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Abstract: We consider some probabilistic and analytic realizations of Virasoro highest-
weight representations. Specifically, we consider measures on paths connecting points
marked on the boundary of a (bordered) Riemann surface. These Schramm–Loewner
evolution-type measures are constructed by the method of localization in path space.
Their partition function (total mass) is the highest-weight vector of a Virasoro represen-
tation, and the action is given by Virasoro uniformization.

We review the formalism of Virasoro uniformization, which allows to define a canon-
ical action of Virasoro generators on functions (or sections) on a—suitably extended—
Teichmüller space. Then we describe the construction of families of measures on
paths indexed by marked bordered Riemann surfaces. Finally we relate these two no-
tions by showing that the partition functions of the latter generate a highest-weight
representation—the quotient of a reducible Verma module—for the former.
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1. Introduction

The Virasoro algebra is the infinite dimensional Lie algebra with generators (Ln)n∈Z, c
and bracket given by

[Lm, Ln] = (m − n)Lm+n +
m(m2 − 1)

12
δn,−mc

and [Ln, c] = 0 for all m, n ∈ Z. A (c, h)-highest-weight representation is one generated
by a vector φ such that L0φ = hφ, cφ = cφ and Lnφ = 0 if n > 0. A classical question
is to determine the structure of these representations; for a given central charge c and
generic weight h, there is (up to isomorphism) a single such representation, which is
irreducible. Exceptions occur for certain values of the weight, h = hr,s(c), r, s ∈ N,
given by the Kac determinant formula (e.g. [41,44]).

It has long been understood—in particular from the work of Cardy [13,14]—that
these representations play a crucial role in (boundary) conformal field theory (BCFT).
Conformal field theory describes the scaling limit of conformally invariant critical sys-
tems in two dimensions, such as percolation or the Ising model. In particular, one can
consider the scaling limit of correlators of certain observables (fields). In BCFT, these
observables may be located on the boundary of a domain (of course, BCFT also accom-
modates “bulk” observables located in the interior of the domain). Associated to such
a boundary field is a critical exponent (scaling dimension). To each model corresponds
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a central charge c, and one generally expects that some of the fields of interest have
scaling dimension given by the weights coming from the Kac determinant formula.

Partition functions. Arguably the best understood example is that of the Ising model.
Versions of the following discussion appear, e.g., in [6,23,33,48]. Consider a sequence
of graphs �ε ⊂ εZ2 that approximate a planar domain D. An Ising configuration σ ∈
{±1}�ε is an assignment of a ±1 “spin” to each interior vertex of �ε; we will prescribe
the boundary spins below. The energy of a configuration is

E(σ ) = −J
∑

(xy)∈E�ε

σ (x)σ (y)

and the partition function is

Z =
∑

σ

e−βE(σ ) (1.1)

for a well-chosen (critical) inverse temperature β. Of particular interest to us will be the
boundary condition change (bcc) operators, which we now discuss.

Consider boundary points (or rather, boundary edges) x1, . . . , x2n = x0 at macro-
scopic distance of each other and in cyclic order. We set the boundary spins to +1 (resp.
−1) between x2k and x2k+1 (resp. x2k+1 and x2k+2). Then the partition function for the
Ising model with this boundary condition is denoted symbolically by

〈ψ(x1) · · ·ψ(x2n)〉.
(Equivalently, one can consider a fixed + boundary condition and bring disorder variables
to the boundary; a disorder variable is the endpoint of a disorder string, across which
the Ising couplings are negated [45]). We consider the small mesh (ε↘0) limit of these
correlators. There is an exponential (in the volume) divergence given by the free energy
per site of the model; an exponential (in the perimeter) divergence from the boundary;
and a power law divergence coming from the scaling dimension of the bcc operators.
The first two are lattice-dependent; the last one is universal (i.e., independent of the
lattice on which the model is defined, provided the couplings are critical).

One can expect that the boundary contribution can be explicitly compensated for as
ε↘0 only in very specific situations, viz. polygonal domains (in the style of [28,46]). In
more general situations, there is a priori no canonical way to regulate a single correlator
as ε↘0. However, considering families of correlators yields non-trivial conditions on
their regulated limit, as we now discuss (again in the Ising context, for the sake of
concreteness).

Consider four planar domains A1, A2, B1, B2 s.t. C = Ai ∩ B j does not depend on
i, j ; then set Di j = Ai ∪ B j for i, j ∈ {1, 2}. The Di j ’s constitute a neutral collection of
domains in the sense of [49]. Correspondingly, Aε

i (resp. Bε
j ) is a mesh ε approximation

of Ai (resp. B j ), and Dε
i j = Aε

i ∪ Bε
j . Let αi (resp. β j ) be a product of local operators

(e.g. spin variables and bcc operators) in Ai\C̄ (resp. B j\C̄). Then one may consider
the ratio

〈α1β1〉Dε
11
〈α2β2〉Dε

22

〈α1β2〉Dε
12
〈α2β1〉Dε

21

,

where each term is a sum over configurations of Boltzmann weights [as in (1.1)] modified
by the insertions α, β. On general grounds, one expects such ratios to converge to a finite,
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universal limit (independent of the choice of discretization, provided that the weights
are critical).

A well-posed problem is to find a collection of “continuous correlators” (〈γ 〉D)γ,D

indexed by (say, Jordan C1) domains D and products of local operators γ such that

〈α1β1〉Dε
11
〈α2β2〉Dε

22

〈α1β2〉Dε
12
〈α2β1〉Dε

21

ε→0−−→ 〈α1β1〉D11〈α2β2〉D22

〈α1β2〉D12〈α2β1〉D21

(1.2)

whenever applicable. This is satisfied in the “ideal” situation where (say, for polygonal
domains Dε with rational slopes)

〈
∏

i

γi

〉

D

= lim
ε↘0

ε−
∑

i �i exp

⎛

⎝−
∑

x∈Dε

f −
∑

x∈∂Dε

g(θx )−
∑

x corner
h(νx ) log(ε)

⎞

⎠
〈
∏

i

γi

〉

Dε

is well-defined and positive, where �i is the scaling dimension of the local operators
γi ’s, f is the free energy per site, g(θ) the free energy per boundary site with slope θ ,
h(νx ) a contribution per corner x with angle νx .

Manifestly, such a collection of continuous partition functions (〈γ 〉D) is not uniquely
specified by the condition (1.2), since, e.g.,

〈γ 〉′D def= a0aVol(D)
1 alength(∂D)

2 a number of insertions
3 〈γ 〉D

is then also a solution of (1.2) for arbitrary constants a0, . . . , a3. Yet, (1.2) is a highly non-
trivial system of consistency conditions (even without any insertion). For “very” solvable
models (discrete Gaussian free field, loop-erased random walks/uniform spanning trees
and Ising model), large families of partition functions solving (1.2) can be constructed.

For a (boundary) CFT, if φ : D → φ(D) = D′ is a conformal equivalence, and
γ1, . . . , γn are (non-chiral) local fields,

〈γ1(φ(z1)) · · · γn(φ(zn))〉φ(D)
〈1〉φ(D) =

∏

i

|φ′(zi )|−�i
〈γ1(z1) · · · γn(zn)〉D

〈1〉D
.

Interfaces and Schramm–Loewner evolutions. Following the introduction of Schramm–
Loewner evolutions (SLEs) by Schramm in [65], a more geometric approach to these
scaling limits has been investigated. Chordal SLE [54,63,65,73] is a one-parameter
family of probability measures on paths connecting two marked boundary points in a
simply-connected domain, indexed by a “roughness” parameter κ > 0.

In the Ising model, one can consider interfaces separating + clusters from− clusters,
shifting the point of view from the correlators to the collection of interfaces. With the
boundary conditions described above (viz. with bcc “operators” at x1, . . . , x2n), one
creates n macroscopic interfaces pairing these 2n marked boundary points. In that case
(at criticality), the interfaces are known to converge to (systems of) SLEs [68,69]. These
can be seen as probability measures on (n-tuples) of paths, or—better—as positive
measures with total mass (or partition function) 〈ψ(x1) · · ·ψ(x2n)〉.

In order to specify such SLE partition functions, one can introduce consistency con-
ditions of the type discussed in (1.2). For example, let γ be the interface started from a
boundary point x1 in a domain Dε (an ε-grid approximation of a domain D), and aiming
at x2. Let γ τ denote an initial slit of γ , for instance up to first exit of a small (but fixed)
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ball centered at x1. Then the probability that γ τ is a specific lattice path γ0 from x1 to
x ′1 is, essentially by definition,

PDε {γ τ = γ0} = f (γ0)
〈ψ(x ′1)ψ(x2)〉Dε\γ0

〈ψ(x1)ψ(x2)〉Dε

,

where f (γ0) is a product of local factors (depending only on the couplings of the edges
crossed by γ0). Let D′ be another domain which agrees with D in a neighborhood of x1
(with a marked boundary point x ′2 away from x1), and D′

ε a grid approximation of D′.
Then

PD′
ε
{γ τ = γ0}

PDε {γ τ = γ0} =
〈ψ(x ′1)ψ(x ′2)〉D′

ε\γ0〈ψ(x1)ψ(x2)〉Dε

〈ψ(x ′1)ψ(x2)〉Dε\γ0〈ψ(x1)ψ(x ′2)〉D′
ε

By convergence to SLE3, the lefthand side converges as ε↘0 to a function of γ0, D, D′,
x1, x2, x ′2 (at least weakly), which is explicitly determined by the restriction property of
SLE [53].

It is then rather natural (and, by now, quite standard [6,24,25,52,55], etc.) to call the
partition function of SLE an assignment (D, x, y) �→ Z(D, x, y) so that (in the chordal
case)

E(D′,x,y′)(φ(γ
τ )) = E(D,x,y)

(
φ(γ τ )

Z(D′\γ τ , γτ , y′)Z(D, x, y)

Z(D\γ τ , γτ , y′)Z(D′, x, y′)

)
, (1.3)

where γ is the SLE trace, γ τ an initial slit in a neighborhood of x common to D and D′, γτ
its tip, andφ a generic test function). Similarly to (1.2), the 4-tuple (D, D′, D\γ τ , D′\γ τ )
constitutes a neutral collection. (Here the situation is somewhat complicated by the fact
that the boundary is rough near the tip, which can be remediated by keeping track of
a 1-jet of local coordinate at the marked points). Again, the collection of probability
measures (D, x, y) �→ P(D,x,y) gives a non-trivial condition (1.3) on the collection of
partition functions (D, x, y) �→ Z(D, x, y). This formalism is particularly useful in the
presence of multiple SLE paths or in non simply-connected topologies.

Virasoro uniformization. In the present article we will not be concerned with scaling
limits (i.e., the analysis of discrete correlators or interfaces as the mesh of the underly-
ing lattice goes to zero) but rather will be working directly in the continuum to relate
SLE-type measures (on paths or systems of paths) with Virasoro representations. For
this purpose we will review Virasoro uniformization [33,48,50] and the method of “lo-
calization in path space” for SLE [49,55].

As is well-known, the moduli space of compact surfaces of a given genus has itself
a smooth—even complex—structure (keeping track of a Teichmüller marking avoids
orbifold singularities resulting from surfaces with exceptional symmetries, such as the

tori C/(Z + iZ) and C/(Z + e
iπ
3 Z)). There are different ways to represent the tangent

space to the Teichmüller space, corresponding to different ways to think of a (first-
order, infinitesimal) deformation of the complex structure. For instance one can deform
a compatible Riemannian metric; or deform the ∂̄ operator (Beltrami equation). In the
Kodaira–Spencer approach, one starts from a surface �, which by definition is covered
by charts with analytic transition maps; the deformation consists in keeping the charts
fixed and deforming the transition maps.

In particular one can consider deformations near a marked point X ; somewhat in-
formally, one can think of cutting out a small disk around that point and gluing it back
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with a different gluing data (transition map). This deformation is given by a vector field
defined in a pointed neighborhood of X . In particular, if z is a local coordinate at X ,
one can consider the vector field −zn+1∂z , n ∈ Z. This defines a tangent vector to the
relevant Teichmüller space (of marked surfaces). However, this tangent vector depends
on the choice of coordinate z. Again, informally, we can think of this construction as
defining a vector field �n on the space of surfaces with a marked point and a marked
local coordinate: (�, X, z).

It turns out that it is sufficient (and technically easier) to consider a formal local
coordinate z̃ (viz. an element of the completed local ring at X with a first-order zero)
rather than a genuine local coordinate z. The augmented Teichmüller space (the space
of marked surfaces of type (�, X, z̃)) is the projective limit of a tower of (smooth,
finite dimensional) Teichmüller spaces. There is a natural notion of smooth functions
on this space and the �n’s are well-defined as derivations on these smooth functions and
represent the Virasoro algebra with c = 0. This action is geometric, canonical and local
(it is defined in terms of a local chart around X independent of other markings, the global
geometry of the surface, etc.). A highest-weight vector is a function that has a tensor
dependence on the (formal) coordinate z̃ (i.e., replacing z̃ with z̃′ results in multiplying
the h.w.-vector by ( dz̃

d z̃′ (X))
h , where h is the weight).

In order to obtain a Virasoro representation with general central charge c, one needs
to consider sections of a determinant line bundle (rather than smooth functions) over the
augmented Teichmüller space. One way to think of these sections is as functionals of a
Riemannian metric satisfying a Polyakov anomaly formula (parameterized by c). Then
one defines—again in a geometric, local fashion—first-order differential operators Ln’s
that operate on smooth sections of that bundle. This gives a representation of the Virasoro
algebra with central charge c. This discussion can be carried out for deformations of
bordered Riemann surface at a marked boundary point, which is the natural set-up for
BCFT.

The next task is to identify sections that are “interesting” highest-weight vectors; and
have a natural probabilistic interpretation, viz. as the partition function (total mass) of
a measure on paths (connecting two marked boundary points). In particular, we need a
collection of measures indexed by the underlying bordered surface.

Localization. For our purposes, a crucial result is the restriction property of SLE [53],
which quantifies how this measure behaves under a deformation of the (simply-connected)
domain (away from the endpoints). This is also the first occurrence of the central charge
in SLE theory. It also enables one to define rather easily SLE-type measures and systems
of SLEs in more complex geometries.

Specifically, for a bordered surface � with two marked boundary points X,Y , one
can consider the path space P(�, X,Y ) of simple paths connecting X to Y . If D ⊂
� is a simply-connected domain which agrees with � near X,Y , P(D, X,Y ) is a
(relatively) open subset of P(�, X,Y ); as D varies, one gets a cover of the path space.
In order to define a measure μ� on the path space P(�, X,Y ), it is enough to define
consistent restrictions 1γ⊂Ddμ�(γ ) to the P(D, X,Y )’s (localization). The advantage
is that P(D, X,Y ) has a natural reference measure: chordal SLE in D.

The problem is thus to define a collection of Radon–Nikodym derivatives φ�D (deriv-
ative of the restriction of μ� to P(D, X,Y ) w.r.t. chordal SLE in D). In order to verify
that these local measures patch up correctly, it is enough to consider the case D′ ⊂ D
and compare with the restriction property for simply-connected domains; this gives a
(solvable) condition on the densities (φD

� )D .
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This construction assigns a measure μ�,X,Y on the path space P(�, X,Y ) to a
marked bordered surface (�, X,Y ), with a tensor dependence at the endpoints, with
weight h = h2,1 (one of the special weights appearing in the Kac determinant formula).
The partition functions of this collection of measures defines a function on the augmented
Teichmüller space:

Z : (�, X,Y, z, w) �→ ‖μ(�,X,Y,z,w)‖,
where z (resp. w) is a local coordinate at X (resp. Y ). Two difficulties consist of estab-
lishing the finiteness and the smoothness of this partition function. If c ≤ 0, one can
obtain finiteness (for one SLE strand) by comparing with the corresponding measure on
the universal cover. Given finiteness, smoothness follows by hypoellipticity arguments.
It is rather natural to then consider a section of the determinant bundle Zs, where s is a
reference section expressed e.g. in terms of Laplacian ζ -regularized determinants.

In simply-connected domains, a fundamental property of chordal SLE is the Domain
Markov property. The measures μ� inherit path decomposition identities, which in turn
translate into the following null vector equation for the partition function:

�2,1(Zs) = (L2−1 −
4

κ
L−2)(Zs) = 0,

which is expected on CFT grounds. In terms of the earlier discussion, one can think of
bcc operators as corresponding to inserting germs of chordal SLE; the partition function
is the correlator of these bcc operators. In algebraic terms, the highest-weight module
generated by Zs is a quotient of a reducible Verma module.

The main goal of the article is to define—in what we hope is a concrete and precise
manner—the terms of this equation, and then check it (Theorem 6), as well as lay the
groundwork for further work, in particular on fusion [27] and bosonic representations
of partition functions. Many of the important ingredients appear in some form in the
literature, in particular in [26,33,35,48,49,55]; earlier realizations of Virasoro repre-
sentations as “infinite-dimensional” differential operators in a CFT context appear in
[3–5,40]. The point of view adopted here is an attempt of a middle ground between the
more physical/algebraic and the more analytic/probabilistic of these references, with
an emphasis on bridging the gap between, in particular, representation-theoretic and
probabilistic concepts, an integrating SLE notions within the existing CFT framework.

In Sect. 2, we review basic material on Riemann surfaces and discuss Virasoro uni-
formization (at c = 0). In Sect. 3, we discuss loop measures, ζ -regularized determinants,
and anomalies. This is combined in Sect. 4 to construct the Virasoro action on sections of
the determinant bundle (with some technical aspects relegated to appendices). Section 5
describes SLE-type measures obtained by localization in path space and concludes with
the null vector equation.

Discussion. The construction of SLE-type measures by localization in path space pre-
sented here is largely a formal consequence of the restriction property for chordal SLE
[53] and the loop measure [56]—this is also where the central charge first appears in
SLE theory; almost simultaneously, the role of the central charge in SLE in relation with
CFT was considered in [3] and [34]. Many (most) of the arguments appear in some form
in the literature, for which we now provide a short (and non-exhaustive) guide.

The question of the definition of SLE in more complex geometries has been addressed
in many places, from quite a few points of view. In [8], the restriction property is used
to show in particular that chordal SLE8/3 conditioned on avoiding a hole defines a
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conformally invariant, Domain Markov process. From the chordal (with marked points)
and radial cases, it is fairly natural to use uniformization to try and define SLE in
multiply-connected domains. This has been used in particular in [7,22,74,75]. In this
line, the main issue is to identify the “physically relevant” SLEs and define them for all
times. As pointed out by Makarov, in more complex topologies one has to preclude new
potential pathologies, such as limit cycles.

Makarov and Zhan use the change of coordinate rules for SLE (e.g. [24,66])—
which follows fairly directly from [53]—to define SLEs in general geometries using
local charts. In a slight rephrasing (see e.g. Section 9 in [24]), given Z a suitable par-
tition function, one can construct a Domain Markov (at least for short times) SLE; the
drift of the driving process of the said SLE (when written in a local coordinate z) is
−κ(�−1 Z)/Z . In [24], in an effort to identify the physically relevant SLEs, a neces-
sary (under smoothness assumptions) condition for reversibility is stated and shown to
lead to a differential equation for the “partition function” Z ; this differential equation
(or rather pair of equations, one per endpoint) is nothing but the null-vector equation
�2,1(Zs) = 0.

In [33,35,48], Friedrich, Kalkkinen and Kontsevich introduce the Virasoro uni-
formization to SLE and posit the existence of partition functions (that may be thought of
as continuous limits of statistical mechanical ones) satisfying the null vector equations;
the hypoelliptic nature of the null-vector equation �2,1(Zs) is also pointed out there.
Virasoro uniformization is also closely related to the sewing formalism introduced by
Segal [67] and elaborated on in particular by Huang in [40] and subsequent work (see
Sect. 2.4.5). Remark however that we chose to follow rather closely the approach to the
determinant bundle of [35,49], rather than the Grassmannian construction of [67]. It is
also unclear (at least to us) how to accommodate several key features of this article, such
as SLE measures and null-vector equations, in the framework of [40,67].

In [3–5], Bauer and Bernard consider (from a more physical point of view) con-
nections of SLE and CFT, and Virasoro representations involving germs of analytic
functions at infinity and highlight the role of partition functions. This was subsequently
expanded on by Kytölä, see in particular [52]. In simply-connected domains, the result-
ing differential Virasoro representation and its action on SLE (local) martingales have
natural interpretations in the framework discussed in this manuscript (see Sects. 4.4.2,
5.4.4), when written with a suitable choice of (explicit) coordinates.

A crucial commonality between the earlier approaches of Huang [40] and Bauer–
Bernard [3–5] and the present work, as sketched in Sects. 2.4.5 and 4.4.2, is the repre-
sentation of Virasoro generators as infinite-dimensional differential operators.

In [34], building on the restriction property, Friedrich and Werner construct Virasoro
representations operating on hierarchies of boundary correlators (involving an increasing
number of marked points), in relation with the Ward identities.

In [49], Kontsevich and Suhov employ localization in path space to define SLE
measures, with a different formalism but—as discussed in Sect. 5.2.2—in a manner
essentially equivalent to the one presented here. For planar domains, the construction
is explained in detail in [55] (see also [51]). (In planar domains, points come equipped
with a reference local coordinate, given by the embedding in the plane—this is the only
nuance between the measures of [55] and those discussed here).

In [21], Doyon, Riva and Cardy consider a representation of the (bulk) stress–energy
tensor in central charge 0 based on the SLE restriction property. Conformal loop en-
semble formulations of the stress–energy tensor are also examined by Doyon in [18],
in relation with a Virasoro action defined on functionals on spaces of conformal maps
[16,17,19]; see also the survey [20].
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The finiteness of the partition function (for c ≤ 0 and for general c in annuli) is
obtained in [55]. For annuli, the smoothness of the partition function is obtained by a
Feynman–Kac representation in a parabolic set-up in [55,76].

2. Riemann Surfaces

In this section, we gather material on Riemann surfaces that will be used later, for the
reader’s convenience. We will be concerned mostly with bordered Riemann surfaces.
The doubling procedure associates a (closed, compact) surface to a bordered surface.
Constructions on the doubled surface are very useful in the study of the bordered surface.
Hence we begin with elements of the classical theory of compact Riemann surfaces (see
e.g. [2,29,37]).

2.1. Compact Riemann surfaces. Let� be a compact Riemann surface, that is, a smooth
compact connected surface equipped with a complex structure. The complex structure is
given by an analytic atlas (i.e. a covering by open sets identified with disks, in such a way
that the transition maps are analytic). Alternatively, a complex structure is a Riemannian
metric modulo the action of smooth functions by Weyl scaling. The complex structure
induces an almost complex structure, i.e. a section J of End(T�) with J 2 = − Id. In
complex dimension one, every almost complex structure is integrable (i.e. corresponds
to a complex structure), and the two data are equivalent. The almost complex structure
gives an orientation.

