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Abstract: We consider the family of active scalar equations on the plane and study
the dynamics of two centrally symmetric patches. We focus on the two-dimensional
Euler equation written in the vorticity form and consider its truncated version. For this
model, a non-linear and non-local evolution equation is studied and a family of stationary
solutions {y(x,A)},x € [—1,1], 1 € (0, Ag) is found. For these functions, we have
y(x, 1) € C®°(=1,1) and [ly(x, A) — |x[llc[=1,17 = 0, A — 0. The relation to the
V -states observed numerically in Wu et al. (J Comput Phys 53:1-42, 1984), Cerretelli
and Williamson (J Fluid Mech 493:219-229, 2003) is discussed.

1. Introduction

In this paper, we study a certain class of the active scalar equations on the plane. Suppose
we are given a function D(z), z = (x, y) € R? that satisfies the following properties: D
is radially symmetric, i.e., D(z) = d(|z]), d(r) is monotonically increasing and smooth
on (0, co). Consider the following transport equation

6=vo. (VLAe + S) .00, x, y) = Op(x, ), (1)
where
Af = /R Dz - f®)ds, z,§ R, V= (=), 0.

The symbol S(z, z) will denote the strain, i.e., an exterior velocity that is assumed to
be incompressible and sufficiently regular. By choosing different d(r) and S(z, 1), we
can cover some important cases. For example, taking d(r) = —r~Vand S(z,1) = 0
corresponds to the so-called surface-quasigeostrophic equation (SQG), for which only
the local in time solvability is known for sufficiently smooth 6y (see [4] for the recent
development). If d(r) = logr and S(z, t) = 0, one recovers the equation for vorticity for


http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-015-2298-8&domain=pdf

956 S. A. Denisov

two-dimensional non-viscous Euler equation. In this situation, the existence of global
solution 6(z, x, y) has been known for a long time [15].

In this paper, we mostly focus on the Euler case, however, we will be digressing to
more general situations later in the text. Let us assume 6y € LOO(RZ) NnL! (Rz). In that
case, the existence of the global weak solution was established by Yudovich [17]. If
0o = x5, With some domain € : |©29| < oo, then one has the evolution of the “patch”
as 0(t, 7) = xq@) and () is homeomorphic to 2.

We consider the case when 0(0, z2) = xq,(2) + x—,(z) and —Qy = {—z, z € Qo}.
Assuming 20 N —Q¢ = &, one has 6(¢, 2) = xo@) () + X—o@)(2), i.e., it represents
evolution of the centrally symmetric pair of patches (the preservation of central symmetry
is a simple feature of dynamics). We also take €2 to be simply connected with smooth
boundary, i.e., 329 € C*°. Under these assumptions, we have 02 (¢) € C* for all time
[2,5].

Two problems arise naturally in the study of this model. The first one addresses the
following question. Let 0(r) = dist(€2(¢), 0). Is it possible for d(t) — 0, ¢ — o0?
The Yudovich theory gives a lower bound: 9(¢) > exp(— exp(Ct)) and one can study its
sharpness. Naturally, the convergence of 0(¢) to zero implies the merging of the patches
as the configuration is centrally symmetric. In the recent paper [8], the sharpness of the
double exponential estimate was established (even up to a constant C) in the case when
the equation was considered with the strain S, which was assumed to be incompressible,
odd, and Lipschitz-regular. We have more evidence of the singularity formation in (1): in
[10], the phenomenon of double exponential merging was proved for the Euler equation
on the disc; however, the presence of the boundary was used in a substantial way. For
the related SQG model, there is a numerical evidence that two patches merge in finite
time [7].

The second problem, intimately related to the first one, is the existence of the quasi-
stationary states, i.e., the configurations of two centrally symmetric patches that rotate
with constant angular velocity around the origin without changing the shape (the so-
called V-states). For the 2D Euler, there is numerical evidence (e.g., [3,16] and refer-
ences there) for the existence of the parametric curve of these V-states: V, U —V,, i.e.,
Q(t) = R, V), where Ry denotes the rotation around the origin by the angle 6. Here,
dist(Vy, —Vy) = 2x and A € [0, Ag). For A > 0, the boundary I';, = 9V, seems to be
smooth but the two patches form a sharp corner of 90 ° and touch at the origin when
A = 0. Assuming existence of the V-states in the contact position and their regularity
away from the origin, Overman [13] did a careful analysis around the zero. In particular,
he explained why the 90° is the only possible nontrivial angle of the contact.

The paper consists of eight sections and an appendix. In the second section, the
model with cut-off is introduced and the main result is stated. Section 3 gives some
preliminaries and Sect. 4 explains the strategy of the proof. In the Sects. 5, 6, and 7, we
prove some auxiliary statements that are used in Sect. 8 to complete the proofs of the
main results. The appendix has four lemmas we use in the main text.

Notation used in the paper. The symbol Lip[0, T will indicate the following space
Lip[0, T1= {f’ € L*[0, T1, f(0) = 0} equipped with the norm

1f liippo.ry = sup 1f/ ().
x€l[0,7T]

We will use the following (non-standard) notation

logtx = |logx|+1, x>0.
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Let w(x) be a smooth function such that w(x) = 1 on |x| < 1/2, w(x) = 0 on
x| > 1and 0 < w(x) < 1. For a parameter a > 0, we consider w,(x) = w(x/a) and
w5 (x) = 1 — w,(x). Given two positive functions F) and F, we write F; < F if there
is a constant C such that

Fi<CF,, C=>0.
We write F} ~ F> if
FISF S F.

The expression “a < 1”7 will be a short-hand for “there is a sufficiently small ap such
that 0 < a < ap”. For the function P(x), we write Ay, », P = P(x1) — P(x2).

2. The Model with Cut-Off and the Main Result

Consider d(r) = logr (2d Euler). If 2,.(0) is a simply connected domain with smooth
boundary, the evolution of I'y.(#) = 0% (¢) is governed by the following integro-
differential equation (see, e.g., [1], formula (8.56); this is a corollary of V,D(|z — &) =
—VeD(|]z — &) and the Green’s formula):

2
z(t, o) = C/ Z(t, B)loglz(t, B) — z(t, @)|dB, « € [0, 2m), (2)
0

where C is an absolute constant and z(«, t) is anti-clockwise parameterization of the
curve [';.(¢). In particular, the right-hand side gives the velocity at any point on the
boundary, z(, o). If one has two simply connected domains Q) and Q® with vorticity
equal to 1 inside each of them, then the velocity at any point z; € ') is given by

2

2
C(/o Z’l(t,ﬂ)loglm(t,ﬂ)—Z1(t,0t)|dﬁ+/0 2 (t, B)log|z2(t, B)

— z1(t, a)|d,3) , a € [0,2m).

Assume now that two patches are merging at the origin. Then, we can introduce the
local chart in {(x,y) : |x| < &, |y| < &} and parameterize the corresponding con-
tours by (x, w1 (¢, x)) and (x, ua(¢, x)), see Fig. 1. Notice that the velocity at any point
(x, m1(t, x)) can now be written as

3
c (/5(1, i1, ) log ((r = )2+ Gui(r, x) — i (1,6))?) d

3
- /60, ot €0 1og ((x = £+ (ui (1, x) — 121, ))?) ds) + R(x,  (1,.2)),

where the negative sign in front of the second integral comes from the anti-clockwise
parameterization for the contour I'®. Here R is the velocity induced by the (F(l) U
1"(2)) N {|z| > §&}. Clearly, R is smooth inside {|x| < &/2, |y| < §/2} and is equal to

zero at the origin in the case when Q) = —Q()_ Dropping this R as a term negligible
around the origin, we end up with the following expression for the velocity

)
C/a(A B, 1,1, £)A — (1, E)BYE,
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Fig. 1. Two patches near the origin

where
A =log ((x =&+ Gu,0) — w1 (1,€)?).
B =log ((x = £+ (11, 1) = p2(1,))?)

atevery point (x, i1 (¢, x)), |x| < 8. Following, e.g., [14], we notice that the subtraction
of any tangential vector from the velocity does not change the evolution of the contour.
Thus, we subtract the vector-field

k)
C/s(A  BYAE - (1 ) (1. ),

which gives a modified velocity

5
Umod (X, w1 (t,x)) = C (0,/8(.%/1(&5)14 — 51, £)B — /L/l(t,x)A+M/1(t,x)B)d$)-

Notice that the first component of this vector is zero so we have an equation

5
pi(t, x) = C/B(M'l (t,6)A — py(t,§)B — pi(t, )A + pi (¢, x)B)d§,  |x] < §/2
3)

for the evolution of (¢, x). The similar formula can be obtained for w;(z, x). We
will focus on the situation when the contours are centrally symmetric so ux (¢, x) =
—u1(t, —x). That gives us the following equation for u (¢, x) = w1 (¢, x):

(x + )%+ (ut, x) + u(t, £))*
(x — &2+ (u(t, x) — u(t, §))?
We allow this equation to hold on all of [—§, §] and call it an equation with cut-off. The

rescaling of time makes it possible to adjust the value of C. Moreover, the Eq. (4) should
be complemented by

E)
At x) = C / 0,5 = 0,69 o ( ) ds. (&)
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Fig. 2. Parametrization of the centrally symmetric pair near the origin

n(0,x) = po(x), p(t,8) =c@), ®)

where o(x) gives an initial position of the curve and c(¢) defines the control or the
boundary value for this local transport equation.

In the case of the general kernel D in (1), the resulting equation can be reduced to
the following form

s
/l(t,X)=C/8(M’(t,x)—M/(t, K (x,8)ds, (0, x)=po(x), wn(, 1)=c(),
(6)
where C is a floating constant (can be adjusted by time scaling),
K(x, &) = H((u(t, ) + p(t, ) + (x +6)%) = H((u(t, x) = 1, ) + (x = §)%)

and H(r) = d(/r). If the function d(r) = logr or is homogeneous, the scaling in z
allows one to assume that § = 1 which we will do from now on (see Fig. 2).

We think that problem with the cut-off might serve as a good model to study the
merging of the central pair. Indeed, the active scalar equations are nonlocal but it is
believed that the singularity of the convolution kernel at » = 0 is responsible for the
strong instability (e.g., merging). That suggests a local version of the Eq. (2) might be
interesting to study first. For this purpose, we take (6) as a model. The local in time
solvability of (6) is not known and will be addressed elsewhere. However the “raison
d’étre” is different and can be formulated as the

Problem 1. Is there a smooth solution to

1
p(t, x) =/1(M’(I,X) — W, 6K (x,§)dE, xe(=1,1) )
such that
p(t, x) — yo(x) = [x|, 7 — oo.
If so, what are the estimates (lower and upper) on

(1) = min [u(r, x) — yo(x)|?
xe[—1,1]
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The function yp(x) plays a very special role. It is a stationary solution to (7) and it
mimics locally the limiting case (t = oo) considered in [8]. The advantage of the model
(6) is that we known this singular stationary configuration exactly and the Problem 1
asks for the analysis of its dynamical stability. In particular, is it possible for ?(¢) to
converge to zero as double-exponential in the case when d (r) = logr (2d Euler)? In [8],
this question was answered affirmatively assuming that a regular strain is allowed (see
Appendix in [8]). In other words, an approximate solution to (7) was constructed and its
self-similarity analysis was performed. The question remains though whether this strain
can be dropped and this is the content of the Problem 1.

The Problem 1 seems hard. The important step in understanding it is to address the
question of the stationary states for (7).

Problem 2. Find the family of even positive functions y(x, 1) € C '[—1, 1] such that

1
/l(y’(x,k) —Y'(E MK (x,§)dE =0, xe[-1,1] ®)

and
yO,0) =i, Ae(0,r0); lly(x,A)—xlllc=1,1 =~ 0, A—0.

Quite naturally, we will call these functions “the even V-states for the model with
cut-off”. Since the original problem of the patch evolution is invariant with respect to
rotations, we expect the existence of other families of V-states that are not necessarily
even.

The main result of this paper is the following theorem which contains a solution to
the Problem 2 for the case of 2d Euler.

