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Abstract: We prove the sharp L1 − L∞ time-decay estimate for the 2D -Schrödinger
equation with a general family of scaling critical electromagnetic potentials.

1. Introduction

Let us consider an electromagnetic Schrödinger equation of the type

iut =
(

−i∇ +
A
( x

|x |
)

|x |

)2
u +

a
( x

|x |
)

|x |2 u, (1.1)

where N � 2, u = u(x, t) : RN+1 → C, a ∈ W 1,∞(SN−1,R), SN−1 denotes the unit
circle, and A ∈ W 1,∞(SN−1,RN ) is a transversal vector field, namely

A(θ) · θ = 0 for all θ ∈ S
N−1. (1.2)

We always denote by r := |x |, θ = x/|x |, so that x = rθ . Notice that the potentials
A/|x | and a/|x |2 preserve the natural scaling uλ(x, t) := u(x/λ, t/λ2) of the free
Schrödinger equation, and consequently they show a critical behavior with respect to
several phenomena.

In [14], we started a program based on the connection between the Schrödinger flow
eitLA,a , generated by the hamiltonian

LA,a :=
(

−i∇ +
A
( x

|x |
)

|x |

)2
+
a
( x

|x |
)

|x |2 , (1.3)
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and the spectral properties of the spherical operator LA,a , defined by

LA,a = ( − i ∇SN−1 + A
)2 + a(θ), (1.4)

where ∇SN−1 is the spherical gradient on the unit sphere SN−1. In order to describe the
project, let us start by reviewing some well known facts in classical spectral theory.

The spectrum of the operator LA,a is formed by a diverging sequence of real eigen-
values with finite multiplicity μ1(A, a) � μ2(A, a) � · · · � μk(A, a) � · · · (see
e.g. [17, LemmaA.5]), where each eigenvalue is repeated according to its multiplicity.
Moreover we have that limk→∞ μk(A, a) = +∞. To each k � 1, we can associate a
L2

(
S
N−1,C

)
-normalized eigenfunctionψk of the operator LA,a on SN−1 corresponding

to the k-th eigenvalue μk(A, a), i.e., satisfying{
LA,aψk = μk(A, a) ψk(θ), in S

N−1,∫
SN−1 |ψk(θ)|2 dS(θ) = 1.

(1.5)

In particular, if N = 2, the functions ψk are one-variable 2π periodic functions, i.e.,
ψk(0) = ψk(2π). Since the eigenvalues μk(A, a) are repeated according to their multi-
plicity, exactly one eigenfunction ψk corresponds to each index k � 1. We can choose
the functions ψk in such a way that they form an orthonormal basis of L2(SN−1,C). We
also introduce the numbers

αk := N − 2

2
−

√(
N − 2

2

)2
+ μk( A, a), βk :=

√(
N − 2

2

)2
+ μk(A, a), (1.6)

so that βk = N−2
2 − αk , for k = 1, 2, . . . , which will come into play in the sequel.

Under the condition

μ1(A, a) > −
(
N − 2

2

)2
(1.7)

the quadratic formassociated toLA,a is positive definite (see [14, Section2] and [17]); this
implies that the hamiltonianLA,a is a symmetric semi-bounded operator on L2(RN ;C),
which then admits a self-adjoint extension (the Friedrichs extension which will be still
denoted as LA,a) with domain

D(LA,a) :=
{
f ∈ H1∗ (RN ) : LA,au ∈ L2(RN

}
, (1.8)

where H1∗ (RN ) is the completion of C∞
c (RN\{0},C) with respect to the norm

‖φ‖H1∗ (RN ) =
(∫

RN

(
|∇φ(x)|2 + |φ(x)|2

|x |2 + |φ(x)|2
))

dx

)1/2
.

From the classical Hardy inequality (see e.g. [24,27]), H1∗ (RN ) = H1(RN ) with equiv-
alent norms if N � 3, while H1∗ (RN ) is strictly smaller than H1(RN ) if N = 2.
Furthermore, from condition (1.7) and [17, Lemma2.2], it follows that H1∗ (RN ) coin-
cides with the space obtained by completion of C∞

c (RN\{0},C) with respect to the
norm naturally associated to the operator LA,a , i.e.,(∫

RN

[∣∣∣∣
(

∇ + i
A
(
x/|x |)
|x |

)
u(x)

∣∣∣∣
2

+
a
(
x/|x |)
|x |2 |u(x)|2 + |u(x)|2

]
dx

)1/2
.
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We notice that LA,a could be not essentially self-adjoint. For example, in the case
A ≡ 0, from a theorem due to Kalf, Schmincke, Walter, and Wüst [28] and Simon [38]
(see also [34, Theorems X.11 and X.30], [18,19] for non constant a), it is known that
L0,a is essentially self-adjoint if and only ifμ1(0, a) � −( N−2

2

)2 +1 and, consequently,
admits a unique self-adjoint extension, which is given by the Friedrichs extension; oth-
erwise, i.e., if μ1(0, a) < −( N−2

2

)2 + 1, L0,a is not essentially self-adjoint and admits
many self-adjoint extensions, among which the Friedrichs extension is the only one
whose domain is included in the domain of the associated quadratic form (see also [13,
Remark 2.5]).

The Friedrichs extension LA,a naturally extends to a self adjoint operator on the dual
ofD(LA,a) and the unitary group of isometries e−i tLA,a generated by−iLA,a extends to
a group of isometries on the dual ofD(LA,a) which will be still denoted as e−i tLA,a (see
[6], Section 1.6 for further details). Then for every u0 ∈ L2(RN ), u(·, t) = e−i tLA,a u0(·)
is the unique solution to the problem⎧⎪⎨

⎪⎩
u ∈ C(R, L2(RN )) ∩ C1(R, (D(LA,a))

	),

iut = LA,au,

u(0) = u0.

