂ 	

p
as(�;W ⊕ W ),

(3) Let cR ∈ 	−εreg,�(�;W ⊕ W ) for ε > 0 and let α ∈ R. Then for R ≥ R0 we have

(1 + cR)
α ∈ 1 +	−εreg,�(�;W ⊕ W ).

Proof. (1) follows from the fact that the class 	 p
as is invariant under left or right

composition with elements of 	0. (2) is a routine computation, introducing the matrix
entries of some c ∈ 	 p

reg(�;W ⊕W ) and using (8.17). To prove (3) we use the identity
(1− a)−1 = 1 + a + a(1− a)−1a and the following easy observations:

	0
as	̃

−ε
reg,r ⊂ 	̃−εreg,r, 	̃

−ε
reg,l	

0
as ⊂ 	̃−εreg,l, 	̃

−ε
reg,l	̃

−ε
reg,r ⊂ 	̃−2ε

reg .

��
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We end this subsection with another technical lemma, which will motivate the introduc-
tion of the above operator classes.

Lemma 8.10. Let r ∈ 	̃
p
reg(�;Wα,Wt ) for α = t, �. Then there exists v ∈ 	̃

p
reg,r

(�;Wα,W�) such that

δ̃� ◦ v = r.

Proof. Since r ∈ 	̃ p
reg(�;Wα,Wt ) we can write

r = χ>(ht )m1 + δ̃�m2, m1 ∈ 	̃ p
reg,r(�;Wα,Wt ), m2 ∈ 	̃ p

reg,r(�;Wα,W�).

If follows that

v = ε
1
2
� d̄�h

− 1
2

t ε
1
2
t χ>(ht )m1 + m2 ∈ 	̃ p

reg,r(�;Wα,W�)

solves δ̃� ◦ v = r . ��

8.6. Technical estimates for � = R
d . In this subsection we collect some delicate tech-

nical estimates on the operators π, b in the case � = R
d . It is convenient to introduce

some notation related to Hypothesis 1.4: if V is a finite dimensional vector space we set:

Sm
0 (�; V ) ··= { f ∈ C∞(�; V ) : ∂αx f (x) ∈ O(〈x〉m), α ∈ N

d}.
Abusing notation we see that Hypothesis 1.4 implies that

Ā� ∈ S0
0 , δ̄� F̄� ∈ S−1

0 , F̄t ∈ S−2
0 .

Recall that B−∞(�; V1, V2) denotes the space of operators that map H−m(�; V1) →
Hm(�; V2) for all m.

Lemma 8.11. Assume that � = R
d . Then:

(1) d̄�χ<(ht )h
−1
t δ̄� ∈ B−∞(�;W�),

(2) 〈x〉−1χ<(ht )h
−1
t δ̄� ∈ B−∞(�;W�)

(3) π ∈ 	0(�;W�) + B−∞(�;W�),
(4) b ∈ 	−1(�;W�,Wt ) + 〈x〉B−∞(�;W�,Wt ),
(5) χ>(h�)π ∈ 	0(�;W�) + 〈x〉−1 B−∞(�;W�),
(6) a ◦ b ∈ 〈x〉−1	−1(�;W�) + 〈x〉−1 B−∞(�;W�).

Proof. (1): let A = d̄�χ<(ht )h
−1
t δ̄� . We need to prove that

(hn
�

+ i)A(hn
�

+ i) : L2 → L2, ∀n ∈ N,

which will follow from

(i) : A : L2 → L2, (ii) : Ah� : H−n → L2,

(iii) : h� A : L2 → Hn, (iv) : h� Ah� : H−n → Hn .

(i) is straightforward by Lemma 8.1. Let us now prove (ii). By Lemma 5.6 (3), we have:

Ah� = d̄�χ<(ht )h
−1
t δ̄�h� = d̄�χ<(ht )δ̄� + d̄�χ<(ht )h

−1
t R,
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for R = δ̄� F̄��·. The first term on the right belongs to 	−∞. We write the second
term as d̄�h−1

t 〈x〉−1 ◦ 〈x〉χ<(ht )R. The first factor is bounded on L2 by Lemma 8.1, the
second belongs to 	−∞, since δ̄� F̄� ∈ S−1

0 . This implies (ii) and hence (iii) by duality.
To prove (iv) we write

h� Ah� = h� d̄�χ<(ht )δ̄� + h� d̄�χ<(ht )h
−1
t R

= h� d̄�χ<(ht )δ̄� + d̄�χ<(ht )R + R∗χ<(ht )h
−1
t R.

The first two terms belong to 	−∞. We factor the third term as:

R∗χ<(ht )〈x〉 ◦ 〈x〉−1h−1
t 〈x〉−1 ◦ 〈x〉χ̃<(ht )R,

for some cutoff function χ̃<with the same properties as χ< and χ̃<χ<= χ<. The first and
last factor belong to	−∞, the middle one is bounded on L2 by Lemma 8.1. This proves
(iv) and completes the proof of (1).

(2): the proof of (2) is completely analogous to the proof of (1) and left to the reader.
(3): we write

π = d̄�χ>(ht )h
−1
t δ̄� + d̄�χ<(ht )h

−1
t δ̄�.

The first term belongs to 	0, the second to B−∞ by (1). This proves (3).
(4): we write

b = χ>(ht )h
−1
t δ̄� + χ<(ht )h

−1
t δ̄�,

the first term belongs to 	−1, the second to 〈x〉B−∞, by (2).
(5): We write as before:

χ>(h�)π = χ>(h�)d̄�χ>(ht )h
−1
t δ̄� + χ>(h�)d̄�χ<(ht )h

−1
t δ̄�.

The first term belongs to 	0. We write the second term as

χ>(h�)h
−1
�

h� d̄�χ<(ht )h
−1
t δ̄� = χ>(h�)h

−1
�

d̄�χ<(ht )δ̄� + χ>(h�)h
−1
�

R∗χ<(ht )h
−1
t δ̄�.

The first term belongs to 	−∞. We factor the second term as:

〈x〉−1 ◦ 〈x〉χ>(h�)h−1
�

R∗〈x〉 ◦ 〈x〉−1χ<(ht )h
−1
t δ̄�.