Theorem 2.1. There is a family of even positive functions y(x, ) € C'[—1, 1] such that

(X +&E)2+ ((x, A) +y(E,2)?
(x—&)2+(y(x, M) —y(&, 1))?

1
/l(y’(x,)»)—y’(é,)»))log( )dé =0, xe[-1,1]

9
and

y(O,2) =i, 1 €(0,20); All_r)% y(e, 2) = Ixllcr-1.11 = 0.

Remark. This result does not immediately imply any progress on Problem 1, however
the developed technique might be useful.

Remark. The model with a cut-off we introduced is only a model, obviously. It is easier
than the real Euler evolution on the plane because, e.g., it possesses the explicit singular
steady state, |x|. However, in the case of 2d Euler (or SQG) equation on the torus
T2 = [—1, 1]?, the analog of yp(x) is the following configuration: 6, (x, y) = signx -
sign y which represents two patches that touch each other at the 90° angle. The method
developed in this paper is likely to be directly applicable to the bifurcation analysis of
this case which is NOT a model. We will address this issue elsewhere.

Remark. The bifurcation analysis of the stationary states is a classical subject in the
mechanics of fluids (see, e.g., [6,11] for the recent developments). We, however, focus
on the technically hard case when the singular stationary state is considered.
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3. Preliminaries

The main result of this paper is solution to Problem 2 in the case of 2d Euler equation
with a cut-off. We start with some preliminary calculations for the general case as that
will help us understand Problem 2 better.

Assume that y(x, A) solves the Problem 2. Since y is even in x, we have

1 1
y/(x,k)/o K1(x,$)d€=/0 V' (E MKa(x, §)dE, y(0,4) = A, (10)
where

Ki(x,8) =K (x,&)+K (x,~&) = H((y(x)+y(£)*+(x+6)) — H((y(x) —y(€))*
+ (=D +H () +y(E))?+(x —£)2) — H(y(x) = y(£))*+(x+£)?)

and

Ka(x, &) =K (x, £) — K (x,—&) = H((y(x)+Y(£))*+(x+£)%) — H((y(x) — y (§))*
+ (x =) = H((y(0)+y(E))*+(x—&)D)+H ((y(x) —y(£))*+(x+£)7).

We suppress the dependence of y on A and just write y(x) here.

3.1. The explicit solution for the model case. Let us go back to the Eq. (1). Instead of
taking the singular kernels in the convolution, one can consider the smooth bump D(z).
The “typical” behavior around the origin then would be, e.g.,

D) = C+[z* +o(zl*). |z] = 0.
Keeping only the quadratic part, we get

K(x, &) =4(y(x)y(€) +x8), Ki(x,§) =8y(x)y(§), K2(x, &) = 8x¢.
The Eq. (7) takes the following form

1 1
Y E)y() /0 V(E)dE = x /0 £y (6)dE

B
— )\‘2+— 2’
yx) =,/ 2%

1 1
A =/ y(x)dx, B =/ xy' (x)dx.
0 0

which easily integrates to
where

We have the following compatibility equations

B
B = ﬂ+§—A B= /3 +——-A
A A

1 Pl ’
B
A= / A2+ szdx VAB = Az/ V1+E2dE
0 0
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Introduce
B/A=u, AB=v.
Then

2 1 u
S G L)) ﬁ:xz/ J1+ €24,

A
 w+ D2 0

We assume that A € (0, 19), Ao < 1 and |u — 1] < 1 and so |v — 1/4| < 1. Therefore,
if

u=1l+a, v=1/4+p, ap <1

then
B=a/4+)2/4+ 0@+ 1 2w)
and
a=28—rlog % + 0B + 1 2a).
Thus,

1 A2 1
B = —0.52%log ST 01 *log’ 1), o« = —21%log — 22+ 00 1log? )

This calculation shows that V, exists and the asymptotics in A — 0 can be easily
established. Since

yx) =vVA2+ (A +a)x?, a<0

the curve will intersect the line y = x at the point

5 —-1/2
* _ — —
X, = i (ZIOgA) (1+o0(1)).

Now, let us address the question of self-similarity. Rescale

@ =1""y@n) =V1+A+a)x2, |5 <AL
This shows that

sup |u@) —vV1+%2 =0

X<l

and so the self-similar behavior is global.

The model case we just considered is the situation in which the interaction is substan-
tially long-range and the self-similarity of the stationary state is global. The curve that
we have in the limit is hyperbola. That seems like a common feature of many long-range
models and 2d Euler in particular as will be seen from the subsequent analysis. However,
for 2d Euler this self-similarity will be proved only over |x| < CA with arbitrary fixed C.
Notice also that the analogous calculation is possible if the smooth strains are imposed,
e.g., a rotation.
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3.2. Properties of the kernels K| and K>. Below, we will write Ky(2)(x, &, y) when we
want to emphasize the dependence of the kernel on the function y.

Lemma 3.1. The following is true

Ki(x,&,y) =4y(0)y@E)(H'(m) + H' (), Ka(x, &, y) = 4xE(H' (1) + H' (@2)),

where

m> (x+86)>%m > (x —&)?

and

ale) > (x —£)%.

Proof. Apply the mean value theorem to the first and second terms in the expression.
This gives

Ki = (H(OG@ + @) +(x+5H) = HO0) = yE)? +  +6)))
+(HO0+y©)+ 0= 6D = HO) = 3§+ (x - £))

and

Ko = (H(G@) +y@)? + ( +§)%) = H(:() + 7)) + (x — £))
+(HOW =y + G+ 6D = HO® =y + & —6)h).

If H = log x, we have the following representations

(+E+ M +y(E)* (=8 + () + y(é))z)
(=2 + () = y(E)? (@ +6)2+ (y(x) — y(§))?

K](X,E, }7) ZIOg(

and

@+ + (@ +y(E)* +87+ () — y(E)? )
(=2 + () +yE))? (x =62+ () —y(E)?)

Then, assuming that y(x) > 0,

(= P+ @ +yE)® 4y(0)y(E) y
C—E2+0W—y@? G-+ -y "

Ka(x,§,y) = log(

and
(+62+ @ +yE)° _ 4y)y () ..
(@ +E)2+(y(x) = y(€))? @+ 62+ () —y(E)? ~
Therefore, we have

4y(x)y (&) ) ( 4y(X)y($))
1 1 K <1 1
°g< et om yenz) Sttt T
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provided that y > 0. Similarly, for K>,

lo <l+ 4xg )
VT G — o 0 — )2

< K> =log (1+ hai] )+log (1+ hai] )
- (x=8)2+(y(0)+y(§))? (x=8§)2+(y(x)—y(€))?

4x&
<
S log (1 oo sﬂ)

and this holds for all y.
The following lemma is trivial.

Lemma 3.2. Let O <a <b < C. Then, b ~ a+b and
1 b an
b—a a N

b'~@+b)", a>b)2

and

1 1 bd log*
< /—”gog“, a<b)2.
a+b " b—alj, n a+b

Suppose that y € [0, C]. Then, applying this lemma to K; with
a= () —yEN+x+EA b= +yE)N +x+8)?
and then with
a= ) —yEN+x -2 b= +yE)*+x—§)?
gives

logt((x — £)%+ (y(x) — y(£))?)
Y2(x) + y2(6) + (x — £)2

YOy (@) -
Y2 +y2E) +(x =€) ™

For K7, the same reasoning yields

+ _ 2 _ 2
— x§ <K Sxé&lOg (2(x E)2+(y(X) y(éz)) ).
X2 +E57+ (y(x) — y(&)) yEx) +y2(§) + (x —§)

K1 S y(x)y@) (1

4. The Implicit Function Theorem, the 2d Euler Case

In this section, we will apply the scheme of the implicit function theorem to the 2d
Euler with cut-off which corresponds to H (x) = log x. However, we first notice that the
problem allows the following scaling.

Lemma 4.1. If y(x) solves

b <x+5)2+(y(x>+y(5))2)
1 d
/_1 Y (x)log ((x e —ye2 )%

b <x+s>2+<y<x>+y<s>>2)
= 1 d
/_1 &) °g((x i+ om —y@? ) @
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then yy(x) = ay(x /o) solves

“ (X+§)2+(ya(x)+ya(§))2)
1 d
/_a Ya(x)log ((x T+ a0 —va@2 )

“ (x +6)% + (Yo (x) + you (6))? )
= 1 d
/_a Ya(&)log ((x 5 4 e —va®2 )

for every o > Q.
Proof. The proof is an immediate calculation. O
Consider y; (x) and take
FE ) =2"y@Aa), K <Al

We will perform this scaling many times in the paper. It allows to reduce the problem to
the one on the larger interval |X| < A~! with the normalization (0, A) = 1.

Remark 2. The perturbative analysis done below will be carried out around the hyperbola

y(x) = vxZ+1, not |x]. The explanation to that is the following. The model case
suggests that {y(x, A)} might have some limiting behavior as . — 0. If so, can one
guess the asymptotical curve? To this end, let us make very natural assumptions that

YE N = fR), YE LN (D
on every interval x € [—C, C] and that
YR =X +o(1), YE M =1+0(1), [X]>1

uniformly in A € (0, Ag]. For |x] < C,

/ 1 45F, MFE, ) )
1 log ( 1 = T
(f'(x) +o( ))/0 [Og( + F—8)2+GE A —V(E, )2

A& MY E, 28 )] £
F+0)2+OE, ») —F(E, 1)?

1/A1 e 4%
_/0 (el ))[Og( +(f—§>2+@(5c‘,x)—?@,x>>2)

+1o (1 + 455 )] dE
TG+ GG 0 -G 02

For the L.h.s., the asymptotics of the integrand as E — 0018

+log (1 +

4)’(? 9) +o@ N

and for the r.h.s., it is

o~

%xw(?l).
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Here we work under assumption that |x| < C. Taking A — 0, we get
f'f-% log(l/k) + o(log(l/x)) - 0.
This leads to f' f —x = 0 and (since f(0) = 1)

@ =G +1)1? (12)

This formula was obtained under strong assumptions so does not imply the self-similarity
per se. However, one can take

F(x,2) = (x* +22)12

as an approximate solution. Plugging it into the equation, one can represent the resulting
correction as the strain. Similarly to [8], one can show that this strain satisfies the uniform
bound

[S(z, 1)
—_— <
lZl<lae,1) 1zl

C.

The novelty of the current paper is that we construct the exact solution and thus make
S(z, A) = 0. It will also be proved that the exact solutions converge to hyperbola in the
scaling limit but only locally, over x € I,, where |I;| — 0, A — 0.

In the lemma below, we show that all possible solutions y(x, A) have the following
common feature.

Lemma 4.2. If y(x) solves (10), then there is x* € (0, 1) at which y(x*) = x*. That is,
the graph of y(x) intersects the line y = x.

Proof. Suppose instead that y(x) > x for all x € (0, 1). Then,

4y(x)y(&) - 4x&
(x =2+ (@) —yEN?  x =82+ () —y(&)?

and

4y(x)y (&) - 4x&
(X+E)2+ (@) —yEN?  x =862+ (@) +y(E)?

Therefore, K1(x, &) > K»(x, &) > 0. Now, assume that

x?[%,xu yi(x) =y(x1)
Then,
1 1 1
/0 VE K (1, E)dE < v/ (x) /O Ki(x1. £)dE = /O V(E)Ka(x1, E)de

and this inequality is strict unless y’(x) = const. This is impossible by, e.g., the smooth-
ness assumption. 0O
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Now that we established what properties the solution y(x, A) needs to possess, we
are ready to prove its existence.
Consider small § > 0 and the sets

Q={f: ”f(x)_x”];,‘p[o’]] <8}, I={A:2e€0,x], r K1}

We willlook for y = /A% + f2(x), where (f, 1) € QxI.Noticethat f (x) = [y f'(t)dt
and || f" — 1|l zo0[0,17 < 1. Therefore,

fx) =x(1+0()).
In particular, f(x) > 0 forx > 0.
Consider the functional (we specify the dependence of K2y on y here)
1 1
ff’/ Ki(x, 7, y)dt — /32 + fz(X)/ Y (OKa(x, T, y)dt
F(fi) = —=° °
xvV/x2 + 221logt (x2 + A2)

where  y = /A% + f2(x)

which acts from Q x I to L°°[0, 1]. Moreover, F(x,0) = 0.
The Eq. (10) can be rewritten as

F(f, %) =0.

