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Abstract: Integrable quantum field theories in 1+1 dimensions have recently become
amenable to a rigorous construction, but many questions about the structure of their local
observables remain open. Our goal is to characterize these local observables in terms
of their expansion coefficients in a series expansion by interacting annihilators and
creators, similar to form factors. We establish a rigorous one-to-one characterization,
where locality of an observable is reflected in analyticity properties of its expansion
coefficients; this includes detailed information about the high-energy behaviour of the
observable and the growth properties of the analytic functions. Our results hold for
generic observables, not only smeared pointlike fields, and the characterizing conditions
depend only on the localization region—we consider wedges and double cones—and
on the permissible high energy behaviour.

Electronic supplementary material The online version of this article (doi:10.1007/
s00220-015-2294-z) contains supplementary material, which is available to authorized
users.

1. Introduction

1.1. Background. The structure of local observables in relativistic quantum theory is a
longstanding open problem. While the notion of locality as such is quite straightforward
to formulate, e.g., in terms of the Wightman [1] or Haag-Kastler [2] axioms, already
the very existence of models with local observables is a hard mathematical question.
In fact, beyond interaction-free models, rigorous existence results are known only in
simplified situations in low-dimensional spacetime. Here a recent focus has been on
so-called integrable quantum field theories in 1+1 dimensions; see e.g. [3–5].

Integrable quantumfield theories are oftendefinedbymeansof a classicalLagrangian,
and their local observables—in the form of pointlike localized fields—are traditionally
constructed in terms of their form factors, i.e., specific matrix elements of the field in
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Fig. 1. Localization regions of the left field φ(x), the right field φ′(y), and of a generic local observable A.
The bounded region O is spacelike separated from both wedges W ′

x and Wy , corresponding to the fact that
A commutes with both φ(x) and φ′(y)

asymptotic scattering states. While these form factors have been computed in several
classes of models [6–8], the local fields or their n-point functions are infinite series in
the form factors, and it remains open whether these series converge in a meaningful way.

A very different approach, advocated by Schroer and Wiesbrock [9], is based on the
notion of fields intrinsically localized in infinitely extended spacelike wedges, which
have a much simpler structure. As there, let us restrict ourselves to a theory describing
one species of scalar bosons of mass μ > 0 without bound states. One considers the
fields

φ(x) =
∫

dθ
(
eip(θ)·x z†(θ) + e−i p(θ)·x z(θ)

)
, φ′(x) = Jφ(−x)J, (1.1)

where z†(θ), z(θ) are “interacting” creators and annihilators, depending on rapidity θ ,
that fulfill the S-dependent Zamolodchikov-Faddeev relations rather than the CCR (see
Sect. 2.3); J is the PCT operator. One notices that

[φ(x), φ′(y)] = 0 if (x − y)2 < 0 and x1 < y1, (1.2)

that is, if x is spacelike to the left of y. This allows us to interpret the field φ′(y) as
localized in a wedge Wy with tip at y extending to the right, and φ(x) in a wedge W ′

x
extending to the left.1 Local observables in bounded regions can then be defined as those
relatively local to φ and φ′. (See Fig. 1 for the concept, and Sect. 2.4 for a mathematical
definition.)

Lechner [3] used this approach to prove the existence of local observables as bounded
operators in a class of models, including the Ising and sinh-Gordon models. The proof
uses rather abstract methods, and does not give an explicit construction of examples of
local operators. Nonetheless, the abstract existence result is sufficient to show asymptotic
completeness and to fully determine the scattering theory of the model. Note that in this
context, the models are no longer defined in terms of a Lagrangian, but in the spirit of an
inverse scattering problem: The particle spectrum and the two-particle scattering matrix
S are seen as inputs to the construction, entering the definition of z† and z.

1 For consistency with the literature, we stick with this slightly unintuitive usage of primed vs. unprimed
quantities.
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Wewill extract more information on the properties of these observables A by expand-
ing them into a series of normal-ordered monomials in z†, z,

A =
∞∑

m,n=0

∫
dθ dη

m!n! f [A]m,n(θ , η)z†(θ1) · · · z†(θm)z(η1) · · · z(ηn), (1.3)

where we denote θ = (θ1, . . . , θm), η = (η1, . . . , ηn). This expansion is possible for
every operator A in a certain regularity class, independent of its localization properties
[10]. It is similar but not identical to the well-known form factor expansion, inasmuch
as the form factor expansion is based on asymptotic “free” creators and annihilators
a†in, ain, whereas (1.3) uses the “interacting” objects z

†, z instead. Correspondingly, the
expansion coefficients fm,n[A](θ , η) agree with the form factors for certain regions of
the arguments. There is an explicit (if intricate) expression for the fm,n[A](θ, η) as
linear functionals of A, and their behaviour under space-time symmetry transformations
is known [10].

1.2. Aims and results. Our aim in the present paper is to gain more insight into the
structure of the local operators, complementing the abstract construction. Specifically,
wewill characterize local operators A in terms of analyticity properties of their expansion
coefficients fm,n[A] in the series expansion (1.3). This is somewhat similar to the well-
known analysis of analyticity of form factors [11]. However, our results differ from
previous work in two essential aspects.

First, they are valid for any local observable A, and not restricted to quantum fields
that are localized at space-time points. Rather, our analysis is based on the abstract
localization region of A only, keeping track of its size and shape. Specifically, we will
derive results for left wedges and for double cones.

Second, our characterization accounts for the functional analytic properties of the
operators (or quadratic forms) A. In particular, the high-energy behavior of A and its
influence on the asymptotic growth of the expansion coefficients fm,n[A] is described
in detail.

To illustrate the results, let us first consider the case that A is localized in a left wedge
W ′

r with tip at (0, r) on the time-0 axis. The left wedge, as opposed to the right wedge, is
a natural choice here: one notes that if A is the left fieldφ(x), cf. (1.1), then the expansion
(1.3) is rather simple and consists of only two terms; but in the case of the right field,
A = φ′(x), the expansion coefficients have a much more complicated structure, cf. [10,
Prop. 3.11].

Now if a general observable A is localized in W ′
r , one will expect from [3,10] that

the fm,n[A] are boundary values of a common analytic function, i.e., one has

f [A]m,n(θ , η) = Fm+n(θ + i0, η + iπ − i0). (1.4)

These Fk fulfill the following properties, which we write somewhat informally for the
moment.

(1) They are analytic in the tube region 0 < Im ζ1 < · · · < Im ζk < π .
(2) As a consequence of the Zamolodchikov-Faddeev relations, they are S-symmetric,

that is, their boundary values at real arguments fulfill

Fk(θ1, . . . , θ j+1, θ j , . . . , θk) = S(θ j − θ j+1)Fk(θ1, . . . , θ j , θ j+1, . . . , θk). (1.5)

This is also known as Watson’s equation.
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(3) Their boundary values at real arguments, θ �→ Fk(θ + i0), are square integrable.
(This follows if AΩ has finite norm, which we shall assume here.)

(4) Their growth behaviour at real infinity is essentially given by

|F(θ + iλ)| ∼
k∏
j=1

eμr cosh θ j sin λ j . (1.6)

Our aim is to formulate a full characterization of wedge-local observables, that is, to
prove that a suitable variant of (1)–(4) holds for Fk if and only if A is localized in the
wedgeW ′

r . Evidently, the conditions need some mathematical refinement; in particular,
the bounds (3) and (4) need to take care of the high-energy behaviour of the observable.
A precise version is given as condition (FW) in Definition 4.3. Given these, we can
indeed find a full characterization (Theorem 4.4).

The situation becomes more intricate when localization is restricted to a bounded
region, say, a double cone Or of radius r > 0 around the origin. From [9,12], one
expects that the functions Fk behave as follows.

(1) They are meromorphic on all ofC
k , and analytic on the tube Im ζ1 < · · · < Im ζk <

Im ζ1 + 2π , except for possible first-order poles at ζn − ζm = iπ (the so-called
kinematic poles).

(2) In generalization of (1.5), one has for all complex arguments ζ1, . . . , ζk ,

Fk(ζ1, . . . , ζ j+1, ζ j , . . . , ζk) = S(ζ j − ζ j+1)Fk(ζ1, . . . , ζ j , ζ j+1, . . . , ζk). (1.7)

(3) They are S-periodic, i.e.,

Fk(ζ1, . . . , ζk−1, ζk + 2iπ) = Fk(ζk, ζ1, . . . , ζk−1), (1.8)

of which periodicity-like properties in the other variables follow from (1.7).
(4) Their residue at ζk − ζ1 = iπ is given by

res
ζk−ζ1=iπ

Fk(ζ ) = 1

2π i

(
1−

k∏
p=1

S(ζ1 − ζp)
)
Fk−2(ζ2, . . . , ζk−1); (1.9)

the residues at the other kinematic poles can again be inferred from (1.7).
(5) Again, θ �→ Fk(θ + i0) is square integrable.
(6) Their growth behaviour at real infinity is essentially given by

|F(θ + iλ)| ∼
k∏
j=1

eμr cosh θ j |sin λ j |. (1.10)

The essential new features are the recursion relations (4), linking Fk to Fk−2. In
particular, they enforce that the sequence Fk cannot terminate, except in very specific
cases of constant S. For completeness, we note that the Fk can have further singularities
on hyperplanes in C

k , stemming from poles in the scattering function S “outside the
physical strip”.

As in the wedge-local case, we will formulate a precise variant of these properties
as condition (FD) in Definition 5.3, and we can indeed prove a full equivalence of these
conditions with locality of A inOr in Theorem 5.4. An essential ingredient of the proof
is that a double cone is the intersection of two wedges,Or = W−r ∩W ′

r ; and A is local
in Or if and only if it is local in both W−r and W ′

r . This makes it useful to analyze the
wedge-local case first.
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1.3. Methods. While the statement of locality conditions above was straightforward but
somewhat heuristic, a rigorous formulation needs careful analysis of the topological
properties of all objects involved.

First of all, regarding the observables A, one needs to clarify which operator-theoretic
class these objects should belong to. In fact, choosing the class of bounded operators
(as in [3]) is not useful in our context, since the expansion (1.3) is based on unbounded
objects z(θ), z†(θ). We try to be as general as possible, and work within a class of
quadratic forms A, general enough to include (but not restricted to) smeared Wightman
fields. While these quadratic forms can be unbounded, it is important that they cannot
be arbitrarily divergent either, in particular with respect to their high-energy behaviour.
With applications inmind [13, Sec. 9], wewill aim here for themost singular high-energy
behaviour that is still compatible with localization, namely the generalized H -bounds
proposed by Jaffe [14]; see Sect. 2.2 for details. Along with the choice of a class of
quadratic forms, we also need to review our notion of locality, since a commutator in
the usual sense is not meaningful between quadratic forms. Instead, we will define it by
relative locality to the wedge-local fields φ and φ′ (Sect. 2.4).

The high energy behavior of the observables A will also be reflected in the growth of
the functions Fk at large |θ |. This requires us to introduce some further norms on their
boundary distributions, generalizing the L2 norm (Sect. 2.3), before we can formulate
the precise locality conditions.

As an intermediate step between distributions fm,n[A] and analytic functions Fk , we
also work with the boundary distributions of Fk(ζ ) at the manifold

0 = Im ζ1 = . . . = Im ζ j−1 < Im ζ j < Im ζ j+1 = . . . = Im ζk = π, j ∈ {1, . . . , k}.
(1.11)

These distributions will be denoted Tk(ζ ) below. Technically, the Tk are distributions on
compactly supported test functions but analytic in one variable ζ j . We will formalize
this in terms of CR distributions on certain graph domains, a concept that we explain
in Sect. 3.1. Locality conditions (TW) and (TD) will be formulated for these Tk as well
(Definition 4.2 and 5.2 respectively), and shown to be equivalent to conditions (FW) and
(FD) for the meromorphic functions Fk .

The remaining paper is organized as follows. We start by introducing our general
mathematical setting in Sect. 2, specifying the details of our quantum field theoretical
models and recalling the details of the expansion (1.3). We also develop the necessary
technical tools for analytic functions andCRdistributions in Sect. 3. The characterization
theorem for local operators is then, for the case of wedge localization, formulated and
proved in Sect. 4, and in extension of those results, for double cones in Sect. 5. An
animation (Online Resource 1) complements Sect. 5.We endwith conclusions in Sect. 6.

The present article is based in part on the Ph.D. thesis of one of the authors [13].

2. Mathematical Setting for Integrable QFTs

We will first fix our mathematical setting and define the models of quantum field theory
in question. We mainly follow [3,10], and will recall the main results of those papers.

We consider quantum field theory on 1+1 dimensional Minkowski space, with the
indefinite scalar product written as x · y = x0y0 − x1y1. The models in question are
integrable quantum field theories, specified by their particle spectrum and two-particle
S matrix. As in [3], we consider only one species of massive scalar particle, so that
the two-particle scattering matrix is just a complex valued function S, which enters
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our construction as a parameter. We will specify the required properties of S and the
construction of the associated Hilbert space in Sect. 2.1.

Within these models, we are going to deal with (unbounded) quadratic forms with
localization properties. We allow these to fulfill generalized H bounds in the sense of
Jaffe [14]; this conceptwill be explained in Sect. 2.2.We then define the associated spaces
of quadratic forms in Sect. 2.3, and more importantly, recall from [10] that they can be
expanded into a series of generalized annihilation and creation operators. Section 2.4
deals with locality properties in the models at hand, recalls Lechner’s existence result
for local operators [3], and extends the notion of locality to the level of quadratic forms.

2.1. Scattering function and Hilbert space. We first explain the properties of the two-
particle scattering function S. Let S(a, b) denote the strip a < Im ζ < b in the complex
plane.We take S to be an analytic function S : S(0, π) → Cwhich has a continuous and
bounded extension to the closed strip S(0, π), and which fulfills the symmetry relations

∀θ ∈ R : S(θ)−1 = S(−θ) = S(θ) = S(θ + iπ). (2.1)

Evidently, S is of unit modulus on the lines R and R + iπ . Setting S(ζ ) := S(ζ + iπ)−1

for ζ ∈ S(−π, 0), and using (2.1) and continuity at the boundary of the strip, we can
extend S to a 2π i-periodic meromorphic function on all of C.

Since S has no poles on the real line, its restriction toR is in particular smooth, so that
the assumptions of [10, Sec. 2.1] are fulfilled. However, compared with [10] we have
added analyticity properties of S; these are crucial for describing local observables, as
will become clear in Sect. 2.4. We note that we will not need the additional regularity
condition imposed in [3, Definition 3.3]. On the other hand, we stick to the assumption of
[3] that S has no poles in the “physical strip” S(0, π). Examples for scattering functions
in our class include

(i) S(θ) = 1 (the free field),
(ii) S(θ) = −1 (the massive Ising model),

(iii) S(θ) = sinh θ − ia

sinh θ + ia
with some a ∈ (0, 1) (the sinh-Gordon model),

(iv) S(θ) = exp(ia sinh θ) with some a > 0 (an “exotic” S-matrix used in [15]).

