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Abstract: We describe a new correspondence between four-dimensional conformal
field theories with extended supersymmetry and two-dimensional chiral algebras. The
meromorphic correlators of the chiral algebra compute correlators in a protected sector
of the four-dimensional theory. Infinite chiral symmetry has far-reaching consequences
for the spectral data, correlation functions, and central charges of any four-dimensional
theory with N = 2 superconformal symmetry.
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1. Introduction

It has long been recognized that supersymmetric quantum field theories enjoy many spe-
cial properties that make them particularly useful testing grounds for more general ideas
about quantum field theory. This is largely a consequence of the fact that many observ-
ables in such theories are “protected”, in the sense of being determined by a semiclassical
calculation with a finite number of corrections taken into account, or alternatively by
some related “finite-dimensional” problem that admits the type of closed-form solution
that is uncharacteristic of interacting quantum field theories. In most circumstances, these
techniques have a semiclassical flavor to them. For example, in cases where supersym-
metric partition functions can be computed by localization, the calculation is generally
performed starting from a weakly coupled Lagrangian description of the theory.

A notable omission from the currently available techniques is a way to directly
access the interacting superconformal phases of theories that do not admit a Lagrangian
formulation. By now, there exists a veritable menagerie of models in various dimensions
that exhibit conformal phases with varying amounts of supersymmetry, but only in the
nicest cases do such models belong to families that include free theories as special points,
allowing for properties of the interacting theory to be studied semiclassically. Even for
those Lagrangian models, the standard supersymmetric toolkit does not seem to exploit
some of the most powerful structures of conformal field theory, such as the existence of a
state/operator map and of a well-controlled and convergent operator product expansion.

Meanwhile, recent years have witnessed a surprising resurgence of progress centering
around precisely these aspects of conformal field theory in the form of the conformal
bootstrap [1,2]. In large part, this progress has been inspired by the development of
numerical techniques for extracting constraints on the defining data of a CFT using
unitarity and crossing symmetry [3,4]. Generally speaking, these techniques are equally
applicable to theories with and without supersymmetry, and despite promising early
results [5–8], it has not been entirely clear the extent to which supersymmetry improves
the situation. Nevertheless, the possibility that supersymmetry may act as a crucible in
which exact results can be forged even for strongly interacting CFTs is irresistible, and
we are led to ask the question:

Do the conformal bootstrap equations in dimension d > 2 admit a solvable
truncation in the case of superconformal field theories?

Having formulated the question, it is worth pausing to consider in what sense the answer
could be “yes”. The most natural possibilities correspond to known situations in which
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bootstrap-type equations are rendered solvable. There are two primary scenarios in which
the constraints of crossing symmetry are nontrivial, yet solvable:

(I) Meromorphic (and rational) conformal field theories in two dimensions.
(II) Topological quantum field theories.

The subject of this paper is the realization of the first option in the context of N � 2
superconformal field theories in four dimensions. The same option is in fact viable for
(2, 0) superconformal theories in six dimensions. That subject is elaborated upon in a
separate article [9]. Although we will not discuss the subject at any length in the present
work, the second option can also be realized using similar techniques to those discussed
herein.

The primary hint that such an embedding should be possible was already observed
in [7,10], building upon the work of [11–16]. In a remarkable series of papers [10–
16], the constraints of superconformal symmetry on four-point functions of half-BPS
operators in N = 2 and N = 4 superconformal field theories were studied in detail. This
analysis revealed that the superconformal Ward identities obeyed by these correlators
can be conveniently solved in terms of a set of arbitrary real-analytic functions of the
two conformal cross ratios (z, z̄), along with a set of meromorphic functions of z alone.
In a decomposition of the four-point function as an infinite sum of conformal blocks,
these meromorphic functions capture the contribution to the double operator product
expansion of intermediate “protected” operators belonging to shortened representations.
The real surprise arises when these results are combined with the constraints of crossing
symmetry. One then finds [7,10] that the meromorphic functions obey a decoupled set
of crossing equations, whose general solution can be parametrized in terms of a finite
number of coefficients. For example, in the important case of the four-point function
of stress-tensor multiplets in an N = 4 theory, there is a one-parameter family of
solutions, where the parameter has a direct physical interpretation as the central charge
(conformal anomaly) of the theory. The upshot is that the protected part of this correlator
is entirely determined by abstract symmetry considerations, with no reference to a free-
field description of the theory.

In this paper we establish a conceptual framework that explains and vastly generalizes
this observation. For a general N = 2 superconformal field theory, we define a protected
subsector by passing to the cohomology of a certain nilpotent supercharge . This is a
familiar strategy—for example, the definition of the chiral ring in an N = 1 theory fol-
lows the same pattern—but our version of this maneuver will be slightly unconventional,
in that we take = Q + S to be a linear combination of a Poincaré and a conformal
supercharge. In order to be in the cohomology of , local operators must lie in a fixed
plane R

2 ⊂ R
4. Crucially, their correlators can be shown to be non-trivial meromorphic

functions of their positions. This is in contrast to correlators of N = 1 chiral operators,
which are purely topological in a general N = 1 model, and strictly vanish in an N = 1
conformal theory due to R-charge conservation.

The meromorphic correlators identified by this cohomological construction are pre-
cisely the ingredients that define a two-dimensional chiral algebra.1 Our main result is
thus the definition of a mapχ from the space of four-dimensional N = 2 superconformal

1 We have settled on the expression “chiral algebra” as it is the most common in the physics literature.
We consider it to be synonymous with “vertex operator algebra”, though in the mathematical literature some
authors make a distinction between the two notions. We trust no confusion will arise with the overloading of
the word “chiral” due to its unavoidable use in the four-dimensional context, e.g., “chiral and anti-chiral 4d
supercharges”, “the N = 1 chiral ring”, etc.
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field theories to the space of two-dimensional chiral algebras,

χ : 4d N = 2 SCFT −→ 2d Chiral Algebra.

In concrete terms, the chiral algebra computes correlation functions of certain operators
in the four-dimensional theory, which are restricted to be coplanar and further given an
explicit space-time dependence correlating their SU (2)R orientation with their positions,
see (2.27). For the case of four-point functions of half-BPS operators, assigning the
external operators this “twisted” space-time dependence accomplishes precisely the task
of projecting the full correlator onto the meromorphic functions appearing in the solution
to the superconformal Ward identities. To recapitulate, those mysterious meromorphic
functions are given a direct interpretation as correlators in the associated chiral algebra,
and turn out to be special instances of a much more general structure.

The explicit space-time dependence of the four-dimensional operators is instrumental
in making sure that they are annihilated by a common supercharge for any insertion
point on the plane. From this viewpoint, our construction is in the same general spirit
as [17] (see also [18]). These authors considered particular examples of correlators in
N = 4 super Yang-Mills theory that are invariant under supercharges of the same
schematic form Q + S. Their choices of supercharges are inequivalent to ours, and do
not lead to meromorphic correlators.

The operators captured by the chiral algebra are precisely the operators that contribute
to the Schur limit of the superconformal index [19–21], and we will refer to them
as Schur operators. Important examples are the half-BPS operators that are charged
under SU (2)R but neutral under U (1)r , whose vacuum expectation values parameterize
the Higgs branch of the theory, and the SU (2)R Noether current. The class of Schur
operators is much larger, though, and encompasses a variety of supermultiplets obeying
less familiar semi-shortening conditions. Operators associated to the Coulomb branch
of the theory (such as the half-BPS operators charged under U (1)r but neutral under
SU (2)R) are not of Schur type. In a pithy summary, the cohomology of provides a
“categorification” of the Schur index. It is a surprising and useful fact that this vector
space naturally possesses the additional structure of a chiral algebra.

Chiral algebras are rigid structures. Associativity of their operator algebra translates
into strong constraints on the spectrum and OPE coefficients of Schur operators in the
parent four-dimensional theory. We have already pointed out that this leads to a unique
determination of the protected part of four-point function of stress-tensor multiplets in
the N = 4 context [7]. Another canonical example is the four-point function of “moment
map” operators in a general N = 2 superconformal field theory. The moment map M
is the lowest component of the supermultiplet that contains the conserved flavor current
of the theory, and as such it transforms in the adjoint representation of the flavor group
G. We find that the associated two-dimensional meromorphic operator J (z) := χ[M] is
the dimension-one generating current of an affine Lie algebra ĝk2d , with level k2d fixed
in terms of the four-dimensional flavor central charge. As the four-point function of
affine currents is uniquely fixed, this relation completely determines the protected part
of the moment map four-point function. In turn, this information serves as essential input
to the full-fledged bootstrap equations that govern the contributions from generic long
multiplets in the conformal block decomposition of these four-point functions. These
equations can be studied numerically to derive interesting bounds on non-protected
quantities, following the approach of [7]. We will present numerical bounds that arise
for various choices of G in a separate publication [22]. It is worth emphasizing that the
protected part of the four-point function receives contributions from an infinite tower
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of intermediate shortened multiplets, and without knowledge of its precise form the
numerical bootstrap program would never get off the ground. In theories that admit a
Lagrangian description, one could appeal to non-renormalization theorems and derive the
same protected information in the free field limit; the chiral algebra then just serves as a
powerful organizing principle to help obtain the same result. However, the abstract chiral
algebra approach seems indispensable for the analysis of non-Lagrangian theories—for
example, when G is an exceptional group.

As a byproduct of a detailed study of the moment map four-point function, we are
able to derive new unitarity bounds that must be obeyed by the central charges of any
interacting N = 2 superconformal field theory. By exploiting the relation between the
two- and four-dimensional perspectives, we are able to express certain coefficients of the
four-dimensional conformal block decomposition of the four-point function in terms of
central charges; the new bounds arise because those coefficients must be non-negative in
a unitary theory. Saturation of the bounds signals special properties of the Higgs branch
chiral ring. This is a particular instance of a more general encoding of four-dimensional
physics in the chiral algebra, the surface of which we have only barely scratched. One
notable aspect of this correspondence is the interplay between the geometry of the Higgs
branch and the representation theory of the chiral algebra; for example, null vectors that
appear at special values of the affine level imply Higgs branch relations.

We describe several structural properties of the map χ . Two universal features are the
affine enhancement of the global flavor symmetry, and the Virasoro enhancement of the
global conformal symmetry. The affine level in the chiral algebra is related to the flavor
central charge in four dimensions as k2d = − 1

2 k4d , while the Virasoro central charge is
proportional to the four-dimensional conformal anomaly coefficient,2 c2d = −12c4d . A
perhaps surprising feature of these relations is that the two-dimensional central charges
and affine levels must be negative. Another universal aspect of the correspondence is a
general prescription to derive the chiral algebra associated to a gauge theory whenever
the chiral algebra of the original theory whose global symmetry is being gauged is
known.

Turning to concrete examples, we start with the SCFTs of free hypermultiplets and
free vector multiplets, which are associated to free chiral algebras. With the help of
the general gauging prescription, we can combine these ingredients to find the chiral
algebra associated to an arbitrary Lagrangian SCFT. We also sketch the structure of the
chiral algebras associated to SCFTs of class S, which are generally non-Lagrangian. In
several concrete examples, we present evidence that the chiral algebra has an economical
presentation as a W-algebra, i.e., as a chiral algebra with a finite set of generators [25].
We do not know whether all chiral algebras associated to SCFTs are finitely generated,
or how to identify the complete set of generators in the general case. Indeed, an important
open problem is to give a more precise characterization of the class of chiral algebras
that can arise from physical four-dimensional theories. Ideally the distinguishing features
of this class could be codified in a set of additional axioms. Since chiral algebras are
on sounder mathematical footing than four-dimensional quantum field theories, it is
imaginable that this could lead to a well-defined algebraic classification problem. If
successful, this approach would represent concrete progress towards the loftier goal of
classifying all possible N = 2 SCFTs.

2 There are two tensorial structures in the four-dimensional trace anomaly, whose coefficients are conven-
tionally denoted a and c. It is the c anomaly that is relevant for us, in contrast to the better studied a anomaly,
which decreases monotonically under RG flow [23,24].
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On a more formal note, four-dimensional intuition leads us to formulate a number
of new conjectures about chiral algebras that may be of interest in their own right. The
conjectures generally take the form of an ansatz for the cohomology of a BRST complex,
and include new free-field realizations of affine Lie algebras at special values of the level
and new examples of quantum Drinfeld–Sokolov reduction for nontrivial modules. We
present evidence for our conjectures obtained from a low-brow, level-by-level analysis,
but we suspect that more powerful algebraic tools may lead to rigorous proofs.

The organization of this paper is as follows. In Sect. 2 we review the arguments
behind the appearance of infinite-dimensional chiral symmetry algebras in the context
of two-dimensional conformal field theories. We explain how the same structure can
be recovered in the context of N = 2 superconformal field theories in four dimen-
sions by studying observables that are well-defined after passing to the cohomology
of a particular nilpotent supercharge in the superconformal algebra. This leads to the
immediate conclusion that chiral symmetry algebras will control the structure of this
subclass of observables. In Sect. 3, we describe in greater detail the resulting correspon-
dence between N = 2 superconformal models in four dimensions and their associated
two-dimensional chiral algebras. We outline some of the universal features of the cor-
respondence. We further describe an algorithm that defines the chiral algebra for any
four-dimensional SCFT with a Lagrangian description in terms of a BRST complex. In
Sect. 4, we describe the immediate consequences of this structure for more conventional
observables of the original theory. It turns out that superconformal Ward identities that
have previously derived for four-point functions of BPS operators are a natural outcome
from our point of view. We further derive new unitarity bounds for the anomaly coeffi-
cients of conformal and global symmetries, many of which are saturated by interesting
superconformal models. We point out that the state space of the chiral algebra provides a
categorification of the Schur limit of the superconformal index. In Sect. 5, we detail the
construction and analysis of the chiral algebras associated to some simple Lagrangian
SCFTs. We also make a number of conjectures as to how to describe these chiral algebras
as W-algebras. In Sect. 6 we provide a sketch of the class of chiral algebras that are asso-
ciated to four-dimensional theories of class S. We conclude in Sect. 7 by listing a number
of interesting lines of inquiry that are opened up by the results reported here. Several
appendices are included that review relevant material concerning the superconformal
algebras and representation theory used in our constructions.

2. Chiral Symmetry Algebras in Four Dimensions

The purpose of this section is to establish the existence of infinite chiral symmetry
algebras acting on a restricted class of observables in any N = 2 superconformal field
theory in four dimensions. This is accomplished in two steps. First, working purely
in terms of the relevant spacetime symmetry algebras, we identify a particular two-
dimensional conformal subalgebra of the four-dimensional superconformal algebra,3

sl(2)× ŝl(2) ⊂ sl(4 | 2),

3 In this section, we adopt the convention of specifying the complexified versions of symmetry algebras.
This will turn out to be particularly natural in the discussion of Sect. 2.2. We generally attempt to select bases
for the complexified algebras that are appropriate for a convenient real form. Our basic constructions are
insensitive to the signature of spacetime, though in places we explicitly impose constraints that follow from
unitarity in Lorentzian signature.
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with the property that the holomorphic factor sl(2) commutes with a nilpotent super-
charge, , while the antiholomorphic factor ŝl(2) is exact with respect to the same super-
charge. We then characterize the local operators that represent nontrivial -cohomology
classes. The only local operators for which this is the case are restricted to lie in a plane
R

2 ⊂ R
4 that is singled out by the choice of conformal subalgebra. The correlation func-

tions of these operators are meromorphic functions of the insertion points, and thereby
define a chiral algebra. As a preliminary aside, we first recall the basic story of infinite
chiral symmetry in two dimensions in order to distill the essential ingredients that need
to be reproduced in four dimensions. The reader who is familiar with chiral algebras in
two-dimensional conformal field theory may safely proceed directly to Sect. 2.2.

2.1. A brief review of chiral symmetry in two dimensions. Let us take as our starting
point a two-dimensional quantum field theory that is invariant under the global conformal
group SL(2,C). The complexification of the Lie algebra of infinitesimal transformations
factorizes into holomorphic and anti-holomorphic generators,

L−1 = −∂z, L0 = −z∂z, L+1 = −z2∂z,

L̄−1 = −∂z̄, L̄0 = −z̄∂z̄, L̄+1 = −z̄2∂z̄,
(2.1)

which obey the usual sl(2)× sl(2) commutation relations,

[L+1, L−1] = 2L0, [L0, L±1] = ∓L±1,

[L̄+1, L̄−1] = 2L0, [L̄0, L̄±1] = ∓L̄±1 .
(2.2)

We need not assume that the theory is unitary, but for simplicity we will assume that
the space of local operators decomposes into a direct sum of irreducible highest weight
representations of the global conformal group. Such representations are labelled by
holomorphic and anti-holomorphic scaling dimensions h and h̄ of the highest weight
state,

L0|ψ〉h.w. = h|ψ〉h.w., L̄0|ψ〉h.w. = h̄|ψ〉h.w., (2.3)

and we further assume that h and h̄ are not equal to negative half-integers (in which case
one would find finite-dimensional representations of sl(2)).

Chiral symmetry arises as a consequence of the existence of any local operator O(z, z̄)
which obeys a meromorphicity condition of the form

∂z̄O(z, z̄) = 0 �⇒ O(z, z̄) := O(z) . (2.4)

Under the present assumptions, such an operator will transform in the trivial represen-
tation of the anti-holomorphic part of the symmetry algebra and by locality will have
h equal to an integer or half-integer. Meromorphicity implies the existence of infinitely
many conserved charges (and their associated Ward identities) defined by integrating
the meromorphic operator against an arbitrary monomial in z,

On :=
∮

dz

2π i
zn+h−1 O(z) . (2.5)

The operator product expansion of two meromorphic operators contains only mero-
morphic operators, and the singular terms determine the commutation relations among
the associated charges, cf. [25]. This is the power of meromorphy in two dimensions:
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an infinite dimensional symmetry algebra organizes the space of local operators into
much larger representations, and the associated Ward identities strongly constrain the
correlation functions of the theory.

Some examples of this structure are ubiquitous in two-dimensional conformal field
theory. The energy-momentum tensor in a two-dimensional CFT is conserved and trace-
less in flat space, ∂μTμν = T μ

μ = 0, leading to two independent conservation equations

∂z̄ Tzz(z, z̄) = 0 �⇒ Tzz(z, z̄) := T (z),

∂zTz̄z̄(z, z̄) = 0 �⇒ Tz̄z̄(z, z̄) := T (z̄) .
(2.6)

The holomorphic stress tensor T (z) is a meromorphic operator with (h, h̄) = (2, 0), and
its self-OPE is fixed by conformal symmetry to take the form

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

(z − w)
, (2.7)

which implies that the associated conserved charges obey the commutation relations of
the Virasoro algebra with central charge c,

Ln :=
∮

dz

2π i
zn+1T (z), [Lm, Ln] = (m − n)Lm+n +

c

12
m(m2 − 1)δm+n,0 . (2.8)

Similarly, global symmetries can give rise to conserved holomorphic currents J A
z (z, z̄) =:

J A(z) with (h, h̄) = (1, 0). The self-OPEs of such currents are fixed to take the form

J A(z)J B(w) ∼ k δAB

(z − w)2
+

∑
C

i f ABC J C (w)

(z − w)
, (2.9)

with the structure constants f ABC those of the Lie algebra of the global symmetry. The
conserved charges in this case obey the commutation relations of an affine Lie algebra
at level k,

J A
n :=

∮
dz

2π i
zn J A(z), [J A

m , J B
n ] =

∑
c

i f ABC J C
m+n + mk δABδm+n,0 . (2.10)

The algebra of all meromorphic operators, or alternatively the algebra of their corre-
sponding charges, constitutes the chiral algebra of a two-dimensional conformal field
theory.

In most physics applications, the spectrum of a CFT will include non-meromorphic
operators that reside in modules of the chiral algebra of the theory. In the generic case in
which the chiral algebra is the Virasoro algebra, this just means that there are Virasoro pri-
mary operators with h̄ 	= 0. Nevertheless, the correlation functions of the meromorphic
operators can be taken in and of themselves to define a certain meromorphic theory. Such
theories are referred to by various authors as chiral algebras, vertex operator algebras,
or meromorphic conformal field theories. Though some of these names are occasionally
assigned to structures that possess some extra nice properties, such as modular invariant
partition functions, we will be discussing the most basic version. Henceforth, by chiral
algebra we will mean the operator product algebra of a set of meromorphic operators
in the plane.4 So defined, a chiral algebra is strongly constrained by the requirements

4 In a preview of later discussions, we mention that by W-algebra we will mean a chiral algebra for which
the space of local operators is generated by a finite number of operators via the operations of taking derivatives
and normal-ordered multiplication.



Infinite Chiral Symmetry in Four Dimensions 1367

of crossing symmetry. In what follows, we show that any N = 2 superconformal field
theory in four dimensions possesses a class of observables that define a chiral algebra
in this sense.

2.2. Twisted conformal subalgebras. Chiral algebras are ordinarily thought to be a spe-
cial feature of conformal-invariant models in two dimensions. Indeed, the appearance of
an infinite number of conserved charges as defined in (2.5) follows from the interaction
of two different ingredients that are special to two dimensions. Firstly, the operators that
give rise to the chiral symmetry charges are invariant under (say) the anti-holomorphic
factor of the two-dimensional conformal algebra, while transforming in a nontrivial
representation of the holomorphic factor, so they are nontrivial holomorphic operators
on the plane. The powerful machinery of complex analysis in a single variable then
produces the infinity of conserved charges in (2.5).5

In dimension d > 2, it is the first of these conditions that fails the most dramatically,
while the latter seems more superficial. Indeed, correlation functions in a conformal
field theory in higher dimensions can be restricted so that all operators lie on a plane
R

2 ⊂ R
d , and the resulting observables will transform covariantly under the subalgebra

of the d-dimensional conformal algebra that leaves the R
2 in question fixed,

sl(2)× sl(2) ⊂ so(d + 2) . (2.11)

These correlation functions will be largely indistinguishable from those of an authentic
two-dimensional CFT, and if one could locate operators that were chiral with respect
to this subalgebra, then the arguments of Sect. 2.1 would go through unhindered and a
chiral symmetry algebra could be constructed that would act on R

2-restricted correlation
functions. However, a local operator that transforms in the trivial representation of either
copy of sl(2) in (2.11) will necessarily be trivial with respect to all of so(d + 2). As
such, the only “meromorphic” operator on the plane in a higher dimensional theory is the
identity operator, and no chiral symmetry algebra can be constructed. This is ultimately
a consequence of the simple fact that the higher dimensional conformal algebras do not
factorize into a holomorphic and anti-holomorphic part: any two sl(2) subalgebras will
be related by conjugation.

The brief arguments given above are common knowledge, and essentially spell the
end to any hopes of recovering chiral symmetry algebras in a general higher-dimensional
conformal field theory. We have reproduced them here to clarify the mechanism by which
they will be evaded in the coming discussion. In particular, we will see that the additional
tools at our disposal in the case of superconformal field theories are sufficient to give life
to chiral algebras in four dimensions. Before describing the construction, let us recall a
simple example which illustrates the mechanism that will be used.

2.2.1. Intermezzo: translation invariance from cohomology. In a quantum field theory
with N = 1 supersymmetry in four dimensions, there exists a special class of opera-
tors known as chiral operators (not to be confused with the meromorphic operators of
Sect. 2.1, which are chiral in a different sense) that lie in short representations of the

5 From another point of view, one can hardly hope to find a meromorphic sector in a higher dimensional
CFT due to Hartogs’ theorem, which implies the absence of singularities of codimension greater than one in a
meromorphic function of several variables. This has been overcome in, e.g., [26,27] by considering extended
operators that intersect in codimension one. The problem, then, is that the meromorphic structure does not
impose constraints on the natural objects in the original theory—the local operators.
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supersymmetry algebra and satisfy a shortening condition in terms of a chiral half of the
supercharges,

{Qα,O(x)] = 0, α = ± . (2.12)

The translation generators in R
4 are exact with respect to the chiral supercharges,

Pαα̇ = {Qα, Q̃α̇}, (2.13)

and consequently, via the Jacobi identity, the derivative of a chiral operator is also exact,

[Pαα̇,O(x)] = {Qα,O′(x)] . (2.14)

Because the chiral supercharges are nilpotent and anti-commute, the cohomology classes
of chiral operators with respect to the supercharges Qα are well-defined and independent
of the insertion point of the operator. Schematically, one can write

[Oi (x)]Qα
:= Oi . (2.15)

Products of chiral operators are then free of short distance singularities and form a ring
at the level of cohomology. Correlation functions of chiral operators have the excellent
property of being independent of the positions of the operators,

〈O1(x1)O2(x2) . . .On(xn)〉 = 〈[O1(x1)][O2(x2)] . . . [On(xn)]〉 = 〈O1O2 . . .On〉 .
(2.16)

A suggestive way of phrasing this well-known feature of the chiral ring is that although
chiral operators transform in a nontrivial representation of the four-dimensional transla-
tion group, their cohomology classes with respect to the chiral supercharges transform in
the trivial representation. The passage from local operators to their cohomology classes
modifies the transformation properties of these local operators under the spacetime sym-
metry algebra, in this case rendering them trivial.

2.2.2. Holomorphy from cohomology. To recover chiral algebras in four dimensions,
we adopt the same philosophy just illustrated in the example of the chiral ring. We
will find a nilpotent supercharge with the property that cohomology classes of local
operators with respect to said supercharge transform in a chiral representation of an
sl(2) × ŝl(2) subalgebra of the full superconformal algebra, and as such behave as
meromorphic operators. Such local operators will then necessarily constitute a chiral
algebra as described in Sect. 2.1.

