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Abstract: When a superconducting sample is submitted to a sufficiently strong external
magnetic field, the superconductivity of the material is lost. In this paper we prove that
this effect does not, in general, take place at a unique value of the external magnetic
field strength. Indeed, for a sample in the shape of a narrow annulus the set of magnetic
field strengths for which the sample is superconducting is not an interval. This is a
rigorous justification of the Little–Parks effect. We also show that the same oscillation
effect can happen for disc-shaped samples if the external magnetic field is non-uniform.
In this case the oscillations can even occur repeatedly along arbitrarily large values of
the Ginzburg–Landau parameter κ . The analysis is based on an understanding of the
underlying spectral theory for a magnetic Schrödinger operator. It is shown that the
ground state energy of such an operator is not in general a monotone function of the
intensity of the field, even in the limit of strong fields.

1. Introduction

1.1. Discussion. We will consider the Ginzburg–Landau model of superconductivity.
If a 2-dimensional superconducting sample with Ginzburg–Landau parameter κ is sub-
mitted to a uniform magnetic field of strength σ , then (by a theorem of Giorgi and
Phillips [15]) there exists a field strength HC3(κ) such that if σ > HC3(κ), then the
sample will be in its normal state, i.e., superconductivity is lost altogether. It is at first
sight natural to expect this phenomenon to mark a monotone transition, i.e., to expect
that the material is in its superconducting (possibly mixed) state for all σ < HC3(κ).

Indeed, such a monotonicity result has been proved recently in a number of geomet-
ric situations and in both 2 and 3 dimensional settings [8–10,12] in the case where the
Ginzburg–Landau parameter κ is large (it also follows from asymptotic expansions ob-
tained in other works, such as [6,21]). However, Nature does not support this monotonic-
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ity in general. The famous Little–Parks effect [19] shows that for narrow cylinders (or
2D annuli) one has an oscillatory behavior instead of monotonicity.1

In this paper we will establish such ‘oscillatory’ effects rigorously in different geo-
metric settings.

The lack of monotonicity comes from the topology/geometry of the annulus. It is
natural to ask whether one can get such an oscillatory effect for (non-vanishing) magnetic
fields defined on simply connected domains. From the previous investigations [8] we
know this to be impossible for a uniform magnetic field, but how about more general
fields? The analysis of constant magnetic fields tells us that this question is linked to a
purely spectral problem, namely, whether the first eigenvalue of the Schrödinger operator
(−i∇ + BF)2 is monotone increasing in the parameter (strength of the magnetic field) B
for sufficiently large values of B. This property has been called ‘strong diamagnetism’
and has been proved for large classes of magnetic fields—it is even ‘generically’ satisfied
[6,8–10,12,21]. However, we produce counterexamples in the general case.

The standard diamagnetic inequality |(−i∇ + A)u| ≥ ∣
∣∇|u|∣∣, implies that the ground

state energy increases when a magnetic field is applied. However, comparing different
non-zero fields is in general a delicate question, as the counter examples by Erdős show
[7]. One may view our result as an extension of [7] to the effect that even the more
restrictive ‘strong diamagnetism’ does not hold in general.

1.2. Ginzburg–Landau theory. The Ginzburg–Landau theory of superconductivity is
based on the energy functional

Gκ,σ (ψ,A) =
∫

�

|(−i∇ + κσA)ψ |2 − κ2|ψ |2 +
κ2

2
|ψ |4 dx

+ (κσ )2
∫

�̃

| curl A − β|2 dx .

Here κ > 0 is a material parameter (the Ginzburg–Landau parameter), σ ≥ 0 is a
parameter measuring the intensity of the external magnetic field and curl A = ∂x1 A2 −
∂x2 A1, where A = (A1, A2). The domain � ⊆ R

2 is the part of space occupied by the
superconducting material. For �̃ there are two natural choices. One can take �̃ = R

2.
That will not be our choice here, because for reasons of simplicity we want to avoid
an unnecessary technical complication connected with unbounded domains in R

2 (for
details on how to handle this issue see [14,16]). One can also—and that will be our
convention here—take �̃ to be the smallest simply connected domain containing�, i.e.,
the union of � and all the ‘holes’ in �. The function β ∈ L2(�̃) is the profile of the
external magnetic field.

In the setting of bounded � ⊂ R
2 the functional Gκ,σ is naturally defined on

(ψ,A) ∈ H1(�) × H1(�̃,R2). The functional is immediately seen to be gauge in-
variant, Gκ,σ (ψ,A) = Gκ,σ (ψe−iκσϕ,A + ∇ϕ). The vector field A models the induced
magnetic vector potential. The function ψ measures the superconducting properties of
the material, with |ψ(x)| being a measure of the local density of Cooper pairs.

1 In connection to the Little–Parks effect one often discusses the (solid) disc as another example, where the
effect of surface superconductivity provides a localization to the boundary and therefore effectively introduces
non-trivial topology which should give oscillations. However, as already the early studies of Saint-James [23]
show (see also [9]), in the case of the solid disc these oscillations are superposed on a linear background and
are not strong enough to break the monotonicity of the background.
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We say that a minimizer (ψ,A) of the Ginzburg–Landau functional is trivial ifψ ≡ 0
and curl A = β. In each of the situations we will encounter, the notation F will be reserved
for a fixed choice of vector potential with curl F = β. For trivial minimizers we clearly
have Gκ,σ (ψ,A) = 0. For a nontrivial minimizer the functional must be negative, since
one gets from the Euler–Lagrange equations of a minimizer that

Gκ,σ (ψ,A) = −κ
2

2
‖ψ‖4

4,

if (ψ,A) is a minimizer.
We define the set

N (κ) := {σ > 0 | Gκ,σ has a nontrivial minimizer (ψ,A)}.
Following [20] one typically defines the third critical field to be given by sup N (κ),
which is finite by [15]. However, unless N (κ) is an interval, this definition is not the
only natural one to take—see [8,11] for a discussion. We will see below that this is not
always the case.

1.3. Oscillations in the third critical field. Let � = {x ∈ R
2 | Ri < |x | < Ro} denote

the annulus with inner radius Ri and outer radius Ro, let β ≡ 1. In this case we will
write D = �̃ = B(0, Ro) i.e. the disc of radius Ro.

Theorem 1.1. There exists an annulus � and a κ0 > 0 such the set N (κ0) is not an
interval.

Remark 1.2. The mechanism behind this result is a convergence of the magnetic quadratic
form on the annulus to the corresponding form on the circle. This convergence was
already noticed in the works [2,22], where also ‘annuli’ of non-uniform width were
considered. It is likely that one could deduce Theorem 1.1 from these works, however,
we prefer to give a simple independent proof which also emphasizes the connection to
the Aharonov–Bohm-effect.

One may criticize the result of Theorem 1.1 on two accounts. One could desire not to
have the topology fixed a priori, but rather have it generated by localization properties
of the minimizer. Also most previous mathematical analysis has considered the limit of
large values of κ . One can show that for sufficiently large values of κ the set N (κ) of
a superconducting sample in the shape of an annulus will behave as the one of the disc
with the same outer radius, and it is known that for the disc and with constant magnetic
field—for sufficiently large values of κ—N (κ) is indeed an interval [8].

Our next theorem remedies these defects.

Theorem 1.3. Let� be the unit disc in R
2. There exists an everywhere positive magnetic

field β(x) such that for all κ0 > 0 there exists κ > κ0 satisfying that N (κ) is not an
interval.

In fact, the magnetic field can be chosen as β(x) = δ+(1−|x |)2, where δ > 0 is some
sufficiently small constant. Theorem 1.3 follows directly from Theorem 1.7 (or Theo-
rem 5.1) below using [11, Prop. 13.1.7]. Actually, it easily follows from Theorem 5.1
below, that for all integers n > 0 we can choose δ so small that N (κ) will consist of at
least n intervals for all κ sufficiently large.

We end this part of the introduction by mentioning that there is an extensive literature
on the study of the Ginzburg–Landau model with radial magnetic field. We refer the
reader to [3–5,24] and the references therein.
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1.4. Lack of strong diamagnetism. For easy reference we collect the notation and as-
sumptions concerning the magnetic fields that we will treat. We will work on an open
set �, being one the following three cases � ∈ {R2, B(0, 1),R2\B(0, 1)}.
Assumption 1.4. Suppose that β(x) = β̃(|x |) ∈ L∞

loc(�), is a non-negative, radial
magnetic field, possessing five continuous derivatives in an open neighborhood U of the
unit circle {x ∈ R

2 : |x | = 1}. Define

δ := β̃(1) ≥ 0,

and assume that β̃ ′(1) = 0 and write

k := β̃ ′′(1).

When � ∈ {B(0, 1), R
2\B(0, 1)}, we assume that


0δ < inf
x∈�β(x),

where 
0 < 1 is the spectral constant recalled in Appendix A. When � = R
2, we

impose the stronger assumption that β̃(r) has a unique, non-degenerate minimum at
r = 1 and that

inf
x∈R2\U

β(x) > δ.

Remark 1.5. The assumptions assure that ground state eigenfunctions will be localized
near r = 1. For � = R

2, we have k > 0 by assumption, but that is not necessarily true
in the cases with boundary.

Definition 1.6. We define

� := 1

2π

∫

{|x |<1}
β(x) dx =

∫ 1

0
β̃(r)r dr,

i.e., � denotes the magnetic flux through the unit disc.

For a magnetic field satisfying Assumption 1.4 and B > 0, we study the lowest
eigenvalue λ1,H(B) of the self-adjoint magnetic Schrödinger operator

H(B) = (−i∇ + BF)2

in L2(�). Here F is a magnetic vector potential associated with the magnetic field β.
We refer the reader to Sect. 2 for a more complete definition of this operator and the
eigenvalue.