Associated with S and a permutation σ ∈ Sn , we introduce the following function
of n variables:

Sσ (θ) :=
∏
i< j

σ(i)>σ( j)

S(θσ(i) − θσ( j)). (2.2)

Using these Sσ , one can define a representation of Sn on L2(Rn) and on other func-
tion spaces [3, Eq. (3.5)]. We are particularly interested in functions (or distributions)
invariant under this representation; that is, functions f of n variables fulfilling

∀σ ∈ Sn : f (θ) = Sσ (θ) f (θσ ), (2.3)

where θσ = (θσ(1), . . . , θσ(n)). We call these functions S-symmetric. Since the Sσ fulfill
a simple composition law [10, Eq. (2.3)], one knows that f is S-symmetric when (2.3)
is verified only for transpositions σ .

S-symmetric functions are relevant for defining the Hilbert space H of our model.
Since we consider models with one species of scalar particle with mass μ > 0, the
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single particle space is given by H1 = L2(R, dθ), as in the real scalar free field in
rapidity representation. Defining the n-particle spaceHn as the subspace of S-symmetric
functions in L2(Rn), and setting H0 = CΩ , we define the Hilbert space H as H :=⊕∞

n=0 Hn . The orthogonal projection onto Hn ⊂ H will be denoted as Pn , and we
also consider the projectors P f

n := ∑n
j=0 Pj . The space of finite particle number states,

Hf := ⋃
n P

f
nH, is dense inH.

We further recall the representation of the proper Poincaré group acting by
(anti)unitary operators on H. Translations and boosts act on ψ = ⊕∞

n=0ψn ∈ H as

(U (x, λ)ψ)n(θ) := eip(θ)·xψn(θ − λ), (2.4)

where λ = (λ, . . . , λ) and

p(θ) :=
n∑

k=1

p(θk), p(θ) := μ

(
cosh θ

sinh θ

)
(θ ∈ R

n, θ ∈ R). (2.5)

The positive generator of time translations will be denoted H . The space-time reflection
acts by an antiunitary operator U ( j) =: J as

(U ( j)ψ)n(θ) := ψn(θn, . . . , θ1). (2.6)

For later reference, we fix the conventions for the Fourier transform of functions
g ∈ S(R2) in momentum and rapidity variables:

g̃(p) := 1

2π

∫
dx g(x)eip·x , g±(θ) := g̃(±p(θ)). (2.7)

Then g± ∈ H1.Wewill also define the Zamolodchikov-Faddeev operators z†(θ), z(θ) as
ladder operators onH inSect. 2.3, butwefirst need some functional analytic preparations.

2.2. High energy behavior. The local observables that wewill consider are not necessar-
ily bounded operators, rather we will allow quadratic forms that are unbounded in states
of high energy. This situation is common inWightman quantum field theory, where local
quantum fields are necessarily unbounded objects [16]. One often confines attention to
fields with polynomial energy bounds, i.e., such that (1+H)−�φ(x)(1+H)−� is bounded
for some � > 0 [17]. This choice is subtly related to the choice of test function space for
the quantum fields, which is normally taken to be Schwartz space [1]. It was pointed out
by Jaffe [14] that this choice is possibly too restrictive, and that there is room for gener-
alization: instead of polynomial growth in energy, one can allow “almost exponential”
growth like expω(E) with a function ω that is almost, but not quite, growing linearly in
E . (See also [18].) A mathematical treatment of the associated classes of test functions
and distributions (due to Beurling) is given in [19].

In the present paper, with a view to constructing examples of local operators, we
wish to treat as general a class of operators as possible, and will therefore adopt Jaffe’s
framework with some slight variations. We list the properties that we expect the function
ω (the indicatrix) to fulfill.

Definition 2.1. An indicatrix is a smooth function ω : [0,∞) → [0,∞) with the
following properties.

(ω1) ω is monotonously increasing;
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(ω2) ω(p + q) ≤ ω(p) + ω(q) for all p, q ≥ 0 (sublinearity);

(ω3)
∫ ∞

0

ω(p)

1 + p2
dp < ∞ (Carleman’s criterion).

We call ω an analytic indicatrix if, in addition, there exists a function  on the
upper half plane R + i[0,∞), analytic in the interior and smooth at the boundary,
such that

(ω4) Re(p) = Re(−p) for all p ≥ 0;
(ω5) There exist aω, bω > 0 such that ω(|z|) ≤ Re(z) ≤ aωω(|z|) + bω for all

z ∈ R + i[0,∞).

These conditions are stronger than in [10], where we required only (ω1) and (ω2);
the extra conditions are added for the purpose of describing locality, as will become
clear below. Still, the conditions allow for a wide range of examples. One of them,
corresponding to the usual polynomial growth behavior in energy, is the following for
some β > 0:

ω(p) = β log(1 + p), (z) = 2β
(
Log(i + z) + 1

)
. (2.8)

A second class of examples with stronger growth in p is, with 0 < α < 1,

ω(p) = pα cos
απ

2
, (z) = i−α(z + i)α. (2.9)

We will now discuss spaces of functions with support in fixed regions of spacetime
and with high-energy behavior controlled by a given indicatrix ω. Let O be an open set
in Minkowski space. We set D(O) := C∞

0 (O) and

Dω(O) := { f ∈ D(O) : θ �→ eω(cosh θ) f ±(θ) is bounded and square integrable}.
(2.10)

We don’t equip Dω(O) with a topology; see however [18,19] on how to topologize
similarly defined spaces. The interesting question for us is the size of Dω(O). If ω is of
the form (2.8), or bounded by this, then eω(p) is bounded by a power of p, and evidently
Dω(O) = D(O). For faster growing ω, it is not clear a priori that Dω(O) contains any
non-zero element. But in fact, it is condition (ω3) that guarantees nontriviality: One
even finds “local units” in Dω(O), i.e., functions f with 0 ≤ f ≤ 1, with f = 1
on any given compact set K ⊂ O, and f = 0 outside any given neighborhood of K
([19, Theorem 1.3.7] holds analogously). By using convolutions with such functions,
one finds that Dω(O) is actually dense in D(O), in the D(O) topology.

For functions inDω(O), one can derive Paley-Wiener type estimates on their Fourier
transform [19, Sec 1.4]. We use the following variant in our context, where the Fourier
transform is defined as in (2.7), and where the regionO is specifically the standard right
wedge,

W = {x ∈ R
2 : x1 > |x0|}. (2.11)

Proposition 2.2. Let ω be an analytic indicatrix and f ∈ Dω(W). Then f − extends
to an analytic function on the strip S(0, π), continuous on its closure, and one has
f −(θ + iπ) = f +(θ). For fixed � ∈ N0, there exists c > 0 such that

∣∣∣d
� f −

dζ �
(θ + iλ)

∣∣∣ ≤ c(cosh θ)�e−ω(cosh θ)/aω for all θ ∈ R, λ ∈ [0, π ]. (2.12)
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Proof. Since f has compact support, f̃ and f ± are actually entire, and the relation
f −(ζ ± iπ) = f +(ζ ) follows by direct computation. We first prove the bound (2.12) in
the case � = 0. To that end, we consider the function g on S(0, π) defined by

g(ζ ) := f −(ζ )e(sinh ζ )/aω . (2.13)

(Note that sinh( · ) maps the strip into the upper half plane.) For ζ = θ + iλ in the closed
strip, one has

Re(sinh ζ )/aω ≤ ω(|sinh ζ |) + bω/aω ≤ ω(cosh θ) + bω/aω, (2.14)

where (ω5) and (ω1) have been used. Since f ∈ Dω(W), it follows that

sup
θ∈R

|g(θ)| ≤ ebω/aω sup
θ∈R

|eω(cosh θ) f −(θ)| < ∞. (2.15)

That is, g is bounded on R, and by a similar computation involving f + and (ω4), it is
bounded on the line R + iπ as well. In the interior of the strip, we know that f −(ζ ) is
bounded since supp f ⊂ W; therefore,

|g(θ + iλ)| ≤ eω(cosh θ)+bω/aω sup
ζ ′∈S(0,π)

| f −(ζ ′)|, (2.16)

where (2.14) has been employed. We note that ω(p) = o(p) as p → ∞ due to (ω3),
(ω1). Using this in (2.16), we can employ a Phragmén-Lindelöf argument to show that g
is actually bounded on the strip, and takes its maximum at the boundary. (We can apply
[20, Theorem 3] to the subharmonic function log |g|.) In other words,

| f −(ζ )| ≤ c |e−(sinh ζ )/aω | for all ζ ∈ S(0, π) (2.17)

with some c > 0. We estimate

Re(sinh ζ ) ≥ ω(| sinh ζ |) ≥ ω(cosh θ − 1) ≥ ω(cosh θ) − ω(1), (2.18)

where (ω5), (ω1), (ω2) have been used. Inserted into (2.17), this gives (2.12) for � = 0.
For � > 0, we proceed as follows. Fix some ζ = θ + iλ ∈ S(0, π). We estimate the

derivative of f at ζ using Cauchy’s formula: For any 0 < t < π ,

∣∣∣d
� f −

dζ �
(ζ )

∣∣∣ ≤ �! t−� sup
|ζ−ζ ′|=t

| f −(ζ ′)|. (2.19)

Note that here ζ ′ lies in S(−π, 2π) but not necessarily in S(0, π), so that we will need
to obtain estimates for f − on this extended strip. To that end, choose s > 0 such that
supp f ⊂ W ′

s = W ′ + (0, s), and set h(x) := f ((0, s) − x), noting that

f −(ζ ′ ± iπ) = eiμs sinh ζ ′h−(ζ ′). (2.20)

Since h ∈ Dω(W), the result (2.12) for � = 0 applies to both h and f . From (2.20) it
then follows that

∀ζ ′ = θ ′ + iλ′ ∈ S(−π, 2π) : | f −(ζ ′)| ≤ c e−ω(cosh θ ′)/aω eμs cosh θ ′|sin λ′| (2.21)
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with some c > 0. Inserting into (2.19), this yields for large θ ,

∣∣∣d
� f −

dζ �
(ζ )

∣∣∣ ≤ c �! t−� eμst cosh(θ+t)e−ω(cosh(θ−t))/aω . (2.22)

We now choose t = 1/ cosh θ . With this t , we can find c′ > 0 such that cosh(θ − t) ≥
cosh θ − c′, cosh(θ + t) ≤ cosh θ + c′ for all θ . Employing (ω2), we obtain a constant
c′′ > 0 such that ∣∣∣d

� f −

dζ �
(ζ )

∣∣∣ ≤ c′′(cosh θ)�e−ω(cosh θ)/aω . (2.23)

For large −θ , the computation is analogous. This yields (2.12). ��

2.3. Quadratic forms and operator expansions. Wewill now define a space of quadratic
forms on (dense subsets of) H and other structures related to a fixed indicatrix ω, and
we will recall how these quadratic forms can be expanded in Zamolodchikov-Faddeev
operators as in (1.3). In most parts, this summarizes the setting and main results of [10].

We first introduce some norms on distributions,2 relating to the indicatrix ω. For
f ∈ D(Rm+n)′, we set

‖ f ‖m×n := sup
{∣∣

∫
f (θ , η)g(θ)h(η)dθdη

∣∣ :
g ∈ D(Rm), h ∈ D(Rn), ‖g‖2 ≤ 1, ‖h‖2 ≤ 1

}
, (2.24)

‖ f ‖ω
m×n :=

1

2
‖(θ , η) �→ e−ω(E(θ)) f (θ , η)‖m×n

+
1

2
‖(θ , η) �→ f (θ , η)e−ω(E(η))‖m×n (2.25)

where these expressions are finite; here E(θ) := p0(θ)/μ. We also consider the related,
but ω-independent norm for f ∈ D(Rk),

‖ f ‖× := sup
{∣∣∣

∫
dθ f (θ)g1(θ1) · · · gk(θk)

∣∣∣ : g1, . . . , gk ∈ D(R), ‖g j‖2 ≤ 1
}
.

(2.26)
We note the computational rule [13, Lemma 2.8]

‖θ �→ f (θ)
∏
j

f j (θ j )‖× ≤ ‖ f ‖×
∏
j

‖ f j‖∞. (2.27)

For test functions g ∈ D(Rk), we also set

‖g‖ω
2 := ‖θ �→ eω(E(θ))g(θ)‖2. (2.28)

Further, we repeat the relevant ω-related structures on the Hilbert space level. We denote
Hω := {ψ ∈ H : ‖eω(H/μ)ψ‖ < ∞}. For n ∈ N0, we write Hω

n := Hω ∩ Hn , and

2 As in [10], we will usually write all distributions as integrals of formal kernels. This is convenient since
many of them will actually be boundary values of analytic functions. We will also often denote these kernels
like maps, e.g., θ �→ f (θ), although they are of course not maps in the strict sense; the purpose is to indicate
the “formal integration variables” where needed.
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Hω,f := ∪nHω
n ; the latter space is dense inH. ByQω, we denote the space of sesquilinear

forms A : Hω,f ×Hω,f → C such that for any n ∈ N0,

‖A‖ω
n := 1

2
‖P f

n Ae
−ω(H/μ)P f

n‖ +
1

2
‖P f

n e
−ω(H/μ)AP f

n‖ < ∞. (2.29)

We also recall the representation of the Zamolodchikov-Faddeev algebra that under-
lies our models [3]. We define modified creation and annihilation operators z†(θ), z(η)

by their action on ψ ∈ Hn ∩D(Rn) as

(z†(θ)ψ)(λ) =
√
n + 1

(n + 1)!
∑

σ∈Sn+1

Sσ (λ)δ(θ − λσ(1))ψ(λσ(2), . . . , λσ(n+1)),

(z(η)ψ)(λ) = √
n ψ(η,λ).

(2.30)

They fulfill the Zamolodchikov relations

z†(θ)z†(θ ′) = S(θ − θ ′)z†(θ ′)z†(θ),

z(η)z(η′) = S(η − η′)z(η′)z(η),

z(η)z†(θ) = S(θ − η)z†(θ)z(η) + δ(θ − η)1.

(2.31)

More precisely, the “smeared” operators z#( f ) = ∫
dθ f (θ)z#(θ) are operator-valued

distributions. For fixed f , the z†( f ), z( f ) are unbounded operators on Hf , but they
fulfill the bounds

‖eω(H/μ)z†( f )e−ω(H/μ)P f
n‖ ≤

√
n + 1‖ f ‖ω

2 ,

‖eω(H/μ)z( f )e−ω(H/μ)P f
n‖ ≤

√
n‖ f ‖ω

2 .
(2.32)

We showed in [10, Prop. 2.1] that one can define multilinear extensions of “normal
ordered monomials” of these annihilators and creators, z†(θ1) . . . z†(θm)z(η1) . . . (ηn).
Namely, if f ∈ D(Rm+n)′ with ‖ f ‖ω

m×n < ∞, then

z†mzn( f ) =
∫

dθ dη f (θ , η) z†(θ1) . . . z†(θm)z(η1) . . . z(ηn) (2.33)

is a well-defined quadratic form in Qω. The importance of these expressions lies in the
fact that any quadratic form can be expanded into a series of such monomials z†mzn( f ).
We summarize this result, see [10, Sec. 3] for details.