Now, by means of (1.5) and (1.6) define the following kernel:

K (x, y) =
∞∑

k=−∞
i−βk j−αk (|x ||y|)ψk

( x
|x |

)
ψk

( y
|y|

)
, (1.9)

where
jν(r) := r− N−2

2 J
ν+ N−2

2
(r)

and Jν denotes the usual Bessel function of the first kind

Jν(t) =
(
t

2

)ν ∞∑
k=0

(−1)k

�(k + 1)�(k + ν + 1)

(
t

2

)2k
.

In the main result of [14] we prove that, if a ∈ L∞(SN−1,R) and A ∈ C1(SN−1,RN )

are such that (1.2) and (1.7) hold, then

e−i tLA,a u0(x) = e
i |x |2
4t

i(2t)N/2

∫
RN

K

(
x√
2t

,
y√
2t

)
ei

|y|2
4t u0(y) dy, (1.10)

for any u0 ∈ L2(RN ).
Apart from the interest in itself, formula (1.10) provides a quite solid tool to obtain

quantitative informations for the flow e−i tLA,a u0(x) by the analytical study of the kernel
K (x, y). In particular, if

sup
x,y∈RN

|K (x, y)| < ∞ (1.11)

holds, one automatically obtains by (1.10) the time-decay estimate∥∥∥e−i tLA,a u0(·)
∥∥∥
L∞ � |t |− N

2 ‖u0(·)‖L1 . (1.12)

In [14], we are able to prove (1.11) [and consequently (1.12)] in two concrete situations:
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• theAharonov-Bohm potential: a ≡ 0, A(x) = α
(
− x2|x | ,

x1|x |
)
, for α ∈ R, in dimension

N = 2;
• the positive inverse square potential: A ≡ 0, a ∈ R, a > 0.

In both cases, the spectrum of LA,a is explicit, together with a complete set of ortho-
normal eigenfunctions (spherical harmonics or phase transformations of themselves).
These examples give a positive contribution to the recent literature about the topic, which
never included before potentials with the critical homogeneity as the ones in (1.1) (see
e.g. [2,4,5,7–12,20–22,32,33,35–37,39,40,43,44,46–49]). Moreover, it is well known
that these potentials represent a threshold between the validity and the failure of global
(in time) dispersive estimates, as proved in [16,23]. Recently, Grillo and Kovarik [25]
gave a proof of sharp time-decay estimates in the case of the Aharonov-Bohm potential,
combined with a compactly supported electric potential, in dimension 2, proving also
an interesting remark regarding the connection of diamagnetism with improvement of
decay, in suitable weighted spaces.

The aim of this paper is to prove that estimate (1.12) holds, in space dimension
N = 2, for a general family of potentials of the same kind as in (1.1). Our main result
is the following.

Theorem 1.1. Let N = 2, a ∈ W 1,∞(S1,R), A ∈ W 1,∞(S1,R2) satisfying (1.2) and
μ1(A, a) > 0, and LA,a be given by (1.3). Then, for any u0 ∈ L2(RN ) ∩ L1(RN ), the
following estimate holds:∥∥∥e−i tLA,a u0(·)

∥∥∥
L∞ � C

|t | ‖u0(·)‖L1 , (1.13)

for some C = C(A, a) > 0 which does not depend on t and u0.

As remarked above, the proof of Theorem 1.1 consists in showing that the kernel
K (x, y) in (1.9) is uniformly bounded. The main difficulty is to obtain this information
for the queues of the series in (1.9). In order to do this, we need to obtain the precise
asymptotic behavior in k of the set of eigenvalues and eigenfunctions of the problem
(1.5): this is the topic of Sect. 2 below. Once this is done, the proof of Theorem 1.1 will
be obtained, in Sect. 3, by suitably comparing the kernel K with the analogous in the
case of an Aharonov-Bohm potential with the same average as the potential A on the
sphere S1.

2. Spectral Properties of Spherical Laplacians

The fundamental tool which we need in order to prove Theorem 1.1 is the knowledge
of the spectral properties of the operator LA,a defined by (1.4). Roughly speaking, we
need to obtain informations concerning the asymptotic behavior of the eigenvalues μk
and the eigenfunctions ψk in the eigenvalue problem (1.5), as k → ∞.

An extensive literature has been devoted, in the recent years, to this kind of problems
(see e.g. [26,41,42,45] and the references therein). Since we did not find sufficiently
explicit results regarding general electromagnetic Laplace operators on the 1D-sphere
S
1, we need to show here Lemma 2.1 below, which is possibly of independent interest.
Before starting to settle the eigenvalue problem, we find convenient to briefly sketch

the well known consequences which the introduction of lower order terms produces on
the spectrum of the spherical Laplacian.
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Let us denote by L0 := −�S1 . Being the inverse of a compact operator on L2(S1),
with form domain H1(S1), L0 has purely discrete spectrum which accumulates at pos-
itive infinity. The explicit form is

σ(L0) = {k2}k=0,1,....

The kth-eigenvalue has multiplicity 2, and the eigenfunctions are combinations of sines
and cosines.

The introduction of a 0-order term produces a spectral shift, depending on the average
of the potentials, and the formation of clusters of eigenvalues around the free ones (Stark’s
effect), if the potential is not constant. More precisely, the eigenvalues of the operator
La := −�S1 + a(θ) are of the form

λk = k2 +
1

2π

∫ 2π

0
a(s) ds + (rest),

where the rest, depending on k and on the potential a, decays with order 1/k as k tends
to infinity. For the eigenfunctions ψk a similar behavior occurs; for large k, ψk looks
more and more like a spherical harmonic plus a rest which decays as k tends to +∞ (see
e.g. [3,26,28,41,42] and appendix B of the preprint version [15] of the present paper).