We will study this eigenvalue problem in three cases, namely for� the unit disc, the
complement of the unit disc and the whole plane R

2. If � has a non-empty boundary
we impose a magnetic Neumann boundary condition.

The next theorem states that if� is the unit disc or its complement, then special choices
of magnetic fields satisfying Assumption 1.4 will give that the function B �→ λ1,H(B)
is not monotonically increasing for large B. Before stating the theorems, we remind the
reader that

ξ0, 
0, and ϕξ0(0)

are universal (spectral) constants coming from the de Gennes model operator—this is
recalled in Appendix A.
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Theorem 1.7. Let � be the unit disc or its complement. Suppose that β satisfies As-
sumption 1.4. Assume that δ > 0 and

� >

0

ξ0ϕξ0(0)2
δ. (1.1)

Then for all B0 > 0 there exist B1 and B2, with B0 < B1 < B2, such that

λ1,H(B1) > λ1,H(B2).

On the other hand, if

� <

0

ξ0ϕξ0(0)2
δ, (1.2)

then there exists B0 > 0 such that B �→ λ1,H(B) is monotone increasing on [B0,∞).

Remark 1.8. In particular, (1.1) holds for the magnetic field

β(x) = δ + (1 − |x |)2,
for all δ > 0 sufficiently small—the flux in this case is � = δ

2 + 1
12 . Therefore, this

magnetic field will not display monotonicity for large field strength.

Theorem 1.7 is a consequence of precise asymptotic formulas for the ground state
eigenvalue given as Theorems 4.1 and 5.1 below.

Remark 1.9. Notice that for the disc or its complement, the constant magnetic field
β(x) = δ > 0 satisfies Assumption 1.4. So this special case is covered by our analysis.
For constant field (1.2) is satisfied, and one does get monotonicity of the ground state
energy for large magnetic field (this is discussed in detail in [8]).

We continue with � = R
2. Here, we are only able to destroy monotonicity in the

case δ = 0.

Theorem 1.10. Let � = R
2 and that β satisfies Assumption 1.4. If δ > 0 there exists a

B0 > 0 such that λ1,H(B) is monotonically increasing for B > B0. However, if δ = 0,
then B �→ λ1,H(B) is not monotone increasing on any unbounded half-interval.

As for the disc and the exterior of the disc, the proof of this result goes via asymptotic
expansions, the relevant results being Theorems 7.1 and 8.1 below.

Remark 1.11. Suppose the ground state eigenvalue for angular momentum m, λ1,m , has
the following form

λ1,m(B) = Bμ
(m −�B√

B

)

,

where the function μ has a non-degenerate minimum at 0. This is a simplification in
comparison to the real calculations, but will serve for illustration purposes in the present
remark. Notice that when a Taylor expansion is justified, one gets

λ1,m(B) ≈ Bμ(0) +
1

2
μ′′(0)(m −�B)2.
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Then the total ground state eigenvalue λ1 = infm∈Z λ1,m will have an oscillating compo-
nent as a function of B, depending on the non-integer part of�B. There is a competition
between this oscillation and the monotonically increasing prefactor B, but in favor-
able cases the oscillation can lead to non-monotonicity of the eigenvalue. This is the
mechanism behind our examples above and it clearly depends strongly on the rotational
symmetry. We believe that at least approximate rotational symmetry is necessary if one
wants to have lack of monotonicity for large field strength.

Remark 1.12. Theorem 1.10 raises the question whether one can break strong diamag-
netism with a strictly positive magnetic field on the whole plane.

1.5. Organization of the paper. In the next section we define the operators involved and
perform the Fourier decomposition reducing the study to a family of ordinary differential
operators.

In Sect. 3, we prove a non-monotonicity result for an annulus and use that to prove
Theorem 1.1. In Sect. 4, we work in the exterior of the unit disc and prove Theorem 4.1.
We indicate in Sect. 5 how the proof of Theorem 4.1 can be modified to give the proof
of Theorem 5.1. In Sect. 6, we see how Theorems 4.1 and 5.1 imply Theorem 1.7.

In Sect. 7, we prove Theorem 7.1, and in Sect. 8, we prove Theorem 8.1. These two
results are used to prove Theorem 1.10.

2. Preliminaries

2.1. Definition of the operator. We consider the self-adjoint magnetic Neumann
Schrödinger operator

H(B) = (−i∇ + BF)2

with domain

Dom(H(B)) = {

ψ ∈ L2(�) | (−i∇ + BF)2ψ ∈ L2(�)

and N (x) · (−i∇ + BF)ψ |∂� = 0
}

.

Here N (x) is the interior unit normal to ∂�,

β(x) = ∂F2

∂x1
− ∂F1

∂x2
, F = (F1, F2),

and B ≥ 0 is the strength of the magnetic field.
In general, for a self-adjoint operator H that is semi-bounded from below we will

write
λ1,H = inf Spec

(H)

for the lowest point of the spectrum of H.
In the case of the disc or if β(x) → +∞ as |x | → +∞ the operator has compact

resolvent (see [1]). If � is unbounded and if β(x) �→ +∞, then the essential spectrum
will be bounded below by lim infr→+∞ Bβ̃(r) > Bδ (see [17] for the case of R

2 and
[18] for the case of the exterior of the disc). In any case, as it will follow by the results
below, λ1,H(B) will be an eigenvalue.
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2.2. Fourier decomposition. We will work in domains� that are rotationally symmetric.
For that reason, we will often work in polar coordinates

{
x1 = r cos θ,

x2 = r sin θ,
r ∈ I, 0 ≤ θ < 2π.

Here I ⊂ [0,+∞) will be an interval.
Moreover, we will work with magnetic fields that depends only on r = |x |.
For a radial magnetic field β(x) = β̃(r) we will work with the gauge

F(x) = a(r)(− sin θ, cos θ),

where2

a(r) = 1

r

∫ r

0
β̃(s)s ds. (2.1)

In calculations, we will often meet the expression (m
r − Ba(r))2. This we can write as

(m

r
− Ba(r)

)2 = 1

r2

(

m − Bra(r)
)2
, (2.2)

where

ra(r) =
∫ 1

0
β̃(s)s ds +

∫ r

1
β̃(s)s ds = � +

∫ r−1

0
β̃(1 + s)(1 + s) ds. (2.3)

Thus, under Assumption 1.4, as r → 1,

ra(r) = � + δ(r − 1) +
δ

2
(r − 1)2 +

k

6
(r − 1)3 +

( c

24
+

k

8

)

(r − 1)4 + O((r − 1)5).

(2.4)

with c = β̃ ′′′(1).
The expression for the operator H(B) in polar coordinates becomes

H(B) = − ∂2

∂r2 − 1

r

∂

∂r
+

( i

r

∂

∂θ
− Ba(r)

)2
.

We make a Fourier decomposition of the Hilbert space as (Here I denotes any of the
intervals (Ri , Ro), (0, 1), (1,+∞) or (0,+∞))

L2(�) ∼= L2(I, rdr
) ⊗ L2(S1, dθ) ∼=

∞
⊕

m=−∞
L2(I, rdr

)

,

that is, we decompose ψ ∈ L2(�) as

ψ(r cos θ, r sin θ) =
∑

m∈Z

ψm(r)
e−imθ

√
2π

,

2 Notice that
∫ r

0 β̃(s)s ds = 1
2π

∫

B(0,r) β(x) dx , so ra(r) has an immediate interpretation in terms of the
flux through the disc of radius r .
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where

ψm(r) =
∫ 2π

0
ψ(r cos θ, r sin θ)

eimθ

√
2π

dθ ∈ L2(I, rdr
)

and
∑

m∈Z
‖ψm‖2 < +∞. Next, we write the operator H(B) corresponding to this

decomposition as

H(B) =
∞

⊕

m=−∞
Hm(B),

where Hm(B) is the self-adjoint operator acting in L2
(

I, r dr
)

, given by

Hm(B) = − d2

dr2 − 1

r

d

dr
+

(m

r
− Ba(r)

)2
,

with Neumann boundary conditions at the endpoints of I (if inf I = 0 we do not impose
any boundary condition at r = 0). The quadratic form corresponding to Hm(B) is given
by

qm[ψ] =
∫

I

[

|ψ ′(r)|2 +
(m

r
− Ba(r)

)2|ψ(r)|2
]

r dr. (2.5)

It holds that
λ1,H(B) = inf

m∈Z

λ1,Hm (B).

3. The Analysis of the Annulus

3.1. Introduction. In this section we will let

β(x) = 1 and � = {

x ∈ R
2 | Ri < |x | < Ro

}

.

We aim to prove Theorem 1.1.

3.2. The linear result. We first notice the non-monotonicity of the function B �→
λ1,H(B).

Theorem 3.1. Let Ri = 1 and 1 < Ro <
√

2. Then the operator H(B) in the annulus
� satisfies

d

d B
λ1,H(B)

∣
∣
∣
∣

B=1
< 0.

In particular, the function B �→ λ1,H(B) is monotonically decreasing around B = 1.

One might suspect that some properties of H(B) are carried over to some model
problem on the circle, as Ro ↘ Ri . Let A(B) be the self-adjoint operator

A(B) =
(−i

Ri

d

dθ
− B Ri

2

)2
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Fig. 1. Left The eigenvalues of A(B) (dotted) and the lowest eigenvalue λ1,A(B) (solid) for 0 < B < 10
and Ri = 1. Right The lowest eigenvalue λ1,H(B) plotted for 0 < B < 8. The dotted lines are the lowest
eigenvalue of Hm (B) for 0 ≤ m ≤ 6, Ri = 1 and Ro = 3/2

in L2
(

(0, 2π)
)

with periodic boundary conditions. Its spectrum is easily seen to consist

of eigenvalues
{( m

Ri
− B Ri

2

)2}

m∈Z
. In particular

λ1,A(B) = min
m∈Z

( m

Ri
− B Ri

2

)2
,

which is periodic and graphed in Fig. 1. Our next theorem states that λ1,H(B) will tend
to λ1,A(B) as Ro ↘ Ri .