Now 〈x〉χ>(h�)h−1
� R∗〈x〉 ∈ 	0 since δ̄� F̄� ∈ S−2

0 and 〈x〉−1χ<(ht )h
−1
t δ̄� ∈ B−∞ by

(2). This proves that the second term belongs to 〈x〉−1 B−∞ and completes the proof of
(5).

(6): we write once again:

a ◦ b = aχ>(ht )h
−1
t δ̄� + a ◦ χ<(ht )h

−1
t δ̄�.

The first term belongs to 〈x〉−1	−1, since F̄t ∈ S−1
0 . The second term belongs to

〈x〉−1 B−∞, using (2) and the fact that F̄t ∈ S−2
0 . ��
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8.7. Construction of the projection�. In this subsection we construct the projection�.
The first step consists in determining its range.

Proposition 8.12. There exists s−1,R ∈ 	−1
as (�;W ⊕ W ) such that:

(1 + s−1,R)Ran�0 ∩ KerK †
� ⊂ (1 + r−1,R)L

2(�;W� ⊕ W�),

where r−1,R ∈ 	−1
reg (�;W ⊕ W ) is the operator in Proposition 6.7.

Proof. We set g = RF f . It is easy to check that for �0 given either by (8.4) or (8.10):

f ∈ KerK †
� ⇒ g1

t = 0,
f ∈ H′(�;W� ⊕ W�) ⇔ g0

t = 0, g1
t + iδ̄�g0

�
= 0,

f ∈ Ran�0 ⇒ g0
t = 0, δ̄�g0

�
= 0.

(8.21)

As explained in Sect. 8.5 it is convenient to work with g̃ = Sg, which amounts to replace
r−1,R by R̃Fr−1,R R̃−1

F =·· r̃ , and s−1,R by R̃Fr−1,R R̃−1
F =·· s̃.

By Lemma 8.9 we know that r̃ ∈ 	̃−1
reg (�;W ⊕ W ), and we will look for s̃ ∈

	̃−1
reg,r(�;W ⊕ W ). Again by Lemma 8.9 it will follow that s ∈ 	−1

as (�;W ⊕ W ).
Expressed in terms of g̃, the statements in (8.21) become:

f ∈ KerK †
� ⇒ g̃1

t = 0,
f ∈ H′(�;W� ⊕ W�) ⇔ g̃0

t = 0, g̃1
t + iδ̃� g̃0

�
= 0,

f ∈ Ran�0 ⇒ g̃0
t = 0, δ̃� g̃0

�
= 0,

(8.22)

where δ̃� = ε
− 1

2
t δ̄�ε

− 1
2

� was defined in (8.18). We set:

A1 =
(

1 0 0 0
0 δ̃� i−1 0

)
, A2 =

(
1 0 0 0
0 δ̃� 0 0

)
,

so that

f ∈ (1 + r)H′(�;W� ⊕ W�) ⇔ g̃ ∈ Ker
(

A1 ◦ (1 + r̃)−1
)
,

f ∈ (1 + s)Ran�0 ⇒ g̃ ∈ Ker
(

A2 ◦ (1 + s̃)−1
)
.

(8.23)

To prove the proposition it suffices to find s̃ ∈ 	−1
reg,r(�;W ⊕ W ) such that

g̃ ∈ Ker
(

A2 ◦ (1 + s̃)−1), g̃1
t = 0 ⇒ g̃ ∈ Ker

(
A1 ◦ (1 + r̃)−1). (8.24)

Again by Lemma 8.9 (3), we know that for R large enough (1+r̃)−1 = 1+r̂ for r̂ ∈ 	̃−1
reg .

Let assume that we have found ŝ ∈ 	̃−1
reg,r such that

g̃ ∈ Ker
(

A2 ◦ (1 + ŝ)
)
, g̃1

t = 0 ⇒ g̃ ∈ Ker
(

A1 ◦ (1 + r̂)
)
. (8.25)

Then setting 1 + s̃ ··= (1 + ŝ)−1, we know that s̃ ∈ 	̃−1
reg,r by Lemma 8.9 and that s̃ solves

(8.24). Hence to complete the proof of the proposition, it remains to solve (8.25).
We have

A1 = A2 + A3 for A3 =
(

0 0 0 0
0 0 i−1 0

)
.
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Therefore we look for ŝ = r̂ + v̂ and need to find v̂ ∈ 	̃−1
reg,r such that:

A2v̂ = A3(1 + r̂) on {g̃1
t = 0}.

Since A3 = 0 on {g̃1
t = 0}, we finally need to find v̂ such that

A2v̂ = A3r̂ on {g̃1
t = 0}.

A routine computation yields the following equations for the entries of v̂:

v̂0t, jβ = 0, ∀ jβ,

δ̃�v̂0�, jβ = i−1r̂1t, jβ for jβ=0t, 0�, 1�.
(8.26)

We can set all the other entries of v̂ to 0. It remains to solve the equations in the second
line of (8.26). This can be done by applying Lemma 8.10. This completes the proof of
the proposition. ��

In the proof of Proposition 8.12, we use the assumption that (M, g) is ultra-static:
otherwise the expression in the second line of (8.22) becomes more complicated and it
is not clear how to choose the reference projection �0.

If� = R
d we will need some further properties of the operator s−1,R constructed in

Proposition 8.12.

Proposition 8.13. Assume that� = R
d . Then there exists R0 such that for R ≥ R0 and

for any m ∈ R:

(i) 1+s−1,R�0 : Hm+ 1
2 (�;W )⊕Hm− 1

2 (�;W )
∼→ Hm+ 1

2 (�;W )⊕Hm− 1
2 (�;W ),

(ii) 〈x〉(1 + s−1,R�0)〈x〉−1 : Hm+ 1
2 (�;W )⊕ Hm− 1

2 (�;W )
∼→ Hm+ 1

2 (�;W )

⊕Hm− 1
2 (�;W ).

Proof. As before we conjugate all operators by R̃F, which amounts to replace s−1,R

by s̃−1,R = R̃Fs−1,R R̃−1
F , �0 by �̃0 = R̃F�0 R̃−1

F and Hm+ 1
2 ⊕ Hm− 1

2 by Hm ⊕ Hm .
From the expression (8.19) of �̃0 we see that the entries of s̃−1,R�̃0 are of one of these
three types:

(1) 	−1
reg,r, (2) 	−1

reg,r(1− π), (3) 	−1
reg,ra ◦ b.

