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Abstract: We consider modulational solutions to the 3D inviscid incompressible irrota-
tional infinite depth water wave problem, neglecting surface tension. For such solutions,
it is well known that one formally expects the modulation to be a profile traveling at group
velocity and governed by a 2D hyperbolic cubic nonlinear Schrödinger equation. In this
paper we justify this fact by providing rigorous error estimates in Sobolev spaces. We
reproduce the multiscale calculation to derive an approximate wave packet-like solution
to the evolution equations with mild quadratic nonlinearities constructed by Sijue Wu.
Then we use the energy method along with the method of normal forms to provide
suitable a priori bounds on the difference between the true and approximate solutions.

1. Introduction

The three dimensional water wave problem concerns the motion of an interface sepa-
rating a region of zero density (e.g., air) from an inviscid, incompressible, irrotational
fluid of uniform density that is under the influence of gravity. We assume that the fluid
region is below the air region, that the fluid region is of infinite depth, that the interface
approaches a horizontal plane at infinity and that the velocity and acceleration tend to
zero at spatial infinity. Denote by k = 〈0, 0, 1〉 the upward vertical unit vector, �(t) the
fluid region at time t ≥ 0 and �(t) the interface at time t ≥ 0. Then if surface tension
is neglected, the motion of the fluid is described by

vt + (v · ∇)v = −k− ∇p on �(t), t ≥ 0
∇ · v = 0, ∇ × v = 0 on �(t), t ≥ 0

p = 0 on �(t), t ≥ 0
(1, v) is tangent to (t, �(t)),

(1.1)
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where v is the fluid velocity and p is the fluid pressure. The Cauchy problem for this
system has been the subject of extensive study: for a survey of results, see [12]. The
formulation of this system that we will use here is that of [21], in which the evolution
of this system was shown to be equivalent to a system for the motion of the evolution
of the free surface �(t). Specifically, if one parametrizes �(t) by �(α, β, t) ∈ R

3 with
Lagrangian coordinates α, β, the main evolution equation for the interface takes the
compact form

�t t + k = a(�α × �β) (1.2)

(I − H)�t = 0, (1.3)

where a(α, β, t) = − 1
|�α×�β |

∂p
∂n and n is the outward-pointing unit normal of �(t). Just

as in the 2D problem, (1.3) is a condition defined entirely on �(t) that is equivalent to
the fact that the fluid is incompressible and irrotational in �(t). The operator H is called
the Hilbert transform associated to �; it serves the same purpose and has many of the
same properties as the ordinary Hilbert transform associated to a curve in the complex
plane, except that it requires Clifford analysis to define (see Proposition 2.3 for a precise
definition).

Our goal is to study a special class of solutions to (1.2)–(1.3) that are close to a wave
packet propagating in the i = 〈1, 0, 0〉 direction with a special scaling, i.e., a solution
that when written in coordinates is of the form

�(α, β, t) ∼ 〈α, β, 0〉 + ε
〈
�(Aei(kα+ωt)), 0,	(Aei(kα+ωt))

〉
+ o(ε), (1.4)

where k > 0 is the fixed wave number of the wave packet, ω is the wave frequency related
to k through the dispersion relation ω2 = k, and A = A(εα, εβ, εt, ε2t) is complex-
valued. Here ε 
 1 plays the role of measuring both the smallness of the amplitude of
the wave packet as well as the slow variation of the modulation. The dependence on ε in
(1.4) is balanced to produce a modulation that satisfies a nontrivial evolution equation
that we will describe below. For a survey of this asymptotic regime in the context of this
and other variations of the water wave problem, see Chapter 8 of [12].

Many authors (e.g., [1,6,23]) have sought an approximate solution to the water wave
problem of this form, along with higher order correctors chosen so that when the ap-
proximate solution is substituted into the water wave equations the residual terms are
physically of size O(ε4). If, in the case of infinite depth, one performs this process on the
Euler equations, one finds that the amplitude A = A(ε(α +ω′t), εβ, ε2t) := A(X, Y, T )

of the wave packet is a traveling-wave profile that travels at group velocity ω′(k) for
times on the order O(ε−1), and A = A(X, Y, T ) satisfies the so-called “hyperbolic”
cubic nonlinear Schrödinger equation (HNLS) for times on the order O(ε−2):

i AT + a AX X − bAY Y + cA|A|2 = 0, (1.5)

where a, b, c are positive constants depending on k and ω. However, this formal cal-
culation assumes that a solution can be developed in an asymptotic series in ε, a fact
that needs justification. This sort of justification should not be taken for granted: there
are examples of modulation approximations derived by seemingly reasonable formal
arguments which do not give the correct dynamics (c.f. [7,15]). Notice that, because of
the slow time dependence of A, the HNLS dynamics are not apparent in the full solution
unless we consider solutions on time scales of the order O(ε−2). Typically, a rigorous
justification of this approximation to the water wave problem would entail showing the
following steps:
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(i) The HNLS Eq. (1.5) is locally well-posed in a suitable function space.
(ii) An approximate solution �̃ of the form (1.4) can be found which formally satisfies

the equation for � up to residual terms of physical size at most o(ε3).
(iii) The system (1.1) is well posed on a space containing the approximate solutions �̃,

and solutions � initially close to wave packet-like solutions exist for times on the
order O(ε−2).

(iv) The remainder � − �̃ is of size at most o(ε) in a suitable function space.

Step (i) can be shown to hold in a variety of function spaces; standard results are
collected in [3]. In this vein, we mention the global well-posedness results of Ghidaglia
and Saut for small data in [9]. Still, for large data, little is known about the well-posedness
of HNLS beyond local well-posedness in Hs for s ≥ 0. As mentioned earlier, many
authors have performed Step (ii), and we mention in particular the more rigorous work
[6] that gives suitable estimates of the residual in Lq(R2) Sobolev spaces for 2 < q < ∞
in the more general finite depth case.

Step (iii) and Step (iv) have not been performed for the 3D problem to date; the
purpose of this paper is to perform them along with appropriate versions of Steps (i) and
(ii). As in the 2D problem, the main difficulty in completing this part of the program
is showing the existence of wave packet-like solutions to the water wave problem on
O(ε−2) time scales. Since the L2 norm of a wave packet is even larger in 3D than
in 2D, this difficulty is correspondingly magnified. Indeed, the L2 norm of such wave
packets are O(1) in L2 and so do not even vanish as ε → 0. In [20], the difficulties were
resolved in the 2D setting by finding a formulation of the water wave equations having no
quadratic nonlinearities. As recognized in [11], justifying modulation approximations
is made much simpler for such equations. This was accomplished by means of a fully
nonlinear change of variables.

In [22], Wu developed an analogue of this change of variables in 3D (denoted in this
paper by κ) depending on the unknown � and used it along with the method of invariant
vector fields to prove the global well-posedness of the system (1.2)–(1.3) for localized
small amplitude solutions by constructing a system of equations in � ◦ κ−1 =: ζ =
(α + x)i+ (β +y)j+ zk and χ := (I −H)zk which is equivalent to the system (1.2)–(1.3)
and is of the form

(∂t + (κt ◦ κ−1 · ∇))2χ − ζβ × χα + ζα × χβ = G (1.6)

(I − H)(∂t + (κt ◦ κ−1 · ∇))ζ = 0, (1.7)

where G consists of terms of third and higher order terms, and H now denotes the Hilbert
transform associated to ζ . Note that we have abused notation slightly here by reusing
α, β to denote the independent variables of the transformed problem. While the initial
data required in the global existence result of [22] is too restrictive to be of direct use
here, we will still use the advantageous structure of the governing Eqs. (1.6)–(1.7)

The outline of our strategy is the same as that used in [20]: rather than find a formal
approximation of � and justify it directly, we instead find a formal approximation ζ̃ of
the form (1.4) for ζ , and then use energy estimates to construct a priori bounds for the
remainder ζ − ζ̃ . We find in the course of the calculation that this formal approximation
ζ̃ is only in the usual L2-Sobolev space provided we take A in an L2-Sobolev space with
some mild decay. We therefore show that (1.5) is well-posed in this space, completing
Step (i). Then, after showing that we have suitable control over the change of variables
κ , one can use the a priori estimates of the transformed remainder along with the O(ε−2)

existence of the approximate solution ζ̃ to give a priori bounds of the original solution
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� for O(ε−2) times. Step (iii) then follows by a bootstrapping argument, and so Step
(iv) follows immediately as well.

There are two main difficulties that arise using this approach in the 3D problem
that were not present in the 2D problem. First, there were no quadratic terms in the
nonlinearity of the governing equations in the 2D problem, whereas in 3D “null form”
quadratic terms of the form fβgα − fαgβ appear in the equations for the derivatives
of ζ . In the paper [22], these terms are controlled using Klainerman-Sobolev norms
constructed from the invariant vector fields associated to the water wave equations.
However, the wave packet-like solutions are large with respect to these norms since
such solutions do not possess the symmetries associated to the invariant vector fields.
Therefore we cannot use Klainerman-Sobolev norms to gain effective control of the null
form terms here.

The second difficulty arises from the slow spatial scaling of the modulation, namely
that the residual of the approximate solution in 3D is too large. If a function S(X, Y )

is of size O(1) in L2
X,Y , then the function S(εα, εβ) is of size O(ε−1) in L2

α,β . Thus

if one constructed an approximate solution with residual of physical size O(ε4), then
the residual would merely have size O(ε3) in L2(R2). One can then read off from the
energy inequality that we could justify at most that ζ − ζ̃ = O(ε) in Sobolev space.
Besides failing to satisfy (iv), this weak control of the remainder would present the more
serious obstacle that we could not even guarantee that κ is invertible for O(ε−2) times!
(See Remark 4.1.) The aforementioned work [6] does not circumvent this difficulty in
our setting, since it gives o(ε3) estimates of the residual in Lq for 2 < q < ∞, and our
energy method requires us to have o(ε3) bounds on the residual in L2.

These difficulties are resolved by refining the methods used in [20] in two respects.
To resolve the latter problem above, we attempt to develop the approximate solution to
a higher order. In doing so, we find terms in the higher order correctors which are not in
L2(R2) unless mild decay restrictions are placed on low derivatives of A. Moreover, we
find that there are terms of physical size O(ε4) that cannot be accounted for by choosing
appropriate correctors for the approximate solution; that is, approximating the system
(1.6)–(1.7) with solutions of the leading term (1.4) is only formally consistent to terms
of the order O(ε4) (see Remark 3.1). Despite this, all of these terms appear in the energy
estimates in such a way so that they can be regarded as an order smaller than they first
appear. This allows us to regard the residual of the approximate solution as being of size
O(ε4) in L2.

Second, in order to overcome the former difficulty of the quadratic null-form non-
linearities, we introduce third order corrections to the energy and use the method of
normal forms. This involves perturbing the remainder by a quadratic expression which
is explicitly constructed in frequency space to cancel the quadratic contributions. A fair
question to ask is why one would not use this method directly from the outset to eliminate
quadratic nonlinearities from the system (1.2)–(1.3). Indeed, this approach has been used
in the context of global well-posedness of this system by [8] as well as in modulation
justification by [17]. However, doing so forces one to work in more restrictive classes of
solutions than is done here.1 Wu’s transform instead eliminates all quadratic nonlinear-
ities except for those of null-form type, and the special structure of these nonlinearities
avoids the singular behavior that necessitates restricting one’s class of solutions (to see
the cancellation explicitly see Lemma 4.3).

1 See the discussion in Appendix C of [22].
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We also note that arbitrary wave packet-like initial data need not satisfy the compat-
ibility conditions required by solutions to the system (1.6)–(1.7), and so we show that
one can always construct initial data satisfying these constraints that differs by at most

O(ε
5
2 ) from any given wave packet-like candidate for the initial data.

We now state the main result of this paper. Let Ḣ s(d) be the homogeneous Sobolev

space of functions f (x, y) for which the weak derivatives of (1 + x2 + y2)
d
2 f of order

exactly s are in L2, let Ḣ s = Ḣ s(0), let Hs(d) = Ḣ0(d)∩ Ḣ s(d), and let Hs = Hs(0).
The contributions of this paper in completing the steps (i)-(iv) above in the transformed
unknown ζ are summarized in

Theorem 1.1. Let k > 0, s ≥ 9, δ > 0, and A0 ∈ Hs+13∩H3(δ) be given. Then there ex-
ists a T > 0 depending on s and‖A0‖Hs+13∩H3(δ) and a solution A ∈ C([0,T ], Hs+13∩
H3(δ)) to the initial value problem (1.5) for constants a, b, c depending on k with
A(0) = A0. Moreover, for any T > 0 such that the above holds, there exists an ε0 > 0
depending on k, s,T , ‖A0‖Hs+13∩H3(δ), and δ so that the following hold:

(a) There is an approximate solution ζ̃ of (1.6)–(1.7) having the form (1.4) in C([0,T
ε−2], Hs+9) satisfying (1.6) up to a residual of size O(ε4) when measured in Hs.

(b) There exists initial data �0 constructed using A0 which satisfies the compatibility
conditions of the system (1.2)–(1.3). Moreover, if κ0 is the change of variables
constructed through �0 and ζ0 = �0 ◦ κ−1

0 , then for η = 1
2 this data satisfies

‖ |D| 1
2 (ζ0− ζ̃ (0))‖

Hs+ 1
2

+‖∂t (ζ0− ζ̃ (0))‖
Hs+ 1

2
+‖∂2

t (ζ0− ζ̃ (0))‖Hs ≤ Cε2+η, (1.8)

where C depends on k, s,T , ‖A0‖Hs+13∩H3(δ) and δ.
(c) For any initial data of (1.2)–(1.3) satisfying (1.8) with η = 0, there is a solution �

of (1.2)–(1.3) satisfying
(
|D| 1

2

(
� − (α, β, 0)

)
, �t , �t t

)
∈ C

(
[0,T ε−2], Hs+ 1

2 × Hs+ 1
2 × Hs

)
.

Moreover, for all 0 ≤ t ≤ T ε−2 and 0 < ι < 1,

‖ |D| 1
2 (ζ(t) − ζ̃ (t))‖

Hs+ 1
2

+ ‖�t (t) − (ζ̃ ◦ κ)t (t))‖
Hs+ 1

2

+‖�t t (t) − ∂2
t (ζ̃ ◦ κ)(t))‖Hs ≤ Cε2−ι,

where C depends only on k, s,T , ‖A0‖Hs+13∩H3(δ), δ and ι.

Remark 1.1. In fact the error in the stability estimate (c) can be improved to ι = 0.
However, then the estimate is only valid on an interval of time [0,T ′ε−2] where in
general T ′ ≤ T .

In particular, this theorem implies that solutions to the water wave problem in
Lagrangian coordinates with wave packet-like initial data exists for O(ε−2) times.
Unlike in [20], half-derivative control of the remainder along with the embedding

L∞(R2) ⊃ Ḣ
1
2 (R2) ∩ Ḣ2(R2) is sufficient to give us immediate control on the L∞

norm of the solution and its derivatives in the transformed coordinates.

Corollary 1.1. Under the same hypotheses as Theorem 1.1, we have furthermore that

‖ζ(t) − ζ̃ (t)‖W s−1+,∞ ≤ Cε2−ι

for all 0 ≤ t ≤ T ε−2, where C depends on the same quantities as in Theorem 1.1.
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There is still the question of how to derive justification of the asymptotics in more
physically meaningful coordinates. Theorem 1.1 justifies the modulation approximation
for the velocity and acceleration fields of � in Lagrangian coordinates by straightfor-
wardly changing variables by κ . However, changing variables in the spatial derivatives
contributes an error of the order O(ε) to the horizontal component of � and its deriv-
atives (see again Remark 4.1.) Therefore, while we can justify the asymptotics for the
vertical component z of �, we cannot do so for the horizontal component.

To rectify this, we give an Eulerian version of the justification. Since ζ(t) parametrizes
�(t), Corollary 1.1 guarantees that �(t) is a graph for O(ε−2) times provided ε0 > 0
is chosen sufficiently small. Parametrize this graph by �(t) = {〈α, β, h(α, β, t)〉 :
(α, β) ∈ R

2}. If we decompose ζ = τ + zk into horizontal and vertical components,
then h = z ◦ τ−1, where τ−1 denotes the inverse of τ as a map R

2 → R
2. In the

same way, the Eulerian velocity field is defined by v = (∂t + (κt ◦ κ−1))ζ ◦ τ−1. We
analogously set ζ̃ = τ̃ + z̃k and define the approximate Eulerian position h̃ = z̃ ◦ τ̃−1,
with the approximate Eulerian velocity ṽ defined similarly. Then we can use Theorem
1.1 to obtain

Theorem 1.2. Let k > 0, s ≥ 9, δ > 0, ι > 0 and A0, A,T be as in the hypothesis of
Theorem 1.1, and let h, h̃ be constructed as above. Then there exists an ε0 > 0 depending
on k, s,T , ‖A0‖Hs+13∩H3(δ), and δ so that for all 0 < ε < ε0, there exists initial data

h0, v0 which for η = 1
2 satisfies:

‖ |D| 1
2 (h0 − h̃(0))‖

Hs+ 1
2

+ ‖v0 − ṽ(0)‖
Hs+ 1

2
≤ Cε2+η

and moreover for all such initial data satisfying this bound with η = 0, the quantity h
exists for times [0,T ε−2] and moreover for all 0 ≤ t ≤ T ε−2 satisfies

‖ |D| 1
2 (h(t) − h̃(t))‖

Hs+ 1
2

+ ‖v(t) − ṽ(t)‖
Hs+ 1

2
≤ Cε2−ι

where C depends on the same quantities as in Theorem 1.1.

This paper is organized as follows: in Sect. 2 we review Clifford Analysis and intro-
duce the main evolution equations, as well as relations between the associated quantities
involved. In Sect. 3 we formally expand the Hilbert Transform H, compute the correc-
tors to the approximate solution (1.4), as well as address some analytic issues brought
about by the formula for the correctors. In Sect. 4 we derive evolution equations for the
remainders between the true and approximate solution and associated quantities, and
use them to derive a priori bounds on the remainders via energy estimates. In particular,
we construct normal form transformations and third-order corrections to the energy to
eliminate the quadratic terms that arise in the energy inequality. Finally, since arbitrarily
chosen wave packet-like initial data need not satisfy the compatibility conditions for the
water wave system, we show in Sect. 5 how to construct such admissible data suitably
close to given wave packet-like initial data, as well as use a bootstrapping argument to
show existence of the water wave problem on O(ε−2) times.
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2. The Governing Equations

2.1. Notation and Clifford-algebraic preliminaries. For a 2-vector (x, y), denote
|(x, y)| = √x2 + y2 and 〈(x, y)〉 = √1 + x2 + y2. We also write

|(x, y)|≤ =
{
|(x, y)| |(x, y)| ≤ 1
0 |(x, y)| ≥ 1

along with |(x, y)|≥ = |(x, y)|−|(x, y)|≤. We write the Jacobian of a map φ : R
2 → R

2

by J (φ), and sometimes denote f ◦ φ =: Uφ f . The commutator is written as [X, Y ] =
XY − Y X .

The algebra of quaternions H consist of a vector space spanned by the elements
1, i, j,k along with a product called quaternion multiplication characterized by W. R.
Hamilton’s celebrated formulas

i2 = j2 = k2 = ijk = −1

Observe that the above laws imply that multiplication restricted to distinct units of i, j,k
agrees with the usual cross product multiplication on R

3.
For a quaternion q = q0 + q1i + q2j + q3k, we sometimes denote components of

a large quaternion-valued expression by qi := {q0 + q1i + q2j + q3k}i . Define q =
q0 − q1i− q2j− q3k, as well as the scalar part �(q) = 1

2 (q + q) = q0 and the vector
part V(q) = 1

2 (q − q) =∑3
j=1 qi ei .

We call a quaternion real-valued if V( f ) = 0, vector-valued if �( f ) = 0, and
1, j-valued if f = f0 + j f2 for two real-valued functions f0, f2, etc. Many of the
quantities in this paper are 1, j-valued quaternions, and for these quaternions only we
define the scalar 	(a + bj) = b in analogy with the complex numbers. We define the
inner product p · q =∑3

i=0 pi qi . If p and q have no scalar parts, we identify p, q with
vectors in R

3 and define their cross product p × q in the usual sense of R
3. In cases of

ambiguous multiplication, the order of operations in this paper will be to first perform
cross products followed by quaternion multiplications. Finally, we denote by q† = kqk,
which for vector-valued quaternions corresponds to reflection across the i, j-plane.2

For vector quantities p, q we have pq = p × q − p · q. A quaternion generalization
of the ordinary scalar triple product of three vectors is given in the following

Proposition 2.1. For quaternions f, g, v with v vector-valued we have f · (vg) = −g ·
(v f ). In particular, f · (v f ) = 0.

Proof. Expanding f and g into scalar and vector parts, we have

f · (vg) = V( f ) · (v × V(g)) − �( f )(v · V(g)) + �(g)(v · V( f ))

and now observe that this expression is antisymmetric under interchanging f and g.
��

2 The reader is cautioned that in [22], this operation ·† is instead denoted using the overbar · , which we
reserve instead for ordinary quaternion conjugation.
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For θ ∈ R, define
ejθ := cos(θ) + j sin(θ) (2.1)

We define the left j-Fourier transform of a function f : R
2 → H by

(F L
j f )(ξ) = (F L

j f )(ξ1, ξ2) := 1

(2π)2

∫∫

R2
e−j(αξ1+βξ2) f (α, β) dαdβ (2.2)

Since we have the natural identification C ∼= R + Rj, all of the usual formulas for the
ordinary Fourier transform still hold with j in place of i provided the j-Fourier transform
acts on a 1, j valued function. To extend calculation to H -valued functions, we use the
identities Fji· = iF j· and Fjk· = kF j· where we denote

(F j f )(ξ) := 1

(2π)2

∫∫

R2
ej(αξ1+βξ2) f dαdβ

It is clear from the definition that (F f )(ξ, η) = (F f )(−ξ,−η). The Plancherel Identity
for the j-Fourier transform continues to hold even in the presence of non-commutativity,
since we can write for two H-valued functions f, g:
∫∫

f · g dα dβ =
∫∫

( f0 + f2j) · (g0 + jg2) + ( f1 − f3j)i · (g1 − jg3)i dα dβ

=
∫∫

( f0 + f2j) · (g0 + jg2) + ( f1 − f3j) · (g1 − jg3) dα dβ

=
∫∫

F L
j [( f0 + f2j)] · F L

j [(g0 + jg2)]
+ F L

j [( f1 − f3j)i] · F L
j [(g1 − jg3)i] dα dβ

=
∫∫

F L
j [ f ] · F L

j [g] dα dβ

The j-Fourier transform of a quaternion product is less well-behaved. We denote the
convolution product of two functions by

( f � g)(x) = 1

(2π)2

∫∫

R2
f (x − y)g(y) dy

Observe also that the convolution property Fj( f g) = Fj( f )�Fj(g) still holds provided
f is 1, j-valued. Similarly, the right Fj Fourier Transform is defined by

(F R
j f )(ξ) := 1

(2π)2

∫∫

R2
f (α, β)e−j(αξ1+βξ2) dαdβ (2.3)

As above, F R
j enjoys the Plancherel Identity, and the convolution property provided the

right factor is 1, j-valued.
Fractional derivative control will be crucial in the sequel. It is convenient to work

with fractional solid derivatives. If f ∈ C∞
0 , these can be defined using either of the

above versions of the Fourier transform as multipliers

F(|D|q f ) = |ξ |qF( f )
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If in addition −2 < q < 0, we can formally write |D|q as a principal value convolution
operator in physical space:

|D|q f = 1

Cq
( f � p.v.|(α, β)|−2−q) (2.4)

where the constant Cq = 4π�(q/2)�((2−q)/2)−1; here � is the Euler Gamma function
(c.f. [19]). We will continue using (2.4) formally when q is not a nonpositive even
integer.3

We will use multi-index notation for denoting derivatives. Let j = ( j1, j2) ∈ N
2 be

given, and suppose f = f (α, β). Then denote ∂ j := ∂ j1

∂α j1
∂ j2

∂β j2
. Addition, subtraction,

and ordering of multi-indices is componentwise. Define the length | j | = j1 + j2.
For s ∈ N, define the Sobolev spaces W s,∞ to be the space of functions f ∈ L1

loc(R
n)

for which the norm ‖ f ‖W s,∞ =∑| j |≤s ‖∂ j f ‖L∞ is finite. For s ∈ R, define Ḣ s as the

completion of C∞
0 (R2) with respect to the norm ‖ f ‖Ḣ s = ‖ |D|s f ‖L2 , and let Hs be

the completion of C∞
0 (R2) with respect to the norm ‖ f ‖2

Hs = ‖ f ‖2
L2 + ‖ f ‖2

Ḣ s . For an

interval I ⊂ R and a Banach space X , let C j (I, X) denote the functions f (α, β, t) for
which supI ‖∂ i f/∂t j‖X < ∞ for all 0 ≤ i ≤ j .