We will solve it in the following way (this is essentially the implicit function theorem
proof [9] but we prefer to give the argument for the sake of completeness). Write

F(f2) = Fee+ (DrF e )y + o)

where ¢ = f — x and this representation defines an operator Q. That can be rewritten
as

-1 -1
Y =—(DrFen) 0w+, wo=—(DrF( b)) Fxh). (13)

Next, we will show that this equation can be solved by contraction mapping principle in
Bs = {||¢||L-ip[0’1] <8}, 8 <« 1. To this end, we only need to prove:

(a) Linear part:
—1 ~
”(DfF(x’ )‘)) ||L°°[O,1],Lip[0,1] <C 14

if A € (0, A) with A < 1.
(b) Frechet differentiability:

QW) NILeero.11 = oDV Nl 10,17 5)

and

10(2) — QWDlIL~io.11 = oIz = Vil jippo (16)
with o(1) — 0 as § — 0 uniformly in A € (0, 1) and ¥, ¥1(2) € Bs.
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(c) Small initial data:
VoMl ipp0,17 < 8/2 (I7)

where A € [0, Ag], Ao < Aq.

We will first make A so small that (a) holds. Then, we choose § small enough to have
o(1) in (b) at most (10C)~! uniformly in A € (0, 1). Finally, we take A¢ so small that
(c) holds. This will ensure existence and uniqueness of solution in the complete metric
space Bs. Then, it will be easy to bootstrap its regularity from Lip[—1, 1] to C'[—1, 1].
The continuous dependence on A and

ly(x,2) —xllcjo,y—>0, A—20

will follow from the proof.

5. The Analysis of Gateaux Derivative for H (x)=log x

Taking f; = f +tu,u € Lip[0, 1], plugging it into F, and computing the derivative in
t at t = 0 with positive x fixed, results in

1
D/F(f, A = L+---+1g). 18
(DfF(f, 2)u xmlog+(x2+kz)( 1+---+1g) (18)
We have
1
I = (f// Ki(x, T, y)dt) u, y=+/A2+f2
0
1
b = (f/ Ki(x, T, y)dt) u
0
1
Iz = ff’/ SK1(x, T, y)dt
0
where
5K, = 2(y(x) +y(E) By ) +8y(§))  2(y(x) — ¥y(§)) By (x) — 8y(§))
(X +6)2+ (y(x) +y(§))? (x — )2+ (y(x) — y(§))?
+2(Y(x) +y(E)NEy(x) +8y(E))  2(y(x) — y(E))(@By(x) —8y(§))
(x =62+ (y(x) + y(§))? (x+8)2+ (y(x) — y(§))?
and
o

f /1 ,
Iy =—| ———— Kr(x,t,y)dt Ju
(\/)L2+f2 0" g
1
Is = — /A2 +f2/0 8V Ky(x, T, y)dt
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where
8y = f u+ f u' — [
S ey e ey e DR
1
Is = —\ /A2 + f2/ Y (1)Ko (x, T, y)dt
0
where
5Ky — 2(y(x) + () By(x) +68y(8))  2(y(x) — y(§))(By(x) — 8y (§))

(x +8)2 + (y(x) + y(§)? (r =&+ () — y(©)?
_20@+yE)@yE) +8y@))  2(r&) — yE)@Eyx) — 8y(§))
(xr =2+ (y(x) + y(§))? (r+8)? + (y(x) — y(§))?

In the formulas above, we have

(+E)7+ (@) +yE)* (—§) + () + y(é))z)
(@ =62+ (@) —yE)? @+ + () — y(§)?

K](.X,E, }’) :]0g(

and

Ka(x, £, y) =1og(("+‘§)2+(y(")+y(‘§>>2 _ <x+€>2+(y<x>—y(s>)2)
- =2+ OW+y@? G-+ ) —y©?)

5.1. The derivative at f(x) = x. Define L; = (DyF)(x, ). If f = x in the previous
section, then

1
N log*(x2 +12)

1
L= (/ Ki(x, 1, yx)dr) u
0

Lyu (7\1,)»+~~+T6,)L)-

We again have

with
ya(x) = VA2 +x2
1
B,x =X (/ Ki(x, T, yk)dr) u'
0
1
Ty =x / 5K (x, T, y)de
0
where
5K = 2(y5.(x) + y2.(8))(Byr(x) + 8y (8)) _ 2(y.(x) — ya(§))(Bys(x) — ya(§))

(x +8)? + (ya(x) + 1. (6))? (x = &)+ (. (x) = y1(6)?
L2000 +32(E))(Eya (x) + 8y (§)) 20 (x) — y2.(5)(Bya(x) — 832 (§))
(x =)+ (. (x) + yi(§))? (x +8)? + (n(x) — yi(§))?
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and
Sy = Lu
Ny
—~ X 1 ,
Iy) = — (ﬁ/{) »Ka(x, T, n)df) u
1
’1\5,1 = -2 +x2/ 8y, Ka(x, T, yp)dt
0
where
sy — 1 X , x2
= \/X2+x2u+ «/A2+x2u - ()\2+X2)3/2u
1
7;,,\ = —V A2 +x2/ Y3 (T)8K2(x, T, yp)dT
0
and
5Ky = 2(2.(x) + y.(8)) Byr(x) +8yx(5))  2(a(x) — y.(5)) (Bya(x) — 8ya(§))
(x+8)2+ () +.(8)? (x —&)2+ (y.(x) — y(8))?
~2(a(x) + 2. (E)) (Bya(x) +8ya () N 2(y5(x) — ya(E)(Syn(x) — ya(8))
(x —&)2+ (n(x) +.(6)? (x+8)2+ (y.(x) — ya(§))?

5.2. The operator L). For L,, we have the following formula

1 1
L :Alu/+A2u+/O Dl(x,é,k)u(é)d$+/o Dy(x, &, Mu' (§)dE.

The equation
Lyu=g

can be rewritten as

1
Al(x,)»)u/+A2(x,)»)u+/ M(x, & Mu'(§)dE = g (19)
0

if one assumes u(0) = 0 and
1
M6 = Dax. 6.0+ | Dy mdr,
&
In the calculation above, we used
1

lim (u(x) / Di(x, T, A)dr) =0.

x—0 0
This equality follows from the estimate |u(x)| < x and from the analysis of

1
/ Di(x, 7, )dt
0

when x — 0 (see (46) below).
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Let us introduce the integral operator M with the kernel M (x, t, A), e.g.,

1
foz/ M(x,z,A) f(t)dT
0

For the coefficients, we have

1
/ Ki(x, 7, y)dr
0
Va2 +22logt (x2 +22)

The expression for A; is more complicated,

A =

1 1
Ay = (/ Ki(x, 7, y)dt
xvVx2+22logt(x2 +A2) Vo

X 1 ,
- \/ﬁ/o (D) Ka(x, T, yx)df+32), (20)
where
B — 2x /1 x_s«/)\2+x2 ( ya(x) + ya(8)
2T e Jo Jizrer J\G+62+ 00 + .62

~ 7 () — yi.(§) )dé
X =62+ () — 1. (5))?
L2 /‘(x+s~/x2+x2)( 2. () + y3.(6)
222 Jo Jzver J\G =7+ () + ()2
~ .00 — 3 (€) )dé
@ +2+(n@) —m@EN?)

For Dj(2), one has

Dy(x,8, 1) = —sz(X, &, yk)\/%igz
and
D6 %) ! [ 2 ( YAl + 3 ()
VA2 +x2logt (2 +22) | V22 +E2 \(x +6)? + (na(x) + ya(6))?
Vi.(x) — ya(§) yi(x) + ya(§)

@ =82+ () = 1@ (= &)+ (1) + 32 (E)?
N i) = () )

(@ +6)2+ () — y1(6))?

262722 + 12 Y3, () + Y3, (6)
Ry ((x +6)2+ (.(x) + y1(6))?

N y(x) = () _ (X)) + ya(§)
=82+ 0n(0) =) (x =+ (. (0) +3(6))?
B (1) = 3.(8) VR
(G +8)?+ () — m(&))Z) I gy 2 yk)} '
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In this section, we will obtain estimates/asymptotics of all four terms in the case
when L — 0. It will be trivial to do that away from O: e.g., for every § > 0 both
A12)(A) = A1(2)(0) uniformly over x € [, 1]. The behavior around 0 is delicate and
will require more careful treatment.

We start with the following calculation that will simplify the expressions above.

We write
VR - 1= G- B e @1
where
= x+§ =1+0(}A), if TE> L (22)
Similarly,

/32 /&2
\/}T-I-l+,/§2+1=(f+§)rfl, rflz el S+1. (23)

T+E
Thus, we have for K,
F+D2+ (VR +1+/82+1)? @+ + (V2 +1-VE+1)?
F—E2+(WR2+1—VE2+1)2 G-+ W2+ 1+/E2+1)2

_ G4 GO+ G- F+E)

@0 G-E2+GE+D T @6 e
after the cancelation.
Similarly, for K
F+E2+ (VR +T+VE2+ 12 @62+ (VRZ+ 1 +/E2 + 1)
G-D2+ (VA1 -VE+1)? @+D2+ (VA1 VB +1)
= 7\2
- %rl—“ (25)
Therefore, we have
Ka(x, 7, y2) = K2(x, 7, yo) (26)
and
Ki(x, 7, m) = Ki(x, 7, yo) — 4logri. 27)

Now, we are ready for the analysis of the asymptotics for the coefficients in L.
1. The coefficient A.
Consider A (x, 0) first. We have

Ar(x,0) = —— Noe (F1E) 4
0 = g |, e ()

1 1 1 +u 2d
10g+(x2)/0 og(l_ ) u o(l), x— (28)

<
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and it is smooth in (0, 1). At the point x = 0, we define A{(0, 0) = 2, i.e., by its right
limit.
Lemma 5.1. We have

Alig}) lA1(x, A) — A1(x, 0)llco,1] = 0. (29

Proof. If x = AX, then

1
/ Ki(x, 7, yp)dr
0

_ A/1“1 o FHHWRATVEA? @D (RAT/EA?)
0 E—E)2+(VT+1-VE+ D2 F+E)2+(VE2+1—/E2+1)?
Many estimates done below will be based on the following standard argument that we

explain now in detail.
We have several regimes:

1. x € [0, 1]. Notice that integration over any ﬁxed 1nterva1$ € [0, C] gives a contri-
bution O(A), so we only need to control large é Using (25), one gets the following
asymptotics for the expression under the logarithm

%r;“ (1+4$ +O0(E 2))( ‘/xz—%l +O0(E 2)) £ - 0.
Then, using the Taylor expansion for the logarithm, we get
A/1“1 g(<x+s)2+(«/ﬁ_+ﬁ>2 &- ?)2+(«/A2_+J%T>2)f
0 F—8)2+(VRH1—VEH D) @D+ (VR /E2+1)2
— 40/F2 + 1log(1/2) + O = 4V/x2 + 22 log(1/2) + O (%)
= 2Vx2 + 22 logt(x2 + 23 + O(A). (30)

Given any fixed § € (0, 1), we have two cases.
2. Take x € (6, 1]. We trivially get

1 1
lim max / Ki(x, T, y)dt —/ Ki(x, T, y0)dt
A—=0x€[5,11| /o 0

3. Let x € (A, §]. We substitute (23) to (25) and get

=0 31

1
/ Ki(x, T, yp)drt
0

1/x =4 F L/x ViZ+l-% — ~
=2)\/ log x+§‘d§+4k/ g1+ X "% L 0E ) )aE
0 é— 0 X+E

1/x +1 1/x 1
=2x/ log 1—; dt+4k(\/1+5c\2—/\)/ ]—Hdt+0(k)
0 - 0

=dxlog(1/x) + O(x) +4r(/1+x2 = %) log(1/x) + O(L)
= 4log(1/x)(x + A1 +72 =A%) + O(x)
=2vVx2+ 2 21logt(x? + 22 + O (x) (32)
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The bounds above imply

1 1
/ Ki(x, 7, y)dt / Ki(x, T, yo)dt
0 0

lim — =0.
=0 | V/x2 + 22 logt (x2 + A2) x log*(x?)
L2°[0,1]
Indeed, given any € > 0, we use (28), (30), and (32) to get
1 1
/ Ki(x, 7, y)dr / Ki(x, 1, y0)dt
0 _JO0 < -~
VxZ+ 22 logt (x2 + A2) xlog*(x?) ~ log* (8% +2)
L°°[0,5]
for § < §(e) and A < §(¢). For fixed § < §(¢€), we have
1 1
/ Ki(x, 7, y)dt / Ki(x, 1, y0)dr
0 - 0 ¥ 2 S 6/27
Vx2 + 22 logh(x2 + A2) x log™ (x*)
L°[8,1]

as long as & < A(€) [by (31)]. This yields (33). O
Later, we will need the following result

Lemma 5.2. Suppose ||g(x) — x||Lip[0’1] <& K 1. Then,

1
/ Ki(x, 7,/ A2+ g%(1))dt
0

Va2 +221logt (x2 + A2)

<1

uniformly in x € [0, 1], A € (0, 1], and g.