Terms of type (1) are simply considered as belonging to 	−1
as . To control terms of

type (2) we recall that 	−1
reg,r = 	−1

as χ>(h�) + 	−1
as δ̃� . By Lemma 8.11 (5) we know

that 	−1
as χ>(h�)π ∈ 	−1

as + 〈x〉−1	−1
as B−∞. The terms of type (3) belong to 	−1

as +
〈x〉−1	−1

as B−∞, by Lemma 8.11 (6). It follows that

s̃−1,R�̃0 ∈ 	−1
as + 〈x〉−1	−1

as B−∞. (8.27)

Let us now prove (i). From (8.27) we first deduce that ‖s̃−1,R�̃0‖B(L2) ∈ o(R0), hence
we can find R0 such that

1 + s̃−1,R�̃0 : L2(�;W ⊕ W )
∼→ L2(�;W ⊕ W ).
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Let us first assume that m > 0. We apply the identity

(1− A)−1 =
n−1∑
j=0

A j + An(1− A)−1

to A = −s̃−1,R�̃0. By (8.27) we know that s̃−1,R�̃0 : Hm(�;W ⊕ W )

→ Hm+1(�;W ⊕ W ). We obtain taking n large enough that

(1 + s̃−1,R�̃0)
−1 : Hm(�;W ⊕ W )→ Hm(�;W ⊕ W ),

which proves (i) for m > 0. The same argument shows that for m > 0

1 + (s̃−1,R�̃0)
∗ : Hm(�;W ⊕ W )

∼→ Hm(�;W ⊕ W ),

which by duality proves (i) for m < 0.
To prove (ii) we split s̃−1,R�̃0 as m1,R + m2,R , where m1,R ∈ 	−1

as and m2,R ∈
〈x〉−1	−1

as B−∞. We can choose R0 above large enough such that (1 + m1,R)
−1 ∈ 	0

for R ≥ R0. We have

(1 + s̃−1,R�̃0)
−1 = (1 + m1,R)

−1(1− m2,R(1 + s̃−1,R�̃0)
−1).

Now m2,R : Hm → 〈x〉−1 Hm and (1 + m1,R)
−1 : 〈x〉−1 Hm → 〈x〉−1 Hm by pdo

calculus, which implies that (1 + s̃−1,R�̃0)
−1 : 〈x〉−1 Hm → 〈x〉−1 Hm . This completes

the proof of the proposition. ��

8.8. The projection� and the right inverse B. We now define a projection� and a right
inverse B to K� as in 3.4.3, 3.4.4.

Theorem 8.14. Let�0 be given by (8.4) if� = R
d and (8.10) if� is compact. Let also

s−1,R be the operator constructed in Proposition 8.12. Then there exists R0 such that
for all R ≥ R0:

(1) the operator

� ··= (1 + s−1,R)�0(1 +�0s−1,R�0)
−1

is a bounded projection on L2(�;W ⊕ W ).
(2) moreover

1−� = (1−�0)(1 + s−1,R�0)
−1.

(3) one has

(a) Ker� = RanK�,

(b) λ±1� are positive on Ran� ∩ KerK †
�.

(4) � : H(�;W )→ H(�;W ), � : H′(�;W )→ H′(�;W ).
(5) if � is compact then � ∈ 	∞(�;W ⊕ W ).
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Proof. If �0 is a bounded projection on a Hilbert space H and ‖r‖ & 1, then Ker�0
and (1 +r)Ran�0 are supplementary subspaces and it is easy to show that the projection
�with Ker� = Ker�0 and Ran� = (1 + r)Ran�0 is given by the formulas in (1) and
(2). Statement (3a) follows from Ker� = Ker�0 = RanK� . Statement (3b) follows
from Ran� = (1 + s−1,R)Ran�0 ⊂ (1 + r−1,R)H(�;W� ⊕ W�) by Proposition 8.12,
and from Proposition 6.7.

Let us now prove (4). It suffices to prove the corresponding statements for 1 − �.
Using that by Proposition 8.13 (1 + s−1,R�0)

−1 maps H(�;W ) and H′(�;W ) into
themselves, we can replace 1−� by 1−�0. The result follows then from the expression
of�0 in (8.4) and statements (3), (6) of Lemma 8.11. Finally the fact that� ∈ 	∞ if�
is compact, follows from the same property of �0, see Lemma 8.6. This proves (5). ��

Let us now define the right inverse B to K� .

Proposition 8.15. Let B0 be given by (8.5) if � = R
d or by (8.12) if � is compact. Let

B ··= B0(1 + s−1,R�0)
−1. (8.28)

Then
K�B = 1−�, BK� = 1. (8.29)

Moreover

(1) if � = R
d then B : H(�;W )→ 〈x〉H(�;W ), B : H′(�;W )→ 〈x〉H′(�;W ).

(2) if � is compact then B ∈ 	∞(�;W ⊕ W,Wt ⊕ Wt ).

Proof. The fact that K�B = 1 −� follows from the definitions of B, � and the fact
that K�B0 = 1−�0. The identity BK� = 1 follows from B0 K� = 1 and �K� = 0.
To prove (2) we can as in the proof of Theorem 8.14 replace B by B0. The statement
follows then for the expression (8.5) of B0 and from (4) of Lemma 8.11. Finally, (2)
follows from the fact that B0, �0 belong to 	∞, see Lemmas 8.6 and 8.7. ��

8.9. Proof of Theorem 1.1. We now complete the proof of Theorem 1.1, by checking
the assumptions of Theorem 3.17. We take for c±i for i = 0, 1 the operators constructed
in Proposition 6.3 for the operators ∂2

t + ai (t) = Di .

– c±i are pseudodifferential operators, hence c±i satisfy (3.15 (i), (ii) and c±0 satisfy
(3.21) (iii).