The homology group H1(�,Z) is a free abelian group of rank 2g, where g is the
genus of �. A canonical basis of H1(�,Z) (not uniquely defined) consists in (classes
of) cycles (A1, . . . , Ag, B1, . . . Bg) such that the only intersections are between Ai and
Bi , i = 1 · · · g, with direct orientation for these crossings. Given such a basis, one can
identify H1(�,Z) � Z

2g . A Teichmüller surface is a Riemann surface marked with
a canonical basis of H1(�,Z). Equivalently, it is a Riemann surface equipped with a
diffeomorphism to a reference smooth surface �s , given up to isotopy.

A holomorphic bundle over � is a bundle of complex vector spaces over � with
analytic transition functions. To such a bundle is associated the (invertible) sheaf of its
holomorphic sections; we shall not distinguish between the two notions. The structure
sheaf of analytic functions is denoted by O.

The canonical sheaf K is the sheaf of holomorphic 1-forms (unless mention of the
contrary, all forms will be 1-forms). In a local coordinate z defined in an open set U ,
a holomorphic form is written as ω = f (z)dz where f is holomorphic in U . The
global sections of K constitute the g-dimensional complex vector space H0(�, K ) of
differential forms of the first kind (DFK), or abelian differentials. Given a canonical
homology basis, one can find a basis (v1, . . . , vg) of H0(�, K ) dual to the A-cycles,
i.e.

∫
Ai
v j = δi j . The g × g period matrix � is then defined as � = (

∫
B j
vi )1≤i, j≤n . It

is a symmetric matrix with positive definite imaginary part (as follows from Riemann’s
bilinear relations). The period matrix characterizes a Teichmüller surface (Torelli’s theo-
rem). If g ≥ 4, not all g×g symmetric matrices with positive definite imaginary part are
period matrices (the Schottky problem consists in identifying those which are actually
period matrices).

An abelian differential with vanishing A- (or B-) periods is zero. An abelian differ-
ential with imaginary A and B periods is zero.

We shall also consider meromorphic forms. The residue at a point of a form is defined
invariantly (independently of a choice of local coordinate). The sum of residues of a form
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is zero. A meromorphic forms with zero residues is a differential form of the second
kind (DSK); other meromorphic forms are deemed to be of the third kind. Given any
two points X,Y ∈ �, there exists a meromorphic form with first order poles at X,Y
(residues 1,−1) and holomorphic elsewhere. It is uniquely defined if one requires its
A-periods to vanish (this requires to fix the A-cycles, due to residues). It is also uniquely
defined if one requires all periods to be real. By taking a limit Y → X , given any point
X ∈ �, one can find a DSK with a second order pole at X and regular elsewhere.

The holomorphic tangent bundle is denoted by T� and can be identified with K−1.
Its sections can be written as f (z) ∂

∂z in a local coordinate z.
A divisor D is formal finite linear combination with integer coefficients of points

of �: D = ∑
ni Pi . The sheaf O(−D) can be defined as follows: its (holomorphic)

sections are meromorphic functions with poles of order at most −ni at Pi (if ni ≤ 0),
vanishing at order at least ni at Pi if ni > 0 and regular outside of the support of the
divisor.

2.2. Theta functions and prime forms. In this subsection, we collect results on theta
functions that we shall use later on (including in planned subsequent work). These will
be useful in particular to control the smoothness of various quantities under deformation
of the complex structure; and give explicit examples of partition functions. For a complete
account, see e.g. [30,59,60]. Conventions are as in [29].

Let � be a fixed symmetric g × g complex matrix with positive definite imaginary
part (as is the case for period matrices of genus g Riemann surfaces). Such matrices
constitute the Siegel half-space Sg . The Riemann theta function is defined as:

ϑ(z|�) =
∑

N∈Zg

exp

(
2iπ(

1

2
t N�N + t N z)

)

for z ∈ C
g . The following transformation property is immediate:

ϑ(z + �N + M |�) = exp 2iπ(−1

2
t N�N − t N z)ϑ(z|�)

for all M, n ∈ Z
g , and consequently ϑ(.|�) can be seen as a multivalued function on

the complex torus C
g/(Zg + �Z

g) (it is in particular Z
g-periodic). It is also even.

One can extend the definition to theta functions with characteristic. Let ε, ε′ be in
R

g; one identifies C
g with (Rg)2 via (ε, ε′) �→ ε′ + �ε. Then define:

ϑ

[
2ε
2ε′

]
(z) =

∑

N∈Z2g

exp 2iπ

(
1

2
t (N + ε)�(N + ε) + t (N + ε)(z + ε′)

)

keeping now the dependence on � implicit. When 2ε, 2ε′ have integer coordinates,
this function is the first order theta function with integer characteristic [2ε 2ε′]. Up to
sign, there are 22g such functions, corresponding to the 2-torsion of C

g/2(Zg + �Z
g).

Of these, 2g−1(2g + 1) are even (in z) and the remaining 2g−1(2g − 1) are odd; this
depends on the parity of tεε′. If [ε ε′] is an integer characteristic, one has the following
transformation properties:
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ϑ

[
ε

ε′
]
(z + ek) = exp(iπεk)ϑ

[
ε

ε′
]
(z)

ϑ

[
ε

ε′
]
(z + �ek) = exp iπ(−2zk −�kk − ε′k)ϑ

[
ε

ε′
]
(z)

ϑ

[
ε + 2ν
ε′ + 2ν′

]
(z) = exp(iπ tεν′)ϑ

[
ε

ε′
]
(z)

where (ek) is the standard basis of Z
g and ν, ν′ are integer valued vectors.

An immediate property is the heat equation:

4iπ∂�i iϑ = ∂zi ziϑ

2iπ(∂�i j + ∂� j i )ϑ = ∂zi z jϑ

relating variations w.r.t. the z. and �. variables of a theta function with characteristics
ϑ .

Let � be a Teichmüller surface of genus g, (A1, . . . , Ag, B1, . . . , Bg) the homology
basis, v = (v1, . . . , vg) the basis of abelian forms dual to the A-cycles, � the period
matrix. Then there exists an odd integer characteristic [δ δ′] which is non singular in the
sense that the gradient of the associated theta function at 0 does not vanish (see chapter II
in [30], [60] from p207). Let us fix such a non singular theta characteristic and denote

by ϑ the associated theta function ϑ

[
δ

δ′
]

. Consider the abelian form:

ζ =
g∑

i=1

∂ziϑ(0)vi .

It turns out that the zeroes of this form have even order (in a local coordinate t , ζ = a(t)dt
with a holomorphic and with even order zeroes). Thus one can consider

√
ζ as a global

section of a holomorphic bundle L such that L⊗2 � K .
At this point one can define the prime form E on � ×�:

E(x, y) = ϑ
(∫ y

x v
)

√
ζ(x)

√
ζ(y)

.

This depends on the path of integration: changing the path of integration introduces
additional periods, hence involves transformation properties of ϑ . One can make it
single valued by lifting to the universal cover (i.e. x, y ∈ �̃ the universal cover of �).
We reproduce the following properties from [60]:

1. E(x, y) = 0 iff x and y project to the same point in �
2. E vanishes to first order along the diagonal of �̃ × �̃

3. E(x, y) = −E(y, x)
4. Let t be a local coordinate about x ∈ � (i.e. t (x) = 0) such that ζ = dt ; then

E(x, y) = t (x)− t (y)√
dt (x)

√
dt (y)

(1 + O((t (x)− t (y))2)).
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5. E(x, y) is unchanged if x or y is moved along an A-period. If x is moved by a
B-period �ni Bi to x ′,

E(x ′, y) = ±E(x, y) exp(−iπ t n�n + 2iπ t n
∫ y

x
v).

If y is moved to y′ along the same B period:

E(x, y) = ±E(x, y) exp(−iπ t n�n − 2iπ t n
∫ y

x
v).

(The ± sign is kept undetermined in order to circumvent a discussion of half-order
differentials, and is unimportant for our purposes.)

The prime form does not depend on the choice of non singular odd characteristic (as
is easily seen from its vanishing properties), and has a simple dependence on the choice
of homology basis.

Various meromorphic sections can be reconstructed from the prime form E . In par-
ticular, as noted earlier, for a, b ∈ �, there is a unique meromorphic 1-form ωa−b on �
which is regular except at a, b, where it has simple poles with residues 1,−1 respectively,
and has vanishing A-periods. This form can be written as:

ωa−b(x) = dx log
E(x, a)

E(x, b)
.

Note that although E is not single-valued, ωa−b is well defined.
Similarly, the “fundamental 2-form” on � ×�, expressed as:

ω(x, y) = dx dy log E(x, y)

is well defined and symmetric in x, y. In a local coordinate t , it has the expansion:

ω(x, y) =
(

1

(t (x)− t (y))2
+ (reg)

)
dt (x)dt (y)

near the diagonal, where reg is biholomorphic. Moreover, integrating the variable x along
an A-period, the resulting 1-form (in y) is zero:

∫
Ai
ω(., y) = 0. Along a B-period:

∫

B j

ω(., y) = 2iπv j (y).

Also,
∫ b

a ω(., y) = ωb−a(y), the integral being taken on a path that does not intersect

cycles of the homology basis. Hence
∫

B j
ωb−a = 2iπ

∫ b
a v j . The differential form:

�b−a = ωb−a − 2iπ tv(��)−1�
∫ b

a
v

has residues −1, 1 at a, b and pure imaginary (A and B) periods (these being defined
modulo 2iπZ). It is uniquely defined by these properties.

For a ∈ �, there is a unique (up to multiplicative constant) meromorphic formηa with
double pole at a, regular elsewhere and with vanishing A-periods. It can be expressed
as: ω(x, a)/dt (a), where t is a local coordinate at a.
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This can be used to express variations of different quantities under a variation of the
surface � in terms of ϑ and its derivatives, in particular in conjunction with the heat
equation.

The Bergman connection Bp evaluated at p ∈ � w.r.t. local coordinate z is defined
from the following expansions for x, y near p in �:

E(x, y)
√

dz(x)dz(y) = (y − x)(1− Bp

12
(z(y)− z(x))2 + O((z(y)− z(x))3))

ω(x, y) =
(

1

(z(y)− z(x))2
+

Bp

6
+ O(z(y)− z(x))

)
dz(x)dz(y)

ηp(x) =
(

1

(z(x)− z(p))2
+

Bp

6
+ O(z(x)− z(p))

)
dz(x)

From this it is immediate that Bp depends on the local coordinate z as a Schwarzian
connection:

(
1

z2 +
B(z)

6
+ · · ·

)
dz = dz′

dz

(
1

z′2
+

B(z′)
6

+ · · ·
)

dz′

=
⎛

⎝ 1

z2

(
1 +

z

2

∂2
z z′

∂z z′
+

z2

6

∂3
z z′

∂z z′

)−2

+
B(z′)

6
(∂z z′)2 + · · ·

⎞

⎠
(

1 + z
∂2

z z′

∂z z′
+

z2

2

∂3
z z′

∂z z′

)
dz

where z, z′ are local coordinates at p (z(p) = z′(p) = 0), which implies:

B(z) = B(z′)
(

dz′

dz

)2

+ {z′; z}

where

{z′; z} = ∂3
z z′/∂z z′ − 3/2(∂2

z z′/∂z z′)2

is the Schwarzian derivative. This is because the difference of the sides in the equation
is an abelian form with vanishing A-periods, hence 0. The difference of two Schwarzian
connections is a quadratic differential.

Let us illustrate these various concepts in the genus 1 case: let � = C/(Z + τZ) be
an elliptic curve (�τ > 0). There is a unique odd integer characteristic theta function

ϑ

[
1
1

]
, which we denote by θ (notations as in [15]). Then ζ = θ ′(0)dz, E(x, y) =

θ(y−x)/θ ′(0)
√

dxdy. The fundamental 2-form can be expressed in terms of the elliptic
function ℘ (Weierstrass ℘ function):

ω(x, y) = (℘ (y − x) + 2η1)dz(x)dz(y)

with 2η1 = − ∫
A ℘(z)dz, 2η2 = − ∫

B ℘(z)dz, where A, B is the usual homology
basis. Note that

∫
A ω(x, .) = 0 and

∫
B ω(x, .) = (2η1τ − 2η2)dz(x) = 2iπdz(x), in

agreement with the Legendre relation. The Bergman connection (in the flat coordinate
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z) is Bx = −2 θ ′′′
θ ′ (0) at any x ∈ �. The dependence on the modulus τ can be made more

explicit, e.g. in terms of Dedekind’s η function:

θ ′(0|τ) = 2πη3(τ )

and consequently

θ ′′′

θ ′
(0|τ) = 4iπ∂τ log θ ′(0|τ) = 12iπ∂τ log η(τ)

using the heat equation.

2.3. Bordered surfaces. It will be convenient later on to use bordered Riemann surfaces.
These are classically studied by considering their (Schottky) double, which are compact
Riemann surfaces (see e.g. chapter VI in [30]).

A bordered Riemann surface is modelled locally either on the unit disk (for interior
points) or on the semidisk D+ = {z : �z ≥ 0, |z| < 1} for boundary points; transition
maps are analytic.

We shall consider only surfaces with a finite number of boundary components (dif-
feomorphic to circles); these boundary curves are positively oriented, that is, the surface
lies to their lefthand side.

The Schwarz reflection principle implies that a continuous analytic function f on,
say, the semidisk D+ which is real on the boundary extends to an analytic function on
the semidisk via f (z̄) = f (z).

Let � be a bordered Riemann surface of genus ρ with n boundary components. The
double �̂ is the compact Riemann surface obtained by gluing� and a conjugate copy of
� along their boundaries. It carries an antiholomorphic involution ι whose fixed points
are the boundary points of �. For instance, if z is a local coordinate at x ∈ � ⊂ �̂, z ◦ ι
is a local coordinate at ιx . The involution operates similarly on all natural holomorphic
structures (differential forms, …). If ω is a tensor, we denote simply ιω for ι∗ω (without
ambiguity as ι is an involution). The double has genus g = 2ρ + n − 1.

One can choose a homology basis on �̂ adapted to the double structure as follows. Let
A1, B1, . . . , Aρ, Bρ be pairs of cycles around the “handles” of�; the oriented boundary
components of � are �0, . . . , �ρ . Let A′i = ιAi , B ′i = −ιBi (ι is antiholomorphic, so
the minus sign is needed to preserve the direct orientation of the crossing). One can take
a canonical basis of H1(�̂,Z) in which the g = (2ρ + n − 1) A-cycles are

A1, . . . , Aρ, Aρ+1, . . . , Aρ+n−1, A′1, . . . , A′ρ
where Aρ+i = �i , i = 1, . . . , n− 1. The cycle Bρ+i starts at a point on �i , travels on �
to a point on�0, and comes back symmetrically on ι�, without intersecting other cycles.
Note that the set of A-cycles is preserved by ι. It follows that if (v1, . . . , vρ+1, . . . , v

′
1, . . .)

is the dual basis of H0(�̂, K ), one gets: ιvi = v′i , ιvρ+i = vρ+i . Similarly, the period
matrix � has symmetries, in particular (�ρ+i,ρ+ j )1≤i, j≤n−1 is pure imaginary. In what
follows, the same basis will be denoted (v1, . . . , vg).

In a similar way, one gets:ωιa−ιb = ιωa−b, ηιa = ιηa ,ω = ιω (fundamental 2-form),
and E(ιx, ιy) = E(x, y) (see [30], Cor. 6.12).

Potential theory. Harmonic invariants on the bordered surface � can be expressed in
terms of holomorphic invariants on �̂ (and ultimately in terms of the prime form or
theta functions).
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The two basic potential theory problems on � are the (a) the Poisson problem: For
a given (1, 1)-form written locally as hdz ∧ dz̄, find f vanishing on the boundary s.t.

∂∂̄ f = fzz̄dz ∧ dz̄ = hdz ∧ dz̄

and (b) the Dirichlet boundary value problem: given a continuous function f0 on the
boundary ∂�, find a continuous extension f to � which is harmonic there.

The Green’s function G(x, y) on � (with Dirichlet boundary conditions on ∂�)
depends only on the conformal structure. It can be expressed as:

2πG(x, y) = 1

2

∫ x

ιx
�ιy−y

= −1

2

∫ ιx

x

∫ ιy

y
ω + π

g∑

j,k=1

(��)−1
jk �(

∫ ιx

x
v j )�(

∫ ιy

y
vk)

where �b−a is the meromorphic form with residues −1, 1 at a, b and purely imaginary
periods, and ω(x, y) = dx dy log(E(x, y)) is the fundamental 2-form.

For a fixed y ∈ �, G(., y) vanishes on the boundary, is harmonic on �\{y}, and has
an expansion near y:

G(x, y) = 1

2π
log |x − y| + (reg)

where (reg) is continuous (the leading part does not depend on the choice of coordinates).
These properties characterize uniquely G. Setting

f (x) = i
∫

�

G(x, y)h(y)dy ∧ d ȳ

solves the Poisson problem.
Let p ∈ ∂�. Considering η̃p the differential form of the second kind with the same

divisor and meromorphic part at p as ηp, but with the condition that all its periods are
real. It is defined w.r.t a local coordinate z which is chosen real and increasing at p
along the (oriented) boundary. Let h p(q) = π−1�(∫ q

p0
η̃p) for q ∈ �, where p0 is a

base point on ∂�. Then h p is a harmonic function vanishing on ∂�\{p}; it is the unique
such function with expansion h p(q) = π−1�(1/(z(q)− z(p)))+ O(1) near p. It is thus
identified as the Poisson kernel P�(., p) = h p(.) (w.r.t. the length element dz at p) in
the following sense: if f0 is continuous on ∂�, setting

f (q) =
∫

∂�

f0(p)P�(q, p)dz(p)

solves the Dirichlet boundary value problem.
Another classical operator is the Dirichlet-to-Neumann operator, which maps f0 ∈

C∞(∂�) to the normal derivative on ∂� of its harmonic extension to �. This defines a
singular integral operator on ∂� with kernel (also called the Poisson excursion kernel)
given by

(q, p) �→ H(p, q) = π−1�(η̃p(q)) (2.4)

which is naturally defined as a 1-form in p and q and is easily seen to be symmetric (the
Poisson kernel can be realized by taking the normal derivative w.r.t. one argument of the
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Green kernel on the boundary; and the Poisson excursion kernel by taking the normal
derivative w.r.t. both variables on the boundary).

Define Sp w.r.t. the coordinate z by:

η̃p(x) =
(

1

(z(x)− z(p))2
+

Sp

6
+ O(z(x)− z(p))

)
dz(x) (2.5)

Since
∫

A j
ηp = 0,

∫
B j
ηp = 2iπ(v j/dz)(p), one gets:

η̃p = ηp − 2π
∑

jk

v j (��)−1
jk �(vk/dz)(p)

from which follows (evaluated w.r.t. z):

Sp = Bp − 12π tw(��)−1w

where w = (�(vk/dz)(p))k , using the fact that Sp(z) is real (z is real along the bound-
ary). If z′ is another such coordinate, one has the Schwarzian connection identity:

S(z) = S(z′)
(

dz′

dz

)2

+ {z′; z} (2.6)

This also has a simple expression in terms of the bubble measure of [56] and the Dirichlet-
to-Neumann operator.

2.4. Teichmüller space, deformations, and Virasoro uniformization.

2.4.1. Teichmüller space. Let �s be a smooth compact oriented surface of genus g.
Any Riemann surface of genus g is diffeomorphic to �. A Teichmüller surface is a
Riemann surface equipped with a standard homology basis. Two Teichmüller surfaces
are equivalent if there is a conformal isomorphism between them compatible with the
marking. The Teichmüller space Tg is the space of equivalence classes of equivalence
of genus g Teichmüller curves.

There is a natural complex structure on Tg given by the following prescription: if
π : � → B is an analytic submersion (B a small polydisk) where the fibers π−1(b),
b ∈ B, are genus g surfaces (with continuous Teichmülcer marking), then the map b �→
[π−1(b)] ∈ Tg is analytic. This can be done by considering instead classes of equivalence
of quasi-conformal maps and using the Ahlfors–Bers result on solving the Beltrami
equation analytically in the Beltrami differential (see e.g. [36] and references therein).
More precisely, there exists a universal Teichmüller curve Cg , that is a holomorphic
family of Teichmüller curves parameterized by the Teichmüller space: Cg → Tg .

A complex structure on �s is given by an analytic atlas. With a partition of unity,
one can construct a Riemannian metric g on �s compatible with this complex structure;
that is, if z = x + iy is a local analytic coordinate,

g = e2σ (dx ⊗ dx + dy ⊗ dy)

locally. Conversely, given g, one can find locally “isothermal” coordinates x, y such
that this holds, and hence recover a complex structure. The metrics g and e2σ g yield
the same complex structure (“Weyl scaling”). Also, if φ is an orientation preserving
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diffeomorphism of �s , (�s, φ∗g) and (�s, g) are equivalent as Riemannian surfaces,
a fortiori as Riemann surfaces. Moreover, if φ ∈ Diff0(�

s) the connected component
of the identity in the group of diffeomorphisms of �s (viz. φ is isotopic to the identity),
(�s, φ∗g) and (�s, g) are equivalent as Teichmüller surfaces. So if Met is the (convex)
set of smooth Riemannian metrics on�s , and C∞(�s) operates on Met by σ.g = e2σ g,
then the Teichmüller space is the space of orbits:

Met/(C∞(�s) � Diff0(�
s))

2.4.2. Kodaira–Spencer deformation.

Compact surfaces. We proceed with the Kodaira–Spencer description of the tangent
space to the Teichmüller space at a surface � (see [47]). Let (�t )−ε<t<ε be a smooth
family of compact Riemann surfaces (i.e. without boundary), the lift of a smooth path
on the Teichmüller space with�0 = �. For instance, one can fix an underlying differen-
tiable manifold�s and consider a smooth family of complex structures on�s (e.g. given
by a smooth family of Riemannian metrics, or by a smooth family of almost complex
structures).

Let U = {Ui } be a locally finite covering of� by analytic disks. Then�t is covered by
{U t

i } (U t
i is the open setUi equipped with the complex structure inherited from that of�t ).

Let θi (t) : Ui → U t
i be a conformal equivalence (w.r.t. the complex structures on �, �t

respectively), smooth in t , θi (0) = IdUi . Then on Ui j = Ui∩U j , θi (t)−1◦θ j (t) is analytic
(for any z ∈ Ui j , it is defined for t small enough and a small enough neighborhood of
z); it is the identity at t = 0. Let αi j be the time derivative at t = 0 of (θi (t)−1 ◦ θ j (t)).
It is naturally seen as a holomorphic vector field on Ui j . On Ui jk = Ui ∩U j ∩Uk , one
has the identity:

αi j + α jk + αki = 0

Hence the collection (αi j ) defines a Čech 1-cocycle with values in the holomorphic
tangent sheaf T� � K−1. Its class in H1(U, K−1) does not depend on choices. Indeed,
if θi is replaced with θi ◦ βi , where (β t

i ) is a family of conformal maps Ui → Ui , it is
simple to check that αi j is replaced with αi j + βi − β j , which consists in adding the
coboundary dβ. Hence the infinitesimal deformation defines an element in H1(U, K−1).
Since the covering U was chosen acyclic (K−1 is trivialized on the analytic disks Ui ),
H1(U, K−1) � H1(�, K−1) (sheaf cohomology). One can also check that this does
not depend on the choice of covering.