Theorem 2.3. For any m, n ∈ N0, let fm,n ∈ D(Rm+n)′ with ‖ fm,n‖ω
m×n < ∞. Then,

there is a unique A ∈ Qω such that

A =
∑
m,n

1

m!n! z
†mzn( fm,n). (2.34)

Conversely, given A ∈ Qω, there are unique fm,n ∈ D(Rm+n)′ that are S-symmetric (in
the first m and last n variables separately) and fulfill ‖ fm,n‖ω

m×n < ∞ such that (2.34)
holds.
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The “expansion coefficients” fm,n depend linearly on A; we will denote them as
fm,n[A] in the following. They can be expressed as matrix elements of A in a very
explicit way, which we will now recall.

As in [10], a contractionC is defined as a tripleC = (m, n, {(l1, r1), . . . , (l|C|, r|C|)}),
wherem, n ∈ N0, 1 ≤ l j ≤ m,m+1 ≤ r j ≤ m+n.WedenoteCm,n the set of contractions
with fixed m and n. Associated to a fixed contraction C , we consider the quantities

�C (θ) := z†(θ1) · · · ẑ†(θl1) · · · ̂z†(θl|C |) · · · z†(θm)Ω, (2.35)

rC (η) := z†(ηn) · · · ̂z†(ηr1−m) · · · ̂z†(ηr|C |−m) · · · z†(η1)Ω, (2.36)

δC (θ, η) :=
|C|∏
j=1

δ(θl j − ηr j−m), (2.37)

SC (θ, η) :=
( |C|∏

j=1

r j−1∏
p j=l j+1

S(m)
p j ,l j

) ∏
ri<r j
li<l j

S(m)
l j ,ri

, (2.38)

RC (θ, η) :=
|C|∏
j=1

(
1−

m+n∏
p j=1

S(m)
l j ,p j

(θ, η)
)
, (2.39)

where the hat marks elements that are left out of the sequence, and where S(m)
p,q (ξ) =

S(ξp − ξq) if p, q ≤ m or p, q > m, and S(m)
p,q (ξ) = S(ξq − ξp) otherwise. With these

notions, we have [10, Eq. (3.16)]

f [A]m,n(θ, η) =
∑

C∈Cm,n

(−1)|C|δC SC (θ , η) 〈�C (θ), A rC (η)〉. (2.40)

Using this explicit expression, one can prove directly that the fm,n[A] are S-symmetric
in θ and in η, that ‖ fm,n[A]‖ω

m×n < ∞ if A ∈ Qω, and one can compute the behavior of
fm,n[A] if A is subjected to translations, boosts and space-time reflections. Details can
be found in [10, Sec. 3], and we will refer to there directly when we use those results in
the present paper.

2.4. Locality. We now come to the description of locality in our models, i.e., to observ-
ables associated with certain regions of spacetime. The regions of interest are, first of
all, wedges: the standard right wedgeW as defined in (2.11); its causal complement, the
standard left wedgeW ′; and their translates,Wx := W + x andW ′

y := W ′ + y = (Wy)
′

(x, y ∈ R
2). Further, we will consider the double cone Ox,y = Wx ∩ W ′

y , with
x, y ∈ R

2, y − x ∈ W . In particular, we are interested in the double cone of radius
r > 0 centered at the origin, defined as Or = W−r ∩W ′

r , where Wr := W(0,r) etc.
As suggested by Schroer [21], we take our basic observables to be localized in wedge

regions (say, in W) rather than in bounded regions, since wedge-local observables are
easier to describe. More precisely, we define a quantum field φ as

φ( f ) := z†( f +) + z( f −), f ∈ S(R2). (2.41)
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This is very similar to the free scalar field, and in fact, it reduces to the free field if
S = 1. In the general case, the field φ still retains a number of properties that are
known from the free field [22]: It is defined on Hf , and essentially selfadjoint for real-
valued f . Moreover, φ has the Reeh-Schlieder property, transforms covariantly under
the representationU (x, λ) of the proper orthochronous Poincaré group, and it solves the
Klein-Gordon equation.

However, for generic S, the field φ(x) is not localized at the space-time point x in the
usual sense. Rather, we can understandφ(x) as localized in the infinitely extendedwedge
W ′

x in the following way. Let us introduce the “reflected” Zamolodchikov operators,

z(θ)′ := J z(θ)J, z†(θ)′ := J z†(θ)J, (2.42)

and define another field φ′ as, f ∈ S(R2),

φ′( f ) := Jφ( f j )J, f j (x) := f (−x). (2.43)

The two fields φ, φ′ are now relatively wedge-local [22, Prop. 2]: For real-valued test
functions f, gwith supp f ⊂ W ′ and supp g ⊂ W , one finds that the closuresφ( f )− and
φ′(g)− spectrally commute. (This is obtained by computing the commutation relations
of z, z† with z′, z†′; we will recall these later in Sect. 4.3.) Hence, we can understand
φ(x) and φ′(y) as being localized in the shifted left wedge W ′

x and in the shifted right
wedge Wy , respectively.

Instead of working with unbounded (closed) operators, it is often convenient to work
with associated algebras of bounded operators. We consider the following von Neumann
algebra:

M = {eiφ( f )− | f ∈ SR(R2), supp f ⊂ W ′}′ = {eiφ( f )− | f ∈ Dω
R
(W ′)}′. (2.44)

(The subscript R means the restriction to real-valued functions, and the second equality
follows due to continuity of the map S(R2) → B(H), f �→ exp iφ( f )− in the strong
operator topology, cf. [23, Prop. 5.2.4].) As shown in [3, Theorem 3.2], we can consis-
tently interpret the algebraM as localized in the right wedgeW , so that the canonically
defined algebras for other wedges,

A(Wx ) := U (x, 0)MU (x, 0)∗, A(W ′
y) := JA(W−y)J, (2.45)

fulfill causal commutation relations. We can then define the algebra for a double cone
Ox,y = Wx ∩W ′

y by intersection,

A(Ox,y) := A(Wx ) ∩A(W ′
y), (2.46)

and for other bounded regions O by additivity. The resulting map O �→ A(O) then
fulfills all standard axioms of the algebraic approach to quantum field theory [3, Sec. 2].

It is not a priori clear that the algebras A(O) are nontrivial for bounded regions O,
i.e., that they contain any operator except for multiples of the identity. However, Lechner
proved [3] that at least for O of a certain minimum size, and under a mild regularity
condition for the scattering function S, the vacuum vector Ω is indeed cyclic forA(O),
of which it follows that the algebras are type III1 factors [24]. This is important in our
context, since it is (to the best of our knowledge) the only existence result so far for
compactly localized observables in the models at hand, as long as S is not constant.

In this paper, we will discuss locality properties in terms of the decomposition in
Theorem 2.3, and therefore, on the level of quadratic forms. We need a notion of locality
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that is applicable to such quadratic forms A ∈ Qω. This will be defined relative to the
wedge-local fields φ, φ′, that is, based on commutators of A with these fields.

To that end, we first need to clarify in which sense these commutators are defined.
If f ∈ Dω(R2), then z†( f +) maps Hω,f into Hω,f , so that Az†( f +) is well-
defined as a quadratic form; indeed, one finds from (2.29), (2.32) that ‖Az†( f +)‖ω

k ≤√
k + 1‖ f +‖ω

2 ‖A‖ω
k+1.Analogously, the product z

†( f +)A, and products of Awith z( f −),
φ( f ), φ′( f ) from the left or the right are well-defined within Qω, and hence we can
also define the commutator [A, φ( f )] := Aφ( f ) − φ( f )A ∈ Qω. This enables us to
introduce our notion of locality.

Definition 2.4. Let A ∈ Qω. We say that A is ω-local inWx if

[A, φ( f )] = 0 for all f ∈ Dω(W ′
x ), as a relation in Qω. (2.47)

A is called ω-local inW ′
x if J A

∗ J is ω-local inW−x . A is called ω-local in the double
cone Ox,y = Wx ∩W ′

y if it is ω-local in both Wx and W ′
y .

ω-locality (say, in W) is a priori a weaker notion than locality in the usual sense.
For example, it does not tell us whether A commutes with unitary operators exp iφ( f )−
with supp f ⊂ W ′, or with a general element B ∈ M′. In fact, we would not be able
to write down such commutators in a meaningful way if A is just a quadratic form.
For bounded operators, ω-locality reduces to the usual notion: If A ∈ B(H), then A is
ω-local inW if and only if A ∈ M, and it is ω-local inOx,y if and only if A ∈ A(Ox,y)

as defined in (2.46). (This is easy to see by using closability of φ( f ), φ′( f ) and density
arguments.) In view of applications, it would be favorable to have a similar statement
for unbounded, but closable operators A. This can in fact be achieved [13, Prop. 4.4],
and will be presented elsewhere [25]. For our present purposes, we give the following
characterization of ω-locality.

Lemma 2.5. Let ω be an indicatrix, and A ∈ Qω. The following conditions are equiva-
lent:

(i) A is ω-local inW .
(ii) [A, φ( f )] = 0 for all f ∈ Dω(W ′), as a relation in Qω.
(iii) For everyψ, χ ∈ Hω,f , there exists an indicatrixω′ such that 〈ψ, [A, φ( f )]χ〉 = 0

for all f ∈ Dω′
(W ′).

(iv) For every ψ, χ ∈ Hω,f , it holds that 〈φ(x)ψ, Aχ〉 = 〈ψ, Aφ(x)χ〉 for x ∈ W ′, in
the sense of tempered distributions.

Proof. We first note that in (iv), the expression 〈ψ, Aφ(x)χ〉 can indeed be understood
as a tempered distribution (and similar arguments then apply to 〈φ(x)ψ, Aχ〉). Namely,
since ‖A‖ω

k < ∞, the matrix element 〈ψ, Aχ〉 is well defined (by continuous extension)
if ψ, χ ∈ Hf and at least one of ψ, χ is inHω. Noting that φ( f )Hf ⊂ Hf , and that the
map S(R2) → H, f �→ φ( f )χ is continuous, it then follows that f �→ 〈ψ, Aφ( f )χ〉
is continuous in the Schwartz topology.—Now (i)⇔(ii) is true by definition; (ii)⇒(iii)
is trivial with ω′ = ω; (iii)⇒(iv) follows due to density of Dω′

(W ′) in D(W ′); and
(iv)⇒(ii) holds since Dω(W ′) ⊂ S(R2). ��

3. Meromorphic Functions on Tube Domains

As may be evident from the introduction, our analysis will rely in large parts on the
theory of analytic and meromorphic functions in several variables. Specifically, most of
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these functions will be defined on a tube domain T (B) = R
k +iBwith some setB ⊂ R

k .
We will now establish some tools which are helpful in this context. First, this concerns
the casewhereB is a priori not an open set, but a collection of certain lines (or a graph). In
Sect. 3.1,we discuss how analytic functions on such domains can be understood, and how
well-known results—Bochner’s tube theorem and the maximum modulus principle—
extend to this situation. Second, we need to understand the structure of first-order poles
and the residues of meromorphic functions on tube domains, and control the directional
dependence of the boundary distributions near such poles; this will be done in Sect. 3.2.

3.1. CR functions on graphs. By a graph G in R
k , we mean a collection of points in

R
k (the nodes), together with a set of straight lines connecting some of these nodes

(the edges). For our purposes, the nodes will always lie on the grid πZ
k , and the edges

will always be axis-parallel lines between next neighbors; that is, the lines have the
parametrized form λ(s) = ν + se( j), where e( j) is a standard basis vector of R

k , where
0 < s < π , and ν as well as ν + πe( j) are nodes of G. The tube over G, denoted T (G),
is the set of all ζ = θ + iλ with θ ∈ R

k and λ on an edge of G.
A CR function F on T (G) is a smooth function on T (G) which is analytic along

the edges; that is, with an edge λ(s) parametrized as above, F is analytic in ζ j in the
specified domain, while being smooth in all (real) variables. We moreover demand that
the boundary values of F and of all its derivatives exist at the nodes, s ↘ 0 and s ↗ π ,
and that where several edges end in a common node, the different limits of F agree. We
can therefore just refer to the boundary value at a node, without indicating the direction
of the limit. We will however sometimes write F(·+ iν)|G for the boundary value at node
ν obtained within G, in case that several graphs play a role.

ACR distribution F on T (G) is, correspondingly, a function analytic along the edges
while being a D(Rk−1)′ distribution in the remaining real variables.3 Similar to the
above, we demand that all boundary values at nodes exist in the sense of distributions,
and agree where several edges meet in a common node.

We will derive some general properties of CR functions on T (G), which are mostly
extensions of standard results adapted to our framework.

First of all, we remark that CR distributions can be “regularized” by convolution with
test functions: Let F be a CR distribution on G, and let g = (g1, . . . , gk) ∈ D(R)k . We
define

(F ∗ g)(ζ ) :=
∫

F(ζ − ξ)g1(ξ1) . . . gk(ξk) d
kξ . (3.1)

Then F ∗ g is a CR function on T (G), as follows from continuity in g j in the D(R)

topology.
Further, CR distributions obey a version of the tube theorem: they can be extended

analytically to the convex hull of the graph. To formulate that, let us denote with Ḡ ⊂ R
k

the closure of the edges of G (or equivalently, the edges together with the nodes, as a
subset of R

k). Following [27], we define

ich G := conv(Ḡ)◦, the interior (of the convex hull) of G,

ach G := (ich G) ∪ Ḡ, the almost convex hull of G.
(3.2)

Lemma 3.1. Let G be a connected graph and F a CR distribution on T (G). Then, F
extends to an analytic function on ich G with distributional boundary values on ach G.

3 See [26, Ch. I, Appendix 2, §3] for a discussion of distributions depending analytically on a parameter.
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Proof. We apply results from [27]. In terms used there, Ḡ is a connected, locally closed,
locally starlike set. For any g ∈ D(R)k , the convolution F ∗ g is a CR function on
T (G). Indeed, at nodes where two edges along the same axis meet, F ∗ g continues
analytically in the respective variable across the node (by Morera’s theorem). Thus, at
any node, F ∗ g is a smooth function (possibly with single-sided derivatives) defined
on lines in at most k independent directions in Im ζ ; it is then easy to see that F ∗ g is
smooth in the sense of Whitney. Hence F ∗ g is a CR’ function on T (Ḡ) in the sense
of [27, Definition 2.12]. Applying [27, Theorem 6.1] yields an extension G of F ∗ g to
T (ach G), analytic in T (ich G).

It remains to show that G = F ∗ g with some function F analytic in T (ich G). We
sketch this argument briefly.4 One first observes that at each fixed λ ∈ ich G, the map
g �→ G(iλ) is continuous in theD-topology (cf. the remark in [27, Sec. 12]). Smearing
also in λ within ich G, we obtain a distribution in 2k variables which—due to analyticity
of G—fulfills the Cauchy-Riemann equations in the weak sense. But that implies that
this distribution has an analytic kernel [29, p. 72], which yields the desired function F .

��
As a next point, due to [27, Sec. 11, Corollary], the maximum modulus principle

holds for CR functions on T (G) if G is connected:5

sup
ζ∈T (achG)

|F(ζ )| = sup
ζ∈T (Ḡ)

|F(ζ )|. (3.3)

We want to obtain a similar maximum modulus principle for L2-like bounds of a CR
distribution F , more precisely for the norm ‖ · ‖× as defined in Eq. (2.26). This can be
achieved with standard techniques.