– Gi� are equal to i

(
Ji 0
0 −Ji

)
, for Ji given in (4.3), hence conditions (3.9) and (3.21)

(i) are satisfied.
– K� is a matrix of differential operators with coefficients bounded with all derivatives,

by Hypothesis 1.4, hence conditions (3.14) and (3.21) (ii) are satisfied.
– � and B satisfy conditions (3.17) and (3.22), by Theorem 8.14 and Proposition 8.15.
– the positivity condition (3.23) is satisfied by�, using Theorem 8.14 and the fact that

Ran� ∩ KerK †
� = �KerK †

� since Ker� = RanK� ⊂ KerK †
� .

– the two-point functions λ±1� are Hadamard, by Proposition 6.3. To prove that λ̃±1� are
also Hadamard, we need to check that c±1reg are regularizing. This delicate point is
shown in Proposition 8.17 below. The proof of Theorem 1.1 is complete.

Remark 8.16. It is easy to deduce from (6.11) and the property Ker� = Ran K� that
the two-point functions λ̃±1� we construct have the property that λ̃+

1� + λ̃−1� is injective

on KerK †
� . This issue is related to faithfulness of the state ω.
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Proposition 8.17. (1) Assume that � = R
d . Then for any n ∈ N one has:

(i) R−∞B : H−n(�;W ⊕ W )→ 〈x〉Hn(�;W ⊕ W ),

(ii) (1−�†)R−∞B : H−n(�;W ⊕ W )→ 〈x〉Hn(�;W ⊕ W ).

(2) Assume that� is compact. Then R−∞B and (1−�†)R−∞B belong to	−∞(�;W⊕
W ).

Proof. The proof of (2) is straightforward, since if � is compact we know that B,
(1−�†) ∈ 	∞ and R−∞ ∈ 	−∞.

We now turn to the proof of (1) which is much more delicate. The Sobolev spaces or
pseudodifferential classes between the various vector bundles over� will be abbreviated
Hm , 	 p, m, p ∈ R.

We will work with the adapted Cauchy data. Note that because the operators RF and
R−1

F are differential operators (see Lemma 4.1), the operator R−∞, expressed in term of
adapted Cauchy data, i.e. RF R−∞R−1

F belongs also to 	−∞, and will still be denoted
by R−∞.

Let us first consider the operator R−∞B0, which we write as a 4×4 matrix. A routine
computation shows that the entries of R−∞B0 are of one of the two forms

r−∞, r−∞b, (8.30)

for r−∞ ∈ 	−∞. From Lemma 8.11 (4) we obtain that b : H−m → 〈x〉H−m for all
m ∈ N. Since r−∞ : 〈x〉H−n → 〈x〉Hn by PDO calculus, we obtain that R−∞B0 :
H−n → 〈x〉Hn . By Proposition 8.13 (i) we know that 1 + s−1�0 : H−n → H−n . This
completes the proof of (i).

The proof of (ii) is more delicate. We claim that it suffices to prove that:

(1−�†
0)R−∞B0 : H−n → 〈x〉Hn, ∀n ∈ N. (8.31)

In fact by Theorem 8.14 we have:

(1−�†) = (1 + (s−1�0)
†)−1(1−�†

0).

By Proposition 8.13 (i) (1 + s−1�0)
−1 : H−n → H−n , and by Proposition 8.13 (ii) and

duality (1 + (s−1�0)
†)−1 : 〈x〉Hn → 〈x〉Hn . Hence (ii) will follow from (8.31).

Let us now prove (8.31). We write R−∞ as a 4× 2 matrix:

R−∞ =
⎛
⎜⎝

r0t,0 r0t,1
r0�,0 r0�,1
r1t,0 r1t,1
r1�,0 r1�,1

⎞
⎟⎠ .

Using that

1−�†
0 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 ib∗a∗ 0 π

⎞
⎟⎠ ,
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we obtain that the entries of (1−�†
0)R−∞B0 are of the form (8.30), except for (sums)

of the more singular terms

(1) πr1�,1, (2) b∗a∗r0�,1,

(3) b∗a∗r0�,0b, (4) πr1�,0b,

where as before all the ri, j terms belong to 	−∞. We will examine successively these
4 terms.

Term 1: by Lemma 8.11 (3) we know that π : Hn → Hn for all n ∈ N, hence
πr1�,1 : H−n → Hn .

Term 2: by Lemma 8.11 (6) and duality, we know that b∗a∗ : Hn → Hn , the same
argument as before shows that b∗a∗r0�,1 : H−n → Hn .

The terms 3 and 4 will be more delicate to estimate. We will cut them into a high
and low energy part. The high energy part is not affected by the infrared problem and is
easy to estimate. The low energy part will be estimated by ‘undoing the commutator’,
i.e. rewriting R−∞ as c+

1 K� − K�c+
0 .

Term 3: we write r0�,0 = r0�,0χ>(ht ) + r0�,0χ<(ht ). We know that χ>(ht )b =
χ>(ht )h

−1
t δ̄� ∈ 	−1, hence r0�,0χ>(ht )b ∈ 	−∞. This implies that r0�,0χ>(ht )b :

H−n → Hn . Since by Lemma 8.11 (6) b∗a∗ : 〈x〉Hn → 〈x〉Hn it follows that
b∗a∗r0�,0χ>(ht )b : H−n → 〈x〉Hn .

It remains to control the term b∗a∗r0�,0χ<(ht )b. We claim that

b∗a∗r0�,0χ<(ht )b : H−n → 〈x〉Hn, ∀n ∈ N. (8.32)

To prove (8.32) we write R−∞ as c+
1 K� − K�c+

0 . Writing c+
1 and c+

0 in matrix form, we
obtain after a routine computation that:

r0�,0 = m1d̄� + m2a + d̄�m3, mi ∈ 	∞.
We have hence to consider the three terms:

(3a) b∗a∗m1d̄�χ<(ht )b, (3b) b∗a∗m2aχ<(ht )b, (3c) b∗a∗d̄�m3χ<(ht )b,

and to show that each of them maps H−n into 〈x〉Hn .
Term 3a: we have

b∗a∗m1d̄�χ<(ht )b = b∗a∗m1d̄�χ<(ht )h
−1
t δ̄�.