(33)

€/2

Its proof repeats the argument in the previous lemma (see also the proof of Lemma
7.2 below to check how the problem can be reduced to the homogeneous one for which
the scaling can be easily performed to get the desired bound). This result can also be
obtained by comparing to the case g = x and using the stability estimates established

in Lemma 7.1 below.
2. The coefficient A;.
Lemma 5.3. For every fixed § > 0, we have

2log(x 2+ 1)

Ax(x, A Ay(x,0) =
2(x, 2) = A2(x,0) T logt (1)

uniformly over x € [§, 1]. Moreover, we have an estimate
1
Az (x, A) ~ —
X

which holds uniformly in x € (0, 1] and A € (0, 1].

(34)

(35)
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Proof. The expression for A,(x, 0) is easy to compute and the first part of the lemma
is immediate. The formula for A, (x, A) contains three terms. The first one involves K
and its asymptotics was established before. Consider the second term. By (21), we get

1 1/x g x+.§
"Ko(x, T, v)dt = A > ) de.
[ = [ o E o (2E) e

The similar analysis yields:

(1) Uniformly in x € (§, 1], we get

1 1
/ yi Ka(x, T, y2)dt — / K>(x, 7, yo)dt, as A — 0.
0 0

(2) If x € [0, 1], then we can split the integral into two. The first one is

[ = Nreh (m)z‘@

We have

/ glog(1+( 2 i)z)dé /jltlog(n X i)z)dmﬁ

So, the integration over [0, 1] amounts to O (x) after multiplication by A.
For the integral over [1, A‘l], we get

g (”E)zdg 4Flog(1/0) + O®)
—= = 44X X).
1 JEZ+1 s x—& y

Multiplication by A yields

1
/O YL Ka(x. T, yp)dt = x(4 log(1/2) + 0(1)).

(36)

(3) Ifx € (%, 8), then theintegral over [0, 1] can be handled as before and its contribution

is at most X! The integral over [1, 1/A] gives

1/4 ~.F 1/x
/ (1+0E 2))1g(“i) f;‘—x/ (1+A212)1g(1+t) dr
1 15

= 4x(log(1/x) + O(1))
and we have

1
/ v Ka(x, 7, y)dt = 4x(log(1/x) + O(1)), A — 0
0

Summarizing, we get the uniform bound

1 - Jp — [4xUog(1/m+00), x <
/Oy)\ 200, 7, ) T_H4x(log(l/x)+0(1)), x>

(37)
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For the third term in the expression for A, we have

By = By + BY”

B0 _ / E\/?»2+x2 ( yi(x) + ya(§)
2 J—xz T J21e2 JNx+6)2+ (3 (x) + 31 (6))2
B yax) —yi(&) )dé'
(x —&)2+ ((x) — ya(6))?
B® =

/ L Va4 ( () + . (6)
VxZ 42 VA2 42 (x —&)2+ (ya(x) + yi(6))?
B y.(x) — i (§) )dé

(x +8)2+ (ya(x) — yi(6))?

Rescale the variables and recall the formulas (21) and (23).

One gets
PO én £
VR AR (R R VT R) ( + )

As before, we consider two cases.

(1) X € [0, 1]. For the integral over [0, 1],

&ry ’E\Sl

1
05/ — d
O VI+E(R/1I+ B +EVT+R) (1 + D)

The other integral allows the estimate
& &
VTRV B BV R) D)

d& < log(1/2)

since r; < 1.
(2) x €[1, 1/A]. We can write

o< [ én JF < o/
0 VIHERVIH R+ EVTR) A+ %

For Béz), we have similarly

BY — /“*W?HHEWH_ __En &
¢Az— N F+E2+riE -5 7

(1) Ifx € [0, 1], we get

(38)

(39)

(40)
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and therefore

1= /52 N £
0</ TVEL+1+EVT +1 _ Erle i<,
0 VEZ+ 1 X+8E)2+r(x —£)?
For the other interval, we use r{ = 1 + O(E’]) to get
/1/A TVEHT+EVRZ +1 Ery iE
| NG F+E2+r}F —§)?2
X+Vx2+1
== T log(1/A) + O(1).
(2) If X € [1, 1/1], then the asymptotics of r; yields
/1/A TVEL+1+EVRZ + 1 Ery iE
0 VEZ+1 F+E)2+ri (X —8)?
E
~ > ~ +
x/o f2+§2d5 xlog™ x. “41)

Now, the formulas (38) and (40) imply that Béz) > 0 and Bél) < 0. However,
By = Béz) + Bél) > 0. Indeed, this follows from (38), (40), and an estimate

IVEZ+1+EV/1+32 . 1

F+E2+1{F—6? ~ GVE +1+EJ/1+3D) (1 +r2)

Thus, we have

0< BQSB§2)§x10g+A, 0<x <X
and

0< B, < Bf) <xlogtx, A<x<l.
Moreover, (39) and (41) provide a lower bound

By > A(CiXlog" x — Chx 'logth), x> A
and therefore
By > Caxlogh x (42)

for X > C4 where Cj is sufficiently large absolute constant.

Consider the sum of the first two terms in (20). We have

1 N 1
Ki(x, 7, y)dt — —/ V(O Ka(x, T, y)drt
/0 VA2 +x2Jo *
=4log(1/M)(Vx2+A2 —x)+0Q), 0<x <A (43)
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and
=4log(1/x)(Vx2+ A2 —x)+ O(x), A <x <8. 44)

Add Bs to this expression and divide by x+/x2 + A2 log*(x? + A2). On the interval
x € (0, C42), weuse (43) and By > Oto get Ay ~ x ! Forx e (C4h, 8), we apply (44)
and (42) to produce that same bound. If x € [§, 1], we have convergence to A;(x, 0)
which is positive. O

Similar to Lemma 5.2, we have

Lemma 5.4. Suppose ||g(x) — XN jipio,1) =8 K 1. Then,

/01(,/)\2 +g2(t))/K2(x, T, /A2 + g2(1))dt

xlogt(x2 +A2)

uniformly in x € (0, 1], A € (0, 1], and g.

This result can be proved directly or by comparison to the case when g = x if the
stability estimates (see (68) below) are used.

3. The Kernel M (x, &, A) and the Corresponding Operator

In this subsection, we will show that M (x, &, A) — M (x, &, 0) in a suitable sense when
A — 0. Recall that M, is the integral operator with the kernel M (x, &, 1). Below, we
need to use the smooth cut-off ws which was defined as follows. Let w(x) be a smooth
function such that w(x) = 1l on |x| < 1/2, w(x) =0on|x| > 1and 0 < w(x) < 1.
For a parameter § > 0, we consider ws(x) = @ (x/8) and w§(x) =1 — ws(x).

We have

Lemma 5.5. Fix any 6 > 0. Then,

hm sup/ IM(x,E,\) — M(x,£,0)|[d§ =0

0>

and therefore

lim [|w§(x) (M) — Mo)llz[0,17,22¢[0,1] = O.
A—0

Proof. We start with
hm sup/ |Dy(x,&,A) — Da(x,&,0)|dé = 0.
A=>0455

By (26),

1 1 £ X
/0|D2(x,§,k)—D2(x,§,O)|d§<C(8)/0 (1_m log

d§

+
H

and the last expression tends to zero uniformly in x € [, 1] when A — 0.
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To handle D1, we only need to show that

lim sup =0. (45)

A=0 xe[5,1],6€[0,1]

1 1
/ Di(x, , A)dr—/ Di(x, 7,0)dt
3 &

To this end, we first simplify the expression for Dj(x, t, 1) using the formulas (21) and
(23).

Di(x, & 1) =D + D + DY, (46)
where (below x = AX and & = A&)
1 4E5r

DD (x. £ ) = . _
g VxZ+A2logt (a2 +2D)  (1+r)EVI+2+3/1+82)(1+82)

_~ 2 A\/1+f2
p@ JELL) = ! : R/L+E2 S
(60 . /—x2+)»210g+()€2+)\2) ( 1+é"\2
' 4f§r1
F+8)?2+F - &)}
o o 1 ' 22 x+£\°
Dy (x. 8, 0) = xlogt(x2+12) (A2 +§2)3/? log(X—f‘) .

Since D?) (x, &,0) = 0, we first show that

1
sup/ IDP(x, &, 2)|dE - 0, 1 — 0.
0

x>45

To see that, first split the integral

/1 )\,2 o (x+€:)2d§_/5/2 )\’2 » (x+§)2d§_
o (rey 2 =) TT )y vy e

1 A2 1 x+& 2d
+/a/2 G2+ 8 (x —s) -

The second integral goes to zero as A — 0 uniformly in x > §. The first one is bounded
by

§/2 S)»z
C —————=d& S A.
/O ()»2 +€2)3/2 ‘§ ~

All constants involved are § dependent.
Similarly, Dil) (x, &,0) = 0 and we have

1 o0 S T
(1) < _ X&d§
i‘i‘i/o bi (x’é’“dgw“k/] GO +82) ~

For sz) (x, &,0), we have

1 452
x2logt(x2) xZ+£2°

D (x,£,0) =
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To show that

1
lim  sup / 1D (x,7,2) — D (x,7,0)|dT = 0
2A=0,>5650J¢

it is sufficient to prove
_ /W V1482451432 43Er| 432
lim sup A . -
2=>0y>5 0

1+£2 F+6)2+G—8)2r} | 2482
The integral over any interval [0, T'] is uniformly bounded. For large X and E, we sub-
stitute

E=0.

n=140(%). JIsBE=Er0@ ). VisE=Troa )

X

Collecting the errors produced by this substitution, we estimate this expression by

1 22 R
x/ L E 4 HaE <
1

X2+ &2
|
The next step is to estimate
llws () Ml o0, 17,2010, 11,
where 6 and X are small.
Lemma 5.6. We have
5—>](§,T—>0 lws (x) Myl L1017, 20[0,1] = O. 47)
Proof. We only need to show that
1 1
lim sup / D2(J¢,E,A)+/ Di(x,t,A)dt|d& =0. (48)
§=0.2-0 y¢[0,81 /0 £

It is instructive to first do that calculation for A = 0. In this case,
x+£&

! /1 21 /1 2 ar)|ae
0 — | ———=dr
xlogtx /g 5 x—£& g x2+12

2 [ oo | L€ e 2 Ay
_10g+x/0 (ogl—g‘_/s 1422 T)‘ ‘.

x 2 © 2 2 )
dt = dt+0x)=-+0(E " +x), 1

‘We have

and

log ﬁ‘ 2. 0.