Lemma 3.2. Let G be a connected graph and F a CR distribution on T (G). For the
extension of F to T (ach G), it holds that

sup
λ∈achG

‖F( · + iλ)‖× = sup
λ∈Ḡ

‖F( · + iλ)‖×. (3.4)

Proof. For g = (g1, . . . , gk) ∈ D(R)k with ‖g j‖2 ≤ 1, we define F ∗ g(ζ ) as in (3.1);
this function is analytic on T (ich G) and a CR function on T (G). We note

‖F( · + iλ)‖× = sup
g
|F ∗ g(iλ)| = sup

g,θ
|F ∗ g(θ + iλ)|. (3.5)

Applying the maximum modulus principle (3.3) to F ∗ g then immediately yields (3.4).
��

We further prove a result on pointwise bounds on analytic functions, estimated by
the supremum of their norm ‖ · ‖×. This is not restricted to CR functions on graphs, but
is useful in conjunction with Lemma 3.2. It follows by use of the mean value property;
see e.g. [3, Prop. 4.4] for a similar application of this technique.

Proposition 3.3. Let I ⊂ R
k be open and F analytic on T (I). Then, for all ζ ∈ T (I),

|F(ζ )| ≤ (4/π)k kk/4

dist(Im ζ , ∂I)k/2
sup
λ∈I

‖F( · + iλ)‖×. (3.6)

4 See, e.g., [28, p. 530] for a more detailed exposition in a similar situation.
5 Given some mild conditions on the growth of F , one can use a Phragmén-Lindelöf argument to show that

the supremum in (3.3) can actually be restricted to the tube over the nodes of G [13, Eq. (C.6)].
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Proof. For fixed ζ ∈ T (I), let Dt ⊂ C be the disc around the origin with radius
t := 1

2k
−1/2 dist(Im ζ , ∂I). The polydisc (Dt ×· · ·×Dt )+ζ is then contained in T (I).

The mean value property for analytic functions yields

F(ζ ) = (π t2)−k
∫
Dt

dθ1dλ1 . . .

∫
Dt

dθkdλk F(ζ + θ + iλ)

= (π t2)−k
∫
[−t,t]×k

dλ
(
F ∗ χλ

)
(ζ + iλ), (3.7)

where χλ(θ) = ∏k
j=1 χ j (θ j ), and where χ j is the characteristic function of the interval

[−(t2−λ2j )
1/2,+(t2−λ2j )

1/2]. Since ζ + iλ ∈ T (I) by construction, we can estimate

|(F ∗ χλ)(ζ + iλ)| ≤ sup
λ′∈I

‖F( · + iλ′)‖× ·
k∏
j=1

‖χ j‖2. (3.8)

(Cf. Eq. (3.5); that relation can be continued to L2 functions g j by continuity.) Taking
into account ‖χ j‖2 ≤

√
2t , we find from (3.7),

|F(ζ )| ≤ (π t2)−k(2t)k(2t)k/2 sup
λ′∈I

‖F( · + iλ′)‖×, (3.9)

which implies the desired result after inserting the definition of t . ��

3.2. Residues and boundary distributions in several variables. For our analysis, we
make use of meromorphic functions in several variables and of their residues. Let us fix
the corresponding notations and conventions. In this paper, all poles of meromorphic
functions will be located on hyperplanes, z · a = c with a ∈ R

k, c ∈ C. Specifically, if
a(1), . . . , a(p) ∈ R

k are pairwise linear independent and c1, . . . , cp ∈ C, then we say
that F has first-order poles at the hyperplanes z · a( j) = c j if

F(z)
p∏

j=1

(z · a( j) − c j ) (3.10)

is analytic in a neighborhood of these hyperplanes. Regarding residues of F , we choose
our notational convention as follows:

res
z·a( j)=c j

F = (
(z · a( j) − c j )F(z)

)∣∣∣
z·a( j)=c j

(3.11)

The residues of F on one of the hyperplanes are then again meromorphic on a lower-
dimensional complex manifold, which we can identify withC

k−1. Note that the notation
(3.11), while convenient for us, needs to be taken with some care: For α ∈ R\{0}, we
have

res
z·(αa)=αc

F = α res
z·a=c

F, (3.12)

although z · a = c and z · (αa) = αc describe the same geometric set. (We accept this
slightly unintuitive feature for simplicity; the alternative would be to work with oriented
manifolds, and with differential forms rather than functions.)
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In this section, we will investigate the boundary values of meromorphic functions (in
the sense of distributions). Suppose that F ismeromorphic around the real hyperplaneR

k

and fulfills bounds of the type |F(x + iεb)| ≤ cε−� with some � > 0, locally uniformly
in x ∈ R

k and in b within some open convex cone. (This is evidently fulfilled in the
situation (3.10).) Then the boundary value

F(x + i0b) := lim
ε↘0

F(x + iεb) (3.13)

exists in D(Rk)′ and is independent of b inside the chosen cone [30, Sec. 125 Z].
As shorthand, we will often write the boundary distribution just as F(x + i0) without
specifying the cone, just noting that the boundary is approached from a certain part of the
analyticity region. The notation F(x + i y + i0) with fixed y ∈ R

k should be understood
accordingly by translating the argument.

Evidently, if b is varied across connected components of the analyticity region—e.g.,
if b is taken across a pole hyperplane—then the boundary value can change with b. We
aim to describe this in more detail. To that end, recall that if F is a function of one
complex variable, analytic near the real axis except for a first-order pole at z = 0, then
we have the relation between boundary distributions,

F(x − i0) = F(x + i0) + 2π iδ(x) res
z=0

F(z). (3.14)

A first multi-dimensional generalization is formulated as follows.

Lemma 3.4. Let U ⊂ R
k be a neighborhood of zero, C ⊂ R

k an open convex cone, and
a ∈ R

k . Let F be meromorphic on T (U) and (z · a)F(z) analytic on T (C ∩ U). Let
b+, b−, b⊥ ∈ C so that ±a · b± > 0, a · b⊥ = 0. Then it holds that

F(x + i0b−) = F(x + i0b+) + 2π iδ(x · a) res
z·a=0

F(x + i0b⊥). (3.15)

Proof. We assume without loss of generality that U is a ball around the origin, that
b+, b−, b⊥ ∈ U , and that a = e(1). We prove the distributional equation (3.15) when
evaluated on test functions g ∈ D(K), where K is a fixed convex compact set. Let
G(z) := (z · a)F(z); by hypothesis, this function is analytic on T (C ∩ U), and we have
G(z) = resz·a=0 F(z) if z · a = 0.

We will first prove (3.15) under the additional assumption that G and its gradient,
∇G, have continuous extensions to K + i(C̄ ∩ Ū). We compute,∫ (

F(x + i0b−) − F(x + i0b+)
)
g(x)dx

= lim
ε↘0

∫ (G(x + iεb−)

x1 + iεb−1
− G(x + iεb+)

x1 + iεb+1

)
g(x)dx. (3.16)

With the notation x = (x1, x̂) and the substitution y = x1/ε, we can rewrite this as

(3.16) = lim
ε↘0

∫
dy d x̂

ib+1G(z−ε ) + ib−1 G(z+ε ) + y
(
G(z−ε ) − G(z+ε )

)
(y + ib−1 )(y + ib+1 )

g(εy, x̂), (3.17)

where z±ε := (εy + iεb±1 , x̂ + iε b̂±). In the numerator of (3.17), we have due to the
support properties of g that |y| < c/ε with some c > 0, and for ε ≤ 1,

|G(z−ε ) − G(z+ε )| ≤ ε‖b+ − b−‖ sup
{‖∇G(z)‖ : z ∈ K + i(C̄ ∩ Ū)

}
. (3.18)
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By our continuity assumption, the supremum is finite and |G(z±ε )| is bounded as well;
thus we obtain an integrable majorant in (3.17). Applying the dominated convergence
theorem, we arrive at

(3.16) =
∫

dy
ib+1 + ib−1

(y + ib−1 )(y + ib+1 )

∫
d x̂ G(0, x̂)g(0, x̂). (3.19)

Using ±b±1 > 0, the integral in y can be solved to give 2π i , which proves (3.15) under
our additional continuity hypothesis.

In the general case, after passing to slightly smaller C and U , we can achieve that G
and ∇G are continuous on K + i(C̄ ∩ Ū) except possibly at Im z = 0. However, since
G is meromorphic in T (U), it is locally given as a quotient of two analytic functions,
where the denominator has zeros of finite order; therefore, we can find c > 0, � > 0
such that

|G(z)| + ‖∇G(z)‖ ≤ c‖Im z‖−� for all z ∈ K + i(C̄ ∩ Ū), Im z �= 0. (3.20)

Now let ∂⊥ = b⊥ · ∇ be the partial derivative in direction of b⊥, and G(−m) an mth-
order antiderivative ofG with respect to that direction. (The antiderivative is constructed
by repeated integration; note that convexity of C enters here.) Due to (3.20), we know
that for sufficiently large m, both G(−m) and ∇G(−m) are continuous on K + i(C̄ ∩ Ū),
including the points where Im z = 0. (Cf. [31, Theorem IX.16] for this technique.) Since
b⊥ · a = 0, we have

∫
F(x + iεb±)g(x)dx = (−1)m

∫
G(−m)(x + iεb±)

x1 + iεb±1
∂m⊥ g(x) dx. (3.21)

We can now apply our previous analysis to G(−m), ∂m⊥ g in place of G, g, yielding

∫ (
F(x + i0b−) − F(x + i0b+)

)
g(x)dx = (−1)m2π i

∫
G(−m)(0, x̂)∂m⊥ g(0, x̂) d x̂.

(3.22)
Observing that G(−m)(0, x̂) = limε→0 G(−m)(0, x̂ + iε b̂⊥), exchanging the limit with
the integration sign, and then integrating by parts gives the result (3.15). ��

Using the above lemma, we can derive a similar formula for a function that has
first-order poles at several distinct hyperplanes.

Proposition 3.5. Let U ⊂ R
k be a neighborhood of zero, C ⊂ R

k an open convex cone,
and a(1), . . . , a(p) ∈ R

k pairwise linear independent. Let F be meromorphic on T (U)

and (z · a(1)) · · · (z · a(p))F(z) analytic on T (C ∩ U). For any M ⊂ {1, . . . , p}, let
bM ∈ C such that a( j) · bM = 0 if j ∈ M, a( j) · bM > 0 if j �∈ M. Let c ∈ C such that
a( j) · c < 0 for all j . Then it holds that

F(x + i0 c) =
∑

M⊂{1,...,p}
(2iπ)|M|( ∏

m∈M
δ(x · a(m))

)
res

z·a(m1)=0
. . . res

z·a(m|M|)=0
F(x + i0 bM )

(3.23)
with the notation M = {m1, . . . ,m|M|}.
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Proof. We use induction on p. For p = 1, the claim follows directly from Lemma 3.4
with b+ = b∅, b− = c, b⊥ = b{1}.

Suppose now that the statement holds for p− 1 in place of p. After possibly renum-
bering the vectors a( j), we can choose c′ ∈ C such that a(1) · c′ > 0, but a( j) · c′ < 0
for j ≥ 2. Within the tube over the cone C− := { y ∈ C : y · a( j) < 0 for j ≥ 2}, the
function (z · a(1))F(z) is analytic. Applying Lemma 3.4 with b+ = c′, b− = c, yields

F(x + i0c) = F(x + i0c′) + 2π iδ(x · a(1)) res
z·a(1)=0

F(x + i0c′′) (3.24)

where c′′ ∈ C− is chosen such that a(1) · c′′ = 0. To the term F(x + i0c′) we can apply
the induction hypothesis with respect to the cone C+ := { y ∈ C : y · a(1) > 0}, noting
that (z · a(2)) · · · (z · a(p))F(z) is analytic on T (C+ ∩ U). This yields

F(x + i0c′) =
∑

M⊂{2,...,p}
(2iπ)|M|( ∏

m∈M
δ(x · a(m))

)
res

z·a(m1)=0
. . . res

z·a(m|M|)=0
F(x + i0 bM ).

(3.25)
Further, the residue of F in (3.24) is a meromorphic function on the hyperplane z ·
a(1) = 0, which we can identify with C

k−1; the function is analytic when multiplied
with (z · a(2)) · · · (z · a(p)). Applying the induction hypothesis with respect to the cone
C0 := {x ∈ C : x · a(1) = 0} yields

res
z·a(1)=0

F(x + i0c′′) =
∑

M⊂{2,...,p}
(2iπ)|M|( ∏

m∈M
δ(x · a(m))

)

× res
z·a(m1)=0

. . . res
z·a(m|M|)=0

res
z·a(1)=0

F(x + i0 bM∪{1}).

(3.26)

Inserting (3.25) and (3.26) into (3.24), and relabeling the summation index M in (3.26)
as M ∪ {1}, we arrive at the proposed result. ��

4. Locality in the Left Wedge

As announced in the introduction, we will now proceed to characterize the locality of
observables in terms of analyticity properties of their expansion coefficients fm,n[ · ].
In this section, we will consider observables localized in the left wedge W ′

r with tip at
(0, r) on the time-0 axis.

This characterization is formulated as the equivalence of three conditions. We for-
malize locality of a quadratic form A in W ′

r as a condition (AW). Given such A, we
will be able to extend its expansion coefficients fm,n[A] to CR distributions Tm+n on a
certain graph, fulfilling a set of conditions (TW). These distributions Tm+n can further be
extended to analytic functions Fm+n on the convex hull of the graph, fulfilling conditions
(FW). From functions Fk fulfilling (FW), we can in turn construct a quadratic form A
which fulfills (AW). All three conditions will depend on the parameter r ∈ R and on the
choice of an analytic indicatrix ω; we do not explicitly denote this dependence.

Let us now define the three conditions in detail. This is simple to do for condition
(AW) on the level of quadratic forms, since we already introduced a corresponding
notion of locality in Definition 2.4.

Definition 4.1. A ∈ Qω fulfills condition (AW) if it is ω-local inW ′
r .
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(a) (b)

Fig. 2. The graph Gk
+ and its interior Ik+

The next locality condition is formulated in the language of CR distributions on
graphs in R

k , as introduced in Sect. 3.1. The graph in question, which we denote Gk
+, is

given as follows: Its nodes are λ(k, j) = (0, . . . , 0, π . . . , π) ∈ R
k , with j entries of π ,

and 0 ≤ j ≤ k. Its edges are those between λ(k, j) and λ(k, j+1). Thus Gk
+ has k + 1 nodes

and k edges; see Fig. 2 for the cases k = 2 and k = 3. The locality condition reads as
follows.

Definition 4.2. A collection T = (Tk)∞k=0 of distributions on T (Gk
+) fulfills condition

(TW) if the following holds for any fixed k, and with θ ∈ R
k arbitrary:

(TW1) Analyticity: Tk is a CR distribution on T (Gk
+).

(TW2) S-symmetry: For any σ ∈ Sk , we have Tk(θ) = Sσ (θ)Tk(θ
σ ).

(TW3) Bounds at nodes: For any j ∈ {0, . . . , k},
‖Tk( · + iλ(k, j))‖ω

(k− j)× j < ∞.