Using Lemma 8.11 (1) and the fact that m1 ∈ 	∞, we know that m1d̄�χ<(ht )h
−1
t δ̄� :

H−n → Hn . Next we use that by Lemma 8.11 (6) b∗a∗ : 〈x〉Hn → 〈x〉Hn .
Term 3b: by Lemma 8.11 (2) and the fact that F̄t ∈ S−1

0 we know that m2aχ<(ht )b :
H−n → Hn and we can conclude the proof as for term (3a).

Term 3c: we use identity (2.18) to obtain that b∗a∗d̄� = b∗δ̄�a = πa. Therefore:

b∗a∗d̄�m3χ<(ht )b = πam3χ<(ht )b.

Since F̄t ∈ S−1
0 we deduce from Lemma 8.11 (2) that am3χ<(ht )b : H−n → Hn . Next

by Lemma 8.11 (3) we know that π : Hn → Hn . This completes the proof of (8.32).
Term 4: we split r1�,0 as χ>(h�)r1�,0 + χ<(h�)r1�,0. By Lemma 8.11 (4) we know

that b : H−n → 〈x〉H−n . Since r1�,0 ∈ 	−∞ we know that r1�,0 : 〈x〉H−n → 〈x〉Hn .
Finally by Lemma 8.11 (5) and duality πχ>(h�)〈x〉Hn → 〈x〉Hn .
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We now claim that:
πχ<(h�)r1�,0b : H−n → 〈x〉Hn . (8.33)

Again we write R−∞ as c+
1 K� − K�c+

0 , obtain that

r1�,0 = m1d̄� + m2a + am3, mi ∈ 	∞,
and have to consider the three terms:

(4a) πχ<(h�)m1d̄�b, (4b) πχ<(h�)m2ab, (4c) πχ<(h�)am3b.

Term 4a: using that d̄�b = π , this term equals πχ<(h�)m1π , which maps H−n into Hn

by now standard arguments.
Term 4b, 4c: these two terms can be treated as term (3b), using that F̄t ∈ S−1

0 . ��
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Appendix A. Background on Pseudo-Differential Calculus

In this section we recall some facts about pseudo-differential calculus. We refer to [GW,
Sect. 4] for more details. We need to extend slightly the situation in [GW] to include
matrix-valued symbols.

A.1. Notation.

– We denote by � either R
d or a smooth compact manifold. If � is compact we

choose a smooth, non-vanishing density μ which allows to equip C∞(�) with an
Hilbertian scalar product. Typically μ will be the canonical density associated to
some Riemannian metric on �. If � = R

d we use of course the Lebesgue density
dx .

– We denote by V a finite dimensional complex vector space. For simplicity we assume
that V is equipped with a Hilbertian scalar product, which allows to identify V and
V ∗.

– We denote by C∞
bd (�; V ) the space of smooth functions�→ V uniformly bounded

with all derivatives. We equip C∞
bd (�; V ) with its canonical Fréchet space structure.

– The Sobolev space of order m is denoted Hm(�; V ). Furthermore, we define the
spaces

H(�; V ) ··= ⋂
m∈R

Hm(�; V ), H′(�; V ) ··= ⋃
m∈R

Hm(�; V ),

equipped with their canonical topologies.

A.2. Symbol classes. We denote by Sm(T ∗�), m ∈ R the usual class of poly-homogeneous
symbols of order m such that additionally

∂αx ∂
β
k a(x, k) ∈ O(〈k〉m−|β|), α, β ∈ N

d . (A.1)

Similarly we will denote by Sm(R) the class of poly-homogeneous functions f : T ∗�→
C.
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We denote by Sm
h (T

∗�) ⊂ Sm(T ∗�) the subspace of symbols homogeneous of
degree m in k away from 0.

These spaces are equipped with the Fréchet space topology given by the semi-norms:

‖a‖m,N ··= sup
|α|+|β|≤N

|〈k〉−m+|β|∂αx ∂
β
k a|.

We set

S−∞(T ∗�) ··=
⋂

m∈R

Sm(T ∗�), S∞(T ∗�) ··=
⋃

m∈R

Sm(T ∗�).

Let now V1, V2 be finite dimensional complex vector spaces equipped with non-
degenerate hermitian sesquilinear forms. The spaces Sm

(h)(T
∗�) ⊗ L(V1, V2) will be

denoted by Sm
(h)(T

∗�; V1, V2) and by Sm
(h)(T

∗�; V ) if V1 = V2 = V .
The subspace of scalar symbols Sm(T ∗�)⊗ 1V will be denoted by Sm

scal(T
∗�; V ).

A.3. Principal symbol and characteristic set. For a ∈ Sm(T ∗�; V1, V2) we denote by
apr ∈ Sm

h (T
∗�; V1, V2) the principal part of a, which is homogeneous of degree m.

The characteristic set of a ∈ Sm(T ∗�; V ) is defined as

Char(a) ··= {(x, k) ∈ T ∗�\{0} : det apr(x, k) = 0}, (A.2)

which is conic in the k variable.
A symbol a ∈ Sm(T ∗�; V ) is elliptic if Char(a) = ∅.

A.4. Pseudo-differential operators. In this subsection we collect some well-known re-
sults about pseudo-differential calculus.

We denote by Op : a �→ Op(a) a quantization procedure assigning to a symbol in
S∞(T ∗�; V1, V2) a pseudo-differential operator on�. If� is compact, this quantization
depends on the choice of a partition of unity on� and of associated coordinate mappings,
the difference between two choices being a smoothing operator. If � = R

d w choose
the Weyl quantization. One has

Op(a) : H(�; V1)→ H(�; V2), Op(a) : H′(�; V1)→ H′(�; V2).

We denote by 	m
(scal)(�; V1, V2) the space Op(Sm

(scal)(�; V1, V2)) and set

	−∞(�; V1, V2) = ⋂
m∈R

	m(�; V1, V2), 	∞(�; V1, V2) = ⋃
m∈R

	m(�; V1, V2).

We equip 	m(�; V1, V2) with the Fréchet space topology induced from the one of
Sm(T ∗�; V1, V2).