To further control half derivatives, we will use the following version of complex
interpolation between Sobolev spaces.

Proposition 2.2 (c.f. Theorems 4.4.1 and 6.4.5 of [2]).

(a) Let X0
1, . . . , X0

n, X1
1, . . . , X1

n be Banach spaces, and suppose that X θ
j is the θ -

complex interpolation space between X0
j and X1

j . Suppose further that T is an

n-multilinear operator so that T : X0
1 ×· · ·× X0

n → Y 0 is continuous with operator
norm ‖T ‖0 and T : X1

1 × · · · × X1
n → Y 1 is continuous with operator norm ‖T ‖1.

Then for all 0 < θ < 1, T : X θ
1 ×· · ·× X θ

n → Y θ is continuous with operator norm

at most ‖T ‖(1−θ)
0 ‖T ‖θ

1 .
(b) The θ -complex interpolation space between Ḣ s0 and Ḣ s1 is Ḣ (1−θ)s0+θs1 .

In order to generalize complex analysis to 3D we give a brief overview of Clif-
ford analysis in the quaternion context. For more information see [22], and for a full
development see Chapter 2 of [10].

For a C2 open set � ⊂ R
3, let F : � ⊂ R

3 → H be given. We define F to be analytic
on � if DF = 0, where we have introduced the Dirac operator D = i ∂

∂x + j ∂
∂y + k ∂

∂z .
This implies that each component of F is harmonic; conversely if ϕ is a real-valued
harmonic function on �, Dϕ is analytic on �. For vector-valued F , observe that the
scalar and vector parts of DF = 0 reduce to the div-curl system ∇ · F = 0,∇ × F = 0.

Denote the fundamental solution of the Laplacian in 3D by

�(�x) = �(|�x |) = − 1

4π |�x |
and denote the Clifford analogue of the Cauchy kernel by

K (�x) = −2D�(�x) = − 1

2π

�x
|�x |3 �x �= �0

3 Indeed this can be made rigorous by analytically continuing (2.4) as an analytic function of q.
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One can construct a Hilbert transform associated with a C2 boundary � = ∂� in
parallel with the classical construction of the Hilbert transform associated to a curve in
the complex plane. We collect the properties of the Hilbert transform that we will use in
this paper in the

Proposition 2.3 (c.f. Chapter 2 of [10]). Let � be a C2 domain in R
3 with boundary

∂� = �. Let n(�x) be the outward unit normal to � at �x, and let d S(�x) be the surface
measure of �. Then

(a) If F is analytic on � and decays at infinity, then we have the Cauchy integral formula

F(�x) = 1

2

∫∫

�

K (�y − �x)n(�y)F(�y) d S(�y)

for all �x ∈ �.
(b) For an H-valued function f defined on � that decays at infinity, define the Hilbert

transform associated to � by

H� f (�x) = p.v.
∫∫

K (�y − �x)n(�y) f (�y) d S(�y)

Then the Cauchy integral

C f (�x) = 1

2

∫∫

�

K (�y − �x)n(�y) f (�y) d S(�y)

is analytic on � and extends continuously to the closure �. Moreover on � we have
the Plemelj relation

C f = 1

2
(I + H�) f

(c) Suppose that F is a continuous H-valued function defined on � that decays at
infinity. Then F is analytic on � if and only if F(�x) = H� F(�x) for all �x ∈ �.

(d) The Hilbert transform H� satisfies H2
� = I, H�[H�, T ] = −[H�, T ]H� on L2.

In the sequel we will denote the Hilbert transform of a surface � parametrized by a
function γ by Hγ , reserving the symbols H,H,H0 for the special cases γ = �, ζ, αi+
βj. In fact the results of Proposition 2.3 continue to hold provided the parametrization
γ satisfies the chord-arc condition: There exist constants ν, N > 0 so that

ν ≤ sup
x �=y

|γ (x) − γ (y)|
|x − y| ≤ N

We denote the double layer potential operator Kγ = �(Hγ ) associated to Hγ by

Kγ f (�x) =
∫∫

�

(K (�y − �x) · n(�y)) f (�y) d S(�y)

and we denote Kγ = K,K when γ = �, ζ respectively.
Define the (real) adjoint of the Hilbert transform Hγ through the usual L2(R2) inner

product, and denote it by H∗
γ . Then we have the formula

H∗
γ f = −

∫∫
n(�x)K (�y − �x) f (�y)d S(�y)
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2.2. Reformulation of Euler’s equation without quadratic nonlinearities. Here we record
the evolution equations for � and ζ . We will often write �β∂α − �α∂β = (N × ∇),
where N = �α ×�β . For brevity we refer to the literature for proofs whenever possible,
especially [21,22].

Key to the cubic nature of the water wave problem in new coordinates are the following
explicit commutator identities:

Proposition 2.4 (c.f. Lemma 3.1 in [21] and Lemma 1.2 of [22]). Let γ : R
2 → H be

vector-valued and satisfy the chord-arc condition. Then the following identities hold:

(a) Let f = f (α, β, t, s). For ∂ = ∂α, ∂β, ∂t , ∂s , denote ∂ ′ = ∂α′ , ∂β ′ , ∂t , ∂s respec-
tively. Then we have

[∂,Hγ ] f =
∫∫

K (γ ′ − γ )(∂γ − ∂ ′γ ′) × (γ ′
β ′∂α′ − γ ′

α′∂β ′) f ′ dα′dβ ′

(b) Let � = γα × γβ . Then for any scalar-valued function g,

[g(γβ∂α−γα∂β),Hγ ] =
∫∫

K (γ ′−γ )
(
g�−g′�′)× (γ ′

β ′∂α′ −γ ′
α′∂β ′) f ′ dα′dβ ′

(c)

[∂2
t ,Hγ ] =

∫∫
K (γ ′ − γ )(γt t − γ ′

t t ) × (γ ′
β ′∂α′ − γ ′

α′∂β ′) f ′ dα′dβ ′

+
∫∫

∂t K (γ ′ − γ )(γt − γ ′
t ) × (γ ′

β ′∂α′ − γ ′
α′∂β ′) f ′ dα′dβ ′

+
∫∫

K (γ ′ − γ )(γt − γ ′
t ) × (γ ′

tβ ′∂α′ − γ ′
tα′∂β ′) f ′ dα′dβ ′

+2
∫∫

K (γ ′ − γ )(γt − γ ′
t ) × (γ ′

β ′∂α′ − γ ′
α′∂β ′) f ′

t dα′dβ ′

Let � − (αi + βj) = xi + yj + zk; using (1.2) along with Proposition 2.4 we can
derive the evolution equation for (I − H)zk as in Proposition 1.3 of [22]:

(∂2
t − a(�β∂α − �α∂β))(I − H)zk

=
∫∫

K (�′ − �)(�t − �′
t ) × (�′

β ′∂α′ − �′
α′∂β ′)(�†

t )
′k dα′, dβ ′

−
∫∫

K (�′ − �)(�t − �′
t ) × (�′

tβ ′∂α′ − �′
tα′∂β ′)z′k dα′dβ ′

−
∫∫

∂t K (�′ − �)(�t − �′
t ) × (�′

β ′∂α′ − �′
α′∂β ′)z′k dα′dβ ′ (2.5)

The first term in the nonlinearity above can be rewritten as cubic since we will
see that �t and �

†
t are orthogonal in L2 up to higher order terms. However, we must

consider derivatives of this equation in order to close the energy, and then the quantity
a − 1 appears and is only linearly small, spoiling the cubic structure. This obstacle is
overcome by introducing Wu’s transform (c.f. (1.28) of [22]):

κ = � − (I + H − K)zk (2.6)

While it is immediate from the definition that κ has no k component, κ is in fact
i, j-valued as a consequence of the general result:
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Proposition 2.5. Let γ = γ1i + γ2j + γ3k satisfy the chord-arc condition. Then the
quantity (Hγ − Kγ )γ3k is i, j-valued.

Proof. The proof in the case γ = � is given on p. 9 of [22] culminating in identity
(1.30); we need only note that the derivation of (1.30) does not depend on any properties
of � except that it parametrizes a surface. ��

Using the identification R
2 ∼= Ri + Rj ⊂ H, it makes sense to regard κ as a change

of variables on R
2 and so consider compositions f ◦ κ for functions f : R

2 → H.
In fact we will show that κ is a diffeomorphism in Proposition 4.3. Since we have not
yet specified the initial parametrization of the original Lagrangian coordinates, choose
�(α, β, 0) so that κ(α, β, 0) = αi + βj.

Denote D = i∂α + j∂β . We change variables in (2.5) by writing

λ := ζ − (αi + βj) := xi + yj + zk := � ◦ κ−1, H = Hζ

along with the notation

Dt = ∂t + (κt ◦ κ−1) · D, b = κt ◦ κ−1, A = (aJ (κ)) ◦ κ−1

and so have (c.f. (1.35) of [22]):

(D2
t − A(ζβ∂α − ζα∂β))(I − H)zk

=
∫∫

K (ζ ′ − ζ )(Dtζ − D′
tζ

′
t ) × (ζ ′

β ′∂α′ − ζ ′
α′∂β ′)D′

t (ζ
†)′k dα′dβ ′

−
∫∫

K (ζ ′ − ζ )(Dtζ − D′
tζ

′
t ) × (∂ ′

β D′
tζ

′∂α′ − ∂ ′
α D′

tζ
′∂β ′)z′k dα′dβ ′

−
∫∫

Dt K (ζ ′ − ζ )(Dtζ − D′
tζ

′) × (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)z′k dα′dβ ′ (2.7)

Set P := D2
t − A(ζβ∂α − ζα∂β), and denote (2.7) by P(I − H)zk = G. By taking

a derivative Dt to (2.7), we arrive at the following evolution equation for Dt (I −H)zk:

P Dt (I − H)zk = [P, Dt ](I − H)zk + Dt G (2.8)

Moreover, we can write the commutator [Dt ,P] in two different ways: first by
straightforwardly distributing the Dt , and second by changing variables with respect
to κ:

[Dt ,P] = (DtA)(N × ∇) + A((Dtζβ)∂α − (Dtζα)∂β)

= AU−1
κ

(at

a

)
(N × ∇) + A(∂β Dtζ∂α − ∂α Dtζ∂β) (2.9)

In order to close these equations we need formulas expressing b,A − 1 and DtA as
quadratic functions of ζ and its derivatives. Denote P := αi + βj. An immediate yet
key consequence of (2.6) is the relation

λ = (I + H − K)zk (2.10)

Proposition 2.6. The following identities hold:

(a)

(I − H)b = −[Dt ,H](I + H)zk + (I − H)DtKzk
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(b)

(I − K)A =
{
k + [Dt ,H]Dtζ + [A(N × ∇),H](I + H)zk

+ (I − H)
(−Aζβ × (∂αKzk) + Aζα × (∂βKzk) + A(λα × λβ)

)}
3

(c)

(I − H)U−1
κ (at (�α × �β)) = [D2

t + A(N ×∇),H]Dtζ

= 2
∫∫

K (ζ ′ − ζ )(D2
t ζ − (D2

t ζ )′) × (ζβ ′∂α′ − ζα′∂β ′)D′
tζ

′ dα dβ

+2
∫∫

K (ζ ′ − ζ )(Dtζ − D′
tζ

′) × (ζβ ′∂α′ − ζα′∂β ′)(D2
t ζ )′ dα dβ

+
∫∫

((D′
tζ

′ − Dtζ ) · ∇)K (ζ ′ − ζ )(Dtζ − D′
tζ

′)

×(ζβ ′∂α′ − ζα′∂β ′)D′
tζ

′ dα dβ

+
∫∫

K (ζ ′ − ζ )
(
((Dtζ − D′

tζ
′) × ∂β ′ D′

tζ
′)∂α′ D′

tζ
′

−((Dtζ − D′
tζ

′) × ∂α′ D′
tζ

′)∂β ′ D′
tζ

′)dα dβ

Proof. The first two formulas are shown as in footnote 6 of Proposition 1.4 of [22],
where for the second we have taken the k-component. The third formula is (2.39) of
[22]. ��
Remark 2.1. The idea behind the formulas of Proposition 2.6 is to use the fact that Dtζ

is the trace of an analytic function in �(t) and that λ is, up to terms of higher order, the
trace of an analytic function on �(t) as well. One generates formulas from this fact by
recognizing that, if an almost-analytic function θ satisfies a formula of the form T θ = Q
for some operator T , then

(I − H)Q = (I − H)T θ = [T,H]θ + T (I − H)θ,

and these two terms are typically of second order by hypothesis and thanks to the
commutator formulas of Proposition 2.4. Parts (a), (b), and (c) follow in essence for
Q = b,A − 1, U−1

κ (at (�α × �β)) by respectively applying the above method to
θ = λ, λ, Dtζ and T = Dt , (D2

t − A(N × ∇)), (D2
t + A(N × ∇)).

2.3. Analytic estimates. We first record some preliminary estimates, which we will need
in order to close our energy estimates in Hs .

Proposition 2.7. (a) If f ∈ H2, then f ∈ L∞ and ‖ f ‖L∞ ≤ C‖ f ‖H2 , where C is a
universal constant.

(b) If |D| 1
2 f ∈ H

3
2 , then f ∈ L∞ and ‖ f ‖L∞ ≤ C‖|D| 1

2 f ‖
H

3
2

, where C is a universal
constant.

(c) Let f, g : R
2 → H . Then for any 0 < q < 1 we have

‖|D|−1( f g)‖L2 ≤ Cq(‖g‖L∞ + ‖g‖L2−q )‖ f ‖L2

≤ Cq(‖g‖L∞ + ‖g‖L2(
2q

2−q )
)‖ f ‖L2
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Proof. (a) is the usual Sobolev embedding. To prove (b), we use (2.4) and Young’s
Inequality to derive, for f ∈ S (R2), that

‖|D|−1/2 f ‖L∞ = ‖ f � |(α, β)|−3/2‖L∞

≤ ‖ f � |(α, β)|−3/2
≤ ‖L∞ + ‖ f � |(α, β)|−3/2

≥ ‖L∞

� ‖ f ‖L∞ + ‖ f ‖L2

� ‖ f ‖
H

3
2

Finally, to prove (c) we have by Young’s Inequality and Hölder’s Inequality that

‖|D|−1( f g)‖L2 ≤ ‖( f g) � |(α, β)|−1≤ ‖L2 + ‖( f g) � |(α, β)|−1≥ ‖L2

≤ ‖|(α, β)|−1≤ ‖L1‖g‖L∞‖ f ‖L2 + ‖|(α, β)|−1≥ ‖
L

2−q
1−q

‖g‖L2−q‖ f ‖L2

≤ Cq(‖g‖L∞ + ‖g‖L2−q )‖ f ‖L2

The second inequality of (c) now follows by Hölder’s inequality applied to

‖g〈(α, β)〉p〈(α, β)〉−p‖L2−q

The estimate requires that we choose p 2(2−q)
q > 2. ��

Remark 2.2. From this point on in the paper, we use the notation 0+ and allow constants
to depend on the fixed implicit parameter δ > 0. For example, the estimate (d) becomes
‖|D|−1( f g)‖L2 ≤ C(‖g‖L∞ + ‖g‖L2(0+))‖ f ‖L2 .

Finally, in order to estimate the singular integral terms appearing in our formulation,
we use the celebrated

Theorem 2.1 (Coifman–Meyer–McIntosh–David). Let J ∈ C1(Rd , R
l), Ai ∈ C1(Rd)

for i = 1, . . . , m, and F ∈ C∞(Rl). For x, y ∈ R
d , define

S1(A1, A2, . . . , Am, f ) =
∫∫

F

(
J (x) − J (y)

|x − y|
)

A1(x) − A1(y)

|x − y|
· · · Am(x) − Am(y)

|x − y|
f (y)

|x − y|d dy

:=
∫∫

k1(x, y) f (y) dy

and for ∂ = ∂yk for some k = 1, . . . , d,

S2(A1, A2, . . . , Am, f ) =
∫∫

F

(
J (x) − J (y)

|x − y|
)

A1(x) − A1(y)

|x − y|
· · · Am(x) − Am(y)

|x − y|
∂ f (y)

|x − y|d−1 dy

:=
∫∫

k2(x, y) f (y) dy

Suppose that k1(x, y) = −k1(y, x) and k2(x, y) = k2(y, x). Then there exists a constant
C = C(F, ‖∇ J‖L∞) so that
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(a) ‖S1(A1, A2, . . . , Am, f )‖L2 ≤ C(1 + m4)‖∇A1‖X1 . . . ‖∇Am‖Xm‖ f ‖X0 ,
(b) ‖S2(A1, A2, . . . , Am, f )‖L2 ≤ C(1 + m4)‖∇A1‖X1 . . . ‖∇Am‖Xm‖ f ‖X0 ,

where in both cases one of the spaces Xi for i = 0, 1, . . . , m is L2 and the others
are L∞.

Proof. See [22] as well as [4,5]. ��
To use this result in Hs , we have the

Proposition 2.8. Let s ≥ 4 be given. Let γ be a parametrization of a surface satisfying
the chord-arc condition and such that ‖∇(γ − P)‖Hs−1 is finite. Then

(a) For ∂ = ∂α, ∂β , if

T f (α, β) =
∫∫

K (α, β, α′, β ′) f (α′, β ′) dα′ dβ ′,

then

[∂, T ] f =
∫∫

((∂ + ∂ ′)K (α, β, α′, β ′)) f (α′, β ′) dα′ dβ ′

(b) For a multiindex j of length n,

‖[∂ j ,Hγ ] f ‖L2 ≤ C‖∇(γ − P)‖Hn−1‖∇ f ‖Hn−1

(c)

‖Hγ f ‖Hs ≤ C(1 + ‖∇(γ − P)‖Hs−1)‖ f ‖Hs

Proof. (a) is immediate after an integration by parts. Likewise, (c) follows immediately
from (b) and Theorem 2.1. To prove (b), suppose without loss of generality that f is
scalar-valued. Write the multi index j of length n as a sum j = j1 + j2 + · · · + jn with
each | jm | = 1. We first write

[∂ j ,Hγ ] f =
n∑

m=1

∂ j1+···+ jm−1[∂ jm ,Hγ ]∂ jm+1+···+ jn f

Motivated by the expression for [∂ jm ,Hγ ], denote

K α
l := {K (γ − γ ′)(∂ jm (γ − P) − (∂ jm )′(γ ′ − P)) × γβ}l

and

K β
l := {K (γ − γ ′)(∂ jm (γ − P) − (∂ jm )′(γ ′ − P)) × γα}l

Then we can write the lth component of each term in the above sum as

{∂ j1+···+ jm−1 [∂ jm ,Hγ ]∂ jm+1+···+ jn f }l

=
∫∫

((∂ + ∂ ′) − ∂ ′) j1+···+ jm−1
(

K β
l

)
(∂ ′) jm+1+···+ jn ∂α′ f ′

−((∂ + ∂ ′) − ∂ ′) j1+···+ jm−1
(
K α

l

)
(∂ ′) jm+1+···+ jn ∂β ′ f ′ dα dβ
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=
∑

p≤ j1+···+ jm−1

(∫∫
(∂ + ∂ ′)p(K β

l )(∂ ′) j−p∂α′ f ′

−(∂ + ∂ ′)p(K α
l )(∂ ′) j−p∂β ′ f ′

)
dα dβ

Note that K α
l and K β

l are kernels of the type introduced in Theorem 2.1(b). Since the
operator (∂ + ∂ ′) acts on functions of the form g(α, β) − g(α′, β ′) by

(∂ + ∂ ′)
(
g(α, β) − g(α′, β ′)

) = (∂g)(α, β) − (∂g)(α′, β ′)

it follows that (∂ + ∂ ′) j acting on these kernels is also a kernel of the same type.
In order to achieve the optimal bounds we must estimate in cases. If j < n − 2, then

every term in the kernel has at most n −3 derivatives, and so we may apply Theorem 2.1
in any way we please along with Sobolev embedding. In the other cases the dangerous
terms are those with a large number of derivatives falling on one of the differences given
by components of

∂kγ (α, β) − ∂kγ (α′, β ′) = ∂k(γ − P)(α, β) − ∂k(γ − P)(α′, β ′)

If j = n − 2, n − 1 then since we assumed that n ≥ 4 there will be such a difference
having either n − 2 or n − 1 derivatives, and the other terms of the expression will have
at most 2 derivatives. Therefore we can estimate the term with the highest number of
derivatives in L2 and the others in L∞. Finally, if j = n and all of the derivatives fall on a
difference, then estimate by splitting that difference into two separate singular integrals
and estimating each using Theorem 2.1(a) and Sobolev embedding. ��
Proposition 2.9. Suppose s ≥ 4 is given. Let γ0, γ1 parametrize two surfaces both
satisfying the chord-arc condition and such that ‖∇(γ0−P)‖Hs−1 and ‖∇(γ1−P)‖Hs−1

are finite. Then for f in Hs and W s,∞ respectively we have the estimates

‖(Hγ1 − Hγ0) f ‖Hs ≤ C‖∇(γ0 − γ1)‖Hs−1‖ f ‖Hs or C‖∇(γ0 − γ1)‖Hs−1‖ f ‖W s,∞

where the constant C depends on ‖∇(γ0 − P)‖Hs−1 and ‖∇(γ1 − P)‖Hs−1 .

Proof. Set γs = γ0 + s(γ1 − γ0). We express Hγ1 − Hγ0 using Proposition 2.4 as

(Hγ1 − Hγ0) f =
∫ 1

0
∂s(Hγs f ) ds =

∫ 1

0
[∂s,Hγs ] f ds

=
∫ 1

0

∫∫
K (γ ′

s − γs)
(
(γ1 − γ0) − (γ ′

1 − γ ′
0))
)
× (∂βγs ∂α − ∂αγs ∂β) f dα′ dβ ′ ds

(2.11)

After using Minkowski’s Inequality, the bounds now follow as in Proposition 2.8. ��
Remark 2.3. One can always weaken estimates of Propositions 2.8 and 2.9 if it is more
convenient to estimate in W s,∞. For instance, the bounds

‖[∂ j ,Hγ ] f ‖Hn ≤C‖∇(γ −P)‖W n−1,∞‖∇ f ‖Hn−1 and C‖∇(γ −P)‖Hn−1‖∇ f ‖W n−1,∞

both follow by less careful estimates.
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The next proposition will imply that the energy we construct in Sect. 4 controls half
derivatives.

Proposition 2.10. (a) For g vector-valued and f, h quaternion valued,

∣∣∣∣
∫∫

f · (gβhα − gαhβ) dα dβ

∣∣∣∣ ≤ ‖∇g‖L∞‖ f ‖
Ḣ

1
2
‖h‖

Ḣ
1
2

(b) For f a vector valued function satisfying f = −H f and for sufficiently small
‖∇λ‖L∞ , there is a constant C(‖∇λ‖L∞) > 0 so that

1

C
‖ f ‖2

Ḣ
1
2
≤ −

∫∫
f · (N ×∇) f ≤ C‖ f ‖2

Ḣ
1
2

Proof. To show (a), consider the bilinear mapping

T ( f, h) =
∫∫

f · (gβhα − gαhβ) dα dβ

We have by an integration by parts and Proposition 2.1 that
∫∫

f · (gβhα − gαhβ) dα dβ =
∫∫

− fα · (gβh) + fβ · (gαh) dα dβ

=
∫∫

h · (gβ fα − gα fβ) dα dβ

Now Hölder’s inequality implies that the L2 norm is bounded by both

‖∇g‖L∞‖ f ‖L2‖g‖Ḣ1 and ‖∇g‖L∞‖h‖L2‖ f ‖Ḣ1 .