1-&] &
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This entails the necessary cancelation and a bound
1 ! + g 1

- / 2 log X+§ — / X dé < .

xlogtx Jo x—£ £ )c2+r2 log* x

The logarithm in the denominator will give convergence to zero when x — 0.
Now, we will need to prove analogous inequalities uniformly in small A. The expres-

sion
1
/o

will be handled term by term.
We start by proving

d§

1
Do(x,&, M) +/ Di(x, 1, )drt
&

lim / / 1D (x, T, A)|dTdE = 0. (49)
xe[ O (3]

§—0,,—0

The integral is bounded by

1h /A
—1
Tlog" (xm +A2) / / T+ 8

o~

7
1
~ Xlog* ()L2A2 +2) / 1+ 8

For the integral, an estimate holds
1/x
d?§f+/ T 'u"?log

1/x T
——=log
/0 1+73 /%

The last integral is bounded by Cx for ¥ < 1. For ¥ > 1, it is estimated by C =5+
Since

+7T

+
Q)| )

X
X

X+7T

~ o~

—u'du.
1—u
log X

-~

lim sup ———————— < lim —
2—0 YE(OI,)l) Tlogt(A2x2 +A2) ~ 1—0 log™ A
and
1
lim s o8 jf < lim T =
A%0A>] x2log*(A2x2 + A2) ~ 1—>0log*t A
we get (49).

Consider the other terms

1 1
/ Dz(x,g,k)+/ (Dgl)(x"[, )»)+D§2)(x"[, )\))d‘[ ds
0 £
_ 1 /l/x Jy—zﬂgl (m?)z
gyl —=
V2 +1logt W22+ 22) \Jo | VE2 +1 x—§

/1/)‘ 4Txr
T (T+rH)(1+T)EVI+32+3V1+72)
TVI+T2+TV1 +32 4X7Try _
+ = e vl
1+7 E+D)2+ X —D)%ry

dE) .
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‘We consider two cases.
(1) Take % € (0, 1]. First, let € € (0, 1). We get

/

A2+1,§10 (x+.§) _/1“ 47X
Jel S\5-2 t \1+D)(1+)EVI+ 2 +3V1+72)

V1+2+7V1 + 32 4xTr | o~
+ - - N ez dE
1+7 X+ + (X —1)%rf

Ll =~ LT +T
5f+f/ ds/ ( S S a0 )d?,s
0 A (1+1:)(1:+x+?3c\) A+THE2+72)
Thus, this gives O ((log™ 1)~!) contribution when divided by xv'x2 + 1 log* (A2f2+

Xz) If é > 1, we can use the asymptotical formulas r| = 1+0(§ Dand &2+ 1 =
E+O0@E ) toget

/2
J

2 1510 (x+$) _/1/)‘ 4Txr;
el \i-2 1+ 1+ EVI+2+3V1+72)

TVI+T2+TV1 + 32 43Tr RPN
+ — - — ———— dt| dé&
1+72 F+D2+ T -]

AV N _
=/ %(HO@ 2 35
1

o~

1/x 5
—/A ( LGV 72 )) 2430(F 3dT|dE <7
3 X+

ViZ+1

Indeed,

e
+2x(x+\/1+x ) =43V 1 +%2
X+ /%

and we have cancelation of the main terms.
Summing up these estimates, we get

1
J
(2) Consider the case when X > 1. First, takeg e (0, 1). We get

<1

/1 f2+1,‘§10 (Fc‘+'§)2dg
o |[VE2r1 S\G-% ~

/1/1/* 2Txr
o Jg 1+ +T)EV1I+X2+3V1+72)

s < ! (0, %)
~ log* A’ e

1
Da(x, g,,\)+/ (D§”(x, 7. 0)+DP(x. 1, A))dt
g

(50)

and

TVI+T2 4TV +32 4XT) P _
: YT L )ardE S 1+4%.
1+7 T+D2+ @ —D)%rg
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Thus, this gives the contribution bounded by

1 < 1
Sup — — .
yj Tlogt(A2x2 + A2) ™ log* A

For the intervalg e (1,A™ 1), we again use asymptotics for ry, /%2 +1,and \/?2 +1:

1/2 . T+E 2
/ V2 +1(1+ O(E2)) log (A—A) —
1

1oz 1 TV1+X2+X7T N
_/ TN ————+ T )+ 0@ T 7 ) a| dE
E T \TV1+x2+3T X*+7T

The errors produce the term bounded by C (log*™ X + X) and the change of variables
in the integrals gives
) 2

1/x 1+
/ 55\/1+5c\210g( -
/7 u

1 —

Vx 1 T(WE2H1+7)
- 2XT = + 5 dt|du
u T(VXZ+1+7%) o+ 1
First, notice that
I 1 T(WX2+1+7%) < 32
X 2t — + 5 dt|du S X~
17 (1« (VX2 +1+7%) 7 +1

Then,

1
s

1+u)?
5c\\/1+56\210g< u)

1—u
[ 1 VXZ+14+% - .
—x/ 207! +T( x2 *) dr|du <72 +loght®
u T(VXZ+1+7%) o +1
and
1/x

1+u)?
fv1+f210g( u)
u

1—

/

1
(o8]
2% 1 (VX2 +1+3%) -
- — — — + 5 dt|du <X
T \t(VRZH1+7) 2+ 1

after the cancelation of the main terms in the asymptotics. Collecting these bounds,
we get
X

1
/ dE < —
0 Vx2+1logt(x2+12)
which [together with (49) and (50)] gives (48) and finishes the proof. O

1
Ds(x, £, x)+/ (Df”(x, . 0+DP(x, 1, A))dt
¢
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We immediately get the following
Corollary 5.1.

lim || M; — Molle0,13,2[0,11 = 0
r—0

Proof. Tt is sufficient to apply Lemma 5.5 and Lemma 5.6. O

5.3. Inverting L,. Divide the equation
Lyu=g

by Aj(x, A) to rewrite it as

1
u’+pu+/0 Ma(x, &, Mu'(§)dE = g

where
_ A(x, )
PR = e n
and
ML EN g
WD =00 O Aen

Due to (28) and (29), this is a minor change as far as inversion of L, is concerned.

The equation

w+pu=F, u0 =0

U= /x exp (— /x p(t)dt) F(§)dE
0 g
W =F— p/x exp (— / p(t)dt) F(&)dE.
0 £

1
W () = g2(x) — /0 Ma(x, & W (£)dE

X X 1
+P(X)/0 CXP(—/ p(T)dT)/O My (t, &, 2yu'(§)dEdt
t

g(x) = gi1(x) — p(X)/O exp (_/s p(t)dt) g1(§)d¢.

has the solution

and therefore

This is the same as

and

We can rewrite

u'+0u = B g, u =+ O;L)_IB;\g

(51

(52)
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provided that I + O, is invertible. The expressions for O, and B, are as follows

B == s~ ey (_/s 3?53“) En®
and
O.f = A1( S ———— My fHx)
e ([ et Tene o
Lemma 5.7. We have
| BallLoe(0,11,L¢0.11 S 1 (54)

uniformly in A € (0, Lo).

Proof. Since both A and A are positive, we have

1 X
Brg()| < C (ngnm,u . /0 |g(s>|ds)

uniformly in A € (0, Ao) and x € (0, 1] as follows from the analysis of A; and A». This
gives (54). O

Consider O;. We have
Lemma 5.8.
|05 — OollL=[0,13,L¢10,11 = 0, A — 0

Proof. For the first term,

1 1
”Amx,A)M” RO

= oDl fllL>0,11,
L°[0,1]

and o(1) — 0 when A — 0, uniformly in f. Indeed, this follows from corollary 5.1 and
the properties of Aj(x, A).
The second term can be written as

oy A2 [T (_/ Az(t,mdt) M N)E) o
AL b PUT L A n™) e n

co A [T A ) Ma)E)
O exp( /s Al(t,x)d’) A &

where § > 0. If we denote the first/second expressions by Sj(2), then

1 X
|Sl|§—/ X&<s MHE)
x Jo

A5, )
lim || S|z -~ -0
550,40 ” 1||L [0,1],L°°[0,1]

dg§

and

The last equality follows from (47).
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For S5, one can write similarly

Sz = wi(x) A, 1) [t Xg<5 - €Xp (— /: Aol A)dt) (Mkf)(g)d.g

A o AL, 0 A1(E, 1)
o Axx,n) 7 A D) ) Mo f)E)
+ ws (x) - A Jo Xe>5 * €Xp (_/g AL A)df) ALE R ds.

The first expression can be handled in the same way. For the second, we consider

‘wg(x) Ax(x, 4) st>s exp (_/; Az(t,k)dt) (/\/le)(é)ds

CAL(xL L) o Ar(1, ) A€, 1)
. Ax(x,0) [ _ [T A2 0) (Mo f)(&)
_wS(x)'—Al(x,O) ) e exp( /5 Al(t,O)dt) A,.0) d§ -

If 6 > Ois fixed, this expression is bounded by o(1)|| f || L[0,1] as A — O (with constant
depending on §). That follows directly from the properties of A2y and M. Combining
the obtained estimates we get the statement of the lemma. O

By the standard argument of the perturbation theory, this lemma implies that inversion
of I + O, can be reduced to showing that / + Oy is invertible. In the next section, we
will check that.

5.3.1. The operator O and its properties

Theorem 5.1. The operator I + Oy is invertible in L*°[0, 1].

Proof. For the case A = 0, the formulas are very simple. We recall that

x+§& 2
Ki(x, &, y0) = Ka(x, &, yo) = log (E) .

Then, (28) and (34) imply that

1 I 1+£)
A](X,O)=10ngz/0 lOg(Tg) d»‘;"=2+0(1), x—0

1
and
2 ) 2
Ax(x,0) = —+210g(x +1)=—+o0kx), x—0.
xlog* x X
Thus,
(x. 0) As(x,0) 1+ ) S0
x,0)=—— = =—+0(kx), x .
b A0 x
Then,
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and
Di(x,8) = !
1 T (x2+E2) logt x?”
Therefore,
P 1 o (16 2+/‘ a
x, 6,0 =——-1lo ——drt
x log* x2 g x—£& g x2+12
and
M(x,§,0)
Mo(x,6,0) = ——>
2(x,§,0) ALx.0)

where A; ~ 1 on all of [0, 1].

Lemma 5.9. The operator

1
Gof = /0 Ma(x, £,0) f(§)dE

is compact in L°°[0, 1].

Proof. First, notice that

1/x
Gafl < ||f||oo/ o
0

log* x

dg < L’; ﬂ‘j (55)

1+£&)\2 /l/x dt
g —4
1-¢& g T2+1
and thus G5 is bounded in L°°[0, 1].
The compactness now follows by the standard approximation argument. Let us write
a partition of unity 1 = ¢5+¢5. Then, (55) yields [|¢ps G2 || L[0,1],°°[0,1] = 0as§ — 0.
Then, for fixed § > 0, ¢§ G, is compact since the kernel has a weak singularity on the

diagonal and is smooth away from it. Since the space of compact operators is closed in
the operator topology, we have the statement of the lemma. 0O

For O, one gets

o A0 [T ([T A0) ) MoE)
Nf = w0 T T w0 b e"p( /g A1<t,0)‘”) neEo &

_ A0 [f L A0)

=Ghw -5 | exp( /g A](I’O)dt)(sz)(S)dé- (56)

Since the operator G3 defined by

Gaf = 2200 [Tes (— L G O)dr) F&)ds

B Al(-xvo) 0 Al(tso)

is bounded in L°°[0, 1], we get the compactness for O in view of Lemma 5.9. Therefore,
the Fredholm theory is applicable to I + Oy. In particular, to prove invertibility of 7 + Oy,
we only need to check that its kernel is trivial.

Consider the equation

(I+009)f=0
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and suppose that f € L*°[0, 1]. Recall (52). The equation
Lou=0, uelLipl0,1] (57)

is equivalent to
X
(I+0p)u' =0, u(x) :/ f@®dr.
0

Thus, we only need to check that L has zero kernel in Li plO, 1].
The Eq. (57) is equivalent to

1
/0 W (x) — ' (E)K1 (x, &, yo)dE

1
+8/ H' (2x% +28%) (u(x) +xu(£))dé =0, u € Lip[0, 1]
0

where

2
Ki(x € y0) = HQGx +£)°) = HQ(x — £)°) = log (;j)

since H (x) = log x in that case. Multiply the both sides by u and integrate over [0, 1].
For the general H, we have

1
0'5/0 () — @) (HA+6)) - HR( - 7)) dé
1 1
—2/0 /0(u(x)—u(é))Z(H/(z(x+g)2)(x+g)—H/(z(x—5)2)(x—g)))dxdg

1 1 1 1

+8/ uz(x)/ 5H’(2x2+2§2)d§dx+8/ / u()uE)xH 2> +2x%)dxde
0 0 0 0

=J1+---+7J4.