Let s,m ∈ R. Then the map

Sm(T ∗�; V1, V2) � a �→ Op(a) ∈ B(Hs(�; V1), Hs−m(�; V2)) (A.3)

is continuous.
We denote by σ : 	∞(�; V1, V2) → S∞(T ∗�; V1, V2) the inverse of Op, σ(a)

being called the (full) symbol of a.
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If � is a compact manifold, different choices of Op lead of course to different maps
σ , differing by a map from 	m to Sm−1. On the other hand, the principal symbol map:

σpr : 	m(�; V1, V2)→ Sm
h (T

∗�; V1, V2)

is independent on the choice of the quantization.
An operator Op(a) ∈ 	m(�; V ) is elliptic if its principal symbol σpr(a)(x, k) is

elliptic in Sm(�; V ). If a ∈ 	m is elliptic then there exists b ∈ 	−m , unique modulo
	−∞ such that ab = ba = 1 modulo 	−∞. Such an operator b is called a pseudo-
inverse or a parametrix of a. As a typical example 1 + b for b ∈ 	−m , m > 0 is elliptic
in 	0.

A.5. Functional calculus for pseudo-differential operators. We recall without proof
some well-known results about functional calculus and pseudo-differential operators.

Proposition A.1. Let a ∈ 	m(�; V ) for m ≥ 0 be elliptic in	m(�; V ) and symmetric
on H(�; V ). Then:

(1) a is selfadjoint on Hm(�; V ),
(2) Denote by res(a) the resolvent set of a, with domain Hm(�; V ). Then for z ∈ res(a),

(z − a)−1 ∈ 	−m(�; V ),
(3) if f ∈ S p(R), p ∈ R, then f (a), defined by the functional calculus, belongs to

	mp(�; V ).
(4) if f is elliptic in S p(R) then σpr( f (a)) = fpr(σpr(a)).

A.6. Propagators. In this subsection we state some results about propagators, associated
to elliptic operators in 	1(�; V ). It is important to restrict oneself to operators with
real and scalar principal symbols. The propagators in our presentation replace Fourier
integral operators which are often used in the literature.

Let us fix a map ε(t) = ε1(t) + ε0(t), where εi (t) ∈ C∞(R, 	 i (�; V )) for i = 0, 1.
We assume that

(1) ε1(t) is scalar, i.e. belongs to 	1
scal(�; V ),

(2) ε1(t) is elliptic in 	1(�; V ),
(3) ε1(t) is symmetric on H(�; V ).

It follows by Proposition A.1 that ε1(t) is selfadjoint with domain H1(�; V ), hence ε(t)
with domain H1(�; V ) is closed, with non empty resolvent set.

We denote by Texp(
∫ t

s iε(σ )dσ) the associated propagator defined by:
⎧⎪⎪⎨
⎪⎪⎩

∂
∂t Texp(

∫ t
s iε(σ )dσ) = iε(t)Texp(

∫ t
s iε(σ )dσ),

∂
∂s Texp(

∫ t
s iε(σ )dσ) = −iTexp(

∫ t
s iε(σ )dσ)ε(s),

Texp(
∫ s

s iε(σ )dσ) = 1.

It is easy to see (see e.g. [GW, Sect. 4.6]) that Texp(
∫ t

s iε(σ )dσ)is strongly continuous
in (t, s) with values in B(L2(�; V )).

Definition A.2. We denote by �ε(t, s) : T ∗�\{0} → T ∗�\{0} the symplectic flow
associated to the time-dependent Hamiltonian −σpr(ε)(t, x, k).
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Clearly �ε(t, s) is an homogeneous map of degree 0.
We now state a version of the Egorov’s theorem for matrix-valued symbols.

Proposition A.3. (1) Texp(
∫ t

s iε(σ )dσ) is bounded on H(�; V ) hence on H′(�; V )
by duality.

(2) There exists m(t, s) ∈ C∞(R2;	0(�; V )) elliptic, invertible on L2(�; V ) with
m−1(t, s) ∈ C∞(R2;	0(�; V )) such that

Texp(
∫ t

s iε(σ )dσ) = m(t, s)Texp(
∫ t

s iε1(σ )dσ).

(3) Let a ∈ 	m(�; V ). Then

a(t, s) ··= Texp(
∫ t

s iε(σ )dσ)aTexp(
∫ s

t iε(σ )dσ)

belongs to C∞(R2, 	m(�; V )). Moreover

σpr(a)(t, s) = σpr(a) ◦�ε(s, t).

Proof. The proposition is well-known in the scalar case, i.e. if ε(t) = ε1(t), see
eg [T, Sect. 0.9] for the proof. It is easy to extend it to our situation. Let us denote
Texp(

∫ t
s iε(σ )dσ), respectively Texp(

∫ t
s iε1(σ )dσ) by U (t, s) respectively U1(t, s). Set-

ting

U (t, s) =·· m(t, s)U1(t, s),

we obtain that m(t, s) solves the equation:
{
∂t m(t, s)− iε0(t, s)m(t, s) = 0,
m(s, s) = 1,

for ε0(t, s) ··= U1(s, t)ε0(t)U1(t, s). Note that ε0(t, s) ∈ C∞(R2, 	0(�; V )), by
Egorov’s theorem for the scalar case. The solution is

m(t, s) = Texp(
∫ t

s iε0(σ, s)dσ).

It is easy to see that m(t, s) ∈ C∞(R2;	0(�; V )), using for example Beals criterion.
Moreover m(t, s) : L2(�; V )→ L2(�; V ) is boundedly invertible, with inverse

m−1(t, s) = Texp(
∫ s

t iε0(σ, s)dσ).

The same argument shows that m−1(t, s) ∈ C∞(R2;	0(�; V )), hence m(t, s) is elliptic
in	0(�; V ). This proves (2). (1) follows from (2) and the analogous result in the scalar
case. We write then

a(t, s) = U1(t, s)m(t, s)am−1(t, s)U1(s, t) = U1(t, s)ã(t, s)U1(s, t),

where ã(t, s) = m(t, s)am−1(t, s) ∈ C∞(R2, 	m(�; V )) has principal symbol
σpr(a(t, s)) = σpr(a). (3) follows then from Egorov’s theorem for the scalar case. ��

The following two results are proved in [GW, Sect. 4] for the scalar case. By the
argument outlined in the proof of Proposition A.3 they immediately extend to our situ-
ation.
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Proposition A.4. For u ∈ H′(�; V ) one has:

WF(Texp(
∫ t

s iε(σ )dσ)u) = �ε(t, s)WF(u),

hence

WF′(Texp(
∫ t

s iε(σ )dσ)) = {(x, k, x ′, k′) : (x, k) = �ε(t, s)(x ′, k′)}.
Lemma A.5. Let ε(t) ∈ C∞(R, 	1(�; V )) as above, s−∞(t, s) ∈ C∞(R2,

	−∞(�; V )). Then

Texp(
∫ t

s iε(σ )dσ)s−∞(t, s) ∈ C∞(R2, 	−∞(�; V )).