Then (a) follows by these two estimates and applying Proposition 2.2.
The right-hand inequality of (b) follows immediately from (a). To prove the left-hand

inequality of (b), we manipulate the following integral using the identity kD = H0|D|:
∫∫

− f · (ζβ fα − ζα fβ) dα dβ

=
∫∫

− f · (kD) f dα dβ +
∫∫

− f · (λβ∂α − λα∂β) f dα dβ

=
∫∫

f · (H0|D|H0 f ) dα dβ

+
∫∫

f · (j∂α − i∂β)(H − H0) f dα dβ +
∫∫

− f · (λβ∂α − λα∂β) f dα dβ

= ‖ f ‖2

Ḣ
1
2

+
∫∫

f · (j∂α−i∂β)(H−H0) f dα dβ+
∫∫

−f · (λβ∂α−λα∂β) f dα dβ

Note that by Proposition 2.9 we have both ‖(H−H0) f ‖L2 ≤ C‖∇λ‖L∞‖ f ‖L2 and for
∂ = ∂α, ∂β ,

‖∂(H − H0) f ‖L2 = ‖(H − H0)∂ f ‖L2 + ‖[∂,H] f ‖L2 ≤ C‖∇λ‖L∞‖ f ‖Ḣ1
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Thus, by Proposition 2.2 applied to the operator T = H − H0, we have ‖(H −
H0) f ‖

Ḣ
1
2
≤ C‖∇λ‖L∞‖ f ‖

Ḣ
1
2

, and so by (a) the above becomes

‖ f ‖2

Ḣ
1
2
≤
∫∫

− f · (N × ∇) f dα dβ + ‖ f ‖
Ḣ

1
2
‖(H − H0) f ‖

Ḣ
1
2

+ ‖∇λ‖L∞‖ f ‖2

Ḣ
1
2

≤
∫∫

− f · (N × ∇) f dα dβ + C‖∇λ‖L∞‖ f ‖2

Ḣ
1
2

Now (b) follows provided ‖∇λ‖L∞ is sufficiently small. ��
We close this section with half-derivative estimates of operators formed by commut-

ing singular integrals and derivative operators.

Proposition 2.11. Let s ≥ 4, let d, d1, d2 = ∂α, ∂β, ∂t , ∂s, Dt , and let γ parametrize a
Lipschitz surface and satisfy the chord-arc condition. Then the following estimates hold
for all 0 ≤ ν ≤ 1:

(a) There is a constant C depending on ‖∇(γ − P)‖Hs so that

‖[d,Hγ ] f ‖Hs ≤ C‖ |D|1−νd(γ − P)‖Hs‖ |D|ν f ‖Hs

(b) There is a constant C depending on ‖∇(γ − P)‖Hs so that

‖[d1, [d2,Hγ ]] f ‖Hs ≤ C(‖∇d1d2(γ − P)‖Hs−1

+‖∇d1(γ − P)‖Hs‖∇d2(γ − P)‖Hs−1)‖ f ‖Hs

Proof. Write

[d,Hγ ] f =
∫∫

K (γ ′ − γ )(dγ − d′γ ′) × (γ ′
β f ′

α − γ ′
α f ′

β) dα dβ

and distribute ∂ j derivatives as in Proposition 2.8. By Proposition 2.2 and Theorem 2.1,
we can estimate the operator

T (g, h) =
∫∫

K (γ ′ − γ )(g − g′) × (γ ′
βh′

α − γ ′
αh′

β) dα dβ

by

‖T (g, h)‖L2 ≤ C‖g‖H3−ν‖h‖Ḣν and C‖g‖Ḣ1−ν‖ |D|νh‖
H

3
2

Part (a) follows by applying these estimates to the term T (∂ jd(γ − P), h) and any of
the terms where no derivatives fall on f .

Similarly, (b) follows by applying Proposition 2.8 to the following explicit commu-
tator formula:

[d1, [d2,Hγ ]] f =
∫∫

K (γ − γ ′)(d1d2γ − d′1d′2γ ′) × (γ ′
β f ′

α − γ ′
α f ′

β) dα dβ

+
∫∫

K (γ − γ ′)(d2γ − d′2γ ′) × ((d′1γ ′
β) f ′

α − (d′1γ ′
α) f ′

β) dα dβ

+
∫∫

(d1 + d′1)K (γ − γ ′)(d2γ − d′2γ ′) × (γ ′
β f ′

α − γ ′
α f ′

β) dα dβ

��
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Remark 2.4. As in Proposition 2.8, we are always free to relax to L∞ estimates if it is
convenient, provided one of the factors is still estimated in L2. If f = f̃ + ( f − f̃ ), we
will often need to use the above estimates in such a way that we replace ‖|D|ν f ‖Hs in
the above proposition by ‖|D|ν( f − f̃ )‖Hs + ‖ f̃ ‖W s+1,∞ , with similar modifications for
the other quantities in the proposition.

Remark 2.5. Since we can write the difference of two Hilbert transforms as in Proposition
2.3, part (a) of the above Lemma along with Proposition 2.2 implies the estimates

‖(Hγ1 − Hγ0) f ‖Hs ≤ C‖ |D|1−ν(γ1 − γ0)‖Hs‖ |D|ν f ‖Hs for 0 ≤ ν ≤ 1

where C now depends on ‖∇(γi − P)‖Hs , i = 0, 1.

3. The Formal Calculation of the Approximate Solution

In this section we determine the correctors to the wave packet-like approximate solution
so that the residual to (2.7) is physically of order O(ε5). Our first task is to write the wave
packet in (1.4) in terms of quaternions. In analogy to our choice of wave packet in [20],
we can use (2.1) in order to take the following as the leading term of our approximate
solution:

λ̃ = εiA(εα, εβ, εt, ε2t)ej(kα+ωt) + O(ε2)

= ε
(
�(Aej(kα+ωt))i + 	(Aej(kα+ωt))k

)
+ O(ε2)

:= ε(x(1)i + y(1)j + z(1)k) + O(ε2), (3.1)

where the function A is 1, j-valued. In order to systematically develop the correctors of
λ̃, we adopt a multiscale ansatz for λ̃. If we let α0 = α, α1 = εα, β1 = εβ, t0 = t, t1 =
εt, t2 = ε2t , we write

λ̃ = εiA(α1, β1, t1, t2)e
jφ + O(ε2)

= ε
(
�(Aejφ)i + 	(Aejφ)k

)
+ O(ε2) (3.2)

where we have introduced the phase

φ := kα0 + ωt0 (3.3)

If we are to seek such an ansatz, we must interpret the action of the operators in (2.7) and
Proposition 2.6 on multiscale functions and interpret the result as multiscale functions.
Interpreting derivatives in this way is straightforward by the Chain rule:

∂α = ∂α0 + ε∂α1 , ∂β = ε∂β1 , ∂t = ∂t0 + ε∂t1 + ε2∂t2

However it is not immediately clear how to interpret H acting on a multiscale function.
One can formally expand the kernel of H into a power series of homogeneous terms,
and each of these terms yields an operator that can be written in terms of iterates of
commutators with known quantities and the flat Hilbert transform

H0 f (α, β) = 1

2π2

∫∫

R2

(α − α′)i + (β − β ′)j
|(α, β) − (α′, β ′)|3 k f (α′, β ′) dα′dβ ′ (3.4)

This reduces the problem to understanding how H0 acts on multiscale functions. Since
the only multiscale functions that arise in our formal calculation are in essence of the
form F(α1, β1, t1, t2)enjφ for k ∈ R, n ∈ Z, and F a 1, j-valued function, we begin by
understanding how H0 acts on these types of functions.
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3.1. The action of the flat Hilbert transform on wave packets. We first observe that
because our wave packets are concentrated in frequency space about the fixed frequency
(k, 0), we can always localize a smooth wave packet about its wave number in Fourier
space at the expense of a small error. In this section we use only the left j-Fourier
transform with frequency variable ξ = (ξ1, ξ2), and denote F L

j [ f ] = F[ f ] = f̂ for
brevity.

Lemma 3.1. Let s, m ≥ 0, k �= 0, and ε > 0 be given. Let Bk be the Fourier multiplier
with symbol

B̂k(ξ) :=
{

1 |(ξ1 − k, ξ2)| ≤ 1
2 k

0 otherwise

Then for any function A ∈ Hs+m, there is a constant C depending only on k, s, m so
that

‖A(εα, εβ)ejkα − Bk A(εα, εβ)ejkα‖Hs ≤ Cεm−1‖A‖Hs+m

Proof. We calculate by Plancherel’s Identity that for any m ≥ 0 that

‖A(εα, εβ)ejkα − Bk A(εα, εβ)ejkα‖L2
α,β

=
(∫∫

|(ξ1−k,ξ2)|> 1
2 k

∣∣∣∣
1

ε2 Â

(
ξ1 − k

ε
,
ξ2

ε

)∣∣∣∣
2

dξ1 dξ2

)1/2

≤
(∫∫

|(ξ1−k,ξ2)|> 1
2 k

∣∣∣∣
εm

〈(ξ1 − k, ξ2)〉m

1

ε2 〈̂D〉m A

(
ξ1 − k

ε
,
ξ2

ε

)∣∣∣∣
2

dξ1 dξ2

)1/2

≤ Cεm−1‖A‖Hm

where the constant C depends only on k and s. Note that we have lost a power of ε by
measuring A in the slow variable εα. Since Bk commutes with differentiation, the result
now follows upon applying the above to ∂ j A for | j | ≤ s. ��

This result allows us to interpret the action of H0 on a wave-packet by expanding the
symbol of H0 in a Taylor series about the frequency (k, 0). The effect of this is to write
the action of H0 on a wave packet as a series of differential operators, which are then
easily interpreted as operators on multiscale functions.

Proposition 3.1. Let F ∈ Hs+4 be a 1, j-valued function, and denote f (α, β) =
F(εα, εβ)ejkα for k ∈ R. When k = 0 we interpret H(0)(F(α1, β1)) = (H0 F)(α1, β1)

with no correctors. When k �= 0 we have the following estimate

‖(H0 − H(0)
0 + εH(1)

0 + ε2H(2)
0 + ε3H(3)

0 ) f ‖Hs ≤ Cε3‖F‖Hs+4

where the operators H( j)
0 for j = 0, 1, 2, 3 are

H(0)
0 f = − sgn(k) f

H(1)
0 f = − 1

|k| i∂β1 f
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H(2)
0 f = − 1

2k|k|∂
2
β1

f +
1

k|k|k∂α1β1 f

H(3)
0 f = − 1

|k|3 j∂α1β1β1 f +
1

|k|3 i∂α1α1β1 f − 1

2|k|3 i∂β1β1β1 f

Proof. The case k = 0 is immediate since H0 is invariant under dilations. Hence it
suffices to consider the case where k �= 0. Applying (2.4) to the components of (3.4)
yields formulas for the symbols of the Riesz transforms:

F
(

1

2π
p.v.

α

|(α, β)|3
)

= −j
ξ

|(ξ, η)| F
(

1

2π
p.v.

β

|(α, β)|3
)

= −j
η

|(ξ, η)| (3.5)

we can write the symbol of H0 = −jR1 + iR2 in coordinates as follows:

FH0 = F(iR1k + jR2k)

= F(−jR1 + jR2k)

= −jFR1 + jFR2k

= −j

(
−j

ξ1

|ξ |
)

F + j

(
−j

ξ2

|ξ |
)

Fk

= − ξ1

|ξ |F +
ξ2

|ξ |Fk

We will expand these symbols in a formal power series (1 + (ξ2/ξ1)
2)−1/2 about

(ξ1 − k, ξ2) to third order using the power series expansions

(1 + (ξ2/ξ1)
2)−1/2 =1 − ξ2

2

2ξ2
1

+ O((ξ1 − k)4 + ξ4
2 ),

1

|ξ1| =
1

|k|
∞∑

i=0

(−1)i (ξ1 − k)i

ki
,

which are absolutely convergent in the support of B̂k . We calculate that

ξ1

|ξ | = sgn(ξ1)(1 + (ξ2/ξ1)
2)−1/2

= sgn(k) − 1

2

ξ2
2

ξ1|ξ1| + O

(
ξ4

2

ξ4
1

)

= sgn(k) − 1

2

1

k|k|ξ
2
2 +

1

|k|3 ξ2
2 (ξ1 − k) + O

(
|ξ1 − k|4 + |ξ2|4

)

Note also that since Bk has a scalar-valued symbol, it commutes with the Riesz trans-
forms. If we use the notation f = g + O(εn) to abbreviate ‖ f − g‖Hs ≤ Cεn , we have
for A ∈ Hs+4 the following asymptotics in Hs :

FiR1kAejkα = − ξ1

|ξ |FBk Aejkα + O(ε3)

=
(
− sgn(k)+

1

2

1

k|k|ξ
2
2 −

1

|k|3 ξ2
2 (ξ1−k)

)
B̂k

1

ε2 Â

(
ξ1−k

ε
,
ξ2

ε

)
+O(ε3)
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= FBk

((
− sgn(k)− ε2

2k|k|∂
2
β1
−j

ε3

|k|3 ∂2
β1

∂α1

)
Aejkα

)
+O(ε3)

= F
((

− sgn(k) − ε2

2k|k|∂
2
β1

− j
ε3

|k|3 ∂2
β1

∂α1

)
Aejkα

)
+ O(ε3)

where in the last step we use Lemma 3.1 so that the number of derivatives lost exactly
balances the powers of ε needed to achieve an error of O(ε3). Similarly, using the
following expansion about (k, 0):

ξ2

|ξ | = ξ2

|k| −
ξ2(ξ1 − k)

k|k| +
1

k2|k|ξ2(ξ1 − k)2 − 1

2

ξ3
2

k2|k| + O(|ξ1 − k|4 + |ξ2|4)

we calculate in the same way that

FjR2kAejkα

= ξ2

|ξ |F[BkkAejkα](ξ1−k,ξ2) + O(ε3)

=
(

ξ2

|k| −
ξ2(ξ1 − k)

k|k| +
1

k2|k|ξ2(ξ1 − k)2 − 1

2

ξ3
2

k2|k|

)
F[BkkAejkα](ξ1−k,ξ2) + O(ε3)

which is equal to

F
((

− ε

|k| i∂β1 +
ε2

k|k|k∂α1∂β1 +
ε3

|k|3 i∂α1α1β1 − ε3

2|k|3 i∂β1β1β1

)
Aejkα

)

up to an error O(ε3). Summing these gives the full expansion for H(0). ��

3.2. Expansion of the full Hilbert transform. We now consider the expansion of the full
Hilbert transform

H f = 1

2π2

∫∫
ζ(α, β) − ζ(α′, β ′)

|ζ(α, β) − ζ(α′, β ′)|3 (ζα(α′, β ′) × ζβ(α′, β ′)) f (α′, β ′) dα′ dβ ′

We seek to expand the various parts of the above kernel in a perturbation from the
flat Hilbert transform. For the functions f to follow, we abbreviate f = f (α, β) and
f ′ = f (α′, β ′). In order to anticipate formulas for our operators, we proceed formally
to find the third order expansion of the difference quotient in the kernel in functions
homogeneous in λ − λ′:

ζ − ζ ′

|ζ − ζ ′|3 = (P − P ′) + (λ − λ′)
(|(P − P ′) + (λ − λ′)|2)3/2

= (P − P ′) + (λ − λ′)
|P − P ′|3

(
1 + 2

(P − P ′) · (λ − λ′)
|P − P ′|2 +

|λ − λ′|2
|P − P ′|2

)−3/2

= (P − P ′) + (λ − λ′)
|P − P ′|3

(
1 − 3

(P − P ′) · (λ − λ′)
|P − P ′|2

− 3

2

|λ − λ′|2
|P − P ′|2 +

15

2

(
(P − P ′) · (λ − λ′)

|P − P ′|2
)2
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+
15

2

((P − P ′) · (λ − λ′))|λ − λ′|2
|P − P ′|4 − 35

2

((P − P ′) · ((λ − λ′))3

|P − P ′|6

+ O

(∣∣∣∣
(P − P ′) · (λ − λ′)

|P − P ′|2
∣∣∣∣
4

+

∣∣∣∣
|λ − λ′|2
|P − P ′|2

∣∣∣∣
2))

(3.6)

The normal vector term can be expanded exactly as follows:

ζα × ζβ = k + (λα × j) + (i× λβ) + (λα × λβ) (3.7)

This expansion of the full Hilbert transform above motivates us to find the Fourier
transform of the kernels of the form − 1

2π2 |P|n for n = −3,−5,−7. To do so, we use
(2.4) to obtain

F
(

1

2π2 |P|−1
)

= 1

|(ξ, η)|
and then appeal to the identity �|P|−n = n2|P|−(n+2) to find that

F
(

1

2π2 |P|−3
)

= −|ξ |, F
(

1

2π2 |P|−5
)

= 1

9
|ξ |3, F

(
1

2π2 |P|−7
)

= − 1

225
|ξ |5

(3.8)
In order to express |D| in terms of ordinary differentiation and the flat Hilbert Trans-

form, we recall the identity
|D| = H0kD (3.9)

which is easily verified on the Fourier side.
This allows us to further develop the expansions of H1,H2 and H3 unambiguously

into powers of ε : H1 = εH(1)
1 +ε2H(2)

1 +ε3H(3)
1 +O(ε4), H2 = ε2H(2)

2 +ε3H(3)
2 +O(ε4),

and H3 = ε3H(3)
3 + O(ε4). Then we define

H = H0 + H1 + H2 + H3 + · · ·
:= (H(0)

0 ) + ε(H(1)
0 + H(1)

1 ) + ε2(H(2)
0 + H(2)

1 + H(2)
2 )

+ ε3(H(3)
0 + H(3)

1 + H(3)
2 + H(3)

3 ) + O(ε4)

:= H(0) + εH(1) + ε2H(2) + ε3H(3) + O(ε4)

We will see in the formal calculation that we need to develop the approximate solution
to the fourth order, and so we set

λ̃ =
4∑

j=1

ε jλ( j) =
4∑

j=1

ε j
(
x( j)i + y( j)j + z( j)k

)

We defer the calculation of the multiscale operators H( j) to Appendix A and record the
results that we will explicitly use in the calculation in the following

Proposition 3.2. Assume that f = f (α0, α1, β1), and denote p1 = x + zj, and p( j)
1 =

x( j) + z( j)j. Then we have the formulas

H(1)
1 f = [(x(1) + jz(1)),H(0)]∂α0 f

H(2)
1 f = [(x(2) + jz(2)),H(0)]∂α0 f + [(x(1) + jz(1)),H(1)

0 ]∂α0 f
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+ [(x(1) + jz(1)),H(0)]∂α1 f + [y(1) − iz(1),H(0)]∂β1 f

H(2)
2 f = −[p(1)

1 ,H(0)](∂α0 p(1)
1 )(∂α0 f ) +

1

2
[p(1)

1 , [p(1)
1 ,H(0)]]∂α0α0 f

Using the formulas of Propositions 3.1 and 3.2, we now define

H̃ = H(0) + εH(1) + ε2H(2) + ε3H(3) (3.10)

In Sect. 3.4 we will give estimates that justifies the use of power expansions to develop
this approximation of the Hilbert Transform.

3.3. The multiscale calculation. We take as our system the equations

(D2
t − A(ζβ∂α − ζα∂β))(I − H)zk = [Dt ,H]Dtζ

†

−
∫∫

K (ζ ′ − ζ )(Dtζ − D′
tζ

′) × (∂ ′
β D′

tζ
′∂α′ − ∂ ′

α D′
tζ

′∂β ′)z′k dα′dβ ′

−
∫∫

Dt K (ζ ′ − ζ )(Dtζ − D′
tζ

′) × (ζ ′
β ′∂α′ − ζ ′

α′∂β ′)z′k dα′dβ ′ (3.11)

λ = (I + H)zk− Kzk (3.12)

(I − H)b = −[Dt ,H](I + H)zk + (I − H)DtKzk (3.13)

(I − K)A =
{
k + [Dt ,H]Dtζ + [A(N × ∇),H](I + H)zk

+(I − H)
(−Aζβ × (∂αKzk) + Aζα × (∂βKzk) + A(λα × λβ)

)}
3

(3.14)

which will allow us to successively solve for the asymptotic expansions of the quantities
z, λ, b and A, which we denote by

λ ∼
∞∑
j=1

ε jλ( j) b ∼
∞∑
j=1

ε j b( j) A ∼
∞∑
j=0

ε jA( j)

We also express the multiscale expansion of the operator P = D2
t −A(ζβ∂α − ζα∂β) by

P ∼
∞∑
j=0

ε jP( j)

First, observe that it follows immediately from (3.14) that A(0) = 1. We also have
P(0) = ∂2

t0 − j∂α0 , since there is no dependence on β0. Hence, the O(ε) terms of (3.11)
give the equation

P(0)(I − H(0))z(1)k = 0

This equation admits the solution z(1) = 	(Aejφ) for φ = kα0 + ωt0 satisfying the
dispersion relation ω2 = k. Since the kernel of H0 has no scalar part, K(0) = 0, and so
we find from the O(ε) terms of (3.12) that

λ(1) = (I + H(0))z(1)k = iAejφ (3.15)
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as we expected. Notice that the right hand sides of (3.13) and (3.14) have no first order
terms, and so b(1) = 0 and A(1) = 0. Using the identity P(1) = 2∂t0∂t1 − j∂α1 + i∂β1 ,
the O(ε2) terms of (3.11) give the following equation:

P(0)(I − H(0))z(2)k = P(0)H(1)z(1)k + [∂t0 ,H(1)
1 ]∂t0(ζ

(1))† − P(1)(I − H(0))z(1)k

= Aβ1 ejφ +
(

2jω(At1 − ω′ Aα1)e
jφi− Aβ1 ejφ

)

= 2jω(At1 − ω′ Aα1)e
jφi

To suppress secular terms, we choose A = A(α1 + ω′t1, β1, t2) = A(X, Y, T ). Then we
solve (3.11) to the order O(ε2) by taking z(2) = 	(Bejφ) + M (2), where B and M (2) are
1, j-valued and scalar-valued functions of X, Y, T , respectively, to be determined later.
From the formula

H(1)z(1)k = 1

2
k(I − H0)|A|2k +

j

k
	(AY ejφ)

and the fact that (H(1) − K(1))z(1)k is just H(1)z(1)k without its k-component, we
calculate that

λ(2) = (I + H(0))z(2)k + H(1)z(1)k− K(1)z(1)k

= iBejφ + (I + H0)M (2)k− 1

2
kH0(|A|2k) +

j

k
	(AY ejφ)

Next, we find that the O(ε2) terms of (3.13) yield the condition

(I − H(0))b(2) = −[∂t0 ,H(1)
1 ](I + H(0))z(1)k

+ (I − H(0))∂t0K(1)z(1)k

= (I − H0)(−kω|A|2i)
The fact that b(2) is i, j-valued now forces the choice b(2) = −kω|A|2i.

Finally we calculate A(2) from (3.14):

A(2) =
{
[∂t0 ,H(1)

1 ]∂t0λ
(1) + [j∂α0 ,H(1)](I + H(0))z(1)k

+ [j∂α1 − i∂β1 ,H(0)](I + H(0))z(1)k + (I − H(0))(−j× ∂α0K(1)z(1)k)
}

3

=
{

k2(I − H0)|A|2k− k2(I − H0)|A|2k− 2AY ejφ

+ 2AY ejφ + 0
}

3

= 0.