Conversely, any element in H1(�, K−1) corresponds to an infinitesimal deformation
of � (i.e. there is a smooth one parameter family of Riemann surfaces which induces
a prescribed element of H1(�, K−1) via the construction described above); this fol-
lows from the existence theorem of Kodaira–Spencer ([47], building on the Newlander–
Nirenberg theorem), given that H2(�, K−1) = 0 for dimensional reasons.

This gives the identification:

(T Tg)� � H1(�, K−1) (2.7)

and by Serre duality: (T ∗Tg)� � H0(�, K 2). The complex structure of T Tg (recall
that the Teichmüller space is complex analytic) corresponds to the natural complex
structure of H1(�, K−1). An application of the Riemann–Roch theorem shows that
h0(�, K−1) = dim H0(�, K−1) = 3g − 3 if g ≥ 2 (0 if g = 0, 1 if g = 1), i.e. Tg is
3g − 3 dimensional (as a complex manifold).
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Punctures. We shall also consider Teichmüller surfaces with marked points (often re-
ferred to as punctures), or more generally marked k-jets. A configuration consists now
of a Teichmüller surface � with marked points Xi , and the ki -jet of a parameter at Xi ,
i = 1, . . . , r . A k-jet at X is an element of C[z]/(zk+1

C[z])with a first-order zero, where
z is a given analytic local coordinate at X : z(X) = 0; more intrinsically, it is an element
of OX/m

k+1
X where OX is the local ring at X and mX its maximal ideal.

Two configurations are equivalent if there is a conformal equivalence sending marked
points (and jets) to marked points (and jets). The Teichmüller space T = Tg,1k1 ,...,1kr

(notation as in [50]) is the set of equivalence classes of such configurations. As before,
it is a complex analytic space with tangent space identified as:

(T Tg,1k1 ,...,1kr )�,... � H1(�, K−1 ⊗O(−
r∑

i=1

(ki + 1)Xi )).

The sheaf in the RHS is that of holomorphic vector fields with a zero of order ≥ ki + 1
at Xi , i = 1, . . . , r . Indeed, a vector field preserving a k-jet at X vanishes at order
k + 1 there. Moreover, there is a natural projection—consisting in forgetting the jets—
Tg,1k1 ,...,1kr → Tg,1,...,1, making the first a G-principal bundle over the second, where

G = ∏
Aut(OXi /m

ki +1
Xi

).
Results on the marked Teichmüller space may be recovered easily from the classical

(unmarked) set-up. For instance, Tg,1,1 is naturally identified with an open subset of the
fibered product Cg ×Tg Cg , where Cg → Tg is the universal Teichmüller curve.

Bordered surfaces. We now turn to bordered Teichmüller surfaces. Let �s be a smooth
bordered oriented surface with genus ρ and n boundary components, used for reference.
A Teichmüller surface (of this topological type) is a Riemann surface equipped with a
diffeomorphism to �s , defined up to isotopy. As usual, to a bordered surface �, one
associates its compact double �̂, here of genus g = 2ρ + n − 1. The Teichmüller space
is the set of Teichmüller surfaces (with a marked homology basis) of this type up to
equivalence. It can be constructed directly (see e.g. [42] for a detailed discussion) or
seen as a real analytic subspace of the complex analytic space Tg . The Kodaira–Spencer
construction goes through if one defines the tangent sheaf T� as the sheaf of analytic
vector fields that flow along the boundary (this is a sheaf in real vector spaces). Then

(T Tρ,n)� � H1(�, T�)

as real vector spaces, and one can see easily by a reflection argument that H1(�, T�)⊗R

C � H1(�̂, T �̂). Indeed, if ω is a (local) section of T �̂, then ω = ω+ιω
2 + ω−ιω

2 , and
ω+ιω

2 and i ω−ιω2 are sections of T�. Hence Tρ,n has 3g − 3 real dimensions. Similarly,
one can mark points and jets on the boundary or in the bulk (the interior of�); jets on the
boundary are assumed to be real along the boundary and compatible with the orientation
of the boundary. If a ki -jet is marked at Xi , one gets:

(T Tρ,n,1k1 ,...,1kr )� � H1(�, (T�)⊗O(−
∑

(ki + 1)Xi )).

2.4.3. Virasoro uniformization. We proceed by describing Virasoro uniformization of
these Teichmüller spaces, as introduced by Kontsevich and Beilinson–Schechtman [9,
50]. Let� be a reference Teichmüller curve, T the Teichmüller space of curves which are
diffeomorphic to it. Then (T T )� � H1(�, T�) by the Kodaira–Spencer isomorphism
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(2.7). Choose a point X ∈ � and a local analytic coordinate z at X (z(X) = 0). Let
D = z−1(D(0, η)) a disk neighborhood of X in �, for η small enough. The covering
U = {D, �\{X}} yields an injective map H1(U, T�)→ H1(�, T�). Actually, U is a
Leray covering: indeed, H1(D, T�) = 0 by Dolbeault’s lemma, and H1(�×, T�) = 0
since H1(�×,O) = 0 and the Mittag-Leffler problem is solvable on the non-compact
Riemann surface �× = �\{X} (see e.g. [32, Section 26]). Hence:

H1(�, T�) � H1(U, T�) � (T�)(D×)/
(
(T�)(D) + (T�)(�×)

)
(2.8)

where F(U ) denotes the sections of the sheaf F on the open set U and D× is the
punctured disk D\{X} (for instance, (T�)(D×) is the vector space of holomorphic
vector fields on the punctured disk D×). In words, the tangent space to T at � can be
represented by the holomorphic vector fields in the punctured analytic disk D× modulo
holomorphic vector fields defined in D or in �×. Similarly,

H1(�, (T�)⊗O(−X)k) � H1(U, (T�)⊗O(−X)k)).

Jets at other points may also be marked in a similar way.
Writing vector fields on D× in the local coordinate z, a Laurent vector field v ∈

C((z))∂z (here C((z)) = C[[z]][z−1]) yields an element of H1(U, T�(−k X)), hence of
H1(�, T�(−k X)) (there is no convergence issue since we quotient by vector fields in D
vanishing at order k+1 at X ). A Laurent vector field converging in some annulus r1 D\r2 D
around X also yields such an element (by considering the covering {r1 D, �\r2 D}). Thus
we get a map

C[z, z−1]∂z/(z
k+1

C[z]∂z) � C((z))∂z/(z
k+1

C[[z]]∂z) −→ H1(�, (T�)

⊗O(−X)k) � (T T1k )� (2.9)

It is worth pointing out that any class in the RHS can be represented by an element of
C[z, z−1]∂z [rather than a general holomorphic vector field in D× as in (2.8)]. Using
e.g. Riemann–Roch and the prime form, one can construct a replicating kernel SL(z, w)
s.t. SL(., w) is a section of L = T�(−k X); SL(., w) is a section of K ⊗ L−1; SL is
biholomorphic except on the diagonal, where it has an expansion SL (z, w) = dw

2iπ(z−w) in
any trivialization, and at X where it has a pole of bounded order. Then if s is a section of L
on D×, C a contour around the puncture in D×, then (SLs)(z) = ∮

C s(w)SL(z, w)dw is a
meromorphic section of L with a pole at X and a jump across C given by s. Consequently
SLs is meromorphic in D and represents the same class of H1(�, L) as s does.

This argument shows that the map (2.9) is surjective [from (2.8)]; and has kernel
given by restrictions of holomorphic vector fields on �× to D× (here ∂z = ∂

∂z ).
In the case of bordered surfaces, we will consider deformations at boundary points.

Then we have the corresponding statement for the map

R((z))∂z/(z
k+1

R[[z]]∂z) −→ H1(�, (T�)⊗O(−X)k) � (T T1k )�

where (�, X, . . .) is a bordered surface with a k-jet marked at the boundary point X ;
T1k is the corresponding Teichmüller space; T� is the sheaf of analytic vector fields
flowing along the boundary of �; and z is a local coordinate mapping a neighborhood
of X in � to a neighborhood of 0 in H. As explained earlier, it follows from (2.9) by
doubling arguments.
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2.4.4. Witt algebra representation. We want to realize first the Witt algebra and later
the Virasoro algebra and their universal enveloping algebras as differential operators on
a space of smooth functions. We start with a discussion of the Witt algebra.

The (real) Witt algebra is the Lie algebra with basis (�n)n∈Z and bracket given by

[�m, �n] = (m − n)�m+n (2.10)

for m, n ∈ Z. It may be realized as R[z, z−1]∂z , with �n = −zn+1∂z .

Formal coordinates. Let us fix �s a bordered smooth surface; let T1k be the Teichmüller
space of surfaces diffeomorphic to�s with marked points X, X1, . . . , Xn (X a boundary
point) and a marked k-jet at X ; the deformation occurs at X and one keeps track of the
“spectator” points X1, . . . , Xn (we omit this additional marking from the subscript of
T1k ). We have natural smooth covering maps T1k+1 → T1k and we may define the
projective limit

T1∞ = lim←− T1k

As a topological space, it may be equipped with the initial topology, viz. the coarsest
topology making the canonical projections πk : T1∞ → T1k continuous. Concretely,
a basis of the topology of T1∞ is given by (π−1

k (Uk,α))k,α , (Uk,α)α∈A a basis of the
topology of T1k .

A point in T1∞ is represented by a Teichmüller surface with a marked point X and
a formal local coordinate at that point, viz. an invertible (for composition) element of
the completed local ring ÔX = lim←−OX/m

k
X . If z is a (genuine) local coordinate at X , a

formal local coordinate is a formal power series
∑

n≥1 anzn , a1 �= 0 (e.g.
∑

n≥1 n!zn).
We will consider in particular marked points on the boundary, in which case we have
an ∈ R, a1 > 0 (if z maps a neighborhood of X to a neighborhood of 0 in H).

The projection πk corresponds to the truncation of formal local coordinate

∑

n≥1

anzn �−→
∑

n≥1

anzn mod zk+1
R[[z]]

Remark that the map itself is independent of the choice of local coordinate z.
Next we want define a notation of smooth functions (and more generally sections)

on T1∞ . One possible route is to realize T1∞ as a Fréchet manifold [39]. Instead (but
essentially equivalently) we follow an elementary approach suited to the situation. We
can simply define

C∞(T1∞) = lim−→C∞(T1k )

where the direct limit is taken as sheaves. This means that if U ⊂ T1∞ is open, f : U →
R is smooth iff f can be written locally as the pullback of a smooth function on one of
the T1k , i.e. iff there is a collection of open sets Uα of T1k(α) and smooth (in the usual
sense) functions fα : Uα → R such that f = fα ◦πk(α) on π−1

k(α)(Uα), and U is covered

by the π−1
k(α)(Uα)’s.

Construction of the �n’s. We will now define local operators: �n : C∞(U ) → C∞(U )

that represent the Witt algebra. From the definition of C∞(U ), it is enough to evaluate
�n( f ◦ πk) when f ∈ C∞(Uk), Uk an open set of T1k , k ∈ N fixed.
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Let (�, X, z̃, . . .) a point in Uk′ , i.e. a Teichmüller surface with a marked boundary
point X and z̃ a k′-jet of local coordinate at X (k′ ≥ k); here Uk′ = π−1

k′,k(Uk). Let

us extend z̃ to an actual local coordinate z (i.e. z̃ = z mod zk′+1OX ); z identifies a
neighborhood of X in � with a neighborhood of 0 in the upper half-plane H. Let r > 0
be small enough so that z−1 is defined and analytic on D(0, 2r) ∩H; set A = {z ∈ H :
3
4r < |z| < 5

4r}. We may represent � as z−1(D(0, 3
2r)) and �\z−1(D(0, r/2)) glued

along their intersection.
In H, consider the flow of analytic maps defined by h0(z) = z, ḣt (z) = −hn+1

t (z), i.e.
the flow generated by the vector field−zn+1 ∂

∂z . For any fixed semi-annulus around 0, ht is
analytic on this semi-annulus for t small enough. Then z−1◦ht maps A to a semi-annulus
in �\z−1(ht (D(0, r/2)). Let �t be the surface obtained by identifying these two open
sets via ht ◦z. Then�t has the same smooth type and markings as� = �0 and has also a
distinguished local coordinate at X . The surface �t and the germ of the local coordinate
(a fortiori its k-jet) do not depend on the choice of annulus (for r small enough). Thus for
t small we have a path t �→ (�t , z mod zk+1OX , X, . . .) in T1k . This path is smooth (as
in the general Kodaira–Spencer construction); at t = 0, d

dt�t is the tangent vector given
by the class of−zn+1∂z in H1(�, (T�)

⊗
O(−X)k) � (T T1k )(�, . . .). This class does

not depend merely on the k-jet z̃, but rather on a k′-jet for a large enough k′. Indeed,
given two local coordinates z1, z2 at X , observe that if z2 = z1 mod zk′+1

1 OX , then

−zn+1
1 ∂z1 = −zn+1

2 ∂z2 mod zk+1
2 OX∂z2

provided that k′ ≥ k − n. Consequently, we can define a function �n f on Uk′ by:

(�n f )(�, X, z̃, . . .) = d

dt |t=0
f (�t , X, z̃, . . .) (2.11)

provided that k′ ≥ k + n−, where n− = max(−n, 0).
Remark that, for n < 0, �n does not define a vector field (or derivation) on any of the

“classical” (finite-dimensional) Teichmüller spaces T1k , which motivates the introduc-
tion of the projective limit T1∞ .

Smoothness. Then we need to verify that �n f is smooth, i.e. is in C∞(Uk′). For notational
simplicity we will check that �n f is smooth in the case where X is a bulk (viz. interior),
rather than boundary, point. The proof in the case of a boundary point is very similar,
using reflection/doubling arguments.

Let us describe a neighborhood of (�, X, z̃) in T1k′ . As before, we fix a local co-
ordinate z at X with k′-jet z̃ and describe � as the gluing of a semidisk D(0, r) and
�\z−1(D(0, r/2)), identified via z. Let gt be a smooth family of analytic maps defined
in the semi-annulus A with g0,...,0(z) = z (here d is the dimension of the Teichmüller
space T1k′ and t = (t1, . . . , td)) and �t be the surface obtained by twisting the identi-
fication along the annulus by gt . If the vector fields ∂t1 gt (z)∂z, . . . , ∂td gt (z)∂z map to a
basis of H1(�, (T�)

⊗
O(−k′X)), then (t1, . . . , td) are smooth local coordinates for

T1k′ near (�, X, z̃), and ∂t1 , . . . , ∂td are smooth vector fields.
From (2.11), we may write

(�n f )(�t ) = d

dε |ε=0
f (�t,ε, X, z̃, . . .)

where �t,ε is the surface obtained from � by twisting the gluing by hε ◦ gt . Since
t �→ �t is a complete family of deformations in the sense of [47], there is a smooth map
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(t, ε) �→ s(t, ε) s.t. for small t, ε, �t,ε and �s are equivalent in T1k′ . It follows that �n f
is smooth.

In conclusion we have defined by (2.11) an operator �n : C∞(Uk) → C∞(Uk′)
provided that k′ ≥ k + n−. More precisely, if Der(Uk) is the space of derivations of
functions on Uk , we have

�n ∈ Der(Uk)⊗C∞(Uk ) C∞(Uk′)

In coordinates, if t1, . . . , td are smooth coordinates on Uk , then �n f = ∑
i gi

∂
∂ti

f where
the gi ’s are smooth functions on Uk′ . Remark also that the construction of �n commutes
with the natural inclusions C∞(Uk) ↪→ C∞(Uk+1) [this is immediate e.g. from the
representation (2.11)]. Consequently, we may define

�n : C∞(U ) −→ C∞(U )

for any open set U of T1∞ .

Bracket. We then want to check that R((z))∂z → End(C∞(U∞)),−zn+1∂z �→ �n is a Lie
algebra morphism. Let (gt )t≥0, (ht )t≥0, (kt )≥0 be the flows of analytic maps generated
(in H) by the vector fields−zm+1∂z ,−zn+1∂z , [−zm+1∂z,−zn+1∂z] = −(m−n)zm+n+1∂z ;
for small t > 0, these are defined in a neighborhood of a fixed semicircle in H. As before
we fix a surface (�, X, . . .) with a local coordinate at X and consider �t,s the surface
obtained by twisting the gluing by gt ◦ hs , and �̃t,s the surface obtained by twisting the
gluing by hs ◦ gt . Then for f ∈ C∞(Uk, Vk)

(�m�n f )(�, . . .) = d

dt |t=0

d

ds |s=0
f (�t,s, . . .)

(�n�m f )(�, . . .) = d

ds |s=0

d

dt |t=0
f (�̃t,s, . . .)

We have: gt ◦ hs ◦ g−1
t ◦ h−1

s = kst + o(st) in the sense of uniform convergence of
analytic maps on compacts subsets of H\{0}. Let us define �̂t,s the surface obtained
from �̃t,s by twisting the gluing by kst . Then (e.g. using again the notion of complete
family of [47])

f (�t,s)− f (�̂t,s) = o(st)

f (�̂t,s)− f (�̃t,s) = st (m − n)�m+n f (�̃t,s) + o(st)

Note that the limit (2.11) is locally uniform. Consequently

�m�n − �n�m = (m − n)�m+n ∈ End(C∞(U∞, V∞))

For n ≥ −2, we have concrete representations for the �n’s operating on C∞(U∞).
Take f ∈ C∞(U∞), then we can evaluate f at the surface (�, X, . . . , z) where x is a
local coordinate at X ; f depends on z only through a k-jet, k locally bounded. Then

(�n f )(�, X, . . . , z) = d

dε |ε=0
f (�, X, . . . , z − εzn+1) if n ≥ 0

(�−1 f )(�, X, . . . , z) = d

dε |ε=0
f (�, z−1(ε), . . . , z − ε)

−(�−2 f )(�, X, . . . , z) = d

dε |ε=0+
f (�\z−1([0, i

√
2ε]), z−1(i

√
2ε), . . . ,

√
z2 + 2ε)
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This suggests the following alternative (and rather elementary) approach: starting from
these expressions, verify that the Witt commutation relations (2.10) hold for m, n ≥ −2
(though doing this cleanly seems to require an argument essentially isomorphic to the
one we used). Then if we define inductively �−n−1 = 1

1−n [�−n, �−1] for n ≥ 2, (2.10)
holds for m, n ∈ Z.

2.4.5. Sewing. Here we briefly—and rather informally—discuss the relation of this con-
struction with other formalisms related to the sewing of surfaces (leading to modular
functors and vertex operator algebras), following Segal [67] (see also the approach of
Vafa [72] for punctured surfaces), and subsequently developed in particular by Huang
[40].

Consider a surface � with marked points X1, . . . , Xn and corresponding marked
(genuine) local coordinates z1, . . . , zn (so that zi (Xi ) = 0). Let D = D(0, 1) denote
the unit disk in C. If the coordinates are s.t. z−1

i : D → � is well-defined and the
z−1

i (D)’s are pairwise disjoint, then �\∪i z−1
i (D) is a surface with n holes and analyti-

cally parameterized boundary circles (see [67]). Conversely, in a surface with holes and
parameterized boundary circles, one can fill the holes with analytic disks and recover a
surface with marked points and local coordinates.

Consider now two surfaces with marked points and coordinates (�, X1, . . . , Xm,

z1, . . . , zm) and (�′,Y1, . . . ,Yn, w1, . . . , wn). Provided that z−1
m : D → � and w−1

1 :
D → �′ are well defined (and their ranges do not include other marked points), one can
define a sewed surface

�′′ = � m∞1 �
′

by excising the disk z−1
m (D) (resp. w−1

1 (D)) from � (resp. �′) and gluing the excised
surfaces along the unit circle (a point W on � and W ′ on �′ are identified if |zm(W )| =
|w1(W )| = 1 and zm(W )w1(W ′) = 1). Here m∞1 denotes the sewing operation (relative
the “out” point Xm and the “in” point Y1), and the resulting surface has a natural complex
structure and inherits all other markings (X1, . . .).

Sewing is then a partially defined associative operation on the collection of such
marked surfaces. The Riemann sphere (Ĉ, 0,∞) with the standard local coordinate z
(resp. −z−1) at 0 (resp. ∞) is an identity for this sewing operations.

For n ∈ Z, t ∈ R, one can consider perturbations of that identity element given by
⎧
⎨

⎩

�n(t) = (Ĉ, 0,∞, z(1− ntzn)−1/n, z−1) if n > 0
�n(t) = (Ĉ, 0,∞, ze−t , z−1) if n = 0
�n(t) = (Ĉ, 0,∞, z, z−1(1− ntzn)−1/n) if n < 0

One may check that the �n(.)’s are partial one-parameter groups in the sense that

�n(t)2∞1�n(t
′) = �n(t + t ′)

for t, t ′ small enough (this follows from ht ◦ ht ′ = ht+t ′ near 0 if we denote ht (z) =
z(1 + ntzn)−1/n , the flow generated by the vector field z �→ −zn+1∂z).

Then we may think of the�n’s as an exponentiation of the Witt algebra with “�n(t) =
exp(t�n)” [40], e.g. in the sense that for small t

�m(t)∞�n(t)∞�−m(t)∞�−n(t) � �m+n((m − n)t2)

[compare with (2.10)].
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In this framework, one can interpret (2.11) as follows. If (�, X, z, . . .) is a surface
with a marked boundary point X and local coordinate z, one can consider the family of
deformations

t �→ �n(t)2∞1(�, X, z, . . .)

and for a suitable test function f set

(�n f )(�, X, z, . . .) = d

dt |t=0
f (�n(t)2∞1(�, X, z, . . .))

(The sewing operation has natural compatibilities with doubling, so that it is not really
problematic to consider boundary deformations). The difficulty consists in defining a
suitable class of test functions on which this operation is defined and the commutation
relations (2.10) are satisfied, which we addressed directly in the previous section.

3. Determinants of Laplacians

In this section, we recall the definition of ζ -regularized determinants of Laplacians,
and the properties we will need later, in particular the Polyakov–Ray–Singer conformal
anomaly. A relation with the Brownian loop measure is also pointed out and used to
(re)derive some of these properties. This relation will also be used for analytic surgery
formulae in Appendix A.

3.1. Loop measures. The Brownian loop measure was introduced and studied in [56],
motivated by Conformal Restriction measures [53]. We give here a slightly more general
construction (see also [57]).