The first task that presents itself is an algebraic one. To realize chiral symmetry at
the level of cohomology classes, we identify a two-dimensional conformal subalgebra
of the four-dimensional superconformal algebra,

sl(2)× ŝl(2) ⊂ sl(4 | 2),

along with a privileged supercharge for which the following criteria are satisfied:

• The supercharge is nilpotent: 2 = 0.
• sl(2) and ŝl(2) act as the generators of holomorphic and anti-holomorphic Möbius

transformations on a complex plane C ⊂ R
4.

• The holomorphic generators spanning sl(2) commute with .
• The anti-holomorphic generators spanning ŝl(2) are commutators.
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In searching for such a subalgebra, we can first restrict our attention to subalgebras
of sl(4|2) that keep the plane fixed set-wise. There are two inequivalent maximal subal-
gebras of this kind: sl(2|1)× sl(2|1), which is the symmetry algebra of an N = (2, 2)
SCFT in two dimensions, and sl(2) × sl(2|2), which is the symmetry algebra of an
N = (0, 4) SCFT in two dimensions. One easily determines that the first subalgebra
cannot produce the desired structure; we proceed directly to consider the second case.

The four-dimensional N = 2 superconformal algebra and the two-dimensional N =
(0, 4) superconformal algebra are summarized in Appendix A. In embedding the latter
into the former, we take the fixed two-dimensional subspace to be the one that is fixed
pointwise by the rotation generator

M⊥ := M +
+ − M+̇

+̇ . (2.17)

The generator of rotations acting within the fixed plane is the orthogonal combination,

M := M +
+ + M+̇

+̇ . (2.18)

In more conventional terms, we are picking out the plane with x1 = x2 = 0. Introducing
complex coordinates z := x3 + i x4, z̄ := x3 − i x4, the two-dimensional conformal
symmetry generators in sl(2)×sl(2|2) can be expressed in terms of the four-dimensional
ones as

L−1 = P++̇, L+1 = K+̇+, 2L0 = H + M,

L̄−1 = P−−̇, L̄+1 = K−̇−, 2L̄0 = H − M .
(2.19)

The fermionic generators of sl(2)×sl(2|2) are obviously all anti-holomorphic, and upon
embedding are identified with four-dimensional supercharges according to

QI = QI−, Q̃I = Q̃I−̇, SI = S−
I , S̃I = S̃I−̇, (2.20)

where I = 1, 2 is an sl(2)R index. Finally, the sl(2|2) superalgebra has a central element
Z , which upon embedding is given in terms of four-dimensional symmetry generators
as

Z = r + M⊥, (2.21)

where r is the generator of U (1)r .
Amongst the supercharges listed in (2.20), one finds a variety of nilpotent opera-

tors. Any such operator will necessarily commute with the generators L±1 and L0 in
(2.19) since all of the supercharges do so. The requirement of -exact anti-holomorphic
Möbius transformations is harder to satisfy. In fact, up to similarity transformation using
generators of the bosonic symmetry algebra, there are only two possible choices:

1 := Q1 + S̃2 , 2 := S1 − Q̃2,

†
1 := S1 + Q̃2 ,

†
2 := Q1 − S̃2 .

(2.22)

Interestingly, 1 and 2 give rise to the same -exact generators of an anti-holomorphic
ŝl(2) algebra,

{ 1, Q̃1}= { 2,−Q2} = L̄−1 + R− =: L̂−1,

{ 1,S2} = { 2, S̃1} = L̄+1 − R+ =: L̂+1,

{ 1,
†
1} = { 2,

†
2} = 2(L̄0 − R) =: 2L̂0.

(2.23)
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In addition, the central element of sl(2|2) is exact with respect to both supercharges,

{ 1, 2} = −Z . (2.24)

Note that while ŝl(2) does act on the plane by anti-holomorphic conformal transforma-
tions, it is not simply a subalgebra of the original global conformal algebra. Rather, it is
an sl(2)R twist of sl(2).6 Because the relevant real forms of the sl(2) conformal algebra
and sl(2)R are different, the generators of ŝl(2) do not enjoy any reasonable hermiticity
properties when acting on the Hilbert space of the four-dimensional theory. In particular,
we can immediately see that L̂†

±1 	= L̂∓1. This would complicate matters considerably
if our intention was to study operators that transform in nontrivial representations of
this twisted algebra. Fortunately, our plan is precisely the opposite: chiral algebras can
appear after passing to -cohomology, at which point all of the objects of interest will
effectively be invariant under the action of ŝl(2). Consequently, reality/hermiticity con-
ditions will play no role in the structure of the “physical” operators/observables defined
at the level of cohomology.

2.3. The cohomology classes of local operators. Our next task is to study the properties
of operators that define non-trivial i -cohomology classes. For the purposes of the present
paper, we are restricting our attention to local operators in four dimensions; the inclusion
of non-local operators, such as line or surface operators, is an interesting extension that
will be addressed in future work.

We begin by identifying the requirements for an operator inserted at the origin to
define a nontrivial i -cohomology class. In particular, we will derive the conditions
under which an operator O(x) obeys

{ i ,O(0)] = 0, O(0) 	= { i ,O′(0)], (2.25)

for i = 1 or i = 2. Because both i commute with L̂0 and Z , we lose no generality in
restricting to definite eigenspaces of these charges. A standard cohomological argument
then implies that since L̂0 and Z are actually i -exact, an operator satisfying (2.25)
must lie in the zero eigenspace of both charges. In terms of four-dimensional quantum
numbers, this means that such an operator must obey7

1
2 (E − ( j1 + j2))− R = 0, r + ( j1 − j2) = 0, (2.26)

where E is the conformal dimension/eigenvalue of H, j1 and j2 are sl(2)1 and
sl(2)2 Lorentz quantum numbers/eigenvalues of M +

+ and M+̇
+̇, and R is the sl(2)R

charge/eigenvalue of R. As long as the four-dimensional SCFT is unitary, the last line
of (2.23) implies that any operator with zero eigenvalue under L̂0 must be annihilated
by i and †

i for both i = 1 and i = 2. The relations in (2.26) therefore characterize
the harmonic representatives of i -cohomology classes of operators at the origin, and
we see that the two supercharges actually define the same cohomology. Notably, these

6 In light of this, we may understand the absence of a similar construction using the sl(2|1) × sl(2|1)
algebra as a consequence of there being no sl(2)R with which to twist. Similarly, our construction does not
extend to N = 1 superconformal theories since they only have an abelian R-symmetry.

7 In fact, the second relation in (2.26) follows from the first as a consequence of unitarity and the four-
dimensional superconformal algebra (see Sect. 3.1). We list it separately here since it is an algebraically
independent constraint at the level of the quantum numbers.
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relations are known to characterize the operators that contribute to the Schur (and Mac-
donald) limits of the superconformal index in four dimensions [21], suggesting that the
cohomology will be non-empty in any nontrivial N = 2 SCFT. We will refer to the
class of local operators obeying (2.26) as the Schur operators of the SCFT. We will have
more to say about the features of these operators in Sect. 3.

Note that in contrast to the case of ordinary chiral operators in a supersymmetric
theory, which are annihilated by a given Poincaré supercharge regardless of the insertion
point, for operators to be annihilated by the i when inserted away from the origin
requires that they acquire a more intricate dependence on their position in R

4. This
is a consequence of the fact that the translation generators do not commute with the
superconformal charges S−

1 and S̃2−̇ appearing in the definitions of the i . Indeed, there
is no way to define the translation of a Schur operator from the origin to a point outside of
the (z, z̄) plane so that it continues to represent a i -cohomology class. Within the plane,
though, we can accomplish this task using the i -exact, twisted ŝl(2) of the previous
subsection. In particular, because the twisted anti-holomorphic translation generator L̂−1
is a i anti-commutator and the holomorphic translation generator L−1 is i -closed, we
can define the twisted-translated operators

O(z, z̄) = ezL−1+z̄ L̂−1 O(0) e−zL−1−z̄ L̂−1 , (2.27)

where O(0) is a Schur operator. One way of thinking about this prescription for the
translation of local operators is as the consequence of introducing a constant, complex
background gauge field for the sl(2)R symmetry that is proportional to the sl(2) raising
operator. By construction, the twisted-translated operator is i closed for both i = 1, 2,
and the cohomology class of this operator is well-defined and depends on the insertion
point holomorphically,

[O(z, z̄)] �⇒ O(z) . (2.28)

What does such an operator look like in terms of a more standard basis of local operators
at the point (z, z̄)? To answer this, we must first note that Schur operators at the origin
occupy the highest-weight states of their respective sl(2)R representation (this fact will
be explained in greater detail in Sect. 3). If we denote the whole spin k representation of
sl(2)R as OI1I2···I2k with Ii = 1, 2, then the Schur operator at the origin is O11···1(0),
and the twisted-translated operator at any other point is defined as

O(z, z̄) := uI1(z̄) · · · uI2k (z̄) OI1...I2k (z, z̄), uI(z̄) := (1, z̄) . (2.29)

At any given point (z, z̄), this is a particular complex-linear combination of the different
elements of the sl(2)R representation of the corresponding Schur operator. The precise
combination depends on the insertion point as indicated. What we have discovered is
that the correlation functions of these operators are determined at the level of their i -
cohomology classes, and are therefore meromorphic functions of the insertion points.8

2.4. A chiral operator product expansion. The most efficient language for describing
chiral algebras is that of the operator product expansion. Let us therefore study the

8 For N = 4 SYM, a similar contraction of the SU (4)R indices with position-dependent vectors was studied
in [17]. The twists considered in that paper are different, and do not give rise to meromorphic operators and
chiral algebras.
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structure of the operator product expansion of the twisted-translated Schur operators in
order to see the emergence of meromorphic OPEs befitting a chiral algebra.

Consider two operators: O1(z, z̄) is the twisted translation of a Schur operator from
the origin to (z, z̄), and O2(0, 0) is a Schur operator inserted at the origin. Given the
general expression for the twisted-translated operator given in (2.29), the OPE of these
two operators should take the form

O1(z, z̄)O2(0) =
∑

k

λ12k
z̄ R1+R2−Rk

zh1+h2−hk z̄h̄1+h̄2−h̄k
Ok(0), (2.30)

where the z̄ R1+R2−Rk in the numerator comes from the explicit factors of z̄ appearing
in (2.29), and Rk is the R-charge of the operator Ok . This form of the OPE is so far
a consequence of two-dimensional conformal invariance and conservation of R-charge
under multiplication. We have introduced the two-dimensional quantum numbers h and
h̄, which are expressible in terms of four-dimensional quantum numbers as

h = E + ( j1 + j2)

2
, h̄ = E − ( j1 + j2)

2
. (2.31)

Though the OPE does not look meromorphic yet, we are already well on our way. The
left hand side of (2.30) is i -closed for any (z, z̄), with the z̄ dependence being i -exact.
As a result, each individual term on the right hand side must be i -closed, and the sum
should be reorganized into two groups. The first group will consist of the terms in which
the operator Ok(0) is a Schur operator, while the second will consist of the remaining
terms, for which the operator Ok(0) is i -exact. Recalling that the quantum numbers of
Schur operators obey h̄ = R, we immediately see that for those terms in the OPE the
z̄ dependence cancels between the denominator and the numerator, thus providing the
desired meromorphicity result:

O1(z, z̄)O2(0, 0) =
∑

kSchur

λ12k

zh1+h2−hk
Ok(0) + { , . . . ] . (2.32)

From the four-dimensional construction, we expect this OPE to be single-valued, which
implies that h1 + h2 − hk should be an integer. Indeed, this integrality follows from
the fact that h is a sum of SU (2) Cartans after applying SU (2) selection rules. Clearly,
in passing to i -cohomology classes the OPE stays well-defined and the i -exact piece
can be set to zero. Thus at the level of cohomology, the twisted-translated operators can
be reinterpreted as two-dimensional meromorphic operators with interesting singular
OPEs.

It may be instructive to see how this meromorphic OPE plays out in a simple example.
An extremely simple case, to which we shall return in Sect. 3, is that of free hypermul-
tiplets in four dimensions. The scalar squarks Q and Q̃ of the hypermultiplet are Schur
operators, and the corresponding twisted-translated operators take the form

q(z) := [Q(z, z̄) + z̄ Q̃∗(z, z̄)] , q̃(z) := [Q̃(z, z̄)− z̄Q∗(z, z̄)] . (2.33)

The singular OPE of these twisted operators can be easily worked out using the free
OPE in four dimensions; we have

q(z)q(w) ∼ regular, q̃(z)q̃(w) ∼ regular,

q(z)q̃(w) ∼ 1

z − w
, q̃(z)q(w) ∼ − 1

z − w
.

(2.34)
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This is example is in some respects deceptively simple, in that the terms appearing in the
singular part of the OPE are meromorphic on the nose. In more complicated theories,
there will be cohomologically trivial terms appearing in the singular part of the OPE, and
meromorphicity will depend on a more detailed knowledge of the action of the nilpotent
supercharges.

Let us briefly point out one difference between the structure observed here and that of
a more conventional cohomological subalgebra. The chiral ring in the free hypermultiplet
theory is generated by the operators q(x) and q̃(x). Because these operators both have
R = 1/2, there can be no nonzero correlation functions in the chiral ring. The existence
of nontrivial correlation functions in the chiral algebra described here follows precisely
from the presence of subleading terms in the z̄ expansion (2.33) with SU (2)R quantum
numbers of opposite sign relative to the leading term.

Having established existence of nontrivial -cohomology classes with meromorphic
OPEs and correlators, we now take some time to develop the dictionary between four-
dimensional SCFT structures and their two-dimensional counterparts.

3. The SCFT/Chiral Algebra Correspondence

For any four-dimensional N = 2 superconformal field theory, we have identified a
subsector of operators whose correlation functions are meromorphic when they are
restricted to be coplanar. This sector thus defines a map from four-dimensional SCFTs
to two-dimensional chiral algebras:

χ : 4d SCFT −→ 2d Chiral Algebra.

The aim of this section is to elaborate on the structure of this correspondence, focusing
primarily on its more universal aspects. We begin with a short preview of some of the
more prominent features of the correspondence.

Our first main result is the generic enhancement of the global sl(2) conformal sym-
metry algebra to a full fledged Virasoro algebra. In other words, for any SCFT T , we find
that χ[ T ] contains a meromorphic stress tensor. The two-dimensional central charge
turns out to have a simple relationship to the four-dimensional conformal anomaly coef-
ficient,

c2d = −12c4d .

In particular, this implies that when T is unitary (which we always take to be the case),
χ [ T ] is necessarily non-unitary. In a similar vein, we find that global symmetries of T
are always enhanced into affine symmetries of χ [ T ], and the respective central charges
of these flavor symmetries enjoy another simple relationship,

k2d = −1

2
k4d .

It is often helpful to think of a chiral algebra in terms of its generators. In the chiral
algebra sense of the word, generators are those operators that cannot be expressed as
the conformally normal-ordered products of derivatives of other operators. While we
do not find a complete characterization of the generators of our chiral algebras, we do
identify certain operators in four dimensions whose corresponding chiral operator will
necessarily be generators. In particular, operators that are N = 1 chiral and satisfy the
Schur shortening condition form a ring which is a consistent truncation of the N = 1
chiral ring, to which we refer as the Hall–Littlewood (HL) chiral ring. We find that
every generator of the HL chiral ring necessarily leads to a generator of the associated
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chiral algebra. There may be additional generators of the chiral algebra beyond the stress
tensor and the operators associated to generators of the HL chiral ring. We will find such
additional generators in the example of Sect. 5.4.

For the special case of free SCFTs we completely characterize the associated chiral
algebras. Unsurprisingly, free SCFTs give rise to free chiral algebras. In particular, free
hypermultiplets correspond to the chiral algebra of dimension 1/2 symplectic bosons,
while free vector multiplets correspond to the small algebra of a (b, c) ghost system of
dimension (1, 0).

Finally, we describe the two-dimensional counterpart of gauging a flavor symmetry G
in some general SCFT TG . Assuming that the chiral algebra associated to the ungauged
SCFT is known, the prescription to find the chiral algebra of the new theory is as follows.
The direct product of the original chiral algebra χ[ TG ] with a (b, c) system in the
adjoint representation of G admits a nilpotent BRST operator precisely when the beta
function for the four-dimensional gauge coupling vanishes. The chiral algebra of the
gauged theory is then obtained by restricting to the BRST coholomogy. We find that this
BRST operator precisely captures the one-loop correction to a certain four-dimensional
supercharge, so that restricting to its cohomology is equivalent to the requirement that
one should only retain those states that remain in their original short representations
once one-loop corrections are taken into account.

3.1. Schur operators. As a first order of business, we pursue a more concrete character-
ization of the four-dimensional operators whose correlation functions are captured by
the chiral algebra. Let us first reiterate the basic facts about these operators that were
derived in Sect. 2. The chiral algebra computes correlation functions of operators that
define nontrivial cohomology classes of the nilpotent supercharges i . Such operators
are obtained by twisted translations (2.29) of Schur operators from the origin to an
arbitrary point (z, z̄) on the plane. A Schur operator is any operator that satisfies

[L̂0,O] = 0 ⇐⇒ 1
2 (E − ( j1 + j2))− R = 0, (3.1)

[Z,O] = 0 ⇐⇒ r + j1 − j2 = 0 . (3.2)

If T is unitary, then these conditions can be equivalently formulated as the requirement
that when inserted at the origin, an operator is annihilated by the two Poincaré and the
two conformal supercharges that enter in the definition of the i , i.e.,

[Q 1−,O(0)] = [Q̃ 2−̇,O(0)] = [S−
1 ,O(0)] = [S̃2−̇,O(0)] = 0 . (3.3)

This follows from the hermiticity conditions Q1†
− := S−

1 and Q†
2−̇ := S̃2−̇ in conjunction

with the relevant anticommutators from Appendix A,

{Q1−,Q
1†
− } = L̂0 − 1

2
Z, {Q̃2−̇, Q̃†

2−̇} = L̂0 +
1

2
Z . (3.4)

It follows immediately that the state O(0)|0〉 is annihilated by all four supercharges if and
only if its quantum numbers obey (3.1) and (3.2). Actually, (3.4) implies the additional
inequality

L̂0 � |Z|
2
, (3.5)

from which we may conclude that imposing only (3.1) is a necessary and sufficient
condition to define a Schur operator. We further note that Schur operators are necessarily
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Table 1. This table summarizes the manner in which Schur operators fit into short multiplets of the N = 2
superconformal algebra

Multiplet OSchur h r Lagrangian “letters”

B̂R 
11...1 R 0 Q, Q̃
DR(0, j2) Q̃1

+̇

11...1
+̇...+̇ R + j2 + 1 j2 + 1

2 Q, Q̃, λ̃1
+̇

D̄R( j1,0) Q1
+


11...1
+···+ R + j1 + 1 − j1 − 1

2 Q, Q̃, λ1
+

ĈR( j1, j2) Q1
+Q̃1

+̇

11...1
+···+ +̇...+̇ R + j1 + j2 + 2 j2 − j1 Dn

++̇ Q, Dn
++̇ Q̃, Dn

++̇λ
1
+, Dn

++̇λ̃
1
+̇

For each supermultiplet, we denote by
 the superconformal primary. There is then a single conformal primary
Schur operator OSchur , which in general is obtained by the action of some Poincaré supercharges on 
. We
list the holomorphic dimension h and U (1)r charge r of OSchur in terms of the quantum numbers (R, j1, j2)
that label the shortened multiplet (left-most column). We also indicate the schematic form that OSchur can
take in a Lagrangian theory by enumerating the elementary “letters” from which the operator may be built.
We denote by Q and Q̃ the complex scalar fields of a hypermultiplet, by λI

α and λ̃İ
α

the left- and right-moving
fermions of a vector multiplet, and by Dαα̇ the gauge-covariant derivatives

the highest-weight states of their respective SU (2)R representations, and so carry the
maximum eigenvalue R of the Cartan generator. If this were not the case, states with
greater R would have negative L̂0 eigenvalues, in contradiction with unitarity. Similarly,
Schur operators are necessarily the highest weight states of their SU (2)1 × SU (2)2
Lorentz symmetry representation, carrying the largest eigenvalues for j1 and j2. The
index structure of a Schur operator is therefore of the form O1...1

+···+ +̇...+̇.
From the definition of L0 in (2.19) and (3.1) we find that the holomorphic dimension

h of a Schur operator is non-zero and fixed in terms of its quantum numbers,

h = 1
2 (E + j1 + j2) = R + j1 + j2 . (3.6)

This is always a half integer, since R, j1 and j2 are all SU (2) Cartans. It follows from
(3.2) and (3.6), in conjunction with the non-negativity of j1 and j2, that the holomorphic
dimension of a Schur operator is bounded from below in terms of its four-dimensional
R-charges,

h = R + j1 + j2 � R + | j1 − j2| = R + |r | . (3.7)

The inequality is saturated if and only if j1 or j2 is zero.

3.1.1. Supermultiplets of schur type. Schur operators belong to shortened representa-
tions of the N = 2 superconformal algebra. The complete list of possible shortening
conditions is reviewed in Appendix B. In the notations of [28], the superconformal
multiplets that contain Schur operators are the following,

B̂R, DR(0, j2), D̄R( j1,0), ĈR( j1, j2) . (3.8)

For the purpose of enumeration, it is sufficient to focus on those Schur operators that
are conformal primaries. Given such a primary Schur operator, there is a tower of
descendant Schur operators that are obtained by the action L−1 = P++̇ = −∂++̇. It
turns out that each of the supermultiplets listed in (3.8) contains exactly one conformal
primary Schur operator. In the case of B̂R , this is also the superconformal primary
of the multiplet, whereas in the other cases it is a superconformal descendant. This
representation-theoretic information is summarized in Table 1, where we also provide
the schematic form taken by each type of operator in a Lagrangian theory.

The shortening conditions obeyed by the Schur operators make crucial use of the
extended N = 2 supersymmetry. Indeed, the hallmark of a Schur operator is that it is
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annihilated by two Poincaré supercharges of opposite chiralities (Q1− and Q̃2−̇ in our
conventions). This defines a consistent shortening condition because the supercharges
have the same SU (2)R weight, and thus anticommute with each other. No analogous
shortening condition exists in an N = 1 supersymmetric theory, because the anticommu-
tator of opposite-chirality supercharges necessarily yields a momentum operator, which
annihilates only the identity.

Although the most general Schur operators, which are those belonging to ĈR( j1, j2)

multiplets, may seem somewhat exotic, the Schur operators of type B̂R , DR(0, j2) and
D̄R( j1,0) are relatively familiar. Indeed, they can be understood as special cases of con-
ventional N = 1 chiral or anti-chiral operators. Let us focus for the moment on the
N = 1 Poincaré subalgebra that contains the supercharges

Q2
α, Q̃2α̇ . (3.9)

We then ask what subset of Schur operators are also elements of the chiral ring for this
N = 1 subalgebra. In particular, such operators will be annihilated by both spinorial
components of the anti-chiral supercharge Q̃2α̇ , α̇ = ±̇. These operators have j2 = 0, and
a quick glance at Table 1 tells us that they are Schur operators of types B̂R and D̄R( j1,0).
These operators saturate the inequality (3.7), with r = − j1 < 0 for D̄R( j1,0) and r = 0
for the B̂R . As these are precisely the operators that contribute to the Hall–Littlewood
(HL) limit of the superconformal index, we refer to them as Hall–Littlewood operators.
They form a ring, the Hall–Littlewood chiral ring, which is a consistent truncation of
the full N = 1 chiral ring.

In a Lagrangian theory, the B̂R type Schur operators are gauge-invariant combinations
of Q and Q̃, the complex hypermultiplet scalars that are bottom components of N = 1
chiral superfields (we are suppressing color and flavor indices). Schur operators of type
D̄R( j1,0) are obtained by further allowing as possible letters the gauginos λ1

+, which are
the bottom components of the field strength chiral superfield W+. In the full N = 1
chiral ring, one also has the other Lorentz component W− of the field strength, as well
as the N = 1 chiral superfield belonging to the N = 2 vector multiplet. Operators that
contain those letters are, however, not a part of the HL chiral ring.

In complete analogy, we may also define a Hall–Littlewood anti-chiral ring, which
contains the Schur operators of type B̂R and DR(0, j2). These operators are annihilated
by chiral supercharges Q1

α , α = ±, and are thus N = 1 anti-chiral with respect to the
N = 1 subalgebra that is orthogonal to (3.9). Schur operators of type B̂R belong to both
HL rings—these are half-BPS operators that are annihilated by both Q1

α and Q̃2α̇ . They
form a further truncation of the N = 1 chiral ring to the Higgs chiral ring, and their
vacuum expectation values parametrize the Higgs branch of the theory. We note that in
Lagrangian theories that are represented by acyclic quiver diagrams, allD-type multiplets
recombine and are lifted from the N = 1 chiral ring at one-loop order [21]. In such
cases, the HL chiral ring will coincide with the more restricted Higgs branch chiral ring.

Let us now look in greater detail at some Schur-type shortened multiplets of particular
physical interest:

• Ĉ0(0,0): Stress-tensor multiplet. The superconformal primary is a scalar operator of
dimension two that is a singlet under the SU (2)R × U (1)r . The SU (2)R and U (1)r
conserved currents, the supercurrents, and the stress tensor all lie in this multiplet.
The Schur operator is the highest weight component of the SU (2)R current: J 11

++̇ of
the SU (2)R .
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• Ĉ0( j1, j2): Higher-spin currents multiplets. These generalize the stress-tensor multiplet
and contain conserved currents of spin higher than two. If any such multiplets are
present, the SCFT must contain a decoupled free sector [29]. Requiring the absence
of these higher spin multiplets will lead to interesting unitarity bounds for the central
charge of interacting SCFTs in Sect. 4.

• B̂ 1
2
: This is the superconformal multiplet of free hypermultiplets.