On the other hand, for a purely magnetic potential, a splitting occurs on each eigen-
value. The most famous (and descriptive) example is given by the Aharonov-Bohm

potential, namely a ≡ 0, A(x, y) = Aab(x, y) = α
(
− x2

|x |2 ,
x1

|x |2
)
, with α ∈ R: in

this case, the complete set of eigenvalues and eigenfunctions of problem (1.5) can be
computed explicitly, and reads as

λabk = (k + α)2, k ∈ Z (2.1)

φab
k (θ) = 1√

2π
eikθ , k ∈ Z. (2.2)

It is hence quite natural to expect that, in the general case of the operator LA,a , the
picture is a superposition of the two previously mentioned ones. We did not find in
the literature a result written in the generality of Lemma 2.1 below, so that we found
convenient to state and prove it in this manuscript.

We recall that, by classical spectral theory, the spectrum of LA,a is formed by a
countable family of real eigenvalues with finite multiplicity {μk : k � 1} enumerated in
such a way that

μ1 � μ2 � · · · ,

where each eigenvalue is repeated according to its multiplicity. Moreover we have that
limk→∞ μk = +∞.

Let A : [0, 2π ] → R be defined as A(θ) = A(cos θ, sin θ) · (− sin θ, cos θ), so that,
by assumption (1.2)

A(cos θ, sin θ) = A(θ)(− sin θ, cos θ), θ ∈ [0, 2π ]. (2.3)

Furthermore, identifying functions defined on S
1 with 2π -periodic functions, the oper-

ator LA,a can be identified with the following operator LA,a acting on 2π -periodic
functions

LA,aϕ(θ) = −ϕ′′(θ) + [a(θ) + A2(θ) − i A′(θ)]ϕ(θ) − 2i A(θ)ϕ′(θ).
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The main result of this section is the following asymptotic expansion of eigenvalues and
eigenfunctions of the operator LA,a under the non-resonant assumption that themagnetic
potential does not have half-integer or integer circulation. The case of half-integer or
integer circulation can be reduced through suitable transformations to the magnetic-free
problem, for which analogous expansions hold, see Remark 2.2.

Lemma 2.1. Let a ∈ W 1,∞(S1), ã = 1
2π

∫ 2π
0 a(s) ds, A ∈ W 1,∞(S1) such that

Ã = 1

2π

∫ 2π

0
A(s) ds �∈ 1

2
Z. (2.4)

Then there exist k∗, � ∈ N such that {μk : k > k∗} = {λ j : j ∈ Z, | j | � �},
√

λ j − ã = (sgn j)
(
Ã − ⌊

Ã + 1
2

⌋ )
+ | j | + O

( 1
| j |3

)
, as | j | → +∞

and

λ j = ã +
(
j + Ã − ⌊

Ã + 1
2

⌋)2
+ O

( 1
j2
)
, as | j | → +∞. (2.5)

Furthermore, for all j ∈ Z, | j | � �, there exists a L2
(
S
1,C

)
-normalized eigenfunction

φ j of the operator LA,a on S
1 corresponding to the eigenvalue λ j such that

φ j (θ) = 1√
2π

e−i
(
[ Ã+1/2]θ+∫ θ

0 A(t) dt
)(
ei( Ã+ j)θ + R j (θ)

)
, (2.6)

where ‖R j‖L∞(S1) = O
( 1

| j |3
)
as | j | → ∞. In the above formula 
·� denotes the floor

function 
x� = max{k ∈ Z : k � x}.
Lemma 2.1 can be interpreted as follows: asymptotically in k, eigenvalues and eigen-

functions of (1.5) for LA,a are comparable with the ones in the Aharonov-Bohm case
[see (2.1), (2.2) above], by means of (2.5), (2.6).

The proof of Lemma 2.1 is based on the idea of reducing the eigenvalue problem
(1.5) to another magnetic-free problem, with different boundary conditions, by gauge
transformation; this is in fact possible, since A(cos θ, sin θ) just depends on the 1D-
variable θ . More precisely, we observe that the gauge transformation

ψ(θ) → e−i
∫ θ
0 A(s) dsψ(θ)

transforms the eigenvalue problem (1.5) into the new problem

⎧⎪⎨
⎪⎩

− d2ψ
dθ2

+ a(θ)ψ = μkψ

ψ(0) = e−2iπ Ãψ(2π)

ψ ′(0) = e−2iπ Ãψ ′(2π),

(2.7)

with non-periodic boundary conditions, where Ã is defined in (2.4), which will be ana-
lyzed by a usual WKB-strategy.
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Remark 2.2. As mentioned above, in the purely electric case A ≡ 0, (2.5) is a well
known information about the cluster distribution of the eigenvalues (see e.g. [26] and
the references therein). More in general, if dist( Ã,Z) = 0, then the eigenvalue problem
(2.7) reduces to ⎧⎪⎨

⎪⎩
− d2ψk

dθ2
+ a(θ)ψk = μkψk

ψk(0) = ψk(2π)

ψ ′
k(0) = ψ ′

k(2π),

(2.8)

i.e. the magnetic-free case. For the proof of Lemma 2.1 in the case dist( Ã,Z) = 0 we
mention a classical result by Borg [3] (see also [26]) as a standard reference; in appendix
B of the preprint version [15] of the present paper a detailed proof of asymptotics of
eigenvalues and eigenfunctions in the purely electric case can be found.