Consider a Riemannian manifold (M, g), possibly with boundary. There is a nat-
ural Brownian motion on M , with generator the Laplace–Beltrami operator �. In local
coordinates,

�= 1√
det g

∑

i, j

∂

∂xi
gi j

√
det g

∂

∂x j

where gi j = (g−1)i j . (We follow here the analytic, rather than the geometric convention,
that considers a positive operator.) We restrict ourselves for now to Dirichlet boundary
conditions: the process is killed upon hitting the boundary. This gives a semigroup
(Pt )t = (et�)t operating on C∞

0 (M) and a family (Wx )x∈M of subprobability measures
on paths (or probability measures if, as is customary, one extends the state space M
by a cemetery state ∂). Here M ∪ {∂} is a compactification of M , and W

x denotes the
measure on the path space C([0,∞), M ∪ {∂}) induced by Brownian Motion started
from x ∈ M . Note that this corresponds to Brownian motion running at speed 2.

Given f1, f2 ∈ L
2(M), F a bounded Borel functional on C([0,∞), M ∪ {∂}) with

Skorokhod topology (∂ is an isolated cemetery state), one can consider:

( f1, f2) �→
(

F �→
∫ ∞

0

dt

t

∫

M
f1(x)W

x (F(X0≤s≤t ) f2(Xt ))d A(x)

)

where d A is the volume measure associated with g (in local coordinates, d A =√
det gdx1∧ · · · ∧ dxn). This defines an operator from L

2(M)⊗L
2(M) to measures on
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paths, or equivalently an operator on L
2(M) taking values in measures on paths. Taking

the trace of this operator, one gets a measure on paths. This measure is supported νr on
loops.

More explicitly, the measure W
x on paths starting from x can be disintegrated w.r.t.

Xt ; it is well-known that the distribution of Xt is absolutely continuous w.r.t. A. If
pt (x, y) designates the heat kernel, we have

W
x =

∫

M
pt (x, y)Wt,x,yd A(y)

where Wt,x,y is the bridge measure on paths from x to y with lifetime t . Then the
measure νr can be written as:

νr

∫ ∞

0

dt

t

∫

M
pt (x, x)Wt,x,x d A(x)

Consider the following set of (rooted) loops: {γ ∈ C([0, t], M) : γ (0) = γ (t)}.
There is an equivalence relation ∼ given by: γ1 ∼ γ2 if γ1(.) = γ2(t0 + .) for some t0,
in the sense of periodic continuation. Classes of equivalence are unrooted (but oriented)
loops of lifetime t . The measure induced on unrooted loops is the Brownian loop measure,
and will be denoted here by ν. A coarser equivalence relation is given by: γ1 ∼ γ2 if
γ1 = γ2 ◦ ι, where ι : R → R is an increasing bijection with ι(x + t1) = ι(x) + t2
(ti is the period of γi , i = 1, 2). Classes of equivalence are unrooted, oriented loops
up to reparameterization. One can equip this space with a natural metric (viz. uniform
distance minimized over reparameterizations).

Proposition 1 [56]. 1. (Restriction) If K ⊂ M, the loop measure on M restricted to
loops contained in M\K is the loop measure on M\K .

2. (Conformal invariance) In dimension 2, the measure on loops up to time repara-
meterization induced by the loop measure (on parameterized, unrooted loops) is
invariant under Weyl scaling: g → e2σ g.

Proof. The restriction property is immediate (Dirichlet boundary conditions).
The second property is a consequence of time-change properties of Brownian motion and
cyclical reindexing of Markovian loops. If g′ = e2σ g, then �g′ = e−2σ�g; if (Xt )t≥0 is
the Brownian motion corresponding to g, s = ∫ u

0 e2σ (Xu)du is a random time change,
then X ′s = Xt (s) is the Brownian motion corresponding to g′.

Consider a bounded Borel functional F on rooted paths, up to time change, and g a
Borel function on R

+. Then the time change result means that:

W
x (F(X0≤t≤T )g(T )) = (Wx )′(F(X0≤t≤T )g(S))

where S = ∫ T
0 e2σ (Xt )dt . It follows that

dν′r (γ.) =
T

S
· d S

dT
(γ0)dνr (γ.)

where νr , ν
′
r denote the rooted loop measures relative to g, g′.

To proceed to unrooted loops, observe that (from the simple Markov property):

pt (x, z)Wt,x,z =
∫

M
pτ (x, y)pt−τ (y, z)Wτ,x,y •Wt−τ,y,zd A(y)
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where τ ≤ t is fixed and • designates concatenation of paths. It follows that if θτ is a
shift operator on loops, then νr is invariant under rerooting loops:

∫
Fdνr =

∫∫
K (T, dτ)θτ Fdνr

where K (T, dτ) is an arbitrary collection of probability measures. We shall use this
where K (T, dτ) = 1τ≤T

dτ
T . If F is a bounded Borel functional on unrooted loops, then

:

∫
Fdν′r =

∫
F

T

S
.
d S

dT
(γ0)dνr =

∫ ∫ T

0
θτ

(
F

T

S
.
d S

dT
(γ0)

)
dτ

T
dνr

=
∫

F
1

S

∫ T

0

d S

dT
(γτ )dτdνr =

∫
Fdνr

since θτ F = F , θτ S = S, θτT = T , and θτ ( d S
dT (γ0)) = d S

dT (γτ ). ��
One can extend this definition to Brownian motions (or diffusions) with different

boundary conditions, in particular Neumann conditions on some of the boundary com-
ponents, or oblique conditions in dimension 2. The properties above stay valid for these
loop measures with reflection (in the restriction property, it is then understood that the
boundary condition on K is Dirichlet, other boundary conditions being unchanged).
There are also natural analogues for (discrete state space, discrete or continuous time)
Markov chains [57]. In dimension greater than 2, conformal invariance is no longer
satisfied. However (Weyl scaling), the loop measure associated with a generator L is
identical to the one associated with e2σ L .

3.2. ζ -regularization. For simplicity, we discuss in details only the case of dimension
2. For the Laplacian on the Riemannian manifold (M, g) (see e.g. [64]), one has the
following Pleijel–Minakshisundaram expansion for the heat kernel p at small times:

pt (x, x) = 1

4π t
+

K (x)

12π
+ O(t) (3.12)

where K is the Gauss curvature. For y �= x , we have the following large deviation
estimate of Varadhan:

lim
t↘0

1

t
log pt (x, y) ≤ −1

4
d(x, y)2

in terms of the geodesic distance. These estimates are uniform on closed compact mani-
folds. Near (Dirichlet or Neumann) boundary components, one can proceed by doubling
(McKean and Singer [58]).

Consider the spectrum of the positive operator (−�) : 0 ≤ λ1 ≤ · · · ≤ λn · · · . Since
L2(M) has a Hilbert basis of (smooth) eigenfunctions of �, one gets:

∫

M
pt (x, x)d A(x) = Tr(et�) =

∑

i

e−tλi



SLE and Virasoro Representations: Localization 721

From here the ζ -function of the Laplacian is defined as:

ζ(s) =
∑

λi �=0

λ−s
i = 1

�(s)

∫ ∞

0
(Tr(et�)− h0)t s−1dt

where h0 designates the dimension of Ker(�) (this is zero if there is a Dirichlet boundary
condition). The identity follows from λ−s = 1

�(s)

∫∞
0 t s−1e−λt dt .

The ζ -function is absolutely convergent and analytic in s for�s > 1. Moreover, it has
a meromorphic continuation to C (in the variable s). Indeed,

∫∞
1 (Tr(et�)−h0)t s−1dt is

an entire function in s (exponential decay), while the short time heat kernel asymptotics
give (for a closed surface):

Tr(et�)− 1 =
∫

M
pt (x, x)d A(x)− 1 = A

4π t
+ (

χ(M)

6
− 1) + O(t)

where χ(M) = 2 − 2g is the Euler characteristic of M (by the Gauss-Bonnet theorem
χ(M) = 1

2π

∫
M K d A). It follows that �(s)ζ(s) = A

4π(s−1) + (χ6 − 1) 1
s + · · · , where the

remainder (· · · ) is an analytic function in �s > −1. Further terms in the heat kernel
expansion yield meromorphic continuation to C. Remark that �(s) ∼ s−1 at s = 0, so
ζ(0) = χ

6 − 1, a topological invariant.
In the case where M has a boundary (say with at least one Dirichlet boundary com-

ponent, so that h0 = 0), by [58]:

Tr(et�) = A

4π t
+
�N − �D

8
√
π t

+ (· · · ) + O(
√

t)

where �D (resp. �N ) is the length of the Dirichlet (resp. Neumann) boundary components,
(· · · ) are integrals of explicit local quantities (in the interior or on the boundary). As
before, this yields a meromorphic continuation of ζ to {s : �s > − 1

2 }, with simple poles
at s = 1, 1/2.

In the case where the boundary is piecewise smooth (with corners), the ζ -function
still has a meromorphic continuation; corners contribute to the constant term in the heat
kernel expansion, hence to ζ(0) [43].

We can now define detζ (−�) de f= e−ζ ′(0) if h0 = 0 and det′ζ (−�)
de f= e−ζ ′(0)

otherwise (detζ can be thought of as a regularized product of eigenvalues, and det′ζ as a
regularized product of non-zero eigenvalues).

Alternatively, again in the case h0 = 0, one can consider the associated loop measure
ν. It is then easy to see that:

ζ(s) = 1

�(s)

∫
T (γ )sdν(γ ) (3.13)

where T (γ ) is the lifetime of the loop γ (with generator �, i.e. running at speed 2).
While ν is defined solely from the complex structure, the functional T depends on the
Riemannian metric. Thus one can think (heuristically) of ζ ′(0) as a normalized total
mass for the loop measure.
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3.3. Conformal anomaly formulae. A (closed) Riemann surface M can be equipped with
different compatible Riemannian metrics, each yielding a Laplacian and its determinant.
The dependence of the determinant on the metric within a conformal class is given by
the Polyakov–Ray–Singer conformal anomaly formula [61]. Conformal anomalies will
be instrumental in our approach to Virasoro representations (in non-zero central charge).

Theorem 2. Let g, g′ = e2σ g be two conformally equivalent metrics on M. Then:

log det′(−�g′)− log det′(−�g) = − 1

6π

(
1

2

∫

M
|∇σ |2d A +

∫

M
Kσd A

)

+ log A′ − log A (3.14)

where d A,∇, K are the volume element, gradient, scalar curvature associated with g.

In the presence of a boundary, a similar formula was obtained by Alvarez [1]:

Theorem 3. Let g, g′ = e2σ g be two conformally equivalent metrics on M;we consider
Dirichlet boundary conditions on ∂M. Then:

log det(−�g′)− log det(−�g) = − 1

6π

(
1

2

∫

M
|∇σ |2d A +

∫

M
Kσd A +

∫

∂M
kσds

)

− 1

4π

∫

∂M
∂nσds (3.15)

where d A,∇, K , ds, k are the volume element, gradient, scalar curvature, boundary
length element, geodesic curvature associated with g; ∂n is the outer normal derivative.

Proof. We give an argument based on the loop representation. For simplicity, we restrict
ourselves to the case where σ = 0 on a neighborhood of ∂M (which will be sufficient
for our purposes later on). Consider the ζ -function (3.13)

ζg(s) = 1

�(s)

∫
Tg(γ )

sdν(γ )

where ν is the (conformally invariant) loop measure (valid if �s > 1). We want to
compute the first order variation of ζ ′g(0) under g → gε = e2εσ g. Then Tε(γ ) =∫ T

0 e2εσ (γt )dt , so:

∂εζε(s)|ε=0 = 1

�(s)

∫
T (γ )s

(
s
∫ T

0
2σ(γt )

dt

T

)
dν(γ ).

In terms of the measure on rooted loops νr , one has the rerooting identity:

∂εζε(s)|ε=0 = 2s

�(s)

∫
T (γ )sσ(γ0)dνr (γ )

= 2

�(s)

∫

M
σ(x)d A(x)

∫ ∞

0
sts−1 pt (x, x)dt.

This identity is a priori satisfied for �s > 1. The right-hand side is well-defined in a
neighborhood of s = 0. From the construction of the analytic continuation of ζε (by
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subtracting a rational counterterm), it follows that the identity stays valid in a neighbor-
hood of s = 0. It is now a matter of heat kernel asymptotics. Uniformly in x away from
the boundary, we have:

∫ ∞

0
sts−1 pt (x, x)dt =

∫ 1

0
sts−1

(
1

4π t
+

K (x)

12π

)
ds + O(s) = K (x)

12π
+ O(s).

Applying this to gε = e2εσ g, this proves:

d

dε
ζ ′ε(0) =

1

6π

∫

M
σKεd Aε = 1

6π

∫

M
(−σ�σ + Kσ)d A

since d Aε = e2εσd A, Kε = (K −�σ)e−2εσ . By integration, this gives the formula, in
the case σ = 0 near the boundary. ��

Note that the proof given here stays valid for arbitrary boundary conditions, as long
as σ = 0 in a neighborhood of the boundary.

A fundamental feature of these formulae is that the logarithmic variation of the
determinant is local, in the sense that it is an integral of local quantities in the interior
and on the boundary. Let us give a direct argument for this locality property.

Consider two compact surfaces (M1, g1), (M2, g2) that are identified (together with
their metrics) in a disk D0 (also assuming for simplicity that M1, M2 have a Dirichlet
boundary component). One changes g1 to g′1, g2 to g′2 conformally, with the conditions:
gi = g′i outside D ⊂⊂ D0; g1 = g2 and g′1 = g′2 in D0. Then:

�(s)((ζg′1 − ζg1)− (ζg′2 − ζg2))(s) =
∫
(T s

g′1
− T s

g1
)dν1 −

∫
(T s

g′2
− T s

g2
)dν2.

Obviously loops contained in M1\D, or M2\D, or in D0 do not contribute to the RHS
(for any s). So one can restrict the integrals on the RHS to loops crossing the annulus
D0\D. The mass of those loops is finite (say by the large deviation estimate). So the
RHS vanishes at s = 0, meaning that the logarithmic variation of determinants is the
same for the two surfaces. The argument also works for a variation of the metric in a
semidisk neighborhood of a boundary point.

4. Determinant Bundle and Virasoro Representations

We have defined a representation of the Witt algebra on smooth functions on appropriate
Teichmüller spaces [or rather projective limits of these, see (2.11)]. Here we discuss the
extension of this formalism to the Virasoro algebra, essentially following [35,49]—
this requires considering sections of the determinant line bundle rather than smooth
functions.

The (real) Virasoro algebra is a central extension of the Witt algebra, with basis
{(Ln)n∈Z, c} and bracket given by

[Lm, Ln] = (m − n)Lm+n +
m(m2 − 1)

12
δn,−mc

[Ln, c] = 0

for all m, n ∈ Z.
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We consider (�0, X0, . . .) a smooth surface with a marked boundary point and a
Teichmüller marking (and any number of additional boundary and bulk points, and jets);
let T denote the Teichmüller space of bordered Riemann surfaces smoothly equivalent
to it.

Let us consider Riemannian metrics g on (�0) which are flat near boundary compo-
nents and s.t. the boundary components are geodesic, i.e. the metric is modelled on that
of a flat cylinder near boundary components. This allows to omit the Alvarez corrections
to the Polyakov anomaly formula (Theorem 3); given a bordered surface, it is always
possible to construct such a metric (using e.g. standard partition of unity arguments).

We consider functions f defined on this space of metrics s.t.

f (e2σ g) = f (g) exp

(
1

12π

(
1

2

∫

�

|∇σ |2d A +
∫

�

Kσd A

))
(4.16)

Any such function may be written as f (g) = detζ (−�g)
−1/2h([(�0, g)])where [(�0, g)]

is the point in T corresponding to the Riemannian surface (�0, g) and h is a function
on T . Consequently, we may identify the functions f as sections of a line bundle L over
T , a reference section being given by:

sζ (g) = detζ (−�g)
−1/2

which is nowhere vanishing by definition, so that L is a trivial line bundle. We declare
sζ to be smooth, so that L is a smooth line bundle. More intrinsically, a smooth section
of L can be identified with a smooth functional F of the metric satisfying the required
conformal anomaly formula (4.16) (in the sense that if (gt )t is a smooth family of metrics,
t �→ F(�0, gt ) is smooth).

If c ∈ R, we may define L⊗c as the line bundle with a smooth nonvanishing section
sc
ζ . We want to define a natural representation of the Virasoro algebra acting on sections

of the pullback L∞ of L to T1∞ . By definition, a smooth section of L⊗c∞ over U∞ is
of type hsc

ζ , with h ∈ C∞(U∞); the space of these smooth sections is denoted by
C∞(U∞,L⊗c∞ ). Heuristically, we would like to define a connection ∇ on L∞ such that
its curvature form gives the Virasoro cocycle, i.e.:

“[∇�m ,∇�n ] = ∇[�m ,�n ] +
c

12
m(m2 − 1)δm,−n”

4.1. Virasoro generators. As earlier [see (2.11)] we consider a marked point X on the
boundary of the surface� and a local coordinate z at X , which identifies a neighborhood
of X in � with a semidisk D+(0, r) ⊂ H; T1k denotes the Teichmüller space of surfaces
with a marked k-jet at X , all other markings being fixed; and Lk denotes the pullback
of L to T1k .

Let us consider a local section of Lk over Uk , an open subset in T1k ; it may be
identified with a function f on the space of Riemannian metrics. Let ht be the flow in H

generated by the vector field −zn+1∂z . Then consider (�t , X, . . .) the surface obtained
by twisting the gluing of z−1(D+(0, r)) and�\z−1(D+(0, r/2)) by ht . We also consider
Ht the deformation of (H, 0) by the same twist, i.e. changing the gluing of D+(0, r) and
H\D+(0, r/2)); as a Riemann surface this is of course equivalent to (H, 0). Then the
pairs of Riemannian manifolds (�t ,Ht ) and (�0,H0) are naturally identified near the
marked point; and the pairs (�t , �0) and (Ht ,H0) are identified away from the marked
point.
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Choose a metric gt on �t which is flat near the geodesic boundary and is constant in
t in �\z−1(D(0, r)). Similarly, we choose a metric g̃t on Ht with the same conditions.
Finally we assume that (gt ) and (g̃t ) agree in the semidisk around 0 where they are
identified via the local coordinate. Because of the locality of the Liouville action (4.16),
the ratio

f (�t , gt )sζ (H0, g̃0)

f (�0, g0)sζ (Ht , g̃t )

is independent of choices of metrics (this is the key “neutral collection” argument of
[49]). We set:

(Ln f )(�0, g0) = lim
t→0

f (�t , gt )sζ (H0, g̃0)

sζ (Ht , g̃t )
(4.17)

If h ∈ C∞(Uk), by (2.11) we have trivially the Leibniz rule:

Ln(h f ) = h(Ln f ) + (�nh) f

whenever Ln f exists. We want to show that the limit (4.17) is well-defined; depends on
the choice of local coordinate z only through a k′-jet; and is smooth. By the previous
remark, it is enough to show that Lnsζ /sζ is well-defined and smooth on Uk′ for some
k′ ≥ k.

The evaluation of Lnsζ /sζ is a very concrete problem on variation of complex struc-
tures (smoothness is then immediate). It is also unfortunately rather lengthy and in-
volved, and thus postponed to Appendix B. Recall the Schwarzian connection S = S�
from (2.5); it depends on the bordered surface �, the marked point X , and a 3-jet of
local coordinate at X . We may phrase:

Theorem 4. Let Ln be defined by (4.17). Then Ln maps C∞(Uk,L⊗c
k ) to C∞(Uk+n−+1,

L⊗c
k+n−+1). We have the expressions:

Ln( f s) = (�n f )s n ≥ −1

Ln( f s) = (�n f )s + c
(�−1)

−n−2S�
12(−n − 2)! f s n ≤ −2

with f ∈ C∞(U∞)and s = (sζ )⊗c the reference section. As operators on C∞(U∞,L⊗c∞ ),
the Ln’s satisfy the Virasoro commutation relations:

Ln Lm − Lm Ln = (n − m)Lm+n +
c

12
n(n2 − 1)δm,−n

We need a (k +n−)− jet to evaluate �n f and a (3+ (n +2)−)-jet to evaluate �−n−2
−1 S� .

Proof. The expression for Ln , n ≤ −2 is the content of Appendix B. We thus simply
have to check the commutation relations. Saying that S ∈ C∞(U3) is a Schwarzian
connection (2.6) is equivalent to: �0S = 2S, �1S = 0, �2S = 6. This implies directly
that the commutation relations are satisfied if −2 ≤ m, n ≤ 2 and −2 ≤ m + n ≤ 2.
Moreover it is immediate to check that for n ≥ 0

Ln L1 − L1Ln = (n − 1)Ln+1

L−1L−n − L−n L−1 = (n − 1)L−n−1
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The subalgebra of End(C∞(U∞,L⊗c∞ )) generated by the (Ln)n∈Z is generated by
(Ln)−2≤n≤2; the commutation relations on this generators are identical to the Vira-
soro algebra relations. The universal enveloping algebra U(Vir) of the Virasoro alge-
bra has a presentation (as an algebra over C) with generators (Ln)−2≤n≤2, c (c a cen-
tral element) and relations given by the commutation relations for −2 ≤ m, n ≤ 2
and −2 ≤ m + n ≤ 2. Consequently we have defined a representation of U(Vir) in
End(C∞(U∞,L⊗c∞ )) (c operates by multiplication by c), and the commutation relations
are satisfied for all m, n. ��

More generally, if V is a vector bundle over U , Vk its pullback to Uk , we can define:

Ln : C∞(Uk, Vk ⊗ L⊗c
k )→ C∞(Uk+n−+1, Vk+n−+1 ⊗ L⊗c

k+n−+1)

by Ln(v⊗ s) = (�nv)⊗ s + v⊗ (Lns). The same commutation relations are obviously
satisfied.

In particular, if h in R, one may consider V = |T−1�|⊗h , the (norm of the) cotangent
bundle (relative to the marked point X ) raised to the power h. Explicitly, sections of this
bundle can be identified with functions f of (�, X, . . .) and a local coordinate z at X (z
maps neighborhood of X to a neighborhood of 0 in C or H depending on whether X is
a bulk or boundary point) with the transformation property

f (�, X, z′) =
∣∣∣∣
dz′

dz

∣∣∣∣
−h

f (�, X, z)

In the case where X is a boundary point, this may be identified in turn with an element
f ∈ C∞(U1) satisfying �0 f = h f ; trivially �n f = 0 if n > 0.

If φ ∈ C∞(U1,L⊗c
1 )with �0φ = hφ (equivalently, φ a section of |T−1�|⊗h⊗L⊗c),

one may consider the U(Vir)-module generated by φ: U(Vir)φ. This is the highest-
weight Virasoro module generated by the highest-weight vector φ; it has central charge
c and highest-weight h.

4.2. Canonical differential equations and Virasoro singular vectors. We now discuss
Virasoro singular vectors and the (genuine, finite dimensional) differential operators
associated to them, along the lines of [33,35,48,49].