• B̂1: Flavor-current multiplet. The superconformal primary is the “moment map”
operator MIJ , which is a scalar operator of dimension two that is an SU (2)R triplet,
is U (1)r neutral, and transforms in the adjoint representation of the flavor group G F .
The highest weight state of the moment map—M11—is the Schur operator. The claim
to fame of B̂1 multiplets is that they harbor the conserved currents J F

αα̇ that generate
the continuous “flavor” symmetry group G F of the SCFT, that is, the symmetry
group that commutes with the superconformal group. Because B̂1 multiplets do not
appear in any of the recombination rules for short multiplets listed in Appendix B, it
is absolutely protected: J F

αα̇ remains conserved on the entire conformal manifold of
the SCFT.9

• D0(0,0) ⊕ D̄0(0,0): This is the superconformal multiplet of free N = 2 vector multi-
plets.

• D 1
2 (0,0)

⊕ D̄ 1
2 (0,0)

: “Extra” supercurrent multiplets. The top components of these
multiplets are spin 3/2 conserved currents of dimension � = 7/2 (Jαα̇β̇ and Jαβα̇).
They generate additional supersymmetry transformations beyond the N = 2 super-
algebra in question. In particular, in the N = 2 description of an N = 4 SCFT, one
finds two copies of each of these multiplets transforming as a doublet of the “flavor”
SU (2)F ⊂ SU (4)R that commutes with SU (2)R × U (1)r ⊂ SU (4)R . The Schur
operators have � = 5/2, and have index structure O11

+̇ and O11
+ . In N = 4 super-

symmetric Yang-Mills theory, these are the operators Tr q1
i λ̃

1
+̇ and Tr q1

i λ
1
+, where

i = 1, 2 is the SU (2)F index.

3.2. Notable elements of the chiral algebra. Armed with a working knowledge of the
relevant four-dimensional operators, we now proceed to derive some universal entries
in the 4d/2d dictionary. We first recall from Sect. 2.3 the process by which a mero-
morphic operator in two dimensions is obtained from an appropriate protected operator
in four dimensions. Starting with a Schur operator in four dimensions, we obtain a
two-dimensional chiral operator via the following series of specializations:

O1···1
+···++̇···+̇(x) Schur operator

O(z, z̄) ∼= uI1(z̄) · · · uI2R
(z̄)O(I1···I2R)(z, z̄) Twisted-translated Schur operator

[O(z, z̄)] Chiral cohomology class

O(z) Two-dimensional chiral operator

9 The only other supermultiplet that contains a global flavor symmetry current is Ĉ0( 1
2 ,

1
2 )

. However, that

multiplet also contains higher-spin currents, thus showing that the only points on a conformal manifold at
which the flavor symmetry enhances are the points where the SCFT develops a free decoupled subsector.
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In general we will refer to this associated chiral operator via the following notation:

O(z) = χ[O1···1
+···++̇···+̇],

where sometimes we will be lax about the argument of the χ map and allow O1···1
+···++̇···+̇

to be replaced by the more generic form of the operator OI1···I2R
α1···α2 j1 α̇1···α̇2 j2

. Our first task
will be to understand the chiral operators that are related to certain characteristic Schur
operators of a four-dimensional theory. In doing so we will discover some interesting
and generic features of this correspondence.

3.2.1. Virasoro enhancement of the sl(2) symmetry The holomorphic sl(2) algebra gen-
erated by {L−1, L0, L1} is a manifest symmetry of the chiral algebra. Remarkably, this
global conformal symmetry is enhanced to the full Virasoro algebra. The Virasoro alge-
bra is generated by the modes Ln , n ∈ Z, of a holomorphic stress tensor of dimension
two T (z). Surveying Table 1, we find a suitable candidate that is present in any theory
T : the Schur operator belonging to stress tensor multiplet Ĉ0(0,0). One should note that
the Schur operator in this multiplet is not the four-dimensional stress tensor, but rather
the component J 11

++̇ of the SU (2)R current JIJ
αα̇ .

The corresponding twisted-translated operator is defined as follows,

JR(z, z̄) := uI(z̄) uJ (z̄) JIJ
++̇ (z, z̄). (3.10)

Per the discussion of Sect. 2, we identify the cohomology class [JR(z, z̄)]
i

with a
dimension two meromorphic operator in the chiral algebra χ[ T ],

TJ (z) := κ [JR(z, z̄)]
i
. (3.11)

We provisionally include the subscript J as a reminder of the definition (3.11); we still
need to establish that the OPEs of TJ (z)with itself and with other operators in the chiral
algebra take the standard forms appropriate to a two-dimensional stress tensor. With this
in mind, we have also included a normalization factor κ , to be fixed momentarily in
order to recover the canonical T T OPE.

The two- and three-point functions of the R-symmetry current with itself are fixed
by N = 2 superconformal invariance in terms of a single parameter c4d , which is one
of the two conformal anomaly coefficients (the other being a4d ). Starting from the OPE
of two SU (2)R currents [30],

JIJ
μ (x)JKL

ν (0) ∼ 3c4d

4π4 ε
K(IεJ )L

x2gμν − 2xμxν
x8 +

2i

π2

xμxνx · J (K(IεJ )L)

x6 + · · · ,
(3.12)

we find the following OPE of twisted-translated Schur operators,

JR(z, z̄)JR(0, 0) ∼ − 3c4d

2π4z4 − 1

π2

JR(0, 0)

z2

− 1

π2 z̄
uIuJ JIJ

−−̇ (0)
z3 +

i

π2 z̄
J 21

++̇(0)

z2 +
i

π2 z̄2
J 21
−−̇(0)

z3 + · · · . (3.13)
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Because the last three terms have non-zero L̂0 eigenvalue, they are guaranteed to be
i -exact. Upon setting κ = −2π2, we find the following meromorphic OPE for TJ ,10

TJ (z) TJ (0) ∼ −6 c4d

z4 +
2 TJ (0)

z2 +
∂TJ (0)

z
. (3.14)

Happily, we recognize in (3.14) the familiar two-dimensional T T OPE with central
charge c2d given by

c2d = −12 c4d . (3.15)

This is the first major entry in our dictionary. Note that unitarity of the four-dimensional
theory requires c4d > 0, so the chiral algebra will have negative central charge and will
therefore necessarily be non-unitary.

It is not immediately clear from the arguments presented thus far that TJ (z) will
have the correct OPE with operators of the chiral algebra. In other words, the assertion
that TJ acts as the stress tensor of the chiral algebra means that the “geometric” sl(2)
generators {L−1, L0, L+1} defined by the embedding (2.19) of the two-dimensional
conformal algebra into the four-dimensional one should coincide in cohomology with
the generators {LJ

−1, LJ
0 , LJ

+1} defined by the mode expansion of TJ (z). It would be
sufficient to verify that this is the case for quasiprimary operators, by which we mean
operators O(z) that, when inserted at the origin, are annihilated by the holomorphic
special conformal generator

[L+1,O(0)] = 0 . (3.16)

In our construction, such an O(z) arises as the cohomology class of a twisted-translated
primary Schur operator. The assertion is then that in the chiral algebra (i.e., up to i -exact
terms), the TJ OPEs take the form

TJ (z)O(0) ∼ · · · +
0

z3 +
h O(0)

z2 +
∂O(0)

z
, (3.17)

where h is the holomorphic dimension of O and the dots indicate possible poles of
order four or higher. Though we have not been able to find a general proof, we believe
(3.17) to be a universal consequence of superconformal Ward identities. It is thanks to
the relation for the conformal dimension h = R + j1 + j2 that the SU (2)R current can
reproduce the appropriate scaling dimension, and the absence of additional operators
should be excluded by selection rules for three-point functions of Schur-type supercon-
formal multiplets. In practice, we have been able to give an abstract argument that this
OPE holds only for the case where O is a scalar operator. For non-scalar operators in
the abstract setting, we leave the structure of these OPEs as a conjecture. Later in this
section, the OPE (3.17) will be shown to hold in full generality in the theories of free
hypermultiplets and free vector multiplets. The abstract claim would follow if the most
general solution of the requisite Ward identity is expressible as a linear combination
of structures corresponding to free field models, which is empirically the case in all
analogous situations with which the authors are familiar.

10 The term corresponding to the simple pole does not immediately follow from the OPE given in (3.13). In
particular, though the presence of ∂TJ (0) is guaranteed as a consequence of the double pole, we may worry
that an additional quasiprimary (in the two-dimensional sense) may also appear. Such a quasiprimary O would
have to be a boson of holomorphic dimension h = 3 and have nonzero three point function 〈TJ TJ O〉. This
is forbidden by Bose symmetry.
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3.2.2. Affine enhancement of the flavor symmetry. We next turn to the role played by the
flavor symmetries of T in the associated chiral algebra. When T enjoys a flavor symmetry
G F , the corresponding conserved current Jαα̇ is an element of a B̂1 supermultiplet, which
additionally contains as its Schur primary the moment map operator M11 described in
the list at the end of Sect. 3.1.1. We expect the presence of G F symmetry to make itself
known via the chiral operator associated to the moment map. Following the now-familiar
procedure, we define a i -closed operator M(z, z̄) via twisted translations of the Schur
moment-map operator from the origin, and identify the corresponding cohomology class
as a meromorphic operator in the chiral algebra,

M(z, z̄) := uI(z̄)uJ (z̄)MIJ (z, z̄), J (z) := κ[M(z, z̄)]
i
. (3.18)

The normalization constant κ will be determined momentarily. The meromorphic oper-
ator J (z) has holomorphic dimension h = 1. We have suppressed flavor indices up to
this point, but these operators all transform in the adjoint representation of the flavor
symmetry group, and so we actually find dim G F dimension one currents J A(z) in the
chiral algebra. It is natural to suspect that these operators will behave as affine currents
for the flavor symmetry. Indeed, a little calculation bears out this expectation. First, recall
that the central charge k4d of the flavor symmetry is defined in terms of the self-OPE of
the conserved flavor symmetry current as follows,

J A
μ (x) J B

ν (0) ∼ 3k4d

4π4 δ
AB x2gμν − 2xμxν

x8 +
2

π2

xμxν f ABC x · J C (0)

x6 + · · · . (3.19)

Here A, B,C = 1, . . . , dim G F are adjoint flavor indices, and we are using normal-
izations such that long roots of a Lie algebra have length

√
2 as in [30]. In the same

conventions, the OPE of two moment maps reads

M A IJ (x)M B KL(0) ∼ − 3k4d

48π4

εK(IεJ )LδAB

x4 −
√

2

4π2

f ABC MC (I(KεL)J )

x2 + · · · .
(3.20)

The OPE for the corresponding twisted-translated operators follows directly,

M A(z, z̄)M B(0, 0) ∼ − 3k4d

48π4

δAB

z2 +

√
2

4π2 i
f ABC MC (0, 0)

z

+

√
2

4π2 f ABC MC 21(0)
z̄

z
+ · · · , (3.21)

where the last term is i -exact. Setting κ = 2
√

2π2, we recognize the canonical current
algebra OPE,11

J A(z)J B(w) ∼ k2d
δAB

(z − w)2
+

∑
C

i f ABC J C (w)

z − w
, (3.22)

where the two-dimensional affine level k2d is related to the four-dimensional flavor
central charge k4d by

k2d = −k4d

2
. (3.23)

This is the second important entry in the dictionary.

11 In two dimensions it is standard to define a convention-independent affine level k2d as k2d := 2k̃2d
θ2 ,

where k̃2d is the level when the length of the long roots are normalized to be θ . In our conventions θ2 = 2
and so k̃2d = k2d .
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3.2.3. The Hall–Littlewood chiral ring and chiral algebra generators. An interesting
problem that will be of particular concern in Sect. 5 is that of giving a simple description
of the chiral algebra χ[ T ] associated to a given T in terms of a set of generating
currents. Generators of a chiral algebra are by definition those sl(2) primary operators
{O j } for which the normal ordered products of their descendants, i.e., operators of the
form ∂n1O1∂

n2O2 . . . ∂
nk Ok , span the whole algebra.12 When the chiral algebra has only

a finite number of generators, it is customary to refer to it as a W-algebra.
While we have given a clear set of rules that identifies the spectrum of the chiral

algebra given the spectrum of the four-dimensional theory T , these rules have little to
say about the question of what operators are generators of χ[ T ]. There turns out to be a
subset of generators that is always relatively easy to identify. Recall from Sect. 3.1.1 that
the HL chiral and anti-chiral rings are consistent truncations of the N = 1 chiral and
anti-chiral rings of T , respectively. As such, they are commutative rings, and it is often
possible to give them presentations in terms of generators and relations. What we show
now is that the meromorphic operators associated to the generators of the HL chiral and
antichiral rings are in fact generators of χ [ T ] in the chiral algebra sense.

Given the shortening conditions they obey, one finds that the chiral algebra operators
associated to HL operators have holomorphic dimension h = R+|r |. In order to establish
the claim made above, we will show that an HL operator can never arise as a normal
ordered product of other operators that are not themselves of HL type. Let O1(z, z̄) and
O2(z, z̄) be two generic twisted-translated Schur operators, and let us assume that their
OPE contains an HL operator OHL

3 ,

O1(z, z̄)O2(0, 0) ∼ 1

zh1+h2−h3
OHL

3 (0, 0) + . . . (3.25)

By assumption, h3 = R3 + |r3|, while (3.7) implies that h1 � R1 + |r1|, h2 � R2 + |r2|.
The U (1)r charge is conserved, so r3 = r1 + r2 and |r3| � |r1| + |r2|. Furthermore,
SU (2)R selection rules imply the triangular inequality R3 � R1 + R2. Combining these
(in)equalities, we find that h3 � h1 + h2, which implies that an HL operator may only
appear on the right hand side as a singular term (if h3 < h1 + h2) or as the leading
non-singular term (if h3 = h1 + h2). The latter possibility requires that O1 and O2
saturate the respective bounds (3.7) for h1 and h2, which is to say that they themselves
must be HL operators. This argument establishes that HL operators cannot be generated
as normal ordered products of non-HL operators, and so the generators of the HL chiral
and antichiral rings must necessarily be generators of the chiral algebra.

3.2.4. The Hall–Littlewood chiral ring and virasoro primaries. A further interesting
feature of the HL chiral ring operators is that their corresponding meromorphic operators
are always Virasoro primaries. For the generators of the HL chiral ring, this is already
clear since the generators of any chiral algebra that includes a stress tensor are necessarily
primaries of the Virasoro subalgebra. For other HL operators, though, this is a useful
result that will help organize our thinking about some of the examples studied in Sect. 5.

The statement follows from a relatively straightforward analysis of the OPE of the
meromorphic stress tensor with an arbitrary HL operator. In particular, let O1(z) be the

12 We are adopting the normal ordering conventions of [31], in which a sequence of chiral operators represents
left-nesting of conformally normal-ordered products:

O1O2 · · · On−1On := (O1(O2(· · · (On−1On)))) . (3.24)

The algebra of operators so-defined is non-commutative and non-associative.
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meromorphic operator associated to an HL operator in four dimensions. The quantum
numbers of O1 obey the HL relation

h1 = R1 + |r1| . (3.26)

Now the crucial observation from which our result follows is this: from a four-
dimensional perspective, the meromorphic stress tensor is a z̄-dependent linear com-
bination of operators with r = 0 and R = 0,±1. Consequently, in the OPE of the
meromorphic stress tensor with O1(0), the only operators that may appear will have
R = R1 ± 1 or R = R1 and r = r1. With what power of z can such an operator appear
in the OPE? A Schur operator Oγ (0) with R = R1 + γ and M = |r1| + 2min( j1, j2)
will appear in the OPE as

T (z)O1(0) ⊃ Oγ (0)

z2+R1+|r1|−R−M = Oγ (0)

z2−γ−2min( j1, j2)
. (3.27)

This is at most a pole of order three (when γ = −1 and j1 = 0 or j2 = 0), but such a pole
cannot appear because HL operators are always sl(2) primaries—thus the most singular
term possible is a pole of order two. This is precisely the property that characterizes
Virasoro primary operators, and so we have our result.

3.3. The chiral algebras of free theories. The simplest N = 2 SCFTs are the theories of
a free hypermultiplet and that of a free vector multiplet. For these special cases, we give
a complete description of the associated chiral algebras. These chiral algebras are useful
as the building blocks of interacting Lagrangian theories, some of which are discussed
in Sect. 4. We describe in turn the cases of hypermultiplets and vector multiplets.

3.3.1. Free hypermultiplets. Let us consider the field theory of a single free hypermul-
tiplet. The hypermultiplet itself lies in the short supermultiplet B 1

2
, in which the primary

Schur operators are the scalars Q and Q̃. These are the highest weight states in a pair of
SU (2)R doublets,

QI =
(

Q
Q̃∗

)
, Q̃I =

(
Q̃

−Q∗
)
. (3.28)

The single free hypermultiplet enjoys an SU (2)F flavor symmetry, under which QI

and Q̃I transform as a doublet. To work covariantly in terms of this SU (2)F , we can
introduce the following tensor,

QI
Î :=

(
Q Q̃
Q̃∗ −Q∗

)
, (3.29)

where Î = 1, 2 is the newly minted SU (2)F index.
The Schur operators in this free theory are all the “words” that can be constructed

out of the “letters” {Q, Q̃, ∂++̇}. As there are no singularities in the products of (∂++̇

derivatives of) Q and Q̃, the operator associated to any given word is well-defined and
the Schur operators in this theory form a commutative ring. The set of all meromorphic
operators in the free hypermultiplet chiral algebra are therefore precisely the i coho-
mology classes of the twisted-translated versions of these words. This chiral algebra is
itself a free chiral theory in two dimensions. Let us see how this works.
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The twisted-translated operators and the associated meromorphic operators for the
hypermultiplet scalars themselves are defined as follows,

QÎ(z, z̄) := uI(z̄) QI
Î(z, z̄), qÎ(z) := [QÎ(z, z̄)]

i
. (3.30)

The relation to the operators defined in Sect. 2.4 is qÎ(z) = (q(z), q̃(z)). This is an
SU (2)F doublet of dimension 1/2 meromorphic fields, the OPE of which can be com-
puted using the free-field OPE in four dimensions and the definition of the twisted
translated operators in (3.30),

qÎ(z) qĴ (w) ∼ εÎĴ
z − w

. (3.31)

It is reasonably easy to see that the entire spectrum of the chiral algebra of four-
dimensional hypermultiplets is obtained by taking normal ordered products of the qÎ(z)
and their descendants. In particular, one can show that the following diagram com-
mutes,13

{Oi , Oj} OiOj

{[Oi] , [Oj ]} : [Oi][Oj ] :

×4d

i i

×::

(3.32)

where the top row represents multiplication in the ring of Schur operators, the bottom
row represents creation/annihilation normal ordered products of chiral vertex opera-
tors, and the vertical arrows represent the identification of a Schur operator with its
meromorphic counterpart in the chiral algebra. It follows that the meromorphic operator
associated to any given word in (∂++̇derivatives of) Q and Q̃ is simply the corresponding
creation/annihilation normal ordered product of (holomorphic derivatives of) q and q̃ .

The chiral algebra of the free hypermultiplet is thus none other than the free symplectic
boson algebra (cf. [32]). This simple example serves to illustrate some of the general
points made in the previous subsections. The symplectic boson theory has a canonical
stress tensor,

T (z) = 1

2
εÎĴ qÎ∂qĴ (z), (3.33)

and it is easy to check that the modes {L+1, L0, L−1} appearing in Laurent expansion
of (3.33) reproduce the action of the holomorphic sl(2) symmetry inherited from four
dimensions. Thus the holomorphic sl(2) is indeed enhanced to Virasoro symmetry.
Moreover, we observe that given the form of the SU (2)R current in four dimensions

J IJ
μ (x) ∼ εÎĴ Q(I

Î ∂μQJ )
Ĵ (x), (3.34)

The corresponding meromorphic operator TJ (z) will be equivalent to the canonical
stress tensor,

T (z) = TJ (z) . (3.35)

13 We will see when we come to consider interacting theories in Sect. 5 that product structures on Schur
operators do not always translate so simply into those of the chiral algebra.
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From the T T OPE we read off the central charge c2d = −1. Recalling that the conformal
anomaly coefficient of a free hypermultiplet is c4d = 1/12, this result is in agreement
the universal relation c2d = −12c4d . The symplectic boson theory is like the theory of a
complex free fermion (which of course has c2d = 1), but with opposite statistics, hence
the opposite value of the central charge.

Finally we mention a minor generalization of the above story for hypermultiplets.
Gauge theories with N = 2 supersymmetry are often described in terms of half-
hypermultiplets instead of whole hypermultiplets. The generalization of the chiral alge-
bra to the half-hypermultiplet conventions is straightforward. Let us consider half-
hypermultiplets transforming in a pseudo-real representation R of some symmetry group
G (at the moment we are working at zero coupling, so G is just a global symmetry group).
The corresponding chiral algebra will be generated by dim R meromorphic fields,

qi , i = 1, . . . , dim R, (3.36)

and the singular OPE of these operators will be given by

qi (z)q j (w) ∼ �i j

z − w
. (3.37)

Here�i j is the anti-linear involution that maps the representation R to its conjugate and
squares to minus one. The description of the single full hypermultiplet in (3.31) actually
fits into this framework with G = SU (2)F .

3.3.2. Free vector multiplet. The other key ingredient in Lagrangian SCFTs is the the-
ory of free vector multiplets. Free vectors lie in the short supermultiplet D̄0(0,0) and its
conjugate D0(0,0), whose superconformal primaries are the complex scalar φ and its con-
jugate φ̄, respectively. The primary Schur operators in these multiplets are the fermions
λ1

+ and λ̃1
+̇, and as in the case of hypermultiplets, the entire set of Schur operators in this

theory is comprised of the words built out of the letters λ1
+, λ̃1

+̇, and ∂++̇.
The twisted-translated operators associated to the vector multiplet fermions are

defined as follows,

λ(z, z̄) := uI(z̄) λ
I
+ (z, z̄), λ̃(z, z̄) := uI(z̄)λ̃

I
+̇ (z, z̄), (3.38)

and the i -cohomology classes of these operators are Grassmann–odd, holomorphic
fields of dimension h = 1,

λ(z) := [λ(z, z̄)]
i
, λ̃(z) := [λ̃(z, z̄)]

i
. (3.39)

Using the four-dimensional free field OPEs, it is easy to derive the OPEs of these
holomorphic fields. They are again the OPEs of a free chiral algebra:

λ̃(z)λ(0) ∼ 1

z2 , λ(z)λ̃(0) ∼ − 1

z2 . (3.40)

Indeed, the free-field form of these OPEs leads to an analogous commutative diagram
to (3.32), which ensures that all the meromorphic operators in this theory are generated
by λ(z) and λ̃(z) in the chiral algebra sense. We can recognize this chiral algebra as the
(b, c) ghost system of weight (1, 0),14

λ̃ := b(z), λ(z) := ∂c(z) . (3.41)

14 Recall that the derivative of a dimension zero conformal primary field—c(z) in this case—is again a
conformal primary.
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In making this identification, we have introduced an extra spurious mode—the zero
mode c0 of c(z)—which is of absent in the algebra generated by λ(z) and λ̃(z). Thus,
the more precise statement is that the chiral algebra associated to the vector multiplet
is the so-called “small algebra” of the (b, c) system, which is by definition the algebra
generated by b(z) and ∂c(z) (cf. [33,34]). In other words, the Fock space of the small
algebra is the subspace of the (b, c) Fock space that does not contain c0, or equivalently,
the subspace annihilated by b0,

Fsmall := {ψ ∈ Fbc | b0ψ = 0} . (3.42)

The small algebra enjoys a global SL(2,R) symmetry under which λ(z) and λ̃(z) trans-
form as a doublet. We can make this symmetry manifest by introducing the notation
ρα with α = ±, where ρ+ := λ̃ and ρ− := λ. Note that the Cartan generator of this
symmetry acts as the U (1)r charge. In the language of the small algebra, the OPE can
be put in a covariant form,

ρα(z) ρβ(0) ∼ εαβ

z2 . (3.43)

As in the hypermultiplet case, the action of the {L+1, L0, L−1} modes of the canonical
ghost stress tensor can easily be seen to match the action of the geometric sl(2) action
inherited from the four-dimensional conformal algebra. Furthermore, given the SU (2)R
current of the free vector theory,

J IJ
αα̇ (x) ∼ λ(Iα λ̃

J )
α̇ (x), (3.44)

we see that the canonical stress tensor coincides precisely with the dimension two current
TJ obtained from the R-symmetry current by the usual map,

T (z) = −1

2
εαβρ

αρβ(z) = TJ (z) . (3.45)

The central charge of the (b, c) ghost system/small algebra is c2d = −2, which can
be seen to agree with the relation (3.15) upon recalling that c4d = 1

6 for a free vector
multiplet.