Theorem 3.2. Let B > 0. Then

lim
Ro↘Ri

λ1,H(B) = λ1,A(B) = min
m∈Z

( m

Ri
− B Ri

2

)2
.

Remark 3.3. As a direct consequence of Theorem 3.2 it is possible to find an annulus such
that the function B �→ λ1,H(B) is monotonically increasing and decreasing alternatively
as many times as desired.

Remark 3.4. Another direct consequence of Theorem 3.2 is that, although the diamag-
netic inequality tells us that λ1,H(B) > λ1,H(0) = 0 for all B > 0 we can actually get
λ1,H(B) to be arbitrary close to zero if B = 2m, m = 1, 2, . . . by choosing Ro close
enough to Ri .

Remark 3.5. Theorem 3.2 can easily be extended to thin cylinders in three dimensions,
since the third variable then separates.

3.3. Nonmonotonicity in the annulus. In this subsection we will prove the Theorems 3.1
and 3.2. We will work in polar coordinates.

Proof of Theorem 3.1. We recall that here Ri = 1. Let

pm,B(r) =
(m

r
− Br

2

)2

denote the potential in the quadratic form qm in (2.5).
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We start by showing that if Ro > 1 and m ∈ Z\{1} then

λ1,Hm (1) > λ1,H1(1). (3.1)

The function f (r) = pm,1(r) − p1,1(r) is positive for r > 1. Indeed, f (r) =
1−m+(m2−1)/r2. If m �∈ {0, 1} then f is decreasing, and f (r) ≥ f (1) = m2−m > 0.
If m = 0 then f (r) = 1 − 1/r2 which is clearly positive for all r > 1. The inequality
(3.1) follows by a comparison of quadratic forms.

Next, we show that if 1 < Ro <
√

2m/B then

d

d B
λ1,Hm (B) < 0. (3.2)

By perturbation theory it holds that

d

d B
λ1,Hm(B) =

∫ Ro

1

( Br2

2
− m

)

u(r)2r dr, (3.3)

where u denotes the L2-normalized eigenfunction corresponding to λ1,Hm (B). Moreover

the factor
( Br2

2 − m
)

is negative for all 1 < r < Ro if Ro <
√

2m/B. Inserting this into
(3.3) gives (3.2)

It is now easy to finish the proof of Theorem 3.1. Let 1 < Ro <
√

2. Inequality (3.1)
and analytic perturbation theory imply that

λ1,H(B) = λ1,H1(B)

for B in a neighborhood of 1. Since, by (3.2), it holds that the derivative of λ1,H1(B) is
negative at B = 1 the same is true for the derivative of λ1,H(B). By continuity of the
derivative this holds in a neighborhood of B = 1. In particular we conclude that the
function B �→ λ1,H(B) is strictly decreasing for these values of B. ��
Proof of Theorem 3.2. Since

λ1,H(B) = inf
m
λ1,Hm (B),

Theorem 3.2 is a direct consequence of the fact that, for m ∈ Z and B ≥ 0,

lim
Ro↘Ri

λ1,Hm(B) =
( m

Ri
− B Ri

2

)2
. (3.4)

To get an upper bound we use a trial state. In fact, we use the simplest possible one.

Let u =
√

2/(R2
o − R2

i ). Then ‖u‖L2((Ri ,Ro),rdr) = 1. A simple calculation shows that

lim
Ro↘Ri

qm[u] = lim
Ro↘Ri

(
2m2

Ro + Ri

log Ro − log Ri

Ro − Ri
− Bm +

B2

8

(

R2
i + R2

o

)
)

=
( m

Ri
− B Ri

2

)2
.

Hence lim supRo↘Ri
λ1,Hm(B) ≤ ( m

Ri
− B Ri

2

)2.
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The lower bound is obtained by using the potential pm,B(r). Let u be a normalized
eigenfunction corresponding to λ1,Hm(B). then

λ1,Hm (B) = qm[u] ≥
∫ Ro

Ri

( Br

2
− m

r

)2|u|2r dr ≥ min
Ri ≤r≤Ro

( Br

2
− m

r

)2
.

Since minRi ≤r≤Ro

( Br
2 − m

r

)2 → ( m
Ri

− B Ri
2

)2 as Ro ↘ Ri we conclude that

lim inf
Ro↘Ri

λ1,Hm (B) ≥
( m

Ri
− B Ri

2

)2
.

This completes the proof of (3.4), and thus finishes the proof of Theorem 3.2. ��

3.4. Application to the Ginzburg–Landau functional. In this subsection we prove The-
orem 1.1. We recall the reader that D below denotes the disc with radius Ro, centered
at the origin. We need the basic inequality

‖ψ‖∞ ≤ 1,

for any minimizer of the Ginzburg–Landau functional (see [11, Proposition 10.3.1]).
Let

H1
div(D) = {a ∈ H1(D) | div a = 0 in D, a · ν = 0 on ∂D}.

By gauge invariance, it suffices to minimize over A ∈ H1
div(D), for details see [11,

Proposition D.2.1].

Lemma 3.6. Let Ri be fixed and let Ri ≤ Ro ≤ 2. There exist a constants Ĉ, Ĉ0 > 0
(independent of Ro) such that for all a ∈ H1

div(D) we have

‖a‖L2(D) ≤ Ĉ‖ curl a‖L2(D),

‖a‖L4(D) ≤ Ĉ0‖ curl a‖L2(D).
(3.5)

Proof of Lemma 3.6. The inequalities follow from [11, Proposition D.2.1] and the Sobolev
imbedding. ��
Proof of Theorem 1.1. Given 0 < ε < 1, the Cauchy inequality implies that

|(−i∇ + κσA)ψ |2 ≥ (1 − ε)|(−i∇ + κσF)ψ |2 − ε−1(κσ )2|A − F|2|ψ |2,
and so

Gκ,σ (ψ,A) ≥
∫

�

(1 − ε)|(−i∇ + κσF)ψ |2 − κ2|ψ |2 +
κ2

2
|ψ |4 dx

− ε−1(κσ )2
∫

�

|A − F|2|ψ |2 dx + (κσ )2
∫

D
| curl A − 1|2 dx

≥ (

(1 − ε)λ1,H(κσ ) − κ2)‖ψ‖2
L2(�)

− ε−1(κσ )2‖A − F‖2
L4(D)‖ψ‖2

L4(�)
+ (κσ )2

∫

D
| curl A − 1|2 dx

≥ (

(1 − ε)λ1,H(κσ ) − κ2)‖ψ‖2
L2(�)

+ (κσ )2
(

1 − Ĉ2
0ε

−1√π(R2
o − R2

i )
1/2

) ∫

D
| curl A − 1|2 dx .

Here we used (3.5) and ‖ψ‖∞ ≤ 1 to get the last inequality.
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If we choose ε = (Ro − Ri )
1/4, then we see that if λ1,A(κσ ) > κ2, then for all Ro

sufficiently close to Ri and all (ψ,A),

Gκ,σ (ψ,A) ≥ 0. (3.6)

On the other hand, if λ1,H(B=σκ) < κ2, then we have (with F = 1/2(−x2, x1) and u
the normalized eigenfunction corresponding to λ1,H(σκ))

Gκ,σ (cu,F) = c2(λ1,H(σκ) − κ2) + c4 κ
2

2

∫

�

|u|4 dx < 0 (3.7)

for sufficiently small values of c.
Therefore, by the explicit spectrum of A(B) we can choose κ0 > 0 and B0 < B1 <

B2 such that

λ1,A(B j ) < κ2
0 , j = 0, 2, λ1,A(B1) > κ2

0 .

Define σ j := B j/κ0. By the convergence of the spectrum given in Theorem 3.2 and
(3.7) we find the existence of R̃ > Ri such that Gκ0,σ j has a non-trivial minimizer for all
Ri < Ro ≤ R̃ and j ∈ {0, 2}. On the other hand, it follows from (3.6) that the minimizer
of Gκ0,σ1 is trivial for all Ro > Ri sufficiently close to Ri .

We conclude the existence of Ro > Ri such that there exist non-trivial minimizers
when σ = σ0 and σ = σ2 but not when σ = σ1. Since σ0 < σ1 < σ2 it is clear that
N (κ0) is not an interval. ��

4. The Case of the Complement of the Disc

4.1. Introduction. In this section we consider the case � = {x ∈ R
2 : |x | > 1} and

assume that the magnetic field satisfies Assumption 1.4 with δ > 0. We will prove the
following eigenvalue asymptotics.

Theorem 4.1. Suppose that � is the complement of the unit disc, that β satisfies
Assumption 1.4 and that δ > 0. Then there are constants Cext

0 and Cext
1 such that if

�ext
B := inf

m∈Z

∣
∣m −�B − ξ0(δB)1/2 − Cext

0

∣
∣,

then, as B → +∞,

λ1,H(B) = 
0δB +
1

3
ϕξ0(0)

2(δB)1/2 + ξ0 ϕξ0(0)
2((�ext

B )
2 + Cext

1

)

+ O(B−1/2).

Remark 4.2. By a careful reading of the proof, one will realize that the constant Cext
0

is independent of δ but that Cext
1 depends on δ. However, for our purposes this extra

information is irrelevant.
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4.2. Localization estimate. Before continuing we give an Agmon estimate for the lowest
eigenfunction.