An element ofU(Vir)maps to an operator C∞(Uk, Vk⊗L⊗c
k )→ C∞(Uk′ , Vk′⊗L⊗c

k )

for k′ large enough. Given a choice of section σ of the natural covering map Uk′ → Uk ,
one obtains a differential operator on C∞(Uk ⊗ L⊗c

k ). In general, this operator is non-
canonical, as it depends on the choice of section σ . This dependence disappears (up to a
multiplicative factor) for special elements of U(Vir), the singular vectors, which appear
in the study of degenerate Verma modules.

In U(Vir), there is a natural grading given by deg(Lm) = m, deg(c) = 0. If φ is a
highest-weight element with weight h, � ∈ U(Vir) an homogeneous element of degree
d, then L0�φ = (h − d)�φ. Let Vir− (resp. Vir+) be the subalgebra of Vir spanned by
negative (resp. positive) degree elements.

In U(Vir), a (c, h)-singular vector is an element � ∈ U(Vir−) such that for all
m > 0, Lm� is in the left ideal U(Vir)(L0 − h, c − c, L1, . . . , Ln, . . .). Let � be a
non-trivial homogeneous element of degree −n (n > 0) and P any element of degree
n; then P� is an element of degree 0. It may be written uniquely as a polynomial in
L0 and c modulo the left ideal U(Vir)Vir+. If for any P , this polynomial vanishes upon
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evaluation at L0 = h, c = c, then � is a (c, h)-singular vector. The Kac determinant
formula states in particular that if c = 13− 6(τ + τ−1), a (c, h) singular vector exists iff

h = hr,s(τ ) = (rτ − s)2 − (τ − 1)2

4τ
= hs,r (τ

−1)

for some r, s ∈ N. In this case there is a singular vector �r,s in degree −rs, which is
uniquely defined up to multiplicative constant (see e.g. [41]). Of particular interest to us
here will be

�2,1 = L2−1 − τ L−2

Let φ ∈ C∞(U1, V1 ⊗L⊗c
1 ) with L0φ = hφ (or equivalently φ ∈ C∞(U, |T−1�|⊗h ⊗

L⊗c)). We have Lnφ = 0 for n > 0, i.e. φ a (c, h) highest-weight vector. Then �r,sφ

is defined in C∞(Uk, Vk ⊗ L⊗c
k ), k large enough. If h = hr,s , for any m > 0 we have

Lm�r,s ∈ U(Vir)(L0 − h, c − c, L1, . . .) (by a slight abuse of notation, we identify
elements of U(Vir) with their images as operators on C∞(U∞, |T−1�|⊗h ⊗L⊗c∞ )), and
consequently:

Lm�r,sφ = 0

which is saying that �r,sφ ∈ C∞(Uk, Vk ⊗ L⊗c
k ) depends solely on the 1-jet (through

a multiplicative constant). Since this holds for a generic section φ, this shows that the
coefficients of the differential operator �r,s depend on the choice of local coordinate
only through a multiplicative constant.

Consequently we may consider:

�r,s : C∞(U, |T−1�|⊗hr,s ⊗ L⊗c)→ C∞(U, |T−1�|⊗(hr,s +rs) ⊗ L⊗c) (4.18)

which is now a genuine differential operator on bundles over the Teichmüller space T
and is well-defined up to multiplicative constant.

4.3. Commuting representations. The construction of the Witt/Virasoro generators is
local at a marked point. Consequently it may be carried out simultaneously at several
marked points, leading to commuting representations of the Virasoro algebra. Let us
formalize this observation.

We consider a bordered surface � with two marked boundary points X,Y at which
the deformations will occur; several “spectator” boundary and bulk points may also be
marked. We mark a k1-jet of local coordinate z1 at X and a k2-jet of local coordinate
z2 at Y . The Teichmüller space of surfaces of the same type (with the same markings)
is simply denoted by T1k1 ,1k2 . Let us fix m1,m2 ∈ Z. If k1, k2 are large enough, one
may consider a two-parameter family of deformations of the surface�s,t obtained in the
following way: excise a semidisk around X and glue it back according to gs , the flow
generated by −zm1+1

1 ∂z1 ; excise a semidisk around Y and glue it back according to ht ,

the flow generated by −zm2+1
2 ∂z2 . These semidisks are chosen to be disjoint. Then if U

is a neighborhood of (the class of) � in T10,10 and Uk1,k2 its preimage in T1k1 ,1k2 , we
have the Witt generators at X,Y (2.11) satisfying:

�X
m1

f (�s,t ) = d

ds
f (�s,t )

�Y
m2

f (�s,t ) = d

dt
f (�s,t )
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if f ∈ C∞(Uk1,k2). Then we have for all m, n ∈ Z:

[�X
m , �

X
n ] = (m − n)�X

m+n

[�Y
m, �

Y
n ] = (m − n)�Y

m+n

[�X
m , �

Y
n ] = 0

the last line resulting from the existence of an explicit commuting flow (s, t) �→ �s,t .
Since the Virasoro generators are also defined in terms of local deformations, the

same argument shows that

[L X
m , L X

n ] = (m − n)L X
m+n +

c

12
m(m2 − 1)δm+n,0

[LY
m, LY

n ] = (m − n)LY
m+n +

c

12
m(m2 − 1)δm+n,0

[L X
m , LY

n ] = 0

as operators on C∞(U∞,L⊗c∞ ), where a smooth section of L⊗c∞ can be written locally
as the pullback of a smooth section of L⊗c

k1,k2
for some (finite) k1, k2.

Let us make an observation which may give some additional motivation to the def-
inition of the Virasoro operators (4.17). By trivializing L, one may identify L X−2 (resp.
LY−2) with �X−2 + c

6 S�(X, z1) (resp. �Y−2 + c
6 S�(Y, z2)) where S�(X, z) is the Schwarzian

connection evaluated at the point X in the local coordinate z (a 3-jet is enough for this).
Comparing [�X−2, �

Y−2] = 0 and [L X−2, LY−2] = 0 leads to:

�X−2S�(Y, z2) = �Y−2S�(X, z1)

Conversely, one may recover [L X
m , LY

n ] = 0 from [�X
m , �

Y
n ] = 0 and this identity. The

reader may convince himself that both sides of this identity are proportional to:

(∂n1∂n2 G�(X,Y ))2

If S̃ is another Schwarzian connection, it differs from S by a quadratic form, i.e. S̃ = S+ω
where ω is an arbitrary section of the bundle � �→ H0(�, K 2

�). Setting L̃ X
n = �X

n if
n ≥ −1, L̃ X

n = �X
n + c

6(−n−2)! (�
X−1)

−n−2 S̃ also gives operators satisfying the Virasoro

commutation relations. However for a generic ω one cannot construct operators L̃Y
n also

satisfying the Virasoro commutation relations and commuting with the L̃ X
n ’s.

Manifestly, the argument above extends to any finite number of boundary deformation
points X1, . . . , Xn , yielding a representation of U(Vir)⊗n .

4.4. Uniformization. Here we illustrate concretely the concepts introduced earlier by
explaining how to write the Virasoro representation described above in coordinates;
in simple topologies, a choice of coordinates on the Teichmüller space is given by
uniformization.

4.4.1. Simply-connected domains. Consider the space of simply-connected domains
with N + 2 marked points X0, . . . , X N+1 on the boundary; at X0 we also give a k-jet
of local coordinate; this gives the space T1k . By uniformization, any such surface is
equivalent to (H, 0, z1, . . . , zN ,∞) and the k-jet at 0 can be written as w = z(1 + a2z +
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· · ·+ak zk−1), where z denotes the natural coordinate in H. Then (z1, . . . , zN , a2, . . . , ak)

are smooth coordinates on T1k (zi �= z j , zi �= 0). Alternatively, we could fix zN = 1
and take (z1, . . . , zN−1, a1, . . . , ak) as coordinates, but the resulting expressions are a
bit more complicate.

For n ∈ Z, let us consider the vector field

wn+1∂w = zn+1(1 + a2z + · · · + ak−1zk−1)n+1(1 + 2a2z + · · · + kak zk−1)−1∂z

We may write:

wn+1∂w =
∞∑

j=n

b j,nz j+1∂z (4.19)

where b j,n(a1, . . . , a j−n+1) (and bn,n = 1). Here
∑0

j=n b j,nz j+1∂z is a vector field which

is holomorphic away from 0 and vanishes at infinity;
∑k

j=1 b j,nz j+1∂z is holomorphic

near 0; and
∑∞

j=k+1 b j,nz j+1∂z maps to 0 in T T1k .

Let us first consider the vector fields wn+1∂w, n > 0, which operate on the k-jet
but not on the moduli z1, . . . , zN . The vector field −z2∂z corresponds to replacing the
coordinate w with w− εw2 and differentiating w.r.t. ε (see the end of Sect. 2.4.4), or in
terms of coefficients:

−�1 = ∂a2 + 2a2∂a3 + · · ·

For general n, �n : C∞(Tk)→ C∞(Tk′), k′ = k + n− is given by:

−(�n f )(z1, . . . , zN , a2, . . . , ak′−1) =
N∑

i=1

⎛

⎝
∑

j :n≤ j≤0

b j,nz j+1
i

⎞

⎠ ∂zi +
k∑

j=1

b j,n∂a j

where the b j,n’s are computable polynomials in the ai variables, specified by (4.19).
For small n’s we have

w∂w = (z − a2z2 + (2a2
2 − 2a3)z

3 + · · · )∂z

∂w = (1 + 2a2z + 3a3z2 + 4a4z2 + · · · )−1∂z

= (1− 2a2z + (4a2
2 − 3a3)z

2 + (−8a3
2 + 12a2a3 − 4a4)z

3 + · · · )∂z

w−1∂w = (1 + 2a2z + 3a3z2 + · · · )−1

z(1 + a2z + a3z2 + · · · ) ∂z

=
(

1

z
− 3a2 + (7a2

2 − 4a3)z + (−15a3
2 + 19a2a3 − 5a4)z

2 + · · ·
)
∂z

w−2∂w = (1 + 2a2z + 3a3z2 + · · · )−1

z2(1 + a2z + a3z2 + · · · )2 ∂z

=
(

1

z2 −
4a2

z
+ (11a2

2 − 5a3) + (−26a3
2 + 28a2a3 − 6a4)z + · · ·

)
∂z
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From this we read:

−�1 = ∂a2 + 2a2∂a3 + · · ·

−�0 =
N∑

i=1

zi∂zi − a2(∂a2 + 2a2∂a3) + (2a2
2 − 2a3)∂a3 + · · ·

−�−1 =
N∑

i=1

(1− 2a2zi )∂zi + (4a2
2 − 3a3)(∂a2 + 2a2∂a3)

+ (−8a3
2 + 12a2a3 − 4a4)∂a3 + · · ·

−�−2 =
N∑

i=1

(
1

zi
− 3a2 + (7a2

2 − 4a3)zi

)
∂zi

+ (−15a3
2 + 19a2a3 − 5a4)(∂a2 + 2a2∂a3) + · · ·

−�−3 =
N∑

i=1

(
1

z2
i

− 4a2

zi
+ (11a2

2 − 5a3) + (−26a3
2 + 28a2a3 − 6a4)zi

)
∂zi + · · ·

From these expressions one may check directly some of the simplest commutation
relations, e.g. �1�−1 − �−1�1 = 2�0 on C∞(T2), �−1�−2 − �−2�−1 = �−3 on C∞(T1).
Moreover, if �0 f = h f (viz. f is a homogeneous function of the z’s. with our choice of
coordinates), then

�−1 f = −
∑

i

∂zi f − 2a2h f

�−2 f = −
∑

i

1

zi
∂zi f + 3a2

∑

i

∂zi f + (7a2
2 − 4a3)h f

�2−1 f =
∑

i, j

∂zi z j f + 2a2(h + 1)
∑

i

∂zi f + 2a2h

(
∑

i

∂zi f + 2a2h f

)

+ 2h(4a2
2 − 3a3) f

=
∑

i, j

∂zi z j f + 2a2(2h + 1)
∑

i

∂zi f + 2h(4a2
2 − 3a3 + 2a2

2h) f

where we used �0(∂zi f ) = (h + 1)∂zi f .
In order to get to Virasoro generators, we evaluate

SH(w) = {w; z} = 6(a2
2 − a3)

since SH(z) = 0. Then (omitting the reference section s)

L−1 = �−1

L−2 = �−2 +
c

2
(a2

2 − a3)

L−3 = �−3 +
c

2
(−8a3

2 + 12a2a3 − 4a4)
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Now consider the operator �2,1 = L2−1 − τ L−2. If L0 f = h f , then

(L2−1 − τ L−2) f =
∑

i, j

∂zi z j f + τ
∑

i

1

zi
∂zi f + a2(2(2h + 1)− 3τ)

∑

i

∂zi f

+
(

h(8a2
2 − 6a3 + 4a2

2h − τ(7a2
2 − 4a3)) +

τc

2
(a3 − a2

2)
)

f

For the special values

τ = 4

κ

h = h2,1 = 6− κ

2κ
= 3

4
τ − 1

2

c = (6− κ)(3κ − 8)

2κ
= h(12τ−1 − 8)

this reduces to

(L2−1 − τ L−2) f =
∑

i, j

∂zi z j f + τ
∑

i

1

zi
∂zi f =

(
(−

∑

i

∂zi )
2 − τ(−

∑

i

zi
−1∂zi )

)
f

where the RHS has weight h + 2 (and no longer depends on a2, a3, . . .). We recover
the usual rule [10] that a singular vector is obtained by substituting �0

n = −∑
i zn+1

i ∂zi

for Ln . The �0
n’s represent the Witt algebra and operate on functions of the z’s (a fixed

number of variables); the Ln’s represent the Virasoro algebra and operate on functions
of the z’s and a’s. Let us expand on this comment.

We can write L−n = �0−n + Dn , where Dn is a differential operator (in the z’s and
a’s) with coefficients vanishing at a2 = a3 = · · · = 0 (n ≥ 0). It follows easily that

L−n1 · · · L−nk = �0−n1
· · · �0−nk

+ D

where D has the same property. Then �r,s = �0
r,s + Dr,s , where �0

r,s is obtained by
substituting L−n with �0−n in the singular vector �r,s . If φ satisfies �r,s(φs) = 0 (φ has
weight hr,s at 0 and ∞) and we set f (z1, . . . , zN ) = φ(H, 0, z1, . . . , zN ,∞, z) (viz.
the local coordinate at 0 is the standard coordinate), we have �0

r,s f = 0, a PDE in N
variables and of degree rs. In this fashion we recover the classical Belavin–Polyakov–
Zamolodchikov differential equations [10].

This discussion can easily be extended to the case where the spectator points z1, . . . , zn
also carry weights h1, . . . , hn , in which case

�0−n =
∑

i

(
−z1−n

i ∂zi − (1− n)hi z
−n
i

)

4.4.2. Relation with the Bauer–Bernard framework. At this point it is instructive to
comment on the relation with the work initiated by Bauer and Bernard [3–5], and devel-
oped in particular in [52], which, in simply-connected domains, also produces a Virasoro
representation in terms of differential operators.
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A simply-connected domain with (n + 1) marked points, one of them carrying a
(formal) local coordinate, is equivalent to (H, x1, . . . , xn,∞, w), where w is the local
coordinate at ∞, which we now parameterize. Consider a series

f (u) =
∑

j≤0

f j u
j+1 = u + 0 +

f−2

u
+ · · ·

with f0 = 1, f−1 = 0 (“hydrodynamic normalization”); this may be thought as a formal
series in R[[u−1]][u] or (for suitable f j ’s) as a germ of analytic function near ∞. Such
series occur in particular when uniformizing subdomains of H: f = fK : H\K → H a
conformal equivalence. Consider its inverse

u = f −1(z) = z + 0− f−2

z
+ · · ·

the coefficients of which are polynomials in the f j ’s and may be expressed by the
Lagrange inversion formula.

If z denotes the standard coordinate in H, define the local coordinate w by

w = 1

u
= 1

f −1(z)
=

(
z − f−2

z
+ · · ·

)−1

= z−1 +
f−2

z3 + · · · (4.20)

This makes sense for germs of local coordinates at∞ or for formal coordinates. Remark
that the hydrodynamic normalization fixes the translation and scaling degrees of freedom.
Here the space of simply-connected domains with (n + 1) marked points and a marked
k-jet has coordinates (x1, . . . , xn, f−2, . . . , f1−k). We now want to write the �n’s and
Ln’s in these coordinates.

We now consider the �n’s corresponding to a deformation at infinity written in these
coordinates. For n ≥ 2, the action consists in replacing w with w − εwn+1 (or u with
u + εu1−n) and differentiating w.r.t. ε at 0:

1

f −1
ε (z)

= 1

f −1(z)
− ε

f −1(z)n+1 + o(ε)

f −1
ε ( f (u)) = u + εu1−n + o(ε)

f (u) = fε(u) + ε f ′(u)u1−n + o(ε)

This gives the simple expression (for n ≥ 2)

�n = −
∑

j≤0

( j + 1) f j∂ f j−n = −
∑

�≤−n

(� + n + 1) f�+n∂ f� (4.21)

For n ≤ 1, we focus for simplicity on the action on the x1, . . . , xn variables, and start
from the vector field

−wn+1∂w = u1−n∂u = u1−n
(

du

dz

)−1

∂z

= (Pn(z) + Rn(z))∂z
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where Pn ∈ C[z] and Rn ∈ z−1
C[[z−1]]. As for n ≥ 2, Rn∂z corresponds to an action

on the f j ’s (leaving the xi ’s fixed). Classically, one can project a Laurent series onto its
holomorphic at 0 (resp. at infinity) component with the Cauchy integral formula. Here

Pn(x) = 1

2iπ

∮
u1−n(z)

(
du

dz

)−1 dz

z − x

where
∮

is a contour integral on a large circle containing x on which u converges (if u
is merely a formal series, this can still be interpreted as an algebraic map on the f j ’s, as
will be the case for all such integrals in this section). A change of variables gives

Pn(x) = 1

2iπ

∮
u1−n f ′(u)2

f (u)− x
du

and then

�n =
∑

i

Pn(xi )∂xi + · · ·

For the action on the jet coordinates, we start by writing

Rn(x) = − 1

2iπ

∮
u1−n(z)

(
du

dz

)−1 dz

z − x
= − 1

2iπ

∮
u1−n f ′(u)2

f (u)− x
du

where x lies now outside of the contour. Then

Rn(z)∂z = − 1

2iπ

∮
v1−n f ′(v)2

f (v)− z
dv∂z

= − 1

2iπ

∮
v1−n f ′(v)2

f (v)− f (u)
dv f ′(u)−1∂u

By (4.21) we know the effect of vector fields −w1+m∂w, m ≥ 2, on the jet coordinates.
We simply expand Rn(z)∂z in such vector fields, using again a Cauchy integral formula
to extract coefficients:

Rn(z)∂z = −
∑

m≥2

(
1

(2iπ)2

∮

Co

∮

Ci

v1−n
1 f ′(v1)

2

f (v1)− f (v2)
dv1 f ′(v2)

−1vm−2
2 dv2

)
wm+1∂w

where Ci is a contour in the interior of the larger counter Co. From (4.21) and
∑

m≥2

vm−2
∑

�≤−m

(� + m + 1) f�+m∂ f� =
∑

�≤−2

v−�−2 f ′(v)∂ f�

we get

�n =
∑

i

(
1

2iπ

∮
u1−n f ′(u)2

f (u)− x
du

)
∂xi

−
∑

�≤−2

(
1

(2iπ)2

∮

Co

∮

Ci

v1−n
1 f ′(v1)

2

f (v1)− f (v2)
dv1v

−�−2
2 dv2

)
∂ f�
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Finally we turn to the Schwarzian correction for c �= 0. From (4.20) (and the fact that
SH = 0 at ∞ in the standard coordinate z−1), we have SH = −6 f−2 (at infinity, w.r.t.
the coordinate w). More generally, set ι : z �→ z−1 (a fractional linear transformation)
and w0 = z−1. Then by basic properties of the Schwarzian derivative

{w0;w} = {ι ◦ f ◦ ι;w} = { f ◦ ι;w} = u4(S f )(u)

By the geometric representation of �−1, SH evaluated at the point with w = ε w.r.t. the

coordinate w − ε has expansion
∑

k≥0
εk

k! �
k−1SH, which by the previous computation

equals ε−4(S f )(ε−1). Then

1

k!�
k−1SH = 1

2iπ

∮
ε−k−4(S f )(ε−1)

dε

ε
= 1

2iπ

∮
uk+4(S f )(u)

du

u

so that (with k = −n − 2)

Ln = c

12
· 1

2iπ

∮
u1−n(S f )(u)du

+
∑

i

(
1

2iπ

∮
u1−n f ′(u)2

f (u)− x
du

)
∂xi

−
∑

�≤−2

(
1

(2iπ)2

∮

Co

∮

Ci

v1−n
1 f ′(v1)

2

f (v1)− f (v2)
dv1v

−�−2
2 dv2

)
∂ f�

which is precisely the differential representation of the Virasoro algebra constructed and
studied in [3–5,52]. Let us stress that the expressions on the RHS are polynomials in
the f j ’s and consequently are still well-defined if f is a formal series. We also refer to
Sect. 5.4.4 for further comments on that framework.

4.4.3. Doubly-connected domains. The Loewner equation and SLE in doubly-connected
domains have been studied rather extensively, see e.g. [22,38,55,74,75]. As is well-
known, any doubly-connected domain is conformally equivalent to an annulus; we shall
use the flat (with geodesic boundary) model given by

St = {z : 0 < �z < t}/Z
with Z acting by (horizontal) translations. If we consider the space of T1k such surfaces
with n + 1 points Z0, . . . , Z N marked on the same (for simplicity) boundary arc, with
a k-jet marked at Z1 (where the perturbation occurs), we get a set of local coordinates
t, z1, . . . , zN , a1, . . . , ak by mapping such a marked surface to

(St , 0, z1, . . . , zN )

with the k-jet of local coordinate at Z1, with a representative given byw = ∑
i≥1 ai (z−

z1)
i (z − z1 is the reference local coordinate given by the natural embedding—up to

translations—St ↪→ C). Here z1, . . . , zN ∈ R mod Z, t > 0, a1 > 0, a2, . . . ∈ R.
For the variety—and by contrast with the simply-connected case—the fixed point 0 is
chosen to be a spectator point.
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Our next task is to write the �n’s in these explicit coordinates. The first step, identical
to the simply-connected case (4.19), consists in writing

wn+1∂w =
∑

j∈Z

bn, j (z − z1)
j+1∂z

an identity of Laurent vector fields near z1. The vector field (z − z1)
n+1∂z (in a semi-

annulus neighborhood of z1) defines an element H1(St , (T−1St ) ⊗ O(−D)), where
D = Z0 + (k + 1)Z1 + Z2 + · · · + Zk is the relevant divisor; we denote this element
by [(z − z1)

n+1∂z]. By Kodaira–Spencer (2.7), this is identified with the tangent space
(to the Teichmüller space), which is spanned by the vectors ∂t , ∂z1 , . . . , ∂a1 , . . . and we
simply want to find the coordinates of [(z − z1)

n+1∂z] in this basis.
We can consider a covering of St adapted to the situation. Let Ui = D+(zi , ε) for

i = 0, . . . , N with z0 = 0 and ε > 0 small enough. Let UN+1 = {z ∈ St : �z > 2t/3};
and UN+2 be an open set intersecting each of U0, . . . ,UN in a semi-annulus and UN+1
in a strip; we choose ε so that U0, . . . ,UN+1 are all disjoint and U0, . . . ,UN+2 cover St .