We now collect the O(ε3) terms, beginning with those contributed from (3.11). We
record the following useful formulas derived through Proposition 3.2 for calculating
terms below involving H(2):

(H(2)
1 + H(2)

2 )Fe−jφ = −k2 A2 Fejφ + (I − H0)

(
AF X +

1

2
AFYk− k B Fj

)
(3.16)

(H(2)
1 + H(2)

2 )Fejφ = −1

2
(I − H0)AFYk +

1

2
j(A FY − AY F)e−2jφi (3.17)
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Note that

P(2) = 2∂t0∂t2 + ∂2
t1 + 2b(2)

1 ∂α0∂t0 − λ
(1)
β1

∂α0 + λ(1)
α0

∂β1

The O(ε3) terms contributed from (3.11) now give

P(0)(I − H(0))z(3)k = P(0)H(1)z(2)k

+ P(0)H(2)z(1)k

− P(1)(I − H(0))z(2)k

+ P(1)H(1)z(1)k

− P(2)(I − H(0))z(1)k

+ [∂t0 ,H(1)
1 ]∂t0(λ

(2))†

+ [∂t0 ,H(1)
1 ]∂t1(λ

(1))†

+ [∂t0 ,H(1)
1 ]b(2)

+ [∂t0 ,H(2)
1 + H(2)

2 ]∂t0(λ
(1))†

+ [∂t1,H(1)
1 ]∂t0(λ

(1))†

+ [b(2)
1 ∂α0 ,H0]∂t0(λ

(1))†

− 1

2π2

∫∫ (
λ

(1)
t0 − (λ

(1)
t0 )′

|P − P ′|3 − 3
P − P ′

|P − P ′|3
(P − P ′) · (λ(1)

t0 − (λ
(1)
t0 )′)

|P − P ′|2
)

(λ
(1)
t0 − (λ

(1)
t0 )′) × (j(z(1)

α0
)′)k d P ′

= I1 + I2 + I3 + · · · + I12

First, it is quick to see that I7 = I8 = I10 = I11 = 0. For the rest of the terms we
calculate:

I1 = BY e−jφ

I2 = − 1

2k
AY Y e−jφi− 1

k
AXY e−jφj

I3 = −BY e−jφ − (I − H0)|D|M (2)k

I4 = − 1

2k
AY Y ejφi +

1

2k
AY Y e−jφi +

1

k
jAXY e−jφ +

k

2
(I − H0)|D|(|A|2k)

I5 = ω
(

2jAT − ω′′ AX X + 2k2ωA|A|2
)

ejφi

I6 = 1

2
k(I − H0)AAY j

I9 = −1

2
k(I − H0)AAY j

Simplifying I12 by writing (λ
(1)
t0 − (λ

(1)
t0 )′) × (j(z

(1)
α0 )′)k = (λ

(1)
t0 − (λ

(1)
t0 )′)(z(1)

α0 )′i and
calculating as in Appendix A gives
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I12 = [λ(1)
t0 , [λ(1)

t0 , |D(0)|]]z(1)
α0
i + [x(1)

t0 , [x(1)
t0 , 2i|D(0)|]]z(1)

α0
− [z(1)

t0 , [x(1)
t0 , 2i|D(0)|]]z(1)

α0
j

= [λ(1)
t0 , [λ(1)

t0 , |D(0)|]]z(1)
α0
i + [x(1)

t0 + jz
(1)
t0 , [x(1)

t0 , 2|D(0)|]]z(1)
α0
i

= −1

2
k2[(x(1) + jx(1)), [(x(1) + jx(1)), |D(0)|]](x(1) − jx(1))i

= −k3 A|A|2ejφi

and so

P(0)(I − H(0)z(3)k = (I − H0)

(
−|D|M (2)k +

k

2
|D|(|A|2k)

)

+ω
(

2jAT − ω′′ AX X + 2ω′′ AY Y + k2ωA|A|2
)

ejφi

In order to suppress secular terms in z(3), we choose M (2) = k
2 |A|2 and insist that A

satisfy the cubic hyperbolic nonlinear Schrödinger equation:

2jAT − ω′′ AX X + 2ω′′ AY Y + k2ωA|A|2 = 0 (3.18)

With these choices, we update the formulas for z(2) and λ(2):

z(2) = 	(Bejφ) +
1

2
k|A|2 (3.19)

λ(2) = iBejφ +
1

2
k(I + H0)(|A|2k) − 1

2
kH0(|A|2k) +

j

k
	(AY ejφ)

= iBejφ +
1

2
k|A|2k +

j

k
	(AY ejφ) (3.20)

where at this stage in the calculation B remains to be determined. With these choices
made, we can solve the equation for z(3) by choosing z(3) = M (3) for some scalar-valued
function M (3) of slow variables, again to be determined later. With this choice, we can
calculate λ(3) as follows:

λ(3) = (I + H(0))z(3)k + (H(1) − K(1))z(2)k + (H(2) − K(2))z(1)k

= (I + H0)M (3)k

+
j

k
	(BY ejφ) +

1

2
(I − H0)kH0(AB)k−

{
1

2
(I − H0)kH0(AB)k

}

3
k

+
1

2k2 �(AY Y ejφ)i− 1

k2 	(jAXY ejφ)j

+

(
−k2

2
A|A|2ejφi + (I − H0)

(
1

2
AAX i +

1

4
(AAY + AAY )j +

1

2
k B Ak

))

−
{
−k2

2
A|A|2ejφi + (I − H0)

(
1

2
AAX i +

1

4
(AAY + AAY )j +

1

2
k B Ak

)}

3
k

(3.21)

Note that the scalar part of the right hand side of (3.21) is 1
2R2∂X |A|2− 1

2R1∂Y |A|2 =
0. We continue by collecting the O(ε3) terms from (3.13), which yields the condition



396 N. Totz

(I − H0)b
(3) = H(1)b(2) − [b(2)∂α0 ,H(0)](I + H(0))z(1)k

− [∂t1,H(1)
1 ](I + H(0))z(1)k− [∂t0 ,H(1)

1 ](I + H(0))z(2)k

− [∂t0 ,H(1)
1 ]H(1)z(1)k− [∂t0 ,H(2)

1 + H(2)
2 ](I + H(0))z(1)k

+ (I − H(0))∂t0K(2)z(1)k + (I − H(0))∂t0K(1)z(2)k

+ (I − H(0))∂t1K(1)z(1)k− H(1)∂t0K(1)z(1)k

Using the formula

(I − H0)(S0 + S3k) = (I − H0)(i(R1S3 − R2S0) + j(R1S0 + R2S3))

for scalar-valued S0S3, we can solve for b(3) as a i, j-valued function. This gives us
consistency for the formula for b up to residual terms of physical size O(ε4). Similarly,
since the formula for A requires extracting the k-component of some expression, we
may always find a formula for A(3) that makes (3.14) consistent to terms of size O(ε4).

We can now consider the O(ε4) contributions from (3.11). An explicit calculation
of z(4) would be taxing on the author and reader alike. Luckily, the precise form of z(4)

is irrelevant: we need only show that we can find some choice of correctors that yields
a residual of physical size O(ε5). Thus we instead give a general argument that the
structure of G(4) is such that we can always solve for z(4).

In order to further analyze the terms of size O(ε4), we appeal to the idea of total
order and total phase. The idea is that the power of ε and the multiple of jφ in the phase
of any term in the formal calculation can be read off from the function of slow variables
in each term. We would like to formally describe maps o and p from the set of terms
that can appear in the formal calculation into the integers with the property that all terms
appearing in the formal calculation are of the form

εo(F)Fep(F)jφ (3.22)

To describe this formally, consider the monoid4 of functions A with pointwise mul-
tiplication, and generated by the functions T1T2 . . . Tn1 where each Tj is either the
operator of multiplication by A, B, A, B or one of the operators ∂X , ∂Y , ∂T ,R1,R2.
Every term appearing in the formal calculation can be expressed as a member of this
monoid. The total order o : A → (N, +) and the total phase p : A → (Z, +) are
respectively monoid homomorphisms5 satisfying o(T1T2 . . . Tn1) = ∏n

j=1 o(Tj ) and
p(T1T2 . . . Tn1) =∏n

j=1 p(Tj ), where

o(T ) =

⎧
⎪⎨
⎪⎩

0, T = R1,R2

1, T = A, A, ∂X , ∂Y

2, T = B, B, ∂T

p(T ) =

⎧
⎪⎨
⎪⎩

−1, T = A, B
0, T = R1,R2, ∂X , ∂Y , ∂T

1, T = A, B

It is tedious but straightforward to verify that (3.22) holds by construction for all terms
up to O(ε4); we leave the proof to the reader.

We are now ready to analyze the O(ε4) terms.

Lemma 3.2. Let P(0)(I − H(0))z(4)k = G(4) be as above. Then G(4) is of the form

4 A monoid is an algebraic structure with an associative multiplication and an identity element.
5 That is o and p send pointwise products of functions to the sums of the images of their factors.
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(
2jBT − ω′′BX X + 2ω′′BY Y

)
ejφi + (I − H0)

(
(F3 − |D|M (3))k + F0

)

+
∑

0<|n|≤3

Snenjφi +
∑

0<|m|≤3

S′
memjφ +

1

2
(I + H0)F (3.23)

where the Sm, S′
n, Fj 1, j-valued are sums of members of A with total order at most four

and further satisfying:

(a) The Fj are scalar-valued for j = 0, 3.
(b) F3 is independent of M (3) and is a sum of terms in A having the form either (i) a

pure derivative in ∂X , ∂Y or (ii) a product of two or more factors of A, B, A, B and
their derivatives in X, Y and Riesz transforms of such products.

(c) S1 does not depend on derivatives of B.

Hence we may always choose M = |D|−1 F3 and B so that

2jBT − ω′′BX X + 2ω′′BY Y = −S1 (3.24)

and z(4) so that only terms of the form

(I − H0)F0 +
1

2
(I + H0)F +

∑
−3≤n<0

Snenjφi +
∑

0<|m|≤3

S′
memjφ (3.25)

remain.

Proof. Consider the equation

P(0)(I − H(0))z(4)k =
j3 �=4∑

j1+ j2+ j3=4

−P( j1)(I − H)( j2)z( j3)k := G(4)

where in particular G(4) is calculated through b(3) and A(3). Notice that we can always
replace AT everywhere with only A and its derivatives in X and Y using (3.18). Observe
first that the only place that ∂T and ∂2

X , ∂2
Y act on B is through the term −P(2)(I −

H(0))z(2)k. Simplifying this term contributes
(
2jBT − ω′′BX X + 2ω′′BY Y

)
ejφi which

we have isolated. Similarly, since M (3) appears only in z(3) and is a function of slow
variables alone, the only place it appears is through the term −P(1)(I − H(0))z(3)k,
which when calculated simplifies to −(I − H0)|D|M (3)k. Denote the rest of G(4) by

G(4)
0 = G(4) − (2jBT − ω′′BX X + 2ω′′BY Y

)
ejφi + (I − H0)|D|Mk

Next, since the operators appearing in G(4)
0 are concatenations of either multipli-

cations by wave packets of the form Fenjφ for n = −1, 0, 1, multiplication by i, or
operating by the flat Hilbert transform H0 = −jR1 + iR2, it follows that G(4)

0 is of the
form

F +
∑

0<|n|≤3

Snenjφi +
∑

0<|m|≤3

S′
memjφ

where the F, Sn, S′
m are functions of the slow variables alone. Observe that for scalar-

valued functions F, G we have the identity

(I − H0)(Fi + Gj) = (I − H0)
(
(−R1 F − R2G)k + (R1 F − R2G)

)
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This allows us to write (I − H0)F = (I − H0)(F0 + F3k) as above, which gives us
(a). In particular, the terms

∑3
n=2 Snenjφi can be accounted for by an appropriate choice

of z(4).
Now all terms of the form Femjφ appearing in G(4)

0 satisfy o(F) = 4; those terms
comprising S1 also satisfy p(F) = 1. Showing (b) reduces to ruling out the existence of
a term in F3 having only one occurrence of A, B, A, or B. But the only such members of
A possible are A, B, A, or B operated on by finitely many Riesz transforms R1,R2, and
all such terms have o(F) ≤ 2. Similarly, to show (c), note that (up to Riesz transforms)
if a term F has a derivative of B as one of its factors, its other factors could have total
order at most 1. However, up to Riesz transforms this forces the other factor to be A or
A. But then this term cannot appear in S1 since then p(F) would be even. ��
Remark 3.1. No possible choice of M (3), B, and z(4) can account for the terms (3.25).
In this sense, (3.11) is only formally consistent up to a residual of physical size O(ε4).
However, in the process of deriving the energy inequality, we will show using an almost-
orthogonality argument that these terms do not spoil the energy estimates.

In summary, there exists some choice of M (3), B and z(4) as in Lemma 3.2 so that if
we take as our approximate solution to the system (3.11)–(3.14) as the following:

λ̃ = εiAejφ + ε2
(
iBejφ +

1

2
k|A|2k− j

k
	(AY ejφ)

)
+ ε3λ(3) + ε4z(4)k (3.26)

where λ(3) is given by (3.21) and z(4) is given as in Lemma 3.2,

b̃ = ε2(−kω|A|2i) + ε3b(3) + O(ε4) (3.27)

where b(3) = (
∑

|i |≤3 Si eijφ) + (
∑

|i |≤3 Si eijφ)† for some functions Si of slow variables
alone,

Ã = 1 + ε3A(3) + O(ε4) (3.28)

where A(3) = �∑|i |≤3 Fi eijφ for functions Fi of slow variables alone. Further define

D̃t = ∂t + (b̃ · D), P̃ = D̃2
t − ζ̃β∂α + ζ̃α∂β (3.29)

then the Eqs. (3.11)–(3.14) are satisfied up to the following residuals:

P̃(I − H̃)z̃k = [D̃t , H̃]D̃t ζ̃
†

+
∫∫

K (ζ̃ − ζ̃ ′)(D̃t ζ̃ − D̃′
t ζ̃

′) × (∂ ′
β D̃′

t ζ̃
′∂α′ − ∂ ′

α D̃′
t ζ̃

′∂β ′)z̃′k dα′, dβ ′

+
∫∫

D̃t K (ζ̃ − ζ̃ ′)(D̃t ζ̃ − D̃′
t ζ̃

′) × (ζ̃ ′
β ′∂α′ − ζ̃ ′

α′∂β ′)z̃′k dα′, dβ ′

+ ε4

(
(I − H0)F0 +

2∑
m=1

S′
memjφ

)
+ O(ε5) (3.30)

where F0 is a scalar-valued function of slow variables alone, and the S′
m are 1, j-valued

functions of slow variables alone,
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λ̃ = (I + H̃)z̃k− K̃z̃k + O(ε4) (3.31)

(I − H̃)b̃ = −[D̃t , H̃](I + H̃)z̃k + (I − H̃)D̃t K̃z̃k + O(ε4) (3.32)

(I − K̃)Ã =
{

1 + [D̃t , H̃]D̃t ζ̃ + [Ã(Ñ × ∇), H̃](I + H̃)z̃k

+ (I − H̃)
(
−Ãζ̃β × (∂αK̃z̃k) + Ãζ̃α × (∂βK̃z̃k) + Ã(λ̃α × λ̃β)

)}
3

+ O(ε4) (3.33)

The largest number of derivatives falling on A and B in the above residuals occurs in
the residual of (3.30) and is 9 and 8, respectively. Denote the right hand side of (3.30)
by G̃. If we operate on (3.30) by D̃t then we also have

P̃ D̃t (I − H̃)z̃k = [P̃, D̃t ](I − H̃)z̃k + D̃t G̃ + O(ε5) (3.34)

The largest number of derivatives falling on A or B in the residual of (3.34) is hence
11 and 10, respectively. As in (2.8), we rewrite the commutator [D̃t , P̃] by changing
variables. Introduce the approximate change of variables κ̃ as the solution to the following
ODE:

{
κ̃t = b̃ ◦ κ̃

κ̃(0) = αi + βj

Then by construction we have D̃tU
−1
κ̃

= U−1
κ̃

∂t and hence

[D̃t , P̃] = ÃU−1
κ̃

(
ãt

ã

)
(Ñ × ∇) + (∂β D̃t ζ̃ ∂α − ∂α D̃t ζ̃ ∂β) (3.35)

Finally, we record the formula

U−1
κ̃

(
ãt

ã

)
k = D̃tÃ

Ã k− U−1
κ̃

(
∂t J (κ̃)k

J (κ̃)

)

= D̃tÃ
Ã k− U−1

κ̃

(−κ̃β × κ̃tα + κ̃α × κ̃tβ

J (κ̃)

)

= D̃tÃ
Ã k +

(
j× b̃α − i× b̃β

)
(3.36)

from which it is clear by (3.27) and (3.28) that U−1
κ̃

(
ãt/ã

)
consists of terms of size at

most O(ε3).

3.4. Analysis of the approximate solution and Hilbert transform. Most of the terms in
the higher order corrections in (3.26) can be estimated trivially in Sobolev space, given
that A and B are in a suitably regular Sobolev space. However, there are terms in the
correctors of the form

ε3|D|−1S

where S depends on A, B, and their derivatives. Such terms are not in general in L2

unless extra conditions are put on A and B. The most obvious condition is to restrict
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A ∈ Ḣ−1∩Hs , but this implies an undesirable mean-zero condition on A. Instead, since
Lemma 3.2 shows that S is either a pure derivative or a product of two or more instances
of A, B and their derivatives, we opt to insist that some of the lower-order derivatives of
A and B decay at infinity at a mild algebraic rate. This, along with Proposition 2.7 and
the following well-posedness result, gives us the required control in L2.

Proposition 3.3. Let s ≥ 6 and 0 ≤ δ ≤ 1 be given. Suppose that A0 ∈ Hs ∩ H3(δ)

and B0 ∈ Hs−3 ∩ L2(δ). Then there exists a T > 0 depending on ‖A0‖Hs∩H3(δ) and
‖B0‖Hs−3∩L2(δ) so that both the initial value problem consisting of the HNLS equation
(1.5) with initial data A(0) = A0 and the initial value problem consisting of (3.24) with
B(0) = B0 have unique solutions A ∈ C([0,T ], Hs ∩ H3(δ)) and B ∈ Hs−3 ∩ L2(δ)

respectively. In particular, if the solution A cannot be continued past a time T , then
‖A(T )‖W �s/2�,∞ �∈ L∞([0,T )).

Proof. To avoid cluttering the proof, we observe that by rescaling we may without loss
of generality ignore positive constants depending on k. Denote the linear propagator of
HNLS by eLT . Then by a routine energy estimate eLT is unitary in every Hs for any
real s. Using Duhamel’s formula on HNLS with s ≥ 2 gives

A(T ) = eLT A(0) +
∫ T

0
eL(T−t) A(t)|A(t)|2 dt

from which by a routine contraction mapping argument in Hs we have local well posed-
ness of A in Hs . We gain decay by rewriting HNLS as

(〈(X, Y )〉δ A)T − j(〈(X, Y )〉δ A)X X + j(〈(X, Y )〉δ A)Y Y

= j[∂2
X , 〈(X, Y )〉δ]A − j[∂2

Y , 〈(X, Y )〉δ]A

Since 0 ≤ δ ≤ 1, the right hand side of this equation is a linear combination of A and its
first derivatives with bounded coefficients. Therefore the usual energy estimate applied
to the above equation along with its derivatives up to the third order yields

d

dt
‖〈(X, Y )〉δ A(T )‖2

H3 ≤ C‖〈(X, Y )〉δ A(T )‖2
H3‖A‖C([0,T ],W 4,∞)

and so Grönwall’s inequality implies

‖〈(X, Y )〉δ A(T )‖H3 ≤ C‖〈(X, Y )〉δ A(0)‖H3 e‖A‖C([0,T ],W 4,∞)
T

Recall that by Lemma 3.23, B satisfies an equation of the form (again dropping
positive constants)

BT = jBX X − jBY Y + F1(A)B + F2(A)B + F3(A) (3.37)

where F1 and F2 are polynomial functions of A and its first and second derivatives,
and F3 is a polynomial function of A and its first through third derivatives. Because no
derivatives of B appear in the nonlinearity, we may use the same Duhamel argument to
show local well posedness of B in Hs−3 given A0 is as in (a). Finally, the decay in B
follows in the same way as the decay in A; three derivatives of A are needed to decay in
order to control ‖B‖L2(δ) since the coefficients and source terms in (3.37) contain up to
three derivatives of A. ��
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Remark 3.2. Since the largest number of derivatives needed in A and B in order to
guarantee that the residual of (3.30) be in Hs is s + 11 and s + 10, respectively, we must
require that A ∈ C([0,T ], Hs+13 ∩ H3(δ)) and B ∈ C([0,T ], Hs+10 ∩ L2(δ)). We
will always take B0 = 0 in the sequel.

Lemma 3.3. Suppose A0 ∈ Hs+13 ∩ H3(0+). Then for ε0 > 0 chosen sufficiently small,

‖(Hζ̃ − H̃) f ‖Hs ≤ Cε4‖ f ‖Hs ‖(Hζ̃ − H̃) f ‖Hs ≤ Cε3‖ f ‖W s,∞

Proof. This amounts to analyzing in more detail the expansion of the factors (3.6), (3.7)
of the kernel of Hζ̃ . Abbreviate the expansion (3.7) by Ñ = ζ̃α × ζ̃β = N0 + N1 + N2,
where N j is homogeneous of degree j in λ − λ′. Similarly, abbreviate the expansion
(3.6) by

ζ̃ − ζ̃ ′

|ζ̃ − ζ̃ ′|3 = K0 + K1 + K2 + K3 + R4

where K j is homogeneous of degree j in λ − λ′, and R4 is the remainder term arising
from the power series expansion in (3.6). By construction, we have that the kernel H̃
consists of those terms of the operator

∫∫ ∑
i+ j≤3

KiN ′
j f ′ dα′ dβ ′, (3.38)

with formal powers of ε of size O(ε3) and lower orders when the substitution λ̃ =∑4
j=1 ε jλ( j) is made and expanded. Therefore our task is to estimate the following

singular integrals:

I1 =
∫∫ ∑

i≤3, j≤2
i+ j≥4

KiN ′
j f ′ dα′ dβ ′ and I2 =

∫∫
R4N ′ f ′ dα′ dβ ′

along with I3, which are the contributions of formal size O(ε4) and higher order terms
of (3.38).

First we estimate I1. If we write λ − λ′ = −(P − P ′) (P−P ′)(λ−λ′)
|P−P ′|2 , we can express

the general term KiN ′
j as a product of P−P ′

|P−P ′|3 along with the factors

− (P − P ′)(λ̃ − λ̃′)
|P − P ′|2

(P − P ′) · (λ̃ − λ̃′)
|P − P ′|2

|λ̃ − λ̃′|2
|P − P ′|2 (3.39)

k (λ̃α × j) + (i× λ̃β) (λ̃α × λ̃β)

in appropriate combinations so that the degree of homogeneity in λ̃ is i + j . Each of the
difference quotient expressions is of degree zero, and so the resulting kernels are of the
type in Theorem 2.1(a). We can therefore estimate

‖I1‖Hs ≤ C
∑

i+ j≥4

‖∇λ̃‖i+ j
W s,∞‖ f ‖Hs or C

∑
i+ j≥4

‖∇λ̃‖i+ j−1
W s,∞ ‖∇λ̃‖Hs‖ f ‖W s,∞

≤ Cε4‖ f ‖Hs or Cε3‖ f ‖W s,∞

where the constant C depends on ‖A0‖Hs+13∩H3(0+).
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To estimate I3, make the substitution λ̃ = ∑4
j=1 ε jλ( j) in each of the expressions

in (3.39) and expand. This yields a set of factors of the same form as in (3.39), but with
ε jλ( j) replacing λ̃. Estimating the operators that result from the finite number of terms
that contribute O(ε4) or higher as we did when estimating I1 yields the same bounds.
We omit the details.