We propose here a proof in the case dist( Ã,Z) �= 0, 1
2 , since we did not find in

the literature neither the analogous to [3] for A �= 0 nor the asymptotic formula for
eigenfunctions (2.6), which plays a fundamental role in the proof of our main theorem
(see Sect. 3 below). We propose a proof which is based on a usual WKB-strategy.

2.1. Proof of Lemma 2.1. Let us denote

Ā = Ã −
⌊
Ã +

1

2

⌋
, (2.9)

so that Ā ∈ [−1/2, 1/2); we notice that Ã ∈ 1
2Z if and only if Ā ∈ {−1/2, 0}. Hence,

under assumption (2.4), we have that

Ā ∈
(

− 1

2
,
1

2

)
\{0}. (2.10)

Lemma 2.3. Let a, A ∈ W 1,∞(0, 2π), Ã = 1
2π

∫ 2π
0 A(s) ds, and Ā as in (2.9), i.e.

Ā = Ã − ⌊
Ã + 1

2

⌋
. Then, letting A as in (2.3), we have that

σ(LA,a) = σ(LA,a) = σ(L Ā,a).

Furthermore, ϕ is an eigenfunction of LA,a associated to the eigenvalue μ if and only if

ϕ̃(t) = e−i Āt ei
∫ t
0 A(s) dsϕ(t) is an eigenfunction of L Ā,a associated to μ.

Proof. The proof follows by direct calculations. We notice that, since Ã − Ā ∈ Z, the

function ϕ̃(t) = e−i Āt ei
∫ t
0 A(s) dsϕ(t) is 2π -periodic if and only if ϕ(t) is 2π -periodic.

��
Lemma 2.4. Let a ∈ W 1,∞(S1), ã = 1

2π

∫ 2π
0 a(s) ds, δ > 0, and

Iδ = {λ ∈ R : dist(
√

λ − ã, 1
2Z) � δ}.

There exist λ̄δ > 0 and Cδ > 0 such that for every λ ∈ Iδ, λ � λ̄δ , there exists
Wλ ∈ C0(S1) such that

‖Wλ‖C0(S1) � Cδ√
λ − ã

(2.11)
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and

Tλ(Wλ) = Wλ,

where Tλ : C0(S1) → C0(S1) is defined as

Tλ(W )(θ) = e−2
√

λ−ãθ i ã − a(0)

2
√

λ − ã

+
ie−2

√
λ−ã(θ+2π)i

1 − e−4
√

λ−ãπ i

∫ 2π

0
e2

√
λ−ãθ ′i

(
a′(θ ′)

2
√

λ − ãi
− W 2(θ ′)

)
dθ ′

+ ie−2
√

λ−ãθ i
∫ θ

0
e2

√
λ−ãθ ′i

[̃
a − a(θ ′) − W 2(θ ′)

]
dθ ′

= e−2
√

λ−ãθ i ã − a(0)

2
√

λ − ã

+
ie−2

√
λ−ã(θ+2π)i

1 − e−4
√

λ−ãπ i

∫ 2π

0
e2

√
λ−ãθ ′i

(
a′(θ ′)

2
√

λ − ãi
− W 2(θ ′)

)
dθ ′

− a(θ) − e−2
√

λ−ãθ i a(0)

2
√

λ − ã
+
ã − e−2

√
λ−ãθ i ã

2
√

λ − ã

+ ie−2
√

λ−ãθ i
∫ θ

0
e2

√
λ−ãθ ′i

[
a′(θ ′)

2
√

λ − ãi
− W 2(θ ′)

]
dθ ′.

Moreover the map λ �→ Wλ is continuous as a map from Iδ to C0(S1).

Proof. It is easy to verify that there exist λ̄δ and Cδ > 0 such that for every λ ∈ Iδ,
λ � λ̄δ, Tλ maps BCδ/

√
λ−ã = {u ∈ C0(S1) : supS1 |u| � Cδ/

√
λ − ã} into itself

and is a contraction there. The conclusion then follows from the Banach contraction
mapping theorem. ��
For λ ∈ Iδ, λ � λ̄δ , letWλ be as in Lemma 2.4. Then it is easy to verify thatWλ satisfies{

−iW ′
λ(θ) + 2

√
λ − ã Wλ(θ) +W 2

λ (θ) = ã − a(θ), in [0, 2π ],
Wλ(0) = Wλ(2π).

(2.12)

Letting

Sλ(θ) := √
λ − ã θ +

∫ θ

0
Wλ(θ

′) dθ ′, (2.13)

we have that Sλ satisfies⎧⎪⎨
⎪⎩

−i S′′
λ(θ) + (S′

λ(θ))2 = λ − a(θ), in [0, 2π ],
S′
λ(0) = S′

λ(2π),

Sλ(0) = 0.
(2.14)

Lemma 2.5. If λ is sufficiently large, then
∫ 2π
0 Wλ(θ) dθ ∈ R.
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Proof. Let us define ηλ(θ) = �Sλ(θ) and ξλ(θ) = �Sλ(θ). Then (2.14) implies that

−η′′
λ + 2η′

λξ
′
λ = 0, in [0, 2π ],

so that
η′

λ(θ) = Cλe
2ξλ(θ), in [0, 2π ], (2.15)

where Cλ = √
λ − ã + �Wλ(0). We notice that (2.11) implies that, if λ is sufficiently

large, then Cλ �= 0. The condition S′
λ(0) = S′

λ(2π) implies that η′
λ(0) = η′

λ(2π) and
hence from (2.15) it follows that

ξλ(0) = ξλ(2π).