Relatively to this cover we have simple representations (as Čech cocycles) of our basis
vectors. Namely ∂zi corresponds to the cocycle equal to ∂z in Ui,N+2 and 0 elsewhere;
and ∂t corresponds to the cocycle equal to i∂z in UN+1,N+2 and 0 elsewhere (with the
usual notation Ui, j = Ui ∩U j ).

It is easy to check that there is a unique meromorphic vector field x �→ V0(x, y)∂x
which is holomorphic in the interior St , has continuous extension to i t + R and has
constant imaginary part there; has a continuous extension to R and is real there, with the
exception of y ∈ R/Z where it has a simple pole with residue 1; and finally V0(0, y) = 0.
Explicitly, let θ be the odd theta function associated to C/(Z + i tZ), and set

V (x, y) = θ ′

θ
(x − y) = 1

x − y
+ (reg)

Then we have �(V (x, y)) = −2π if x ∈ i t + R, and we get explicitly

V0(x, y) = V (x, y)− V (0, y) = 1

x − y
+ c0(x, y)

Then for m > 0, we have

1

m!∂
m
y V0(., y) = 1

(x − y)m+1 + cm(x, y)

with cm biholomorphic; and ∂m
y V0(., y) is real along both boundary components.

We can now evaluate the coordinates of [(z−z1)
n+1∂z]. If n ≥ 0, it is a vertical vector

(operating only on the formal coordinate) and corresponds to ∂an if n ≤ k. If n = −1,
we get ∂z1 . If n = −2, we write

(z − z1)
−1∂z =

(
(z − z1)

−1 − V0(z, z1)
)
∂z + V0(z, z1)∂z

where the first summand is regular near z1. In turn, near z j , we can write V0(z, z1) =
V0(z j , z1) + (V0(z, z1) − V0(z j , z1)). Hence (z − z1)

−1∂z corresponds to the tangent
vector

2π∂t +
∑

j>1

V0(z j , z1)∂z j − c0(z1, z1)∂z1 − ∂x c0(z1, z1)∂a1 − · · ·
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Note that c0(z, z) = V (z, 0). Similarly, if m ≥ 1, (z − z1)
−m−1∂z corresponds to

0∂t +
∑

j>1

1

m!∂
m
y V0(z j , z1)∂z j − cm(z1, z1)∂z1 − ∂x cm(z1, z1)∂a1 − · · ·

The Poisson kernel in St is given by

π PSt (x, y) = −�(V (x, y))− 2π

t
y

for x ∈ St , y ∈ R; consequently the Poisson excursion kernel (2.4) is given by

πHSt (x, y) = ∂x V (x, y)− 2π

t

for x, y ∈ R, and the Schwarzian connection (2.6) (w.r.t. the standard coordinate z is

1

6
SSt (z) = − θ ′′′

3θ ′
(0)− 2π

t

which also gives an explicit expression for the Ln’s (with L−2 = �−2 + c
12 SSt etc.).

5. SLE Measures

In this section we describe the construction of SLE measures on open Riemann surfaces
by localization in path space, which allows to reduce to the simply-connected case. These
are positive measures; their total mass (or partition function), may be seen as a function
(or more accurately, a section) on Teichmüller space. The main result of this section is
that these partition functions are finite (if c ≤ 0) and smooth and are annihilated by the
canonical differential operator �2,1.

5.1. Chordal SLE measures. We start by gathering a few facts about chordal Schramm–
Loewner Evolutions (SLEs); for general reference, see e.g. [54,73]. In the upper half-
plane H, consider the flow of analytic maps gt : H\Kt → H given by g0(z) = z,

d

dt
gt (z) = 2

gt (z)−√κBt

where throughout B is a standard linear Brownian motion started at 0 and κ > 0 is fixed.
For a given z ∈ H, this ODE is solvable up to an explosion time τz . The compact hull
Kt ⊂ H is defined by {z ∈ H : τz ≤ t}. The trace t �→ γt = limε→0 g−1

t (
√
κBt + iε)

is a continuous non-self-traversing path, and H\Kt is a.s. the unbounded connected
component of H\γ[0,t]. If κ ≤ 4, γ is a.s. simple.

The path space P(H, 0,∞) is the space of all continuous non-self-traversing paths
from 0 to ∞ in H up to continuous increasing time reparameterizations (a non-self
traversing path can be represented as the limit of a sequence of simple paths). Specifically,
one can metrize the compactification H ∪ {∞} e.g. by d(z, w) = min(|z − w|, |z−1 −
w−1|); then consider C∞([0, 1],H ∪ {∞}) restricted to non-self-traversing paths with
γ (0) = 0, γ (1) = ∞ with semidistance given by

dP (γ1, γ2) = inf
φ:[0,1]↗[0,1] sup

t∈[0,1]
d(γ1(t), γ2(φ(t)))
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We say that γ1 ∼ γ2 if γ1 = γ2 ◦φ for some increasing reparameterization φ : [0, 1] →
[0, 1]. Then

P(H, 0,∞) = (C∞([0, 1],H ∪ {∞})/ ∼, dP )

is a Polish (complete, metric, separable) space.
Chordal SLE induces (via the trace γ ) a probability measure μ!

(H,0,∞)
on the path

space P(H, 0,∞). If κ ≤ 4, this measure is supported on the Borel subset of simple
paths which intersect the boundary only at their endpoints. The measure μ!

(H,0,∞)
is in-

variant under scaling. Consequently, if (D, x, y) is a bounded simply-connected domain
with two marked boundary points x, y, and φ : (H, 0,∞) → (D, x, y) a conformal
equivalence, then φ induces a quasi-isometry P(H, 0,∞)→ P(D, x, y) and one may

define μ!(D,x,y)
de f= φ∗μ!(H,0,∞)

the image measure.
If κ ≤ 4, we parameterize

τ = 4

κ
= 4(m + 1)

m

c = 1− 6

m(m + 1)
= (6− κ)(3κ − 8)

2κ

h = h2,1(τ ) = (1− m)2 − 1

4m(m + 1)
= 6− κ

2κ

where m > 0.
The fundamental restriction property [53] states that if (D, x, y) is a simply-connected

domain, (D′, x, y) is a simply-connected subdomain which agrees with (D, x, y) in
neighborhoods of x, y, then:

dμ!
(D′,x,y)(γ ) = 1γ⊂D′

(
HD(x, y)

HD′(x, y)

)h

exp(
c

2
νD(γ ; D\D′))dμ!(D,x,y)(γ ) (5.22)

where both sides are considered as measures on P(D′, x, y). Here HD(x, y) is the
Poisson excursion kernel (2.4) (the kernel of the Dirichlet-to-Neumann map in D):

HD(x, y) = ∂nx ny G D(x, y)

and ν is the Brownian loop measure in D, and we denote:

νD(A; B) = ν{δ ⊂ D : δ ∩ A �= ∅, δ ∩ B �= ∅}

5.2. Localization in path space.

5.2.1. Construction. Let us consider a compact bordered Riemann surface (�, X,Y ),
where X,Y are marked boundary points. We consider the path space P(�, X,Y ) of
continuous paths from X to Y given up to reparameterization. Let us fix a reference
simple path γ0 from X to Y which lies in the interior of � except at its endpoints. Let
P0(�, X,Y ) be the pathwise connected component of P(�, X,Y ) consisting of paths
homotopic to γ0 (a homotopy induces a path in path space); and Ps

0(�, X,Y ) be the
Borel subset of P0(�, X,Y ) consisting of simple paths which intersect the boundary
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only at their endpoints. The goal is now to define a suitable SLE-type measure μ0 on
Ps

0(�, X,Y ).
Let us define a tube neighborhood in (�, X,Y ) as a simply-connected, relatively open

domain D which contains a semidisk neighborhood of X and of Y . Trivially,Ps
0(�, X,Y )

is covered by relatively open sets of type Ps(D, X,Y ), where D is a tube neighbor-
hood (note that all paths in Ps(D, X,Y ) are in the same homotopy class). Let φD :
(H, 0,∞)→ (D, X,Y ) a conformal equivalence; thenμ!(D,X,Y ) = (φD)∗μ!(H,0,∞)

(the

image measure of μ!
(H,0,∞)

under φD) gives a reference measure on Ps(D, X,Y ); for

simplicity of notation we simply denote μ!D = μ
!

(D,X,Y ). Let us set:

1γ⊂Ddμ0(γ ) = φ�D(γ )dμ
!
D(γ ) (5.23)

where the Radon–Nikodym derivative φ�D is to be determined. For the definition to be
consistent, we need:

φ�D′
dμ!D′

dμ!D
= φ�D (5.24)

(a.e.) on Ps(D′, X,Y ) whenever D′ ⊂ D are tube neighborhoods containing paths

homotopic toγ0; notice that
dμ!

D′
dμ!D

is an explicit functional given by the restriction property

of SLE (5.22).
Let D1, D2 be two tube neighborhoods. If γ is a path (from X to Y , as are all paths

we are considering here) in D1 ∩ D2, let Dγ be the union of the ranges of paths in
D1 ∩ D2 homotopic to γ . Plainly, Dγ is a tube neighborhood contained in D1 and D2.
We have Ps(D1) ∩ Ps(D2) = ∪γPs

0(Dγ ), where the RHS is a union of disjoint path
spaces (a priori two paths may be homotopic in D1 and in D2 but not in D1 ∩ D2).
Hence provided (5.24) is satisfied for all pairs of tube neighborhoods, then the measure
φ�Di

dμ!Di
on Ps(Di ), i = 1, 2, agree on the intersection P(D1) ∩ P(D2).

A grid approximation argument shows that Ps
0(�) = ∪∞i=1Ps(Di ) for a well-chosen

sequence of tube neighborhoods (Dn)n≥1. By inclusion-exclusion, under (5.24) the
measures φ�Di

dμ!Di
extend consistently to ∪n

i=1Ps(Di ). By monotone limit, they extend
uniquely to Ps

0(�). Trivially [also under (5.24)], the resulting measure does not depend
on the choice of Di ’s.

Our task is now to find densities φ�D satisfying the consistency condition

φ�D′

φ�D
(γ ) =

(
dμ!D′

dμ!D

)−1

(γ ) = 1γ⊂D′
(

HD(X,Y )

HD′(X,Y )

)−h

exp(− c

2
νD(γ ; D\D′))

(5.25)

for D′ ⊂ D tube neighborhoods. Since D is given as a subset of � and not of the
plane, HD(X,Y ) is well-defined as a 1-form in X and in Y (the normal derivative at X
and Y is defined in terms of local coordinates at X and Y ). Intrinsically, HD(X,Y ) =
∗dX ∗dY G D(X,Y ), i.e. we take the differential of the Green kernel (which depends only
on the complex structure) w.r.t. each variable. If we extend the marking of (�, X,Y ) to
include a 1-jet of local coordinate at X and Y , then HD(X,Y ) is a function of this data.
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Remark that the ratio HD(X,Y )
HD′ (X,Y )

does not depend on these choices, provided they are the

same for D and D′. In the case c = 0, we may simply set:

φ�D(γ ) = HD(X,Y )h

which does not depend on γ (this reflects the restriction property of SLE8/3). In the
general case, one may set:

φ�D(γ ) = HD(X,Y )h exp(− c

2
ν�(γ ;�\D)) (5.26)

By the restriction property of the loop measure (Proposition 1), this prescription satisfies
(5.24) and consequently we have constructed a measure μ0 = μ0(�, X,Y ) on the path
space Ps

0(�, X,Y ), which we refer to as the canonical SLEκ measure on Ps
0(�, X,Y )

(κ ∈ (0, 4]). It is a positive measure (and not in general a probability measure) for
given 1-jets at X,Y ; more intrinsically, it is a measure-valued tensor (or tensor-valued
measure).

We obtain immediately the following restriction property: if �′ ⊂ � agrees with �
in a neighborhood of X,Y (and other markings), then

dμ�′(γ ) = 1γ⊂�′ exp
( c

2
ν�(γ ;�\�′)

)
dμ�(γ )

Remark however that (5.24) may have multiple solutions. Given another solution φ̃
(notice that φ�D is positive on Ps

0(D, X,Y )), we see that φ̃�D(γ )/φ
�
D(γ ) does not depend

on the choice of tube neighborhood D of γ and consequently may be written as a function
of the path: φ̃�D(γ ) = h�(γ )φ�D(γ ) and μ̃0 = h�μ0. This is interesting in particular
when h�(γ ) depends only on the conformal type of �\γ (forgetting the marked points
X,Y ). For instance, in the case where � is an annulus and X,Y belong to the same
boundary component, �\γ consists in a simply-connected domain and an annulus; let
r(γ ) be the modulus of this last annulus. Then we may choose h�(γ ) = g(r(γ )),
g : (0,∞)→ (0,∞) an arbitrary bounded measurable function.

5.2.2. Comparison. The construction presented here (for the “canonical” measures) is
essentially identical to the one given by Lawler in [55], with minor nuances. In [55],
domains are planar, all tensors are evaluated w.r.t. the ambient coordinate (given by the
planar embeddings of the domains) and the measures are not decomposed by isotopy
type. Note that “non-canonical” measures [viz. obtained by patching but with another
collection of densities satisfying (5.25)] may also be of interest, see e.g. [38].

In [49], Kontsevich and Suhov also use localization for measures on loops and paths
(“intervals”). For the reader’s convenience, we give a brief account of (parts of) this work
and verify that, although phrased in a somewhat different formalism, that construction
is also equivalent to the one discussed here.

To a surface�with boundary components, one associates a line (real, one-dimensional
vector space) det� as follows. A metric (compatible with the complex structure of �) is
well-behaving if it is flat near each boundary circle, and these circles are geodesic and
have fixed length 2π . (We do not consider surfaces with punctures, nor with infinitely
many boundary components—and with at least one boundary component for simplicity).
If g, g′ = e2σ g are such metrics, det� = R[g] = R[g′], where by definition

[g′] = exp

(
− 1

12π

∫

�

(
1

2
|∇gσ |2 + Rgσ)d Ag

)
[g]
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Note that det� has a natural orientation; and that det�1��2 � det�1 ⊗ det�2 . Note also
that if V is an oriented line (bundle) and c ∈ R, one can define V⊗c an oriented line
(bundle) in such a way that V⊗c ⊗ V⊗c′ � V⊗(c+c′) canonically.

Alternatively, one can consider the space of functions on metrics satisfying the con-
formal anomaly relation (4.16):

f (e2σ g) = exp

(
1

12π

∫

�

(
1

2
|∇gσ |2 + Rgσ)d Ag

)
f (g)

The identification is by setting

[g](e2σ g) = exp

(
1

12π

∫

�

(
1

2
|∇gσ |2 + Rgσ)d Ag

)

Consequently, g �→ detζ (−�g)
−1/2 defines an element of det� ; we refer to it as the

canonical vector v� . Thus one can think of the formal vector [g] above as a class of
equivalence of well-behaving metrics in the same conformal class and with the same
ζ -determinant.

Now consider (�, X,Y ) a surface with two marked boundary points and P =
P(�, X,Y ) the associated path space (“intervals” in the terminology of [49]). To γ ∈ P
is associated the line

det�,γ = detD ⊗ det−1
D\�

where D is a tube neighborhood of γ . To see that this does not depend on D, choose
D′ ⊂ D another such tube neighborhood. Then there is a canonical isomorphism

detD ⊗ det−1
D\� � detD′ ⊗ det−1

D′\�

Indeed, consider g, gl , gr well-behaved metrics on D, (D\γ )l , (D\γ )r respectively
(here (D\γ )l/r is the left/right component of �\γ ), chosen to agree outside of a neigh-
borhood of γ . Similarly, we choose metrics g′, g′l , g′r on D′, (D′\γ )l/r that agree away
from γ . Finally we assume that g, g′ (resp. gl , g′l , resp. gr , g′r ) agree near γ . Then we
identify

[g]/[glr ] ∈ detD ⊗ det−1
D\� � [g′]/[g′lr ] ∈ detD′ ⊗ det−1

D′\�

This is a canonical isomorphism since different choices lead to multiplying both sides
by the same factor (by locality of the Liouville action). Consequently det�,γ depends
only on an infinitesimal neighborhood of γ in �.

At this point we have defined a collection of lines det�,γ indexed by P , which can be
seen as a line bundle Det� over the path space. This line bundle may be trivialized in the
following way. The previous argument does not depend on D being simply-connected
and consequently we have canonically:

det�,γ � det� ⊗ det−1
�\γ

In turn we can trivialize the RHS using canonical vectors (which we define here in terms

of ζ -regularization, a deviation from [49]): v�,γ
de f= v� ⊗ v−1

�\γ is a non-vanishing
section which trivializes Det� .
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If ξ : � ↪→ �′ is an embedding (mapping semidisk neighborhoods of X,Y to
semidisk neighborhoods of X ′,Y ′), there is an induced map on path space:

ξ∗ : P(�) −→ P(�′)

and since det�,γ is defined in terms of an infinitesimal fattening of γ , we also have a
canonical map

ξdet : (ξ∗)∗ Det�′ −→ Det�

The following problem is addressed in [49]: to show existence and uniqueness (up
to multiplicative factor) of an assignment of λ(�,X,Y ), a measure on P(�, X,Y ) taking
values in the bundle Det⊗c

� ⊗(TX� ⊗ TY�)
−h in such a way that for any embedding

ξ : (�, X,Y ) ↪→ (�′, X ′,Y ′) as above,

ξ∗λ(�′,X ′,Y ′) = λ(�,X,Y )

Recall that TX� is an oriented line (vectors tangent to the boundary, oriented so that �
lies to their left), so that (TX�)

−h is still well-defined for h /∈ Z. In [49] it is shown that
such an assignment exists for c ≤ 1, h = h2,1(τ ) and conjectured that it is unique up to
multiplicative constant for these values.

In order to compare with our earlier discussion, we trivialize:

dλ(�,X,Y )(γ ) = dμ(�,X,Y )(γ )(v� ⊗ v−1
�\γ )

⊗c

where now μ has simply a tensor dependence at X,Y (viz. is a measure once 1-jets
at X,Y are fixed). In order to quantify the covariance property for the μ’s implied by
that of the λ’s, we set γ ∈ P(�, X,Y ), γ ′ = ξ ◦ γ ∈ P(�′, X ′,Y ′). Then we have:
a canonical isomorphism φ : det�,γ → det�′,γ ′ ; a vector v�,γ in det�,γ ; and a vector
v�′,γ ′ in det�′,γ ′ . Then

dξ∗μ�′
dμ�

(γ ) =
(
φ(v�,γ )

v�′,γ ′

)c

Let g1, g2, g3, g4 be well-behaving metrics in �, �\γ , �′, �′\γ ′ respectively. We
assume that ξ∗g1 and g3 (resp. ξ∗g2 and g4) agree near γ ; and that g1 and g2 (resp. g3
and g4) agree away from γ . (More precisely, � = U ∪ V , U a tube neighborhood of γ ,
�′ = U ′ ∪ V ′, U ′ = ξ(U ), g3 = ξ∗g1 on U ′, g1 = g2 on V , etc.). Then

(
φ(v�,γ )

v�′,γ ′

)−2

= detζ (−�g1)detζ (−�g4)

detζ (−�g2)detζ (−�g3)

where the RHS does not depend on (consistent) choices. If ξ is defined on a neighborhood
of Ū , we can rewrite the RHS as

exp(−ν�(γ ;�\U ) + ν�′(γ
′;�′\U ′))

reasoning as in Proposition 2.1 of [26]. In particular if � ⊂ �′ (and ξ is the inclusion),
we have

dμ�
dμ�′

(γ ) = 1γ⊂� exp(
c

2
ν�′(γ ;�′\�))

This shows that the “canonical” measures considered here (summed over isotopy types)
are identical (given this trivialization) to those constructed in [49].
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5.3. Partition function. We consider again (�, X,Y ) a bordered surface with marked
boundary points X,Y (possibly additional spectator points are marked on the boundary
and in the bulk); γ0 is a reference simple path from X to Y on �; Ps

0(�, X,Y ) is the
space of simple paths homotopic to γ0. We have constructed a canonical positive SLEκ

measure on Ps
0(X,Y ), κ ≤ 4, specified by (5.23) and (5.26). We are interested in the

partition function of this measure, i.e. its total mass:

Z0(�, X,Y ) = ‖μ0(�, X,Y )‖ = μ0(Ps
0(�, X,Y )) ∈ (0,∞]

Recall that Z0 has a weight h tensor dependence in the local coordinates at X,Y ; we want
to show that Z0 defines a smooth function on the Teichmüller space T1,1 (of surfaces
with marked points X,Y and marked 1-jets at X,Y ; other markings are kept implicit).

First we argue that, if c ≤ 0, Z0 is locally bounded on T1,1. The Poisson kernels
HD(X,Y ) may be explicitly represented in terms e.g. of theta functions [see (2.4)] and
are not problematic. The universal cover of the bordered surface� has interior the upper
half-plane H (as a bordered surface, the universal cover is contained in H; a boundary
cycle in � lifts to a countable union of disjoint open intervals of R). Consider a lift γ̃0

of γ0 to the universal cover, with endpoints X̃ , Ỹ ; and γ̃ the lift of a path γ isotopic to
γ0 with the same endpoints.

We have the trivial bound

ν�(γ ;�\D) ≤ ν�{δ ⊂ � : δ ∩ γ �= ∅, δ ∩�\D �= ∅, δ contractible}
+ν�{δ : δ non contractible}

The second term is locally bounded on T . Indeed we may choose a smooth family of
Riemannian metrics for surfaces in an open neighborhood U of the (class of) � in T .
Then the systole (length of the shortest noncontractible loop) is locally bounded away
from 0 on U ′ ⊂⊂ U ; the volume is bounded on U ′; and the probability of hitting
the boundary before time 1 for Brownian motion is bounded away from 0 on U ′ (and
all possible starting points). Together e.g. with a Donsker–Varadhan large deviation
estimate for short time diffusions gives the claimed upper bound (a Brownian loop is
exponentially unlikely to travel to macroscopic distance in time 1/N # 1 or to stay
away from the boundary up to time N $ 1, with uniform exponential bounds on U ′).