3.4. Gauging prescription. The natural next step is to consider interacting SCFTs.
Lagrangian N = 2 SCFTs can be described using hypermultiplets and vector multiplets
as elementary building blocks (see [35] for a recent classification of all possibilities). In
particular, such an SCFT consists of vector multiplets transforming in the adjoint repre-
sentation of a semisimple gauge group G = G1 × G2 · · · × Gk , along with a collection
of (half)hypermultiplets transforming in some representation R of the gauge group such
that the one-loop beta functions for all gauge couplings vanish. Supersymmetry ensures
that the theory remains conformal at the full quantum level. The building blocks of the
corresponding chiral algebra are a collection of symplectic bosons {q, q̃} in the repre-
sentation R, and a collection of (b, c) ghost small algebras in the adjoint representation
of G. When the gauge couplings are strictly zero, the chiral algebra is simply obtained
by imposing the Gauss law constraint, i.e., by restricting to the gauge-invariant opera-
tors of the free chiral algebra of symplectic bosons and ghosts. Our next step will be to
determine what happens as we turn on the gauge couplings.
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In fact, as Lagrangian theories are a small subset of all possible N = 2 SCFTs, it is
worthwhile to put the discussion in a more general context. Given a general supercon-
formal field theory T with G F flavor symmetry, a new SCFT is obtained by gauging
a subgroup G ⊂ G F provided the gauge coupling beta function vanishes. We will
denote the gauged theory with a nonzero gauge coupling g as TG .15 Though T may
be strongly coupled, the gauging procedure can be described in semi-Lagrangian lan-
guage. By assumption, T possesses a conserved flavor symmetry current J A

αα̇ , where
A = 1, . . . dim G, which by N = 2 supersymmetry is the top component of the moment
map supermultiplet B̂1. The gauged theory TG is described by minimally coupling an
N = 2 vector multiplet to B̂1. Of particular importance is the addition to the action, in
N = 1 notation, of the superpotential coupling

g
∫

d2θ �A M11,A + h.c., (3.46)

where � is the N = 1 chiral superfield in the N = 2 vector multiplet, and M11 is the
N = 1 chiral superfield whose bottom component is the complex moment map M11;
both transform in the adjoint representation of G.

Let us assume that the chiral algebra χ [T ] is known. It will suffice to work abstractly,
in the sense that the only features of χ [T ] that we will use follow directly from the
existence of the global G symmetry. In particular, there will be an affine current J A(z)
at level k2d = − 1

2 k4d (cf. Sect. 3.2). As we mentioned above, at zero gauge coupling the
chiral algebra of the gauged theory is obtained by imposing the Gauss law constraint on
the tensor product algebra of χ[T ] with the G-ghost small algebra (ρ+, ρ−). In fact, it
will be more useful to introduce the full (b, c) system and restrict to the small algebra
by imposing the auxiliary condition bA

0 ψ = 0 for any state ψ .
The affine current associated to the G symmetry in the ghost sector is

J A
gh := −i f ABC (cBbC ) . (3.47)

The Gauss law, or gauge-invariance, constraint requires that all physical states should
have vanishing total gauge charge, which is measured by the zero mode of the total
gauge symmetry current,

J A
tot(z) := J A(z) + J A

gh(z) . (3.48)

Symbolically, we can therefore define the chiral algebra at zero gauge coupling as fol-
lows:

χ[T (0)
G ] = {ψ ∈ χ [T ] ⊗ (bA, cA) | bA

0 ψ = J A
tot 0ψ = 0} . (3.49)

We are now ready to address the problem of identifying the chiral algebra for TG with
g 	= 0.

3.4.1. BRST reduction of the chiral algebra. On general grounds, we expect that the
chiral algebra of the interacting gauge theory will contain fewer operators than the non-
interacting version, because some of the short multiplets containing Schur operators that
are present at zero coupling will recombine into long multiplets and acquire anomalous
dimensions. Ideally, we would like to describe this phenomenon using only the general
algebraic ingredients that we have introduced so far. A crucial hint comes from phrasing

15 More precisely, there is one independent gauge coupling for each simple factor of the gauge group. To
avoid clutter we focus on the procedure for gauging one simple factor at the time, so G will taken to be a
simple group in what follows.
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the condition of conformal invariance of the gauge theory more abstractly. The vanishing
of the one-loop beta function amounts to the requirement that in the ungauged theory,
the flavor symmetry central charge is given by

k4d = 4h∨, (3.50)

where h∨ is the dual Coxeter number of the gauge group. This means that in two-
dimensional language, the corresponding symmetry in χ[T ] must have its affine level
given by

k2d = −2h∨ . (3.51)

The affine level of the ghost-sector flavor currents Jgh is easily calculated to be 2h∨,
so the requirement of conformal invariance translates into the condition that the level
of the total affine current J A

tot be zero. Precisely in this case, it is possible to construct
a nilpotent BRST operator in the chiral algebra. Imitating a construction familiar from
coset conformal field theory [36], we define

QBRST :=
∮

dz

2π i
jBRST(z), jBRST := cA

[
J A +

1

2
J A

gh

]
. (3.52)

Our contention is that the chiral algebra corresponding to the gauged theory at finite
coupling is obtained by passing to the cohomology of QBRST relative to the ghost zero
modes bA

0 ,16

χ [TG] = H∗
BRST[ψ ∈ χ [T ] ⊗ (bA, cA)

∣∣ bA
0 ψ = 0] . (3.53)

Apart from its elegance, there are compelling physical arguments behind this claim. We
will show that states of the chiral algebra that define nontrivial cohomology classes of
QBRST correspond to the four-dimensional Schur states that survive in the interacting
theory. By construction, all states of χ [T (0)

G ] are annihilated by the four supercharges in
(3.3). As we turn on the gauge coupling, those supercharges receive quantum corrections,
and only a subset of states remains supersymmetric. We will see that QBRST precisely
implements the O(g) correction to one of the Poincaré supercharges, which will justify
our conjecture under the assumption that higher order corrections do not remove any
additional states.

A preliminary remark is that the Gauss law constraint is imposed automatically.
Because

{bA
0 , QBRST} = J A

tot 0, (3.54)

states in the small algebra that are QBRST-closed are automatically gauge invariant.
Consequently, we have the simpler expression,

χ [TG] = H∗
BRST[χ[T (0)

G ]] . (3.55)

We can rewrite QBRST and separate out the ghost zero modes,

QBRST = cA
0 J A

tot 0 + bA
0 X A + Q− , (3.56)

16 In other terms, the BRST cohomology is being defined entirely in the small algebra: two QBRST-closed
states belong to the same cohomology class if and only if they differ by an exact state QBRSTλ, where λ is
also in the small algebra.
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where we have defined

X A := − i

2
f ABC

⎛
⎝∑

n 	=0

: cB−ncC
n : −cB

0 cC
0

⎞
⎠ , (3.57)

while Q− anticommutes with both cA
0 and bA

0 and can thus be expressed purely in terms
of (ρ+A, ρ−A),

Q− :=
∑
n 	=0

1

n
: ρ−A−n J A

n : +
i

2
f ABC

∑
n 	=0
m 	=0
m 	=n

1

nm
: ρ−A−n ρ

−B
m ρ+C

n−m : . (3.58)

The operator Q− fails to be nilpotent by a term proportional to J A
tot 0, so it is nilpotent

when acting on gauge-invariant states. It follows that (3.54) can be equivalently written
as

χ [TG] = H∗
Q−[ψ ∈ χ[T ] ⊗ (ρ+A, ρ−A),with J A

tot 0ψ = 0] . (3.59)

This is the form of our conjecture that makes more immediate contact with four-
dimensional physics. We will show that the action of Q− precisely matches to the
action of Q̃(1)

2−̇, the O(g) term in the expansion of the supercharge Q̃2−̇,

Q̃2−̇ = Q̃(0)
2−̇ + g Q̃(1)

2−̇ + O(g2) . (3.60)

In fact, Q− is the lowest component of an SL(2,R) doublet of operators Qα , with

Q+ :=
∑
n 	=0

1

n
: ρ+A−n J A

n : +
i

2
f ABC

∑
n 	=0
m 	=0
m 	=n

1

mn
: ρ+A−nρ

+B
m ρ−C

n−m : . (3.61)

In complete analogy, the action of Q+ will be shown to be isomorphic to that of Q1(1)
− ,

the O(g) term in the expansion of Q1−. The two Poincaré supercharges Q1− and Q̃2−̇ play
a completely symmetric role in the definition of Schur operators. The fact that QBRST
contains Q− rather than Q+ is a consequence of our choice (3.41), which treated λ and
λ̃ in a slightly asymmetric fashion.

Fortunately, to leading order in the gauge coupling the action of the relevant super-
charges takes a universal form in the subspace of operators that obey the tree-level Schur
condition. Such operators are obtained by forming gauge-invariant combinations of more
elementary building blocks, namely the conformal primaries of the “matter” SCFT T ,
the gauge-covariant derivative D++̇, and the gauginos λ̃1

+̇ and λ1
+. The supersymmetry

variation of a gauge-invariant “word” is found by using the Leibniz rule to act on each
elementary “letter”.17 It is then sufficient to specify the SUSY variations of the letters:

1. Q1− and Q̃2−̇ (anti)commute with the conformal primary operators in the matter
sector T .

17 For the special case of N = 2 superconformal QCD, a very explicit description of the action of Q1(1)
− in

the subsector of tree-level Schur operators can be found in Section 5 of [37].
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2. For the gauge-covariant derivative D++̇ := ∂++̇ + g A++̇,

[Q1−, D++̇] = gλ̃1
+̇, [Q̃2−̇, D++̇] = gλ1

+ , (3.62)

where we have just used the tree-level variation of the gauge field, times the explicit
factor of g.

3. Finally the variations of the gauginos can be deduced from the non-linear classical
equations of motions of the vector multiplet, minimally coupled to the moment map
supermultiplet B̂1,

{Q̃2−̇, λ̃1
+̇} = {Q1−, λ1

+} = F11 = gM11 (3.63)

{Q̃2−̇, λ1
+} = {Q1−, λ̃1

+̇} = 0,

where F11 is the highest-weight of the SU (2)R triplet of auxiliary fields in the
N = 2 vector multiplet.18

If a Schur operator in the free theory is to retain its Schur status at O(g), then when
inserted at the origin it must be annihilated by the one-loop corrections to the four
relevant supercharges, {Q̃(1)

2−̇, (Q̃
(1)
2−̇)

†,Q1(1)
− , (Q1(1)

− )†}. Equivalently, it must define a

nontrivial cohomology class with respect to Q̃(1)
2−̇ and Q1(1)

− . Conveniently, the recombi-
nation rules for shortened multiplets of Schur type (cf. Appendix B) are such that in any
such recombination, the Schur operators of T (0) are lifted in quartets that are related by
the action of these two supercharges in the manner indicated in the following diagram:

ĈR+ 1
2 (j1− 1

2 ,j2)

ĈR(j1,j2) ĈR+1(j1− 1
2 ,j2− 1

2 )

ĈR+ 1
2 (j1,j2− 1

2 )

˜Q(1)
2−̇Q1(1)

−

˜Q(1)
2−̇ Q1(1)

−

(3.64)

In the diagram, we are labeling Schur operators by the name of the supermultiplet to
which they belong.19 Consequently, if an operator remains in the cohomology of either
supercharge, it necessarily remains in the cohomology of both, and so stays a Schur
operator at one-loop order. For example, if an operator becomes Q1(1)

− exact then it is

either at the right or at the top of the diagram and it follows that it is either Q̃(1)
2−̇ exact or

not Q̃(1)
2−̇ closed, respectively. The other cases can be treated analogously.

Under the 4d/2d identifications

Q̃(1)
2−̇ → Q−, Q1(1)

− → Q+, D++̇ → ∂, λ1
+ → ρ− , λ̃1

+̇ → ρ+, (3.65)

18 In an N = 1 description of the N = 2 vector multiplet, F11 = F̄ , where F is the top component of
chiral superfield φ, whose superpotential coupling with the moment map is given in (3.46).

19 To include all possible recombinations, we must formally allow j1 and j2 to take the value − 1
2 as well,

and re-interpret a Ĉ multiplet with negative spins as a B̂, D or D̄ multiplet, according to the rules:
Ĉ

R( j1,− 1
2 )

:= D̄
R+ 1

2 ( j1,0)
, Ĉ

R(− 1
2 , j2)

:= D
R+ 1

2 (0, j2)
, Ĉ

R(− 1
2 ,− 1

2 )
:= B̂R+1.
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one easily checks that (3.58) and (3.61) have precisely the right form to reproduce the
action of the O(g) correction to the four-dimensional supercharges. Thus, the BRST
cohomology specified in (3.53) is just the right thing to project out states whose corre-
sponding Schur operators are lifted at one-loop order.

It is of some interest to note that this story of one-loop corrections to the spectrum
of Schur operators admits a simple truncation to the case of HL chiral ring operators.
The tree-level HL operators will be gauge-invariant combinations of the HL operators
of T and the gaugino λ1

+. The operators that are lifted from the spectrum at one-loop
will be those that are related by the corrected supercharge Q̃(1)

2−̇, whose action in this
sector is completely determined by (3.63). The problem of finding the HL operators
in the spectrum of the interacting theory thus becomes a miniature “HL-cohomology”
problem. In examples, it is sometimes useful to solve this problem as a first step in order
to determine some important operators that will necessarily make an appearance in the
chiral algebra.

Finally, a caveat is in order. We have assumed that the Schur operators that persist
at infinitesimal coupling will remain protected at any finite value of the coupling. In
some concrete cases, it can be demonstrated that no further recombination of shortened
multiplets is possible. Moreover, in the examples of Sect. 5 we will propose simple
economical descriptions for the chiral algebras defined by this cohomological recipe,
and demonstrate that they have the symmetries expected at finite coupling from S-duality,
giving strong evidence for our proposal, at least in those examples.

3.4.2. Non-renormalization of three-point couplings. So far, we have studied how the
spectrum of operators is modified when the coupling is turned on, but we have said
nothing about the OPE coefficients of the remaining physical operators in the gauged
theory. Our implicit assumption has been that the OPE coefficients of operators that
remain protected at finite coupling are actually independent of the coupling. From a
two-dimensional perspective, it seems unlikely that the OPE coefficients could change
due to the extremely rigid structure of chiral algebras, and we expect a correspond-
ing non-renormalization statement to hold in four dimensions. Indeed, such a non-
renormalization theorem directly follows from the methods and results of [38]. Let
us consider the four-point function of three Schur-type operators and of the exactly
marginal operator Oτ responsible for changing the complexified gauge coupling,

〈OI1
1 (x1)OI2

2 (x2)OI3
3 (x3)Oτ (x4) 〉, (3.66)

where I = (I(1) . . . I(k)) with I(i) = 1, 2 are SU (2)R multi-indices and we have sup-
pressed Lorentz indices. Non-renormalization of the appropriate three-point function of
Schur-type operators will follow at once if we can argue that the above four-point func-
tion vanishes for any x4 when x1,2,3 all lie on the plane. By a conformal transformation,
we can always take the fourth operator to lie on the same plane, and then focus on the
SU (1, 1|2) subalgebra of SU (2, 2|2) defined by the embedding (2.20). The Schur-type
operators are chiral primaries of this subalgebra. The marginal operator Oτ , being the
top component of an Ē2 multiplet of SU (2, 2|2), is of the form Oτ = {Q1, [Q2, . . . ]}
where QI := QI− are supercharges of SU (1, 1|2).20 All the properties exploited in
[38] to show the vanishing of the four-point function (3.66) are satisfied. The authors of
[38] interpreted this result as a non-renormalization theorem for three-point functions

20 Similarly, the conjugate operator Ōτ is the top component of an E2 and can be written as {Q̃1, [Q̃2, . . . ]}.
An entirely analogous argument holds for the four-point function containing Ōτ .
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of chiral primaries of two-dimensional (0, 4) theories, but exactly the same argument
applies to our case as well.

We close this section by pointing out a curious aspect of the gauging prescription
given here. Given a chiral CFT χ [T ] with affine G symmetry, one can introduce a two-
dimensional vector field Az̄ and gauge G. Following standard arguments (for example,
see [36,39]), a change of variables in the path integral eliminates the gauge field in favor
of an extra G current algebra at level −(2h∨ + k2d) and an adjoint-valued (b, c) ghost
system. One must also impose invariance under the standard BRST operator associated
to the gauge symmetry. In our case, 2h∨ + k2d = 0 so the extra current algebra is trivial,
and the BRST operator associated to the two-dimensional gauging takes precisely the
form of (3.52). In some sense, we have found that “4d gauging = 2d gauging”. We find
it plausible that a localization-style argument may shed light on this correspondence.

4. Consequences for Four-Dimensional Physics

The chiral symmetry algebras that we have uncovered have extensive consequences for
the spectrum and structure constants of any N = 2 SCFT. To give a simple example,
Virasoro symmetry implies that any Higgs branch half-BPS supermultiplet B̂R is accom-
panied by an entire module of semi-short ĈR′( j, j) multiplets with R′ = R − 1, R, R + 1.
In the four-dimensional theory, the descendant operators arise by taking repeated normal
ordered products with certain components of the SU (2)R current, but the chiral algebra
perspective makes this structure much more transparent.

In this section we elaborate on the relationship between the observables associated to
the chiral algebra (i.e., its correlation functions and torus partition function) and those of
the parent four-dimensional theory. We first point out that the superconformal Ward iden-
tities for four-point functions of B̂R operators [15,16] are a simple consequence of our
cohomological construction. This new perspective makes it clear that analogous Ward
identities must hold for four-point functions of general Schur operators. The presence
of meromorphic functions in the solution of the Ward identities of [11,15,16] was one
of the initial clues that led to our work. We now have a neat conceptual interpretation
for them: they are nothing but the correlation functions of the associated chiral alge-
bra. By exploiting the relationship between the two-dimensional and four-dimensional
perspectives we are able to derive new unitarity bounds that must be satisfied by the
conformal and flavor anomalies of a general interacting N = 2 SCFT. Finally, we
delineate the relationship between the torus partition function of the chiral algebra and
the superconformal index of the parent four-dimensional theory.

4.1. Conformal twisting and superconformal Ward identities. By construction, for a
given SCFTT , the correlation functions ofχ [T ] are equal to certain correlation functions
of physical operators in T restricted to lie on the plane. From the four-dimensional point
of view these are somewhat unnatural correlators to study, as they have explicit space-
time dependence built into the operators. On the other hand, each correlation function
of χ[T ] is canonically associated to a family of more natural correlation functions of T
that are obtained by replacing the twisted-translated operators with the corresponding
untwisted operators at the same points in R

2.
Let us consider such a correlator now. For simplicity, we specialize to a four-point

function, in which case there is actually no loss of generality in restricting the operators
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to be coplanar. We denote the untwisted operators as OI(z, z̄), with SU (2)R multi-
indices I = (I(1), . . . , I(k)) where I(i) = 1, 2. The components of the multi-index are
symmetrized; the operator transforms in the spin k/2 representation of SU (2)R . Recall
that in our conventions, the Schur operator in this SU (2)R multiplet is the highest-weight
state O1...1(z, z̄). We represent the four-point function of such operators as

FI1I2I3I4(zi , z̄i ) = 〈 OI1
1 (z1, z̄1)OI2

2 (z2, z̄2)OI3
3 (z3, z̄3)OI4

4 (z4, z̄4) 〉 . (4.1)

This is actually a collection of four-point functions labelled by the different possible
assignments for the R-symmetry indices. The full collection of four-point functions
can be conveniently packaged by introducing two-component SU (2)R vectors u(yi ) =
(1, yi ) and defining contracted operators that depend on the auxiliary variable y as
follows [15,16]

Oi (zi , z̄i ; yi ) = uI1(yi ) · · · uIki
(yi )O

(I1···Iki )

i (zi , z̄i ) . (4.2)

A single function of xi and yi can be defined that encodes the full content of the collection
of correlation functions in (4.1),

F(zi , z̄i ; yi ) = 〈 O1(z1, z̄1; y1)O2(z2, z̄2; y2)O3(z3, z̄3; y3)O4(z4, z̄4; y4) 〉 . (4.3)

Charge conservation ensures that this function is homogeneous in the auxiliary yi with
weight 1

2

∑
ki , and the correlation function for a given choice of external R-symmetry

indices can be read off by selecting the coefficient of the appropriate monomial in the
yi variables.

This repackaging makes it simple to state the relationship with correlation func-
tions of χ [T ]. The twisted chiral operators defined in Sect. 2.2 are the specialization
of the repackaged operators in (4.2) to yi = z̄i . So if the related four-point function of
meromorphic operators Oi (z) = χ [Oi (z, z̄)] is defined as

f (z1, z2, z3, z4) = 〈O1(z1)O2(z2)O3(z3)O4(z4)〉 , (4.4)

then the correlation functions are related according to

f (zi ) = F(zi , z̄i ; yi )
∣∣
yi →z̄i

. (4.5)

The fact that the left-hand side of this equation is a meromorphic function of the oper-
ator insertion points is a consequence of the cohomological arguments of the previous
sections, but it is also precisely the final form of the superconformal Ward identities for
such a correlation function [11–16].

This is a rather wonderful result: the entirety of the constraints imposed by supercon-
formal Ward identities on the four-point function of half-BPS operators are captured by
the existence of the twist of Sect. 2.2. It is worth noting that while the Ward identities of
[15] were derived specifically for half-BPS operators in B̂R multiplets, here we see that
the same type of Ward identities holds more generally for any Schur-type operators.
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4.2. Four-dimensional unitarity and central charge bounds. The natural inner product
on the Hilbert space of the radially quantized four-dimensional theory T does not sur-
vive the passage to cohomology. This is an immediate consequence of the fact that is
not hermitian. Hence, unitarity in four dimensions does not imply unitarity in the chiral
algebra. In fact, we have seen that a unitary theory T always gives rise to a chiral alge-
bra χ [T ] with negative central charge, which is necessarily non-unitary. Nevertheless,
there is an interesting interplay between the structure of the chiral algebra and four-
dimensional unitarity. This leads to new unitarity bounds for the anomaly coefficients
of any four-dimensional SCFT. In this section, we explore an elementary example that
provides us with such bounds. It is possible that more extensive analysis could lead to
further constraints; we leave such an analysis for future study.

The origin of nontrivial consistency conditions can be found in the fact that, as
summarized in (4.5), the meromorphic correlator f (zi ) can be computed in two different
ways that must agree. The first computation is the two-dimensional one: once the singular
OPEs of the meromorphic operators appearing in the correlator are known, the full
correlation function is completely fixed by meromorphy. The meromorphic correlator
further admits a unique decomposition into sl(2) conformal blocks,21 leading to an
expression of the form

f (zi ) =
(

z24

z14

)h12
(

z14

z13

)h34 1

zh1+h2
12 zh3+h4

34

∞∑
�=0

(−1)� a� g�(z),

g�(z) := (− 1
2 z)�−1z 2 F1(�, �; 2�; z), (4.6)

where we have adopted the standard notation zi j := zi −z j and z := z12z34
z13z24

. Additionally,
hi is the holomorphic scaling dimension of the i’th operator, and we have defined hi j =
hi − h j .

The second computation is the four-dimensional one. The correlator in (4.1) admits a
decomposition into su(2, 2|2) superconformal blocks that each represent the contribution
of a given superconformal multiplet to the four-point function. The contribution of each
superconformal block to the meromorphic part of the amplitude defined by (4.5) is
fixed up to the three-point coefficients. Thus for a given theory T , the spectrum and
three-point coefficients of BPS operators appearing in the conformal block expansion of
a given correlation function can be determined directly from the correlation functions
of χ[T ]. Non-trivial constraints arise when we require that the three-point coefficients
determined in this manner be consistent with unitarity.

Let us now turn to a specific example to study in detail. We consider the four-point
function of superconformal primary operators in B̂1 multiplets. As was explained in
Sect. 3, these multiplets contain the spin one conserved currents that generate the global
(non-R) symmetry of the theory, and the superconformal primaries are scalar moment
map operators M A. Consequently the results derived from this example will be relevant to
any theory with non-trivial flavor symmetry. The moment map operators have dimension
two and transform in the adjoint representations of both the flavor group G F and SU (2)R .
The four-point function of such operators can be expanded in channels corresponding
to each irreducible representation R of G F in which the exchanged operators in the

21 The result could also be expanded in Virasoro conformal blocks, but this is less natural for comparison
to four-dimensional quantities.
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conformal block expansion may transform,

〈M A(z1, z̄1; y1)M
B(z2, z̄2; y2)M

C (z3, z̄3; y3)M
D(z4, z̄4; y4)〉

=
∑

R∈⊗2adj

P ABC D
R FR(zi , z̄i ; yi ) , (4.7)

where P ABC D
R is the projector onto the irreducible representation denoted by R. The

projectors for the various groups can be obtained following the procedures described in
[40].

Per the discussion of Sect. 3.2, the chiral operators J A = χ[M A] are affine currents,
and the mermorphic correlators that emerge in the limit yi → z̄i are equal to the four-
point functions in the corresponding chiral algebra,

z2
12z2

34〈J A(z1)J
B(z2)J

C (z3)J
D(z4)〉 = f ABC D(z) =

∑
R

P ABC D
R fR(z) . (4.8)

Each such function can be examined independently as a potential source of nontrivial
consistency conditions. In Sect. 3 we found that the level of the affine Lie algebra symme-
try generated by these currents is k2d = − 1

2 k4d , so this meromorphic four-point function
is completely fixed in terms of the structure constants of the associated non-affine Lie
algebra and the flavor central charge,22

f ABC D(z) = δABδC D + z2δACδB D +
z2

(1 − z)2
δADδC B − z

k2d
f AC E f B DE

− z

k2d(z − 1)
f ADE f BC E . (4.9)

This correlator can be decomposed into G F channels, each of which can be expanded
in sl(2) conformal blocks as in (4.6). For example, for the singlet channel R = 1, the
above correlator gives

fR=1 = dim G F + z2
(

1 +
1

(1 − z)2

)
+

4z2h∨

k2d(z − 1)

= dim G F −
∑

�=0,2,···

2�(� + 1)(�!)2 (
2(� + 1)(� + 2)k2d − 8 h∨)
k2d(2� + 1)! g�+2(z) ,

(4.10)

where h∨ is the dual Coxeter number.
This operator product expansion can be compared with that of the full four-point

function in four dimensions. The superconformal block decomposition of such a four-
point function has been worked out in [13]. In particular, operators that can potentially
appear in the intermediate channel must belong to one of the following superconformal
multiplets:

• A�( j, j): Long multiplets that are SU (2)R singlets with j1 = j2 = j .
• Ĉ0( j, j): Semishort multiplets with j1 = j2 = j that contain conserved currents of

spin 2 j + 2.