To estimate I2, denote the difference quotients

2
(P − P ′) · (λ̃ − λ̃′)

|P − P ′|2 +
|λ̃ − λ̃′|2
|P − P ′|2 =: Q

If we choose ε0 > 0 so small so that ‖∇λ̃‖L∞ < 1
4 , we have by the Lipschitz bound

|λ̃− λ̃′| ≤ ‖∇λ̃‖L∞|P−P ′| that |Q| < 2
3 . In this case the Taylor expansion of (1+ Q)− 3

2

is valid. Observe that, for some universal constant C3, we have the following integral
expression for the remainder R4:

R4 = ζ̃ − ζ̃ ′

|ζ̃ − ζ̃ ′|3
∫ Q

0
C3(1 + τ)−9/2(Q − t)3 dτ

Following the proof of Proposition 2.8, we take up to j derivatives of the integral factor
with respect to (∂α + ∂α′) or (∂β + ∂β ′) for 0 ≤ j ≤ s. When we do so, we get by the
Chain Rule and by Differentiation under the Integral Sign a sum of terms of the form

(
C ′

j

n∏
i=1

(∂α + ∂α′) ji (∂β + ∂β ′)li Q

)∫ Q

0
Cm(1 + τ)−

9
2 (Q − τ)m dτ (3.40)

where m = 0, 1, 2, 3, C0 = 0, m + n = 3, and (3 − m) +
∑n

i=1(| ji | + |li |) ≤ s. Terms
of this form with m = 0 can be estimated directly using Theorem 2.1. Note that we can
always estimate these integral terms in (3.40) coarsely by

∣∣∣∣
∫ Q

0
Cm(1 + τ)−

9
2 (Q − τ)m dτ

∣∣∣∣ ≤ C |Q|m+1 (3.41)

To write the terms with m ≥ 1 in the correct form to apply Theorem 2.1, we repeatedly
integrate by parts to arrive at the following formula for N ≥ 1:6

∫ Q

0
Cm(1 + τ)−

9
2 (Q − τ)m dτ = Cm

N∑
n=1

(−1)n−1
( − 9

2
n − 1

)(
m + n − 1

n − 1

)−1 Qm+n

m + n

+ (−1)N Cm

∫ Q

0

(− 9
2

N

)(
m + N

N

)−1

(1 + τ)−
9
2 −N (Q − τ)m+N dτ

Using the bound |(rn
)| ≤ Cr n−1 along with (3.41), we see that upon choosing ε0 > 0

sufficiently small, the above series converges pointwise in Q, giving the exact series
representation

∫ Q

0
Cm(1 + τ)−

9
2 (Q − τ)m dτ = Cm

N∑
n=0

(−1)n
(− 9

2
n

)(
m + n

n

)−1 Qm+n+1

m + n + 1

6 Here we use the generalized binomial coefficient
(r
n
) = 1

n! r(r − 1)(r − 2) · · · (r − n + 1). By convention

we stipulate that
(r
0
) = 1.
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This yields an infinite series of singular integrals. Using Theorem 2.1, we have upon
choosing ε0 > 0 to be sufficiently small that the remainder is bounded by

‖I2‖Hs ≤ C
∞∑

n=1

2n+m(1 + n8)‖∇λ̃‖4+n
W s,∞‖ f ‖Hs

≤ Cε4‖ f ‖Hs

Similarly, one has ‖I2‖Hs ≤ C‖∇λ̃‖3
W s,∞‖∇λ̃‖Hs‖ f ‖W s,∞ ≤ Cε3‖ f ‖W s,∞ . ��

Lemma 3.4. The following estimates hold:

(a) ‖(Hζ̃ − H̃) f ‖Hs ≤ Cε4‖ f ‖Hs and Cε3‖ f ‖W s,∞

(b) ‖[Dt ,Hζ̃ − H̃] f ‖Hs ≤ Cε4‖ f ‖Hs and Cε3‖ f ‖W s,∞

(c) ‖[Dt , [Dt ,Hζ̃ − H̃]] f ‖Hs ≤ Cε4‖ f ‖Hs and Cε3‖ f ‖W s,∞

Proof. We successively distribute the operator Dt through the kernel of Hζ̃ − H̃ as de-
rived in Lemma 3.3. In the resulting singular integrals we will have to estimate quantities
of the form Dt f̃ and D2

t f̃ , where f̃ = ∂z( j), ∂λ( j) for j = 1, 2, 3, 4 and ∂ = ∂α, ∂β .
By rewriting Dt f̃ = f̃t + (b · D) f̃ and

D2
t f̃ = ∂2

t f̃ + 2(b · D)∂t f̃ + ((Dt b) · D) f̃ + (b · (b · D)D) f̃

we can estimate these terms using the coarse bound b and Dt b through Proposition 2.6 by
‖b‖Hs , ‖Dt b‖Hs ≤ Cε2. As a consequence, the constant C depends on‖A0‖Hs+13∩H3(0+).
The details are left to the reader. ��

4. The Remainder Quantities and Their Estimates

In this section we construct equations for quantities related to the remainder

r = λ − λ̃ (4.1)

and its derivative from the Eq. (2.7) and (3.30)–(3.34). In order to derive equations with
nonlinearities of cubic and higher orders, we first work with the related quantities

ρ = 1

2
(I − H)

(
(I − H)z − (I − Hζ̃ )z̃

)
k (4.2)

as a proxy for the quantity r and

σ = 1

2
(I − H)

(
Dt (I − H)z − D̃t (I − Hζ̃ )z̃

)
k (4.3)

as a proxy for the quantity Dtr . Indeed, in parallel with the derivation of (2.7) we can
write

Pρ = −1

2
[P,H]

(
(I − H)zk− (I − Hζ̃ )z̃k

)

+
1

2
(I − H)P

(
(I − H)zk− (I − Hζ̃ )z̃k

)
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= −1

2
[P,H]

(
(I − H)zk− (I − Hζ̃ )z̃k

)

− 1

2
(I − H)(P − P̃)(I − Hζ̃ )z̃k

+
1

2
(I − H)

(
G − P̃(I − Hζ̃ )z̃k

)

:= Gρ (4.4)

and

Pσ = −1

2
[P,H]

(
Dt (I − H)zk− D̃t (I − Hζ̃ )z̃k

)

− 1

2
(I − H)

(
(P − P̃)D̃t (I − Hζ̃ )z̃k

)

+
1

2
(I − H)

(
[P, Dt ](I − H)zk− [P̃, D̃t ](I − Hζ̃ )z̃k

)

+
1

2
(I − H)

(
DtP(I − H)zk− D̃t P̃(I − Hζ̃ )z̃k

)

:= Gσ (4.5)

We spend the first part of this section controlling the above nonlinearities in terms of the
quantity

E(t) := ‖ |D| 1
2 r‖2

Hs+ 1
2

+ ‖Dtr‖
Hs+ 1

2
+ ‖D2

t r‖2
Hs (4.6)

While the energy constructed directly from (4.4), (4.5) controls E , it does not provide
a priori bounds for long enough times to provide a justification for HNLS. This is due to
third-order terms appearing in the energy inequality arising from the quadratic null-form
nonlinearities. Rather than state the full energy that we use immediately, we will derive
it as a small perturbation of the energy derived directly from (4.4), (4.5) in the course of
eliminating the null-form nonlinearities using a combination of the method of normal
forms and third-order corrections to the energy itself.

So that we are certain of the conditions under which the above quantities and operators
are well-defined, we explicitly state and, in this section explicitly assume the following

A Priori Assumption 4.1. Let s ≥ 6. For some A0 ∈ Hs+13 ∩ H3(0+), let A, B, ζ̃ be
as in Proposition 3.3. Then we suppose that there is an interval [0, T0] on which there
exists a solution ζ to the equations (2.7) satisfying

sup
0≤t≤T0

E(t)
1
2 ≤ Cε2

As a consequence this implies that

sup
0≤t≤T0

‖ |D| 1
2 (ζ − P)‖W s−1,∞ + ‖Dtζ‖W s−1,∞ + ‖D2

t ζ‖W s−2,∞ ≤ Cε

and in particular that the chord-arc condition

1

C
≤ |(α, β) − (α′, β ′)|

|ζ(α, β) − ζ(α′, β ′)| ≤ C for all (α, β, t) �= (α′, β ′, t)

holds for all 0 ≤ t ≤ T0.
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4.1. Relations and estimates between remainders of quantities. This section is devoted
to deriving relations between remainder quantities. In particular we will show that auxil-
iary remainder quantities such as b− b̃,A− Ã, etc., are suitably bounded in terms of E .

Lemma 4.1. Let f be an i, j-valued function, and let g be a k-valued function. Then
for sufficiently small ε0 > 0 we have

‖ f ‖Hs ≤ C‖(I − H) f ‖Hs

and

‖g‖Hs ≤ C‖(I − H)g‖Hs

Proof. The proof of the estimates are similar, and so we will only show the first. Since
f is i, j-valued, f † = f and so we have

f = 1

2
(H − H†) f +

1

2
(I − H) f +

(
1

2
(I − H) f

)†

from which ‖ f ‖L2 ≤ ‖(I −H) f ‖L2 + ‖(H−H†) f ‖L2 . Now since H† = Hζ † , we can
use Proposition 2.11 to find that

‖ f ‖Hs ≤ C(ε + ‖|D|(z − z̃)‖Hs‖ f ‖Hs + ‖(I − H) f ‖Hs

≤ Cε‖ f ‖Hs + ‖(I − H) f ‖Hs

and the bound now follows for ε0 > 0 chosen sufficiently small. ��
We record the operator differences:

Dt − D̃t = (b − b̃) · D (4.7)

D2
t − D̃2

t = Dt (Dt − D̃t ) + (Dt − D̃t )D̃t

= Dt (b − b̃) · D + (b − b̃) · (DtD + DD̃t ) (4.8)

A(N × ∇) − Ã(Ñ × ∇) = (A − Ã)(ζβ∂α − ζα∂β) + Ã(rβ∂α − rα∂β) (4.9)

P − P̃ = Dt (b − b̃) · D + (b − b̃) · (DtD + DD̃t )

− (A − Ã)(ζβ∂α − ζα∂β) − Ã(rβ∂α − rα∂β) (4.10)

as well as the commutator

[Dt ,P] = −(DtA)(N × ∇)

− A(ζβ(bα · D) − ζα(bβ · D))

− A(Dtζβ∂α − Dtζα∂β) (4.11)

Proposition 4.1. Let s ≥ 6. Then for sufficiently small ε0 > 0 we have

(a) ‖b − b̃‖
Hs+ 1

2
≤ C(E + εE

1
2 + ε3)

(b) ‖Dt (b − b̃)‖Hs ≤ C(E + εE
1
2 + ε3)

(c) ‖A − Ã‖Hs ≤ C(E + εE
1
2 + ε3)
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Proof. In this proof, let O(εn) represent a term with Sobolev norm of size O(εn). To
prove (a), recall the formula for b given in Proposition 2.6 as well as the approximate
Eq. (3.32):

(I − H̃)b̃ = −[D̃t , H̃](I + H̃)z̃k + (I − H̃)D̃t K̃z̃k + O(ε3)

We subtract these and express the difference in such a way as to show the explicit
dependence on approximate and remainder quantities and operators:

(I − H)(b − b̃) = −[D̃t , H̃ − H](I + H̃)z̃k

− [D̃t ,H](H̃ − H)z̃k

− [D̃t ,H](I + H)(z̃ − z)k

− [(b̃ − b) · D,H](I + H)zk

+ (H̃ − H)D̃t K̃z̃k

+ (I − H)((b̃ − b) · D)K̃z̃k

+ (I − H)Dt (K̃ − K)z̃k

+ (I − H)DtK(z̃ − z)k

+ O(ε3)

= I1 + I2 + · · · + I8 + O(ε3) (4.12)

First, using Proposition 2.11 along with Proposition 2.2 with the multiplication map-
ping T (g) = gh, we have that

‖I6‖
Hs+ 1

2
≤ ‖b − b̃‖

Hs+ 1
2
‖K̃z̃‖W s+2,∞ ≤ Cε‖b − b̃‖

Hs+ 1
2

Using Proposition 2.11, we see that I4 is bounded by C(E1/2 + ε)‖b − b̃‖
Hs+ 1

2
. Next,

by Lemmas 2.11 and 3.4 we have

‖I1‖
Hs+ 1

2
, ‖I2‖

Hs+ 1
2
, ‖I5‖

Hs+ 1
2
≤ C(E

1
2 + ε3)ε ≤ C(εE

1
2 + ε3)

Similarly, since K = �(H), the same estimates imply that ‖I7‖
Hs+ 1

2
≤ C(εE

1
2 + ε3).

The remaining terms satisfy

‖I3‖
Hs+ 1

2
, ‖I8‖

Hs+ 1
2
≤ C(E

1
2 + ε)E

1
2

Applying Lemma 4.1 gives

‖b − b̃‖
Hs+ 1

2
≤ C(E

1
2 + ε)‖b − b̃‖

Hs+ 1
2

+ C(E + εE
1
2 + ε3),

from which (a) follows provided we choose ε0 > 0 to be sufficiently small by the a
priori bound on E .

To show (b), we write

(I − H)Dt (b − b̃) = −[Dt ,H](b − b̃) + Dt (I − H)(b − b̃)
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By Proposition 2.11 and (a), the first of these terms is bounded by C(E + εE
1
2 + ε3) in

Hs . Applying Dt to (4.12) and commuting Dt past the various operators in (4.12) yields
a sum of terms that can be estimated using (a), Proposition 2.11 and Lemma 3.4. This
yields bounds of the form

‖Dt (I − H)(b − b̃)‖Hs ≤ C(E
1
2 + ε)‖Dt (b − b̃)‖Hs + C(E + εE

1
2 + ε3) + O(ε3)

Then by Lemma 4.1 we have ‖Dt (b − b̃)‖Hs ≤ C(E
1
2 + ε)‖Dt (b − b̃)‖Hs + C(E +

εE
1
2 + ε3), from which (b) follows after possibly choosing smaller ε0 > 0.
For the proof of (c), we begin with the formula (3.14):

(I − K)A =
{

1 + [Dt ,H]Dtζ + [A(N × ∇),H](I + H)zk

+ (I − H)
(−Aζβ × (∂αKzk) + Aζα × (∂βKzk) + A(λα × λβ)

)}
3

we subtract its approximate version (3.33) and arrive at the following sum of terms,
where we have isolated the occurrence of A − Ã:

(I − K)(A − Ã)

=
(
(I − K)(A − 1) − (I − K̃)(Ã − 1)

)
+ (K − K̃)(Ã − 1)

= (K − K̃)(Ã − 1)

+

{
[Dt ,H]Dtζ − [D̃t , H̃]D̃t ζ̃

+ [(A − Ã)(N × ∇),H](I + H)zk

+ [Ã(N × ∇),H](I + H)zk− [Ã(Ñ × ∇̃), H̃](I +H̃)z̃k

+ (I −H)
(
−(A−Ã)ζβ × (∂αKzk) + (A − Ã)ζα × (∂βKzk)+(A−Ã)(λα × λβ)

)

+

(
(I − H)

(
−Ãζβ × (∂αKzk) + Ãζα × (∂βKzk) + Ã(λα × λβ)

)

− (I − H̃)
(
−Ãζ̃β × (∂αK̃z̃k) + Ãζ̃α × (∂βK̃z̃k) + Ã(λ̃α × λ̃β)

))}

3

+ O(ε3)

= J1 + J2 + · · · + J6 + O(ε3) (4.13)

As in (a) we have

‖J3‖Hs , ‖J5‖Hs ≤ C(E
1
2 + ε)‖A − Ã‖Hs

and by expanding the other terms into a sum of terms involving only approximate and
remainder quantities using the method of (4.12), we estimate the other terms as

‖J1‖Hs , ‖J2‖Hs , ‖J4‖Hs , ‖J6‖Hs ≤ C(E + εE
1
2 + ε3)

Thus we have

‖A − Ã‖Hs ≤ ‖K(A − Ã)‖Hs + C‖A − Ã‖Hs (E
1
2 + ε) + C(E + εE

1
2 + ε3)

≤ C‖A − Ã‖Hs (E
1
2 + ε) + C(E + εE

1
2 + ε3),

from which (c) follows by choosing ε0 > 0 sufficiently small. ��
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The energy we construct in the next section is in terms of quantities such as Dt∂
jρ, Dt∂

jσ

in L2. We must show that we can bound these quantities in L2 by E
1
2 plus an acceptable

error depending on ε. We will be aided by the commutator identities

[∂ j , Dt ] =
j1 �=0∑

j1+ j2= j

(∂ j1b) · D∂ j2 (4.14)

[∂ j , D2
t ] = [∂ j , Dt ]Dt + Dt [∂ j , Dt ] (4.15)

Proposition 4.2. We have the following estimates:

(a) ‖ |D| 1
2 (ρ − r†)‖

Hs+ 1
2
≤ Cε(E

1
2 + ε2)

(b) ‖�(ρ)‖Hs+1 + ‖�(σ )‖
Hs+ 1

2
≤ Cε(E

1
2 + ε2)

(c) ‖σ − Dtρ‖
Hs+ 1

2
+ ‖σ + Dtr†‖

Hs+ 1
2
≤ Cε(E

1
2 + ε2)

(d) ‖Dtσ − D2
t ρ‖Hs + ‖D2

t ρ − D2
t r†‖Hs ≤ Cε(E

1
2 + ε2)

(e) For | j | ≤ s,

‖Dt∂
jρ−∂ j Dtρ‖

H
1
2

+‖D2
t ∂ jρ−∂ j D2

t ρ‖L2 +‖Dt∂
jσ−∂ j Dtσ‖L2 ≤Cε(E

1
2 +ε2)

Proof. We first establish some identities between r, ρ, σ , and their time derivatives.
From (4.2) we have

ρ = (I − H)zk− 1

2
(I − H)(I − Hζ̃ )z̃k

= (I − H)zk− (I − Hζ̃ )z̃k +
1

2
(I + H)(I − Hζ̃ )z̃k

= (I − H)zk− (I − Hζ̃ )z̃k +
1

2
(H − Hζ̃ )(I − Hζ̃ )z̃k (4.16)

Note first that by Proposition 2.5 this gives

�(ρ) = �
(

1

2
(H − Hζ̃ )(I − Hζ̃ )z̃k

)
(4.17)

and so for | j | ≤ s + 1, ‖∂ j�(ρ)‖L2 ≤ Cε(E
1
2 + ε2). Similarly, applying Dt to (4.17)

and using Propositions 2.3, 2.8, and 4.1 similarly along with Proposition 2.2 gives

‖�(σ )‖
Hs+ 1

2
≤ CεE

1
2 for all | j | ≤ s, which is (b). We can also use (4.16) along with

(3.12)–(3.31) to make rigorous the heuristic that ρ ∼ −r†:

ρ + r† = (I − H)zk− (I − Hζ̃ )z̃k +
1

2
(H − Hζ̃ )(I − Hζ̃ )z̃k

+
(
(I + H)zk− (I + H̃)z̃k

)†

+ Kzk− K̃z̃k

+
(
(I + H̃)z̃k− K̃z̃k− λ̃

)†

= (H† − H)zk− (H†
ζ̃
− Hζ̃ )z̃k +

1

2
(H − Hζ̃ )(I − Hζ̃ )z̃k
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− (H̃ − Hζ̃ )z̃k + Kzk− K̃z̃k

+
(
(I + H̃)z̃k− K̃z̃k− λ̃

)†

=
(
(H − Hζ̃ )

† − (H − Hζ̃ )
)

z̃k

+
1

2
(H − Hζ̃ )(I − Hζ̃ )z̃k− (H̃ − Hζ̃ )z̃k

+ K(z − z̃)k + (K − Kζ̃ )z̃k + (Kζ̃ − K̃)z̃k

+
(
(I + H̃)z̃k− K̃z̃k− λ̃

)†
(4.18)

We first use (4.18) to show that, for 1 ≤ | j | ≤ s + 1

‖∂ j (ρ + r†)‖L2 ≤ C(εE
1
2 + ε3) (4.19)

To do so, we estimate ∂ j (H − Hζ̃ )z̃k by writing it via Proposition 2.3 and distributing
derivatives in this integral expression as in Proposition 2.8 to get

‖∂ j (H − Hζ̃ )z̃k‖L2 ≤ C‖∇r‖Hs‖z̃‖W s,∞ ≤ CεE
1
2

By Proposition 3.3 we have ‖∂ j (Hζ̃ − H̃)z̃k‖H1 ≤ Cε4. Since K − Kζ̃ = �(H −
Hζ̃ ) and K̃ − Kζ̃ = �(H̃ − Hζ̃ ), the estimates of terms involving K − Kζ̃ and

K̃ − Kζ̃ reduce to those already given. Notice that by Lemma 2.8 and the a priori

bound of ζ we have ‖∂ jK(z − z̃)k‖L2 ≤ C(E
1
2 + ε)E

1
2 ≤ CεE

1
2 . Finally, the residual(

(I + H̃)z̃k− K̃z̃k− λ̃
)†

is by (3.26) bounded in L2 by Cε3. Estimate (a) follows in

the same way by estimating in Ḣ
1
2 using Proposition 2.11. We omit the details.

Next, we make rigorous the heuristic σ ∼ Dtρ by writing σ as

σ = 1

2
[Dt ,H](I − H)zk + Dt

1

2
(I − H)2zk

− 1

2
[D̃t ,H](I − Hζ̃ )z̃k + D̃t

1

2
(I − H)(I − Hζ̃ )z̃k

= 1

2
[Dt ,H](I − H)zk− 1

2
[D̃t ,H](I − Hζ̃ )z̃k

− (Dt − D̃t )
1

2
(I − H)(I − Hζ̃ )z̃k

+ Dtρ (4.20)

Again by using Propositions 2.8, 2.11, and 4.1, we have the estimate

‖σ − Dtρ‖
Hs+ 1

2
≤ C(E + εE

1
2 + ε3)(E

1
2 + ε) + Cε2(E

1
2 + ε) + C(E + εE

1
2 + ε3)

≤ Cε(E
1
2 + ε2)

which is (b). Similarly, by applying Dt to the right hand side of (4.18) and using Propo-
sition 3.4 and (a) on the result implies the bound

‖σ + Dtr
†‖

Hs+ 1
2
≤ ‖σ − Dtρ‖

Hs+ 1
2

+ ‖Dt (ρ + r†)‖
Hs+ 1

2

≤ Cε(E
1
2 + ε2)
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which gives (c). In the same way, to show (d) we apply another Dt to the right hand side
of (4.18) as well as a Dt to (4.20) and use the same estimates to show that

‖Dtσ − D2
t r†‖Hs , ‖D2

t ρ − D2
t r†‖Hs ≤ Cε(E

1
2 + ε2)

Finally we prove (e). We first show the bounds on Dt∂
jρ, D2

t ∂ jρ, and Dt∂
jσ in L2

for 0 ≤ | j | ≤ s. By (4.14) and Proposition 4.1 we have for f = ρ, σ that

‖∂ j Dt f − Dt∂
j f ‖L2 ≤

∑
|i |≤ j

Ci‖(∂ i b) · D∂ j−i f ‖L2

≤ Cε‖∇ f ‖Hs−1

Then by part (a) this implies that ‖∂ j Dt f − Dt∂
j f ‖L2 ≤ Cε(E

1
2 +ε2) when f = ρ, σ .

In the same way, if we consider only f = r, ρ and use Proposition 2.2 on the product
mapping T ( f, g) = f g, we have in the same way the estimate

‖∂ j Dt f − Dt∂
j f ‖

H
1
2
≤

j1 �=0∑
j1+ j2= j

‖(∂ j1 b) · D∂ j2 f ‖
H

1
2

≤ Cε‖∇ f ‖
Hs− 1

2

which follows from Proposition 2.11 and Proposition 4.1. This in turn gives the bound

‖∂ j Dt f − Dt∂
j f ‖

H
1
2
≤ Cε(E

1
2 + ε2). Similarly, if we also use (4.14), we can write

∂ j D2
t f − D2

t ∂ j f = [∂ j , Dt ]Dt f + Dt

j1 �=0∑
j1+ j2= j

(∂ j1b) · D∂ j2 f

= 2[∂ j , Dt ]Dt f +
j1 �=0∑

j1+ j2= j

([Dt , ∂
j1 ]b) · D∂ j2 f

+
j1 �=0∑

j1+ j2= j

(∂ j1 Dt b) · D∂ j2 f +
j1 �=0∑

j1+ j2= j

(∂ j1 Dt b) · [Dt ,D∂ j2 ] f

From this expression and part (a) we obtain the following estimate for f = ρ, σ

‖∂ j D2
t f − D2

t ∂ j f ‖L2 ≤ Cε(‖∇ f ‖Hs−1 + ‖Dt f ‖Hs ) ≤ Cε(E
1
2 + ε2)

Summing these estimates gives (e). ��
Next, we show that we are able to control the change of variables κ in terms of the

quantity ζ and its derivatives alone.