Consequently, we have the local (in Teichmüller space) estimate φ�D(γ ) ≤ Cφ̂�D(γ )
where

φ̂�D(γ ) = HD(X,Y )h exp(− c

2
ν�{δ ⊂ � : δ ∩ γ �= ∅, δ ∩�\D �= ∅, δ contractible})

Let μ̂0 be the measure given by φ̂�Ddμ!D on P(D, X,Y ) (as noted earlier, this solves
(5.24) and therefore patches to a positive measure on P S

0 (�, X,Y )), so that
Z0(�, X,Y ) ≤ C‖μ̂0‖.

Let D̃ be the preimage of D in H; it is a tube neighborhood of γ̃0. We observe that

ν�(γ ;�\D)contr ≤ νH(γ̃ ;H\D̃)

where the LHS counts only contractible loops. The difference comes from loops in H

that intersect multiple lifts of γ ; a loop (in �) intersecting exactly k lifts of γ (including
the “distinguished” one γ̃ ) is counted k times on the RHS and once on the LHS. Then,
if c ≤ 0, φ̃�D(γ ) ≤ φH

D̃
(γ̃ ) and consequently the pullback μ̂0 of μ̃0 to P(D̃, X̃ , Ỹ )
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is dominated by φH

D̃
dμ!

D̃
. By the restriction property (5.22), this is simply the restric-

tion of HH(X̃ , Ỹ )hμ!
H

(the local coordinates at X̃ , Ỹ are pullbacks of the marked local

coordinates at X,Y ) to P(D̃, X̃ , Ỹ ).
By patching the measure restricted to the P(D̃, X,Y ), we see that μ̂0 is dominated

by the restriction of HH(X̃ , Ỹ )hμ!
H

to the preimage of Ps(�, X,Y ) in Ps(H, X̃ , Ỹ )
(i.e. simple paths in H which stay simple when projected down on �). Consequently
|μ̂0| = |μ̃0| ≤ HH(X̃ , Ỹ )h .

It is easy to see that H�(X,Y ) = ∑
Y ′:π(Y ′)=Y HH(X̃ , Ỹ ) (starting e.g. from the

Green function), where π : H → � is the covering map, and the Poisson kernels
are evaluated with consistent choices of local coordinates. Since h > 0 and H�(X,Y )
is smooth on T1,1, we conclude that, if c ≤ 0, (�, X,Y ) �→ Z0(�, X,Y ) is locally
bounded on T1,1.

It will be convenient to have some basic a priori regularity estimate on Z0; let us
show it is lower semicontinuous on T1,1. Let us choose a countable cover of Ps

0(�, X,Y )
by Ps

0(Di , X,Y ) where the Di ’s are tube neighborhood which intersect ∂� only in
prescribed boundary arcs around X,Y . We know that μ0 = μ0(�, X,Y ) is a finite
measure; so for ε > 0 there is n large s.t. μ0(∪n

i=1Ps
0(Di , X,Y )) ≥ Z0(�, X,Y ) − ε.

We can then find Z ∈ ∂�, D+ a semidisk neighborhood of Z s.t. D1, . . . , Dn are at
positive distance of D+. Then we can represent a neighborhood of the class of (�, X,Y )
in T by deformations of the gluing data of D+ with �\{Z} (equivalently, by smooth
variation of the metric in D+). Then clearly for fixed γ ∈ Di , i ∈ {1, . . . , n}, φ�′Di

(γ ) is

continuous in �′, �′ close to� in T ; and φ�
′

Di
/φ�Di

is locally bounded on Ps
0(Di , X,Y ).

It follows that for�′ close enough to�, Z0(�
′, X,Y ) ≥ Z0(�, X,Y )−2ε, as claimed.

As a by-product of this argument, let us observe that the family of measures
(�, X,Y ) �→ μ0(�, X,Y ) is regular in the following sense. Let us fix a smooth
surface �s and a smooth parametric family of Riemannian metrics representing a
neighborhood of the Teichmüller surface � on T1,1. Then we may regard the μ0’s
as a parametric family of measures on the same Lusin space Ps

0(�
s, X,Y ). If Di

is a tube neighborhood as above, Ei a Borel subset of Ps(Di , X,Y ), we have that
(�, X,Y ) �→ μ

(�,X,Y )
0 (Ei ) is continuous. By monotone limit, if E is any Borel set in

P(�s, X,Y ), (�, X,Y ) �→ μ
(�,X,Y )
0 (E) is Borel measurable.

5.4. Disintegration and null vector equation. Having constructed, on the one hand, a
Virasoro action by geometric arguments and, on the other hand, SLE partition functions,
we finally relate these notions by showing that the said partition functions satisfy a
null-vector equation (Theorem 6).

A defining property of chordal SLE is its Domain Markov property. The measures
we built from chordal SLE inherit a path decomposition property (as these are positive,
rather than probability, measures, it is improper to speak of Markov property there).

We then show that a (non-canonical) SLE-type diffusion on Teichmüller space is
hypoelliptic (for general background on diffusions, we refer the reader to [62,71]).
Recall that a differential operator D on a manifold of the form

D = 1

2
X2 + Y

where X and Y are vector fields (seen as derivations) is said to satisfy the Hörmander
bracket condition (e.g. [70]) if X,Y and their iterated brackets [X,Y ], [X, [X,Y ]], etc.
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span the tangent space at every point. If so, D is hypoelliptic in the sense that any weak
solution of Dh = 0 is smooth, i.e. if h is a distribution s.t. Dh = 0 (as distribution) on
an open set, then h is smooth there.

From the path decomposition identities and standard results on the Dirichlet problem
for hypoelliptic operators [11], we obtain smoothness of the partition functions and
the null-vector equation (Theorem 6). Finally, we discuss how that relates to results in
[3–5,52].

5.4.1. Disintegration. The chordal SLE measure has a Markovian property, which is
inherited by the canonical SLE measures μ0(�, X,Y ). We proceed with describing
this property, starting in a somewhat restricted framework. We want to disintegrate the
measureμ�0 with respect to some initial slit (up to first exit of a semidisk neighborhood of
X , say). On each tube neighborhood D, by the SLE Markov property, the reference SLE
can be decomposed as the concatenation of a stopped chordal SLE trace γ τ and a chordal
SLE in the slit domain D\γ τ . This Markov property has also a natural compatibility
with the restriction property. Using the Markov property in each tube neighborhood, we
will relate μ�0 to the corresponding measures on �\γ τ .

Consider a compact semidisk neighborhood D+ of X in �, not containing any other
marked point, and identified via a local coordinate z to a neighborhood of 0 in H. For
γ ∈ Ps

0(�, X,Y ), we denote by γ τ the initial segment of the path up to first exit of γ
and γτ ∈ ∂D+ its endpoint; one may think of γ τ as an element of a stopped path space
Ps
τ (�, X,Y ), with the topology of uniform convergence up to time reparameterization.

The mapping R : γ �→ γ τ is not everywhere continuous (because of paths bouncing
back on ∂D+, a null set), but is Borel measurable. We may consider the marked surface
�τ = (�\γ τ , γτ ,Y ); the mapping γ τ �→ (�\γ τ , γτ ,Y ) is continuous Ps

τ (�, X,Y )→
T .

There is a “natural” local coordinate at γτ on �τ defined from the reference local
coordinate at z at X (which maps D+ to a neighborhood of 0 in H): consider a conformal
equivalence gτ : H\z(γ τ ) → H with gτ (z) = z + O(1) as z → ∞. Then set zτ =
gτ ◦ z − gτ (z(γτ )), a local coordinate at γτ . This allows to evaluate tensors such as
H�τ (γτ ,Y ).

Let us consider a tube neighborhood D; we do not require D+ ⊂ D. Let D′ ⊂ D
be another tube neighborhood and set Dτ = D\γ τ (and likewise for D′

τ ). The SLE
restriction property, in its martingale formulation [53], implies that:

d R∗μ!D′

d R∗μ!D
(γ τ ) = 1γ⊂D′

(
HD′

τ
(γτ ,Y )HD(X,Y )

HDτ (γτ ,Y )HD′(X,Y )

)h

exp(
c

2
νD(γ

τ ; D\D′))

The Domain Markov property of SLE states that, under dμ!Dτ
(γ ′)d R∗μ!D(γ τ ), the con-

catenation γ τ • γ ′ has law μ
!
D . Consequently, on Ps(D, X,Y ), we have

1Ps (D,X,Y )dμ
�
0 (γ ) = φ�D(γ )dμ

!
D(γ ) = HD(X,Y )h exp(− c

2
ν�(γ ;�\D))dμ!D(γ )

=
(

HD(X,Y )

HDτ (γτ ,Y )

)h

exp(− c

2
ν�(γ

τ ;�\D))d R∗μ!D(γ
τ )dμ�τ

0 (γ ′)

We observe that the measures
φ�D
φ�Dτ

d R∗μ!D on Pτ (D, X,Y ) (the space of paths in the

tube D stopped upon exiting D+) are consistent by the restriction property at time τ ,
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and as before [see (5.23)] patch up to a measure on Pτ (�, X,Y ), which we denote by
μ�τ . Then we have the disintegration:

1Ps (D,X,Y )dμ
�
0 (γ ) = 1Pτ (D,X,Y )(γ

τ )dμ�τ (γ
τ )1P(Dτ ,γτ ,Y )(γ

′)dμ�τ

0 (γ ′)
where γ = γ τ • γ ′; and consequently

dμ�0 (γ ) = dμ�τ (γ
τ )dμ�τ

0 (γ ′) (5.27)

on Ps
0(�, X,Y ). This implies in particular that the collection of probability measures

� �→ μ
!
� = Z(�)−1μ�0 have the same type of Markov property as chordal SLE. By

integrating out γ ′, we obtain

d R∗μ�0 (γ τ ) = Z0(�τ , γτ ,Y )dμ�τ (γ
τ )

and thus Z0(�0, X,Y ) = ∫
Z0(�τ , γτ ,Y )dμ�τ (γ

τ ). The measure μ�τ is absolutely
continuous w.r.t. a stopped chordal SLE. Let us write this in a local chart. Again let z be
a local coordinate at X which maps D̃+ to a neighborhood in H (with D+ ⊂⊂ D̃+); μ!

H

is the standard chordal SLE measure, R∗μ!H its projection on paths stopped upon their

first exit of z(D+), and z∗R∗μ!H its pullback to Pτ (�0). Then

dμ�τ (γ
τ ) =

(
H�τ (γτ ,Y )

H�(X,Y )

)h

exp(−c(ν�(γ
τ ;�\D̃+)

−νH(z(γ
τ );H\z(D̃+))))d

(
z∗R∗μ!H

)
(γ τ )

where the Poisson kernels are evaluated w.r.t. z, zτ . If z extends to a conformal equiv-
alence D → H, this is by construction of μ�τ ; otherwise it follows from change of
coordinate rules for chordal SLE.

It follows that under the standard chordal SLE measure,

Z0(�0, X,Y ) = E

(
exp(c(ν�(z

−1(γ τ );�\D̃+)−νH(γ
τ ;H\z(D̃+))))Z0(�τ , γτ ,Y )

)

(5.28)

Since this is valid for all surfaces �, the same argument may be applied between fixed
(in the half-plane parameterization) times to see that:

t �→ exp(c(ν�(z
−1(γ t∧τ );�\D̃+)− νH(γ

t∧τ ;H\z(D̃+))))Z0(�t∧τ , γt∧τ ,Y )

is a (bounded) martingale under the standard chordal SLE measure (provided that Z0 is
locally bounded). Remark that by martingale representation, this is a.s. continuous in t .

5.4.2. Hypoellipticity. We wish to use this representation (5.28) to show that Z0 is
smooth on Teichmüller space. A slight issue is that if γ is the trace of a standard SLE
in H, t �→ (�\z−1(γ t ), z−1(γt ), Y ) is not a diffusion in Teichmüller space. In order to
invoke standard hypoellipticity regularity conditions (e.g. [70]), we need to change the
reference measure to a mutually absolutely continuous diffusion (which is itself a priori
non canonical and used only as a technical intermediate step).

Recall [see (4.18)] that we have defined a differential operator

�2,1 : C∞(U, |T−1�|⊗h ⊗ L⊗c)→ C∞(U, |T−1�|⊗(h+2) ⊗ L⊗c)

and we denote by s = sc
ζ the reference section of L⊗c.
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Lemma 5. Let ωs be a smooth positive local section of |T−1�|⊗h ⊗ L⊗c on U ⊂ T .
Assume that �2,1(ωs) = 0 on U. Then

1. Under the chordal SLE measure,

t �→ Mt = exp(c(ν�(z
−1(γ t∧τ̃ );�\D̃+)− νH(γ

t∧τ̃ ;H\z(D̃+))))ω(�t∧τ̃ , γt∧τ̃ ,Y )

is a martingale, where τ̃ = τ ∧ inf{t ≥ 0 : �t /∈ U ′}, U ′ ⊂⊂ U.
2. The martingale transform of the chordal SLE by M is (up to exit of U ′ and up to time

change) a diffusion with generator

G = κ

2
(ωs)−1�2,1(ωs)

3. G is hypoelliptic.

As explained earlier, at time t the tensor ω is evaluated w.r.t. the local coordinate zt .

Proof. 1. Trivially M is bounded (since we stop at τ̃ ). From the Markov property of
chordal SLE and the restriction property of the loop measures, it is enough to check
the condition at a fixed time, i.e. E(Mt ) = 1. The null vector equation �2,1(ωs) = 0
gives (�−2 + cS − 4

κ
�2−1)ω = 0. In order to translate this in terms of the reference

chart SLE, it appears convenient to use a discrete time approximation.
Let δ > 0 be a small time step. We consider a piecewise continuous trace sampled
as follows: move the marked point from X to X ±√κδ with equal probability; grow
a vertical slit of size

√
2δ at X ; repeat. The horizontal and vertical displacements

are defined in terms of the local coordinates zt . These displacements are readily
identified with a unit time flow along±√κδ�−1,−2δ�−2 respectively (recall the end
of Sect. 2.4.4).
It is then elementary to verify that, on the one hand, E

δ(Mt ) = 1 + o(1) (as δ↘0, by
Taylor expansion); and on the other hand γ δ converges weakly to chordal SLE (w.r.t.
the Carathéodory topology on chains). This establishes the first point.

2. For the second point, one may consider a test function f (supported on U ′, say). Here
we need to be specific about multiplicative constants. We write�2,1 = L2−1− 4

κ
L−2;

choose a 1-jet z̃ of local coordinate at X for each (�, X); and set ρs = dz̃(�s ,Xs )
dzs

(γs).
Extending the previous argument, one sees that

Nt = Mt

(
f (�t )−

∫ t

0
ρ−2

s G f (�s)ds

)

is a martingale (omitting the stopping at τ̃ for simplicity of notation). This gives 2.
by the martingale problem characterization of diffusions (see e.g. [71]).

3. Finally we need to check the Hörmander bracket conditions for G (see e.g. [70]). We
have chosen a section σ of T1k → T (k large enough). This allows to define �σ−1,
�σ−2 as vector fields on T . The generator G is of the form:

G = κ

2
(�σ−1)

2 − 2�σ−2 + b�σ−1

We have to show that the Hörmander condition:

�σ−1, �
σ−2, [�σ−1, �

σ−2], [�σ−1, [�σ−1, �
σ−2]], . . .
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span the tangent vector space to T at (�0, X0). As usual we represent tangent vectors
to T as Laurent vector fields in a semiannulus around the marked point. By definition
�σ−1 is represented by− ∂

∂z
, and �σ−2 is represented by−z−1 ∂

∂z
(z is the local coordinate

given by σ ).
Let us choose smooth local coordinates for T1k as follows: u1, . . . , ud are coordinates
on the base T and a0, . . . , ak are coordinates on the fiber (e.g. the coefficients of the
marked k-jet at X w.r.t. to a reference local coordinate). For f ∈ C∞(Uk) (i.e. f
depends smoothly on the marked surface and a k-jet at X ), we have defined

(�m f )(u1, . . . , ud , a0, . . . , ak′)=
d∑

i=1

gi (u1, . . . , ak′)∂ui f +
k∑

j=0

h j (u1, . . . , ak′)∂a j f

(k′ = k + m−) so that the Witt commutation relations [�m, �n] = (m − n)�m+n are
satisfied.
For f ∈ C∞(U ), we have by construction

(�σm f )(u1, . . . , ud) =
d∑

i=1

gi (u1, . . . , ud , σ0(u), . . . , σk′(u))∂ui f

where the σi ’s are the coordinates of the chosen section of T1k → T and u =
(u1, . . . , ud). From this expression of �σm in coordinates, it is clear that for f ∈
C∞(U )

[�σm, �σn ] f = (m − n)�σm+n f mod 〈∂a0�m f, ∂a0�n f, . . . , ∂ak′ �m f, . . . , ∂ak′ �n f 〉
(5.29)

(with a slight abuse of notation, as the RHS is evaluated at the jet σ(u)). By this we
mean that there are smooth functions v0, . . . , wk′ (independent of f ) s.t.

[�σm, �σn ] f = (m − n)�σm+n f + v0∂a0�m f + · · · + wk′∂ak′ �n f

If m ∈ Z and n ≥ 0,

(m − n)�m+n f = [�m, �n] f = −�n�m f ∈ 〈∂a0�m f, . . . , ∂an�m f 〉
We observe that vertical vector fields which preserve j-jets are spanned (over C∞(U ))
by ∂a j , . . . , ∂ak or alternatively by �σj , . . . , �

σ
k . It follows that

〈∂a0�m f, . . . , ∂an�m f 〉 = 〈�σm f, . . . , �σm+n f 〉
Then from (5.29), if m ≤ n ≤ 0,

[�σm, �σn ] = (m − n)�σm+n mod 〈�σm, �σm+1, . . . , �
σ−1〉

In particular, the span of

�σ−1, �
σ−2, [�σ−1, �

σ−2], [�σ−1, [�σ−1, �
σ−2]], . . .

is the span of

�σ−1, �
σ−2, �

σ−3, �
σ−4, . . .
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Then by Virasoro uniformization we have that for n large enough �σ−1, �
σ−2, . . . , �

σ−n
spans the tangent space T�T [since the map (2.9) is surjective].
Roughly speaking, we used the section σ to replace the infinite-dimensional vector
fields �n’s by the finite-dimensional �σn ’s (amenable to Hörmander’s condition); by
doing so this we lose the Witt commutation relations [�m, �n] = (m − n)�m+n but
retain them “up to lower order error”, which is enough to conclude. ��

5.4.3. Smoothness. Let G be as in the lemma. From [11] it follows that each point of T
has a basis of neighborhoods in which the Dirichlet problem with continuous boundary
data is uniquely solvable for the operator G+V , V a smooth bounded potential; moreover
the solutions are smooth and satisfy a Harnack inequality. (Note that �σ−1 is nowhere
vanishing provided sufficiently many spectator points are marked). This still holds if ωs
is simply a smooth positive section (without assuming the null vector equation).

Let us start from an arbitrary smooth positive section ω0s. Then G0 = κ
2 (ω0s)−1

�2,1(ω0s) has a zeroth order term V . If U is a small enough such neighborhood (de-
pending on V ), we can solve the Dirichlet problem with arbitrary continuous positive
boundary data; this gives f ∈ C∞(U ) a smooth positive section so that�2,1( f ω0s) = 0
there. We consider the diffusion and generator G associated to ( f ω0s). Now we also have
unique smooth solutions and a Harnack inequality for solutions of the Dirichlet problem
for G in U with continuous boundary data (for well-chosen neighborhoods forming a
basis). Let P denotes the Poisson operator for G on U , i.e. if g is continuous on ∂U , Pg
is continuous on Ū , (Pg)∂U = g and G(Pg) = 0 in U ; in particular Pg is smooth in U .

Let U be such a small enough neighborhood and τ be the first exit time of U . By a
barrier function argument, one sees that τ is a.s. finite with exponential tails. As is well-
known (e.g. [71]), it then follows from Dynkin’s formula and optional stopping that we
have a probabilistic representation for P: (Pg)(�) = E

�
G (g(�τ )), where the expectation

refers to the diffusion measure with generator G started from the state� = (�, X, . . . , ).
Comparing (5.28) with Lemma 5, we see that

t �→ Z0

f ω0
(�t , γt ,Y )

is a martingale (at least up to exit of U ) and consequently

Z0

f ω0
(�) = E

�
G

( Z0

f ω0
(�τ )

)

(for brevity � = (�, X,Y, . . .)).
We know a priori that Z0 is lower semicontinuous (Sect. 5.3). We may thus represent

it as the monotone increasing limit of continuous functions Zn (e.g. by taking Zn to be
the largest n-Lipschitz minorant of Z). Then by monotone limit we have

Z0

f ω0
(�) = lim

n
E
�
G

( Zn

f ω0
(�τ )

)
= lim

n
P(Zn/ f ω0s)(�)

for � ∈ U . From the Harnack inequality [11], it follows that Z0 is, say, Lipschitz
(since P(Zn/ f ω0) is uniformly Lipschitz on compact subsets of U ). Consequently,
Z0/ f ω0 = P((Z0/ f ω0)|∂U ) and then Z0 is smooth and satisfies:

G Z0

f ω0
= 0

on T in the classical sense, i.e. �2,1(Z0s) = 0.
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We can now state the main result on the partition function of SLE measures.

Theorem 6. Let (�, X,Y, . . .) be a bordered Riemann surface with at least two marked
points on the boundary and γ0 a simple path from X to Y . Let μ�0 be the SLE measure
on paths homotopic to γ0 on � and Z0(�) = ‖μ�0 ‖ its partition function; and s be
the reference section of L⊗c. If Z0 is locally bounded, then Z0s is a smooth section of
|T−1�|⊗h ⊗ L⊗c and satisfies the null vector equation

�2,1(Z0s) = 0

5.4.4. Local martingales. Let Z be any smooth positive (local) solution of the null-
vector equation �2,1(Zs) = 0 (examples of such solutions are given in Theorem 6). By
Lemma 5, there is a hypoelliptic diffusion (�t )t≥0 (defined at least locally on Teichmüller
space) with generator

G f = κ

2
(Zs)−1�2,1( f Zs)

Let us fix such a Z , defined in some open set in Teichmüller space. By Dynkin’s formula,
if f is s.t. G f = 0, then t �→ f (�t ) is a local martingale. The reader will have noticed
that G f depends on a 1-jet at the seed (via a multiplicative constant); correspondingly,
(�t ) is defined only up to time change, unless one specifies a choice of section of
T11 → T as in Lemma 5 (such a choice is in general non-canonical). The class of local
martingales is invariant under such time change.

By construction f ≡ 1 gives a solution of G f = 0. We now observe that families of
local martingales may be generated using a commuting Virasoro representation, as in
Sect. 4.3.