Appendix B. Some Auxiliary Results

B.1. A Hardy inequality.

Proposition B.1. There exists C > 0 such that

δ̄� d̄� ≥ C〈x〉−2, on L2(Rd , |h| 1
2 dx)⊗ g. (B.4)

Proof. Let us denote by M j (x) ∈ L(g) the operator i−1 Ā j (x)∧ · and note that M j (x)
is selfadjoint on (g, k). Let

hM ··=
d∑

j=1

(D j + M j (x))
2,

acting on L2(Rd , dx)⊗ g. We claim that the proposition follows from

hM ≥ C〈x〉−2. (B.5)

In fact we have:

ht = δ̄� d̄� = |h|− 1
2 (x)

d∑
j,k=1

(D j + M j (x))h
jk(x)|h| 1

2 (x)(Dk + Mk(x)),

acting on L2(Rd , |h| 1
2 dx)⊗ g. Clearly ht is unitarily equivalent to:

h̃t = |h|− 1
4 (x)

d∑
j,k=1

(D j + M j (x))h
jk(x)|h| 1

2 (x)(Dk + Mk(x))|h|− 1
4 (x),

acting on L2(Rd , dx) ⊗ g, by the map U : u �→ |h| 1
4 u. It suffices to prove Hardy’s

inequality for h̃t . Since c0 ≤ |h|(x) ≤ c−1
0 for some c0 > 0, we can also replace h̃t by

|h| 1
4 h̃t |h| 1

4 . Finally since |h| 1
4 h̃t |h| 1

4 ≥ ChM for some C > 0, we see that (B.5) implies
(B.4).

Let us now prove (B.5). From the usual Hardy inequality we know that there exists
C > 0 such that

−�− C〈x〉−2 ≥ 0. (B.6)
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We use now the diamagnetic inequality:

‖e−t (hM−C〈x〉−2)u‖ ≤ e−t (−�−C〈x〉−2)‖u‖, u ∈ L2(Rd , dx)⊗ g, t ≥ 0, (B.7)

where ‖u‖2(x) = u(x) · ku(x). The proof of (B.7) can be done as in [CFKS, Thm. 1.3].
The key fact is that

D j + iM j (x) = S−1
j (x)D j S j (x)

for

S j (x) = Texp(−i
∫ 0

x j
M j (x1, . . . , x j−1, s, x j+1, . . . , xd)ds)

where S j (x) is unitary on (g, k). Using a−1 = ∫ +∞
0 e−tadt , we deduce from (B.7) that

for ε > 0

(u|(hM − C〈x〉−2 + ε)−1u)L2⊗g ≤ (‖u‖|(−�− C〈x〉−2 + ε)−1‖u‖)L2

≤ ε−1(‖u‖|‖u‖)L2 = ε−1(u|u)L2⊗g.

This implies that hM − C〈x〉2 ≥ 0 and completes the proof of the proposition. ��

B.2. Transition to the temporal gauge. In this section we review the transition to the
temporal gauge, explained in the language of connections.

We assume here that g = −β(t, x)dt2 + hi j (t, x)dxi dx j , i.e. that we are in the
general globally hyperbolic case.

We set:

S(t, x) ··= Texp(− ∫ 0
t T0(s, x)ds) ∈ C∞(M; L(W )),

so that {
∂t S(t, x) = S(t, x)T0(t, x)
S(0, x) = 1W .

Note that S(t, x) = SV (t, x)⊗ Sg(t, x), for:

SV (t, x) = Texp(− ∫ 0
t �0(s, x)ds), Sg(t, x) = Texp(− ∫ 0

t M0(s, x)ds).

An easy computation using that T is metric for g−1 ⊗ k shows that:

g−1(t, x)⊗ k = S∗(t, x)g−1(0, x)⊗ kS(t, x).

Again if we set

T̃a ··= S∂a S−1 + STa S−1, ρ̃ ··= SρS−1,

then setting g−1
0 (t, x) ··= g−1(0, x) we have:

∂ag−1
0 ⊗ k = T̃ ∗a g−1

0 ⊗ k + g−1
0 ⊗ kT̃a,

ρ̃∗g−1
0 ⊗ k = g−1

0 ⊗ kρ̃,

T̃0 = 0.
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Setting D̃1 = SD1S−1 we have:

D̃1 = −|g|− 1
2∇ T̃

a |g|
1
2 gab∇ T̃

b + ρ̃.

The conserved charge is:

ζ̃ 1q̃ ζ̃2 ··=
∫
{t}×�

i−1∇ T̃
0 ζ̃1 · g−1

0 ⊗ kζ̃2 + ζ̃1 · g−1
0 ⊗ k i−1∇ T̃

0 ζ̃2|h| 1
2 dx .

B.3. Constraints for initial data of Yang–Mills equation. In the main part of the text
(Hypothesis 1.4, Theorem 1.1) we make several assumptions on the Cauchy data of the
smooth solution Ā of the non-linear Yang–Mills equations, used to linearize the system.
To be sure that such solution Ā exists, one needs to verify that the conditions on the
Cauchy data are consistent with the constraint equations. Although there is already some
literature on this subject [CB,CC,Seg], it does not cover directly our case, we thus briefly
discuss the constraint equations below.

We use the framework and the notations introduced in Sect. 4.4.1, in particular we
assume that the spacetime (M, g) is ultra-static. We assume Ā is in the temporal gauge
Āt ≡ 0.