Since Sλ(0) = 0, we have that ξλ(0) = 0 and then

1

2π

∫ 2π

0
Wλ(θ) dθ = −√

λ − ã +
1

2π
(ηλ(2π) + iξλ(2π))

= −√
λ − ã +

ηλ(2π)

2π
∈ R.

��
Lemma 2.6. Let Ā ∈ R such that Ā �∈ 1

2Zand let0 < δ < dist( Ā, 1
2Z). Then there exists

k̄ ∈ N such that for all k ∈ N, k � k̄, there existλ+k , λ
−
k ∈ Iδ such thatλ+k � λ̄δ, λ−

k � λ̄δ

and √
λ+k − ã = Ā − 1

2π

∫ 2π

0
Wλ+k

(θ) dθ + k, (2.16)

√
λ−
k − ã = − Ā − 1

2π

∫ 2π

0
Wλ−

k
(θ) dθ + k. (2.17)

Proof. Let g : [λ̄δ,+∞) → R be a continuous function such that

g(λ) = 1

2π

∫ 2π

0
Wλ(θ) dθ for all λ ∈ Iδ

and |g(λ)| � Cδ/
√

λ − ã for all λ � λ̄δ . Then the function

f : [λ̄δ,+∞) → R, f (λ) =
√

λ − ã − Ā + g(λ),

is continuous and limλ→+∞ f (λ) = +∞. Therefore there exists k̄ sufficiently large such
that, for all k � k̄, there exists λ+k � λ̄δ such that f (λ+k ) = k, i.e.√

λ+k − ã = k + Ā − g(λ+k ). (2.18)

If k̄ is sufficiently large, (2.18) implies that

dist
(√

λ+k − ã, 1
2Z

)
= dist( Ā, 1

2Z) − g(λ+k ) > δ,

so that λ+k ∈ Iδ and (2.16) is proved. The proof of (2.17) is analogous. ��



1524 L. Fanelli, V. Felli, M. A. Fontelos, A. Primo

Lemma 2.7. Under the same assumptions as in Lemma 2.6, let, for all k � k̄, λ+k , λ
−
k ∈

Iδ as in Lemma 2.6. Then∫ 2π

0
Wλ±

k
(θ) dθ = O

( 1
k3
)
, as k → +∞ (2.19)

and √
λ+k − ã = Ā + k + O( 1

k3
),

√
λ−
k − ã = − Ā + k + O( 1

k3
), (2.20)

λ+k = ã + ( Ā + k)2 + O( 1
k2

), λ−
k = ã + (− Ā + k)2 + O( 1

k2
), (2.21)

as k → +∞.

Proof. By integrating (2.12) between 0 and 2π and using estimate (2.11) we have that∣∣∣∣
∫ 2π

0
Wλ(θ) dθ

∣∣∣∣ =
∣∣∣∣ − 1

2
√

λ − ã

∫ 2π

0
W 2

λ (θ) dθ

∣∣∣∣ � πCδ

(λ − ã)3/2
.

Since from (2.16) and (2.17) it follows that λ±
k ∼ k2 as k → +∞, we derive (2.19),

which yields (2.20) [and the (2.21) by squaring] in view of (2.16) and (2.17). ��
Lemma 2.8. Let a ∈ W 1,∞(S1) and Ā ∈ R\ 1

2Z. If k � k̄, then

λ+k , λ
−
k ∈ σ(L Ā,a),

where L Ā,aϕ = −(ϕ)′′ + [a(θ) + Ā2]ϕ − 2i Āϕ. Moreover

ϕ+
k (θ) = e−i Āθe

i Sλ+k
(θ)

, ϕ−
k (θ) = e−i Āθe

−i S
λ
−
k

(θ)
, (2.22)

are eigenfunctions of L Ā,a associated to λ+k , λ
−
k respectively.

Proof. By direct calculations, we have that ϕ±
k satisfy

−(ϕ±
k )′′(θ) + [a(θ) + Ā2]ϕ±

k (θ) − 2i Ā(ϕ±
k )′(θ) = λ±

k ϕ±
k (θ)

in [0, 2π ], i.e. ϕ±
k are non-trivial solutions to

L Ā,aϕ
±
k = λ±

k ϕ±
k in [0, 2π ].

Furthermore (2.16) and (2.17) imply that

ϕ±
k (0) = ϕ±

k (2π) and (ϕ±
k )′(0) = (ϕ±

k )′(2π).

The lemma is thereby proved. ��
We recall from [29] the following result, which is based on Kato’s Perturbation

Theory and which will be the key ingredient in the proof of Lemma 2.10 below.

Lemma 2.9. Let L0, L : H → H be two self-adjoint operators on a Hilbert space H.
Denote by

R0(λ) := (L0 − λI )−1 R(λ) := (L − λI )−1.

Then:
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(1) if R0(λ), R(λ) ∈ L(H), then λ is not an eigenvalue (neither for R0 nor for R(λ));
(2) if the operator

T := 1

2π i

∫
�

(R(λ) − R0(λ)) dλ

has operator norm ‖T ‖L(H) < 1, being � a closed curve in the complex plane, then
the number of eigenvalues (counted with multiplicity) of L0 and L contained in the
region bounded by � is the same.

Asa consequence ofLemma2.9we can nowdescribe how large eigenvalues distribute
around the free ones.

Lemma 2.10. Let a ∈ W 1,∞(S1) and Ā ∈ (− 1
2 ,

1
2 )\{0}. For every ᾱ � ‖a + Ā2‖2L∞

and c � 0, there exist λ̄ > 0 and k0 > k̄ such that

σ(L Ā,a) ∩ [λ̄,+∞) ⊂
∞⋃

k=k0

B
(
k2, c +

√
ᾱ + 4k2 Ā2

)
.