Specifically, let X denote the position of the SLE seed and Y be another marked point
(either the target or just a spectator point). Then we denote (L X

n )n∈Z (resp. (LY
n )n∈Z)

the images of the Virasoro generators operating by deformation at X (resp. Y ). Then
�X

2,1(Zs) = 0 by assumption and [L X
n , LY

m] = 0 for all m, n ∈ Z. Let LY be a word in

the LY
m’s (with m ≤ 0) and f s.t. G f = 0. Then trivially

�X
2,1(L

Y ( f Zs)) = LY (�X
2,1( f Zs)) = 0

i.e. LY f
def= (Zs)−1(LY ( f Zs)) also satisfies G(LY f ) = 0. Remark that f depends

on a k-jet at Y , where k is the degree of LY ; however, since the evolution is at X , one
can simply choose a jet at t = 0 and keep it fixed as t increases. Note also that even
starting from the trivial solution f ≡ 1, one thus generates a hierarchy of non-trivial
local martingales LY 1 indexed by elements L in U(Vir−).

This generalizes the Virasoro action on SLE local martingales introduced and ana-
lyzed in [3–5,52] (recall the discussion in Sect. 4.4.2).

5.5. Multiple SLEs. The same method may be implemented in order to construct mea-
sures on n-tuples of paths connecting pairs of boundary points (multiples SLEs) or
a boundary point with a bulk point (radial case). Let us start with multiple SLEs; the
simply-connected case and some elements of the multiply-connected case were analyzed
in [24].

We consider again a bordered surface (�, X1, . . . , Xn,Y1, . . . ,Yn) with n pairs
(Xi ,Yi )1≤i≤n of marked boundary points (one may also keep track of additional marked
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points on the boundary or in the bulk). We want to construct an SLE measure on n-tuples
of simple paths connecting these pairs. The state space is thus

∏
1≤i≤n Ps(�, Xi ,Yi )

(or the subset consisting of disjoint paths). Let us fix (γ 0
1 , . . . , γ

0
n ) a reference n-tuple

of such disjoint paths; Ps
0(�, X1, . . . ,Yn) consists of disjoint simple paths in � jointly

homotopic to (γ 0
1 , . . . , γ

0
n ).

The path space Ps
0(�, X1, . . . ,Yn) is covered by relatively open sets of the form:

∏

1≤i≤n

P(Di , Xi ,Yi )

where Di is a simply-connected domain containing semidisk neighborhoods of Xi and
Yi and no other marked point in its closure; we also require that the Di ’s are pairwise
disjoint; and we set D = �i Di . In a straightforward extension of the chordal case, in
order to define μ0 a measure on Ps

0(�), it is enough to exhibit densities φ�D s.t.

(
∏

i

1γi⊂Di )dμ0(γ1, . . . , γn) = φ�D(γ1, . . . , γn)
∏

i

dμ!Di
(γi )

satisfying the consistency condition [compare with (5.24)]

φ�D

φ�D′
(γ ) =

∏

i

dμ!D′
i

dμ!Di

(γi ) (5.30)

where D′ = �i D′
i ⊂ D and γ = (γ1, . . . , γn) ∈ ∏

i Ps(D′
i ).

A “natural” solution is given by the specification:

φ�D(γ ) = (
∏

1≤i≤n

HDi (Xi ,Yi )
h) exp(− c

2
ν�(∪γi ;�\D))

[compare with (5.26)].
We denote by μ(�,X1,...,Yn) the resulting measure, viz. the one that restricts to

φD
∏

i μ
!
Di

on Ps
0(�i Di ). Then μ is a positive measure on Ps

0(�); let us denote Z0 =
Z0(�, X1, . . . ,Yn) its total mass (which has a h-tensor dependence in local coordinates
at X1, . . . ,Yn). If c ≤ 0, we see immediately that Z0 is locally bounded.

Alternatively, one may also want to use μ(�,X1,Y1) ⊗ · · · ⊗μ(�,Xn ,Yn) as a reference
measure. Observe that

∑

i

ν�(γi , �\Di )− ν�(∪γi ;�\D) =
∫
(1γ1∩δ �=∅ + · · · + 1γn∩δ �=∅− 1)dν�(δ)

=
n∑

j=2

ν�(γ j ; ∪i< jγi )

is independent of the choice of Di ’s (and the last expression is invariant under relabelling
of the paths). Then

μ(�,X1,...,Yn) = 1Ps
0

exp

⎛

⎝ c

2

n∑

j=2

ν�(γ j ; ∪i< jγi )

⎞

⎠
∏

i

μ(�,Xi ,Yi )
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which in the simply-connected case appears in [23,24]. We can disintegrate w.r.t.
(γ1, . . . , γn−1):

dμ(�,X1,...,Yn)(γ1, . . . , γn)

= 1Ps
0

(
e

c
2

∑n−1
j=2 ν�(γ j ;∪i< jγi )

∏

i<n

dμ(�,Xi ,Yi )(γi )

)(
e

c
2 ν�(γ j ;∪i<nγn)dμ(�,Xn ,Yn)(γn)

)

= 1Ps
0

(
e

c
2

∑n−1
j=2 ν�(γ j ;∪i< jγi )

∏

i<n

dμ(�,Xi ,Yi )(γi )

)
dμ(�\∪i<nγi ,Xn ,Yn)(γn)

where the second line is by the restriction property; hence the disintegration of the
measure on n-paths w.r.t. n − 1 of them is proportional to a canonical measure on the
last path on the random surface�\∪i<n γi . By integrating separately over γn , we obtain
in particular

Z0(�, X1, . . . ,Yn)

=
∫

1Ps
0

(
e

c
2

∑n−1
j=2 ν�(γ j ;∪i< jγi )

)
Z0(�\ ∪i<n γi , Xn,Yn)

∏

i<n

dμ(�,Xi ,Yi )(γi )

In turn we know how to disintegrate dμ(�\∪i<nγi ,Xn ,Yn)(γn) w.r.t. γ τn , the path γn up
to first exit of a semidisk neighborhood of Xn [see (5.27)]. Let z be a local coordinate
at Xn ; we find again that

t �→ exp(c(ν�(z
−1(γ t∧τ );�\D̃+)− νH(γ

t∧τ ;H\z(D̃+))))Z0(�t∧τ , X1, . . . , Xn−1, γt∧τ , Y1, . . . , Yn)

is a bounded martingale under the standard chordal SLE measure in the upper half-plane
(we work under the assumption that Z0 is locally bounded). As in the n = 1 case, this
implies that

�2,1(Z0(�, X1, . . . , Xn,Y1, . . . ,Yn)s) = 0

where �2,1 is the canonical differential operator corresponding to a perturbation at Xn
(and as before s is the reference section of L⊗c).
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A. Analytic Surgery

In this appendix, we discuss the analytic surgery results of Forman [31] and Burghelea–
Friedlander–Kappeler [12]. These pertain to the effect of cutting and pasting manifolds
on the determinants of the Laplacians (or elliptic operators), and can be understood in
terms of Dirichlet space decompositions. We give a new proof based on probabilistic
arguments, which extends arguments presented in [26]. This will be needed to analyze
the variation of determinants under deformations prescribed by Witt algebra elements
(2.11).

Let (M, g) be a Riemannian manifold, possibly with boundary (and boundary condi-
tions). Consider a codimension one manifold (a simple loop in dimension 2) δ in M , that
splits M in two manifolds Ml , Mr with induced metrics. The Neumann jump operator
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corresponding to this situation is defined as follows: given φ ∈ C∞(δ), φl (resp. φr ) is
the solution of the Dirichlet problem (φl)|δ = φ on Ml (resp. Mr ). Then:

Nφ = ∂nlφl + ∂nrφr (1.31)

where ∂nl , ∂nr are outward pointing normal derivatives in Ml , Mr . The jump operator
is a positive, first-order pseudodifferential operator on C∞(δ). In the case where the
Laplacian on M has a non-trivial kernel, so has N , and these kernels are canonically
identified.

It turns out that the ζ -function associated with N has a meromorphic continuation to
a neighborhood of 0, which defines detζ (N ). We can now phrase:

Theorem 7. The following relation holds:

detζ (−�) = Cδdetζ (−�)ldetζ (−�)r detζ (N )

where the constant Cδ depends only on the metric in a neighborhood of δ in M (if �has
a trivial kernel).

Proof. The idea is that log(detζ (−�)/detζ (−�)ldetζ (−�)r ) and log(detζ (N )) corre-
spond to two ways of counting loops on M that cross δ: by duration and by local time
at δ.

Consider the loop measure ν relative to the Laplacian on M . It restricts to the loop
measures on Ml , Mr . Expressing ζ -functions in terms of ν [see (3.13)],

�(s)(ζ − ζl − ζr )(s)=
∫
(1−1γ⊂Ml − 1γ⊂Mr )T

s(γ )dν(γ )=
∫

1γ∩δ �=∅T s(γ )dν(γ ).

Let us identify smoothly a neighborhood of δ in M with δ × (−ε, ε). A Brownian path
γt in the neighborhood of δ projects on (−ε, ε) as a semimartingale, that has a local time
at 0 denoted by �t . One can modify the identification δ × (−ε, ε) so that the quadratic
variation of this process is that of linear Brownian motion running at speed 2 (at ε = 0).
Let u �→ τu be the right continuous inverse of t �→ �t . Clearly, u �→ γu = γτu is a
càdlàg Markov process on δ. Let us identify the generator of this process. If φ, φl , φr
are as above (1.31), and φlr is the function on M that restricts to φl , φr , then, by the
Itô–Tanaka formula:

t → φlr (γt ) +
∫ t

0
(Nφ)(γt )d�t

is a local martingale. After a time change, it means that the generator of (γu) is (−N )
(Dynkin’s formula).

Hence the ζ -function of N : ζN (r) = 1
�(r)

∫∞
0 Tr(e−uN )ur−1du can also be under-

stood in terms of loops. More precisely:

ζN (r) = 1

�(r)

∫
�(γ )r 1γ∩δ �=∅dν(γ )

where �(γ ) is the local time at δ of the loop γ . This corresponds to rerooting loops that
cross δ uniformly in local time.
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Now we can split loops that cross δ into those that stay in a neighborhood of δ, say
δε � δ× (−ε, ε), and the macroscopic loops that exit δε. The mass of such macroscopic
loops in ν is finite (using here the assumption that �has a trivial kernel). Hence:

∫
�r 1γ∩δ �=∅,γ�δεdν(γ )

and
∫

T s1γ∩δ �=∅,γ�δεdν(γ )

are convergent at r = s = 0, where they take the same value: ν{γ : γ ∩δ �= ∅, γ � δε}.
The loops contained in δε contribute to the local constant Cδ . This concludes the proof.

��
This can be easily modified if � (and hence N ) has a nontrivial kernel, by using

det′(−�), det′(N ) etc.…
Let us illustrate this in the simple situation of the real line splitting C in two half-

planes H, −H (this is not compact, but gives the correct local behaviour). The real
and imaginary part of the Brownian motion X in C are independent linear Brownian
motions. Taking the trace of the complex Brownian motion on the real line, one gets
the real process Yu = �Xτu where τ is the right-continuous inverse of the local time
at 0 of �X . Hence Y is obtained as the subordination of a linear Brownian motion by
an independent 1/2-stable subordinator, so that Y is a symmetric 1-stable Lévy process,
i.e. a Cauchy process. The infinitesimal generator of Y is known to be the first-order
pseudo-differential operator −(−�)1/2, where � is the Laplacian on R. The transition
densities of Y are:

qt (x, y)dy = π−1tdy

t2 + (x − y)2

giving a nice short-time expansion on the diagonal, which replaces (3.12).

B. A Variation Formula

In this appendix, we evaluate (Lnsζ )/sζ , which is crucial to the construction of Virasoro
representations (with general c, Theorem 4). Notation is as in the beginning of Sect. 4.1.

This is a rather concrete problem: we have to evaluate the variation of an explicit
functional of the metric (the ζ -regularized determinant) under an explicit deformation of
the metric (encoded by �n); since this deforms the complex structure and not the actual
metric, we compensate by the counterterm sζ (Ht , g̃t ). The argument proceeds in a few
steps.

Surgery. First we observe that sζ does not depend on the choice of local coordinates, or
for that matter the position of marked points. Consequently Lnsζ = 0 if n ≥ −1. For
n ≤ −2, we need to evaluate

lim
t→0

sζ (�t , gt )sζ (H0, g̃0)

sζ (�0, g0)sζ (Ht , g̃t )

Recall that this ratio depends only on the complex structures and not the choices of
metrics. We use analytic surgery to work on a fixed contour. With notations as above, let
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γ + = z−1(C(0, r)), so that�t ,Ht are identified insideγ + and�t , Ht are constant outside
of γ +. Let Nt , Ñt be the Neumann jump operators along γ + on �t , Ht respectively. By
applying analytic surgery (Theorem 7) to all four Laplacian determinants and noticing
pairwise cancellations, we have:

(
sζ (�t , gt )sζ (H0, g̃0)

sζ (�0, g0)sζ (Ht , g̃t )

)−2

= detζ (Nt ) detζ (Ñ0)

detζ (N0) detζ (Ñt )
(2.32)

The Neumann operators are pseudodifferential operators built from Poisson kernels; we
then study the variation of these kernels.

Variation of the Dirichlet-to-Neumann operator. We start from a semidisk neighborhood
of X in �0, to which are associate a Poisson and a Dirichlet-to-Neumann operator on
the semicircle. Then we deform the complex structure inside the disk (according to �n);
the goal here is to quantify the resulting variation of these operators.

Let us identify a neighborhood of X in �0 with a semidisk via the local coordinate
z. For notational simplicity we assume r = 1. The Poisson operator extending real
functions on γ + to harmonic functions on D+(0, 1) vanishing on (−1, 1) is:

(P f )(w) =
∮

γ

f (z)�
(

z + w

z − w

)
dz

2iπ z
(2.33)

where f is extended to the lower unit semicircle by f (z̄) = − f (z). We can represent
the deformation by a variation of the complex structure of the unit disk (this is the same
deformation for �t and Ht ). Let us choose φt mapping conformally the deformed disk
to the standard unit disk so that φt (z̄) = φt (z) (this leaves one degree of freedom).
Notice that by Schwarz reflection, φt extends analytically across the unit circle. Then
by a change of variable:

(Pt f )(w) =
∮

γ

f (φ−1
t (z))�

(
z + φt (w)

z − φt (w)

)
dz

2iπ z

=
∮

γ

f (z)�
(
φt (z) + φt (w)

φt (z)− φt (w)

)
dφt (z)

2iπφt (z)
(2.34)

where Pt denotes the Poisson operator (forw close toγ ) relative to the deformed complex
structure.

Now by definition of the deformation one can find a functionψt which is smooth in t
and analytic from the deformed disk to a neighborhood of the unit disk, with expansion:
ψt (z) = z + t zn+1 + o(t). By the argument principle, it is injective on the disk for small
t . Then φt = ht ◦ ψt for some analytic function ht depending smoothly on t . Since φt
maps the unit circle to itself, we get ht (z) = z − t z−n+1 + o(t) (recall that n ≤ −2) and

φt (z) = z(1 + t (zn − z−n)) + o(t)

near the unit circle. Together with (2.34), this gives an expression for the derivative
d
dt |t=0 Pt :

d

dt |t=0
(Pt f )(w) =

∮
f (z)�(Q(z, w)) dz

2iπ z
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where

Q(z, w) = z + w

z − w

(
zn+1 − z1−n + wn+1 − w1−n

z + w
− zn+1 − z1−n − wn+1 + w1−n

z − w
+ n(zn + z−n)

)

= 1

z − w

(
zn+1 − z1−n + wn+1 − w1−n − (z + w)

(
(zn + · · · + wn)+

z2−n + · · · + w2−n

zw

)

+n(zn + z−n)(z + w)
)

We check that the singularity at z = w is removable and that Q(z, w)∈C[z, z−1, w,w−1];
consequently, Pt : L2(γ +)→ L2

loc(D
+\{0}) and ∂n Pt : L2(γ +)→ L2(γ +) are smooth

kernel operators (∂n is the inward pointing normal derivative). We have for w ∈ γ +:

(∂n Pt f )(w) =
∮

γ

f (z)�
(
−wφ′t (w)

2φt (z)

(φt (z)− φt (w))2

)
dφt (z)

2iπφt (z)

=
∮

γ

f (z)�
(
−zw

φ′t (z)φ′t (w)
(φt (z)− φt (w))2

)
dz

iπ z

since φ′(z)z/φt (z) is real on the circle; ∂n Pt is symmetric w.r.t. the Lebesgue measure
on the circle. Then the variation of the Dirichlet-to-Neumann operator ∂n Pt is given by

d

dt |t=0
(∂n Pt f )(w) =

∮
f (z)� (R(z, w)) dz

iπ z

where

R(z, w) = −zw

(z − w)2

(
(n + 1)(zn + wn) + (n − 1)(z−n + w−n)− 2

zn+1 − wn+1

z − w
+ 2

z1−n − w1−n

z − w

)

We have (recall that n ≤ −2)

2
z1−n − w1−n

z − w
− (1− n)(z−n + w−n)

= (z−n + w−n) + (z−n−1w + w−n−1z) + · · · + (w−n + z−n)− (1− n)(z−n + w−n)

= (w − z)(z−n−1 − w−n−1) + (w2 − z2)(z−n−2 − w−n−2)

+ · · · + (w−n−1 − z−n−1)(z − w)

and we check that if |z| = |w| = 1,

−zw

(z − w)2

(
(n + 1)(zn + wn)− 2

zn+1 − wn+1

z − w

)

= −zw

(z − w)2

(
(n − 1)(z−n + w−n) + 2

z1−n − w1−n

z − w

)
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Finally we obtain for z, w ∈ γ :

�(R(z, w)) = �
(

2zw

( −n∑

k=0

zk − wk

z − w

z−n−k − w−n−k

z − w

))

= �
⎛

⎝2zw
∑

i+ j+k+l=−n−2

ziw j zkwl

⎞

⎠

= �
⎛

⎝2zw
∑

i+ j=−n−2

(i + 1)( j + 1)ziw j

⎞

⎠

viz. an explicit expression for the kernel of d
dt |t=0∂n Pt .

A trace evaluation. We have studied K = d
dt |t=0∂n Pt : L2(γ +)→ L2(γ +), a trace class

integral operator with smooth kernel (also denoted by K ) given by

K (w, z) = 1

π
�(R(z, w) + R(z̄, w))

w.r.t. length on γ + (here we need to write the kernel on the semicircle γ + and not on
the circle γ ). Let T : L2(γ +)→ L2(γ +) be another integral operator with bicontinuous
kernel also denoted by T . We wish to evaluate

Tr(T K ) =
∫

γ +
(T K )(z, z)

dz

i z
=

∫

γ +

∫

γ +
T (z, w)K (w, z)

dz

i z

dw

iw

Remark that for m ≥ 0, k ∈ Z, by differentiating the Poisson kernel (2.33) we see:

∂m+1
x (P f )(0) = (m + 1)!

∮
f (z)�(z−m−1)

dz

iπ z
= 0

∂m
x ∂y(P f )(0) = −(m + 1)!

∮
f (z)�(z−m−1)

dz

iπ z

wherew = x+iy (since ∂ i
x∂

j+2
y P f = −∂ i+2

x ∂
j
y P f , this evaluates all partial derivatives of

P f at 0). Consequently, if (z, w) �→ f (z, w) is biharmonic on D(0, 1)2 (with f (z̄, w) =
f (z, w̄) = − f (z, w)), i, j ≥ 0, we have:

∮ ∮
f (z, w)�(zi+1w j+1)

dw

iπw

dz

iπ z
=

∮ ∮
f (z, w)�(zi+1)�(w j+1)

dw

iπw

dz

iπ z

−
∮ ∮

f (z, w)�(zi+1)�(w j+1)
dw

iπw

dz

iπ z

= − 1

(i + 1)!( j + 1)!∂
i
x1
∂y1∂

j
x1∂y2 f (0, 0)

where z = x1 + iy2, w = x2 + iy2. If h(u) = g(u, u), (u, v) �→ g(u, v) regular enough,
we have trivially:

1

k!h
(k)(u) =

∑

i+ j=k

∂ i
u∂

j
v g

i ! j ! (u, u)
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and consequently if we set h(x) = ∂y1∂y2 f (x, x), we obtain:

∮ ∮
f (z, w)�(R(z, w)) dw

iπw

dz

iπ z
= − 2

(−n − 2)!∂
−n−2
x h(0)

In conclusion, if T has biharmonic extension f to D2 with f (z̄, w) = f (z, w̄) =
− f (z, w), we have

Tr(T K ) = − π

(−n − 2)!∂
−n−2
x h(0) (2.35)

Notice the factor 2 coming from
∫
γ +

∮ = 1
2

∮ ∮
, given the symmetries.

Conclusion. Now we are in position to evaluate the derivative of (2.32). We have K =
d
dt Nt = d

dt ∂n Pt (as the outside of the disk is unchanged) and the RHS is an integral
operator with smooth kernel. More generally, Pt − P0 has kernel (w.r.t. to length on the
unit circle):

(z, w) �→ 1

π
�

(
φt (z) + φt (w)

φt (z)− φt (w)

zφ′t (z)
φt (z)

− z + w

z − w

)

which is smooth as the singularity at z = w is removable. Hence Nt − N0 has a smooth
kernel and N−1

t (z, w) = −G�t (z, w) for z, w on the unit semicircle. Consequently
N−1

0 (Nt − N0) is trace class on L2(γ +) and

detζ (Nt ) = detζ (N0)detF (Id +N−1
0 (Nt − N0))

where detF is a Fredholm determinant. It follows that

d

dt |t=0
log detζ (Nt ) = Tr

(
N−1

0
d

dt |t=0
Nt

)

and the same statement holds for Ñ (with the natural definition for the trace of an operator
with continuous kernel). This can be seen directly from the definition of detζ and the
Duhamel expansion of the semigroup generated by Nt for small t . Consequently,

d

dt |t=0

detζ (Nt ) detζ (Ñ0)

detζ (N0) detζ (Ñt )
= Tr

(
(N−1

0 − Ñ−1
0 )

d

dt |t=0
Nt

)

Set f (z, w) = (N−1
0 − Ñ−1

0 )(z, w) = −G�0(z, w) + GH0(z, w), which extends bihar-
monically to D+(0, 1)2, and T : L2(γ +)→ L2(γ +) the corresponding integral operator.
Then by surgery (Theorem 7)

Lnsζ
sζ

= −1

2
Tr(T K )

Now we can use the evaluation (2.35). For z, w ∈ (−1, 1), we have

∂nz∂nw f (z, w) = −H�0(z, w) + HH0(z, w)
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where H is the Poisson excursion kernel (2.4) and π∂nz∂nw f (z, z) = − 1
6 S�0(z) where

S is the Schwarzian connection (2.5). We obtain (n ≤ −2):

Lnsζ
sζ

= 1

(−n − 2)!∂
−n−2
x

S�0(x)

12

Remark that S�(X) is defined in terms of the local coordinate at X ; as a Schwarzian
connection, it depends on this local coordinate through its 3-jet. From the expression of
the Bergman connection in terms of theta functions, it is clear that (�, X, z) �→ S�(X),
where z is a 3-jet of local coordinate at X , is smooth on T3.
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