(TW4) Bounds at edges: There exists c > 0 such that for any λ ∈ Ḡk
+,

‖eiμr
∑

j sinh ζ j e−
∑

j (sinh ζ j )Tk(ζζζ )
∣∣
ζ= ·+iλ‖× ≤ c.

Note that (TW2) is a rewritten version of Eq. (1.5) in the introduction. Conditions
(TW3) and (TW4) encode the high-energy behavior of the observable and, in the case
of (TW4), the geometric position of the localization region W ′

r .
Finally, we consider analytic functions on the tube domain T (Ik

+), where

Ik
+ := ich Gk

+ = {λ : 0 < λ1 < · · · < λk < π} (4.1)

is the interior of (the convex hull of) the graph above. This corresponds to the domain
R
k − iΛk in the notation of [3]. We formulate a locality condition in these terms.

Definition 4.3. A collection F = (Fk)∞k=0 of functions T (Ik
+) → C fulfills condition

(FW) if the following holds for any fixed k, and with θ ∈ R
k, ζ ∈ C

k arbitrary:

(FW1) Analyticity: Fk is analytic on T (Ik
+).

(FW2) S-symmetry: For any σ ∈ Sk , we have Fk(θ + i0) = Sσ (θ)Fk(θ
σ + i0).

(FW3) Bounds at nodes: For each j ∈ {0, . . . , k}, we have
‖Fk

( · +iλ(k, j) + i0
)‖ω

(k− j)× j < ∞.
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(FW4) Pointwise bounds: There exist c, c′ > 0 such that for all ζ ∈ T (Ik
+),

|Fk(ζ )| ≤ c dist(Im ζ , ∂Ik
+)

−k/2
k∏
j=1

exp
(
μr Im sinh ζ j + c′ω(cosh Re ζ j )

)
.

Here +i0 denotes the boundary distribution when approached from within Ik
+.

Again, (FW2) corresponds toEq. (1.5), and (FW3), (FW4) encodehigh-energybehav-
ior of the observable and the position of the wedge. The conditions (AW), (TW), (FW)
are now equivalent in the following precise sense.

Theorem 4.4. Let r ∈ R and an analytic indicatrix ω be fixed.

(i) If A ∈ Qω fulfills (AW), then there are distributions Tk fulfilling (TW) such that

f [A]m,n(θ, η) = Tm+n(θ, η + iπ). (4.2)

(ii) If Tk fulfill (TW), then there are functions Fk fulfilling (FW) such that for 0 ≤ j ≤ k,

Tk
(
θ + iλ(k, j)) = Fk

(
θ + iλ(k, j) + i0

)
. (4.3)

(iii) If Fk fulfill (FW), then there is a quadratic form A fulfilling (AW) such that

f [A]m,n(θ , η) = Fm+n(θ + i0, η + iπ − i0). (4.4)

Again, ±i0 denotes approach from within Ik
+ .

Before proceeding to a proof, let us first note that the conditions (AW), (TW), (FW)
as well as the statement of the theorem behave “covariantly” under translations along
the time-0 axis. Namely, if A fulfills (AW) for some r , and if s ∈ R, then A′ :=
U ((0, s), 0)AU ((0, s), 0)∗ fulfills (AW) with r + s instead of r . Also, one finds [10,
Prop. 3.9] that fm,n[A′](θ , η) = exp(isp1(θ, η + iπ)) fm,n[A](θ , η). Similarly, if Tk
fulfill (TW) for some r , then T ′

k(ζ ) := exp(isp1(ζ ))Tk(ζ ) fulfills (TW) for r + s, and
likewise for F ′

k(ζ ) := exp(isp1(ζ ))Fk(ζ ). (With respect to (TW3) and (FW3), one notes
here that exp(isp1(ζ )) is a factorizing phase factor on the nodes of the graph.) Therefore,
if Theorem 4.4 holds for some r , then it holds for r + s as well.

Thus, it suffices to prove Theorem 4.4 in the case r = 0. We will do this for the three
parts of the theorem individually in the following three subsections.

4.1. (AW) ⇒ (TW). In order to show the first part of Theorem 4.4, we start from a
quadratic form A ∈ Qω which is ω-local in the wedge W ′, and study the analyticity
properties of its expansion coefficients fm,n[A] along the graph Gk

+. As a first step, we
prove the following lemma which is very similar to [3, Lemma 4.1], but generalized
to our class of observables. Note that this is formulated as a statement about matrix
elements of observables in the right wedge W .

Lemma 4.5. Let A ∈ Qω be ω-local in W , and ψ ∈ Hω
m, χ ∈ Hω

n . There exists an
analytic function K : S(0, π) → C whose boundary values satisfy

K (θ) = 〈ψ, [z†(θ), A]χ〉, K (θ + iπ) = 〈ψ, [A, z(θ)]χ〉 (4.5)

in the sense of distributions. Moreover, there is a constant cmn such that for any 0 ≤
λ ≤ π ,

‖K ( · + iλ)‖2 ≤ cmn ‖ψ‖ω
2 ‖χ‖ω

2 ‖A‖ω
m+n+1 . (4.6)
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Proof. The proof mainly follows [3], so we confine ourselves to a sketch; see [13,
Lemma 6.2] for details in our case. One considers the time zero fields ϕ, π of φ [3,
Eq. (3.18)], and the corresponding expectation values

k−( f ) := 〈ψ, [ϕ( f ), A]χ〉, k+( f ) := 〈ψ, [π( f ), A]χ〉. (4.7)

As in Lemma 2.5(iv), these k± are Schwartz distributions with support in the right half-
line. Hence their Fourier-Laplace transforms k̃± are analytic on the lower half plane and
fulfill Paley-Wiener type bounds [31, Theorem IX.16]. Our function K is then given by

K (ζ ) := 1

2

(
μ cosh(ζ ) k̃−(−μ sinh ζ ) − i k̃+(−μ sinh ζ )

)
, (4.8)

which works out to have the proposed boundary values (4.5).
The bound (4.6) follows for λ = 0 and λ = π by direct estimates from (4.5),

using (2.29). For general λ, it is then a consequence of the three-lines theorem, as in [3,
Eq. (4.15)]. ��

This allows us to find analytic continuations of the distributions fm,n[A] if A is
localized in the left wedge, again very similar to [3].6

Proposition 4.6. If A ∈ Qω is ω-local in W ′, then there are CR distributions Tk on
T (Gk

+) such that
Tk(θ + iλ(k, j)) = f [A]k− j, j (θ), 0 ≤ j ≤ k. (4.9)

Further, there exists a constant ck such that for all λ ∈ Ḡk
+,

‖θ �→ Tk(θ + iλ)e−
∑

j ω(cosh θ j )‖× ≤ ck‖A‖ω
k . (4.10)

Proof. Again, we confine ourselves to a sketch, and refer the reader to [13, Lemma 6.3]
for details. One shows that for any m ≥ 1, n ≥ 0, the distribution fm,n[A](θ , η) has
an analytic continuation in the variable θm to the strip S(0, π), with its distributional
boundary value at Im θm = π given by

f [A]m,n(θ1, . . . , θm + iπ, . . . , θm+n) = f [A]m−1,n+1(θ1, . . . , θm, . . . , θm+n). (4.11)

This is obtained by rewriting the definition of fm,n[A] as a sum of matrix elements
of commutators [z†(θ), J A∗ J ], as in [3, Lemma 4.2]. One then applies Lemma 4.5 to
obtain the desired analytic continuation.

Using (4.11) repeatedly, we can construct Tk as the analytic continuation of fk,0[A]
along T (Gk

+) with the boundary values (4.9). Since these are independent of direction,
the Tk are CR distributions. By direct computation from the representation of fm,n[A]
in [3, Lemma 4.2], using the estimate (4.6), we can also obtain

∣∣∣
∫

dθ f [A]m,n(θ1, . . . , θm + iλ, . . . , θm+n)g1(θ1) · · · gm+n(θm+n)

∣∣∣
≤ cm+n‖A‖ω

m+n‖gm‖2
∏
j �=m

‖g j‖ω
2 (4.12)

for any g1, . . . , gm+n ∈ D(R), with some cm+n > 0 depending only on m + n. The
proposed bounds (4.10) then follow immediately. ��

6 Note that our coefficients fm,n [A] are equal to 〈J A∗ J 〉conm+n,m in the notation of [3]; correspondingly, [3]
obtains the analogue of our Proposition 4.6 for localization in the right wedge.
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We are now in the position to prove that the Tk above fulfill all conditions (TW),
summarizing the result of the subsection.

Proof of Theorem 4.4(i). Let r = 0. Given A which is ω-local in W ′, Proposition 4.6
gives us distributions Tk with the boundary values (4.2) and the analyticity property
(TW1). S-symmetry (TW2) follows since fk,0[A] has this property [10, Prop. 3.4]. The
bounds (TW3) are immediate, since

‖Tk( · + iλ(k, j))‖ω
(k− j)× j = ‖ f [A]k− j, j‖ω

(k− j)× j < ∞; (4.13)

see [10, Prop. 3.3]. For (TW4), consider the distribution

T ′
k(ζ ) := Tk(ζ ) exp(−

∑
j

(sinh ζ j )), (4.14)

which is CR on T (Gk
+). By (ω5) and (ω2), the exponential factor fulfills the estimate

|e−(sinh ζ j )| ≤ e−ω(cosh Re ζ j )eω(1). (4.15)

Therefore, from (4.10) and (2.27), T ′
k fulfills the bound

‖T ′
k( · + iλ)‖× ≤ ek·ω(1)ck‖A‖ω

k , (4.16)

which implies (TW4). ��

4.2. (TW)⇒ (FW). For the second part of Theorem 4.4, we start from CR distributions
Tk on T (Gk

+) and extend them as analytic functions to the interior of the graph. The
techniques for this have already been introduced in Sect. 3.1.

Proof of Theorem 4.4(ii). Let Tk fulfill (TW) with r = 0. Using Lemma 3.1, we can find
analytic functions Fk on T (Ik

+) which have Tk as boundary distributions, as required
for (4.3). The Fk evidently fulfill (FW1). Also, (FW2) and (FW3) are immediate from
(TW2) and (TW3), respectively. For (FW4), we consider the function

F ′
k(ζ ) := Fk(ζ ) exp

(−∑
j

(sinh ζ j )
)
. (4.17)

From condition (TW4), we know that

‖F ′
k( · + iλ)‖× ≤ c for all λ ∈ Ḡk

+. (4.18)

Due to the maximum modulus principle, Lemma 3.2, the same bound holds for all
λ ∈ Ik

+. Proposition 3.3 then yields

|F ′
k(θ + iλ)| ≤ c′ dist(λ, ∂Ik

+)
−k/2. (4.19)

Since Re(sinh(θ j + iλ j )) ≤ aωω(cosh θ j )+ bω by (ω5), this gives the bounds (FW4)
for Fk . ��
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4.3. (FW)⇒ (AW). For the last part of Theorem 4.4, we set out from analytic functions
Fk fulfilling (FW) with r = 0, and construct a quadratic form A which is ω-local inW ′.
In fact, we define A by its series expansion,

A :=
∞∑

m,n=0

∫
dθ dη

m!n! Fm+n(θ + i0, η + iπ − i0)z†m(θ)zn(η). (4.20)

Wefirst remark that (4.20) iswell-defined. Setting gmn(θ, η) := Fm+n(θ+i0, η+iπ−i0),
it follows from (FW3) that ‖gmn‖ω

m×n < ∞. Thus, as a consequence of Theorem 2.3,
the series in (4.20) gives a well-defined quadratic form A ∈ Qω.

To prove that A is ω-local in W ′, we need to establish that its commutator with the
wedge-local field φ′(x) vanishes if x > 0; we do this on the level of the expansion terms
in (4.20). To that end, we first recall the commutation relations of z, z† with z′, z†′ [22,
Lemma 4]. For g ∈ H1, the following holds in the sense of operator-valued distributions
on Hf :

[z(g)′, z†(θ)] = Bg,θ , [z†(g)′, z(θ)] = −(Bḡ,θ )∗ (4.21)

[z(g)′, z(θ)] = 0, [z†(g)′, z†(θ)] = 0, (4.22)

where Bg,θ = ⊕∞
n=0B

g,θ
n , and where Bg,θ

n acts on Hn as a multiplication operator,

Bg,θ
n (θ1, . . . , θn) = g(θ)

n∏
j=1

S(θ − θ j ). (4.23)

We show a generalization of (4.21) to normal-ordered products of annihilators and
creators.

Lemma 4.7. Let g ∈ H1. The following commutation relations hold in the sense of
operator-valued distributions on Hf :

[z(g)′, z†(θ1) . . . z†(θm)] =
m∑
j=1

( m∏
l= j+1

S(θ j − θl)
)
z†(θ1) . . . ẑ†(θ j ) . . . z†(θm)Bg,θ j ,

(4.24)

[z†(g)′, z(θ1) . . . z(θm)] = −
m∑
j=1

( j−1∏
l=1

S(θl − θ j )
)
(Bḡ,θ j )∗z(θ1) . . . ẑ(θ j ) . . . z(θm).

(4.25)

Proof. Our proof of Eq. (4.24) is based on induction onm. Form = 1, Eq. (4.24) reduces
to (4.21), and is proved as in [22, Lemma 4].

Assume now that Eq. (4.24) holds for m − 1 in place of m. Using the induction
hypothesis and Eq. (4.21), we have

[z(g)′, z†(θ1) . . . z†(θm−1)z
†(θm)]

= [z(g)′, z†(θ1) . . . z†(θm−1)]z†(θm) + z†(θ1) . . . z†(θm−1)[z(g)′, z†(θm)]

=
m−1∑
j=1

( m−1∏
l= j+1

S(θ j − θl)
)
z†(θ1) . . . ẑ†(θ j ) . . . z†(θm−1)B

g,θ j z†(θm)

+z†(θ1) . . . z†(θm−1)B
g,θm . (4.26)
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With the help of the exchange relation

Bg,θ j z†(θm) = S(θ j − θm)z†(θm)Bg,θ j , (4.27)

which can be computed directly from the definitions, we obtain (4.24) from (4.26). Now
(4.25) follows from (4.24) by taking adjoints. ��

Equipped with these tools, we can compute [A, φ′(x)] for a generic A ∈ Qω in terms
of its expansion coefficients.

Proposition 4.8. Let A ∈ Qω, g ∈ D(R2). In the sense of matrix elements on Hω,f ×
Hω,f , it holds that

[A, φ′(g)] =
∞∑

m,n=0

∫
dθdη

m!n!
∫

dξ
(
f [A]m,n+1(θ , ξ, η)z†m(θ)(Bg+,ξ )∗zn(η)

− f [A]m+1,n(θ, ξ, η)z†m(θ)Bg−,ξ zn(η)
)
. (4.28)

Note that the infinite sums above are actually finite in matrix elements; convergence
questions do not arise.