22 Here we have rescaled the currents in such a way that the identity operator appears with unit normalization
in the current-current OPE.
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• Ĉ1( j, j): Semishort multiplets with j1 = j2 = j .
• B̂1: Half-BPS multiplets containing Higgs branch moment map operators.
• B̂2: Half-BPS multiplets containing Higgs branch chiral ring operators of dimension

four.
• I: The identity operator.

The contribution of each such multiplet to the full four-point function is fixed up to
a single coefficient corresponding to the three-point coupling (squared), and unitarity
requires that this coefficient be real and positive. The contribution of each multiplet to
the meromorphic functions fR(z) appearing in the superconformal Ward identities has
also been determined in [13]. The results are summarized as follows:

A
�( �2 ,

�
2 )

: 0,

Ĉ0( �2 ,
�
2 )

: λ2
Ĉ

0( �2 ,
�
2 )

g�+2(z),

Ĉ1( �2 ,
�
2 )

: −2λ2
Ĉ

1( �2 ,
�
2 )

g�+3(z),

B̂1 : λ2
B̂1

g1(z),

B̂2 : −2λ2
B̂2

g2(z),

Id : λ2
Id .

(4.11)

The coefficient λ2• of each contribution is required by unitarity to be non-negative.
Some of the coefficients appearing in (4.11) can be completely fixed by symmetry.

For example, the identity operator can only appear in the singlet channel fR=1(z), where
the corresponding coefficient is necessarily given by

λ2
Id = dim G F . (4.12)

The multiplet Ĉ0(0,0) contains a spin two conserved current, i.e., the stress tensor. There
can only be one such multiplet, and it contributes to the meromorphic part of the four
point function only in the singlet channel. The three-point coupling is fixed in terms of
the four-dimensional central charge. In particular, one finds that in fR=1(z),

λ2
Ĉ0(0,0)

= dim G F

3c4d
. (4.13)

Finally, multiplets of type B̂1 can contributes only to the adjoint channel, and the corre-
sponding three-point coupling in fadj(z) is fixed to be

λ2
B̂1

= 4h∨

k4d
. (4.14)

As far as we know, these are the only contributions to this four-point function that are
fixed by symmetry in terms of anomaly coefficients. Additionally, the multiplets Ĉ0( �2 ,

�
2 )

for � 	= 0 necessarily contain conserved currents of spin greater than two, and so are
expected to be absent in interacting theories [29]. We will take this to be the case in the
following analysis.
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Table 2. Dual Coxeter number and dimensions for simple Lie groups

G F h∨ dim G F G F h∨ dim G F

SU(N ) N N 2 − 1 E6 12 78
SO(N ) N − 2 N (N−1)

2 E7 18 133
USp(2N ) N + 1 N (2N + 1) E8 30 248
G2 4 14 F4 9 52

We can determine the three-point coefficients in, say, theR = 1 channel by comparing
with the expansion of the χ [T ] four-point function in (4.10). In particular, we find

λ2
Id = dim G F ,

λ2
Ĉ0(0,0)

− 2λ2
B̂2

= 8h∨

k4d
− 4 ,

λ2
Ĉ

1( �2 ,
�
2 )

= 2�+1(� + 2)((� + 1)!)2
k4d(2� + 3)!

(
(� + 2)(� + 3)k4d − 4h∨)

,

(4.15)

where in the last line only odd �may appear. The second line of (4.15), after substituting
the contribution of the stress tensor multiplet from (4.13), implies a nontrivial bound
that must be satisfied in order for the contribution of the B̂2 multiplet to be consistent
with unitarity,

dim G F

c4d
� 24h∨

k4d
− 12 . (4.16)

For reference, the dimensions and dual Coxeter numbers of the semi-simple Lie algebras
are displayed in Table 2. Similarly, the positivity of the last line in (4.15) for � = 1 implies
the bound

k4d � h∨

3
. (4.17)

The same analysis can be performed for the functions fR	=1(zi ). In these channels
there will be no contribution from the stress tensor multiplet, so the resulting bounds
make reference only to the anomaly coefficient k4d , as in (4.17). A priori, an independent
bound may be obtained for each representation R appearing in the tensor product of two
copies of the adjoint. For example, in the adjoint channel itself, there can be contributions
from B̂1 and Ĉ1( �2 ,

�
2 )

multiplets with even �. Unitarity then imposes a bound on k4d that
turns out to be equivalent to that of (4.17). Stronger bounds can be found by considering
other choices of R, the possible values of which will depend on the particular choice of
simple Lie algebra we consider. In general, we find that for a given choice of G F , the
strongest bound comes from requiring positivity of the contributions of B̂2 multiplets in
a single channel. The bounds from other channels are then automatically satisfied when
the strongest bound is imposed. These strongest bounds are displayed in Table 3, where
we also indicate the representation R ∈ ⊗2adj that leads to the bound in question.
It should be noted that for the special case G F = SO(8), the same strongest bound
is obtained from multiple channels. The representation appearing in the third line of
Table 3 is in fact decomposable as 70 = 35s ⊕ 35c, and the degeneracy in the bounds
can be understood as a consequence of SO(8) triality. For G F = SU (2) one finds no
additional bounds to the ones given in (4.16) and in (4.17). Finally, we can see that the
bound (4.17) arising from positivity of the Ĉ1( 1

2 ,
1
2 )

multiplet in the singlet channel is
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Table 3. Unitarity bounds for the anomaly coefficient k4d arising from positivity of the B̂2 three-point function
in non-singlet channels

G F Bound Representation

SU(N ) N � 3 k4d � N N 2 − 1symm
SO(N ) N = 4, . . . , 8 k4d � 4 1

24 N (N − 1)(N − 2)(N − 3)

SO(N ) N � 8 k4d � N − 4 1
2 (N + 2)(N − 1)

USp(2N ) N � 3 k4d � N + 2 1
2 (2N + 1)(2N − 2)

G2 k4d � 10
3 27

F4 k4d � 5 324
E6 k4d � 6 650
E7 k4d � 8 1,539
E8 k4d � 12 3,875

made obsolete by bounds arising from other channels for all choices of G F listed in the
table.

4.3. Saturation of unitarity bounds. Given the existence of these unitarity bounds, it
is incumbent upon us to consider the question of whether the bounds are saturated in
any known superconformal models. To understand what sort of theory might saturate
the bounds, it helps to identify any physical properties that a theory will necessarily
possess if it saturates a bound. When the inequalities in (4.16) or Table 3 are saturated, it
means precisely that there is no B̂2 multiplet in the corresponding representation of G F
contributing to the four-point function in question. The absence of such an operator is
intimately connected with a well-known feature of theories with N = 2 supersymmetry
in four dimensions. Recalling that the Schur operators in the B̂R multiplets are Higgs
branch chiral ring operators, the absence of a B̂2 multiplet contributing to the four-point
function of B̂1 multiplets in the R channel amounts to a relation in the Higgs branch
chiral ring of the form

(M ⊗ M)
∣∣
R = 0 , (4.18)

where M is the moment map operator and the tensor product is taken in the chiral ring.
There exists an interesting set of theories for which precisely such relations are known

to hold. These are the superconformal field theories that arise on a single D3 brane
probing a codimension one singularity in F-theory on which the dilaton is constant [41–
46]. There are seven such singularities, labelled H0, H1, H2, D4, E6, E7, E8, for which
the corresponding SCFT has global symmetry given by the corresponding group (with
Hi → Ai ). The Higgs branch of each such theory is isomorphic to the minimal nilpotent
orbit of the flavor group G F . These minimal nilpotent orbits admit a simple description:
they are generated by a complex, adjoint-valued moment map M , subject to a set of
relations that defined the so-called “Joseph ideal” (see [47] for a nice discussion),

(M ⊗ M)
∣∣
I2

= 0 , Sym2(adj) = (2 adj)⊕ I2 , (4.19)

where (2 adj) is the representation with Dynkin indices twice those of the adjoint rep-
resentation.

This leads to an interesting set of conclusions. For one, these theories must saturate
some of the B̂2-type bounds listed above. In particular, this allows us to predict the
value of c4d and k4d for these theories as a direct consequence of the Higgs branch
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Table 4. Central charges for N = 2 SCFTs with Higgs branches given by one-instanton moduli spaces for
G F instantons

G F A1 A2 D4 E6 E7 E8 0.9 F4 0.9 G2

h∨ 2 3 6 12 18 30 0.9 9 0.9 4
k4d

8
3 3 4 6 8 12 0.9 5 0.9 10

3

c4d
1
2

2
3

7
6

13
6

19
6

31
6 0.9 5

3 0.9 5
6

Models corresponding to the right-most two columns are not known to exist, but must satisfy these conditions
for their central charges if they do

relations. These predictions are listed in Table 4. Indeed, these anomaly coefficients
have been computed by other means and the results agree [48]. On the other hand, an
N = 2 superconformal theory with G F symmetry can have as its Higgs branch the one-
instanton moduli space of G F instantons only if the B̂2 bound for all representations in
I2 can be simultaneously saturated. It is not hard to verify that the list of cases for which
this can be true includes the cases described above in F-theory, along with G F = F4
and G F = G2. Theories with Higgs branches isomorphic to the one-instanton F4 and
G2 moduli spaces appear to be absent from the literature, and it is tempting to speculate
that such theories should nonetheless exist and have as their central charges the values
listed in the right-most two columns of Table 4.

Finally, it is interesting to rephrase the above discussion purely in the language of
the chiral algebra χ [T ]. From this perspective, there is a marked difference between
the bound (4.16) for the singlet sector and those of Table 3 for non-singlets. In a theory
saturating the non-singlet bounds, the coefficient of a conformal block is actually set to
zero in the OPE of 4.6. This should be considered in contrast to a theory that saturates the
singlet bound, in which case all of the sl(2) conformal blocks are present with nonzero
coefficients. It follows that saturation of a non-singlet bound is equivalent to the presence
of a null state in the chiral algebra. In particular, because the bounds in question appear
in the B̂1 four-point function, such null states can be understood entirely in terms of the
affine Lie subalgebra of the chiral algebra. This interpretation can be verified directly
by studying an affine Lie algebra with the level listed in Table 3.

The bound (4.16), on the other hand, does not imply the presence of a null state in
the chiral algebra. Instead, a theory χ [T ] that saturates the singlet bound should have
the property that the only sl(2) primary of dimension two that appears in the OPE of
two affine currents is identically equal to the chiral vertex operator that arises from the
Ĉ0(0,0) multiplet in four dimensions, i.e., it should be the two-dimensional stress tensor.
We thus identify saturation of the singlet bound with the property that the Sugawara
construction gives the true stress tensor of the chiral algebra,

T2d = 1

k2d + h∨ (J
a J a) . (4.20)

Sure enough, if the bound (4.16) is saturated, then we can rewrite the bound as an
equation for the central charge

c2d = k2d dim G F

k2d + h∨ . (4.21)

This is precisely the central charge associated with the Sugawara construction for the
stress tensor of an affine Lie algebra.
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Finally, we mention a number of additional theories that saturate some of the unitarity
bounds derived here. In particular, though the rank one theory corresponding to the H0
singularity has no flavor symmetry, it will have an extra SU (2) symmetry for rank larger
than one (as will all the other rank � 1 theories). In particular, for the case of rank two
the flavor central charge corresponding to this extra SU (2) is 17

5 and the central charge
is c4d = 17

12 [48]. This theory therefore saturates the bound (4.16). Additionally, we have
found a number of theories that saturate bounds appearing in Table 3. In particular, the
new rank one SCFTs found in [49] with flavor symmetry U Sp(10)7 and U Sp(6)5 ×
SU (2)8, where k4d is indicated as a subscript for each group, saturate the bounds on
k4d for the U Sp factors. However for these theories the central charge bound is not
saturated. The following theories described in [50] also saturate bounds on k4d : S5 with
flavor symmetry SU (10)10 (but not the rest of the SN series), the R0,N series with flavor
symmetry SU (2)6 × SU (2N )2N , and the R2,N series with SO(2N + 4)2N ×U (1) flavor
symmetry.

4.4. Torus partition function and the superconformal index. Just as correlators of the
chiral algebra are related to certain supersymmetric correlators of the parent four-
dimensional theory, it will not come as a surprise that the torus partition function of the
chiral algebra is related to a certain four-dimensional supersymmetric index—indeed,
to the Schur limit of the superconformal index, as foreshadowed in our terminology.

We should first identify which quantum numbers can be meaningfully assigned to chi-
ral algebra operators. Of the various Cartan generators of the four-dimensional supercon-
formal algebra, only the holomorphic dimension L0 and the transverse spin M⊥ = j1− j2
(which is equal to −r for Schur operators) survive as independent conserved charges of
the chiral algebra. The torus partition function therefore takes the form23

Z(x, q) := Tr x M⊥
q L0 . (4.22)

As usual, the trace is over the Hilbert space in radial quantization, or equivalently over
the local operators of the chiral algebra.

Specializing to x = −1, and noting that by the four-dimensional spin-statistics
connection implies (−1) j1− j2 = (−1)F , where F is the fermion number, we find a
weighted Witten index,

I(q) := Z(−1, q) = Tr (−1)F q L0 = Tr (−1)F q E−R . (4.23)

We recognize this as the trace formula that defines the Schur limit of the superconformal
index [21], cf. Appendix B.24 We should check that in the two-dimensional and four-
dimensional interpretations of this formula the trace can be taken over the same space
of states. Strictly speaking, in the four-dimensional interpretation the trace is over the
entire Hilbert space of the radially quantized theory. However, the point of the Schur
index is that only states obeying the Schur condition can conceivably contribute—the
contributions of all other states cancel pairwise. As the states of the chiral algebra are in

23 To avoid clutter, we have omitted the obvious refinement by flavor fugacities. If the theory is invariant

under some global symmetry group G F , we may refine the trace formula by
∏

i a
fi

i , where the fi are Cartan
generators of G F and ai the associated fugacities.

24 It was observed in [51] that the Schur index has interesting modular properties under the action of SL(2,Z)
on the superconformal and flavor fugacities. The identification of the Schur index with a two-dimensional index
may serve to shed some light on these observations.
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one-to-one correspondence with Schur states, the chiral algebra index (4.23) is indeed
equivalent to the Schur index.

The index is a cruder observable than the partition function, but because it is invariant
under exactly marginal deformations, it is generally easier to evaluate. In practice, to
evaluate the index of a Lagrangian SCFT, one enumerates all gauge-invariant states that
can be formed by combining the elementary “letters” that obey the Schur condition, see
Table 1. This combinatorial exercise is efficiently solved with the help of a matrix integral,
where the integration over the gauge group enforces the projection onto gauge singlets.
Examples of this prescription will be seen in the following section. By this procedure, one
enumerates all gauge-invariant states that obey the tree-level Schur condition; there will
be cancellations in the index corresponding to the recombinations of Schur multiplets
into long multiplets that are a priori allowed by representation theory.

There is an entirely isomorphic computation in the associated chiral algebra. The
“letters” obeying the tree-level Schur condition are nothing but the states of the sym-
plectic bosons and the ghost small algebra (in the appropriate representations), and one
is again instructed to project onto gauge singlets. To reiterate, to evaluate the index we
do not really need to compute the cohomology of Q−, which defines the states of the
chiral algebra of the interacting gauge theory, cf. (3.59). We can simply let the trace run
over the redundant set of states of the free theory. By contrast, the trace in the partition
function (4.22) must be taken over only the states of the chiral algebra for the interacting
theory, which are the cohomology classes of Q−.

At the risk of being overly formal, we may point out that the physical state space of
the chiral algebra (which for gauge theories is defined by the cohomological problem
(3.59)), acts as a categorification of the Schur index. Once this vector space and the
action of the charges are known, we can perform the more refined counting (4.22).
In physical terms, the categorification contains extra information relative to the Schur
index in that it knows about sets of short multiplets that are kinematically allowed to
recombine but do not. In addition, there may be multiplets that cannot recombine but
nonetheless make accidentally cancelling contributions to the index, and these are also
seen in the categorification. Of course, the chiral algebra structure goes well beyond
categorification—it is a rich algebraic system that also encodes the OPE coefficients of
the Schur operators, and is subject to non-trivial associativity constraints.

It should be noted that as a graded vector space, we also have a categorification of
the Macdonald limit of the superconformal index. Recall that the states contributing to
the Macdonald index are really the same as the states that contribute to the Schur index,
but their counting is refined by an extra fugacity t/q associated to the charge r + R (for
t = q we recover the Schur index). Since each state in the vector space defined by the
chiral algebra corresponds to a Schur operator, the additional grading by r + R is perfectly
well-defined. However, there is no obvious chiral algebra interpretation of the Macdonald
limit of the superconformal index, because the additional grading is incompatible with
the chiral algebra structure. More precisely, while L0 and r are conserved charges for the
twisted-translated operators (2.29), r + R is not, since away from the origin the operators
are linear combinations of operators with different R eigenvalues. In particular r + R is
not preserved by the OPE.

5. Examples and Conjectures

In this section we consider a number of illustrative examples in which the four-
dimensional superconformal field theory T admits a weakly coupled Lagrangian descrip-
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tion. In such cases, the chiral algebra χ [T ] can be defined via the BRST procedure
of Sect. 3, which at the very least allows for a level-by-level analysis of the physical
states/operators in the algebra.

We can also consider the problem of giving an economical description of the chiral
algebra in terms of a set of generators and their singular OPEs. A natural question is
whether this set is finite, or in other words whether the chiral algebra is a W-algebra.
The results of Sect. 3.2 suggest a very general ansatz for a possible W-algebra structure:
the generators should be the operators associated to HL chiral ring generators in four
dimensions, and possibly in addition the stress tensor. In each of the first three examples,
our results are compatible with this guess, and we formulate concrete conjectures for
the precise definition of each chiral algebra as a W-algebra. In the final example, we
find a counterexample to this simplistic picture. Namely, we find a theory for which the
chiral algebra contains at least one additional generator beyond those included in our
basic ansatz.

For the first example, we turn to perhaps the most familiar N = 2 superconformal
gauge theory.

5.1. SU (2) superconformal QCD. The theory of interest is the SU (2) gauge theory
with four fundamental hypermultiplets. Many aspects of this theory that are relevant to
the structure of the associated chiral algebra have been analyzed in, e.g., [52]. The field
content is an SU (2) vector multiplet and four fundamental hypermultiplets. Because the
fundamental representation of SU (2) is pseudo-real, the obvious U (4) global symmetry
is enhanced to SO(8), with the four fundamental hypermultiplets being reinterpreted as
eight half-hypermultiplets. In N = 1 notation we then have an adjoint-valued N = 1
field strength superfield W A

α , an adjoint-valued chiral multiplet �B , and fundamental
chiral multiplets Qi

a transforming in the 8v of SO(8). Here a, b = 1, 2 are vector
color indices that can be raised and lowered with epsilon tensors, A, B = 1, 2, 3 are
adjoint color indices, and i = 1, . . . , 8 are SO(8) vector indices. By a common abuse of
notation, we use the same symbol for the scalar squarks in the matter chiral multiplets
as for the superfields, whereas the gauginos in the vector multiplet are denoted λA

α and
λ̃Aα̇ . In terms of the N = 1 superfields listed above, the Lagrangian density takes the
form

L = Im

[
τ

∫
d2 θd2θ̄ Tr

(
�†eV� + Q†

i eV Qi
)

+ τ
∫

d2θ
(

1
2 Tr WαWα +

√
2Qi

a�
a
b Qib

)]
, (5.1)

Where τ = θ/2π + 4π i/g2
YM is the complexified gauge coupling. The central charge of

the SU (2) color symmetry acting on the hypermultiplets is kSU (2)
4d = 8, which satisfies

condition (3.50) for τ to be an exactly marginal coupling. The central charge for the
SO(8) flavor symmetry and the conformal anomaly c4d can also be read off directly
from the field content,

kSO(8)
4d = 4, c4d = 7

6
. (5.2)

Although this description is sufficient to set up a BRST cohomology problem that defines
the chiral algebra in the manner of Sect. 3, it is useful to first review some of the features
of this theory that we expect to see reflected in the two-dimensional analysis. We have
seen that a special role is played in the chiral algebra by the HL chiral ring, the elements
of which are the superconformal primary operators in B̂ and D-type multiplets. In this
example, these are the lowest components of N = 1 chiral superfields that are gauge-
invariant polynomials in Qi

a and W A
α . As this theory is represented by an acyclic quiver
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diagram, all D-type multiplets recombine and the HL chiral ring is identically the Higgs
chiral ring.

In purely gauge invariant terms, the Higgs branch chiral ring is generated by a single
dimension two operator in the adjoint of SO(8),

M [i j] = Qi
a Qaj . (5.3)

This is the moment map for the action of SO(8) on the Higgs branch.25 There are
additional relations that make the structure of the Higgs branch more interesting. Already
at tree-level, there are relations that follow automatically from the underlying description
in terms of squarks. When organized in representations of SO(8), the of generators of
these relations are as follows,

M ⊗ M
∣∣
35s

= 0, M ⊗ M
∣∣
35c

= 0. (5.4)

On the other hand, there are F-term relations as a consequence of the superpotential in
(5.1). They are absent in the theory with strictly zero gauge coupling, and encode the
fact that certain operators that are present in the chiral ring of the free theory recombine
and are lifted from the protected part of the spectrum when the coupling is turned on.
The generators of F-term relations, again organized according to SO(8) representation,
are as follows,

M ⊗ M
∣∣
35v

= 0, M ⊗ M
∣∣
1 = 0. (5.5)

One immediately recognizes the complete set of relations in (5.4) and (5.5) as defining the
SO(8) Joseph ideal described in Sect. 4. Indeed, for the particular case of G F = SO(8)
we have I2 = 1 ⊕ 35v ⊕ 35s ⊕ 35c. The Higgs branch of this theory is known to be
isomorphic to the SO(8) one-instanton moduli space, and the central charges (5.2) do
in fact saturate the appropriate unitarity bounds outlined in Sect. 4.

As a final comment, let us recall that the gauge coupling appearing in the Lagrangian
(5.1) is exactly marginal and parameterizes a one-complex-dimensional conformal man-
ifold. S-duality acts by SL(2,Z) transformations on τ , and the conformal manifold is
identified with the familiar fundamental domain of SL(2,Z) in the upper half plane.
In the various weak-coupling limits the theory can always be described using the same
SU (2) gauge theory, but in comparing one such limit to another, the duality transfor-
mations act by triality on the SO(8) flavor symmetry. Consequently, though a given
Lagrangian description of this theory (and of the chiral algebra in the next subsection)
singles out a certain triality frame, the protected spectrum of the theory, and so in par-
ticular the chiral algebra, should be triality invariant.

5.1.1. BRST construction of the associated chiral algebra. The chiral algebra can now
be constructed using the procedure of Sect. 3. We first define the chiral algebra χ[ Tfree ]
of the free theory. Each half-hypermultiplet gives rise to a pair of commuting, dimension
1/2 currents, whose OPE is that of symplectic bosons

qi
a(z) := χ[ Qi

a ] , qi
a(z) q j

b (w) ∼ δi jεab

z − w
. (5.6)

25 It is a special feature of this theory (in contrast to, say, the N f = 2Nc theories with Nc > 2 that will be
considered next) that the generators of the Higgs branch chiral ring all have dimension two. In general, there
will be higher-dimensional baryonic generators that are not directly related to the global symmetry currents
of the theory.
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Meanwhile, the vector multiplet contributes a set of adjoint-valued (b, c) ghosts of
dimension (1, 0) with the standard OPE,

bA(z) := χ [ λ̃A] , ∂cB(z) := χ[ λB] , bA(z)cB(w) ∼ δAB

z − w
. (5.7)

The generators of the SU (2) gauge symmetry in the matter sector arise from the moment
maps in the free theory, while in the ghost system they take the canonical form described
in Sect. 3,

J A(T A)ba = qi
aqib , J A

gh = −i f ABC (cB bC ) . (5.8)

The chiral algebra of the free theory is then given by the gauge-invariant part of the
tensor product of the symplectic boson and small algebra Fock spaces,

χ [Tfree] = {ψ ∈ F(qi
a, ρ

A
+ , ρ

A−) | J A
tot,0ψ = 0} . (5.9)

The current algebra generated by the J A
mat has level kSU (2)

2d = −4 = −2h∨, which ensures
the existence of a nilpotent BRST differential. The BRST current and differential are
then constructed in terms of these currents,

JBRST = cA
(

J A +
1

2
J A

gh

)
, QBRST =

∮
dz

2π i
JBRST(z) . (5.10)

The chiral algebra of the interacting theory is now the B RST cohomology

χ[ T ] = H∗
BRST [χ [Tfree]] . (5.11)

We now perform a basic analysis of this cohomology. Already at this rudimentary level,
we will find that a substantial amount of four-dimensional physics is packaged elegantly
into the chiral algebra framework.

5.1.2. Enumerating physical states. It is a straightforward exercise to enumerate the
physical operators up to any given dimension and to compute the singular terms in their
OPEs. This is made easier with computer assistance—we have made extensive use of
K. Thielemans’ Mathematica package [31]. We now describe this enumeration in
detail for operators of dimension one and two in the chiral algebra. In this example,
the material we have reviewed above is already enough to predict the results of this
enumeration. We will nevertheless find it instructive to explore in some detail how the
inevitable spectrum comes about.