Furthermore, if k � k0, each ball B
(
k2,

√
ᾱ + 4k2 Ā2

)
contains exactly two eigenvalues

of L Ā,a (counted with their own multiplicity).

Proof. We apply Lemma 2.9 with

L0 := − d2

dθ2
L := − d2

dθ2
− 2i Ā

d

dθ
+ α(θ),

where α(θ) = a(θ) + Ā2. Let

R0(λ) =
(

− d2

dθ2
− λI

)−1
, R(λ) =

(
− d2

dθ
− 2i Ā

d

dθ
+ α(θ) − λI

)−1
.

Notice that, via Fourier we can write, for f = ∑
(αk sin(kθ) + βk cos(kθ)),

R0(λ) f =
∑ 1

k2 − λ
(αk sin(kθ) + βk cos(kθ)),

therefore we have the estimate

‖R0‖L(L2) � 1

dist(λ, {k2 : k ∈ Z}) .

Now notice that, formally, we can write

R(λ) = R0(λ) (I +WR0(λ))−1 , (2.23)

being W = −2i Ā d
dθ

+ α(θ) a first order operator. Since d
dθ

commutes with R0 (by
spectral theorem), we can write as follows:

WR0(λ) f = −2i Ā
∑
k

k(αk cos(kθ) − βk sin(kθ))

k2 − λ

+α(θ)
∑
k

1

k2 − λ
(αk sin(kθ) + βk cos(kθ)).
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We hence obtain the following: if �λ is large enough, ᾱ � ‖α‖2L∞ , c � 0, and

|λ − k2| > c +
(
4k2 Ā2 + ᾱ

) 1
2
,

then
‖WR0‖L(L2) < 1. (2.24)

Then, by (2.23) and (2.24), if k is large enough, outside of any ball with center in k2 and

radius c+
(
4k2 Ā2 + ᾱ

) 1
2 , the operator R(λ) is bounded for large λ, hence we do not have

large eigenvalues outside that balls. We notice that, if k is large, the balls with center in

k2 and radius c +
(
4k2 Ā2 + ᾱ

) 1
2 are mutually disjoint, since | Ā| < 1

2 implies that

2c +
(
4k2 Ā2 + ᾱ

) 1
2
+
(
4(k + 1)2 Ā2 + ᾱ

) 1
2

< (k + 1)2 − k2

provided that k is sufficiently large. On the other hand, if � is the circle with center in

k2 and radius
(
4k2 Ā2 + ᾱ

) 1
2 with k large, we can easily estimate∥∥∥∥ 1

2π i

∫
�

(R(λ) − R0(λ)) f dλ

∥∥∥∥
L2

< ‖ f ‖L2 ,

(use the Born expansion (I + WR0)
−1 = ∑

(WR0)
n) which together with point (2) of

Lemma 2.9 gives the desired result.
Therefore, outside those balls there are no eigenvalues, and inside there are the same

number of eigenvalues both for L0 and L: this number is 2. ��
Lemma 2.11. Let a ∈ W 1,∞(S1) and Ā ∈ (− 1

2 ,
1
2 )\{0}. Let λ±

k be as in Lemma 2.6.
Then there exist c > 0, ᾱ > 0, λ̄ > 0 and k̃ such that

(i) for all k � k̃, λ+k , λ
−
k ∈ B

(
k2, c +

√
ᾱ + 4k2 Ā2

)
;

(ii) σ(L Ā,a) ∩ [λ̃,+∞) = {λ+k , λ−
k : k � k̃}.

Proof. From (2.21) we have that, if c, ᾱ > 0 are chosen sufficiently large,

|λ+k − k2| =
∣∣∣̃a + Ā2 + 2k Ā + O( 1

k2
)

∣∣∣ < c +
√

ᾱ + 4k2 Ā2

if k is large enough, thus proving (i) for λ+k . The proof of (i) for λ−
k is analogous.

The statement (ii) follows by combining (i) and Lemma 2.10. ��
Proof of Lemma 2.1. From Lemmas 2.3 and 2.11 it follows that there exist k∗ ∈ N and
� ∈ Z such that {μk : k > k∗} = {λ j : j ∈ Z, | j | � �} where

λ j =
{

λ−
| j |, if j < 0,

λ+| j |, if j > 0.

Then, in view of Lemma 2.7√
λ j − ã = (sgn j) Ā + | j | + O

( 1
| j |3

)
, as | j | → +∞.
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From (2.22), (2.13), (2.19), and (2.20), it follows that

ϕ+
j (θ) = e−i Āθ

(
ei( Ā+ j)θ + O

( 1
| j |3

))
, as j → +∞,

ϕ−
j (θ) = e−i Āθ

(
ei( Ā− j)θ + O

( 1
| j |3

))
, as j → +∞.

Therefore, letting, for j ∈ Z such that | j | � �,

φ̃ j =

⎧⎪⎨
⎪⎩

ϕ−
| j |

‖ϕ−
| j |‖L2(0,2π)

, if j < 0,

ϕ+| j |
‖ϕ+| j |‖L2(0,2π)

, if j > 0,

we have that, for | j | � �, φ̃ j is a L2
(
(0, 2π),C

)
-normalized eigenfunction of the

operator L Ā,a corresponding to the eigenvalue λ j and

φ̃ j (θ) = 1√
2π

e−i Āθ
(
ei( Ā+ j)θ + R j (θ)

)
,

where ‖R j‖L∞(0,2π) = O
( 1

| j |3
)
as j → ∞. Hence, in view of Lemma 2.3 we have that

φ j (cos θ, sin θ) = ei Āθe−i
∫ θ
0 A(s) ds φ̃ j (θ) is a L2

(
S
1,C

)
-normalized eigenfunction of

the operator LA,a on S
1 corresponding to the eigenvalue λ j and

φ j (cos θ, sin θ) = 1√
2π

e−i
(

 Ã+1/2�θ+∫ θ

0 A(t) dt
)(
ei( Ã+ j)θ + R j (θ)

)
.