Proposition 4.3. Assume that β satisfies Assumption 1.4 with δ > 0. Let t ∈ (0, 1).
Then there exist positive constants C, a and B0 such that if B > B0, and if ψ is an
eigenfunction of H(B) corresponding to an eigenvalue λ ≤ tδB. then
∫

{|x |>1}
exp

(

aB1/2
∣
∣|x | − 1

∣
∣
)(|ψ |2 + B−1|(−i∇ + BF)ψ |2) dx ≤ C

∫

{|x |>1}
|ψ |2 dx .

Theorem 8.2.4 in [11] gives the same estimate with the restriction that the domain
should be bounded. However, since we give a similar Agmon estimate in Sect. 7 with
proof we omit the proof here.

4.3. A detailed expansion. We recall that the quadratic form after decomposition is given
by (with a(r) from (2.1))

qm[u] =
∫ +∞

1

(

|u′(r)|2 +
(m

r
− Ba(r)

)2|u(r)|2
)

r dr.

Notice that at r = 1 the potential takes the value

(m

r
− Ba(r)

)2∣∣
∣
r=1

= (m −�B)2.

This suggests that we will find the lowest energy for m ≈ �B. That this is the case is
the content of the following lemma.

Lemma 4.4. Let t ∈ (0, 1). Suppose ψ = ume−imθ is an eigenfunction of H(B) with
eigenvalue λ ≤ tδB. Then

m = �B + O(B1/2).

Proof. We neglect the kinetic energy in the expression for qm . Recall the calculation
(2.2). For 1 < r < 2, we get

∣
∣
∣

∫ r−1

0
(1 + s)β̃(1 + s) ds

∣
∣
∣ ≤ C(r − 1), (4.1)

so, estimating the quadratic form with the potential, combining (4.1) and (2.3), and using
Proposition 4.3, we get

qm[um] ≥
∫ 2

1

1

r2

(

m − Bra(r)
)2|um(r)|2r dr

≥
∫ 2

1

1

r2

[1

2
(m −�B)2 − (C B)2(r − 1)2

]

|um(r)|2r dr

≥ 1

8
(m −�B)2

(

1 + O(B−∞)
) − C̃ B, (4.2)

from which the lemma follows. ��
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Lemma 4.5. Let t ∈ (0, 1). There exists B0 > 0 such that if m ∈ Z and B ≥ B0, then
Hm(B) admits at most one eigenvalue below tδB.

Proof. Fix t̃ with t < t̃ < 1. By the lower bound (4.2), we see that there exist B0,C0 > 0
such that if |m −�B| ≥ C0 B1/2, then qm ≥ t̃δB.

So we will restrict attention to m’s such that m = �B +�m, with |�m| ≤ C0 B1/2.
Suppose, to get a contradiction, that u1, u2 are eigenfunctions of Hm(B) corresponding
to eigenvalues below tδB.

We write
(m

r
− Ba(r)

)2 = 1

r2

(

m − Bra(r)
)2
,

with

ra(r) = � + δ(r − 1) + O(

(r − 1)2
)

,

as r → 1. So

|m − Bra(r)| ≥ |m −�B − Bδ(r − 1)| + O(

B(r − 1)2
)

.

Using the Agmon estimates, this yields the following bound on normalized functions v
in span{u1, u2}.

qm[v] ≥
∫ ∞

1

(

|v′(r)|2 +
1

r2

(

�m − Bδ(r − 1)
)2|v(r)|2

)

r dr + O(B1/2)

= q̃m[v] + O(B1/2), (4.3)

with

q̃m[v] =
∫ ∞

1
|v′(r)|2 +

(

�m − Bδ(r − 1)
)2|v(r)|2 dr. (4.4)

By translation and scaling the operator corresponding to the quadratic form q̃m is unitarily
equivalent to a de Gennes operator (see Appendix A) and therefore has spectrum given
by

Bδ
{

λ j,HdG(�m/(δB)1/2)
}+∞

j=1

Only the first of these λ j,HdG —counted with multiplicity—is below 1 (for some values
of �m/(δB)1/2), so we reach a contradiction if we have a subspace of dimension 2 on
which the quadratic form is small. ��
Lemma 4.6. Let M > 0. Suppose Hm(B) admits an eigenvalue below
0δB + M B1/2.
Then there exists a constant C > 0 such that

∣
∣m − (

�B + ξ0(δB)1/2
)∣
∣ ≤ C B1/4. (4.5)

Proof. By Lemma 4.4, |m − �B| = O(B1/2). Assuming that u is the eigenfunction
corresponding to the unique (by Lemma 4.5) eigenvalue λ below 
0δB + M B1/2 we
can use the estimate in (4.3) to find that

qm[u] ≥ q̃m[u] + O(B1/2),
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with q̃m as in (4.4). Implementing the change of variable r = 1 + (δB)−1/2ρ, we get
(here we write v(ρ) = (δB)−1/4u(1 + (δB)−1/2ρ))

q̃m[v] = δB
∫ +∞

0
|v′(ρ)|2 +

(

ρ − ξ0 + ξ0 − m −�B

(δB)1/2

)2

|v|2 dρ.

We recognize this as the quadratic form for the de Gennes operator (see Appendix A).
By noticing that the first eigenvalue λ1,HdG(ξ) has a quadratic minimum 
0 at ξ0 (and
using the bound on (m −�B)/(δB)1/2) we find that there exists a positive constant C0
such that

q̃m[v] ≥
[


0δB + C0δB

(

ξ0 − m −�B

(δB)1/2

)2 ]

‖v‖2.

The second term above is bounded by some constant times B1/2 according to the as-
sumption. This in turn gives the existence of a positive constant C such that (4.5) holds.

��
In the remainder of this section we will always restrict our attention to m’s satisfying

(4.5).
The strategy of the rest of the proof is as follows. We will construct an explicit trial

state for the operator h = 1
B Hm(B) (here we suppress the dependence on m and B for

the simplicity of notation). This trial state will be constructed as the sum of the first
terms of a formal expansion. By taking only finitely many terms (for our purposes 3
terms suffice) and performing a localization one gets a well-defined trial state. In terms
of the objects calculated below our explicit trial state will be as follows. Let

v(ρ) = v0 + B−1/2v1 + B−1v2, λ = λ0 + B−1/2λ1 + B−1λ2.

Let furthermore, χ ∈ C∞
0 (R), with χ(0) = 1, and define (with suitable ε, say ε =

(100)−1)

ṽ(r) = (δB)1/4χ(B1/2−ε(r − 1))v((δB)1/2(r − 1)). (4.6)

Then ‖ṽ‖L2 = 1 + O(B−1/2) and

‖(h − λ)ṽ‖ = O(B−3/2).

By self-adjointness of h we get that dist(λ, σ (h)) = O(B−3/2). Since we by Lemma 4.5
know that h has at most one eigenvalue near λ0 = δ
0, we can conclude that λ gives
the first terms of the asymptotic expansion of that lowest eigenvalue of h.

We proceed to the termwise construction of the trial state. Since (by Proposition 4.3)
we have localization around r = 1, we implement unitarily the change of variables

ρ = (δB)1/2(r − 1), r = 1 + (δB)−1/2ρ.

Here, the δ is included for convenience. Then

Bra(r) = �B + (δB)1/2ρ +
1

2
ρ2 +

k

6δ3/2 B−1/2ρ3 + O(B−1).
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Here the estimate on the remainder should be understood in the following sense: We will
only act with our operator on the function ṽ from (4.6) which is localized near r = 1 on
the scale B−1/2. So we may consider ρ as a quantity of order 1.

By Lemma 4.6 the constant term m −�B vanishes to leading order. For clarity, we
will write

m = �B + μ1 B1/2 + μ2,

and not insert the choice μ1 = ξ0δ
1/2 until later. Recall that μ2 B−1/4 is bounded.

Integrating by parts, we find (with v(ρ) = (δB)−1/4u(1 + (δB)−1/2ρ))

1

B

∫ +∞

1

∣
∣
∣
du

dr

∣
∣
∣

2
r dr

= δ

∫ +∞

0
v
(

−d2v

dρ2 − (δB)−1/2(1 + (δB)−1/2ρ)−1 dv

dρ

)

(1 + (δB)−1/2ρ) dρ.

We expand our operator h as

h = h0 + B−1/2h1 + B−1h2 + · · ·
and obtain

h0 = δ
(

− d2

dρ2 + (ρ − μ1/δ
1/2)2

)

,

h1 = −δ1/2 d

dρ
− 2μ2δ

1/2(ρ − μ1/δ
1/2)− 2μ2

1

δ1/2 ρ + 3μ1ρ
2 − δ1/2ρ3, (4.7)

h2 = ρ
d

dρ
+ μ2

2 − 4μ1μ2

δ1/2 ρ + 3μ2ρ
2 +

3μ2
1

δ
ρ2 − kμ1

3δ3/2 ρ
3 − 4μ1

δ1/2 ρ
3 +

k

3δ
ρ4 +

5

4
ρ4.

We make the Ansatz

v =
+∞
∑

j=0

v j B− j/2, λ =
+∞
∑

j=0

λ j B− j/2.

Equating order by order in the relation (h − λ)v = 0 gives:

Order B0. To leading order we find

h0v0 = λ0v0,

which is the eigenvalue problem for the de Gennes operator discussed in Appendix A.
The optimal eigenvalue λ0 = δ
0 is attained for v0 = ϕξ0 and μ1 = δ1/2ξ0.

Order B−1/2. Here we get

(h0 − λ0)v1 = (λ1 − h1)v0.
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By taking scalar product (with measure dρ), we find

0 = 〈v0, (h0 − λ0)v1〉 = λ1 − 〈v0, h1v0〉.
Via the formulas (A.1)–(A.2) we find

λ1 = 〈ϕξ0 , h1ϕξ0〉
=

〈

ϕξ0 ,
(−δ1/2 d

dρ
− 2μ2δ

1/2(ρ − μ1/δ
1/2)− 2μ2

1

δ1/2 ρ + 3μ1ρ
2 − δ1/2ρ3)ϕξ0

〉

= −δ1/2〈ϕξ0 , ϕ
′
ξ0

〉 − 2μ2δ
1/2〈ϕξ0 , (ρ − ξ0)ϕξ0〉 − 2ξ2

0 δ
1/2〈ϕξ0 , ρϕξ0〉

+3ξ0δ
1/2〈ϕξ0 , ρ

2ϕξ0〉 − δ1/2〈ϕξ0 , ρ
3ϕξ0〉

= 1

3
ϕξ0(0)

2δ1/2.