We begin at dimension one. Dimension one currents in the chiral algebra can only
originate in D0(0,0) and B̂1 multiplets (cf. Table 1). The former contain free vector
multiplets, and so are not gauge invariant. Thus the physical spectrum at dimension one
should be isomorphic to the spectrum of B̂1 multiplets. Sure enough, the complete list
dimension-one operators in χ [ Tfree ] is the following,

J [i j] = qi
aq ja, (5.12)

and these operators are the chiral counterparts of the SO(8) moment maps, i.e.,

J [i j] = χ[M [i j]]. (5.13)
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Direct computation further verifies that these operators exhaust the nontrivial BRST
cohomology at dimension one. It is also straightforward to determine the singular terms
in the OPEs of these currents,

J [i j](z)J [kl](0) ∼ −2(δikδ jl − δilδ jk)

z2 +
i f [i j][kl]

[mn] J [mn](0)
z

. (5.14)

This is just an so(8) affine Lie algebra at level k2d = −2, which confirms the general
prediction of Sect. 3 that flavor symmetries are affinized in the chiral algebra, subject to
the relation k2d = − 1

2 k4d .
Moving on, the four-dimensional multiplets that can give rise to two-dimensional

quasi-primary currents of dimension two are Ĉ0(0,0), B̂2, D0(0,1), and D 1
2 (0,

1
2 )

multiplets
(along with the conjugates of the last two). In addition, conformal descendants of dimen-
sion two can arise from holomorphic derivatives of the dimension one operators. Since
no D-type multiplets appear in this theory, the only quasi-primaries at dimension two
will correspond to Higgs branch operators and the two-dimensional stress tensor.

The latter descends from the four-dimensional SU (2)R current. That current being
bilinear in the free fields of the noninteracting theory, the corresponding two-dimensional
operator can be obtained by simply replacing the four-dimensional fields with their chiral
counterparts and conformally normal ordering,

T2d = 1
2 qi

a∂qia − bA∂cA. (5.15)

Alternatively, this is just the canonical stress tensor for the combined system of free
symplectic bosons and ghosts. Given the multiplicities of matter and ghost fields, the
two-dimensional central charge is easily determined to be c2d = −14.

The remaining BRST-invariant currents of dimension two can be constructed as
normal ordered products and derivatives of the so(8) affine currents,

∂ J [i j] , (J ⊗ J )
∣∣
1,35,35,35,300. (5.16)

The singlet term in the tensor product above, once appropriately normalized, is the
Sugawara stress tensor of the so(8) affine Lie algebra,

T so(8)
sug = 1

8 (J
[i j] J [i j]). (5.17)

The Sugawara central charge is determined by the usual formula,

csug = k2d dim G F

k2d + h∨ = −14. (5.18)

This matches the value for the canonical stress-tensor. This comes as no surprise, since
the central charges of this theory saturate the unitarity bound (4.16), which implies that
the canonical stress tensor should be equivalent to the Sugawara stress tensor. Indeed,
(5.15) and (5.16) constitute an overcomplete list, and we in fact have the following
relations,

J ⊗ J
∣∣
1 = T2d + {QBRST, qi

aqibba
b}, (5.19a)

J ⊗ J
∣∣
35v

= {QBRST, q(ia q j)bba
b}, (5.19b)

J ⊗ J
∣∣
35c

= 0, (5.19c)

J ⊗ J
∣∣
35s

= 0, (5.19d)
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The relations appearing here can be traced back to different aspects of the four-
dimensional physics. Relations (5.19a) and (5.19b) are the two-dimensional avatars
of the F-term relations in (5.5). Note that the first relation appears differently in this
two-dimensional context due to the presence of the two-dimensional stress tensor on the
right hand side. This is a remnant of the more complicated structure of normal ordering
in the chiral algebra as compared to the chiral ring. Relations (5.19c) and (5.19d) are
the tree-level relations. In the context of the chiral algebra, they can be seen as a simple
consequence of Bose symmetry and normal ordering without making any reference to
the BRST differential. This perfectly mirrors of the nature of tree-level relations in four
dimensions.

5.1.3. A W-algebra conjecture. Although the cohomological description of the chiral
algebra is sufficient to compute the physical operators to any given level, it would be
ideal to have a characterization entirely in terms of physical operators—for example, we
may hope for a description as a W algebra. We have seen that the physical dimension
two currents are all generated by the affine currents of dimension one, i.e., the physical
states enumerated so far all lie in the vacuum module of the so(8) affine Lie algebra
at level k = −2. What’s more, these operators exhaust the list of operators that are
guaranteed to be generators of the chiral algebra according to Sect. 3. We are thus led to
a natural conjecture:

Conjecture 1. When T is N = 2 SU (2) SQCD with four fundamental flavors, then
χ [ T ] is isomorphic to the so(8) affine Lie algebra at level k2d = −2.

This is a mathematically well-posed conjecture, since the cohomological character-
ization of the chiral algebra is entirely concrete. It seems plausible that a more sophis-
ticated approach to the cohomological problem could lead to a proof of the conjecture.
We will be satisfied in the present work to test it indirectly.

5.1.4. The superconformal index and affine characters. Conjecture 1 can be tested at
the level of the indices of these theories. In particular, we have the following conjectural
relationship

ISchur(q; a) = Trχ [Tfree](−1)F q L0

4∏
i=1

aμi
i = Trso(8)−2(−1)F q L0

4∏
i=1

aμi
i . (5.20)

The shorthand a = (a1, a2, a3, a4) denotes the SO(8) fugacities. Of course, the affine
Lie algebra has only bosonic states, so the factor of (−1)F is immaterial. In particular
this observation implies that if Conjecture 1 is correct, then all possible recombinations
of tree-level Schur operators occur already at one loop.

On the one hand, the Schur limit of the superconformal index for this theory can be
computed directly to fairly high orders in the q expansion by starting with the defining
matrix integral,

ISchur(q; a) =
∮

[db]P.E.

[( √
q

1 − q

)
χ8

SO(8)(a)χ
2
SU (2)(b) +

( −2q

1 − q

)
χ3

SU (2)(b)

]
,

(5.21)

and expanding the exponential. Here
∮ [db] denotes integration over the fugacity for the

gauge group with the Haar measure.
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Table 5. The operator content of the chiral algebra up to level 5

level SO(8) representations and their multiplicities

0 1
1 28
2 1, 28, 300
3 1, 2 × 28, 300, 350, 1925
4 2 × 1, 3 × 28, 35v, 35s , 35c, 3 × 300, 350, 1925, 4096, 8918
5 2 × 1, 6 × 28, 35v, 35s , 35c, 4 × 300, 3 × 350, 567v, 567s , 567c, 3 × 1,925,

2 × 4,096, 8,918, 25,725, 32,928′

On the other hand, the vacuum character of the so(8) affine Lie algebra at level
k = −2 can be computed once the spectrum of null primaries is known. Said spectrum
can be determined with the aid of the Kazhdan–Lusztig polynomials, as we review in
Appendix C. Ultimately, both the character and the index are expanded in the form

1 +
∞∑

i=1

qn

(∑
R

dRχ
R(a)

)
,

where the dR are positive integer multiplicities. At a given power of q, there are only
a finite number of non-zero dR. Up to O(q5), the resulting degeneracies have been
computed in both manners and agree. They are displayed in Table 5.

5.2. SU (N ) superconformal QCD with N � 3. We next consider the generalization
of the previous example to the case of SU (N ) superconformal QCD with N � 3. In
these theories, the Higgs branch has generators of dimension greater than two, thus
guaranteeing the existence of nonlinear W-symmetry generators in the chiral algebra.
The cohomological construction of the corresponding chiral algebra is analogous to the
SU (2) case, mutatis mutandi. We will not repeat the description here in any detail. We
first provide a brief outline of the relevant four-dimensional physics of these models,
and then perform a systematic analysis of the physical operators of low dimension in
the associated chiral algebra.

As in the SU (2) theory, there is a Lagrangian description of these models in terms
of the N = 1 chiral superfields

W A
α , �B , Qi

a , Q̃b
j , (5.22)

where a, b = 1, . . . , N are vector color indices, A, B = 1, . . . , N 2 −1 are adjoint color
indices, and i, j = 1, . . . , N f with N f = 2N are vector flavor indices. The central

charge is fixed by the field content to c4d = 2N 2−1
6 .

For our purposes, the principal difference between the N � 3 theories and the N = 2
case is in the structure of the Higgs branch chiral ring. In the higher rank theories,
the hypermultiplets transform in a complex representation of the gauge group, so the
global symmetry is not enhanced and we have G F = SU (N f ) × U (1). The moment
map operators for the global symmetry reside in mesonic B̂1 multiplets, which can be
separated into SU (N f ) and U (1) parts,

M i
j := Q̃a

j Qi
a �⇒ μ := M i

i , μ i
j := M i

j − 1

N f
μδ i

j . (5.23)
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The level of the non-Abelian part of the global symmetry is k
SU (N f )

4d = 2N . The baryons
are of dimension N and no longer generate any additional global symmetries. Rather, they
transform in the N -fold antisymmetric tensor representations of the flavor symmetry:

Bi1...iN := Qi1
a1

· · · QiN
aN
εa1...aN ,

B̃i1...iN := Q̃a1
i1

· · · Q̃aN
iN
εa1...aN .

(5.24)

The mesons and baryons satisfy a set of polynomial relations. Following [52], we intro-
duce notation where “·” denotes contraction of an upper and a lower index and “∗”
denotes the contraction of flavor indices with the completely antisymmetric tensor in
N f indices. The relations are then given by

(∗B)B̃ = ∗(M N ) , M · ∗B = M · ∗B̃ = 0 ,

M ′ · B = B̃ · M ′ = 0 , M · M ′ = 0 ,
(5.25)

where (M ′) j
i := M j

i − 1
N μδ

j
i = μ

j
i − 1

2N μδ
j
i . Additionally, all quantities antisym-

metrized in more than N flavor indices must vanish.
This completes the description of the Hall–Littlewood chiral ring, since again this

theory admits a linear quiver description, so there are no D-type multiplets after turning
on interactions. The final representation of canonical interest is the Ĉ0(0,0) multiplet,
which again contributes an important Schur operator in the form of the R = 1 component
of the SU (2)R current:

J R=1
++̇ ∼ 1

2

(
Qi

a∂++̇ Q̃a
i − Q̃a

i ∂++̇ Qi
a

)
+ λA

+ λ̃+̇A. (5.26)

Like the SU (2) theory, these models all have one-complex-dimensional conformal
manifolds with interesting behaviors at the boundary points, where S-dual descriptions
become appropriate. In contrast to the SU (2) theory, these S-dual descriptions are not the
same as the original description, and rather involve intrinsically strongly-coupled non-
Lagrangian sectors. While such dualities imply interesting structures for the associated
chiral algebras, their dependence on non-Lagrangian theories takes us outside the scope
of the current examples. This is discussed in much greater detail in [53].

5.2.1. Physical operators of low dimension. The nontrivial BRST cohomology classes
of the chiral algebra can be computed by hand for small values of the dimension. The
physical operators of dimension one again correspond to the moment map operators of
the global symmetry, which in this case includes only the mesonic chiral ring operators,

J j
i := qai q̃

a j − 1

N f
δ

j
i qakq̃ak = χ [μ j

i ] , (5.27)

J := qakq̃ak = χ[μ] . (5.28)

The singular OPEs of these currents are given by

J j
i (z)J

l
k(0) ∼ − N (δl

i δ
j
k − trace)

z2 +
δl

i J j
k (z)− δ

j
k J l

i (z)

z
,

J (z)J (0) ∼ − 2N 2

z2 .

(5.29)
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This is an su(N f )× u(1) affine Lie algebra at level k2d = −N .
At dimension two, we first consider the operators that are invariant under the flavor

symmetry. As expected, there is a canonical stress tensor,

T := 1

2

(
qai∂q̃ai − q̃ai∂qai

)
− ba

b∂cb
a = χ[J 1

++̇] , (5.30)

whose self-OPE fixes the two-dimensional central charge,

c2d = 2 − 4N 2 . (5.31)

Additionally, the algebra generated by the affine su(N f )×u(1) currents (5.27) contains
a dimension two singlet that is the Sugawara stress tensor of the current algebra,

Tsug := 1

N f

(
J j

i J i
j − 1

N f
J J

)
. (5.32)

The corresponding Sugawara central charge is also equal to 2 − 4N 2, which suggests
that the two stress tensors T and T sug may be equivalent operators as they were in the
N = 2 theory. Indeed, we expect this to be the case since the central charges in this
theory again saturate the unitarity bound (4.16). A short computation verifies that their
difference is BRST exact,

T − Tsug = 1

N f
{QBRST, qai q̃

bj ba
b} . (5.33)

A complete basis for the physical flavor singlets of dimension two is given by T , J J ,
and ∂ J .

The remaining physical operators of dimension two are charged under U (N f ). An

overcomplete basis of such operators is given by flavored current bilinears J j
i J l

k and J j
i J ,

in addition to derivatives of the currents ∂ J j
i . These operators are not all independent.

For example, the usual rules of conformal normal ordering imply that

J j
i J l

k − J l
k J j

i = δl
i∂ J j

k − δ
j
k ∂ J l

i , (5.34)

so the antisymmetric normal ordered product of two SU (N f ) currents is a combination of
descendants. For the symmetrized normal ordered product there exists another relation:

1

2
(J k

i J j
k + J j

k J k
i ) = δ

j
i

(
1

N 2
f

J J + T

)
− {QBRST, qαi q̃

β j bαβ} . (5.35)

In group-theoretic terms, the relations amount to the statement that the parts of the sym-
metric product of two currents that transform in the singlet and adjoint representations
do not correspond to independent operators.

It is worth jumping ahead to the case of dimension N/2, where we find operators
that correspond to the baryonic chiral ring generators (5.24):

bi1i2...iNc
:= εα1α2...αNc qα1i1qα2i2 . . . qαNc iNc

= χ[Bi1i2···iN ] ,
b̃i1i2...iNc := εα1α2...αNc

q̃α1i1 q̃α2i2 . . . q̃αNc iNc = χ [B̃i1i2···iN ] . (5.36)
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These are Virasoro primaries of dimension N f /4. The only non-trivial OPE that is not
entirely fixed by symmetry is the b × b̃ OPE. For Nc = 3, for example, it is given by

bi1i2i3(z)b̃
j1 j2 j3(0) ∼ 36 δ[ j1

[i1
δ

j2
i2
δ

j3]
i3]

z3 − 36 δ[ j1
[i1
δ

j2
i2

J j3]
i3] (0)

z2

+
18 δ[ j1

[i1
J j2

i2
J j3]

i3] (0)− 18 δ[ j1
[i1
δ

j2
i2
∂ J j3]

i3] (0)
z

, (5.37)

where square brackets denote antisymmetrization with weight one.

5.2.2. Relation to the Higgs branch chiral ring. Again, certain features of the Higgs
branch chiral ring arise organically from the chiral algebra. According to the general
discussion in Sect. 3.2, the dimension two operators in the chiral algebra should in
particular contain the image of the Schur operators in B̂2 multiplets, which in the theories
under consideration simply correspond to the product of two of the mesonic operators
μ and μ j

i subject to the final relation in (5.25). Furthermore, these Schur operators
necessarily become Virasoro primary operators in the chiral algebra.

From amongst the BRST cohomology classes at level two—spanned by T , J J , J j
i J ,

the symmetrized combination J j
i J l

k + J l
k J j

i modulo relation (5.35), and derivatives of
level one currents—we find exactly three Virasoro primary operators:

X := J J − N 2
f

N 2
f − 2

T,

X j
i := J j

i J,

X jl
ik := 1

2
(J j

i J l
k + J l

k J j
i )− N f

N 2
f − 2

(
δl

i δ
j
k − 1

N f
δ

j
i δ

l
k

)
T,

(5.38)

which are subject to the additional constraints,

X jl
ik = X l j

ki , X il
ik = 0, X jk

i j = 1

N 2
f

δk
i X + {QBRST, . . .} . (5.39)

We see that we should identify X = χ[μμ ], X j
i = χ [μμ j

i ] and X jl
ik = χ[μ j

i μ
l
k ]. The

first two relations in (5.39) then reflect the natural symmetry properties of the original
Schur operator, whilst the last equation precisely reproduces the final equation in (5.25).

We note that the definitions (5.38) somewhat obscure the relationship to four-
dimensional physics because of the conformal normal ordering used to define the prod-
ucts of interacting fields. The same dimension two operators take a completely natural
form in terms of creation/annihilation normal ordered products of symplectic bosons,

X =: qαi q̃
αi qβ j q̃

β j :,
X j

i =: qαi q̃
α j qβk q̃βk :,

X jl
ik =: qαi q̃

α j qβk q̃βl :,
(5.40)

and this description also nicely illustrates the commutative diagram of Sect. 3.3.
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Finally, at the level of Virasoro representations, the OPEs of the dimension one
currents can now be summarized by the following fusion rules,

J j
i × J l

k→ − N (δl
i δ

j
k − trace)1 + (δl

i J j
k − δ

j
k J l

i ) + X jl
ik + . . . ,

J j
i × J → X j

i + . . . ,

J × J → − 2N 21 + X + . . . ,

(5.41)

where we have omitted operators of dimension higher than two. We see that the product
structure of the Higgs branch chiral ring is reproduced precisely by the O(1) terms in
these fusion rules.26

5.2.3. A W-algebra conjecture. The chiral algebra is not as simple in this case as it
was for the SU (2) theory, since the generators b and b̃ are higher-spin W-symmetry
generators rather than simple affine currents. Nevertheless, there is a natural guess as to
how to describe this more involved theory as a W algebra. It is useful to think of the
operator content of the algebra in terms of representations of the affine u(N f ) current
algebra. From the analysis of levels one and two, we know that there is the vacuum
representation—which in particular contains the affine currents and the stress tensor—
and the “baryonic” representations, for which the highest weight state is given by the
baryon or anti-baryon of (5.36). Other representations of the affine Lie algebra can only
come from multi-baryon states or from new generators of dimension greater than two,
where we have not performed a detailed analysis of the cohomology.

In four dimensions the mesons and the baryons are the complete set of generators
for the Hall–Littlewood chiral ring. The most obvious conjecture is then that the corre-
sponding two-dimensional operators generate the entire W-algebra:

Conjecture 2. When T is N = 2 SU (N ) superconformal QCD for with 2N flavors for
N > 2, then χ[T ] is isomorphic to the W algebra generated by affine u(N f ) currents
at level ksu(N f ) = −N along with baryonic generators b and b̃ with the OPE (5.37) (or
its generalizations to N � 4).

Because no additional generators make an appearance in the singular OPEs of the
affine currents and baryons, it is guaranteed to be the case that the W algebra we have
just described forms a chiral subalgebra of χ[T ]. Our conjecture is that this is in fact the
whole thing. If true, this conjecture would imply that the Schur index for the N f = 2N
theories decomposes into characters of affine u(2N )−N with highest weights given by
the vacuum or by one or more baryons.

5.2.4. Superconformal index. We can provide support for this conjecture by comparing
with the superconformal index. The Schur index of the theory is given by the following
contour integral,

ISchur(q; c, a) =
∫

[db]P.E .

[ √
q

1 − q

(
c χNf

SU (N f )
(a)χN

SU (N )(b)

+c−1 χ
Nf
SU (N f )

(a−1)χN
SU (N )(b

−1)
)

+

( −2q

1 − q

)
χN2−1

SU (N )(b)
]
, (5.42)

26 We may similarly speculate that the Poisson bracket is encoded in the terms of the OPE that correspond
to simple poles, but we have not checked this in detail.
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where c is the U (1) fugacity and a = (a1, a2, . . . , aN f −1) denotes SU (N f ) fugacities.
For N = 3, the first few orders are given by

ISchur(q; c, a) = 1 +
(

1 + χ35
SU (6)(a)

)
q + (c3 + c−3)χ20

SU (6)(a)q
3/2

+
((
χ

sym2(35)
SU (6) (a)− χ35

SU (6)(a)
)

+ 2χ35
SU (6)(a) + 2

)
q2

+ (c3 + c−3)
(

2χ20
SU (6)(a) +

(
χ35⊗20

SU (6) (a)− χ20
SU (6)(a)

−χ70
SU (6)(a)− χ70

SU (6)(a)
))

q5/2

+ . . . , (5.43)

where we have explicitly indicated the presence of relations by listing them with a
minus sign. The dimension two relations in the chiral algebra were elaborated upon in
the previous subsection. At level 5/2, we can similarly determine the Virasoro primaries

Yi jk = Jbi jk + ∂bi jk, Ỹ i jk = J b̃i jk − ∂ b̃i jk (5.44)

Y j
i,klm = 1

2

(
J j

i bklm + bklm J j
i − 1

6
δ

j
i ∂bklm + δ j

[k∂b|i |lm]
)

(5.45)

Ỹ j,klm
i = 1

2

(
J j

i b̃klm + b̃klm J j
i +

1

6
δ

j
i ∂ b̃klm − δ

[k
i ∂ b̃| j |lm]

)
, (5.46)

subject to the constraints

εiklmnp
(

Y j
i,mnp +

1

6
δ

j
i Ymnp

)
= 0, Y j

i, jlm − 1

6
Yilm = {QBRST, . . .} (5.47)

ε jklmnp

(
Ỹ j,mnp

i +
1

6
δ

j
i Ỹ mnp

)
= 0, Ỹ j,kli

i − 1

6
Ỹ jkl = {QBRST, . . .}, (5.48)

which again encode precisely the Higgs branch relations.
At level three, we have checked agreement between the Schur index and the cohomol-

ogy generated by the SU (6) × U (1) currents and the baryons by explicitly computing
the null states.

5.3. N = 4 supersymmetric Yang–Mills theory. The theories considered in the previ-
ous two subsections all shared the special quality of admitting descriptions as linear
quiver gauge theories, which meant that D-type multiplets played no role in the analy-
sis. We now turn to a case where this simplification no longer holds, and so there will
necessarily be generators outside of the Higgs chiral ring. The theory in question is
N = 4 supersymmetric Yang-Mills theory with gauge group SU (N ). For our purposes,
this is an N = 2 theory with an SU (N ) vector multiplet and a single adjoint-valued
hypermultiplet. In N = 1 notation, we have the following chiral superfields,

W A
α , �A, Q A

i , (5.49)

where A = 1, . . . N 2 − 1 an SU (N ) adjoint index and i = 1, 2 is an SU (2)F vector
index. The flavor symmetry SU (2)F is the commutant of SU (2)R × U (1)r ⊂ SU (4)R ,
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and so is an R-symmetry with respect to the full superalgebra. The central charges of
the theory are given by

kSU (2)
4d = N 2 − 1, c4d = (N 2 − 1)

4
. (5.50)

The Higgs branch chiral ring has N − 1 generators. In terms of the N × N matrices
Qi := Q A

i t A, these are given by

Tr Q(i1 · · · Qik ), k = 1, . . . , N − 1, (5.51)

subject to trace relations. In this theory, the Hall–Littlewood chiral ring contains addi-
tional D-type multiplets that are not described by the Higgs chiral ring. More specifically,
for SU (N ) gauge group there are an additional N − 1 HL generators given by

Tr Q(i1 · · · Qik)λ̃
1
+̇ , k = 1, . . . , N − 1 . (5.52)

There are corresponding generators of the HL anti-chiral ring that lie in D multiplets
and take the same form with λ̃1

+̇ replaced by λ1
+. Finally, the Schur component of the

SU (2)R current, which will give rise to the stress tensor in two-dimensions, is given in
terms of four-dimensional fields by

J R=1
++̇ ∼ 1

2
Tr Qi∂++̇ Q jε

i j − Tr λ̃+̇λ+ . (5.53)

5.3.1. Cohomological description of the associated chiral algebra. The free chiral alge-
bra follows the same pattern as the previous examples. The two dimensional counterparts
of the hypermultiplet scalars and gauginos can be introduced as usual,

q A
i (z) := χ[Q A

i ], bA(z) := χ [λ̃A], ∂cA(z) := χ[λA]. (5.54)

The free chiral algebra has the free OPEs,

q A
i (z)q

B
j (0) ∼ εi jδ

AB

z
, bA(z)cB(0) ∼ δAB

z
.

The stress tensor is given by the usual canonical expression

T = 1

2
q A

i ∂q B
j ε

i j − bA∂cA, (5.55)

which has a central charge of c2d = −3(N 2 − 1). The SU (2)F currents are given by

Ji j = −1

2
q A

i q A
j , (5.56)

and satisfy a current algebra at level k2d = − N 2−1
2 . The current algebra contains a

Sugawara stress tensor of the usual form,

TSug(z) = 1

N 2 − 5
Ji j Jkl ε

ikε jl , (5.57)

with central charge equal to 3(N 2−1)
N 2−5

. Note that precisely for N = 2 and for no other
value of N , the Sugawara central charge matches with the true central charge. As we
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will see, this is again a consequence of the two stress tensors being equivalent in BRST
cohomology.

The SU (N ) currents for the matter and ghost sectors are given by

J A = i

2
f ABC q B

i qC
j ε

i j , J A
gh = −i f ABC cBbC. (5.58)

The levels for the corresponding current algebras are −2N and 2N , respectively. The
BRST current is constructed as usual,

JBRST = cA
(

J A
SU (N ) +

1

2
J A

gh

)
, (5.59)

and its zero mode defines the nilpotent BRST operator QBRST.

5.3.2. Low-lying physical states. Let us first consider the case of SU (2) gauge group.
In this case the difference between the Sugawara stress tensor and the canonical stress
tensor is BRST exact,

T − TSug ∼ {QBRST, f ABC q A
i q B

j bC εi j }. (5.60)

Based on the description of the HL chiral ring generators, we expect that amongst the
physical states should be an SU (2)F triplet of affine currents and an SU (2)F doublet of
dimension 3/2 fermionic generators. Up to dimension two, the cohomology is generated
by precisely these operators,

Ji j = −1

2
(q A

i q A
j ) = χ [Tr Qi Q j ] ,

Gi := √
2(q A

i bA) = χ [Tr Qi λ̃+] ,
G̃i := −√

2(q A
i ∂cA) = χ [Tr Qiλ+] .