Proposition 4.3. Let κ = κ1i + κ2j be defined as in (2.6), and let T0 be the a priori
existence time of ζ . Then

sup
0≤t≤min(T0,T ε−2)

‖∇κ − I‖W s−2,∞ ≤ Cε,

In particular, κ : R
2 → R

2 is a global diffeomorphism on [0, min(T0,T ε−2)] provided
ε0 > 0 is chosen to be sufficiently small.
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Proof. The proof rests on the fact that we can write κt (α, β, t) = b(κ(α, β, t), t) and
that we have the formula of Proposition 2.6(a) for b in terms of ζ and its derivatives.
Recall that κ(α, β, 0) = αi + βj. By integrating with respect to t , we have

κ(α, β, t)−(αi+βj)=∫ t
0 b̃(κ(α, β, s), s) ds+

∫ t
0 (b−b̃)(κ(α, β, s), s) ds (4.21)

Recall the definition of b̃ as given by (3.27), which shows that b̃ = Sε2 + Fε3, where
S is a function of the slow variables alone. Thus ∇b̃ is of physical size O(ε3), and so
Proposition 4.1 gives us the estimate

‖∇κ − I‖W s−2,∞ ≤
∫ t

0
‖(∇b̃ ◦ κ) · ∇κ‖W s−2,∞ + ‖(∇(b − b̃) ◦ κ) · ∇κ‖W s−2,∞ ds

≤ T ε−2C(1 + ‖∇κ − I‖L∞)ε3

≤ Cε(1 + ‖∇κ − I‖W s−2,∞).

from which the proposition follows upon choosing ε0 > 0 sufficiently small. ��
Remark 4.1. Note that if we were to expect E

1
2 = O(ε), then the above proof allows

us to conclude only that ∇(κ − P) = O(1), which is insufficient to justify inverting κ

with the Inverse Function Theorem. Alternatively, if E
1
2 = O(ε2) as we intend, then

the b − b̃ component of (4.21) contributes an error of size O(ε). This is the fact that
prevents us from justifying asymptotics for the horizontal component of � in Lagrangian

coordinates. Observe that if we could show that E
1
2 = o(ε2), we could in fact justify

asymptotics for the horizontal component of � directly.

4.2. Preliminary energy identities. We will build our energy using the following basic
energy identity, following [22]:

Proposition 4.4. Suppose θ ∈ S (H ) satisfies θ = −Hθ . Introduce the energy

E (θ) =
∫∫

1

A |Dtθ |2 − θ · (N × ∇)θ dα dβ

Then

dE (θ)

dt
=
∫∫

2

A Dtθ ·
(

D2
t − A(ζβ∂α − ζα∂β)

)
θ dα dβ

+
∫∫

− 1

AUκ−1

(at

a

)
|Dtθ |2 − θ · ((∂β Dtζ )θα − (∂α Dtζ )θβ

)
dα dβ

Moreover,
∫∫

−θ · (N ×∇)θ dα dβ ≥ 0

Proof. The energy E is that of Lemma 3.2 of [22]. The proof is the same except that,
using integration by parts and Proposition 2.1, we rewrite

−
∫∫

θ · (N × ∇)Dtθ dα dβ = −
∫∫

(N ×∇)θ · Dtθ dα dβ

��
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Our starting point is to consider the energy

E =
∑
| j |≤s

E (ρ[ j]) + E (σ [ j]) (4.22)

where we use the modified quantities

θ [ j] = 1

2
(I − H)∂ jθ (4.23)

to ensure that the energy is nonnegative. However, using this energy contributes terms
in the energy identity that are of third order, instead of the fourth and higher orders
necessary for a suitable energy estimate. Therefore we cannot use this energy directly.
Since the third order terms contributed by this energy motivate our choice of normal
form transformation, we spend the rest of the section identifying these terms. We will
need the commutator identity

[∂ j ,A(N × ∇)] = A
j2< j∑

j1+ j2= j

(
(∂ j1λβ)∂α∂ j2 − (∂ j1λα)∂β∂ j2

)

+

⎛
⎝

j2< j∑
j1+ j2= j

(∂ j1(A − 1))∂ j2

⎞
⎠ (N × ∇) (4.24)

Denote Pθ = Gθ ; applying Proposition 4.4, we have

dE
dt

=
∑
| j |≤s

∫∫
2

A Dtρ
[ j] ·

(
D2

t − A(ζβ∂α − ζα∂β)
)

ρ[ j] dα dβ

+
∫∫

− 1

AUκ−1

(at

a

)
|Dtρ

[ j]|2 − ρ[ j] ·
(
(∂β Dtζ )ρ[ j]

α − (∂α Dtζ )ρ
[ j]
β

)
dα dβ

+
∫∫

2

A Dtσ
[ j] ·

(
D2

t − A(ζβ∂α − ζα∂β)
)

σ [ j] dα dβ

+
∫∫

− 1

AUκ−1

(at

a

)
|Dtσ

[ j]|2 − σ [ j] ·
(
(∂β Dtζ )σ [ j]

α − (∂α Dtζ )σ
[ j]
β

)
dα dβ

The first terms which are of third order are∫∫
−σ [ j] ·

(
(∂β Dtζ )σ [ j]

α − (∂α Dtζ )σ
[ j]
β

)
dα dβ (4.25)

∫∫
−ρ[ j] ·

(
(∂β Dtζ )ρ[ j]

α − (∂α Dtζ )ρ
[ j]
β

)
dα dβ (4.26)

The other terms of third order must be extracted from the nonlinearities in the first and
third lines above. For θ = ρ, σ we first have

(
D2

t − A(ζβ∂α − ζα∂β)
)

θ [ j] = −1

2
[D2

t − A(ζβ∂α − ζα∂β),H]∂ jθ

+
1

2
(I − H)[D2

t − A(ζβ∂α − ζα∂β), ∂ j ]θ

+
1

2
(I − H)∂ j Gθ
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The first line on the right hand side appears to contribute a term of third order, but we will
show later that we can gain an extra order of smallness using an almost-orthogonality
argument. Using (4.24), we see that the second line contributes third order terms of the
form

∫∫
2

Dtθ
[ j]

A · −1

2
(I − H)

⎛
⎝A

j2< j∑
j1+ j2= j

(
(∂ j1λβ)(∂ j2θα) − (∂ j1λα)(∂ j2θβ)

)
⎞
⎠ dα dβ

(4.27)
We must treat the analysis of Gθ separately for θ = ρ, σ . Expanding the term Gρ using
(4.4) further yields

1

2
(I − H)∂ j Gρ = −1

4
(I − H)∂ j [P,H]

(
(I − H)zk− (I − Hζ̃ )z̃k

)

−1

4
(I − H)∂ j (I − H)(P − P̃)(I − Hζ̃ )z̃k

+
1

4
(I − H)∂ j (I − H)

(
G − P̃(I − Hζ̃ )z̃k

)

Using (4.10), we see that the second of these terms contributes another term of third
order:

∫∫
2

Dtρ
[ j]

A · 1

4
(I − H)∂ j (I − H)

(
Ã(rβ∂α − rα∂β)(I − Hζ̃ )z̃k

)
dα dβ (4.28)

To find the other third order terms, we expand using (4.5):

1

2
(I − H)∂ j Gσ = −1

4
(I − H)[P,H]

(
Dt (I − H)zk− D̃t (I − Hζ̃ )z̃k

)

−1

4
(I − H)∂ j (I − H)

(
(P − P̃)D̃t (I − Hζ̃ )z̃k

)

+
1

4
(I − H)∂ j (I − H)

(
[P, Dt ](I − H)zk− [P̃, D̃t ](I − Hζ̃ )z̃k

)

+
1

4
(I − H)∂ j (I − H)

(
DtP(I − H)zk− D̃t P̃(I − Hζ̃ )z̃k

)

From the second line of the last expression above we have the third order term

∫∫
2

Dtσ
[ j]

A · 1

4
(I −H)∂ j (I −H)

(
A(rβ∂α − rα∂β)D̃t (I − Hζ̃ )z̃k

)
dα dβ (4.29)

and the remaining terms of third order are contained in the term

∫∫
2

Dtσ
[ j]

A · 1

4
(I −H)∂ j (I −H)

(
[P, Dt ](I − H)zk− [P̃, D̃t ](I − Hζ̃ )z̃k

)
dα dβ

(4.30)
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4.3. The normal form calculation. To account for the terms of third order isolated in the
last section, we use the method of normal forms. This method, due to Poincaré in the
context of ODEs, was first pioneered for use in PDEs by Shatah [18] and has since been
used widely in the study of long-time existence questions for evolution equations. In
particular, this method has been used to great effect in justification of model equations
for water waves by Schneider and Wayne in [16,17]. Rather than using the quantities
θ = ρ[ j], σ [ j] in (4.23), we use equivalent quantities formed by perturbing θ by a
quantity Qθ intended to be quadratically small:

� = θ + Qθ (4.31)

Each Qθ will be a sum of bilinear expressions involving θ corresponding to the quadratic
nonlinearities which must be eliminated. In order show systematically how to account
for these quadratic contributions, we treat the simplest case first in detail and show its
equivalence to ρ and σ . Then we will estimate in detail the many higher order terms
neglected in deriving the formula for this normal form. Finally, we perform the same
process for the normal form corrections for the other quadratic terms, detailing only the
steps that are significantly different from what has been seen at that point.

We begin with a heuristic construction of normal forms in Sect. 4.3.1; there we will
see that the cost of constructing a normal form is roughly speaking one space derivative
of smoothness. Therefore, in order for the corrected quantities and the original quantities
to have the same regularity, we must manipulate the quadratic terms to be accounted for
to gain a space derivative.

The third order terms (4.27) clearly involve quantities which have a full derivative
less than the total number of spatial derivatives controlled by the total energy, and so
their normal forms are easily constructed in Sect. 4.3.2. In Sect. 4.3.3 we rewrite the third
order terms (4.28), (4.29) and (4.30) using commutators so that the same is true of their
resulting normal forms constructed in Sect. 4.3.3. Finally, in Sect. 4.3.4 we combine
the terms (4.25) and (4.26) along with contributions arising from carefully chosen third
order energy corrections, yielding terms that can be eliminated using normal forms.

4.3.1. Heuristic calculation of the simplest normal form; equivalence of original and
transformed unknowns. To derive the equations that the correction Qθ must satisfy, we
repeat the energy estimates of the previous section except using � and omitting terms
which can be suitably estimated. We have using Proposition 4.4 that the energy identity
will read in part:

dE (�)

dt
= ∫∫ 2 Dt �

A · (I − H)P(θ + Qθ ) dα dβ + · · · (4.32)

For the moment, we will examine what is involved in accounting for a typical quadratic
term:

(I − H)(λ̃βθα − λ̃αθβ)

Since we wish to use the Fourier transform to construct Qθ , it will be more convenient for
it to satisfy an equation involving only the ordinary time derivative ∂t instead of the more
complicated convective derivative Dt . To accomplish this without losing derivatives, we
change variables by κ in the above integral. Introduce the quantity Qθ = Qθ ◦ κ; then
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changing variables by κ and using the identity j∂α − i∂β = kD = H0|D|, we derive to
leading order the integral

∫∫
2

Dt�

A · (I − H)

(
PQθ −

(
λ̃β∂α(θ ◦ κ) − λ̃α∂β(θ ◦ κ)

))
dα dβ

=
∫∫

2
∂t (� ◦ κ)

a
· (I − H0)

((
∂2

t + |D|
)

Qθ

−
(
B−k λ̃β∂α(θ ◦ κ) − B−k λ̃α∂β(θ ◦ κ)

))
dα dβ + h.o.t. (4.33)

where we have applied the mode filter B−k of Lemma 3.1.7 Hence it suffices to construct
Qθ so as to satisfy

(
∂2

t + |D|
)

Qθ = B−k λ̃β∂α(θ ◦ κ) − B−k λ̃α∂β(θ ◦ κ) (4.34)

Observe that if we take the left-hand j-Fourier transform F L
j [·] of the right hand side

we can rewrite it in the form

F L
j

[
B−k λ̃β∂α(θ ◦ κ) − B−k λ̃α∂β(θ ◦ κ)

]

= F L
j

[
∂β(εB−k Ae−jφ)∂α(iθ ◦ κ) − ∂α(εB−k Ae−jφ)∂β(iθ ◦ κ)

]
+ h.o.t.

= 1

(2π)2

∫∫
F L
j [εB−k Ae−jφ](ξ−ξ ′)

×
(
(ξ1−ξ ′

1)ξ
′
2 − (ξ2 − ξ ′

2)ξ
′
1

)
F L
j [iθ ◦ κ](ξ ′) dξ ′+h.o.t.

= 1

(2π)2

∫∫
F L
j [εB−k Ae−jφ](ξ−ξ ′)

(−kξ ′
2

)F L
j [iθ ◦ κ](ξ ′) dξ ′+h.o.t. (4.35)

This suggests the following ansatz for Qθ in Fourier space:

Q̂θ = Q̂(λ̃, θ) = 1

(2π)2

∫∫
F L
j [εB−k Ae−jφ](ξ−ξ ′)Q0(ξ, ξ−ξ ′, ξ ′)F L

j [iθ ◦ κ](ξ ′) dξ ′

+
1

(2π)2

∫∫
F L
j [εB−k Ae−jφ](ξ−ξ ′)Q1(ξ, ξ − ξ ′, ξ ′)F L

j [iDtθ ◦ κ](ξ ′) dξ ′

(4.36)

Note that our unknown loses a half space derivative in constructing a normal form, since
we are adding to θ a correction with the regularity of Dtθ .

If one substitutes (4.36) into (4.34), and makes the substitutions ∂2
t (θ ◦κ) ∼ −|D|(θ ◦

κ) and |ξ − ξ ′ + ki| ∼ 0 which contributes negligible higher order terms, one finds that
the kernels Q0, Q1 satisfy a system of the form:

(|ξ ′ − ki| − |ξ ′| − |ki|)Q0 + 2jω|ξ ′|Q1 = F0 (4.37)

(|ξ ′ − ki| − |ξ ′| − |ki|)Q1 − 2jωQ0 = F1 (4.38)

7 See the next section for a more precise accounting of the higher order terms that have been neglected
here.
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with F0 = kξ ′
2 and F1 = 0. The solution to this system for general F0, F1 is

Q0 = (|ξ ′ − ki| − |ξ ′| − |ki|)F0 − 2jω|ξ ′|F1

(|ξ ′ − ki| − |ξ ′| − |ki|)2 − 4k|ξ ′| (4.39)

Q1 = 2jωF0 + ((|ξ ′ − ki| − |ξ ′| − |ki|)F1

(|ξ ′ − ki| − |ξ ′| − |ki|)2 − 4k|ξ ′| (4.40)

and in the present case is

Q0 = ((|ξ ′ − ki| − |ξ ′| − |ki|)(−kξ ′
2)

(|ξ ′ − ki| − |ξ ′| − |ki|)2 − 4k|ξ ′| (4.41)

Q1 = 2jω(−kξ ′
2)

(|ξ ′ − ki| − |ξ ′| − |ki|)2 − 4k|ξ ′| (4.42)

Taking for granted this formal expression for the change of variables for the moment, we
now turn to studying its regularity. This amounts to studying the asymptotic behavior of
the above kernels as ξ, ξ ′ → ∞, regarding ξ −ξ ′ as remaining bounded. More precisely
we have the

Lemma 4.2. Let 0 ≤ q < 12, let p : R
+ → R

+ be in L1
loc, let S be a function of slow

variables alone, and let Q be defined by

F L
j [Q] =

∫∫
F L
j [εB−k Se−jφ](ξ−ξ ′)Q(ξ, ξ − ξ ′, ξ ′)F L

j [θ ](ξ ′) dξ ′

and suppose that |Q(ξ, ξ − ξ ′, ξ ′)| ≤ |ξ − ξ ′ − ki|q p(|ξ ′|). Then ‖Q‖L2 ≤ Cεq+1

‖S‖Hq+3‖p(|D|)θ‖L2 .

Proof. By Parseval’s Identity and Young’s Inequality we have

‖Q‖L2 ≤ ‖(|ξ − ki|q |F L
j [εB−k Se−jφ]|) � (p(|ξ |)||F L

j [θ ]|)‖L2

≤ C‖|F L
j [εB−k Se−jφ]|‖L1‖p(|ξ |)|F L

j [θ ]|‖L2

The lemma now follows since, as in Lemma 3.1, we can write

‖|ξ − ki|q |F L
j [εB−k Se−jφ]|‖L1 =

∥∥∥∥|ξ − ki|q 1

ε
F L
j [S]

(
ξ − ki

ε

)∥∥∥∥
L1

= εq+1
∥∥∥F L

j [|D|q S]
∥∥∥

L1

≤ Cεq+1‖S‖Hq+3

��
In order to use this lemma, we must further analyze the singularities of Q0 and Q1,
which in this context are called resonances. In order to understand these resonances, we
record the

Lemma 4.3. (a) There exists a universal constant C0 so that

1

C0

|ξ | + |ξ ′| + |ξ − ξ ′|
|ξ | |ξ ′| |ξ − ξ ′| ≤ 1

(|ξ | − |ξ − ξ ′| − |ξ ′|)2 − 4|ξ ′| |ξ − ξ ′|
≤ C0

|ξ | + |ξ ′| + |ξ − ξ ′|
|ξ | |ξ ′| |ξ − ξ ′|
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(b)

| |ξ | − |ξ ′| − |ξ − ξ ′| | ≤ min
(
2|ξ − ξ ′|, |ξ ′|)

(c)

∣∣∣∣
ξ1ξ

′
2 − ξ2ξ

′
1

(|ξ | − |ξ ′| − |ξ − ξ ′|)2 − 4|ξ ′| |ξ − ξ ′|
∣∣∣∣ ≤ C0

|ξ1ξ
′
2 − ξ2ξ

′
1|

|ξ | |ξ ′|
+ C0

|ξ1(ξ2 − ξ ′
2) − ξ2(ξ1 − ξ ′

1)|
|ξ | |ξ − ξ ′|

+ C0
|ξ ′

1(ξ2 − ξ ′
2) − ξ ′

2(ξ1 − ξ ′
1)|

|ξ ′| |ξ − ξ ′|
Proof. Parts (a) and (b) are given in Appendix C of [22]. Part (c) is a simple consequence
of (a) and the triangle inequality. ��
Applying Lemma 4.3 to the kernels of the Qθ = Qθ ◦ κ−1 as defined in (4.36)–(4.41)–
(4.42) implies that Q0 and Q1 are uniformly bounded in ξ and ξ ′. Then Lemma 4.2
immediately gives

Proposition 4.5. For Qθ defined as above we have the estimates

‖ |D| 1
2 Qθ‖

H
1
2

+ ‖DtQθ‖
H

1
2

+ ‖D2
t Qθ‖L2 ≤ Cε(‖ |D| 1

2 θ‖
H

1
2

+ ‖Dtθ‖
H

1
2

+ ‖D2
t θ‖L2)

4.3.2. Construction of the normal form and estimates of the higher order corrections
corresponding to (4.27). Here we construct the normal forms corresponding to (4.27),
and also carefully control the higher order terms neglected in the heuristic calculation
of the previous section.

First we write

A(∂ j1λβ∂ j2∂α − ∂ j1λα∂ j2∂β)σ

= (A − 1)(∂ j1λβ∂ j2σα − ∂ j1λα∂ j2σβ)

+ (∂ j1rβ∂ j2σα − ∂ j1rα∂ j2σβ)

+ (∂ j1(I − B−k)λ̃β∂ j2σα − ∂ j1(I − B−k)λ̃α∂ j2σβ)

+ (∂ j1B−k λ̃β∂ j2σα − ∂ j1B−k λ̃α∂ j2σβ)

Since j2 < j , all of the above terms except for the last are controlled by C(E
1
2 + ε2)2

by Propositions 2.8 and 4.1. Hence it suffices to eliminate the term

(I − H)

⎛
⎝

j2< j∑
j1+ j2= j

(
(∂ j1B−k λ̃β)(∂ j2σα) − (∂ j1B−k λ̃α)(∂ j2σβ)

)
⎞
⎠

To do so, we construct bilinear terms Q( j1, j2)
(4.27) defined by (4.36) with θ = ∂ j2σ and λ̃

replaced by ∂ j1 λ̃. The derivation (4.33) is more precisely given by
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Uκ(I −H)

((
D2

t −(ζβ∂α−ζα∂β)
)Q(∂ j1 λ̃, ∂ j2σ)−

(
∂ j1B−k λ̃β∂ j2σα−∂ j1B−k λ̃α∂ j2σβ

))

= (I − H)

((
∂2

t − �β

J (κ)
∂α +

�α

J (κ)
∂β

)
Q(∂ j1 λ̃, ∂ j2σ)

− 1

J (κ)

(
∂β(∂ j1B−k λ̃ ◦ κ)∂α(∂ j2σ ◦ κ) − ∂α(∂ j1B−k λ̃ ◦ κ)∂β(∂ j2σ ◦ κ)

))

= (I −H)

((
∂2

t +|D|)Q(∂ j1 λ̃, ∂ j2σ) −
(
B−k λ̃β∂α(∂ j2σ ◦ κ)−B−k λ̃α∂β(∂ j2σ ◦ κ)

))

+ (I − H)

(
−
(

�β

J (κ)
− j

)
∂α +

(
�α

J (κ)
− i

)
∂β

)
Q(∂ j1 λ̃, ∂ j2σ)

+ (H − H0)(kD + |D|)Q(∂ j1 λ̃, ∂ j2σ)

−
(

1

J (κ)
− 1

)(
∂β(∂ j1B−k λ̃ ◦ κ)∂α(∂ j2σ ◦ κ) − ∂α(∂ j1B−k λ̃ ◦ κ)∂β(∂ j2σ ◦ κ)

)

−
(
∂β(∂ j1B−k λ̃ ◦ κ − ∂ j1B−k λ̃)∂α(∂ j2σ ◦ κ)

−∂α(∂ j1B−k λ̃ ◦ κ − ∂ j1B−k λ̃)∂β(∂ j2σ ◦ κ)
)

(4.43)

Using Propositions 4.3, 4.5, and the Mean Value Theorem, the higher-order terms given

by the last four lines above are bounded by Cε2 E
1
2 in L2. It is here that we need a full

derivative of smoothness in order to justify constructing a normal form. As j2 < j , the
Eq. (4.5) also yields the estimate

‖(∂2
t + |D|)(∂ j2σ ◦ κ)‖L2 ≤ C(E

1
2 + ε)E

1
2

Finally, recall that in the process of applying ∂2
t and |D| to Qθ we introduced error

by replacing ξ − ξ ′ by ki. This is justified by Lemma 4.2, since |ξ | − |ξ ′ − ki| ≤
|ξ − ξ ′ + ki|. The estimates of the error terms resulting from replacing |ξ − ξ ′| with

k and ∂t
̂Ae−jφ(ξ − ξ ′) by −jω ̂Ae−jφ(ξ − ξ ′) is justified similarly. Notice that since

the quantities σ [ j2] have one fewer derivative than the total energy controls, the terms

resulting from making such replacements on derivatives of ̂Ae−jφ(ξ − ξ ′) always yield
error terms controlled by

Cε2(‖σ [ j2]‖L2 + ‖Dtσ
[ j2]‖L2 + ‖D2

t σ [ j2]‖L2) ≤ Cε2 E
1
2

Hence with this choice of Q( j1, j2)
(4.27) added to σ [ j2] the term (4.27) is eliminated from the

energy identity at the expense of finitely many terms of size at most C(E
1
2 + ε2)2 in L2

4.3.3. The normal Forms for (4.28), (4.29), and (4.30). The quadratic term (4.27) was
successfully eliminated since its regularity was one derivative less than that of the total
energy. While the quadratic terms (4.28), (4.29), and (4.30) seem to be rougher than this,
one can increase their regularity by exploiting the commutator structure of these terms.
Since (4.30) contains terms having the worst regularity, we will derive the normal form
for this term only in detail and only mention the necessary changes needed to treat the
others. We will see that the case | j | < s follows by the same argument used to treat the
top order derivatives, and so for the remainder of the section we assume | j | = s.
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First we prepare (4.30) to motivate our choice of bilinear form as we did in (4.35).