In particular λ1 is independent of μ2. Moreover, since we can choose v1 ⊥ v0, we
can let v1 be the regularized resolvent (h0 −λ0)

−1
reg of −h1v0. This regularized resolvent

is defined as the inverse of the operator (h0 − λ0) restricted to the space {v0}⊥. So we
have,

v1 = −(h0 − λ0)
−1
reg

[

h1v0
]

. (4.8)

Order B−1. We get

(h0 − λ0)v2 = (λ2 − h2)v0 + (λ1 − h1)v1. (4.9)

Taking scalar product with v0 again gives

λ2 = 〈v0, h2v0〉 + 〈v0, (h1 − λ1)v1〉.
We will not calculate this expression in full detail. We are only interested in the depen-
dence on μ2. An inspection gives that it will be a polynomial of degree two. We will
calculate the coefficient in front of μ2

2 to see that it is positive so that λ2 has a unique
minimum with respect to μ2.

The term 〈v0, h2v0〉 is easily calculated since h2 contains one μ2
2 only.

For the term 〈v0, (h1 −λ1)v1〉 we find one μ2 in h1 and therefore also one in v1. The
coefficient in front of μ2 in that term becomes

〈

v0,−2δ1/2(ρ − ξ0)
(

h0 − λ0
)−1

reg

[

2δ1/2(ρ − ξ0)v0
]〉

= −4
〈

(ρ − ξ0)ϕξ0 ,
(HdG(ξ0)−
0

)−1
reg

[

(ρ − ξ0)ϕξ0

]〉

.

So, the coefficient in front of μ2
2 in λ2 will be (see (A.3))

1 − 4
〈

(ρ − ξ0)ϕξ0 ,
(HdG(ξ)−
0

)−1
reg

[

(ρ − ξ0)ϕξ0

]〉 = ξ0ϕξ0(0)
2 > 0.

This means that we can write

λ2 = ξ0ϕξ0(0)
2
((

μ2 − Cext
0

)2 + Cext
1

)

, (4.10)

where Cext
0 and Cext

1 depend only on k, δ, ξ0 and ϕξ0(0) (but not on �).
We summarize these findings in a lemma.
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Lemma 4.7. Suppose

m = �B + ξ0 (δB)1/2 + μ2,

with μ2 = O(B1/4). Then

λ1,Hm (B) = 
0δB +
1

3
ϕξ0(0)

2(δB)1/2 + ξ0ϕξ0(0)
2((μ2 − Cext

0 )2 + Cext
1

)

+ O((1 + μ3
2)B

−1/2).

Proof. We have to control the asymptotic expansion in μ2 subject to the bound |μ2| ≤
C B1/4. Define

λapp = λ0 + λ1 B−1/2 + λ2 B−1,

with λ0, λ1 being the constants from above and λ2 being the quadratic function of μ2
from (4.10). We also define an approximate eigenfunction by

v = v0 + B−1/2v1 + B−1v2,

with v0 = ϕξ0 , v1 given by (4.8) and v2 being given by solving (4.9), i.e.

v2 = (h0 − λ0)
−1
reg

[

(λ2 − h2)v0 + (λ1 − h1)v1
]

.

Notice from the explicit form of the operators that v1 depends linearly on μ2 and v2
depends quadratically, so v is normalized to leading order. Also, by the mapping prop-
erties of (h0 −λ0)

−1
reg each vi is a smooth, rapidly decreasing function (see Lemma 3.2.9

in [11]).
We can now estimate as follows

‖(h − λapp)v‖ ≤ ‖(h0 + B−1/2h1 + B−1h2 − λapp)v‖
+ ‖(h − [h0 + B−1/2h1 + B−1h2])v‖.

By the decay properties of v, the last term is bounded by C(1 + μ2
2)B

−3/2. Our choice
of v gives that the first term is equal to

‖B−3/2[(h1 − λ1)v2 + (h2 − λ2)v1] + B−2(h2 − λ2)v2‖,

which is easily seen to be bounded by O(B−3/2(1 + |μ2|3)). ��

Proof of Theorem 4.1. Using Lemma 4.6, Theorem 4.1 follows from Lemma 4.7 by the
following argument. Notice that the positive quadratic term in (μ2 − Cext

0 ) dominates
the error term μ3

2 B−1/2 unless μ2 is bounded in which case the dependence on μ2 in
the error term disappears. This finishes the proof of Theorem 4.1. ��
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5. The Case of the Disc

In this section we work on � = {x ∈ R
2 : |x | < 1} and for a magnetic field

satisfying Assumption 1.4 and prove a similar asymptotic expansion as in the case of
the complement of the disc.

Theorem 5.1. Suppose that � is the unit disc, that β satisfies Assumption 1.4 and that
δ > 0. Then there exist constants Cint

0 and Cint
1 such that if

�int
B := inf

m∈Z

∣
∣m −�B + ξ0(δB)1/2 − Cint

0

∣
∣,

then, as B → +∞,

λ1,H(B) = 
0δB − 1

3
ϕξ0(0)

2(δB)1/2 + ξ0 ϕξ0(0)
2((�int

B )
2 + Cint

1

)

+ O(B−1/2).

We mainly give the results of the calculations referring to the exterior case for details.
We will have exponential localization estimate like the one of Proposition 4.3 (with
domain of integration being {|x | < 1}, of course). Therefore, also the rough ‘localization’
of the relevant angular momenta—Lemma 4.4—will hold in this case as well. So we
can proceed to make a change of variable to the region near (on the scale (δB)−1/2 as
before) the boundary.

The leading order terms in the expansion of the operator become very similar to the
case of the exterior of the disc:

h0 = δ
(

− d2

dρ2 + (ρ + μ1/δ
1/2)2

)

,

h1 = δ1/2 d

dρ
+ 2μ2δ

1/2(ρ + μ1/δ
1/2) +

2μ2
1

δ1/2 ρ + 3μ1ρ
2 + δ1/2ρ3,

h2 = ρ
d

dρ
+ μ2

2 +
4μ1μ2

δ1/2 ρ + 3μ2ρ
2 +

3μ2
1

δ
ρ2 +

kμ1

3δ3/2 ρ
3 +

4μ1ρ
3

δ1/2 +
k

3δ
ρ4 +

5

4
ρ4.

The same calculations (using the same Ansatz) as in the previous section show that
(with μ1 = −ξ0/δ

1/2)

λ0 = 
0, λ1 = −1

3
ϕξ0(0)

2δ1/2, λ2 = ξ0ϕξ0(0)
2
((

μ2 − C int
0

)2 + C int
1

)

,

for some constants C int
0 and C int

1 , depending only on the spectral parameters and δ.
Thus, Theorem 5.1 follows from calculations/arguments completely analogous to the

ones in Sect. 4 and we omit the details.

6. (Non)-Monotonicity in the Disc and Its Complement

Using the results of Theorems 4.1 and 5.1 it is now easy to prove Theorem 1.7.

Proof of Theorem 1.7. We only consider the case of the disc, the complement of the disc
being similar (using Theorem 4.1 instead of Theorem 5.1).

Assume first that

� >

0

ξ0ϕξ0(0)2
δ.
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Denote by f the function

f (B) = �B − ξ0(δB)1/2 + C int
0 .

Notice that B �→ f (B) is increasing for all large values of B. Choose a sequence
{B(n)1 } such that f (B(n)1 ) = n + 1/2, i.e. is a half-integer. Let ε ∈ (0, 1

2�). Choose

B(n)2 = B(n)1 + ε. Then, for all sufficiently large n, n + 1/2 < f (B(n)2 ) < n + 1. So
�int

B(n)1

= 1/2 and

lim
n→+∞�

int
B(n)2

= lim
n→+∞

(

n + 1 − f (B(n)2 )
) = 1

2
−�ε.

So we get from the eigenvalue asymptotics that

λ
1,H(B(n)2 )

− λ
1,H(B(n)1 )

= 
0δ
(

B(n)2 − B(n)1

) − 1

3
ϕξ0(0)

2δ1/2[(B(n)2 )1/2 − (B(n)1 )1/2
]

+ ξ0ϕξ0(0)
2[(1/2 −�ε)2 − 1/4] + o(1)

= 
0δε − ξ0ϕξ0(0)
2[�ε −�2ε2] + o(1),

which is negative for small ε (and for all sufficiently large n) since � > 
0
ξ0ϕξ0 (0)

2 δ by

assumption.
Suppose now that

� <

0

ξ0ϕξ0(0)2
δ. (6.1)

We restrict attention to the interval near infinity on which f (B) is increasing. Here we
can calculate the right-hand derivative

d

d B +
(�int

B )
2 =

{

2�int
B f ′(B), if f (B) ∈ Z + [0, 1/2),

−2�int
B f ′(B), if f (B) ∈ Z + [1/2, 1).

So we see that for any η > 0 there exists B0 > 0 such that for all ε > 0 and all B > B0,

(�int
B+ε)

2 − (�int
B )

2 ≥ −2
∫ B+ε

B
�int

b f ′(b) db ≥ −(� + η)ε. (6.2)

We aim to prove monotonicity ofλ1,H(B), so it suffices to prove a positive lower bound on
its right hand derivative d

d B +λ1,H(B), which exists by perturbation theory. Perturbation
theory yields, for any ε > 0,

d

d B +
λ1,H(B) = 2�〈ψB,A · (−i∇ + BA)ψ〉

≥ λ1(B + ε)− λ1(B)

ε
− ε

∫

{|x |<1}
A2|ψ |2 dx .