(5.61)

The OPEs of these generators can be computed directly,

Ji j (z)Jkl(w) ∼ − N 2 − 1

2

εl(iε j)k

(z − w)2
+

2ε(k(i J j)l)

z − w
, (5.62)

Ji j (z)Gk(w) ∼
1
2 (εki G j (w) + εk j Gi (w))

z − w
, (5.63)

Ji j (z)G̃k(w) ∼
1
2 (εki G̃ j (w) + εk j G̃i (w))

z − w
, (5.64)

Gi (z)G j (w) ∼ 0, (5.65)

G̃i (z)G̃ j (w) ∼ 0, (5.66)

Gi (z)G̃ j (w) ∼ −2(N 2 − 1)εi j

(z − w)3
+

4Ji j (w)

(z − w)2
+

2εi j T (w) + 2∂ Ji j (w)

z − w
, (5.67)

where N = 2 and the symmetrization in the indices i, j and k, l has weight one. The
value of N has been left unspecified in (5.62) because the OPEs will continue to hold
for higher rank gauge groups. For the same reason, T (z) has been included separately,
though for N = 2 it not a distinct generator, but rather is identified with the Sugawara
stress tensor.
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The operator product algebra in (5.62) can be immediately recognized to be the
“small” N = 4 superconformal algebra with central charge c2d = −3(N 2 − 1) [54]. It
is natural that there should be supersymmetry acting in the chiral algebra, since the holo-
morphic sl(2) that commutes with the supercharges i is in enhanced to a holomorphic
sl(2 | 2)when the four-dimensional theory is N = 4 supersymmetric. However, like the
case of the global conformal algebra being generated not by the four-dimensional stress
tensor but by the chiral operator associated to the SU (2)R current, here the enhanced
supersymmetry in the chiral algebra is generated not by the four-dimensional super-
currents, but by the Schur operators that lie in the same D 1

2 (0,0)
and D 1

2 (0,0)
multiplets

with them. Those are the Schur operators that are transmuted into the two-dimensional
supercurrents Gi and G̃i .

In SU (3) theory there are additional generators arising from the additional HL gen-
erators. Sure enough, direct computation produces the following list of new generators
of dimension less than or equal to 5/2:

Bi jk := Tr qi q j qk = χ [Tr Qi Q j Qk] ,
Bi j := Tr qi q j b = χ [Tr Qi Q j λ̃+] ,
B̃i j := Tr qi q j∂c = χ [Tr Qi Q jλ+̇] ,
Bi := 3Tr qi b∂c + Tr ∂q j q j qi = χ [3Tr Qi λ̃+λ+̇ + Tr ∂++̇ Q j Q j Qi ] .

(5.68)

Precisely for the SU (3) case, the operator Bi is in fact equivalent to a composite operator,

Bi ∼ ε j j ′εkk′
J jk Bi j ′k′ . (5.69)

This is a consequence of a chiral ring relation for this value of N which sets
ε j j ′εkk′

Tr Q j QkTr Qi Q j ′ Qk′ to zero. This will not be the case for higher rank gauge
groups, and Bi will be an authentic generator of the algebra.

5.3.3. A super W-algebra conjecture. Because the chiral algebras of N = 4 SYM
theories are supersymmetric, we can introduce a more restrictive notion of generators
for these algebras. More precisely, we would like to identify those operators that generate
the chiral algebra under the operations of normal ordered products and superderivatives,
or the action of sl(2 | 2). In other words, we allow not just L1 descendants, but also
Gi,− 1

2
and G̃i,− 1

2
descendants.

The last three generators in (5.68) are superdescendants of Bi jk , so we have really
only found one additional super-generator in the SU (3) theory. In general, HL operators
will be grouped by N = 4 supersymmetry into multiplets comprised of a single B̂-type
operator, an SU (2)F doublet of D-type operators, and an SU (2)F doublet worth of
D̄-type operators.

For a general simple gauge group, the natural guess is that the chiral algebra is
generated by the small N = 4 superconformal algebra along with additional chiral
primary operators arising from the Higgs chiral ring generators. Our conjecture is then
the following:

Conjecture 3. The chiral algebra for N = 4 SYM theory with gauge group G is isomor-
phic to an N = 4 super W-algebra with rank(G) generators given by chiral primaries
of dimensions di

2 , where di are the degrees of the Casimir invariants of G.

We now perform some tests of this conjecture at the level of the superconformal index.
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5.3.4. The superconformal index. Conjecture 3 can be tested up to any given level by
comparing the index of the chiral algebra defined in the conjecture with the supercon-
formal index of N = 4 SYM in the Schur limit. For gauge group SU (N ), the Schur
index is given by a contour integral,

ISchur(q; a) =
∮

[db]P.E.

[( √
q

1 − q

)
χ2(a)χN2−1(b) +

( −2q

1 − q

)
χN2−1(b)

]
,

(5.70)

where a is an SU (2)F flavor fugacity. For SU (2) gauge group, expanding the integrand
in powers of q and integrating gives the following result up to O(q4), where we have
collected terms into SU (2)F characters χR(a),

ISchur(q; a) = 1 + χ3(a)q − 2χ2(a)q3/2 +
(
χ1(a) + χ3(a) + χ5(a)

)
q2

− 2
(
χ2(a) + χ4(a)

)
q5/2 +

(
χ1(a) + 3χ3(a) + χ5(a) + χ7(a)

)
q3

−
(

4χ2(a) + 4χ4(a) + 2χ6(a)
)

q7/2

+
(

3χ1(a) + 7χ3(a) + 4χ5(a) + χ7(a) + χ9(a)
)

q4 + . . . . (5.71)

We can compare this result with the index of the W-algebra appearing in the conjecture
(in this case, just the small superconformal algebra with the appropriate value of the
central charge) by enumerating the states of the chiral algebra and then finding and
subtracting the null states at each level. We have checked up to level four, and the results
match exactly.

The same comparison can be done for the SU (3) case, where the Schur index to
O(q3) is given by

ISchur(q; a) = 1 + χ3(a)q +
(
χ4(a)− 2χ2(a)

)
q3/2 +

(
2χ1(a) + χ5(a)− χ3(a)

)
q2

+
(
χ6(a)− 3χ2(a)

)
q5/2 +

(
5χ1(a) + χ3(a) + 2χ7(a)− 3χ5(a)

)
q3 + . . . .

(5.72)

Up to level three the nulls were computed and they agree with the index. Note that in
this case there are cancellations in the index of the chiral algebra, since there are bosonic
and fermionic states appearing at the same level.

5.4. Class S at genus two. At this point, the reader may be starting to get the impression
that the chiral algebra of any four-dimensional theory be entirely determined by the
structure of its various chiral rings. The purpose of this next example is to show that
such a simplistic picture is untenable.

Our example is the rank one class S theory associated to an unpunctured genus two
Riemann surface [55,56]. The theory admits two inequivalent weak-coupling limits, or
S-duality frames, corresponding to the two generalized quiver constructions illustrated
in Fig. 1. We will focus on the first case, which is sometimes called the dumbbell quiver.
The gauge groups are denoted SU (2)1 for the left loop, SU (2)2 for central line, and
SU (2)3 for the right loop. The fields of the theory are two sets of half-hypermultiplets
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SU(2)2SU(2)1 SU(2)3

SU(2)a

SU(2)b

SU(2)c

Fig. 1. Weak coupling limits of the genus two class S theory

transforming in the trifundamental representation of SU (2)3 and three SU (2) vector
multiplets. In N = 1 notation, we denote these by

Qa1b1a2 , Sa3b3a2 , W (ν)
α Aν

, �
(ν)
Bν
, (5.73)

where ν = 1, 2, 3 indexes the three SU (2) gauge groups, aν, bν are fundamental indices
of SU (2)ν , and Aν, Bν are adjoint indices of SU (2)ν . It is convenient to rearrange the
fields Qa1b1a2 and Sa3b3a2 in terms of irreducible representations of the gauge groups.
In particular, we can define

Q A1a2 := −i Qa1b1a2(TJ )
a1b1, Qa2 := 1√

2
εa1b1 Qa1b1a2 ,

SA3a2 := −i Sa3b3a2(TJ )
a3b3, Sa2 := 1√

2
εa3b3 Sa3b3a2 .

(5.74)

Finally, we introduce the fields

φa2 = 1√
2
(Qa2 + i Sa2), φ̄a2 = 1√

2
(Qa2 − i Sa2). (5.75)

The theory has a U (1)F flavor symmetry that is not completely obvious given the usual
structure of flavor symmetries in class S theories. The fields φ and φ̄ have charges +1
and −1 respectively under the flavor symmetry, and the remaining fields are neutral.

The BRST cohomology problem for this theory can be set up as in the previous
sections. In fact, the analysis may be somewhat simplified by leveraging the N = 4
analysis of the previous section. In particular, each loop in the quiver corresponds to
a small N = 4 superconformal algebra along with a decoupled SU (2) doublet of
symplectic bosons. The genus two theory is obtained by gauging the diagonal subgroup
of the SU (2) flavor symmetries for each side. Nevertheless, the resulting cohomology
problem is substantially more intricate than those of the previous examples, and we will
not describe the level-by-level analysis.

Instead, we will take an indirect approach to understand the spectrum of generators
of this chiral algebra at low levels. In particular, by analyzing various superconformal
indices of this theory and comparing with the structure of the HL chiral ring, we will
be able to prove that the full chiral algebra must have generators in addition to those
related to HL chiral ring generators and the stress tensor. More precisely, by studying
the spectrum up to dimension three, we find that there must be additional generators that
arise from Ĉ1(0,0) multiplets in four dimensions.
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The Higgs branch chiral ring for this theory has been analyzed in [57]. It has three
generators: a U (1)F neutral operator of dimension two, which is actually the moment
map for U (1)F ,

M = −εa2a′
2φa2 φ̄a′

2
, (5.76)

and two operators of dimension four,

O1 = 2 φa2φa′
2
εa2b2εa′

2b′
2 Q A1b2 Q B1b′

2
δA1 B1 . (5.77)

O2 = 2 φ̄a2 φ̄a′
2
εa2b2εa′

2b′
2 Q A1b2 Q B1b′

2
δA1 B1 , (5.78)

that have charges +2 and −2 under the flavor symmetry. These generators satisfy a flavor
neutral relation of dimension eight:

O1O2 = M4 . (5.79)

It will be helpful for us to write down the Hilbert series [57] for this theory, refined by
the U (1)F flavor symmetry:

g(τ, a) = 1 − t4

(1 − t)(1 − a2t2)(1 − a−2t2)
= 1+t +(a2+a−2+1)t2+(a2+a−2+1)t3+. . . ,

(5.80)
where a is the U (1)F fugacity, and t is the fugacity for the dimension of the operator.

The generalized quiver for this theory has closed loops, so there will be additional
elements of the HL chiral ring coming from D-type multiplets. The HL index for this
theory can be computed by standard methods, and is given by

IHL(t; a) = 1 + t + (a2 + a−2 − 2a − 2a−1 + 1)t2

+(a2 + a−2 − 2a − 2a−1 + 2)t3 + . . . . (5.81)

By subtracting off the contributions of the Higgs chiral ring operators (obtained from
(5.80)), we can find the contributions of just the D-type multiplets. In turn, we can extract
the structure of the D-type generators.27 All told, at dimension two there are two D1(0,0)
multiplets with U (1)F charge +1 and two with charge −1, and at dimension three there
is a single D 3

2 (0,
1
2 )

multiplet that is U (1)F neutral. The two-dimensional counterparts of
these operators can be defined in an explicit calculation of the BRST cohomology.

Up to dimension three, we have now determined all of the generators of the HL chiral
ring. The question is whether these operators (along with the conjugates of the D-type
operators), in addition to the two-dimensional stress tensor, are sufficient to explain the
full spectrum of the chiral algebra (up to dimension three). The generators are listed in
the three blocks of Table 6, together with their contribution to the Macdonald index and
the quantum numbers of the corresponding Schur operators.

The Macdonald limit of the superconformal index of this theory is obtained from the
following contour integral,

IMD(q, t; a) =
∮

[db1][db2][db3] P.E .

[ √
t

1 − q

[(
χ3(b1)χ

2(b3) + χ3(b2)χ
2(b3)

)

+(a + a−1)χ2(b3)
]

+

(−t − q

1 − q

) (
χ3(b1) + χ3(b2) + χ3(b3)

)]
,

(5.82)

27 We have checked by a computation of the HL cohomology that the HL index captures faithfully the
complete spectrum of D-type multiplets up to dimension three.
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Table 6. Chiral algebra generators for the genus two theory with h � 3

Multiplet Index contribution h U (1)R U (1)F

B̂1
t

1−q 1 0 0

B̂2
t2a2

1−q 2 0 +2

B̂2
t2/a2

1−q 2 0 −2

2 × D1 (0,0) −2 t2a
1−q 2 1

2 +1

2 × D̄1 (0,0) −2 tqa
1−q 2 − 1

2 +1

2 × D1 (0,0) −2 t2/a
1−q 2 1

2 −1

2 × D̄1 (0,0) −2 tq/a
1−q 2 − 1

2 −1

D 3
2 (0,

1
2 )

t3

1−q 3 1 0

D̄ 3
2 (

1
2 ,0)

tq2

1−q 3 −1 0

Ĉ0(0,0)
tq

1−q 2 0 0

3 × Ĉ1(0,0) 3 t2q
1−q 3 0 0

The first columns lists the name and multiplicity of the four dimensional multiplets giving rise to the generators.
The second column lists the contribution of each multiplet to the Macdonald superconformal index, including
the flavor fugacity. The last columns list the two-dimensional quantum numbers of the generators. The first
block of the table consists of Higgs chiral ring generators, the second the remaining HL chiral and anti-chiral
ring generators, the third the two-dimensional stress tensor, and the last block the extra generators deduced
from the superconformal index

and the expansion including all operators up to dimension three is as follows,

IMD(q, t; a) = 1 + t + (a2 + a−2 − 2a − 2a−1 + 1)t2 + (−2a − 2a−1 + 2)qt

+ (a2 + a−2 − 2(a + a−1) + 2)t3 + (3 − 2(a + a−1))q2t

+ (a2 + a−2 − 4(a + a−1) + 5)t2q + . . . . (5.83)

We find that not all of the terms in this expansion can be accounted for by enumerating
normal ordered products of generators and their descendants. In particular, from the list
of known generators, the only operators that could contribute as t2q to the index (with no
flavor fugacity) are the normal-ordered product of a B̂1 and a Ĉ0(0,0) and the derivative
of the normal-ordered product of two B̂1 operators. This leaves a contribution of 3t2q
remains to be explained. We can thus conclude that there are at least three new operators,
and they must all must correspond to Ĉ1,(0,0) multiplets that are uncharged under the
flavor symmetry. We have included these as the last entry in Table 6. The argument
presented above shows that at least these three multiplets must be present, however it
does not take into account possible cancellations in the index, which could hide even
more additional generators.

6. Beyond Lagrangian Theories

Although the discussion of the previous section focused on theories admitting Lagrangian
descriptions, the correspondence between N = 2 SCFTs and chiral algebras is of course
much more general. In particular, the vast landscape of superconformal theories of class
S, most of which are non-Lagrangian in nature, will be mapped to an intricate and
interesting class of chiral algebras. The purpose of this section is to draw a sketch of the
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class of chiral algebras defined by this map. Most of the features discussed here follow
from the general structure of class S and the correspondence with chiral algebras. We do
however include a few specific claims that will be left unsubstantiated here, but which
are explained in the more complete analysis of [53]. To begin, we offer a quick reminder
of the salient features of N = 2 SCFTs of class S.

6.1. A review of class S in four dimensions. Class S theories [55,56] are those that
arise from compactification of any of the N = (2, 0) six-dimensional superconformal
theories on a Riemann surface C, known as the UV curve, possibly with the inclusion of
real codimension two defect operators at points of C.28 We will be interested in the case
of superconformal theories of class S, which means that the mass parameters associated
to defect operators will all be set to zero. The conformal manifold of a theory of class
S is equal to the complex structure moduli space of the UV curve, with boundaries at
which the curve degenerates corresponding to physical limits in which a gauge coupling
goes to zero and a free vector multiplet decouples from the rest of the spectrum.

For our purposes, the most useful way to think about these theories is in terms of a set
of four-dimensional “building block” theories associated to three-punctured spheres, or
trinions [55]. Such a theory can be denoted T (ρ1,ρ2,ρ3)

g , where g is the lie algebra of the
underlying six-dimensional theory, and the ρi label the defects at the three punctures.
When all three embeddings are trivial, the theory is sometimes simply denoted Tg (or TN
for the case that g = AN−1). These building blocks can be assembled into more complex
theories in a manner that is represented by a generalized quiver diagram such as those
displayed in Sect. 5.4. The shape of the generalized quiver is necessarily a tropical limit
of the corresponding UV curve, with different tropical limits corresponding to different
S-duality frames of the same theory.

A number of known features of the building block theories can be used to predict the
structure of the associated chiral algebras. In the interest of simplifying the discussion,
we shall henceforth restrict to the case where g = AN−1. The maximal building block
(that is, the one with the largest flavor symmetry group) is then the TN theory mentioned
above. We begin by reviewing its properties.

Generically, TN has SU (N )1 × SU (N )2 × SU (N )3 flavor symmetry, and central
charges [58,59]

c4d = N 3

6
− N 2

4
− N

12
+

1

6
, kSU (N )

4d = 2N = 2h∨. (6.1)

When N = 2, this is just the theory of free trifundamental half-hypermultiplets that
appeared in the example of Sect. 5.4, so the associated chiral algebra is already known.
In the special case of the T3 theory, the global symmetry is enhanced to E6 and this is
the classic theory of [44]. In that case, the four-dimensional level for the E6 symmetry
is k E6

4d = 6.
The generators of the Higgs branch chiral ring are known for these theories. There are

always dimension two moment maps μi=1,2,3 that transform in the adjoint of SU (N )i
and obey the relation

Trμk
1 = Trμk

2 = Trμk
3, k = 2, . . . , N . (6.2)

These are supplemented by generators Q(k) of dimension k(N −k) for k = 1, . . . , N −1,
which transform in the (∧k,∧k,∧k) representation of SU (N )1 × SU (N )2 × SU (N )3,

28 We restrict to the case of regular defects in all that follows. These are defects that are specified by an
embedding ρ : su(2) → g, where g is the simply laced Lie algebra that labels the six-dimensional theory.
Such a defect supports a flavor symmetry equal to the centralizer of the embedded su(2) subalgebra of g.
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where ∧k denotes the k-fold antisymmetric tensor representation. For N = 2 the only
operator of this type is Q(1), which is the free hypermultiplet itself. The moment maps
are actually composites of this basic operator. For the N = 3 case the operators are Q(1)
and Q(2), which are the additional moment maps of E6. For higher values of N , these
are genuine new generators of the Higgs branch chiral ring, all with dimension greater
than two. Some of the relations amongst these higher generators and the moment maps
have been derived in [60], though we do not list them here. In the case of the E6 theory,
the full set of Higgs branch relations are precisely those that define the Joseph ideal for
the E6 one-instanton moduli space.

The trinion theories with reduced punctures (i.e., with nontrivial defining embeddings
ρi ) can be thought of as arising by coupling the theory with a maximal puncture to a
certain superconformal tail and then turning on specific Higgs branch vacuum expec-
tation values [61,62]. Though we do not write down the explicit formulae, the central
charges for these theories can be computed for any choice of defining representations
[50]. Important special cases are the trinions for which the theory that results from reduc-
ing the punctures of the non-Lagrangian TN theory is described in terms of free fields.
A canonical example is the theory where ρ1 and ρ2 are trivial, but ρ3 is the subregu-
lar embedding of su(2) into su(N ). In this case puncture three is known as a minimal
punctures, and the resulting trinion theory is that of N free hypermultiplets.

Finally, we mention that index considerations suggest that there are no D-type mul-
tiplets for these theories, in which case the HL chiral ring is just the Higgs chiral ring
[21,60].

6.2. An outline of class S chiral algebras. We now turn to the class of chiral algebras
that form the image of the class S SCFTs under the map χ . In parallel with the full
four-dimensional story, there will be a set of basic building block chiral algebras corre-
sponding to the sphere with three maximal punctures. These will be the chiral algebras
χ[ TN ]. General aspects of the chiral algebra correspondence allow us to predict a num-
ber of properties of these theories. The two-dimensional central charge is fixed by the
usual proportionality with the four-dimensional conformal anomaly,

c2d = −2N 3 + 3N 2 + N − 2. (6.3)

Additionally, these chiral algebras have ŝu(n)3k affine symmetry with

k2d = −h∨. (6.4)

It is interesting to note that this is precisely the level that is relevant for the connection
between two-dimensional vertex algebras and the geometric Langlands program (see,
e.g., [63]). In addition to the generating currents of the affine flavor symmetry, the
chiral algebra will have additional generators χ [Q(k)] of holomorphic dimension h =
1
2 k(N − k) transforming in the appropriate representations of the flavor symmetries.

For the case of the T3 theory, the Higgs chiral ring generators are just the E6 moment
maps. The relations are generated by the E6 Joseph ideal, and correspondingly the central
charges of this theory saturate the appropriate unitarity bounds of Sect. 4.2. In particular,
this means that the stress tensor is not an independent generator, but rather is equivalent
to the Sugawara stress tensor of the E6 current algebra (see Sect. 4.3). Given our prior
experience in Sect. 5.1, it is natural to make a preliminary conjecture concerning the
description of the T3 chiral algebra:

Conjecture 4. The chiral algebra for the rank one E6 theory, also known as T3, is
isomorphic to the E6 affine Lie algebra at level k2d = −3.
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It is difficult to directly address this conjecture, since we do not have the free-field
realization of this chiral algebra that was present for Lagrangian theories. Nevertheless,
a variety of indirect checks have been performed and are presented in [53].

The chiral algebras associated to more general punctured Riemann surfaces can be
realized in a procedure that parallels the gluing construction in four dimensions. In
particular, for a given generalized quiver construction we start with a number of copies
of χ[TN ] along with SU (N ) ghost small algebras, and then perform the BRST reduction
associated to four-dimensional gauging to define the chiral algebra. Because the chiral
algebra that is associated to a given four-dimensional theory is independent of the exactly
marginal couplings, the chiral algebras associated to a given UV curve will not depend
on the complex structure moduli of the curve, and in particular will not depend on
the choice of generalized quiver within a given topological class. Thus, there will be
a generalized topological quantum field theory that associates a chiral algebra to any
appropriately decorated Riemann surface. This is very much in the spirit of [64,65],
where the superconformal index and the symplectic holomorphic variety of the Higgs
branch, respectively, were used to define a generalized TQFT via class S. Associativity of
the gluing imposes highly nontrivial requirements on the chiral algebra of the elementary
TN building block. There are three a priori inequivalent gauging procedures of two TN
theories that must lead to the unique theory associated to the four-punctured sphere. From
the 2d perspective, the BRST complexes associated to the different gaugings must give
the same cohomology. In the simple case of T2, this follows at once from Conjecture 1,
as the ŝo(8) current algebra is manifestly independent of the choice of gluing.

Having focused thus far on the case of maximal punctures, we should also consider
chiral algebras χ[T (ρ1,ρ2,ρ3)

N ] associated to the non-maximal theories. The task of reduc-
ing the rank of a puncture can be accomplished directly within the two-dimensional
chiral algebra setting. We propose that the chiral algebra for the theory T (ρ1,ρ2,ρ3)

N is
determined by quantum Drinfeld-Sokolov (DS) reduction of the TN theory with respect
to the three embeddings. In the canonical setting, quantum DS reduction is an operation
that is performed on an affine Lie algebra in order to produce a different W-algebra
as the cohomology of an appropriate BRST operator. In the present setting, the reduc-
tion is performed on a theory with an affine Lie subalgebra, so one may think of this
as quantum DS reduction with modules. The generalization is conceptually straight-
forward, but somewhat involved technically. This proposal passes several checks, most
notably that the central charges of the reduced theory precisely reproduce the expected
answers. The behavior of the class S chiral algebras under the reduction of punctures
imposes additional powerful constraints on the form of these two-dimensional theories.
In particular, complete reduction of a puncture (corresponding to choosing a maximal
embedding ρ) must lead to the chiral algebra for the theory with one fewer puncture.
Similarly, reducing one maximal puncture in χ [TN ] to a minimal punctures must lead
to the free hypermultiplet chiral algebra. A detailed discussion will be presented in [53].

The connection between reducing the rank of a puncture and quantum DS reduction
has made previous appearances in the context of the AGT correspondence [66,67], and
the fact that the same procedure is used here suggests a deeper connection between the
chiral algebras defined here and those that appear in the AGT correspondence.

7. Open Questions

We have outlined the main features of a new surprising correspondence between the
four-dimensional N = 2 superconformal field theories and chiral algebras. It should
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be apparent that there is a great deal more to learn about this rich structure. There are
many aspects that should be clarified further, and many natural directions in which
the construction could be generalized. We will simply provide a concise list of what
we consider to be the most salient open questions, some of which are currently under
investigation.

• For the Lagrangian examples considered in Sect. 5, as well as the class S examples
sketched in Sect. 6, we have made specific conjectures for the description of the
resulting chiral algebras as W-algebras. We hope that some of these conjectures can
be proved by more advanced homological-algebraic techniques.

• A detailed analysis of the B̂1 four-point function that compared 4d and 2d perspec-
tives led to powerful new unitarity bounds that must be obeyed in any interacting
N = 2 SCFT with flavor symmetry. It is likely that applying the same methods to
more general correlators will lead to further unitarity constraints.

• A better understanding of the implications of four-dimensional unitarity may help
clarify what sort of chiral algebra can be associated to a four-dimensional theory.
A sharp characterization of the class of chiral algebras that descend from four-
dimensional SCFTs could prove invaluable, both as a source of structural insights
and as a possible first step towards a classification program for N = 2 SCFTs.