Let us study this expression term by term.
Ifui(x) =u(l) — u(x), then

N ! l+x
J1 =/ u](x)log
0 1—

This is actually true for generic H that are monotonically increasing.
Using the symmetrization of the integrals, we get the following expressions

. 2
_ // (u(x)x:;(é)) dxds

_—2/ u(x)log( ) // ”(x)”(é) xdg

1
J3 = 2/ u?(x)log(l + x~)dx
0

1 1 X 1 1 X +§
Js =4/0 /O u(x)u(é})mdxdé =2/O /0 u(x)u(g)mdxdg

dx > 0.
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Notice now that the sum of the first term in J, and J3 is

1 4!
2/ uz(x) log (x al ) dx >0
0 1+x

because x +x ' > x + 1ifx € (0, 1].

In the calculations that follow, the condition u(x) = O(x), x — 0 will ensure the
convergence of all integrals involved. Since the Hilbert matrix is nonnegative ([12], proof
of the theorem 5.3.1.), the integral

1
) = /0 4@ e

x+&

defines a positive definite operator in L2(0, 1). Thus,

1
u(é)
= ———d
gl (M) A xz T 52 S
is positive definite as well, as the change of variables in the quadratic form shows. Also,

x+& 1 2x&

x2+E2 7 x+¢& i (xZ+E)(x+&)

So, we only need to establish that
b xgu®)
Gou = / ———d&
0 (PHEDHM+E)

is positive definite. That, however, is the corollary of the Schur’s theorem for the
Hadamard product of the positive definite matrices ([12], p. 319), written for the integral
operators (e.g., by the Riemann sum approximation). Indeed, it is sufficient to notice
that

x§
x2+£2
is a positive definite kernel (again, by the change of variables in the quadratic form). O

Summing up the results of this section, we obtain (14).

6. [|¥0llzippo,1y is Small
In this section, we will prove (17), the smallness of initial data for the contraction
mapping.
Lemma 6.1. We have

190l ipjo.1 = 01, % — 0. (58)
Proof. As it follows from the previous section, we only need to show

| F(x, Moo, =o(1), A— 0. (59)
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Recall the definition of F,
1
xVAZ +x2logt (x2 +A2)

1 1
X (x/ Ki(x, T, y)dt — V22 +x2/ (DK (x, T, yx)df)
0 0

For any given § > 0, we clearly have

F(x,h) =

lim [lw§ - F(x, M)l Lep0,1] = 0.
r—0

For x < §, we can use the asymptotics established above [e.g., (30), (32), and (37)].
This gives
1

- F(x, M) Loo <— .
lws - F(x, Mlizepo,n S log* 32+ 2)

These two estimates finish the proof of the lemma. O

7. The Frechet Differentiability
In this section, we study Q(u) given by
OQw)=F(f,\) —F(x,A) —DsF(x,Mu, f=x+u

and prove (15) and (16). We assume in this section that A € (0, 1). Notice first that
0Q(0) = 0 and therefore (15) follows from (16). Let us prove (16).
We write

O(y) = F(x+uz, ) — F(x,A\) — Dy F(x,A)(x +u)
Q) =F(x+uy, ) — F(x,A) — DyF(x, A)(x +uy).

Subtract and write
|Qu2) = Q)| < [F(x +u2,2) = F(x +up, A) = Dy F(x +uy, M) (uz — uy)|
+|(DfF(x +up,A) — DpF(x, /\))(uz —uy)|
for every point x € (0, 1]. Thus, we only have to prove two bounds:
|F(x+uz,A) — F(x+uy,A) — D F(x+uy, A)(u — uy)llLeo,1]
= o(D)lluz — 1l 1p011 (60)
and

IDfF(x+u,A)—DysF(x, )‘)”L'ip[o,l],Lw[O,l] =o(1), ”“”L'ip[o,l] <48, §—0.
(61)

7.1. The proof of (60). We start with proving (60).
Denote p(x) = x + u(x). By our assumptions we have

Ip"(x) = 1irepo <8 < 1, p(0) =0.
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Therefore,

1
p(x) = x (1 +/ (' (xt) — l)dt) —x(1+ 0(9)).
0

Remark. We will use the following property many times in the arguments below. Given
arbitrary M > 0, the scaled function py; (X) = Mp(M~'X) satisfies:

pm(0) =0, [y (X) — Lllz=omy <8
Moreover, if |h — g||L-ip[0,1] < e, then ||hy — gM”Lip[o,M] < e after scaling.

Take t € R with |t| < 19 = |lur — ”l”L'ip[o,l] and f : ”f”L'ip[o,l] < 1. Consider
fi(x) = p(x) +tf (x). We only need to show that

IF(fi: 2) = F(fo. ») =tDygF(fo. }) fliLepo.) =to(l), t—0 (62)

uniformly in f and p.
Fix arbitrary x € (0, 1] and apply the mean-value formula to F(f;, A) — F(fo, 1),

F(fo}) = F(fy.0) = 1— et * P
) - 0> =
' xvVx2 + 22 logt (x2 + A2)

where #1 (x) € [0, t]. Introducing Y;_,(x) = /A2 + f2(x), we get
|
P = f(p/+f1f/)/ Ki(x,t, Y ,)dt
0

1
P, = (,0+t1f)f// Ki(x,z, Y n)dt
0

Py =2(p+0f)p +t1f) (X1 +-+Xs)
where
v /1 Yoy (X)+ Yo (7) (f,l @) fx)  fy (r)f(f))
1= + dt
0 0+ 2+ Yo (x)+ Y5, ()2 \ Yoy (x) Ya (1)

X, = /1 Yin(x)+Y) 4(7) (fn (x) f(x) N S (T)f(f)) dr
0 =2+ @) +Y,()*\ Vi) Yin (o)

o /1 Yin () = Y50 (D) (ﬁl @@ fy (r)f(r)) b
0 =12+ n(x)=Yan(@)?\ Yop(x) Yy (7)
. ! Yin(x) =Y 4 (7) Ju@)fx)  fu(@)f()
X4 = — — dt
0 G+D2+ Ty ) =Y, (0?2 Y, (x) Yo (T)
and
1
P4 = — {/‘t] f Y}I»,ll (‘L’)Kz(x, T, Y)\,,ﬂ )dT
At JO
1 /
Ps = —YMI/ (itlf) Ko(x, 1, Yy )dt
0 Aty

Ps = =2Y, (L1 +---+Ly).
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Similarly, for {L ;} we have

/‘ Y, () Len 0 Y () (fn WS S (r)f(r)) .

Ly =
X+ )2+ Yoy )+ Y 02\ Yoy (1) Yy ()

Lo /1 v @ Yin (x) + Y p (7) (fn W) o (r)f(r)) i
o M=)+ Y () + Y, (@)2\ Y, () Y1, (1)

/1 v @ Yy (X) = Y0 (7) (ff. @) f (r)f(r)) -
BT (= 124 (Yo () = Y (0)2 \ Yo () Y (1)

Lz =—

[ Yo (%) = Yy (7) Ju @) fx) (@) f(x)
Li= | Y, (¥) -
o M+ D2+ Yo, (0) =Y, ()2 Y, (x) Yy (7)

‘We need to show that

(Py+-+Pe) — (P)+---+ PQ)

XV A2+ x21logt (x2 + A2)

as ¢t — O uniformly in f and p. Here P]Q are the similar expressions taken with #; = 0.
(1) We start with P; — P).

=o(l)
L[0,1]

1
xvVx2+22 logt (x2+12)
- t
T Va2 + 22 logt(x2 + A2)
1
ey log* (x2 + A2)

To handle the first term, we use the Lemma 5.2. The Lemma 7.1 below takes care of the
second term.

1 1
’f(p/ﬂlf/)/o Kl(x,T,Yx,zl)dT—fP//O Ki(x, 1, Yy 0)dt

1
/ Kl(xv‘l/" Y)\,,ll)dt
0

1 1
/ Ki(x,t, YA,,I)dr—/ Ki(x, 7, Yy 0)dt (63)
0 0

Lemma 7.1. We have

f()l Kl (x5 T, Y)\,[] )d‘[ - f()l Kl (xv T, Y)L,O)dr
Vx2+ 2Z2logt (x2 + A2)

uniformly in X, f, and p.

=o(l), t—0
L®[0,1]

Proof. By the mean-value formula we have

1 1
/ Ki(x, 7, Yoo dT — / Ki(x, 7, Yo0)dt = 60 (X + - + X)
0 0

where the expressions X ; are different from X ; defined above only by 7 replaced with
5(\ 1+ + §4

t>. The bound
‘ VxZ + A2 logt (x2 + 12)

follows from the Theorem 7.1 below. O

<1

~

L*°[0,1]
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(2) The term P, — Pg can be handled in exactly the same way.
(3) The term Pz — P3O is more complicated.
Arguing similarly to P;, we only need to prove the following theorem.

Theorem 7.1.

Xi+-+Xp)— X0+ + X0
& /2 ‘;) Elz 2 4) =o(), 1—>0
x=+Aclog"(x* + A%) L2[0.1]
and
0 0
Xi+---+X, <1
Va2 +22logt (x2 + A2) Loo[0.1]

uniformly in A, f, and p.

Proof. Let us introduce x = AX and T = AT. Notice that

V(%) = A/ 1+ 7 f(A3))2.

Let us focus of X + X3 first. We are going to prove the following general result. Once
we do that, it suffices to apply it to the scaled X + X3 by taking y;(x) = f(x) and
()= fi(x). O

Lemma 7.2. Suppose y1, y2, ¥» € Lip[0, A~ '] and

Iyilzeo,i21 < 1, llya = alleco, 100 < €, llya — Lllzeepo,1/0) < 1.
If one defines

_ ! /W NENE  n@On@)
Vx2 + 1logt (A2(x2 + 1)) \/1+y2(A) \/1+y2(’\)
\/1 +y; () + \/1 +y5(@) Y@y yi@y2((7)
E+2+ (J1+ 3@ + 1+ RO2 J1+3® \/1 G
V1436 - 14 3®

X dTt

G-+ (J1+ 3@ — 1+ 3@

X

and
i— 1 /W NORE | ORE)
VE2 4+ 1log" (R2(®2 + 1)) \/1+§’§® \/1+§§(?)
J1+B® +/1+53® NORE  n®ORE

(x+r>2+(J1+ w+laner \JIrRe JI+50
J1+3B@® - 1456

X dTt

F -2+ (J1+BE - 1+ 73®)?
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then
IH — Hllzop0,1/2 = o(1), € — 0
and
| HllLopo, 10 S'1
uniformly in A € (0, 1), y1, y2, and y,.

Proof. We will study H in detail and, in particular, its stability in y,. That will give the
necessary bounds. Notice first that

(64)

»2(X) y2(X) <[ ex, <1
- &2 o~ .
~ ex <, x> 1
E®+1 BE+1

The second term in the formula for H has the singularity of the type (X — 7)? in the
denominator. However, this is compensated by the zero in the numerator and

/ Y@ y2(x)  y1(D)y2(7) \hﬂé(ﬂ_\/“ﬁ@)

sup —

e 1ed® J103@ ) G214 @ - 14302
[ nORE® n®ORE J+BO—1+3® 2 = o()

JIR® RO ) G- E -/ 1+720)?

when € — 0 as follows from the Lemma 9.1 in Appendix. Indeed,

/

YVIE®y@E) @R | {ef,
JI+3®  J1+3®

/ o~ o~
ex, x <1
‘(/Hy%(f)—/uﬁ(@) 5{6 S
and
/
Y1 () y2 (%) x o=\ %
< , 1+ <
~Mx+l ¥ (%) ~Mx+1

Y1+ @
Notice also that, in the expression for H, the integral over every finite interval gives

the bounded contribution after division by v/x2 + 1log* (A2(x2 + 1)). We also have its
stability in y,. Therefore, we can focus on T : [X — 7| > 1 only. We consider two cases:
¥e 0, 1]andx € [1,27'].