Here we completed the square and used the variational characterization of the eigenvalue
in order to get the inequality.
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Since
∫

{|x |<1} A2|ψ |2 dx ≤ K , for some constant K independent of B, we can esti-
mate, using the eigenvalue asymptotics and (6.2)

lim inf
B→+∞

d

d B +
λ1,H(B) ≥ 
0δ − ξ0ϕξ0(0)

2(� + η)− εK .

Since ε, η were arbitrary, we get that

lim inf
B→+∞

d

d B +
λ1,H(B) ≥ 
0δ − ξ0ϕξ0(0)

2�.

In particular, λ1,H(B) is monotone increasing for large value of B if (6.1) is satisfied.
��

7. The Case of the Whole Plane with δ > 0

7.1. Introduction. In this section we will consider the case� = R
2 and a magnetic field

β satisfying Assumption 1.4 with δ > 0. We aim to prove Theorem 1.10 for δ > 0.
This, however, follows directly once the asymptotic expansion in Theorem 7.1 below is
obtained, since then it follows that (see [11, Section 2.3])

lim
B→+∞

d

d B
λ1,H(B) = δ.

Theorem 7.1. Suppose that � = R
2, and that β satisfies Assumption 1.4 with δ > 0.

Then, as B → +∞,

λ1,H(B) = δB +
k

4δ
+ O(B−1/2).

The proof of Theorem 7.1 follows the same idea as the proof of Theorem 4.1. We
use a localization of the ground state to restrict the situation to certain values of the
angular momentum. Then we show that if we find a trial state with low enough energy,
it must be related to the ground state energy. Finally we expand our operator formally
and construct a trial state that has the correct energy.

7.2. Agmon estimate for δ ≥ 0. We start with a localization estimate valid for δ ≥ 0.
For δ = 0 it gives the right length scale of the localization.

Proposition 7.2. Suppose β satisfies Assumption 1.4 with δ ≥ 0. Let ω > 0 and let ψ
be an eigenfunction of H(B) corresponding to an eigenvalue λ ≤ δB + ωB1/2. Then
there exist positive constants C and B0 such that

∫

R2
exp

(

2B1/4
∣
∣1 − |x |∣∣)|ψ |2 dx ≤ C

∫

R2
|ψ |2 dx (7.1)

and
∫

R2
exp

(

2B1/4
∣
∣1 − |x |∣∣)|(−i∇ + BF)ψ |2 dx ≤ C(δB + B1/2)

∫

R2
|ψ |2 dx (7.2)

if B > B0.
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By the localization estimates of Proposition 7.2, the operators Hm(B) are well ap-
proximated by harmonic oscillators, whose ground state eigenvalues are simple. This
implies simplicity of the low-lying eigenvalues of Hm(B).

Lemma 7.3. Let δ > 0 and ω > 0. There exists B0 > 0 such that if m ∈ Z and B ≥ B0,
then Hm(B) admits at most one eigenvalue below δB + ωB1/2.

The proof of Lemma 7.3 is similar to that of Lemma 4.5 and will be omitted.

Proof of Proposition 7.2. Let χ(s) be a smooth cut-off function of the real variable s
satisfying

χ(s) =
{

1, |s| ≤ 1/2,
0, |s| ≥ 1,

and such that |χ ′(s)| ≤ 3 for all s, and
(

1 − χ2
)1/2 ∈ C1(R). Next, let M and α be

positive (to be determined below) real numbers and define in R
2 the functions χ1 and χ2

via χ1(x) = χ
(

M Bα(1 − |x |)) and χ1(x)2 + χ2(x)2 = 1. Then there exists a constant
C1 such that

‖∇χ j‖∞ ≤ C1 M Bα, j ∈ {1, 2}.
Next, for � > 0, let ��(x) = Bσ

∣
∣1 − |x |∣∣χ(|x |/�). Then, pointwise in R, it holds that

��(x) → Bσ
∣
∣1 − |x |∣∣ as � → +∞. Moreover, �� is differentiable almost everywhere

and if � ≥ 2 its gradient satisfies

‖∇��‖∞ ≤ 4Bσ .

Moreover, �� is bounded for all � > 0, so the function � = ψe�� belongs to the
form-domain of H(B).

With the IMS formula, we find that

q[χ1�] + q[χ2�] ≤ (

2C1 M2 B2α + λ + 16B2σ )‖�‖2

≤ (

2C1 M2 B2α + δB + ωB1/2 + 16B2σ )‖�‖2. (7.3)

Using that the smallest Dirichlet eigenvalue is greater than the smallest value of the
magnetic field (again, see [1]), we find that

q[χ1�] ≥ δB‖χ1�‖2

and

q[χ2�] ≥
(

δB +
k B1−2α

4M2

)

‖χ2�‖2.

Inserting this into (7.3) we find that

δB‖�‖2 +
k B1−2α

4M2 ‖χ2�‖2 ≤ (

2C1 M2 B2α + δB + ωB1/2 + 16B2σ )‖�‖2,

which can be written

(k B1−2α

4M2 − 2C1 M2 B2α − ωB1/2 − 16B2σ
)

‖χ2�‖2

≤ (

2C1 M2 B2α + ωB1/2 + 16B2σ )‖χ1�‖2.
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Choosing α = σ = 1
4 , we find that

√
B factor out, and hence

( k

4M2 − 2C1 M2 − ω − 16
)

‖χ2�‖2 ≤ (

2C1 M2 + ω + 16
)‖χ1�‖2.

With M so small that the left parenthesis above becomes positive, we find that there
exists a constant C2 such that

‖χ2�‖2 ≤ C2‖χ1�‖2. (7.4)

On the support of χ1 it holds that M B1/4
∣
∣1 − |x |∣∣ ≤ 1, and hence

exp(��) = exp
(

B1/4
∣
∣1 − |x |∣∣χ(|x |/�)) ≤ exp

(

χ(|x |/�)/M
) ≤ exp(1/M).

Inserting this in (7.4) above yields

‖χ2�‖2 ≤ C2 exp(2/M)‖χ1ψ‖2 ≤ C2 exp(2/M)‖ψ‖2.

Using monotone convergence we find that
∥
∥χ2 exp

(

B1/4
∣
∣1 − |x |∣∣)ψ∥

∥2 ≤ C2 exp(2/M)‖χ1ψ‖2 ≤ C2 exp(2/M)‖ψ‖2.

Again, since M B1/4
∣
∣1 − |x |∣∣ ≤ 1 on the support of χ1 it is clear that

∥
∥χ1 exp

(

B1/4
∣
∣1 − |x |∣∣)ψ∥

∥2 ≤ exp(2/M)‖ψ‖2.

Combining these two last inequalities we find (7.1) with C = (1 + C2) exp(1/M).
To prove (7.2) we essentially only have to reinsert the L2-estimate in the previous

calculations. By monotone convergence and the IMS-formula, we have
∫

R2
exp

(

2B1/4
∣
∣1 − |x |∣∣)|(−i∇ + BF)ψ |2 dx

= lim
�→∞

∫

R2
exp

(

2��
)|(−i∇ + BF)ψ |2 dx

= lim
�→∞ q[�] −

∫

|∇��|2|�|2 dx .

The last term is negative, and we can estimate the first term using again the IMS-formula
and (7.3) as

q[�] ≤ q[χ1�] + q[χ2�] ≤ (δB + C2 B1/2)‖�‖2

(with C2 = 2C1 M2 + ω + 16 and using α = σ = 1/4). Now (7.2) follows from (7.1).
��

With the help of Proposition 7.2, we now get a first control of the involved angular
momenta.

Lemma 7.4. Let δ ≥ 0 and ω > 0. Suppose ψ = ume−imθ is an eigenfunction of H(B)
with eigenvalue below δB + ωB1/2. Then

m = �B + O(B3/4).

The proof of Lemma 7.4 is similar to the one of Lemma 4.4—taking into account the
weaker localization given by Proposition 7.2—and will be omitted.
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7.3. A detailed expansion for m −�B = O(B1/2). By Lemma 7.3 there is at most one
eigenvalue of Hm(B) for sufficiently low energy. So it suffices to construct a trial state.
The trial function (and all its derivatives) will be localized on the length scale B−1/2

near r = 1 (see (7.10) for the explicit choice of trial state). Also the function has support
away from r = 0. The calculation is slightly different in different regimes of angular
momenta m. In this subsection, we consider angular momenta satisfying that

|m −�B| ≤ M B1/2, (7.5)

(for some fixed M > 0). The other case, where M B1/2 ≤ |m −�B| ≤ M ′B3/4 is the
object of the next subsection.

We will start by doing a formal expansion of the operator h = 1
B Hm(B). We write

m = �B + μ1 B1/2 + μ2.

With the localization of the trial state in mind, we introduce the new variable

ρ = (δB)1/2(r − 1).

This leads to the expansion of our operator as in (4.7) but as operators on L2(R). Since
in the present situation we do not have a boundary, we make the further translation
s := ρ − μ1/

√
δ to find

h = h0 + B−1/2h1 + B−1h2 + · · ·
where

h0 = δ
(

− d2

ds2 + s2
)

,

h1 = −δ1/2 d

ds
+ sδ−1/2(μ2

1 − δ
(

2μ2 + s2)),

h2 = (s + μ1δ
−1/2)

d

ds
+ μ2

2 +

(−μ2
1 + 3δs2 + 2δ1/2μ1s

)

δ
μ2

+
(μ1 + δ1/2s)2

(

4ks(μ1 + δ1/2s) + 3δ1/2(μ2
1 − 6δ1/2sμ1 + 5δs2)

)

12δ5/2
.