• We have seen that the four-dimensional operators that play a role in the chiral algebra
are closely related to the ones that contribute to the Schur and Macdonald limits of the
superconformal index. While the Schur limit has been interpreted in Sect. 4.4 as an
index of the chiral algebra, the additional grading that appears in the Macdonald index
is not natural in the framework that we have developed. It would be interesting if the
additional refinement of the Macdonald index could be captured by a deformation
of the chiral algebra structure, perhaps along the lines of [68].

• It seems inevitable that extended operators will ultimately find a place in our con-
struction. We expect that codimension-two defects orthogonal to the chiral algebra
plane will play the role of vertex operators transforming as non-trivial modules of
the chiral algebra. One could also apply the tools developed here to study protected
operators that live on conformal defects that fill the chiral algebra plane.

• As it was presented here, the definition of a protected chiral algebra appears to use
extended superconformal symmetry in an essential way. Nevertheless, one wonders
whether some aspects of this structure may survive away from conformality, perhaps
after putting the theory on a nontrivial geometry.

• A related question is whether some aspects of our construction for Lagrangian theo-
ries may be accessible to the techniques of supersymmetric localization. The chiral
algebra itself may emerge after an appropriate localization of the four-dimensional
path integral.

• In many examples, the structure of the 4d Higgs branch appears to play a dominant
role in determining the structure of the associated chiral algebra. It is an interesting
question whether there is a sense in which the chiral algebra is an intrinsic property
of the Higgs branch, possibly with some additional structure added as decoration.

• The structure that we have utilized in this article does not admit a direct general-
ization to odd space-time dimensions. However, a philosophically similar approach
leads to a correspondence between three-dimensional N = 4 superconformal field
theories and one-dimensional topological field theories. The topological field theory
captures twisted correlators of three-dimensional BPS operators whose positions are
constrained to a line. We hope to return to investigate this structure in the future.
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• The cohomological approach to chiral algebras that was successfully pursued in this
article can be repeated in two-dimensional theories with at least N = (0, 4) super-
conformal symmetry and six-dimensional theories with N = (2, 0) superconformal
symmetry [9]. As it was in the four-dimensional case, correlation functions of the
six-dimensional chiral algebra should provide the jumping off point for a numerical
bootstrap analysis of the elusive (2, 0) theories.

• Combining the extension of this story to six dimensions with the inclusion of defect
operators has the potential to provide a direct explanation for the AGT relation
between conformal field theory in two-dimensions and N = 2 supersymmetric field
theories in four dimensions.
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A. Superconformal Algebras

This appendix lists useful superconformal algebras that are used in the body of this paper.
We adopt the convention of working in terms of the complexified version of symmetry
algebras. We adopt bases for the complexified algebras such that the restriction to the
real form that is relevant for physics in Lorentzian signature is the most natural. In
general, the structures described in this paper are insensitive to the spacetime signature
of the four-dimensional theory, with the caveat that we will assume that the theories in
question, when Wick rotated to Lorentzian signature, are unitary.

A.1. The four-dimensional superconformal algebra. The spacetime symmetry algebra
for N = 2 superconformal field theories in four dimensions is the superalgebra sl(4 | 2).
The maximal bosonic subalgebra is so(6,C) × sl(2)R × C

∗. The so(6,C) conformal
algebra, in a spinorial basis with α, α̇ = 1, 2, is given by

[M β
α ,M δ

γ ]= δ βγ M δ
α − δ δα M β

γ ,

[Mα̇

β̇
,Mγ̇

δ̇
] = δα̇δMγ̇

β̇
− δ

γ̇

β̇
Mα̇

δ̇
,

[M β
α ,Pγ γ̇ ] = δ βγ Pαγ̇ − 1

2 δ
β
α Pγ γ̇ ,

[Mα̇

β̇
,Pγ γ̇ ] = δα̇γ̇Pγ β̇ − 1

2 δ
α̇

β̇
Pγ γ̇ ,

[M β
α ,Kγ̇ γ ] = − δ γα Kγ̇ β + 1

2 δ
β
α Kγ̇ γ ,

[Mα̇

β̇
,Kγ̇ γ ] = − δ

γ̇

β̇
Kα̇γ + 1

2 δ
α̇

β̇
Kγ̇ γ ,

[H,Pαα̇] = Pαα̇,

[H,Kα̇α] = − Kα̇α,

[Kα̇α,Pββ̇ ] = δ α
β δα̇

β̇
H + δ α

β Mα̇

β̇
+ δα̇

β̇
M α

β .

(A.1)
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The sl(2)R algebra has a Chevalley basis of generators R± and R, where

[R+,R−] = 2R, [R,R±] = ±R±. (A.2)

In Lorentz signature where the appropriate real form of this algebra is su(2)R , these
generators will obey hermiticity conditions (R+)† = R−, R† = R. The generator of
the Abelian factor C

∗ is denoted by r and is central in the bosonic part of the algebra. It
is also convenient to introduce the basis RI

J , with

R1
2 = R+, R2

1 = R−, R1
1 = 1

2
r + R, R2

2 = 1

2
r − R, (A.3)

where we follow the conventions of [28] for r , and which obey the commutation relations

[RI
J ,R

K
L] = δKJ RI

L − δILRK
J . (A.4)

There are sixteen fermionic generators in this superconformal algebra—eight Poincaré
supercharges and eight conformal supercharges—denoted {QI

α , Q̃Iα̇, SαJ , S̃J α̇}. The
nonvanishing commutators amongst them are as follows,

{QI
α , Q̃J α̇} = δIJ Pαα̇ ,

{S̃Iα̇, S α
J } = δIJ Kα̇α ,

{QI
α , S β

J } = 1
2δ

I
J δ

β
α H + δIJ M β

α − δ β
α RI

J ,

{S̃Iα̇, Q̃J β̇} = 1
2δ

I
J δ

α̇

β̇
H + δIJ Mα̇

β̇
+ δα̇

β̇
RI

J .

(A.5)

Finally, the commutators of the supercharges with the bosonic symmetry generators are
the following:

[M β
α ,QI

γ ] = δ
β
γ QI

α − 1
2δ

β
α QI

γ ,

[Mα̇

β̇
, Q̃I δ̇] = δα̇

δ̇
Q̃Iβ̇ − 1

2δ
α̇

β̇
Q̃I δ̇ ,

[M β
α ,S γ

I ] = −δ γα S β

I + 1
2δ

β
α S γ

I ,

[Mα̇

β̇
, S̃Iγ̇ ] = −δγ̇

β̇
S̃Iα̇ + 1

2δ
α̇

β̇
S̃Iγ̇ ,

[H,QI
α ] = 1

2QI
α ,

[H, Q̃Iα̇] = 1
2 Q̃Iα̇ ,

[H,S α
I ] = − 1

2S α
I ,

[H, S̃Iα̇] = − 1
2 S̃Iα̇ ,

[RI
J ,QK

α ] = δ K
J QI

α − 1
4δ

I
J QK

α ,

[RI
J , Q̃Kα̇] = −δ I

K Q̃J α̇ + 1
4δ

I
J Q̃Kα̇ ,

[Kα̇α,QI
β ] = δ

α
β S̃Iα̇ ,

[Kα̇α, Q̃Iβ̇ ] = δ
α̇

β̇
S α

I ,

[Pαα̇,S β

I ] = −δ β
α Q̃Iα̇ ,

[Pαα̇, S̃Iβ̇ ] = −δ β̇
α̇ QI

α .

(A.6)
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A.2. The two-dimensional superconformal algebra. The second superalgebra of interest
is sl(2|2), which corresponds to the right-moving part of the global superconformal
algebra in N = (0, 4) SCFTs in two dimensions. The maximal bosonic subgroup is
sl(2) × sl(2)R , with generators {L0, L±1} for sl(2) and {R±,R} for sl(2)R . The non-
vanishing bosonic commutation relations are given by

[R,R±] = ±R±, [R+,R−] = 2R,
[L̃0, L̃±1] = ∓L̃±1, [L̃1, L̃−1] = 2L̃0.

There are additionally right-moving Poincaré supercharges QI , Q̃J and right-moving
superconformal charges SJ , S̃I . The commutation relations amongst the fermionic
generators are given by

{QI , Q̃J } = δIJ L̃−1,

{S̃I ,SJ } = δIJ L̃+1,

{QI ,SJ } = δIJ L̃0 − RI
J − 1

2
δIJ Z,

{Q̃J , S̃I} = δIJ L̃0 + RI
J +

1

2
δIJ Z,

where RI
J are defined as in (A.3), but with r set to zero. Here Z is a central element,

the removal of which gives the algebra psl(2|2). The additional commutators of bosonic
symmetry generators with the supercharges are given by

[L̃−1, S̃I ] = −QI ,

[L̃−1,SI ] = −Q̃I ,

[L̃+1, Q̃I ] = SI ,

[L̃+1,QI ] = S̃I ,

[L̃0 , S̃I ] = − 1
2 S̃I ,

[L̃0 ,SI ] = − 1
2SI ,

[L̃0 , Q̃I ] = 1
2 Q̃I ,

[L̃0 ,QI ] = 1
2QI .

(A.7)

B. Shortening Conditions and Indices of su(2, 2 | 2)

The classification of short representations of the four-dimensional N = 2 superconfor-
mal algebra [19,28,69] plays a major role in the structure of the chiral algebras described
in this paper. This appendix provides a review of the classification, as well as of the var-
ious indices that can be defined on any representation of the algebra that are insensitive
to the recombination of collections of short multiplets into generic long multiplets.

Short representations occur when the norm of a superconformal descendant state
in what would otherwise be a long representation is rendered null by a conspiracy of
quantum numbers. The unitarity bounds for a superconformal primary operator are given
by

E � Ei , ji 	= 0 ,

E = Ei−2 or E �Ei , ji = 0 ,
(B.1)
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Table 7. Unitary irreducible representations of the N = 2 superconformal algebra

Shortening Quantum number relations DO KMMR

∅ E � max(E1, E2) A�
R,r( j1, j2)

aa�, j1, j2,r,R

B1 E = 2R + r j1 = 0 BR,r(0, j2) ba0, j2,r,R
B̄2 E = 2R − r j2 = 0 B̄R,r( j1,0) ab j1,0,r,R
B1 ∩ B2 E = r R = 0 Er(0, j2) ba0, j2,r,0
B̄1 ∩ B̄2 E = −r R = 0 Ēr( j1,0) ab j1,0,r,0
B1 ∩ B̄2 E = 2R j1 = j2 = r = 0 B̂R bb0,0,0,R
C1 E = 2 + 2 j1 + 2R + r CR,r( j1, j2) ca j1, j2,r,R
C̄2 E = 2 + 2 j2 + 2R − r C̄R,r( j1, j2) ac j1, j2,r,R
C1 ∩ C2 E = 2 + 2 j1 + r R = 0 C0,r( j1, j2) ca j1, j2,r,0
C̄1 ∩ C̄2 E = 2 + 2 j2 − r R = 0 C̄0,r( j1, j2) ac j1, j2,r,0
C1 ∩ C̄2 E = 2 + 2R + j1 + j2 r = j2 − j1 ĈR( j1, j2) cc j1, j2, j2− j1,R
B1 ∩ C̄2 E = 1 + 2R + j2 r = j2 + 1 DR(0, j2) bc0, j2, j2+1,R
B̄2 ∩ C1 E = 1 + 2R + j1 −r = j1 + 1 D̄R( j1,0) cb j1,0,− j1−1,R
B1 ∩ B2 ∩ C̄2 E = r = 1 + j2 r = j2 + 1 R = 0 D0(0, j2) bc0, j2, j2+1,0
C1 ∩ B̄1 ∩ B̄2 E = −r = 1 + j1 −r = j1 + 1 R = 0 D̄0( j1,0) cb j1,0,− j1−1,0

where we have defined

E1 = 2 + 2 j1 + 2R + r , E2 = 2 + 2 j2 + 2R − r , (B.2)

and short representations occur when one or more of these bounds are saturated. The dif-
ferent ways in which this can happen correspond to different combinations of Poincaré
supercharges that will annihilate the superconformal primary state in the representation.
There are two types of shortening conditions, each of which has four incarnations cor-
responding to an SU (2)R doublet’s worth of conditions for each supercharge chirality:

BI : QI
α |ψ〉 = 0, α = 1, 2 (B.3)

B̄I : Q̃Iα̇|ψ〉 = 0, α̇ = 1, 2 (B.4)

CI :
{
εαβQI

α |ψ〉β = 0, j1 	= 0
εαβQI

αQI
β |ψ〉 = 0, j1 = 0

, (B.5)

C̄I :
{
εα̇β̇Q̃Iα̇ |ψ〉β = 0, j2 	= 0

εα̇β̇Q̃Iα̇Q̃Iβ̇ |ψ〉 = 0, j2 = 0
, (B.6)

The different admissible combinations of shortening conditions that can be simultane-
ously realized by a single unitary representation are summarized in Table 7, where the
reader can also find the precise relations that must be satisfied by the quantum numbers
(E, j1, j2, r, R) of the superconformal primary operator, as well as the notations used
to designate the different representations in [28] (DO) and [19] (KMMR).29

At the level of group theory, it is possible for a collection of short representations
to recombine into a generic long representation whose dimension is equal to one of the
unitarity bounds of (B.1). In the DO notation, the generic recombinations are as follows:

29 We follow the R-charge conventions of DO.
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A2R+r+2+2 j1
R,r( j1, j2)

� CR,r( j1, j2) ⊕ CR+ 1
2 ,r+ 1

2 ( j1− 1
2 , j2)

, (B.7)

A2R−r+2+2 j2
R,r( j1, j2)

� C̄R,r( j1, j2) ⊕ C̄R+ 1
2 ,r− 1

2 ( j1, j2− 1
2 )
, (B.8)

A2R+ j1+ j2+2
R, j1− j2( j1, j2)

� ĈR( j1, j2) ⊕ ĈR+ 1
2 ( j1− 1

2 , j2)
⊕ ĈR+ 1

2 ( j1, j2− 1
2 )

⊕ ĈR+1( j1− 1
2 , j2− 1

2 )
. (B.9)

There are special cases when the quantum numbers of the long multiplet at threshold are
such that some Lorentz quantum numbers in (B.7) would be negative and unphysical:

A2R+r+2
R,r(0, j2) � CR,r(0, j2) ⊕ BR+1,r+ 1

2 (0, j2)
, (B.10)

A2R−r+2
R,r( j1,0)

� C̄R,r( j1,0) ⊕ B̄R+1,r− 1
2 ( j1,0)

, (B.11)

A2R+ j2+2
R,− j2(0, j2)

� ĈR(0, j2) ⊕ DR+1(0, j2) ⊕ ĈR+ 1
2 (0, j2− 1

2 )
⊕ DR+ 3

2 (0, j2− 1
2 )
, (B.12)

A2R+ j1+2
R, j1( j1,0)

� ĈR( j1,0) ⊕ ĈR+ 1
2 ( j1− 1

2 ,0)
⊕ D̄R+1( j1,0) ⊕ D̄R+ 3

2 ( j1− 1
2 ,0)
, (B.13)

A2R+2
R,0(0,0) � ĈR(0,0) ⊕ DR+1(0,0) ⊕ D̄R+1(0,0) ⊕ B̂R+2. (B.14)

The last three recombinations involve multiplets that make an appearance in the associ-
ated chiral algebra described in this work. Note that the E , Ē , B̂ 1

2
, B̂1, B̂ 3

2
, D0, D̄0, D 1

2

and D̄ 1
2

multiplets can never recombine, along with B 1
2 ,r(0, j2)

and B̄ 1
2 ,r( j1,0)

.
There exist a variety of trace formulas [19,21] that can be defined on the Hilbert space

of an N = 2 SCFT such that the result receives contributions only from states that lie in
short representations of the superconformal algebra, with the contributions being such
that the indices are insensitive to recombinations. The indices are defined and named as
follows:

Superconformal Index : TrH(−1)F p
1
2 (E+2 j1−2R−r)q

1
2 (E−2 j1−2R−r)t R+r (B.15)

Macdonald : TrHM(−1)F q
1
2 (E−2 j1−2R−r)t R+r , (B.16)

Schur : TrH(−1)F q E−R , (B.17)

Hall–Littlewood : TrHHL(−1)Fτ 2E−2R , (B.18)

Coulomb : TrHC(−1)Fσ
1
2 (E+2 j1−2R−r)ρ

1
2 (E−2 j1−2R−r). (B.19)

The specialized Hilbert spaces appearing in the trace formulas above are defined as
follows,

HM := {ψ ∈ H
∣∣ E + 2 j1 − 2R − r = 0} , (B.20)

HHL := {ψ ∈ H
∣∣ E − 2R − r = 0 , j1 = 0} , (B.21)

HC := {ψ ∈ H
∣∣ E + 2 j1 + r = 0} . (B.22)

The different indices are sensitive to different superconformal multiplets. In particular,
the Coulomb index counts only E and D0 type multiplets. These can be thought of as
N = 1 chiral ring operators that are SU (2)R singlets. Similarly, the Hall–Littlewood
index counts only B̂R and DR multiplets, which can be thought of as the consistent
truncation of the N = 1 chiral ring to operators that are neutral under U (1)r . The Schur
and Macdonald indices count only the operators that are involved in the chiral algebras
of this paper: B̂R , ĈR , D, and D̄ multiplets. The full index receives contributions from
all of the multiplets appearing in Table 7.
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C. Kazhdan–Lusztig Polynomials and Affine Characters

Computing the characters of irreducible modules of an affine Lie algebra at a negative
integer level is a nontrivial task. For low levels, the multiplicity and norms of states
can be found by hand using the mode expansion of the affine currents J A(z), but this
computation quickly becomes rather involved. Fortunately there exists another method
to compute these characters, based on the work of Kazhdan and Lusztig [70], which
(with the aid of a computer) can produce results to very high order. In this appendix we
give a brief introduction to this method. The interested reader is referred to, e.g., [71,72]
for more details.

A generic method to obtain an irreducible representation of any (affine) Lie algebra
is to start with the Verma module M built on a certain highest weight state ψh.w., and
then to subtract away all the null states in this module with the correct multiplicities.
Let us recall that according to the Poincaré–Birkhoff–Witt theorem, the Verma module
is spanned by all the states of the form

(E−α1,1)n1,1(E−α1,2)n1,2 . . . (E−α1,m1)n1,m1 . . . (E−α2,1)n2,1 . . . (E−αN ,m N )nN ,m N ψh.w.,

(C.1)
with nonnegative integer coefficients ni, j . Here the E−α,kα are the negative roots with
weight −α, and the auxiliary index kα ∈ {1, . . . ,mα} is only necessary when the multi-
plicity mα of the given weight is greater than one. The ordering of the roots in the above
equation is arbitrary but fixed. If the highest weight state ψh.w. has weight μ then the
state defined as above has weight

μ− α1(n1,1 + n1,2 + · · · + n1,m1)− α2(n2,1 + · · · )− · · · − αN (· · · + nN ,m N ), (C.2)

and with a moment’s thought one sees that the character Mμ of the Verma module is
given by

charMμ = eμ
∏
α>0

(1 − e−α)−mult(α) . (C.3)

This is the Kostant partition function. The product is taken over the set of all the positive
roots, which is infinite for an affine Lie algebra.

For a given affine Lie algebra there are special values of the highest weights for
which the Verma module becomes reducible due to the existence of null states. We need
to subtract all these null states to recover the irreducible module. Since any descendant
of a null state is also null, the null states are themselves organized into Verma modules
and we can subtract away entire modules at a time. This procedure is further complicated
by the existence of “nulls of nulls”, i.e., null states inside the Verma module that we are
subtracting. In general, this leads to a rather intricate pattern of subtractions. It follows
that the character of the irreducible module with highest weight λ, which we denote as
Lλ, can be obtained from a possibly infinite sum of the form

charLλ =
∑
μ�λ

mλ,μcharMμ , (C.4)

where the integers mλ,μ are not of definite sign and reflect the aforementioned pattern
of null states. Of course mλ,λ = 1. The vectors labeled by μ in the above sum are called
the primitive null vectors of the Verma module Mλ.

This leaves us with the task of determining the weights μ that appear in (C.4) along
with their associated multiplicities mλ,μ. The first task is accomplished by noting that
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these weights are necessarily annihilated by all raising operators, and therefore must
be highest weight states in themselves. The quadratic Casimir operator of an affine Lie
algebra acts simply on highest weight states with weightμ as multiplication by |μ+ρ|2,
where ρ is the Weyl vector with unit Dynkin labels. On the other hand, the eigenvalue
should be an invariant of the full representation, which means that the only states μ that
can appear in (C.4) have to satisfy

|μ + ρ|2 = |λ + ρ|2 . (C.5)

Notice that so far we have made no distinction between unitary representations, where the
highest weight λ is dominant integral (i.e., its Dynkin labels are nonnegative integers),
and non-unitary representations like the ones in which we are interested. This distinction
becomes crucial in the computation of the multiplicities mλ,μ.

For the irreducible representations associated to dominant integral weights, the weight
multiplicities are invariant under the action of the Weyl group, and correspondingly
charLλ is invariant under the action of the Weyl group on the fugacities. On the other
hand, the Kostant partition function is essentially odd under this action (cf. [71]),

w(e−ρ−μcharMμ) = sign(w)e−ρ−μcharMμ, (C.6)

where the sign of an element w in the Weyl group is simply given by −1 raised to the
power of the number of generators used to express w. One can easily convince oneself
that the multiplicities mλ,μ therefore necessarily satisfy

mλ,μ = sign(w)mλ,w·μ, (C.7)

where w · μ := w(μ + ρ)− ρ is the shifted action of the Weyl group on the weight μ.
All the multiplicities mλ,μ for weights μ on the same shifted Weyl orbit are therefore
related by factors of sign(w), and it suffices to know only one multiplicity on each orbit.
Happily, if the highest weight λ is dominant integral, then it lies on the shifted Weyl orbit
of any primitive null vector. This essentially follows from the fact that there is a unique
dominant integral weight on every shifted Weyl orbit, and from (C.5) it can be shown
that this has to be λ. So, using that mλ,λ = 1, we find that all the weights appearing in
(C.4) are given by the shifted Weyl orbit of λ and have multiplicities equal to sign(w).
In summary, then,

charLλ =
∑
w∈W sign(w)ew(ρ+λ)−ρ∏
α>0(1 − e−α)mult(α)

, (C.8)

which is the famous Weyl–Kac character formula.
Let us return to the case where the λ is not dominant integral. This is the case that

interests us: indeed, for so(8)−2 the vacuum representation has Dynkin labels [−2 0 0 0 0]
and the zeroth Dynkin label is not positive.30 For non-dominant integral weights the
above derivation already fails at the very first step: the weight multiplicities in the
irreducible representation are not invariant under the action of the Weyl group. This is
most easily seen by taking the infinite irreducible representation of su(2) whose highest
weight is negative. In this case the single Weyl reflection maps the highest weight, which
of course has multiplicity one, to a positive weight, which has multiplicity zero. The
derivation of the coefficients mλ,μ now becomes considerably more involved. Since we

30 Recall that the zeroth Dynkin label for a weight vector in an affine Lie algebra ĝ is given by k − (λ, θ)

with λ the part of the weight vector corresponding to the original Lie algebra g and θ the highest root of g.
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find qualitative differences depending on the sign of k + h∨, we will in the remainder of
this appendix focus on the relevant case k + h∨ > 0.

For the non-unitary representations considered here it is still true that all the primitive
null vectors lie on the shifted Weyl orbit of the highest weight λ, and for k +h∨ > 0 there
is still a unique dominant weight � on the same orbit such that � + ρ has nonnegative
Dynkin labels. For example, for the vacuum module of so(8)−2 the dominant weight
has Dynkin labels [0 0 −1 0 0] which happens to be related to [−2 0 0 0 0] by a single
elementary reflection. All the weights in (C.4), including λ itself, can thus be written as
μ = w · � for some Weyl element w. We can therefore alternatively try to label these
weights with the corresponding element of the Weyl group w instead of μ. We will see
that such a relabeling has great benefits, but first we need to mention two important
subtleties.

The first subtlety concerns the fact that we may restrict ourselves to elementary
reflections of the Weyl group for which the corresponding Dynkin label in� is integral,
since it is only in those cases that null states can possibly appear. These reflections
generate a subgroup of the Weyl group that we will denote as W�. In the case of so(8)−2
the weights are all integral and W� = W . The second subtlety is the possibility of the
existence of a subgroup W 0

� of W� that leaves� invariant. This happens precisely when
some of the Dynkin labels of � + ρ are zero - in our case there is a single such zero. It
is clear that the weights μ can then at best be uniquely labeled by elements of the coset
W�/W 0

�.
It is now a deep result that the multiplicities mλ,μ depend on the dominant integral

weight � only through the corresponding elements w and w′ of the coset W�/W 0
�. We

may therefore replace
mλ,μ → mw,w′ , (C.9)

where λ = w ·�, μ = w′ · � and w and w′ are elements of the coset. The celebrated
Kazhdan–Lusztig conjecture tells us that the precise form of these multiplicities is given
by

mw,w′ = Q̃w,w′(1) . (C.10)

where the Kazhdan–Lusztig polynomial Q̃w,w′(q) is a single-variable polynomial
depending on two elements w and w′ of the coset W�/W 0

�. These polynomials are
determined via rather intricate recursion relations that are explained in detail in [72]. For
k + h∨ > 0 and integral weights, which is the case that interests us here, the Kazhdan–
Lusztig conjecture was proven in [73,74].

For the computations mentioned in the main text, we have implemented the
recursive definitions of the Kazhdan–Lusztig polynomials on cosets given in [72] in
Mathematica. Equations (C.3), (C.4), and (C.10) then allow us to compute all the
states in the irreducible vacuum character of so(8)−2 up to level five. The results are
shown in Table 5.
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