The definition F̄ = d̄ Ā gives

F̄� = d̄� Ā�, (B.8)

F̄t = ∂t Ā�. (B.9)

The Yang–Mills equation δ̄ F̄ = 0 reads

δ̄� F̄t = 0, (B.10)

∂t F̄t + δ̄� F̄� = 0. (B.11)

Taking the first time derivative of (B.8) and using (B.9) one gets

∂t F̄� = d� F̄t + F̄t ∧ Ā�. (B.12)

This allows to consider (B.9), (B.11) and (B.12) as evolution equations
⎧⎪⎨
⎪⎩
∂t Ā� = F̄t ,

∂t F̄t = −δ̄� F̄�,
∂t F̄� = d� F̄t + F̄t ∧ Ā�,

(B.13)

subject to constraint equations (B.8) and (B.10):
{

F̄� = d̄� Ā�,

δ̄� F̄t = 0.
(B.14)

The first constraint (B.8) is not problematic in the sense that it does not restrict the set
of allowed Cauchy data. It is also straightforward to see from (B.12) that it is preserved
by the evolution (B.13).

The second constraint (B.10) does significantly restrict the set of allowed Cauchy
data.
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First, let us check that it is preserved by the evolution (this is a known result, cf. [CS]
for the case of arbitrary globally hyperbolic spacetimes). Recall that δ̄� = δ� + Ā� � ·
(where for simplicity we assume the Cauchy data are real). Thus, using (B.9) and (B.11)
one gets

∂t δ̄� F̄t = δ̄�∂t F̄t + F̄t � F̄t = −δ̄� ◦ δ̄� F̄� + F̄t � F̄t . (B.15)

Since (B.8) holds for any time slice, we have d̄� ◦ d̄� = F̄�∧ · , and by taking the adjoint
δ̄� ◦ δ̄� = F̄� � · . Hence (B.15) gives in fact

∂t δ̄� F̄t = −F̄� � F̄� + F̄t � F̄t .

Both terms identically vanish, as is easily seen by writing the expression for the interior
product in an orthonormal frame. This proves that δ̄� F̄t = 0 on each time slice.

B.3.1. Existence of Cauchy data with decay at infinity. One can construct examples of
Cauchy data F̄t , Ā� satisfying the constraint δ̄� F̄t = 0 as follows.

Let us take F̄t ··= δ̄�G, G ∈ E2(�; g). Then if we take Ā� and G with disjoint
supports, then δ̄� F̄t = 0 is trivially satisfied. If, moreover, both the supports of Ā� and
G are compact, then the Cauchy data Ā�, F̄�, F̄t have compact support, as requested in
Theorem 1.1.

Let now Sm denote the space of g-valued functions (or differential forms) whose
coefficients satisfy classical symbol estimates ∂αx f (x) ∈ O(〈x〉m−|α|). It suffices then
to take Ā� ∈ S−1 and G ∈ S−1 with disjoint supports to ensure that F̄� ∈ S−2 and
F̄t ∈ S−2. This provides a class of examples for Hypothesis 1.4.

B.4. Global existence of smooth space-compact solutions for non-linear Yang–Mills
equations. In this subsection we explain how to deduce Proposition 3.19 from the ar-
guments of Chruściel–Shatah [CS].

Proposition B.2. (1) for each Ā ∈ E1
sc(M)⊗ g there exists Ā′ ∈ E1

sc(M)⊗ g such that
Ā′t ≡ 0 and Ā′ ∼ Ā.

(2) Assume that dim M ≤ 4. Let Ā ∈ E1
sc(M)⊗ g be a solution of the non linear Yang–

Mills equation (2.14) near a Cauchy surface �. Then there exists Ā′ ∈ E1
sc(M)⊗ g

such that Ā′ ∼ Ā, Ā′t ≡ 0 and Ā′ solves (2.14) globally.

Proof. (1): recall that we assumed that G is represented as a subgroup of L(V ) for
some finite dimensional vector space V . The gauge transformation generated by the map
M � x �→ G (x) ∈ G is:

Āμ �→ Ā′μ = G−1 ĀμG + G−1∂μG .

Writing M = Rt ×�x , we obtain Ā′t ≡ 0 if ∂tG + ĀtG = 0. This can be solved by

G (t, x) = Texp(
∫ t

0 − Āt (s, x)ds).

Since Āμ ∈ C∞
sc (M)⊗g, we obtain that G −1 ∈ C∞

sc (M;G), hence Ā′μ ∈ C∞
sc (M)⊗g.
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(2): By (1) we can assume that Āt ≡ 0, i.e. that Ā is in the temporal gauge. We recall
the form of the Yang–Mills equations in the temporal gauge, recalled in [CS, Sect. 4].
Denoting by F̄μν the curvature, we obtain the equations:

⎧⎪⎨
⎪⎩
∂t Āi = F̄0i ,

Dt F̄i j = D j F̄i0 −Di F̄ j0,

Dt F̄0i = D j F̄ j i ,

(B.16)

where Dμ = ∇μ + [ Āμ, ·], and Dt = D0.
Another fact is that if Gμν ··= F̄μν − ∂μ Āν + ∂ν Āμ − [ Āμ, Āν] vanishes at t = 0

and (B.16) holds in some region I × O where I is a time interval, then Gμν vanishes
identically in I × O , hence F̄ = d̄ Ā.

By [CS, Thm. 1.1] the local in time solution ( Āi , F̄i j , F̄0 j ) of (B.16) extends globally
as a smooth solution. Moreover since (B.16) is a symmetric hyperbolic semi-linear
system of equations (see e.g. the proof of [CS, Prop. 4.1]), its solutions satisfy Huygens’
principle, which implies that the global solution of (B.16) belongs to E1

sc(M)⊗ g. Note
that [CS] deals with the most difficult case dim M = 4. It is easy to extend the result to
lower dimensions. In fact if dim M = n < 4, we consider M̃ = M ×R

4−n
y with metric

g + dy2. A 1−form A = Aμ(x)dxμ ∈ E1(M) ⊗ g is extended to Ã = Aμ(x)dxμ ∈
E1(M̃)⊗g. It is easy to see that A satisfies the Yang–Mills equation on M iff Ã satisfies
the YM equation on M̃ . It follows that the Cauchy problem can be globally solved
for smooth Cauchy data in M . The fact that a local space-compact solution extends
as a global space-compact solution follows by the same argument based on Huygens’
principle. ��
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