We do the same Ansatz as above and compare order by order:

Order B0. To leading order we find

h0v0 = λ0v0.

Thus, we choose

v0 = 1

π1/4 exp(−s2/2) (7.6)

as the normalized ground state of the harmonic oscillator, and λ0 = δ.

Order B−1/2. Here we get

(h0 − λ0)v1 = (λ1 − h1)v0.
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By taking scalar product (with measure ds), we find

0 = 〈v0, (h0 − λ0)v1〉 = λ1 − 〈v0, h1v0〉.
Since v0 is an even function it holds that 〈v0, h1v0〉 = 0 and thus λ1 = 0. Moreover,
since we can choose v1 ⊥ v0, we can let v1 be the regularized resolvent (h0 − λ0)

−1
reg of

−h1v0,
v1 = −(h0 − λ0)

−1
reg

[

h1v0
]

. (7.7)

Order B−1. We get

(h0 − λ0)v2 = (λ2 − h2)v0 + (λ1 − h1)v1.

Taking scalar product with v0 again and using the fact that λ1 = 0, gives

λ2 = 〈v0, h2v0〉 + 〈v0, h1v1〉.
Now it holds that (remember: v0 = 1

π1/4 exp(−s2/2))

〈sv′
0(s), v0(s)〉 = −1

2
, 〈s2v0(s), v0(s)〉 = 1

2
,

〈v′
0(s), v0(s)〉 = 0, 〈s4v0(s), v0(s)〉 = 3

4
,

〈s jv0(s), v0(s)〉 = 0, j odd, 〈s6v0(s), v0(s)〉 = 15

8
,

and so

〈v0, h2v0〉 = 1

4δ2μ
4
1 +

2k − 3δ − 4δμ2

4δ2 μ2
1 + μ2

2 +
3

2
μ2 +

7

16
+

k

4δ
. (7.8)

The term 〈v0, h1v1〉 is more difficult do calculate. But noting that

(h0 − λ0)
1

2δ
sv0 = sv0,

(h0 − λ0)
(

− 1

2δ
sv0

)

= v′
0, and

(h0 − λ0)
s(s2 + 3)

6δ
v0 = s3v0,

we find that

v1(s) = −(h0 − λ0)
−1
reg

(

h1v0)

= (h0 − λ0)
−1
reg

(

δ1/2v′
0(s)− δ−1/2μ2

1sv0(s) + 2δ1/2μ2sv0(s) + δ1/2s3v0(s)
)

= − 1

2δ1/2 sv0 − μ2
1

2δ3/2 sv0 +
μ2

δ1/2 sv0 +
s(s2 + 3)

6δ1/2 v0.

A direct calculation shows that

h1v1 = − s2

2δ2μ
4
1 +

(

4s4 + 3(4μ2 − 1)s2 + 3
)

6δ
μ2

1

+
1

6

(

−6μ2 − s6 + (1 − 8μ2)s
4 − 3

(

4μ2
2 − 2μ2 + 1

)

s2
)

v0,



216 S. Fournais, M. P. Sundqvist

so, using the relations above, we find that

〈v0, h1v1〉 = − 1

4δ2μ
4
1 +

(4μ2 + 3)

4δ
μ2

1 − 1

16
(8μ2(2μ2 + 3) + 7). (7.9)

Combining (7.8) and (7.9) we get

λ2 = 〈v0, h2v0〉 + 〈v0, h1v1〉 = k
( 1

2δ2μ
2
1 +

1

4δ

)

.

We see that λ2 is minimal when μ1 = 0.

Proof of Theorem 7.1. Using Proposition 7.6 below it suffices to consider angular mo-
menta satisfying (7.5).

To finish the proof, based on the calculations above, it is sufficient to provide the trial
state that gives the right energy. This is done as in the case of the exterior of the disc,
see Sect. 4 for the details.

We write down the trial state (and λ) for the sake of completeness. From the calcu-
lations above it follows that (here μ1 = 0 and μ2 is bounded)

λ = λ0 + λ1 B−1/2 + λ2 B−1 = δ +
k

4δ
B−1

Let v0 be the Gaussian given in (7.6), v1 the function given in (7.7) and

v2(s) = (h0 − λ0)
−1
reg

[

(λ2 − h2)v0 + (λ1 − h1)v1
]

.

Next, let

v(s) = v0 + v1 B−1/2 + v2 B−1.

With χ ∈ C∞
0 (R) satisfying χ(0) = 1 and ε = 1/100 we define our trial state ṽ(r) as

ṽ(r) = B1/4χ(B1/2−ε(r − 1))v
(

(δB)1/2(r − 1)
)

. (7.10)

��

7.4. Excluding large values of m −�B. In this subsection we will make a preliminary
calculation to show that the ground state energy of H(B) restricted to angular momentum
m is too large, unless m −�B = O(B−1/2).

Lemma 7.5. Let C0 > 0. There exists C1 > 0 such that if |m −�B| ≤ C0 B3/4, then

dist(σ (Hm(B), δB + f (η)
√

B) ≤ C1(|η|B−1/4 + B−1/2).

Here η := B�−m
δB3/4 , and

f (η) = 1

2
kη2.

From Lemma 7.5 we can improve the localization in angular momentum.
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Proposition 7.6. Let ω > 0. Then there exists M, B0 > 0 such that if B ≥ B0 and
Hm(B) has an eigenvalue below δB + ω, then

|m −�B| ≤ M B1/2.

Proof of Proposition 7.6. This follows by combing Lemmas 7.3 and 7.5. ��
Proof of Lemma 7.5. We will construct a function (see specific choice in (7.12) below)
ϕ ∈ Dom(Hm(B)) such that ‖ϕ‖ ≈ 1 and

‖(Hm(B)− [δB + f (η)
√

B])ϕ‖ ≤ C1(|η|B−1/4 + B−1/2). (7.11)

By the Spectral Theorem, this implies the lemma, like in Sect. 4. The function that we
construct will be localized near r = 1 on the length scale B−1/2 (again this is exactly as
in Sect. 4).

We recall that

Hm(B) = − d2

dr2 − 1

r

d

dr
+

1

r2

(

m − Bra(r)
)2
.

Here we will need to expand β̃ further than the second derivative, so we use the full
expansion of ra(r) from (2.4).

Introducing η as in the lemma and ρ = (r − 1 + B−1/4η)
√

B, we find

Hm(B) = −B
d2

dρ2 −
√

B

1 − B−1/4η + B−1/2ρ

d

dρ

+
1

(1 − B−1/4η + B−1/2ρ)2

×
[

m − B(1 − B−1/4η + B−1/2ρ)a(1 − B−1/4η + B−1/2ρ)

]2

.

Since we will only act with Hm(B) on functions which in the ρ variable are Schwartz
functions (see specific choice in (7.12) below), we can treat ρ as a quantity of order 1
(in terms of powers of B), and expand

Hm(B) = B
(

hm,0 + B−1/4hm,1 + B−1/2hm,2

)

+ O(|η|B1/2) + O(1),

where

hm,0 = − d2

dρ2 + δ2
(

ρ +
η2

2

)2
,

hm,1 = 1

3
δη3(3δ − k)

(

ρ +
η2

2

)

, and

hm,2 = − d

dρ
− δ2

(

ρ +
η2

2

)3
+ kδη2

(

ρ +
η2

2

)2

+
1

12

(

δη4(c − 7k + 15δ)
)(

ρ +
η2

2

)

+
1

36
(k − 3δ)2η6.
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We choose

v0 =
( δ

π

)1/4
exp

(

− δ
2

(

ρ + η2/2
)2

)

,

which is the normalized ground state eigenfunction of hm,0 with eigenvalue δ.
Next,

hm,1v0 = 1

3
δη3(3δ − k)(ρ + η2/2)v0.

Thus, we want to solve

(hm,0 − δ)v1 = −hm,1v0 = −1

3
δη3(3δ − k)(ρ + η2/2)v0,

for v1. A calculation shows that (note that hm,1v0 is the first excited state of hm,0 with
eigenvalue 3δ, in particular orthogonal to v0)

v1 = − 1

2δ
hm,1v0 = −1

6
η3(3δ − k)(ρ + η2/2)v0

gives a solution.
Further calculations yield (the 0 is there since 〈v0, hm,1v0〉 = 0)

〈v0, hm,2v0〉 + 〈v0, (hm,1 − 0)v1〉 = 1

2
kη2.

We further choose

v2 = −(hm,0 − δ)−1
reg[(hm,2 − f (η))v0 + hm,1v0].

With ϕ in (7.11) being chosen as

ϕ = (v0 + B−1/4v1 + B−1/2v2)× χ(B1/2−ε(r − 1)), (7.12)

(similarly to (4.6)), it is immediate to verify (7.11). ��

8. The Case of the Whole Plane with δ = 0

Here we will consider the case� = R
2 and a magnetic fieldβ satisfying Assumption 1.4,

with δ = 0. We recall that in this section, k > 0.

Theorem 8.1. Let c0 > 0 and � be the spectral constants from (B.1) and (B.2) respec-
tively. Suppose that � = R

2, and that and that β satisfies Assumption 1.4 with δ = 0.
There exist constants C1 and C2 such that if

�B := inf
m∈Z

∣
∣m −�B − C1

∣
∣,

then, as B → +∞,

λ1,H(B) =
(k

2

)1/2
�B1/2 +

c0

2

(

�2
B + C2

)

+ o(1).
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By Proposition 7.2 and Lemma 7.4 we have localization of eigenfunctions corre-
sponding to low-lying eigenvalues on the length scale B−1/4 and to angular momenta
m = B

12 + O(B3/4).
By (2.2) and (2.3), for |r − 1| ≤ 1,

(m

r
− Ba(r)

)2 = 1

r2

(

m −�B − Bk

6
(r − 1)3 + BO(|r − 1|4)

)2

≥ 1

2

(m − B�)2

r2 − C B2r−2(r − 1)6. (8.1)

Invoking the localization estimates we get the following strengthening of Lemma 7.4.