Proof. We need to compute the commutator

[A, φ′(g)] =
[ ∞∑
m,n=0

∫
dθdη

m!n! f [A]m,n(θ , η)z†m(θ)zn(η), z†(g+)′ + z(g−)′
]
. (4.29)

Using (4.22), (4.24) and (4.25), this expands to

[A, φ′(g)] =
∑

m≥0,n≥1

∫
dθdη

m!n! f [A]m,n(θ , η)

n∑
j=1

( j−1∏
l=1

S(ηl − η j )
)

×z†m(θ)(Bg+,η j )∗z(η1) . . . ẑ(η j ) . . . z(ηn)

−
∑

m≥1,n≥0

∫
dθdη

m!n! f [A]m,n(θ , η)

m∑
j=1

( m∏
l= j+1

S(θ j − θl)
)

×z†(θ1) . . . ẑ†(θ j ) . . . z†(θm)Bg−,θ j zn(η). (4.30)

We set η j =: ξ in the first sum and θ j =: ξ in the second sum, and permute the argument
of fm,n[A] so that they read (θ̂ , ξ, η) and (θ , ξ, η̂) respectively, noting that this cancels
the S-factors in the sums due to S-symmetry of the fm,n[A] [10, Prop. 3.4]. This yields:

[A, φ′(g)] =
∑

m≥0,n≥1

∫
dθdη̂

m!(n − 1)!
∫

dξ f [A]m+n(θ , ξ, η̂)z†m(θ)(Bg+,ξ )∗zn−1(η̂)

−
∑

m≥1,n≥0

∫
d θ̂dη

(m − 1)!n!
∫

dξ f [A]m+n(θ̂ , ξ, η)z†m−1(θ̂)Bg−,ξ zn(η).

(4.31)

The result (4.28) now follows by a relabeling of the summation indices. ��
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We will now prove from conditions (FW) that the operator A, as given as in (4.20), is
localized in W ′. To that end, we need to show that [A, φ′(g)] vanishes if g has support
in W . The idea for the proof is based on Proposition 4.8, and works as follows. For
our specific A, we have fm,n[A](θ , η) = Fm+n(θ + i0, η + iπ − i0); it follows that
fm+1,n[A](θ , ξ + iπ, η) = fm,n+1[A](θ, ξ, η). Also, we have (at least formally) that

Bg−,ξ+iπ = (Bg+,ξ )∗, since g−(θ + iπ) = g+(θ). Inserting this into Eq. (4.28), we see
that [A, φ′(g)] vanishes if it is allowed to shift the integration contour in ξ from R to
R + iπ .

Whether it is actually permitted to shift this integration contour is crucially dependent
on the growth behavior of the analytic functions involved, and by this means, dependent
on the localization regions of Fk and g. We will therefore first analyze this growth
behavior carefully. To that end, let m, n, q ∈ N0, f ∈ D(Rm+n), and ν ∈ R

q be fixed
(until Lemma 4.10 inclusive). We define

K (ξ) :=
( q∏

j=1

S(ξ − ν j )
) ∫

dθdη f (θ, η)Fm+n+1(θ + i0, ξ, η + iπ − i0). (4.32)

By our assumptions on Fk , this K is analytic for ξ ∈ S(0, π), with distributional bound-
ary values. We can derive bounds for K near the boundary.

Lemma 4.9. If Fm+n+1 fulfills (FW1) and (FW4) for r = 0, then there exist c, c′ > 0
such that

|K (ξ + iλ)| ≤ c ec
′ω(cosh ξ)

(λ(π − λ))(m+n)/2
, 0 < λ < π. (4.33)

Proof. We set h := min(λ, π − λ)/(m + n + 1) and νL := (1, 2, . . . ,m), νR :=
(n, . . . , 2, 1). For fixed ξ, λ, θ , η, set

G(z) := Fm+n+1(θ + zhνL , ξ + iλ, η − zhνR). (4.34)

This function is analytic in z ∈ R + i(0, 1), and for the imaginary part of the argument
of Fm+n+1, we have

dist
(
(h Im z, . . . ,mh Im z, λ, π − nh Im z, . . . , π − h Im z), ∂Ik

+

) ≥ h Im z. (4.35)

Then, for any ρ > 0, condition (FW4) yields constants cρ (dependent on ρ, but not on
ξ, λ) and c′ such that

|G(z)| ≤ cρe
c′ω(cosh ξ)(h|Im z|)−k/2

for all z ∈ (−ρ, ρ) + i(0, 1), ‖θ‖ ≤ ρ, ‖η‖ ≤ ρ. (4.36)

Using standard techniques—see, e.g., [32, Prop. 4.2]—one obtains from (4.36) the fol-
lowing estimate for the boundary distribution:

∣∣∣
∫

G(x + i0)g(x) dx
∣∣∣ ≤ cg,ρh

−k/2ec
′ω(cosh ξ) ≤ cg,ρ ec

′ω(cosh ξ)

(3(m + n + 1)λ(π − λ))k/2
(4.37)

where the constant cg,ρ may depend on the test function g ∈ D(−ρ, ρ) and the cutoff ρ,
but not on G (and hence not on ξ, λ, θ , η). In view of the definition (4.32) of K , where
the factors S(ξ −ν j ) are bounded functions on the strip S(0, π), this yields the proposed
result. ��
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This enables us to describe details of the proposed shifting of integral contours.

Lemma 4.10. If Fm+n+1 fulfills (FW1) and (FW4) for r = 0, then there exists an analytic
indicatrix ω′ ≥ ω such that for all g ∈ Dω′

(W),∫
K (ξ + i0)g−(ξ)dξ =

∫
K (ξ + iπ − i0)g+(ξ)dξ. (4.38)

Proof. We set ω′(p) := (aω + 2)(c′ω(p) + m+n+6
2 log(1 + p)), with c′ as in Lemma 4.9.

One checks that ω′, as a linear combination of the analytic indicatrices ω and (2.8)
with positive coefficients, is itself an analytic indicatrix, with a′ω = aω + 2. Then, from
Lemma 4.9 and Proposition 2.2, we know that for fixed g ∈ Dω′

(W) and ε > 0, there
is cε > 0 such that

∀λ ∈ [ε, π − ε] : ∣∣g−(ξ + iλ)K (ξ + iλ)
∣∣ ≤ cε

(1 + cosh ξ)(m+n+6)/2
. (4.39)

Hence by Cauchy’s formula,

∀ε > 0 :
∫

dξ K (ξ + iε)g−(ξ + iε) =
∫

dξ K (ξ + iπ − iε)g+(ξ − iε). (4.40)

We will show below that

lim
ε↘0

∫
K (ξ + iε)g−(ξ + iε) dξ =

∫
K (ξ + i0)g−(ξ) dξ, (4.41)

which then holds similarly for the upper boundary. The result now follows from (4.40)
as ε ↘ 0.—For Eq. (4.41), we need to show that

lim
ε↘0

∫
dξ K (ξ + iε)

(
g−(ξ) − g−(ξ + iε)

) = 0. (4.42)

Let K (−�) be the �th antiderivative of K , normalized to K (−�)(i π
2 ) = 0. Using the

bounds of Lemma 4.9, we find by integration that for � > (m + n)/2, with some c′′ > 0,

|K (−�)(ξ + iλ)| ≤ c′′(1 + |ξ |)�ec′ω(cosh ξ). (4.43)

Integrating by parts in (4.42), this yields

lim
ε↘0

∣∣∣∣
∫

dξ K (ξ + iε)
(
g−(ξ)− g−(ξ + iε)

)∣∣∣∣
= lim

ε↘0

∣∣∣∣
∫

dξ K (−�)(ξ + iε)
(
∂�
ξ g

−(ξ)− ∂�
ξ g

−(ξ + iε)
)∣∣∣∣

≤ c′′ lim
ε↘0

ε

∫
dξ (1 + |ξ |)�ec′ω(cosh ξ) sup

0<λ<π

|∂�+1
ξ g−(ξ + iλ)| = 0 (4.44)

if we can show that the integral in the last line exists. Indeed, using the bounds on ∂�+1
ξ g−

from Proposition 2.2, we know that for all λ ∈ (0, π),

|∂�+1
ξ g−(ξ + iλ)| ≤ c′′′(cosh ξ)�+1e−ω′(cosh ξ)/aω′

≤ c′′′(cosh ξ)�−(m+n)/2−2e−c′ω(cosh ξ), (4.45)

which makes the integral convergent if we choose m + n < 2� ≤ m + n + 2. ��
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This finally allows us to prove that A is local inW ′. We summarize:

Proof of Theorem 4.4(iii). Let Fk be functions fulfilling (FW) with r = 0. We define
A ∈ Qω by (4.20); we already noted that this is well-defined due to (FW3). Also, the
expansion coefficients Fm+n(θ + i0, η + iπ − i0) are S-symmetric in θ , η separately;
this follows from (FW2) by analytic continuation. Hence, by the uniqueness result in
Theorem 2.3, we have fm,n[A](θ, η) = Fm+n(θ + i0, η + iπ − i0) as required for (4.4).

We claim that A is ω-local inW ′. By Lemma 2.5(iii), it suffices to show that for fixed
ψ, χ ∈ Hω,f , one has 〈ψ, [A, φ′(g)]χ〉 = 0 for all g ∈ Dω′

(W), with an indicatrix
ω′ suitably chosen. By density arguments, we can assume that ψ, χ have fixed particle
number and compact support in rapidity space. Using Proposition 4.8, and considering
a summand with fixed m, n in Eq. (4.28), it suffices to show that for g ∈ Dω′

(W), for
fixed q ∈ N0, and for fixed f ∈ D(Rm+n),

∫
dθdη

∫
dξ f (θ , η)

(
Fm+n+1(θ + i0, ξ + iπ − i0, η + iπ − i0)(Bg+,ξ

q )∗

−Fm+n+1(θ + i0, ξ + i0, η + iπ − i0)Bg−,ξ
q

)
= 0. (4.46)

With the definitions (4.23) and (4.32), this claim rewrites to
∫

K (ξ + i0)g−(ξ)dξ =
∫

K (ξ + iπ − i0)g+(ξ)dξ. (4.47)

But this is guaranteed by Lemma 4.10. ��

5. Locality in a Double Cone

We now extend our analysis in the previous section to a characterization of observables
localized in compact regions, more precisely, in a standard double cone Or of radius r
around the origin. Again, we will formulate locality conditions (AD), (TD), and (FD) for
quadratic forms, CR distributions, and analytic functions, respectively, and show their
equivalence.

Since Or ⊂ W ′
r , these new conditions need to be stronger than (AW), (TW) and

(FW) before; but the way in which these conditions are strengthened involves some
entirely new aspects. In particular, the functions Fk will now extend meromorphically
to all of C

k . Moreover, as indicated in (1.9), the residue of Fk at the kinematic poles
ζn − ζm = iπ (m < n) have a prescribed value involving Fk−2, thus giving relations
between the Fk of different orders. We will refer to these as recursion relations.

Let us formulate the strengthened locality conditions. Theoneon the level of quadratic
forms is again easy to state.

Definition 5.1. A ∈ Qω fulfills condition (AD) if it is ω-local in Or .

On the other hand, the conditions for CR distributions differ noticeably from those in
the wedge local case; in particular, they refer to a larger graph. Besides Gk

+ as introduced
in Sect. 4, we also consider the graph Gk− = Gk

+ − π , i.e., with all components of the
nodes and edges shifted by −π . We label the nodes of Gk− as λ(k,− j) := λ(k,k− j) − π

( j = 0, . . . , k). Further, let Gk
0 be the union of Gk

+ and Gk−, noting that the two graphs
have λ(k,0) = 0 as a common node. See Fig. 3 for a sketch of these graphs in k = 2 and
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(a) (b)

Fig. 3. The graphGk
0 , composed ofGk

+ and its translateGk−, and the graphGk
1 which arises fromGk

0 by periodic
continuation

k = 3 dimensions. We remark at this point that the graphs can alternatively be written
as follows:

Gk
+ = {edges : 0 ≤ λ1 ≤ · · · ≤ λk ≤ π}, (5.1)

Gk− = {edges : −π ≤ λ1 ≤ · · · ≤ λk ≤ 0}, (5.2)

Gk
0 = {edges : −π ≤ λ1 ≤ · · · ≤ λk ≤ λ1 + π ≤ 2π}. (5.3)

(Our shorthand notation {edges : C(λ)} denotes the graph containing all those next-
neighbor edges on the grid πZ

k where the condition C(λ) is true for all λ on the edge;
the nodes of the graph are the end points of these edges.)

The CR distributions Tk will now be defined on Gk
0 rather than Gk

+. Besides an appro-
priate extension of the previous conditions (TW) to this graph, we will also need to
add a periodicity condition on Gk

0 , which will give rise to (1.8) later, and a form of the
recursion relations mentioned above. This relation involves the factors SC and RC as
defined in (2.38) and (2.39).

Definition 5.2. A collection T = (Tk)∞k=0 of distributions on T (Gk
0 ) fulfills condition

(TD) if the following holds for any fixed k, and with θ ∈ R
k arbitrary:

(TD1) Analyticity: Tk is a CR distribution on T (Gk
0 ).

(TD2) S-symmetry: For any σ ∈ Sk , we have Tk(θ) = Sσ (θ)Tk(θ
σ ).

(TD3) Periodicity: Tk(θ + iλ(k,−k)) = Tk(θ + iλ(k,k)).

(TD4) Recursion relations: For any 0 ≤ m ≤ k,

Tk(θ + iλ(k,−m)) =
∑

C∈Cm,k−m

(−1)|C|δC SC RC (θ)Tk−2|C|(θ̌ + iλ(k−2|C|,m−|C|)),

where θ̌ = (θm+1, . . . , θ̂r1 , . . . , θ̂r|C | , . . . , θk, θ1, . . . , θ̂l1 , . . . , θ̂l|C | , . . . , θm).
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(TD5) Bounds at nodes: For any j ∈ {0, . . . , k},
‖Tk( · + iλ(k, j))‖ω

(k− j)× j < ∞, ‖Tk( · + iλ(k,− j))‖ω
j×(k− j) < ∞.

(TD6) Bounds at edges: There exists c > 0 such that for any λ ∈ Ḡk±,

‖e±iμr
∑

j sinh ζ j e−
∑

j (± sinh ζ j )Tk(ζζζ )
∣∣
ζ= ·+iλ‖× ≤ c.

On the level of analytic functions Fk , locality in a double cone implies ameromorphic
(but in general not analytic) extension to the entire multi-variable complex plane. The
analyticity region is Im ζ1 < · · · < Im ζk < Im ζ1 + 2π , except for the kinematic poles
mentioned above; outside this region, further singularities of Fk will arise from poles
of the scattering function S outside the physical strip. Apart from the pole structure,
reflected in the recursion relations, an S-periodicity condition as in (1.8) is needed.

Definition 5.3. A collection F = (Fk)∞k=0 of functions C
k → C̄ fulfills conditions (FD)

if the following holds for any fixed k, and with ζ ∈ C
k arbitrary:

(FD1) Analyticity: Fk is meromorphic onC
k , and analytic where Im ζ1 < · · · < Im ζk <

Im ζ1 + π .
(FD2) S-symmetry: For any σ ∈ Sk , we have Fk(ζ ) = Sσ (ζ )Fk(ζ

σ ).

(FD3) S-periodicity: Fk(ζ + 2iπe( j)) =
( k∏
i=1
i �= j

S(ζi − ζ j )
)
Fk(ζ ).