Let ∼ indicate that we have omitted terms of size at most C(E
1
2 + ε2)3. Then we expand

(4.30):

∫∫
Dtσ

[ j]

A · 1

2
(I −H)∂ j (I −H)

(
[P, Dt ](I − H)zk−[P̃, D̃t ](I −Hζ̃ )z̃k

)
dα dβ

∼
∫∫

Dtσ
[ j]

A · (I − H)∂ j
(
[P, Dt ](I − H)zk− [P̃, D̃t ](I − Hζ̃ )z̃k

)
dα dβ

We expand using (4.11) and break the estimates into cases, depending on whether all
of the derivatives ∂ j above fall on the factor (I − Hζ̃ )z̃k:

∼
∫∫

Dtσ
[ j]

A · −(I − H)
(
(DtA)(ζβ∂α − ζα∂β)∂ j (I − H)zk

−D̃tÃ(ζ̃β∂α − ζ̃α∂β)∂ j (I − Hζ̃ )z̃k
)

dα dβ

+
∫∫

Dtσ
[ j]

A · −(I − H)
(
A(Dtζβ∂α − Dtζα∂β)∂ j (I − H)zk

−Ã(D̃t ζ̃β∂α − D̃t ζ̃α∂β)∂ j (I − Hζ̃ )z̃k
)

dα dβ

+
j1 �=0∑

j1+ j2= j

∫∫
Dtσ

[ j]

A · −(I − H)

(
A∂ j1U−1

κ

(at

a

)
(ζβ∂α − ζα∂β)∂ j2(I − H)zk

− Ã∂ j1U−1
κ̃

(
ãt

ã

)
(ζ̃β∂α − ζ̃α∂β)∂ j2(I − Hζ̃ )z̃k

)
dα dβ

+
j1 �=0∑

j1+ j2= j

∫∫
Dtσ

[ j]

A · −(I − H)
(
A(∂ j1∂β Dtζ∂α − ∂ j1∂α Dtζ∂β)∂ j2(I − H)zk

− Ã(∂ j1∂β D̃t ζ̃ ∂α − ∂ j1∂α D̃t ζ̃ ∂β)∂ j2(I − Hζ̃ )z̃k

)
dα dβ

:= I1 + I2 + I3 + I4

We further manipulate these terms in steps.

Estimates of I1.

Taking a derivative with respect to Dt of the formula (4.13) and estimating

as in Proposition 4.1(c) yields the estimates ‖DtA‖H2 ≤ C(E + εE
1
2 + ε2) and

‖Dt (A− Ã)‖H2 ≤ C(E + εE
1
2 + ε3). Now decomposing all of the quantities in I1 into

sums of approximation and remainder quantities shows that it suffices to account for the
integral

∫∫
Dtσ

[ j]

A · −(I − H)(DtA − D̃tÃ)(j∂α − i∂β)∂ j (I − Hζ̃ )z̃k) dα dβ
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But now writing

DtA − D̃tÃ = Dt (A − Ã) +
(
(b − b̃) · D)(Ã − 1)

shows that this last integral is bounded by C(E
1
2 + ε2)3.

Estimates of I3.

Recall the formula from Proposition (2.6), which we rewrite slightly using Proposition
2.4 as

(I − H)U−1
κ (at (�α × �β)) = 2Dt [Dt ,H]Dtζ

−
∫∫

Dt K (ζ ′ − ζ )(Dtζ − D′
tζ

′)(ζβ ′∂α′ − ζα′∂β ′ )D′
tζ

′ dα dβ

−
∫∫

K (ζ ′−ζ )
(
((Dtζ−D′

tζ
′) × ∂β ′ D′

tζ
′)∂α′ D′

tζ
′−((Dtζ−D′

tζ
′)×∂α′ D′

tζ
′)∂β ′ D′

tζ
′)dα dβ

(4.44)

By taking the third component of (4.44) and using the identity A ◦ κ = aJ (κ), we
can write U−1

κ (at ) as an expression whose leading order terms are just the right hand
side of (4.44). By Proposition 4.3, the only terms of the right hand side of (4.44) that are

not controlled by C(E + εE
1
2 ) are purely approximate contributions. The only O(ε2)

contributions from (4.44) are through the commutator 2∂t0 [∂t0 ,H(1)
1 ]∂t0λ

(1) = 0, and
U−1

κ̃

(
ãt/ã

)
consists of terms of size at most O(ε3) by (3.36). Hence it suffices to account

for the purely approximate contributions of the term U−1
κ (at/a) − U−1

κ̃

(
ãt/ã

)
of size

O(ε3); denote these terms by
∑

|i |=3 Fi eijφ . Since these contributions are scalar-valued,

we can choose the Fi to be 1, j-valued. Since ∂ j1 F0 = O(ε4) when j1 �= 0, extracting
the leading order of I3 shows that we need only bound

j1 �=0∑
j1+ j2= j

k
∫∫

Dt S[ j] · 1

2
(I − H0)ε

4

⎛
⎝∂ j1

⎛
⎝ ∑

i=−1,1,2,3

Fi e
ijφ

⎞
⎠ ∂ j2(Aejφi)

⎞
⎠ dα dβ

Note that the right hand factor of the above inner product contains no factor of the
form Sejφ . For the term corresponding to F−1 above, note that if we add the following
higher order contribution to the energy:

j1 �=0∑
j1+ j2= j

−k
∫∫

S[ j] · 1

2
(I − H0)ε

4
(
∂ j1(F−1e−jφ)∂ j2(Aejφ)i

)
dα dβ (4.45)

then changing variables and taking a time derivative as usual shows that we can eliminate
the term corresponding to i = −1 at the expense of a term which is to leading order of
the form

j1 �=0∑
j1+ j2= j

−k
∫∫

S[ j] · 1

2
(I − H0)ε

4∂t

(
∂ j1(F−1e−jφ)∂ j2(Aejφ)i

)
dα dβ
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which is at most of size C E
1
2 ε4 since we have taken a time derivative of a function of

slow variables alone.
The remaining terms are non resonant; if we denote these terms by ε4∑4

i=2 Si eijφ ,
then by adding to S[ j] the term

ε4
4∑

i=2

Si eijφ

ik − (iω)2 (4.46)

the rest of the non resonant terms are eliminated as in (4.32) up to terms of size

C(E
1
2 + ε2)3.

Estimates of I2 and I4.

The term I2 will be treated in the same way as I4, except that it is a term with a small
number of derivatives. Thus we will only provide estimates for I4 in detail. Consider
anew the term

I4 =
j1 �=0∑

j1+ j2= j

∫∫
Dtσ

[ j]

A · −(I − H)
(
A(∂ j1∂β Dtζ∂α − ∂ j1∂α Dtζ∂β)∂ j2(I − H)zk

− Ã(∂ j1∂β D̃t ζ̃ ∂α − ∂ j1∂α D̃t ζ̃ ∂β)∂ j2(I − Hζ̃ )z̃k

)
dα dβ (4.47)

As it stands, the term ∂ j∂ Dtζ for ∂ = ∂α, ∂β cannot be directly controlled by the
energy; hence we rewrite the integrand so as to gain enough regularity to be able to
construct a normal form transformation. The idea is to introduce a commutator with the
Hilbert transform in order to use Proposition 2.8 to remove one derivative. Specifically,
using Dtζ = HDtζ and omitting directly controlled terms, we write this term as

− (I − H)
(
A(∂ j1∂β Dtζ∂α − ∂ j1∂α Dtζ∂β)∂ j2(I − H)zk

)

= −
(
A(∂ j1∂βHDtζ∂α − ∂ j1∂α Dtζ∂β)∂ j2(I − H)zk

)

+ H
(
A(∂ j1∂β Dtζ∂α − ∂ j1∂αHDtζ∂β)∂ j2(I − H)zk

)

∼ −
(
∂ j1H(∂β Dtζ )∂α − ∂ j1H(∂α Dtζ )∂β∂ j2(I − H)zk

)

+ H
(
(∂ j1∂β Dtζ∂α − ∂ j1∂α Dtζ∂β)∂ j2(I − H)zk

)
(4.48)

Similarly, we can rewrite the approximate version of this term from I4 using a com-
mutator in the exact same way with the exception of the fact that it is only true that
(I − H̃)D̃t ζ̃ is O(ε2). This contributes the following extra term:

−Ã
(
(∂ j1(I − H̃)(∂β D̃t ζ̃ )∂α − ∂ j1(I − H̃)(∂α D̃t ζ̃ )∂β)∂ j2(I − H̃)z̃k

)

It is easy to check that this term will be of physical size O(ε5) if ∂ j contains any ∂β

derivatives; the integral contributed by these terms is therefore bounded by C E
1
2 ε4. Thus
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it suffices to assume for this term that ∂ j = ∂
j
α , and in this case we calculate that

−Ã
(
(∂ j1

α (I − H̃)(∂β D̃t ζ̃ )∂α − ∂ j1
α (I − H̃)(∂α D̃t ζ̃ )∂β)∂ j2

α (I − H̃)z̃k
)

= ε4 F2e2jφi + O(ε5) (4.49)

with F2 being some 1, j-valued function of slow variables alone. Since this term is non-
resonant, we eliminate it with a higher order correction to S[ j] as we did with the term I3.

If we now subtract from (4.48) its approximate version and expand into expressions
involving only approximate and remainder quantities as usual, all terms can be controlled

by C(E
1
2 + ε2)2 except for the following:

−
(
∂ j1Hζ̃ (∂β Dtr)∂α − ∂ j1Hζ̃ (∂α Dtr)∂β∂ j2(I − H̃)z̃k

)

+ Hζ̃

(
(∂ j1∂β Dtr∂α − ∂ j1∂α Dtr∂β)∂ j2(I − H̃)z̃k

)

−
(
∂ j1H̃(∂β D̃t ζ̃ )∂α − ∂ j1H̃(∂α D̃t ζ̃ )∂β

)
∂ j2
(
(I − H)zk− (I − H̃)z̃k

)

+ H
((

(∂ j1∂β D̃t ζ̃ ∂α − ∂ j1∂α D̃t ζ̃ ∂β)
)
∂ j2
(
(I − H)zk− (I − H̃)z̃k

))

Since j2 < j , the latter pair of terms can be accounted for using the method of normal
forms exactly as in the previous sections. In anticipation of changing variables in the
former pair of terms with respect to κ , we rewrite them as

∼ ∂β(Hκ−1∂ j1 Dtr)∂α(∂ j2 λ̃† ◦ κ−1)(J (κ) ◦ κ−1)

− Hκ−1

(
∂β(∂ j1 Dtr) ∂α(∂ j2 λ̃† ◦ κ−1)(J (κ) ◦ κ−1)

)

− ∂α(Hκ−1∂ j1 Dtr)∂β(∂ j2 λ̃† ◦ κ−1)(J (κ) ◦ κ−1)

+ Hκ−1

(
∂α(∂ j1 Dtr) ∂β(∂ j2 λ̃† ◦ κ−1)(J (κ) ◦ κ−1)

)

with a difference controlled in L2 by C(E
1
2 + ε2)2, by virtue of Propositions 2.8, 4.1,

and 4.3, along with the Mean Value Theorem to control λ̃† ◦ κ−1 − λ̃† and identity
(4.14). Thankfully, when we change variables by κ in the integral (4.47), this expression
simplifies by Proposition 4.2(b) to

∼ ∂βH0(∂
j1 Dtr ◦ κ)∂α∂ j2 λ̃† − H0

(
∂β(∂ j1 Dtr ◦ κ) ∂α∂ j2 λ̃†

)

−∂αH0(∂
j1 Dtr ◦ κ)∂β∂ j2 λ̃† + H0

(
∂α(∂ j1 Dtr ◦ κ) ∂β∂ j2 λ̃†

)

Since λ̃β = O(ε2), it suffices to retain only the first line. Then, writing H0 = −jR1+iR2

and λ̃† = εiAe−jφ + O(ε2), we expand the expression to read

∑
l=1,2

(
∂βRl(ik

2−l∂ j1 Dtri ◦ κ)∂α∂ j2ε Ae−jφ

−Rl

(
∂β(ik2−l∂ j1 Dtri ◦ κ) ∂α∂ j2ε Ae−jφ

))
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Unlike in our past uses of the normal form transformation, the approximate wave packet
term occurs as the right factor as opposed to the left factor. Therefore it will more
convenient to use the right-hand j-Fourier transform. Since the Riesz transforms Rl
have scalar-valued kernels, one can regard them as acting on the right. Therefore taking
the right j-Fourier transform of this expression and using (3.8) gives us

∑
l=1,2

1

(2π)2

∫∫(
F R
j [ik2−l∂ j1 Dtri ◦ κ)](ξ ′)jkξ ′2

(
ξ ′l
|ξ ′|−

ξl

|ξ |

)
F R
j [ε∂ j2 Ae−jφ](ξ−ξ ′)

)
dξ ′

(4.50)

To avoid dealing with singularities near zero in frequency, we also make another sim-
plification: We decompose this integral into the domains |ξ ′| ≥ 4k and |ξ ′| ≤ 4k; since
|ξ − ξ ′| is bounded away from 0 and ∞, we can trade derivatives in the low frequency
|ξ ′| ≤ 4k for constants. Normal form transformations can be constructed for these
low-frequency contributions just as for terms with | j | < s without needing to use the
commutator structure as we have done above.

Hence without loss of generality we consider only frequencies |ξ ′| ≥ 4k. On this
region, we have since |ξ − ξ ′| ≤ 3

2 k that

∣∣∣∣
ξ ′

l

|ξ ′| −
ξl

|ξ |
∣∣∣∣ =

∣∣∣∣
ξ ′

l

|ξ ′|
|ξ | − |ξ ′|

|ξ | +
ξ ′

l − ξl

|ξ |
∣∣∣∣ ≤ C

|ξ − ξ ′|
1
2 |ξ ′| + 1

2 k
≤ C

|ξ ′|
which gives the promised gain of one derivative. With this, we adopt the ansatz

F R
j [Q( j1, j2)

(4.30) ]

=
∑

l=1,2

1

(2π)2

∫∫

|ξ ′ |≥4k

(
F R
j [ik2−l∂ j1 Dtri ◦ κ)](ξ ′) Ql

0(ξ
′ − ki, ξ ′)F R

j [ε∂ j2 Ae−jφ](ξ−ξ ′)

)
dξ ′

+
∑

l=1,2

1

(2π)2

∫∫

|ξ ′|≥4k

(
F R
j [ik2−l∂ j1 D2

t ri ◦ κ)](ξ ′) Ql
1(ξ

′− ki, ξ ′)F R
j [ε∂ j2 Ae−jφ](ξ−ξ ′)

)
dξ ′

Substituting this ansatz into (4.34) using (4.50) as the forcing term yields the same formal
system (4.39)–(4.40) as in the last section, and so are given by

Ql
0 = ((|ξ ′ − ki| − |ξ ′| − |ki|)(jkξ ′

2)

(|ξ ′ − ki| − |ξ ′| − |ki|)2 − 4k|ξ ′|
(

ξ ′
l

|ξ ′| −
ξl

|ξ |
)

(4.51)

Ql
1 = (−2ωkξ ′

2)

(|ξ ′ − ki| − |ξ ′| − |ki|)2 − 4k|ξ ′|
(

ξ ′
l

|ξ ′| −
ξl

|ξ |
)

(4.52)

Hence, denoting Q( j1, j2)
(4.30) = Q

( j1, j2)
(4.30) ◦ κ−1 as before, Lemma 4.2 gives us the estimate

‖|D| 1
2 Q( j1, j2)

(4.30) ‖
H

1
2

+ ‖DtQ( j1, j2)
(4.30) ‖

H
1
2

+ ‖D2
t Q( j1, j2)

(4.30) ‖L2 ≤ C(εE
1
2 + ε3) (4.53)

Moreover, because of the above gain in regularity, the higher order error terms are
controlled just as in the previous section as well; in particular by Proposition 4.2 we
have the estimate

‖(∂2
t + |D|)(Dtr ◦ κ)‖Hs−1 ≤ C‖(∂2

t + |D|)(σ † ◦ κ)‖Hs−1 + CεE
1
2 ≤ CεE

1
2
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and

‖(∂2
t + |D|)(D2

t r ◦ κ)‖Hs−1 ≤ C‖(∂2
t + |D|)(Dtσ

† ◦ κ)‖Hs−1 + CεE
1
2 ≤ CεE

1
2

The rest of the details are left to the reader.

Estimates of (4.28) and (4.29).

Finally, we mention the modifications to this construction that need to be made in
order to account for the term (4.29); this term is easier to estimate because it has more
regularity than (4.30). The treatment of (4.28) is almost identical, and so we omit it.
First note that by Proposition 4.2 we have r ∼ −ρ† and ρ† ∼ Hρ† and hence it suffices
to estimate
∑

j1+ j2= j

∫∫
Dtσ

[ j]

A ·−1

2
(I −H)

(
A(∂βH(∂ j1ρ†)∂α − ∂αH(∂ j1ρ†)∂β)D̃t∂

j2(I −Hζ̃ )z̃k

− AH
(
((∂ j1ρ

†
β)∂α − (∂ j1ρ†

α)∂β)D̃t∂
j2(I − Hζ̃ )z̃k

))
dα dβ

The normal form to account for this term can now be constructed exactly as for the term
I4. If we denote this normal form by Q(4.29), we again arrive at the estimates

‖|D| 1
2 Q(4.29)‖

H
1
2

+ ‖DtQ(4.29)‖
H

1
2

+ ‖D2
t Q(4.29)‖L2 ≤ C(εE

1
2 + ε3) (4.54)

The higher order terms can be estimated in a less careful fashion than the higher order
terms corresponding to I4. We omit the details.

4.3.4. The normal forms for (4.25) and (4.26). Unlike the other quadratic terms, (4.25)
and (4.26) arise in the energy inequality in such a way as to need significant preparation
to be accounted for by a normal form transformation. In order to do so we must introduce
higher order corrections to the original energy.

As in previous sections it suffices to account for terms of the form∫∫
(θ ◦ κ) · λ̃αt∂β(θ ◦ κ) dα dβ =

∫∫
(θ ◦ κ) · −λ̃αtR2|D|(θ ◦ κ) dα dβ (4.55)

where θ = ρ[ j], σ [ j].
We first rewrite the term corresponding to θ = ρ[ j] with 0 < | j | ≤ s so that we can

use a normal form transformation to account for it. As usual we write ∼ to indicate that
we have omitted terms that are controlled by C(E

1
2 + ε2)3. Since we have the estimate

‖(∂2
t + |D|)ρ[ j]‖L2 ≤ CεE

1
2 , we have∫∫

−(ρ[ j] ◦ κ) · λ̃αtR2|D|(ρ[ j] ◦ κ) dα dβ

∼
∫∫

(ρ[ j] ◦ κ) · λ̃αtR2(ρ
[ j] ◦ κ)t t dα dβ

Suppose we add the correction∫∫
(ρ[ j] ◦ κ) · −λ̃αtR2(ρ

[ j] ◦ κ)t dα dβ (4.56)

to our energy. Then taking a time derivative of this correction (4.56), adding the result
to the above term, and using Proposition 2.1 and R∗

2 = −R2 yields the terms



A Justification of the Modulation 425

∫∫
(ρ[ j] ◦ κ)t ·−λ̃αtR2(ρ

[ j] ◦ κ)t dα dβ+
∫∫

(ρ[ j] ◦ κ)t ·−R2(λ̃αt t (ρ
[ j] ◦ κ)) dα dβ

These terms are not yet removable by the method of normal forms, since the crucial
cancellation in Fourier space is not present. However, we can alter these terms in a
straightforward way so that the null structure is apparent at the expense of suitably small
error terms. First, add terms identical to the above except that the sign is reversed and
the substitutions ∂α ↔ ∂β and R1 ↔ R2 are made:
∫∫

(ρ[ j] ◦ κ)t · λ̃βtR1(ρ
[ j] ◦ κ)t dα dβ +

∫∫
(ρ[ j] ◦ κ)t · R1(λ̃βt t (ρ

[ j] ◦ κ)) dα dβ

Since the β derivatives fall on λ̃ in these terms, they are controlled by C(E
1
2 + ε2)3.

Now associate these terms so that the null structure is present. Using Lemmas 4.2 and
4.3, we see that the terms

∫∫
(ρ[ j] ◦ κ)t ·

(
λ̃βtR1(ρ

[ j] ◦ κ)t − λ̃αtR2(ρ
[ j] ◦ κ)t

)
dα dβ

have the null structure needed to complete the normal form construction. The remaining
pair of terms must be altered further. Since | j | > 0, there exists a multi-index j1 of length
1 so that we can write j = j1 + j ′. Then using Propositions 2.8(b) and 4.3, we can extract
a derivative from the term (ρ[ j] ◦κ)t with the estimate ‖(ρ[ j] ◦κ)t −∂ j1(ρ[ j ′] ◦κ)t‖L2 ≤
CεE

1
2 . This allows us to rewrite the remaining terms as

∫∫
(ρ[ j] ◦ κ)t ·

(
R1(λ̃βt t (ρ

[ j] ◦ κ)) − R2(λ̃αt t (ρ
[ j] ◦ κ))

)
dα dβ

∼
∫∫

(ρ[ j ′] ◦ κ)t · −
(

∂ j1R1(λ̃βt t (ρ
[ j] ◦ κ)) − ∂ j1R2(λ̃αt t (ρ

[ j] ◦ κ))

)
dα dβ

=
∫∫

(ρ[ j ′] ◦ κ)t · −R j1

(
λ̃βt t (ρ

[ j] ◦ κ)α − λ̃αt t (ρ
[ j] ◦ κ)β

)
dα dβ

which is now in the proper form to be accounted for using the method of normal forms
using Lemmas 4.2 and 4.3. The terms in the sequel that will be accounted for by normal
forms can all be treated in the same way.

The case θ = ρ must be handled slightly differently since we do not have control of
ρ in L2. We add the correction

∫∫
(ρ ◦ κ) · −λ̃α(ρ ◦ κ)β dα dβ (4.57)

to the energy; taking a time derivative and combining with the third order term corre-
sponding to θ = ρ contributes the following terms in the energy inequality:

∫∫
(ρ ◦ κ)t · −(λ̃α∂β + ∂βλ̃α)(ρ ◦ κ) dα dβ

∼
∫∫

(ρ ◦ κ)t · −2λ̃α(ρ ◦ κ)β dα dβ

which are again accounted for using normal forms.
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We now turn to the terms corresponding to θ = σ [ j]. Observe that when | j | < s
we can proceed as above at the expense of adding analogous corrections to the energy.
This method fails when | j | = s because we can no longer control (∂2

t + |D|)σ [ j] with
our energy; we therefore proceed more carefully. Consider the following candidate for
correction to the energy:

1

2

∫∫
−1

a
(σ [ j] ◦ κ)t · λ̃αR2(σ

[ j] ◦ κ)t + (σ [ j] ◦ κ)

·1
2

(
(N × ∇)λ̃αR2 + λ̃αR2(N × ∇)

)
(σ [ j] ◦ κ) dα dβ (4.58)

If we take a derivative with respect to t of this correction, we have of the first term by
Proposition 4.1 that

d

dt

∫∫
−1

a
(σ [ j] ◦ κ)t · λ̃αR2(σ

[ j] ◦ κ)t dα dβ

∼
∫∫

−1

a
(σ [ j] ◦ κ)t t · λ̃αR2(σ

[ j] ◦ κ)t dα dβ

+
∫∫

−1

a
(σ [ j] ◦ κ)t · λ̃αR2(σ

[ j] ◦ κ)t t dα dβ

+
∫∫

−1

a
(σ [ j] ◦ κ)t · λ̃αtR2(σ

[ j] ◦ κ)t dα dβ (4.59)

If we add the correction∫∫
1

a
(σ [ j] ◦ κ) · λ̃αtR2(σ

[ j] ◦ κ)t dα dβ

to the energy and combine its derivative with respect to t with the last of the terms above,
we have after an application of Proposition 2.1 that only the following terms remain:

∫∫
1

a
(σ [ j] ◦ κ)t · R2(λ̃αt t (σ

[ j] ◦ κ)) dα dβ

+
∫∫

1

a
(σ [ j] ◦ κ) · λ̃αtR2(σ

[ j] ◦ κ)t t dα dβ

The first of these terms is accountable with a normal form transformation. The second
we rewrite using the estimate ‖(∂2

t − a(N × ∇))(σ [ j] ◦ κ)‖L2 ≤ CεE
1
2 as

∫∫
1

a
(σ [ j] ◦ κ) · λ̃αtR2(σ

[ j] ◦ κ)t t dα dβ

∼
∫∫ (

1

a
(σ [ j] ◦ κ)

)
·
(
λ̃αtR2(a(N × ∇)(σ [ j] ◦ κ))

)
dα dβ

∼
∫∫

−
(

1

a
(σ [ j] ◦ κ)

)
·
(
λ̃αtR2|D|(σ [ j] ◦ κ)

)
dα dβ

∼
∫∫

−(σ [ j] ◦ κ) · λ̃αtR2|D|(σ [ j] ◦ κ) dα dβ

In particular, note that the error terms neglected from the second to the third line above
containing

(a(N × ∇) + |D|) (σ [ j] ◦ κ)
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are controlled using Proposition 2.10 and complex interpolation after decomposing sim-

ilar to (4.43). This is possible because (σ [ j] ◦ κ)/a is controlled in H
1
2 by the energy.