(1) Let x € (0, 1]. Clearly, we can assume that T > 1. Let

H— B+ By
VEZ+11logt(A2(xZ + 1))
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where
@@ /W JI+3® + /143
\/m E+D2+ (J1+72@ + /14202
J1+22® = /1432 -
— T
E-D2+(/1+3@ - J1+3®)
and

Bgz/m Y102 () \/1"’y%(jc\)‘F\/ler%(%j
J1+3@ \@+22+ (14 3@ + 14302
L+ 9@ — /1433
+ \/ ok \/ » dT.

E-D2+ (J1+ 3@ - 1+ 3@

We only need to handle integration over T € [2, 1/A].
Consider B, first. The integrand has asymptotics

2o+ 103@) 143 ®

(T2+y3(1))?

@ [ 2/ 1+ @@ +y3 @) =40 (D) (1+o0@@ ).

Thus, we immediately have a bound
|By| < log* i

Comparing the integral with the one where y, is replaced by y, gives us the necessary
stability estimate

13 13
/ yi(® d?_/ n@
I I

= 0(e)log" A 65
2492 2402® () log ©>)

and the same estimates are valid for other integrals involved. For the remainder O (T~ b,
the corresponding function is bounded by C72 and this decay is integrable giving a
uniformly small number when integrated over [T, 1 /1] with large T. For the integral
over any finite interval T € [0, T, the stability easily follows. Thus, we first take T large
and then send € — 0. This will ensure the stability in y;.

For Bj, the estimates are very similar. The estimate (64) gives the stability for the
first factor

Y1(X)y2(%)

J1+y3(®)

2y2(7)

5> =t O(t2). Thus, we can use an
o+ y; )

and the asymptotics of the integrand is

estimate similar to (65).
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(2) Consider the case X > 1 now and assume that |[x — 7| > 1 in the integration.
ForT > 1and X > 1, we can write

V1+73@) = @A+ 0E?)
J1+32@ + 14 )2@) = (02 + m@EDR]! (66)
J1+92® = J142@ = (@ — @R,

1
R1=1+0(A—A)
XT

Let us control how the integral will change if we replace ,/1 + y% (X) by y2(x) and

\/ 1+y;(®)+ \/ 1+ y3(7) by y2(X) + y2(%). The errors produced in By, for example, are
at most

and

2! -~ +
1 1 1 . 1 +log™ A
C1+C2/ —+=) = dr§1+—0gx Aog
1 T x) |x—7|+1 X

The estimate for B; is the same. Now, notice that
logx +log" A +Xx o
SUp s < —
$=T.ae@,1) X~ log"t (A (x=+ 1)) ~ /T

Since on every finite interval of integration T € [0, T'] we have stability in y,, we only
need to handle

/ 1@ +y1@) 2@ +»@) (1@ @) — @) | -
Te[0,A— 1]

—- 0, T — o0.

F+D)? + (12(X) + y2(D)? F =02+ (@) — »@)?
Let us change the variable T = X and introduce two functions:
[ =%"yD), gD =3 "ynD. 67)

As before, we have f(0,%) = g(0,%) =0,
|9 f (@, D) = |yj (@) < 1, [f(@, D) <«
and
|9ag(, X) — 1] = [y3(ax) — 1] S 1,
Moreover, if g is the scaling of y;, then
lg" — & llLopo,1/n < €.
These estimates are uniform in x. The integral takes the form

Y/l/x (M + fl)@M+g@) (f) = fla)(g(l) —g(@))
0 (1 +a)? +(g(1) + g(a))? (1 =)+ (g(1) — g(e))?




The Centrally Symmetric V-States for Active Scalar Equations 997

‘We can rewrite
F) = fl@) g)—g@)
(f() = fla)(gl) — gl@)) _ l—« l -«
(I —a)?+(g(1) — g(@))? . (g(l) —g(a))2

l -«

and the Lemma 9.1 proves stability for the interval o« — 1| < 1. Then, the stability in g
can be easily seen for every interval « € [0, T'] given fixed T as the corresponding error
is o(1)x when € — 0 and

o~

X

o(1) sup =o(1).

=1 VX2 + 1logt(M2(x2 + 1))
For large «, we get the asymptotics

(f) + fla)(gD) +g@)  (f()— fla)(g(l) — gla))
(I+a)? +(g(1) + g(a))? (1 =)+ (g(1) — g(e))?
_ “Hf@g@)@+gDg@)  2(f(Dgle) +g(1) f(e)

(@2 + g2(a))? I T

+ 0.

The error O (a~?2) is integrable and the comparison of the leading terms to the analogous
expressions with g replaced by g gives the error at most

1/x d
0(1)/ T o1y log* x.
1 o
This leads to the error of the size
Xlog*x
o(1)— =
VE2 + 1logt (x2 + A2)

uniformly in L and x > A. O

o(l), e—>0

Now, we need to handle the other combination: X, + X4. The analysis here is nearly
identical and is based on the following lemma.

Lemma 7.3. Suppose yi, y2, ¥» € Lip[0, A~ '] and
Iyilzeo,ia < 1, lvs = sl 100 < €, vy — Lllzoepo,1/2) < 1.
If one defines

g — ! /W yi@»®  n@»@
VE2+ 1og (R (32 + 1)) Jo \/1+y§(f) \/1+y§(?)
\/1+y22®+\/1+y§(?) YI@»nE) 1@y

X

-2+ (J1+ 3@+ /1+3@? \J1+3@® J1+30
J1+220 = /1432 ~
X dt

E+D2+([1+3@ — /1 +30)?
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and
70 _ 1 /1/A NOR® @O
VI + Tog G2 (R7 + 1) JI+B®  J1+3®
JHBOH1+BO (ene  20Re

X

G-D2+(J1+B@+ 1+ \J1+B® J1+7®
J1+B@ - 1+72@)
X
E+D2+([1+BE — /1 +BE)?

dt

then, uniformly in y1, y2, y2 and A € (0, 1), we have
IHY — H Vo172 = o(1), € =0
and
1H P00 S 1.
Proof. The proof of this lemma repeats the argument for the previous one word for word.

The only minor change is contained in how we handle the singularity in the denominator
of X4 when both x and t go to zero. After the rescaling, we have an integral

/1 Y@@ 1@y @) \/1 +y;3() - \/1 +33(®) g
J143®  J143® ) @+92+ (14 3@ -1+ )3@®7

1= =2
</ ud?<1
~ 0 3C\2+?2 ~

by the application of mean-value theorem. The stability of this expression in y; follows
from the Lemma 9.1.
This finishes the proof of Theorem 7.1. O

‘We continue now with the other terms: Py, P5 and Pg.

(4) Consider the term Py — P).

To study the stability in ¢, it is more convenient to rescale by A and consider y; (X) =
A~1£(@&21) and y2(X) = A1 f;(X1). Then, the problem is reduced to proving the stability
of

Py = K2(®,T, (/143 (0)dT

1 V1) y2(%) /l/k (D)5 (@)
XV 1+xZlogt (A2(x2+1)) \/m l+y2(A)

in y2. As before, we will be taking y, with ||y, — ¥}llz[0,1/a1 < € and making a
comparison.
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By (64) and Lemma 5.4, we have

y1(®) Ky (3,7, /1 +y3(@)dT

»n®  n® /W 2@y
0

J1+3® VI+P® J1+3@®

< ex’log(1/r), T e (0,1)
and
<elog(l/x), x>1

Thus, after division, it gives an error at most €.
For the next term, (64) again gives

Ky(X, T, /1 +; 2(1))dT

Y1 (@2 () /1/* 2@Y,E@ @)

Ji+d® 0 \J1+3®  J1+36
1 1/

5@/ ?|K2(f,?,,/1+y§(?))|d?+ef/ K2 (X, T, /1 +y2(@)|dT
0 1

< ex’log(l/n), <1
and
< exlog(l/x), T> 1.

After division by xv/x2 + 1 log*(A>(x2 + 1)), it gives an error at most O (¢).
For the last term

~ 1/x
y1(@)y2(®) / ¥2(2)y5 (@) ( @7 T+ 2 @) - KaE 7, 2 = (r))) "
J1+y3@) 70 1+y2(ﬂ

we can apply the mean value theorem and the resulting derivative of the kernel can be
handled by the Theorem 7.2 below. As the result, the expression above can be bounded
by

(68)

< log(1/Mo(l), T <1
and
Flog(1/x)o(l), T > 1.
Upon division by

TVERZ + 1logt (W22 + 1))

this is at most o(1).
(5) The term Ps — PSO can be estimated similarly.



1000 S. A. Denisov

Indeed, after scaling we have the following expression

1/x

y2 _ —~ ~

Jies® | yiﬁmyé(uy%) 15) k@7, 1+ 2@
L+y;

and we can repeat the steps from the previous argument.

(6) We are left to handle Pg — Pf?.

This analysis is very similar to the one performed for P;. However, we give details
for completeness.

Theorem 7.2.

YA,[(L] +---+ L4) — Y)»,O(L(l) + .o+ Lg)
xvVx2 + 22 logt (x2 + A2)

=o0(), t—0
L°°[0,1]

uniformly in A.

Proof. Rescale by A and rewrite the problem for y; and y», as before. Notice first that

W1+y3 —/1+33] <ex?, T <1
W1+ —/1+33| <ex, T>1

so we only need to show that

and

(Ly+--+Ly) — (LY +---+ LY
xlogt(x2 +A2)

=o(l), t—0
L®[0,1]

and

0 0
Li+---+L,

_— < 1. 69
xlogt(x2 +A2) (69)

~

L*°[0,1]

We group (L1+L3)— (L?+Lg) and (L3+L4)— (L(3)+L2) and start with the following
lemma which handles L3 + L4.

Lemma 7.4. Suppose y1, y2, ¥» € Lip[0, 2~ and
Iyilizecro10 < L 1y = Walleeoam < €, 11y — Ulzeopo,1a < 1
If one defines
U 1 /W ROHD | [ 1@®rE @@
Hog'@x @+ D)o | fivpe [\ 1+3®@ 14530
J13® - 143®) J13@® - 143 @)
EO24( 1+ @143 @) E-D+(/1+3@® — /1413 @)
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RERO Kyl ORE m’z(ﬂ) ( VIB® -/ 1+53@
Jine [\Jme  J136 ) \@0(/1153e - /145362
J1+B® - 1+ 3@ ﬂ ~
— dt
E-2+([1+ 3@ - /1+B@)?

then, uniformly in yi, y2, y» and A € (0, 1), we have

U llL~10,1/2) = 0(1), € — 0.

Notice that in this lemma we take an absolute value inside the integration as that will
make an argument more transparent.

Proof. We first prove that

1 /W R@O»E@)  ROFHE
Xlogt (A2 (x2+ 1)) Jo \/1+y§(?) \/1+§§(?)
N@R®  n@On@® ) J1+33® = 1+33@®
J1+3® 143360 E+D2 4 (J14+2@) — 1+ 3@
J1+22® = /1432
CEome(13@ - 1420

as € — 0, uniformly in parameters. Let us observe that

dz = o(1) (70)

Lo°[0,A71]

ROND _ HOFHE
J1+3®  J1+5@

o~

T <1

< €7,

and

R@OBO  ROHO| . o,
J1+3® 1+

Therefore, to show (70) it is sufficient to use an estimate (72) proved below, and the
following inequality

1 /1/A T
Tlog"M2xX2+1) Jo  |VFT2+1

YI®»E @@ y \/1 +y3(®) — \/1 +y5(0)
J1+2®  J143®) \@ro2+(1+3® - J1+3@2

J1+220) = /1432
G-+ (103@ — 1420

dt < 1. (71)
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The latter can be achieved in a standard way by following, e.g, the estimates in the proof
of (72).
Now, consider

A

1/4
M _ I
00 = s (/\2( +1))/ m|F(x %) — Fy(® D)ld7
where
o2 ®»®  yi@®»@) \/1 +y3(®) — \/1 +3(D)
J1+3®  J1+3® ) \ @+ + (/14 3@ - J1+20)?
J1+33® - 1436
@ =22+ (J1+ 3@ — 1+ 3@
and
(2020 OB J1+3® - 1+ 3@

JIrB® 1+ 30 ) \G+22+ (14 B® - 1+ 5O
J1+3® - 1436
F-2+ (J1+ 3@ - 1+ 3@

We are going to prove that
10D lzp,1/2 = o(1), € — 0. (72)

Consider the case X € [0, 1]. The regime X — 0 is what makes the difference when
compared to the same analysis for P3. Take F and rewrite it as follows

NEOR®  n@On®) 1O - 143®

J1+2®  J143® ) G+ (1+3@ - 1+ 3@7
1

X .
E-D2+([1+3@® - 1+ 30)?