(FD4) Recursion relations: The Fk have first order poles at ζn − ζm = iπ , where
1 ≤ m < n ≤ k, and one has with ζ̂ = (ζ1, . . . , ζ̂m, . . . , ζ̂n, . . . , ζk),

res
ζn−ζm=iπ

Fk(ζ ) = − 1

2π i

( n∏
j=m

S(ζ j − ζm)
)(

1−
k∏

p=1

S(ζm − ζp)
)
Fk−2(ζ̂ ).

(FD5) Bounds at nodes: For each j ∈ {0, . . . , k} and � ∈ {−1, 0}, we have
‖Fk

( · +iλ(k, j+k�) + i0
)‖ω

(k− j)× j < ∞.

Here +i0 denotes approach from inside the region of analyticity as in (FD1).
(FD6) Pointwise bounds: There exist c, c′ > 0 such that for all ζ ∈ T (Ik±):

|Fk(ζ )| ≤ c dist(Im ζ , ∂Ik±)−k/2
k∏
j=1

exp
(
μr | Im sinh ζ j | + c′ω(cosh Re ζ j )

)
.

Analogous to (4.1),we have denotedIk− := ichGk−. Note that (FD2), (FD3) and (FD4)
are strengthened versions of (1.7), (1.8) and (1.9), respectively, but that these stronger
conditions may always be obtained from the weaker ones by using (1.7) repeatedly.

Equivalence of the three conditions is formulated as follows, very similar to Theo-
rem 4.4 in the wedge local case.

Theorem 5.4. Let r > 0 and an analytic indicatrix ω be fixed.

(i) If A ∈ Qω fulfills (AD), then there are distributions Tk fulfilling (TD) such that

f [A]m,n(θ , η) = Tm+n(θ, η + iπ), f [J A∗ J ]m,n (θ , η) = Tm+n(θ − iπ , η). (5.4)
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(ii) If Tk fulfill (TD), then there are functions Fk fulfilling (FD) such that for−k ≤ j ≤ k,

Tk
(
θ + iλ(k, j)) = Fk

(
θ + iλ(k, j) + i0

)
. (5.5)

(iii) If Fk fulfill (FD), there is a quadratic form A fulfilling (AD) such that

f [A]m,n(θ , η) = Fk(θ+i0, η+iπ−i0), f [J A∗ J ]m,n (θ , η) = Fk(θ−iπ+i0, η−i0). (5.6)

Again, the notation±i0 denotes approach from inside the analyticity region as appro-
priate.

Comparing with the wedge-local variant in Theorem 4.4, the most apparent change
is that Theorem 5.4 involves both A and J A∗ J . In fact, this will be the main idea of
the proof: Locality in a double cone consists of two pieces of information, namely,
that both A and J A∗ J are localized in the wedge W ′

r . Using Theorem 4.4 for both of
these, and putting these two pieces together, we will show the equivalence of the double
cone locality conditions. As we shall see, the passage from A to J A∗ J , i.e., space-time
reflection, corresponds to passing from Fk to Fπ

k := Fk( · + iπ).
We remark at this point that the conditions are in fact invariant under space-time

reflection in the following sense: If A fulfills (AD), then so does J A∗ J . If functions Fk
fulfill (FD), then Fπ

k fulfill (FD) as well. (This follows by using the periodicity condition
(FD3), noting that the S factors in the conditions depend only on differences of rapidities,
and that | Im sinh(ζ j + iπ)| = | Im sinh(ζ j )|.) On the level of the CR distributions Tk , a
corresponding statement holds, but is more difficult to see directly; it will follow from
our results.

We now proceed to the proof of Theorem 5.4, again handling each of the three
parts in its own subsection. The passage (AD)⇒(TD)⇒(FD) in Sects. 5.1 and 5.2 will
involve an analytic continuation of the coefficients fm,n[A] to larger and larger graphs
and to their interior. Essential features in the geometry of these domains—in particular,
the kinematic poles—become relevant only for k ≥ 3, which makes them harder to
understand intuitively. While we have sketched some of the regions in Figs. 3 and 4, the
reader is invited to review the supplemental animation (Online Resource 1) which gives
a better geometric overview of the respective analyticity domains for k = 3.

5.1. (AD) ⇒ (TD). For constructing the CR distributions Tk from a quadratic from A
that is ω-local inOr , the key technique is to apply Theorem 4.4(i) to both A and J A∗ J .
Proof of Theorem 5.4(i). Let A fulfill (AD). Since A in particular fulfills (AW), we can
apply Theorem 4.4(i) which yields CR distributions Tk on T (Gk

+), fulfilling (TW), with
boundary values as in the first half of (5.4). Now J A∗ J fulfills (AD) and hence (AW)
as well; therefore Theorem 4.4(i) yields another collection of CR distributions T ′

k . We
use this to define Tk on T (Gk−) by

Tk(ζ − iπ) := T ′
k(ζ ). (5.7)

This has the boundary distributions

Tk(θ − iπ , η) = T ′
k(θ , η + iπ) = f [J A∗ J ]m,n (θ , η), (5.8)

which shows the second half of (5.4). For Tk being CR on T (Gk
0 ), it remains to show

that the two boundary values of Tk at the origin agree. By the above, we know that for
real θ ,

Tk(θ)
∣∣
Gk
+
= f [A]k,0 (θ), Tk(θ)

∣∣
Gk−

= f [J A
∗ J ]

0,k (θ). (5.9)
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However, a short computation from (2.40) shows that these are equal:

f [A]k,0 (θ) = 〈z†(θ1) . . . z†(θk)Ω, AΩ〉 = 〈Ω, J A∗ J z†(θk) . . . z†(θ1)Ω〉 = f [J A
∗ J ]

0,k (θ).

(5.10)
This proves (TD1). Similarly, one shows that the boundary values Tk(θ + iλ(k,−k)) and
Tk(θ + iλ(k,k)) agree, yielding the periodicity condition (TD3).

S-symmetry (TD2) of the Tk follows directly from (TW2). For (TD4), we use that
fm,n[J A∗ J ] can be expressed in terms of the fm,n[A] as in [10, Prop. 3.11]. Replacing
the fm,n[ · ] with boundary values of Tk as in (5.4), that expression yields

Tm+n(θ − iπππ, η) =
∑

C∈Cm,n

(−1)|C|δC SC RC (θ , η)Tm+n−2|C|(η̂, θ̂ + iπ). (5.11)

This is exactly (TD4).
The bounds (TD5) and (TD6) follow by combining the known bounds (TW3) and

(TW4) for Tk and T ′
k , noting that a shift of arguments by iπ yields a minus sign in the

exponent in (TW4). ��

5.2. (TD)⇒ (FD). We consider a collection of CR distributions Tk on T (Gk
0 ) fulfilling

conditions (TD). In order to construct meromorphic functions Fk , we start by extending
the Tk to certain larger graphs, using the symmetry relations in conditions (TD).

Let us first consider the graph

Gk
1 := Gk

0 + 2πZ = {edges : λ1 ≤ · · · ≤ λk ≤ λ1 + π}, (5.12)

that is, Gk
1 is Gk

0 with all edges and nodes translated by integer multiples of 2π in all
coordinates simultaneously; cf. Eq. (5.3) and Fig. 3.We continue Tk toT (Gk

1 ) by defining
for n ∈ Z and ζ ∈ T (Gk

0 ),

Tk(ζ + 2inπ) := Tk(ζ ). (5.13)

This is indeed a CR distribution on the graph, since the boundary values Tk(θ + inπ +
i0e(k)) and Tk(θ + inπ − i0e(1)) agree for all n ∈ 2Z + 1 at real θ , due to (TD3).

Next, we consider for 0 ≤ m < k the graph (cf. Fig. 4)

Gk
1,m := Gk

1 + λ(k,−m) = Gk
1 + (−π, . . . ,−π︸ ︷︷ ︸

m

, 0, . . . , 0). (5.14)

One has Gk
1,0 = Gk

1 . We define Tk on T (Gk
1,m) by

Tk(ζ ) := Tk(ζm+1, . . . , ζk, ζ1 + 2iπ, . . . , ζm + 2iπ), (5.15)

noting that for ζ ∈ T (Gk
1,m), the argument on the r.h.s. is in T (Gk

1 ). Combining this for
all m, we obtain Tk as a distribution on the tube over the graph (again see Fig. 4)

Gk
2 :=

⋃
0≤m≤k−1

Gk
1,m = {edges : λ1 ≤ · · · ≤ λk ≤ λ1 + 2π}. (5.16)



1232 H. Bostelmann, D. Cadamuro

(a) (b)

Fig. 4. The graph Gk
2 , composed of Gk

1 and its translates Gk
1,m . The hyperplanes of the kinematic poles,

λn = λm +π , are (partially) shown. Note that in the case k = 2, the function F2 does not actually have a pole
on this hyperplane

It is important here to note the following: While Tk evidently are CR distributions on all
T (Gk

1,m), they are not necessarily CR distributions on T (Gk
2 ). Namely, the two graphs

Gk
1,m and Gk

1,m′ (m > m′) have some nodes in common, given by

(

m′︷ ︸︸ ︷−π . . . − π,

m−m′︷ ︸︸ ︷
0 . . . 0,

k−m︷ ︸︸ ︷
π . . . π)︸ ︷︷ ︸

=:λm∩m′
+�π , � ∈ Z. (5.17)

At these common nodes, the boundary values of Tk from different edges need not agree.
Indeed, let us compute the difference of the boundary values at the point ζ = θ + iλm∩m′

,
setting � = 0. On T (Gk

1,m), we have

Tk(ζ )
∣∣
Gk
1,m

= Tk(θm+1 + iπ, . . . , θk + iπ, θ1 + iπ, . . . , θm′ + iπ, θm′+1 + 2iπ, . . . , θm + 2iπ)

= Tk(θm+1 − iπ, . . . , θk − iπ, θ1 − iπ, . . . , θm′ − iπ, θm′+1, . . . , θm), (5.18)

where we made us of (5.15) and (5.13). Analogously, we find

Tk(ζ )
∣∣
Gk
1,m′

= Tk(θm′+1, . . . , θm, θm+1 + iπ, . . . , θk + iπ, θ1 + iπ, . . . , θm′ + iπ). (5.19)

Note that on the r.h.s. of (5.18) and (5.19), the distribution Tk is evaluated at two dif-
ferent nodes of Gk

0 . The difference of the boundary values (5.18) and (5.19) can now be
computed using condition (TD4); it is in general nonzero and quite intricate to describe.

Nevertheless, we can use the above results in order to construct a continuation of Tk
as meromorphic functions on the tube over the open set

Ik
2 := ich Gk

2 = {λ ∈ R
k : λ1 < . . . < λk < λ1 + 2π}. (5.20)

This is the content of the next proposition.
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Proposition 5.5. Let Tk be distributions fulfilling (TD). Then there exist meromorphic
functions Fk on T (Ik

2 ) which have the boundary values (5.5). They are analytic except
for possible first-order poles at ζn − ζm = iπ,m < n.

Proof. Using the extended Tk constructed above, we define distributions Gk on T (Gk
2 )

by
Gk(ζ ) := Tk(ζ )

∏
j> j ′

(
ζ j − ζ j ′ − iπ

)
. (5.21)

We claim that these are CR distributions on the graph. For that, it remains to show that
their boundary values agree at the nodes Im ζ = λm∩m′

+ �π , see Eq. (5.17). We treat
only the case � = 0; the case � = 1 can then be treated similarly, and for general � the
result can be obtained by periodicity.

For � = 0, we can compute the boundary values in question from (5.18), (5.19)
and (TD4). In fact, this computation simplifies greatly since the polynomial factor in
(5.21) vanishes on the support of δC on the right hand side of (TD4), except for the term
corresponding to the contraction C = (m, n,∅). This leads us to

Gk(ζ )
∣∣
Gk
1,m

= Gk(ζ )
∣∣
Gk
1,m′

. (5.22)

Hence, the Gk are CR distributions on T (Gk
2 ).

We can now apply Lemma 3.1 to the connected graph Gk
2 , which yields an extension

of Gk to an analytic function on T (ich Gk
2 ), with distributional boundary values on

T (ach Gk
2 ). We then define Fk as

Fk(ζ ) := Gk(ζ ) ·
∏
j> j ′

(
ζ j − ζ j ′ − iπ

)−1
, (5.23)

which is evidently analytic on the same domain, except for possible poles at ζn − ζm =
iπ,m < n. Taking the boundary limit to T (Gk

0 ) from within the convex hull of Gk
0 , the

boundary distribution coincides with Tk by construction, i.e., (5.5) holds. ��
As meromorphic functions, we can extend Fk even further, using S-symmetry of

the Tk .

Proposition 5.6. The functions Fk of Proposition 5.5 extend meromorphically to T (Ik
3 ),

where
Ik
3 := {λ ∈ R

k : |λ j − λ j ′ | < 2π for all j, j ′}. (5.24)

They fulfill the S-symmetry condition (FD2).

Proof. For any fixed permutation σ ∈ Sk , we consider the region

Ik
2,σ := {λ ∈ R

k : λσ(1) < · · · < λσ(k) < λσ(1) + 2π}. (5.25)

We define Fk on T (Ik
2,σ ) by

Fk(ζ ) := Fk(ζσ(1), . . . , ζσ(k)) S
σ (ζ ) (5.26)

with Sσ as in Eq. (2.2). Since S, and hence Sσ , is meromorphic for all arguments, this
gives Fk as ameromorphic function on the disjoint regions T (Ik

2,σ ). Since S has no poles

on the real line, we can in fact find a complex neighborhood N of R
k (not necessarily
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tubular) where all Sσ are analytic; hence Fk is analytic in N ∩ T (Ik
2,σ ) for all σ . Due

to (TD2), the boundary distributions at R
k from within all these domains agree. An

application of the edge-of-the-wedge theorem (e.g., in the form of [28]) around each
real point yields an extension of Fk to a possibly smaller complex neighborhoodN ′ ⊂ N
of R

k . That is, Fk is meromorphic on the connected domain

R := N ′ ∪
⋃

σ∈Sk

T (Ik
2,σ ). (5.27)

It follows from the tubular edge-of-the-wedge theorem [33] that the envelope of holo-
morphy of R is conv(R). But this agrees with its envelope of meromorphy [34, Theo-
rem 3.6.6]. Hence Fk continues meromorphically to conv(R) = T (Ik

3 ). ��
Periodicity and S-symmetry of Tk finally allow us to extend Fk to the entire multi-

variable complex plane.

Proposition 5.7. The functions Fk of Proposition 5.5 extend meromorphically to C
k .

They fulfill (FD1), (FD2) and (FD3).

Proof. We define Fk on C
k by

Fk(ζ ) :=
( k∏

�=1

( ∏
j �=�

S(ζ� − ζ j )
)n�

)
Fk(ζ + 2iπn), (5.28)

where n ∈ Z
k is chosen such that ζ + 2iπn ∈ T (Ik

3 ). We need to show that this is well-
defined: It is certainly possible to choose such n for any ζ , but there might be several
such choices. Suppose that, for fixed ζ , there exist n �= n′ such that Im ζ + 2πn ∈ Ik

3
and Im ζ + 2πn′ ∈ Ik

3 . We need to show that

k∏
�=1

( ∏
j �=�

S(ζ� − ζ j )
)n�

︸ ︷︷ ︸
=:Sn(ζ )

Fk(ζ+2iπn) =
k∏

�=1

( ∏
j �=�

S(ζ� − ζ j )
)n′�

︸ ︷︷ ︸
=Sn′ (ζ )

Fk(ζ+2iπn′). (5.29)

Dividing by Sn′(ζ ), and using 2iπ -periodicity of the S-factors, we can assume without
loss of generality that n′ = 0 and Im ζ ∈ Ik

3 . Further, one checks that the factor Sn(ζ )

defined above fulfills Sn(ζ ) = Snρ (ζ ρ) for any permutation ρ. Taking into account
that Fk is known to be S-symmetric by Proposition 5.6, we see that the relation (5.29)
is invariant under permuting the components of ζ , n; hence we can assume that n1 ≤
· · · ≤ nk .