The proof is thereby complete. ��
By means of the previous result, we immediately obtain the following Corollary.

Corollary 2.12. Let k∗, � as in Lemma 2.1 and K be given by (1.9), with ψk being any
L2

(
S
1,C

)
-normalized eigenfunctions of LA,a on S

1 if k � k∗ and ψk = φ j if k > k∗
and μk = λ j , with λ j , φ j being as in Lemma 2.1. Then, we have that

K (x, y) =
k∗∑
k=1

i−βk j−αk (rr
′)ψk(θ)ψk(θ ′)

+
1

2π
e−i

∫ θ
θ ′ A(s) dse−i[ Ã+ 1

2 ](θ−θ ′)

×
∑
| j |��

i−β(λ j ) j−α(λ j )(rr
′)
(
ei( Ã+ j)θ + R j (θ)

)(
e−i( Ã+ j)θ ′

+ R j (θ ′)
)
,

(2.25)

if x = (r cos θ, r sin θ) and y = (r ′ cos θ ′, r ′ sin θ ′), where

α(λ j ) := −√
λ j , β(λ j ) := √

λ j , (2.26)

and R j is as in Lemma 2.1.
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3. Proof of the Main Result

We can now perform the proof of Theorem 1.1. Let us first assume that condition (2.4)
holds, so that the asymptotic expansion of eigenvalues and eigenfunctions stated in
Lemma 2.1 holds. Let K be defined by (1.9); by formula (1.10), it is sufficient to show
that

sup
x,y∈R2

|K (x, y)| < ∞.

In particular, the study of the boundedness of K is reduced, thanks to Corollary 2.12, to
the study of the boundedness of the two series

�k�k∗ =
k∗∑
k=1

i−βk j−αk (rr
′)ψk(θ)ψk(θ ′), (3.1)

and

�| j |�� =
∑
| j |��

i−β(λ j ) j−α(λ j )(rr
′)
(
ei( Ã+ j)θ + R j (θ)

)(
e−i( Ã+ j)θ ′

+ R j (θ ′)
)

(3.2)

uniformly with respect to r, r ′, θ, θ ′. Since μ1(A, a) > 0, all the indices αk in (1.6)
are negative. Therefore, the Bessel functions j−αk are bounded functions, for any k. In
addition, the functionsψk are obviously bounded, for any k: as a consequence, we obtain
that

sup
r,r ′�0
θ,θ ′∈S1

∣∣�k�k∗(r, r ′, θ, θ ′)
∣∣ < ∞. (3.3)

In order to prove that �| j |�� is uniformly bounded, we compare it with the analogous
kernel Kab associated to the Aharonov-Bohm potential Aab := α

( − x2
|x |2 ,

x1
|x |2

)
, with

α ∈ R, given by

Kab(x, y) =
∑
k∈Z

i−βab
k j−αab

k
(|x ||y|)ψab

k

( x
|x |

)
ψab
k

( y
|y|

)
,

where ψab
k are the eigenfunctions defined in (2.2) of LAab,0 associated to the eigenvalue

μab
k = (k + α)2, and αab

k , βab
k are given by (1.6) with μk replaced by μab

k . We have
explicitly

αab
k = −

√
μab
k = − |k + α| , βab

k =
√

μab
k = |k + α| .

We choose α = Ā with Ā as in (2.9), denote

�ab
| j |��(r, r

′, θ, θ ′) =
∑
| j |��

i−| j+α| j| j+α|(rr ′)ei jθe−i jθ ′
,

and write
�| j |�� =

(
�| j |�� − ei Ā(θ−θ ′)�ab

| j |��

)
+ ei Ā(θ−θ ′)�ab

| j |��. (3.4)

In the paper [14] it has been shown that

sup
r,r ′�0
θ,θ ′∈S1

∣∣∣ei Ā(θ−θ ′)�ab
| j |��(r, r

′, θ, θ ′)
∣∣∣ = sup

r,r ′�0
θ,θ ′∈S1

∣∣∣�ab
| j |��(r, r

′, θ, θ ′)
∣∣∣ < ∞. (3.5)
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To prove the uniform bound of �| j |�� is hence sufficient to prove the following claim:

sup
r,r ′�0
θ,θ ′∈S1

∣∣∣�| j |��(r, r
′, θ, θ ′) − ei Ā(θ−θ ′)�ab

| j |��(r, r
′, θ, θ ′)

∣∣∣ < ∞. (3.6)

In view of the above considerations, we now pass to prove that (3.6) holds.
Let us write

�| j |�� − ei Ā(θ−θ ′)�ab
| j |�� = K1 + K2, (3.7)

where

K1 =
∑
| j |��

[
i−β(λ j ) J−α(λ j )(rr

′) − i−
∣∣ j+ Ā∣∣ J∣∣ j+ Ā∣∣(rr ′)

]
ei( j+ Ā)θe−i( j+ Ā)θ ′

K2 =
∑
| j |��

i−β(λ j ) J−α(λ j )(rr
′)

×
[(

ei( Ā+ j)θ+ R j (θ)
)(

e−i( Ā+ j)θ ′
+ R j (θ ′)

)
− ei( j+ Ā)θe−i( j+ Ā)θ ′]

.