Lemma 8.2. Let δ = 0 and ω > 0. Suppose ψ = ume−imθ is an eigenfunction of H(B)
with eigenvalue below ωB1/2. Then

m = �B + O(B1/4).

Proof. The proof follows from inserting (8.1) in the formula for the quadratic form qm
and using the decay estimates in Proposition 7.2. ��

We also get a similar result to Lemma 4.5.

Lemma 8.3. Let ω < infα∈R λ2,HM(α), with HM(α) the operator from Appendix B.
There exists B0 > 0 such that if m ∈ Z and B ≥ B0, then Hm(B) admits at most one
eigenvalue below (k/2)1/2ωB1/2.

Proof. The proof is analogous to that of Lemma 4.5. By the localization estimates already
obtained, we can see that qm is given—up to a lower order error—by the quadratic form
of the operator h0 from (8.2) below which can be recognized as the ‘Montgomery’
operator reviewed in Appendix B. ��

So now we are again in a situation where we know that a sufficiently precise trial
state must give the asymptotics of the ground state energy. We write

m = �B + μ3 B1/4 + μ4

where we will keep μ3 and μ4 bounded. We perform the change of variables

ρ = B1/4(r − 1).

Integrating by parts, we find (with v(ρ) = B−1/8u(1 + B−1/4ρ) and assuming that
u is supported away from 0) that

1

B1/2

∫ +∞

0

∣
∣
∣
du

dr

∣
∣
∣

2
r dr =

∫ +∞

− 4√B
v
(

−d2v

dρ2 − B−1/4(1+ B−1/4ρ)−1 dv

dρ

)

(1+ B−1/4ρ) dρ.

We let h = 1
B1/2 Hm(B) and make the Ansatz

h =
+∞
∑

j=0

h j B− j/4, λ =
+∞
∑

j=0

λ j B− j/4, and v =
+∞
∑

j=0

v j B− j/4,
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and get (with notation from (2.4) and where d = β̃(4)(1))

h0 = − d2

dρ2 +
(kρ3

6
− μ3

)2
,

h1 = − d

dρ
−

(kρ3

6
− μ3

)( (k − c)ρ4

12
− 2μ3ρ + 2μ4

)

(8.2)

h2 = ρ
d

dρ
+ μ2

4 − 4μ3μ4ρ + 3μ2
3ρ

2 +
1

12
(5k − c)μ4ρ

4

+
1

60
(6c − d − 30k)μ3ρ

5 +
1

2880
(5c2 − 18ck + 8dk + 45k2)ρ8.

Next we compare the powers of B.

Order B0. We note that, after a scaling, h0 becomes

(k

2

)1/2[− d2

dρ2 +
(ρ3

3
− (2/k)1/4μ3

)2] =
(k

2

)1/2HM
(

(2/k)1/4μ3
)

,

with the notation from Appendix B. By the results of the appendix, the ground state
eigenvalue λ1,HM(α) has a unique non-degenerate minimum � at α = 0. So we take
μ3 = 0 and find that λ0 = (k/2)1/2λ1,HM(0) = (k/2)1/2�. We furthermore take v0 to
be the ground state eigenfunction of h0 (with μ3 = 0).

Order B−1/4. Here the equation becomes

(h1 − λ1)v0 + (h0 − λ0)v1 = 0.

Taking the scalar product with v0, we get

λ1 = 〈v0, h1v0〉 = 0,

where we used that μ3 = 0 and that v0 is an even function. We also determine the
function v1 as

v1 = −(h0 − λ0)
−1
reg(h1v0)

Order B−1/2. At this order, we consider the equation

(h2 − λ2)v0 + h1v1 + (h0 − λ0)v2 = 0.

Taking the scalar product with v0 determines λ2,

λ2 = 〈v0, h2v0〉 + 〈v0, h1v1〉.
As a function of μ4 we see that λ2 is a polynomial of degree 2. We determine the
coefficient to μ2

4 as

1 − 4
〈kρ3

6
v0, (h0 − λ0)

−1
reg

kρ3

6
v0

〉

.

From perturbation theory, we recognize this expression as 1
2

d2

dα2 λ1,HM(α)|α=0, which is
positive (by Theorem B.1 and Proposition B.3).
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Thus

λ2(μ4) = c0

2
(μ4 − C1)

2 + C2,

with c0 > 0 and for suitable constants C1,C2. We fix

v2 = −(h0 − λ0)
−1
reg

[

(h2 − λ2)v0 + h1v1

]

.

Proof of Theorem 8.1. To complete the proof of Theorem 8.1 we only need to give the
trial state that gives the right energy. This is done in the same way as it was done for the
complement of the disc in Lemma 4.7. We omit the details, but mention that the trial
state is given by (here ε = 1/100 and χ ∈ C∞

0 with χ(0) = 1)

ṽ(r) = B1/8χ(B
1
4 −ε(r − 1))v(B1/4(r − 1)),

with v = v0 + B−1/4v1 + B−1/2v2 from the calculations above. ��
Proof of Theorem 1.10. Case δ = 0. From Theorem 8.1 it follows exactly like in the
proof of Theorem 1.7 that B �→ λ1,H(B) is not monotone increasing on any half-interval
of the form [B0,∞). This finishes the proof of Theorem 1.10. ��
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Appendix A. The de Gennes Operator

In this section we have collected some known results on the one-dimensional self-adjoint
operator

HdG(ξ) = − d2

dρ2 + (ρ − ξ)2

in L2((0,+∞)) with Neumann condition at ρ = 0.
We denote by λ1,HdG(ξ) the lowest eigenvalue of HdG(ξ) and let ϕξ denote the (pos-

itive, normalized) ground state.
It is well-known (see for example [11]) that this eigenvalue has a unique minimum


0 = min
ξ∈R

λ1,HdG(ξ),

attained at the unique positive

ξ0 = (
0)
1/2.

Moreover, this minimum is non-degenerate; its second derivative at this point equals
2ξ0ϕξ0(0)

2. The following momentum formulas hold:

〈ϕξ0 , ϕξ0〉 = 1, 〈ϕξ0 , (ρ − ξ0)ϕξ0〉 = 0,

〈ϕξ0 , (ρ − ξ0)
2ϕξ0〉 = 1

2
ξ2

0 , 〈ϕξ0 , (ρ − ξ0)
3ϕξ0〉 = 1

6
ϕξ0(0)

2.
(A.1)
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From these formulas we also find

〈ϕξ0 , ρϕξ0〉 = ξ0, 〈ϕξ0 , ρ
2ϕξ0〉 = 3

2
ξ2

0 , and

〈ϕξ0 , ρ
3ϕξ0〉 = 1

6
ϕξ0(0)

2 +
5

2
ξ3

0 .

Moreover, it holds that

〈ϕξ0 , ϕ
′
ξ0

〉 = −1

2
ϕξ0(0)

2. (A.2)

If we denote by (HdG(ξ0)−
0)
−1
reg the regularized resolvent, then a straight forward

calculation shows that

(HdG(ξ0)−
0)
−1
reg

[

(ρ − ξ0)ϕξ0

] = −1

2
ϕ′
ξ0

− 1

4
ϕξ0(0)

2ϕξ0 ,

and hence (here we use one of the momentum relations above and integration by parts)

1 − 4
〈

(ρ − ξ0)ϕξ0 , (HdG(ξ0)−
0)
−1
reg

[

(ρ − ξ0)ϕξ0

]〉

= 1 − 4
〈

(ρ − ξ0)ϕξ0 ,−
1

2
ϕ′
ξ0

− 1

4
ϕξ0(0)

2ϕξ0

〉

= 1 − 4
〈

(ρ − ξ0)ϕξ0 ,−
1

2
ϕ′
ξ0

〉

= ξ0ϕξ0(0)
2. (A.3)

In particular this expression is positive.

Appendix B. A Montgomery operator

For α ∈ R, we define the Montgomery type operator

HM(α) = − d2

dρ2 +
(ρ3

3
− α

)2

as a self-adjoint operator on L2(R). Let us denote by λ1,HM(α) the lowest eigenvalue of
HM(α), with corresponding L2-normalized eigenfunction u1.

Theorem B.1 [13]. The function α �→ λ1,HM(α) has a unique minimum at α = 0.
Furthermore, the minimum is non-degenerate, i.e.

c0 := d2

dα2 λ1,HM(α)

∣
∣
α=0 > 0. (B.1)

We introduce the following notation,

� := λ1,HM(0). (B.2)

Remark B.2. By the estimates in [13] we know that

0.618 ≈
√

5 − 1

2
< � <

23/2

9

(4π6 − 210π4 + 4410π2 − 26775

7

)1/4 ≈ 0.664.

A numerical value of �, calculated by V. Bonnaillie-Noël, is 0.66.
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Proposition B.3. It holds that

d2

dα2 λ1,HM(α)

∣
∣
α=0 = 2 − 8

〈ρ3

3
u1,

(HM(0)−�
)−1

reg

ρ3

3
u1

〉

.

Proof. Perturbation theory. ��

Appendix C. Numerical Calculations for the Annulus

In the case of constant magnetic field in the annulus, the eigenvalues of Hm(B) can
be expressed explicitly as solutions to equations involving confluent hypergeometric
functions in a non-trivial way. These eigenvalues can be plotted using computer software
like Mathematica. Figure 1 in Sect. 3 illustrates the lowest eigenvalue of the limit operator
A(B) and the lowest eigenvalue of H(B) in the annulus with inner radius Ri = 1 and
outer radius Ro = 3/2.
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