Now, with λ := Im ζ , the conditions λ ∈ Ik
3 and λ + 2πn ∈ Ik

3 imply, cf. (5.24),

∀ j, k : |λ j − λk | < 2π, |λ j − λk + 2π(n j − nk)| < 2π. (5.30)

A short computation shows that n j ∈ {N , N +1} for all j with some fixed N ∈ Z. In the
following, we treat only the case N = 0; the case N = −1 can be handled with similar
arguments, and for all other N we employ 2iπ -periodicity of Fk .

For showing the identity (5.29) between meromorphic functions—where now n =
(0, . . . , 0, 1, . . . , 1) with m entries of 0, and n′ = 0—, it suffices to check it on a real
open set, possibly on the boundary of the domain. Therefore, we can choose Im ζ = 0
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and Im ζ + 2πn ∈ Īk
3 . Inserting Tk as the boundary value of Fk , and using (2.2), it

remains to show that for real θ and in the sense of distributions,

Tk(θ) =
( ∏

�>m

∏
j≤m

S(θ� − θ j )
)
Tk(θ1, . . . , θm, θm+1 + 2π i, . . . , θk + 2π i). (5.31)

On the right hand side, Tk is evaluated on a point of T (Gk
1,m). Using Eq. (5.15), and then

2iπ -periodicity of Tk (5.13), we find

r.h.s.(5.31) =
( ∏

�>m

∏
j≤m

S(θ� − θ j )
)
Tk(θm+1, . . . , θk, θ1, . . . , θm) = Sσ (θ)Tk(θ

σ )

(5.32)
with a certain permutation σ . Since Tk is S-symmetric by (TD2), this proves (5.31).

Now that Fk is known to be well-defined on C
k , it is clear that it is meromorphic

everywhere and analytic on T (ich Gk
1 ), hence (FD1) is fulfilled. (FD2) was shown in

Proposition 5.6, and (FD3) is a special case of (5.28), which extends to all complex
arguments. ��

Now, we want to compute the residues of Fk in order to derive the recursion relations
(FD4). They arise as a consequence of the corresponding condition (TD4).

Proposition 5.8. The first-order poles of Fk at ζn − ζm = iπ,m < n, have residues as
given by (FD4).

Proof. It suffices to prove (FD4) for m = 1, n = k; the general case then follows by
S-symmetry. Since the residues are meromorphic functions on the pole hypersurfaces,
it suffices to verify (FD4) on a real open set. We therefore compare the boundary values
of Fk at the points ζ± = θ + i(0, . . . , 0, π ± 0), where we can assume θ j �= θ j ′ for
j �= j ′ (unless j = 1, j ′ = k). We note that Im ζ− ∈ ich Gk

1 but Im ζ + ∈ ich Gk
1,k−1.

Using (5.15) and the boundary values of Fk as in (5.5), we have

Fk(θ1, . . . , θk−1, θk + iπ − i0) − Fk(θ1, . . . , θk−1, θk + iπ + i0)

= Tk(θ1, . . . , θk−1, θk + iπ) − Tk(θk − iπ, θ1, . . . , θk−1)

= δ(θk − θ1)
(
1−

k∏
p=1

S(θp − θk)
)
Fk−2(θ2, . . . , θk−1), (5.33)

where in the second equality we made use of (TD4) in the case m = 1. Referring to
Lemma 3.4, we can read off the residue of the pole:

res
ζk−ζ1=iπ

Fk(ζ ) = 1

2π i

(
1−

k∏
p=1

S(ζp − ζ1)
)
Fk−2(ζ̂ ). (5.34)

This is exactly (FD4) in the case m = 1, n = k. ��
The only remaining properties to be discussed are the bounds (FD5) and (FD6), which

are easy to obtain from results of Sect. 4. We summarize:

Proof of Theorem 5.4(ii). Let Tk fulfill (TD). We saw in Proposition 5.7 and 5.8 that
these distributions have meromorphic extensions Fk which fulfill (FD1)–(FD4). They
have the proposed boundary values at nodes (Proposition 5.5). The bounds on nodes
(FD5) are a direct consequence of (TD5). Bounds in the interior (FD6) can be obtained
by applying Theorem 4.4(ii) twice, namely to Tk and Tk( · − iπ), which both fulfill
conditions (TW). ��
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5.3. (FD)⇒ (AD). We now set out frommeromorphic functions Fk fulfilling (FD), and
construct an associated local observable A. Before proceeding to the definition of A, let
us first compute the higher-order residues of Fk as a consequence of (FD4). We remind
the reader of the notion of contractions, see Eqs. (2.35)–(2.39).

Lemma 5.9. There holds

res
ηr1−θ�1=0

. . . res
ηr|C |−θ�|C |=0

Fm+n(θ , η + iπ) = (−1)|C|

(2iπ)|C|
SC RC (θ, η)Fm+n−2|C|(θ̂, η̂ + iπ),

(5.35)
where C is the contraction (m, n, {(�1, r1 + m), . . . , (�|C|, r|C| + m)}).
Proof. Our proof uses induction on |C |. We first note that (FD4) in our specific situation
simplifies to

res
ηr−θ�=0

Fm+n(θ, η + iπ) = − 1

2π i
SC1RC1(θ , η)Fm+n−2(θ̂, η̂ + iπ), (5.36)

where C1 = (m, n, {(�, r + m)}). This is just Eq. (5.35) in the case |C | = 1.
Now assume that Eq. (5.35) holds for |C | − 1 in place of |C |. We split C into

two contractions, namely into C ′ = (m, n, {(�2, r2 + m), . . . , (�|C|, r|C| + m)}) and
C1 ∈ Cm−|C ′|,n−|C ′|, |C1| = 1. (Cf. [10, Sec. 3] for details; in notation used there, we
have C = C ′∪̇C1.) Employing the induction hypothesis, we obtain

res
ηr1−θ�1=0

(
res

ηr2−θ�2=0
. . . res

ηr|C |−θ�|C |=0
F(θ, η + iπ)

)

= (−1)|C ′|

(2iπ)|C ′| RC ′ SC ′(θ , η) res
ηr1−θ�1=0

Fm+n−2|C|+2(θ̂, η̂ + iπ)

= (−1)|C|

(2iπ)|C|
RC ′ SC ′(θ , η)RC1 SC1(θ̂, η̂)Fm+n−2|C|( ˆ̂θ, ˆ̂η + iπ), (5.37)

where Eq. (5.36) was used. Note that the argument (θ, η) on the right-hand side needs to
be read on the support of δC . By [10, Lemma 3.2], the factor RC ′ SC ′(θ , η)RC1 SC1(θ̂, η̂)

can then be replaced with RC SC (θ , η), which gives the desired result. ��
Noting that the Fk fulfill in particular (FW), we now take A ∈ Qω to be the quadratic

form constructed in Theorem 4.4(iii). Its expansion coefficients are

f [A]m,n(θ, η) = Fm+n(θ + i0, η + iπ − i0), (5.38)

i.e., the first half of (5.6) is fulfilled. The crucial point is now to establish the second half,
or in other words, the correspondence between the shifted function Fπ

k = Fk( · − iπ)

and the reflected operator J A∗ J .

Proposition 5.10. If the Fk fulfill condition (FD), then the quadratic form A above fulfills

f [J A∗ J ]m,n (θ , η) = Fπ
m+n(θ + i0, η + iπ − i0). (5.39)
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Proof. The right hand side of (5.39) can be rewritten as

Fπ
m+n(θ + i0, η + iπ − i0) = Fm+n(θ − iπ + i0, η − i0)

=
( m∏

p=1

n∏
q=1

S(θp − ηq)
)
Fm+n(θ + iπ + i0, η − i0) = Fm+n(η − i0, θ + iπ + i0),

(5.40)

where we used (FD3) and (FD2) in the second and third equality, respectively.
To the last expression, we apply Proposition 3.5 with the substitution z = (η, θ + iπ),

with the indices p there labeling pairs (�, r), 1 ≤ � ≤ n, n + 1 ≤ r ≤ n + m, with
contractions C ∈ Cn,m in place of M ⊂ {1, . . . , p}, and with the following vectors in
R
n+m ,

a(�,r) := (0, . . . , 0, 1↑
�

, 0, . . . , 0,−1
↑
r

, 0, . . . , 0),

bC := (1, . . . , 0↑
� j

, . . . , 1↑
n

,−1
↑
n+1

, . . . , 0↑
r j

, . . . ,−1), where C = (n,m, {(� j , r j )}),

c := (−1, . . . ,−1︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
m

). (5.41)

One notes a(�,r) · bC ≥ 0, and = 0 exactly when (�, r) is a contracted pair of C ; also
a(�,r) · c < 0, so that Proposition 3.5 is applicable. We insert the residues of Fm+n known
from Lemma 5.9, observing however that the orientation of the hyperplanes z · a�,r = 0
is opposite to those in (5.35), yielding a factor (−1)|C|. In this way we obtain

Fm+n(η−i0, θ+iπ+i0) =
∑

C∈Cn,m

δC SC RC (η, θ)Fm+n−2|C|(η̂+i0, θ̂+iπ−i0). (5.42)

(We note that for those sets of pairs (�, r) that do not form a valid contraction, the corre-
sponding residues vanish.) Nowwe use [10, Lemma 3.10] to swap left with right indices
in the contraction, replacing δC SC RC (η, θ) with (−1)|C|δC SC RC (θ , η). Together with
(5.40) and (5.38), we arrive at

Fπ
m+n(θ + i0, η + iπ − i0) =

∑
C∈Cm,n

(−1)|C|δC SC RC (θ , η) f [A]n−|C|,m−|C|(η̂, θ̂). (5.43)

But in view of [10, Prop. 3.11], the right-hand side is just fm,n[J A∗ J ](θ , η), which
concludes the proof. ��

This finally allows us to conclude that A is local in a double cone.

Proof of Theorem 5.4(iii). Let Fk fulfill (FD), and let A be the quadratic form of Theo-
rem 4.4(iii). Then A is ω-local inW ′

r , and both parts of (5.6) hold, cf. Proposition 5.10.
Nowwith Fk , also Fπ

k fulfill (FD) and hence (FW). Theorem 4.4(iii) applied to Fπ
k yields

another quadratic form Aπ which is ω-local in W ′
r . Due to (4.4) for Aπ and Proposi-

tion 5.10, we have Aπ = J A∗ J , since they agree in all fm,n[ · ]. Thus A is ω-local in
W ′

r ∩W−r = Or . That is, it fulfills (AD). ��
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6. Conclusions and Outlook

In this article, we have found a one-to-one characterization of local observables
(quadratic forms) A in terms of the analyticity properties of their expansion coeffi-
cients fm,n[A]. To that end, symmetry properties and pole structure of the coefficients,
which are expected from the form factor programme, needed to be complemented with
specific bounds on the analytic functions and on their boundary value distributions. The
characterizing conditions depend on the localization region (we discussed wedges and
double cones) and on the high energy behaviour of A. They do not however require that
the observable is of a specific internal structure, such as being a smeared pointlike field.

Our present results, in the form stated, are valid for integrable models that contain
only one scalar species of particle. This restriction was chosen mainly to simplify the
discussion. But we certainly expect that an analogous result can be obtained in mod-
els with richer particle structure, incorporating any finite number of particle species,
allowing also for nonzero spin and for gauge symmetries, as long as the two-particle S
matrix is analytic in the physical strip. This would make use of the multi-component
wedge-local fields established in [35].

Wewould see potential applications of our characterization resultmainly in two direc-
tions: for constructing local observables, and conversely, for establishing restrictions on
their existence. In that context, we recall that in a number of integrable models, it is
currently unclear whether local observables in double cones exist at all. These models
have been established in terms of wedge algebras (Borchers triples), but the size of local
observable algebras, which are intersections of two wedge algebras, is often unknown.
Indeed, even in the present class of S-matrices with a simplified single particle space, the
existence of local observables was shown in [3] only under certain extra assumptions on
the scattering function, and is in general unclear. Sufficient criteria have been established
for showing existence of local observables, e.g., the split property for wedge inclusions
or modular nuclearity (cf. [3]), but few if any criteria in the opposite direction are known.

Now on the one hand, our results might be the basis for the explicit construction of
local operators. That is, one would explicitly determine a sequence of analytic functions
Fk that fulfill all locality conditions, and investigate the corresponding observable A.
In fact, in a number of models, candidates for these functions Fk are known; see, e.g.,
[6] for the sinh-Gordon model or [36] for the massive Ising model. One strategy for
their construction is as follows. One first computes the minimal solution of the model,
essentially a function Fmin of one variable such that ζ �→ Fmin(ζ2 − ζ1) fulfills (FD1)–
(FD3) for k = 2. In the simple case of the Ising model (S = −1), one can choose
Fmin(ζ ) = −i sinh(ζ/2), whereas in other situations Fmin can be computed from S by
a certain integral expression [37]. One then makes the ansatz

Fk(ζ ) = Qk(e
ζ1 , . . . , eζk )

∏
m<n

Fmin(ζn − ζm) (6.1)

with symmetric functions Qk of suitable analyticity. These Fk automatically satisfy
(FD1)–(FD3) for all k. Now one chooses Qk recursively, starting from given Q1, Q2, so
that the relations (FD4) are fulfilled. For pointlike localized observables A, [6,36] obtain
Qk as certain rational functions. The bounds (FD5) and (FD6) should then also hold for
Fk after smearing A with a test function from a suitable class. The challenge is now to
show that the quadratic forms A so constructed extend to closable (unbounded) operators;
in other words, one needs to control the domain of A. We have not investigated the last
mentioned aspect here, but sufficient criteria can be found, and they can be verified at
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least in simple examples from the Ising model [13]. We intend to return to this point
elsewhere [25].

This constructive application might also lead to a deeper understanding of concrete,
physically important local quantities such as the energy density. With Fewster [38], the
present authors have recently established lower bounds for the energy density (“quantum
energy inequalities”) in the massive Ising model; it will be interesting to see whether
similar properties pertain to a larger class of integrable models.

On the other hand, our results might be employed to prove non-existence of local
observables, in the sense of a “no go theorem”. That is, one could aim to show that for
certain functions S, the conditions (FD1)–(FD6) are incompatible, or more generally,
that they yield constraints on the size of the local algebras. An examplemight be provided
by the “exotic” S-matrix S(θ) = exp(a sinh θ). Variants of the present method could
also be used to clarify the corresponding question in massless models [4], where it is
open in general, or in higher-dimensional generalizations [39] where the existence of
observables in bounded regions is not expected, but where, to the knowledge of the
authors, it has not rigorously been ruled out either.
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