Here we used the fact that in dimension N = 2 we have js ≡ Js , for any s ∈ R.
Let us now recall the estimate

|Jν(r)| � C

|ν| 13
(3.8)

(see e.g. [1,31]), which holds for some C > 0 independent of x and ν. Moreover, by
(2.5) and (2.26) we have that

−α(λ j ) ∼ | j | as | j | → ∞. (3.9)

In addition by Lemma 2.1∥∥∥(ei( Ā+ j)θ+ R j (θ)
)(

e−i( Ā+ j)θ ′
+ R j (θ ′)

)
− ei( j+ Ā)θe−i( j+ Ā)θ ′∥∥∥

L∞(S1)

= O
( 1

| j |3
)

(3.10)

as | j | → +∞. Hence, by (3.8), (3.9) and (3.10) one easily gets

sup
r,r ′�0
θ,θ ′∈S1

∣∣K2(r, r
′, θ, θ ′)

∣∣ � C
∑
| j |��

| j |− 10
3 < ∞. (3.11)

In order to get the analogous estimate for K1, we now introduce another well known
representation formula for the Bessel functions. Let γ ⊂ C be the positively oriented
contour represented in Fig. 1.

Then we have the representation

Jν(r) = 1

2π i

∫
γ

e
r
2

(
z− 1

z

)
dz

zν+1
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Γ1

Γ2

Fig. 1. Integration oriented domain γ

(see [30, 5.10.7]). Consequently, we obtain

K1(r, r
′, θ, θ ′)

= 1

2π i

∑
| j |��

∫
γ

1

z
e
rr ′
2

(
z− 1

z

) [
(i z)α(λ j ) − (i z)−

∣∣ j+ Ā∣∣] ei( j+ Ā)(θ−θ ′) dz

= 1

2π i

∑
| j |��

∫
γ

1

z
e
rr ′
2

(
z− 1

z

)
(i z)−

∣∣ j+ Ā∣∣ [(i z)−√
λ j+

∣∣ j+ Ā∣∣ − 1
]
ei( j+ Ā)(θ−θ ′) dz.

(3.12)

From (2.5) it follows that

−√
λ j +

∣∣ j + Ā
∣∣ =

√
( j + Ā)2−

√
ã + ( j + Ā)2 + O

( 1
j2
) = − ã

2| j | +O
(
j−2

)
. (3.13)

Therefore, a first-order Taylor expansion in the last term of (3.12) gives in turn

K1(r, r
′, θ, θ ′)

= 1

2π i

∑
| j |��

∫
γ

1

z
e
rr ′
2

(
z− 1

z

) [
− ã log(i z)

2| j | · e
i( j+ Ā)(θ−θ ′)

(i z)| j+ Ā| +R j (z)

]
dz (3.14)

where ‖R j (z)‖L∞(γ ) = O( j−2) as | j | → +∞.
We observe that it is possible to exchange the order of summation and integration in

(3.14), see the proof of Theorem 1.11 in [14] for details. We hence get

K1(r, r
′, θ, θ ′)

= − 1

2π i

∫
γ

1

2z
e
rr ′
2

(
z− 1

z

)
ã log(i z)

∑
| j |��

[
1

| j |
ei( j+ Ā)(θ−θ ′)

(i z)| j+ Ā| + O
(
j−2

)]
dz.

(3.15)
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Finally, we notice that (if � is large enough)

∞∑
| j |��

1

| j |
ei( j+ Ā)(θ−θ ′)

(i z)| j+ Ā|

= −ei Ā(θ−θ ′)

(i z) Ā
log

[
1 − ei(θ−θ ′)

i z

]
− ei Ā(θ−θ ′)

(i z)− Ā
log

[
1 − e−i(θ−θ ′)

i z

]

+
∑

1�| j |<�

1

| j |
ei( j+ Ā)(θ−θ ′)

(i z)| j |+ Ā sgn j
,

which together with (3.15) leads to

K1(r, r
′, θ, θ ′)

= ei Ā(θ−θ ′)

2π i

∫
γ

1

2z
e
rr ′
2

(
z− 1

z

)
ã log(i z)

(
log

(
1 − ei(θ−θ ′)

i z

)
(i z) Ā

+
log

(
1 − e−i(θ−θ ′)

i z

)
(i z)− Ā

)
+ bounded terms.

In conclusion, since
∣∣e r

2 (z− 1
z )
∣∣ = 1 on�1 and log

(
1− e±i(θ−θ ′)

i z

) ∼ − e±i(θ−θ ′)
i z as |z| → ∞,

we obtain the desired estimate

sup
r,r ′�0
θ,θ ′∈S1

∣∣K1(r, r
′, θ, θ ′)

∣∣ < ∞, (3.16)

which together with (3.7) and (3.11) proves claim (3.6). The proof now follows by (3.3),
(3.4), (3.5) and (3.6).

In the resonant case Ã ∈ 1
2Z, we can repeat exactly the same arguments as above,

using the classical estimates by Borg [3] and Gurarie [26] (see Remark 2.2) instead of
Lemma 2.1; for more details we refer to the preprint version [15, Lemmas B.9 and B.10]
of the present paper where a complete proof of such estimates is given; we observe that,
although the control on the remainder terms of the asymptotic expansion is in this case
less strong than in the non-resonant case, it is easy to verify that it is enough both for

(3.13) and to estimate sup |K2| with C ∑
| j |�� | j |− 4

3 < ∞ in order to ensure (3.11).

Acknowledgements. The authors wish to thank Carlos Villegas-Blas for leading them to several useful refer-
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