The Lemma 9.1 yields

F = —43%

T
/ |F — FyldT =Xxo(1), € —>0
o

for every fixed T > o > 0. For the integration over [0, o], we get

7 SN T+7)7T
[Carsirnae < [T S R0 < v
0 0 +7T
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This gives

T
/ |F — FoldT = %o(1), € — 0.
0

Now, for X € [0, 1], the asymptotics for large T are

_ ATy (Mn@)

_ ATy @)
B @2+ 73 (D))>

-~
@+ 2@ HoED

+0(FT ),
and therefore

1/x
sup / |F — FoldT = o()xlogt A+ CT .
xe€l0,11JT

That shows U is small uniformly in A and X € [0, 1] as long as € — 0. Similarly, we
can handle an interval X € [0, T'] with arbitrary large fixed T. In case of X > T, we can
treat the interval |T — X] < 1 using Lemma 9.1 as before. Outside this interval, we again
use (60) to get [compare with (67)]

1/x
/ |F — FoldT
1

1/x 1) —
5?/0 ul f(1)— f ()| gl) — gw)

(T+w)2+(g(D) — gD (1 — w2+ (g(1) — g))?)
7() — Zw) .
— — — — — d 1 A.

A+ w2+ @M — 2D — w2+ @) —gauny | T8

Computing the asymptotics at infinity, we obtain that the last quantity is

o()xlog*x, € — 0.
Then,

o()xlog* x +log* A

s =o(l)+ T2
S Fogror@ ) oW

as long as T < A~!/2. This bound proves that U" is small. O
The combination L1 + L, is handled similarly. We need the following lemma for that.
Lemma 7.5. Suppose yi, y2, ¥» € Lip[0, A~ '] and
Ivillzeerom < 1 llys = Ml a < €. llys — Hlzeeqo,1/m < 1.
If one defines

_ 1 /W »2(D)y5 () Y1(X)y2 (%) N y1(@)y2(7)
Tlog*(A2(x2+1)) Jp \/l+y%(?) \/1+y%(36\) \/1_’_)%(?)
J1+3® /1453 J1+3® /1432
@D+ 1+3@+ 142002 E-D2+([1+3@+/1+3@)?

X
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POBO [ (1OR® 2 @RE VRO 145@
JR® [\J12® 115730 ) @1 Bo+/1430)?
JI+B® +/1+5® "
T

E-2+ (J1+ 7@ +/1+720)?
then, uniformly in yi, yz, y2 and A € (0, 1), we have
I1VIz=,1/20 = 0o(1), € — 0.

Proof. The proof of this lemma is nearly identical. It is actually easier as the singularities
in the denominator are absent.

The bound (69) follows easily from the arguments given in the proofs of Lemmas
7.4 and 7.5. The proof of the Theorem 7.2 is now finished. O

7.2. The bound (61). The estimate (61) was in fact already proved in the previous
subsection. Indeed, recall (18). The derivative of F involves six terms: I{ + - - - + Ig.
For instance, I, gives the following operator

1 1
f/ Ki(x, 7,4/ A2+ f2dr |/
(xsz +A2logt(x2+A%)" Jo

from Lip[O, 1]1to L*°[0, 1]. Take f = x + u where ||u||,;l.p[0,1] < €. Then, one needs to
show that

1
sup
RO L0l g0, <1l g0 1y <€ || XV X2 + A% log* (x2 + A2)
1 1
X (f/ Ki(x,1,y/A2+ fAdt —x/ K1(x,r,vA2+x2)dr) v
0 0 L[0,1]

=o(l), € —>0.

The proof of that, however, repeats the one for (63) where p = x. All other terms
corresponding to {/;} ;> can be handled similarly and that gives (61).

8. The Proof of the Main Theorem and Regularity of Solutions
We start with proving Theorem 2.1.
Proof. We can rewrite the Eq. (13) as

=0y

and the items (a), (b), and (c) stated on the same page were all justified. In particular, we
can choose sufficiently small § and A¢ such that for every A € (0, 1¢) the operator O has
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the unique fixed point in By = { : || V|| Lip[o,1] = &}. It follows from the construction
(and (58) in particular) that the solution

y(x, 1) = \/AZ +(x +¥(x, 1))?

converges to x| as A — 0. Moreover, one immediately has y(x, A) € Lip[—1, 1]. Since
y is positive, one can substitute it to the equation and get y € C'[—1, 1]. This regularity,
however, will be significantly improved in the next theorem. O

Remark. The self-similar behavior around the origin predicted by (12) is an immediate
corollary of (58).

Let us prove now that the solution y(x, A) is actually infinitely smooth.

Theorem 8.1. For every A € (0, Ag), we have y(x, )) € C*®(—1, 1).

Proof. The bound (11) implies that K (x, &, y) > 0 and thus fil K(x,&,y)dé > 0as
well. We have

1

/y’<s,x>1<(x,s,y)ds
Y ) = (73)
(K(x 6. yae

and one might want to differentiate this expression consecutively hoping to use the
standard bootstrapping argument. Recall that

K(x, & 9) = log ((r+ )2+ (v(x) + (6)?) —log ((x — )2+ (v(x) = ¥(§))?)

and the first term presents no problem for bootstrapping as log is smooth on
(0, 00) and (x + £)% + (y(x) + y(£))? is strictly positive. However, the second term
log ((x — €)% + (y(x) — y(£))?) might be problematic. We will show now how to han-
dle it. Notice that all potentially singular integrals in (73) can be written as

1
/ ] g(&)log((x — £)* + (y(x) — y(§)*)dE, (74)

where g is either equal to 1 or to y’(£). The logarithm can be represented as

2
log((x — &)* + (y(x) — y(§)*) = 2log|x — &| + log(] + (%g@)) )

Suppose we fix A so small that the contraction mapping works. We take Hs(x) =
log(+/82 + x2) instead of H(x) = logx and denote the corresponding kernel by Ks.
Then, in a similar way, one can prove the existence of ys(x,A) and ys(x,A) —
y(x, ), — 0 uniformly over [—1, 1]. Since H; € C*°(—1, 1), we immediately get
ys(x, 1) € C*®(—1, 1) so the lemmas from the Appendix are applicable. We want to
obtain estimates on || ys||cn[—a.q] that are uniform in 6.

To this end, proceed by induction. Our inductive assumption is that || yé”) loo[—b,5] <
C(n, b) with every b : b < 1, uniformly in 8. The contraction mapping argument gives
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us this condition for n = 1. Now, let us show how to use the lemmas from the Appendix
tocovern = 2. Wesete = 1/2.

Consider
1
WP () = / O K (x. 6. 33)dE 75)

with

1

P() = / K, 6 e,
Then,
Axl,xz (yép) = (Axl,xzyg)P(xl) + (Axl,xg P)yé(xz)

and so

1
(Ax1 ,xzyé)P(xl) = _(Axl ,xzp)yé(XZ) + Ax1,xz (/1 Ks(x, &, yS)dé) .

The first step is to show that || yg||c1 /2[—p p) 18 bounded uniformly in § for every b < 1.
To this end, it is sufficient to estimate A, ,,ys. Notice that P is positive and so poses
no problem. The factor yj is uniformly bounded by the inductive assumption. Consider

1
Axl,xzpv Axl,xz (/1 K(S(x’ Ev y(ﬁ)df) (76)

and focus on the terms of the form (74). In P, the function

1
/lloglx—éldé

1 2
/ log(“_(ys(X)—ya(S) )ds
-1 X —%‘

we apply Lemma 9.3 and an interpolation bound

is smooth. For

Ay o f
sup | =222 < N lerzpanll fllcr-sa
vimel—b.b] | X1 — x2|1/2 [—b.b]
to get
Ann P 12
Sup —— | S (Iysllcrs—p.p .
xpel—bb] | 1X1 — x2]172 ( [-b, ])

For the second function in (76), we argue similarly. The estimate (79) gives

1
Au / 356 log | — £1ds
i _

12 ~

sup
x1,x2€[—b,b] [x1 — x2|
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by the inductive assumption. Therefore, we get

1/2
Iyillcrzpps < 1+ (195l crppo)

which implies the uniform bound on || y;|l 1 2[—ppy forany b < 1.
Now, differentiate (75) to get

1 /
y§P +ysP = (/] yé(E)Ks(x,E,)’a)dE) -

We have P’ € C[—b, b] by Lemma 9.3. Then,

/

1
(/1y§($)Ka(x,€yys)d§) € C[-b,b]

with bounds uniform in § as follows from Lemma 9.3 and (78). That shows || ys|lcn[—b,p
is bounded uniformly in é for n = 2.
For a general n, we argue similarly. Differentiation (75) (n — 1) times gives

1
AP+ Rui) = [y Kalr. £
-1
Using the inductive assumption, we first show that all norms || ys || cn+0.5{_, ) are bounded

uniformly in 8. Then, we bootstrap that to C"*! norm.

Once the §-independent bounds for || ys || ¢ [_, 4 are established, we can take § — 0.
That gives y(x, 1) € C"[—a, a] for every n. Indeed there is a sequence {ys;} — u in
C"[—a, a] by Arzela-Ascoli and so u € C"[—a, a]. However this includes the uniform
convergence so y = u. Since n is arbitrary, we get the statement of the theorem. O
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9. Appendix

Lemma 9.1. If || f' — g'llzeopo, 77 < 6, then

J) —f0O) gk —
xX—y xX—y

uniformly in x,y € [0, T].
Proof. Indeed, it follows from the following representation

Tr(x,y) = M / £+ (e — yndi (77

O

The next lemmas are needed to show that the solution y(x, A) is infinitely smooth.
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Lemma 9.2. Suppose f € C*°(—1,1)and 0 < a < b < 1. Then, for every € € (0, 1),

< Cna, b, ) f lenteroppy + I L1
C"[—a,a]

1
H/lf(S)IOglx—Eldé

(78)
and

< Cn,a,b, )| F™lzoo—pp) + L f |l 2oo[—1,17)

1
H/ f(&)loglx — &ld&
-1 Cn+€[—a,al
(719)

Proof. The convolution structure of the kernel implies that it is sufficient to prove the
statement for n = 1 only. This amounts to checking that

H f(x) f(é) dt S fllcer=b.p1 + L fllzoop—117

Cl—a,a]

which is trivial. The estimate (79) can be obtained in a similar way. 0O

Lemma 9.3. Suppose f(x) € C*°[—1, 1] and g(x) € C[—1, 1]. Then

2
H / g@)log(n(—f 0 gf@)) )ds

with C¢ independent of f.

< Cell fllcrre—1 ligler=11
Cl-1,1]

Proof. We write (77) and differentiate to get

2Y,0,8) (' ~
'/ 1+T2( E)(/Of(sﬂx é)t)tdt)dé

L. (f _ g
sngnq_l,u/l 1% (5+<xx _i:)r) ren

1 / €

I f Ncer-1.171x — &l .

S ”g”C[—l,l]/ x —£| dé Se 1 flicrer—1yligllcr-1.1-
—1 -

d§

By consecutive differentiation, one gets

Lemma 9.4. Suppose f(x) € C®°[—1, 1] and g(x) € C[—1, 1]. Then

1 _ 2
/ g@)log(H(f(x) f(é)) )dé
-1 x-§ C"[=1.1]

< (Cn(6)||f||cn+é[—1,1] + Fn(”f”C"[fl,l]))”g“C[fl,l]

where Fy, is a certain function of || f || cr[—1,1] only.

Proof. The proof is identical to the previous one. O
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Remark. The Lemmas 9.2 and 9.4 will hold true if we replace logx by log v/x2 + §2.
The resulting estimates will be § independent.
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