Next, taking a derivative with respect to t of the second term of (4.58) yields the
expression

d

dt

∫∫
(σ [ j] ◦ κ) · 1

2

(
(N × ∇)λ̃αR2 + λ̃αR2(N × ∇)

)
(σ [ j] ◦ κ) dα dβ

=
∫∫

(σ [ j] ◦ κ)t · 1

2

(
(N × ∇)λ̃αR2 + λ̃αR2(N × ∇)

)
(σ [ j] ◦ κ) dα dβ

+
∫∫

(σ [ j] ◦ κ) · 1

2

(
(N × ∇)λ̃αR2 + λ̃αR2(N × ∇)

)
(σ [ j] ◦ κ)t dα dβ

+
∫∫

(σ [ j] ◦ κ) · 1

2

(
(N × ∇)λ̃αtR2 + λ̃αtR2(N × ∇)

)
(σ [ j] ◦ κ) dα dβ

+
∫∫

(σ [ j] ◦ κ) · 1

2

(
[∂t , (N ×∇)]λ̃αR2 + λ̃αR2[∂t , (N ×∇)]

)
(σ [ j] ◦ κ) dα dβ

(4.60)

The fourth term above is directly controlled by C(E
1
2 + ε2)3 thanks to Proposition 2.10.

The third term must be rewritten further; indeed, using Proposition 2.1 we have

(σ [ j] ◦ κ) · 1

2

(
λ̃αtR2(N × ∇)

)
(σ [ j] ◦ κ) = (N × ∇)(σ [ j] ◦ κ) · 1

2
R2λ̃αt (σ

[ j] ◦ κ)

from which we have
∫∫

(σ [ j] ◦ κ) · 1

2

(
λ̃αtR2(N × ∇)

)
(σ [ j] ◦ κ) dα dβ

=
∫∫

(σ [ j] ◦ κ) · 1

2
(N × ∇)R2λ̃αt (σ

[ j] ◦ κ) dα dβ

∼
∫∫

1

a
(ρ[ j] ◦ κ)t · 1

2
(N × ∇)[R2, λ̃αt ](σ [ j] ◦ κ) dα dβ

+
∫∫

(σ [ j] ◦ κ) · 1

2
(N ×∇)λ̃αtR2(σ

[ j] ◦ κ) dα dβ

and so because [R2, λ̃αt ] gains one derivative, we can eliminate the first term of the
last expression with a normal form transformation. What remains of the third term from
(4.60) can then be further rewritten as

∫∫
(σ [ j] ◦ κ) ·

(
λ̃αtR2(N × ∇)

)
(σ [ j] ◦ κ) dα dβ

∼
∫∫

−(σ [ j] ◦ κ) · λ̃αtR2|D|(σ [ j] ◦ κ) dα dβ

Similarly, the first and second terms from (4.60) can be rewritten as

=
∫∫

(σ [ j] ◦ κ)t · λ̃αR2(N × ∇)(σ [ j] ◦ κ) dα dβ

+
∫∫

(N × ∇)(σ [ j] ◦ κ) · λ̃αR2(σ
[ j] ◦ κ)t dα dβ
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at the expense of terms containing commutators [R2, λ̃α]which are therefore susceptible
to elimination by normal form. These terms then combine with the outstanding terms
contributed from (4.59) to yield the quantities

∫∫
1

a
(σ [ j] ◦ κ)t · λ̃αR2(Pσ [ j] ◦ κ) dα dβ

+
∫∫

1

a
(Pσ [ j] ◦ κ) · λ̃αR2(σ

[ j] ◦ κ)t dα dβ

which is controlled by C(E
1
2 +ε2)3. In summary, we have shown that the time derivative

of (4.58) is
∫∫

−(σ [ j] ◦ κ) · λ̃αtR2|D|(σ [ j] ◦ κ) dα dβ

up to terms that are either directly controlled by C(E
1
2 + ε2)3 or which can be accounted

for using a normal form transformation. Therefore adding the negative of (4.58) to the
energy eliminates the remaining third order terms corresponding to θ = σ [ j].

Remark 4.2. The quadratic corrections Q[ j] of the normal form transformations con-
structed in this section no longer control the quantities

‖D2
t Q[ j]‖L2 , ‖ |D| 1

2 DtQ[ j]‖L2 , ‖ |D|Q[ j]‖L2

This is because we allowed ourselves to construct normal forms from unknowns of the
same regularity of σ in the above section, which is a half-derivative less regular than
those constructed in previous sections. However, in the sequel we will see that we only
need control over the quantities

‖DtQ[ j]‖L2 , ‖ |D| 1
2 Q[ j]‖L2

5. Justification of HNLS in Transformed and Eulerian Coordinates

We have now constructed all of the quantities needed to begin the proof of Theorem
1.1. We proceed in three steps. The first is to use the quantities constructed in Sect. 4
to construct the energy in earnest and show that it implies an appropriate a priori bound
on the remainder. Next, we must take the approximate solution ζ̃ at time t = 0 and
construct from it initial data for the water wave system (1.2)–(1.3) that satisfies the
compatibility conditions of this system and is sufficiently close to the approximate
solution at t = 0. Since the system (1.2)–(1.3) has a local well-posedness theory in
Hs , the next step is to establish O(ε−2) existence times for the full problem with this
initial data followed by bootstrapping to the approximate solution using our a priori
bound. Finally we demonstrate Theorem 1.2 by showing that the initial data given in the
hypothesis can be used to construct suitable initial data in the sense of Theorem 1.1.

5.1. Construction of the corrected quantities, and the a priori energy bound. With all
of our normal forms and third order energy corrections constructed, we at last have the
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Definition 5.1. Fix some s ≥ 6, and let Q[ j]
ρ ,Q[ j]

σ denote the sum of all of the normal
forms constructed in Sects. 4.3.1–4.3.4 for ρ[ j] and σ [ j], respectively, along with the
corrections to S[ j] given by (4.46) and (4.49). Then define R[ j] = ρ+Q[ j]

ρ and S[ j] = σ +

Q[ j]
σ . With the E defined as in Proposition 4.4, set E(t) :=∑| j |≤s E (R[ j])+E (S[ j])+E3,

where E3 consists of (4.45) as well as the sum of the third-order corrections derived in
Sect. 4.3.4.

Then our work in Sect. 4 demonstrates that using Proposition 4.5 along with the fact

that |E3| ≤ Cε(E
1
2 + ε2)2, we have the conclusive estimates

Corollary 5.1. For s ≥ 6 and ε0 > 0 chosen sufficiently small, for all 0 < ε < ε0 we
have the estimates
∑
| j |≤s

‖Dtρ
[ j]‖2

L2 +‖Dtσ
[ j]‖2

L2 +‖ |D|ρ[ j]‖2
L2 ≤C

∑
| j |≤s

‖Dt R[ j]‖2
L2 +‖Dt S[ j]‖2

L2 +Cε5

∑
| j |≤s

‖ |D| 1
2 ρ[ j]‖2

L2 +‖ |D| 1
2 σ [ j]‖2

L2 ≤ C
∑
| j |≤s

‖ |D| 1
2 R[ j]‖2

L2 +‖ |D| 1
2 S[ j]‖2

L2 +Cε5

E ≤ CE + Cε5

We now present the following energy inequality.

Proposition 5.1. Let s ≥ 6 be given, and let T0 > 0 be the existence time given in the a
priori assumption on ζ . Suppose that E(0) ≤ M0ε

4. Then for every ι > 0 we have the
a priori bound

sup
0≤t≤min(T ε−2,T0)

E(t)
1
2 ≤ Cε2−ι

where C depends on k, s, M0, ‖A0‖Hs+13∩H3(0+) and ι.

Proof. We would like to demonstrate first that the inequality

dE

dt
≤ C(E

1
2 + ε2)3

holds. Begin by expanding dE
dt through Definition 5.1 and Proposition 4.4 as follows:

dE

dt
=
∑
| j |≤s

∫∫
2

A Dt R[ j] ·
(

D2
t − A(ζβ∂α − ζα∂β)

)
R[ j] dα dβ

+
∫∫

− 1

AUκ−1

(at

a

)
|Dt R[ j]|2 − 1

AUκ−1

(at

a

)
|Dt S[ j]|2 dα dβ

+
∫∫

2

A Dt S[ j] ·
(

D2
t − A(ζβ∂α − ζα∂β)

)
S[ j] dα dβ

+
dE3

dt
+
∫∫

−R[ j] ·
(

DtζβR[ j]
α − DtζαR[ j]

β

)

− S[ j] ·
(
(Dtζβ)S[ j]

α − (Dtζα)S[ j]
β

)
dα dβ
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By Proposition 4.1 and Corollary 5.1, the second line is bounded by C(E
1
2 + ε2)3. By

our work in Sect. 4.3.4 we know that the fourth line is of size at most C(E
1
2 + ε2)3. The

remaining terms are analyzed by decomposing them as in Sect. 4.2, except that in some
of these terms occurrences of Dtρ

[ j] and Dtσ
[ j] in Sect. 4.2 are here replaced by Dt R[ j]

and Dt S[ j] where appropriate. This replacement does not change the estimates thanks to
Corollary 5.1. Generally we decompose all of the factors of the nonlinearities into sums
of remainders and approximations. Most of these terms are straightforwardly estimated
using the estimates of Sect. 4.1. We list only the terms requiring further treatment:

1. Ostensibly quadratic terms involving operators of the form [T,H]θ with θ = −Hθ .
2. Terms involving the residual of the equation Pθ = Gθ .

1. There are several quadratic terms that can be quickly written as cubic using almost-
orthogonality methods. For example, for θ = ρ, σ and � = R, S respectively,

∫∫
− 1

A Dt�
[ j] · [P,H]∂ jθ dα dβ

As it stands, the commutator [P,H]∂ jθ is only quadratic. To treat this term, we use the
identity (I − H)[T,H] = [T,H](I + H) to exploit almost-orthogonality. Write

1

A Dt�
[ j] = 1

A DtQθ +
1

2
(I − H)

1

A Dtθ
[ j] +

1

2

1

A [Dt ,H]θ [ j] +
1

2

[
1

A ,H
]

Dtθ
[ j]

Then, letting ∼ denote that we have omitted terms of size C(E
1
2 + ε2)3, this yields

∫∫
− 1

A Dt�
[ j] · [P,H]∂ jθ dα dβ ∼

∫∫
−1

2
(I − H)

1

A Dtθ
[ j] · [P,H]∂ jθ dα dβ

=
∫∫

− 1

A Dtθ
[ j] · 1

2
(H − H∗)[P,H]∂ jθ dα dβ

+
∫∫

− 1

A Dtθ
[ j] · [P,H](I + H)∂ jθ dα dβ

=
∫∫

− 1

A Dtθ
[ j] · 1

2
(H − H∗)[P,H]∂ jθ dα dβ

+
∫∫

− 1

A Dtθ
[ j] · [P,H][H, ∂ j ]θ dα dβ

All of these integrals are controlled by C(E
1
2 + ε2)3 by Propositions 2.8, 4.1, and 4.2.

The other terms arising from the energy containing the commutator [P,H] are treated
in the same way.

Similarly, the term

∫∫
Dt R[ j]

A · 1

2
(I − H)

(
G − P̃(I − Hζ̃ )z̃k

)
dα dβ

contributes the following difference of commutators:

∫∫
Dt R[ j]

A · 1

2
(I − H)

(
[Dt ,H]Dtζ

† − [D̃t , H̃]D̃t ζ̃
†
)

dα dβ
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As above, we can decompose this difference as a sum of differences involving approx-
imate and remainder quantities and use an almost orthogonality argument to gain an

extra factor of smallness. This implies the above is bounded by C(E
1
2 + ε2)3. The other

terms arising from this quadratic commutator are treated similarly.

2. As mentioned in Sect. 3, the residual is only of appropriate size provided it is estimated
in the context of the energy estimate. Recall from Lemma 3.2 that the residual yields an
integral of the form

∫∫
1

A Dt R[ j] · 1

2
(I − H)∂ j (I − H)ε4

×
⎛
⎝(I − H0)F0 +

1

2
(I + H0)F +

−1∑
n=−3

Snenjφi +
∑

0<|m|≤3

S′
memjφ

⎞
⎠ dα dβ

As in (1) we know that A−1 Dt R[ j] is almost-holomorphic, and so it suffices to treat

∫∫
1

A Dt R[ j] · ε4∂ j

⎛
⎝(I −H0)F0 +

1

2
(I +H0)F +

−1∑
n=−3

Snenjφi+
∑

0<|m|≤3

S′
memjφ

⎞
⎠ dα dβ

First, by Lemma 3.2 we know that F0 is scalar-valued. Therefore we can write
∫∫

1

A Dt R[ j] · ε4∂ j ((I − H0)F0) dα dβ

=
∫∫

(I − H0)
1

A Dt R[ j] · ε4∂ j F0 dα dβ

∼
∫∫

(H − H0)
1

A Dt R[ j] · ε4∂ j F0 dα dβ +
∫∫

1

A Dt�(R[ j]) · ε4∂ j F0 dα dβ

and all of these integrals are of size at most C(E
1
2 +ε2)3. A similar almost-orthogonality

argument treats the term
∫∫

1

A Dt R[ j] · ε4∂ j 1

2
(I + H0)F dα dβ

∼
∫∫

1

A Dt R[ j] · ε4∂ j 1

2
(H0 − H)∗F dα dβ

which is now seen to be of size at most C(E
1
2 + ε2)3. Since the terms

∑−1
n=−3 Snenjφi +∑−1

m=−3 S′
memjφ are all almost-antiholomorphic, they are disposed of similarly. Finally,

taking only the term m = 1 above for simplicity, we know by Lemma 3.1 that S
′
1e−jφ =

1
2 (I + H0)S

′
1e−jφ up to a term of size at most O(ε2) in L2. Therefore we can use almost

orthogonality to write
∫∫

1

A Dt R[ j] · ε4∂ j
(

S′
1ejφ

)
dα dβ

=
∫∫

1

A Dt R[ j] · ε4∂ j
(

S′
1ejφ + S

′
1e−jφ

)
dα dβ
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−
∫∫

1

A Dt R[ j] · ε4∂ j
(

S
′
1e−jφ

)
dα dβ

∼
∫∫

1

A Dt�(R[ j]) · ε4∂ j
(

S′
1ejφ + S

′
1e−jφ

)
dα dβ

−
∫∫

1

A Dt R[ j] · 1

2
(H0 − H)∗ε4∂ j

(
S
′
1e−jφ

)
dα dβ

all of which are bounded by C(E
1
2 + ε2)3. The estimates for the residual of the time

derivative is essentially the same, so we do not estimate it explicitly. Summing all of
these estimates gives us (a).

Applying Corollary 5.1 gives us the inequality

dE

dt
≤ C(E

1
2 + ε2)3

We begin a continuity argument. By hypothesis we know that E(0) = M0ε
4. Let T ∗

be the first time at which E(T ∗) = 4M0ε
4. If T ∗ ≥ T ε−2, then choose T ′ = T . If

not, then on the interval [0, T ∗] we have dE
dt ≤ C0ε

6 from which we have immediately
that E(t) ≤ E(0) + C0tε6. But then if we choose T ′ so that C0T ′ ≤ 2M0 and assume
further that T ∗ ≤ T ′ε−2, we find that at t = T ∗,

4M0ε
4 = E(T ∗) ≤ E(0) + C0T

′ε4 ≤ 3M0ε
4

which is a contradiction.
Finally, following the idea given in [13,14], we remove the restriction on the time

T ′ ≤ T in the above estimate by extending the validity of the a priori estimate by a
logarithmic factor of ε at the expense of enlarging the error bound slightly. We have just
established that there exists a time T ′ ≤ T so that

E(t)
1
2 ≤ C1ε

2, 0 ≤ t ≤ T ′ε−2

Introduce an n ∈ N to be fixed later. Applying the above estimate n times yields

E(t) ≤ Cn
1 ε2, 0 ≤ t ≤ nT ′ε−2

Suppose that ι > 0 is chosen so that Cn
1 ≤ ε−ι. Then n ≤ ι| log(ε)|/ log(C1). For ε0

chosen small enough the set of all positive n satisfying this inequality is nonempty; fix
n to be the largest such satisfying this inequality. Then we have

E(t) ≤ ε2−ι, 0 ≤ t ≤ �ι| log(ε)|/ log(C1) T ′ε−2

But now for any ι > 0 and T > 0 we please, we may choose ε0 > 0 so small depending
on ι,T ′, ‖A0‖Hs+13∩H3(δ) so that �ι| log(ε)|/ log(C1) T ′ ≥ T , as desired. ��

5.2. Construction of appropriate initial data. Now that we have a suitable a priori
estimate we can show that there is a solution to the water wave problem (1.2)–(1.3)
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which remains closer than O(ε2) in Sobolev space to the approximate solution for
O(ε−2) times. To start, we need the following local well-posedness result with blow-up
alternative of [21]:

Theorem 5.1 (c.f. also Theorem 4.3 of [22]). Let s ≥ 5 be given, and suppose that we
are given initial data

�(0) − P = ζ0 − P ∈ Ḣ
1
2 ∩ Ḣ s+1

�t (0) = u0 ∈ Hs+ 1
2

�t t (0) = w0 ∈ Hs

a(0) = a0 ∈ Hs

for the system (1.2)–(1.3) which satisfies the compatibility conditions

�(ζ0) = 0 (I − Hζ0)u0 = 0 w0 + k = a0(∂αζ0 × ∂βζ0)

with a0 given by the formula in Proposition 2.6(b), and suppose further that there are
numbers ν0, N0 > 0 so that ζ0 satisfies the chord-arc condition

ν0 ≤ sup
(α,β) �=(α′,β ′)

|ζ0(α, β) − ζ0(α
′, β ′)|

|(α, β) − (α′, β ′)| ≤ N0

as well as that |∂αζ0 × ∂βζ0|−1 ≤ N0. Then there exists a time T0 > 0 and constants

ν, N depending on ‖ |D| 1
2 (ζ0 − P)‖

Hs+ 1
2
, ‖u0‖

Hs+ 1
2

, and ‖w0‖Hs for which there is a

solution � satisfying (1.2)–(1.3) with the following properties for all 0 ≤ t ≤ T0:

• ∂
j

t � ∈ C2− j ([0, T0], Hs+1− j/2)

•

ν ≤ sup
(α,β) �=(α′,β ′)

|�(α, β) − �(α′, β ′)|
|(α, β) − (α′, β ′)| ≤ N

• |�α × �β |−1 ≤ N

Moreover, if T ∗
0 is the supremum of all such times T0 on which the above solution � with

the above properties exists, then either T ∗
0 = ∞ or

‖�t‖W �s/2 +3,∞ + ‖�t t‖W �s/2 +3,∞

+ sup
(α,β) �=(α′,β ′)

|�(α, β) − �(α′, β ′)|
|(α, β) − (α′, β ′)| +

1

|�α × �β | �∈ L∞[0, T ∗
0 )

Ideally we would like to take the approximate solution ζ̃ of Sect. 3 and use (ζ̃ , ζ̃t ,

ζ̃t t , Ã) as initial data. However, this candidate for the initial data need not satisfy the
compatibility conditions in Theorem 5.1. To rectify this, the a priori bound of the last
section guarantees that if we can find data sufficiently close to the approximate solution,
the resulting solution will remain close for the appropriate time scales. Hence it suffices
to construct initial data so that the energy of the remainder is sufficiently small initially.
This is done in the following
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Proposition 5.2. Let ε0 > 0 be chosen sufficiently small. Then there exists initial data
(ζ0, v0, w0, a0) satisfying the compatibility conditions for the water wave problem.
Moreover, with this initial data the initial energy E(0) constructed through ρ(0) and

σ(0) has the property that E(0)
1
2 ≤ Cε3.

Proof. The reader is reminded that we have chosen the initial parametrization so that
κ(α, β, 0) = P; therefore all of the formulas derived in the new variables continue to
hold in the original Lagrangian variables when t = 0.

In order to construct the initial parametrization, we use Banach’s Fixed Point Theo-
rem. Define the functional

F( f ) = (I + H f +P − K f +P )z̃(0)k

By the coarse estimate ‖F( f )‖Hs+1 ≤ C(1 + ‖ f ‖Hs+1) we see that F : Hs+1 → Hs+1.
Moreover, by Proposition 2.9, we have for f, g ∈ Hs the estimate

‖F( f ) − F(g)‖Hs+1 ≤ ‖(H f +P − Hg+P )z̃(0)k + (K f +P − Kg+P )z̃(0)k‖Hs+1

≤ C‖ f − g‖Hs+1‖z̃(0)‖W∞,s+1

≤ Cε‖ f − g‖Hs+1

and so for ε0 > 0 chosen sufficiently small F is a contraction mapping. Hence there
exists a unique λ0 ∈ Hs+1 such that

λ0 = (I + Hζ0 − Kζ0)z̃(0)k,

where we have denoted ζ0 = λ0 + P . Taking the k-component of this equation implies
z0 = z̃(0), and so Proposition 2.5 implies that the scalar part of λ0 is zero. Denote by
H̃|0 and K̃|0 the operators H̃ and K̃ evaluated at t = 0, respectively. Using Proposition
2.8 we have the estimate

λ0 − λ̃ = ((Hζ0 − Kζ0) − (Hζ̃ (0) − Kζ̃ (0)))z̃k

+ ((Hζ̃ (0) − Kζ̃ (0)) − (H̃|0 − K̃|0))z̃k
+ (I + H̃|0 − K̃|0)z̃(0)k− λ̃(0) (5.1)

Now we can choose ε0 < 0 sufficiently small so that

‖ λ0 − λ̃(0)‖Hs+1 ≤ Cε4 + Cε3 ≤ Cε3 (5.2)

Using (5.2) we similarly have the estimate

‖ |D|(λ0 − λ̃(0))‖Hs ≤ Cε3 (5.3)

Let N0 = ∂αζ0 × ∂βζ0 and n0 = N0/|N0| be the outward unit normal to �(t); choose

v0 = (I + Hζ0)
(

n0(I + {n0 − k}3 + {Hζ0 n0}3)
−1z̃t (0)

)

We clearly have (I −Hζ0)v0 = 0, we have {v0}3 = z̃t (0) by construction, and �(v0) = 0
by the definition of the Hilbert transform. (The operator (I + {n0 −k}3 + {Hζ0 n0}3)

−1 is
a small perturbation from the identity and can be constructed as usual using a Neumann
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series provided ε0 > 0 is chosen to be sufficiently small. We leave the routine details to
the reader.) Finally, to satisfy the compatibility conditions, we set

w0 = a0(∂αζ0 × ∂βζ0) − k

which clearly satisfies �(w0) = 0, and where we are again forced by compatibility to
define a0 so that it satisfies the relation

a0 = (I − Kζ0)
−1
{
k + [∂t ,Hζ0 ]v0 + [a0(∂βζ0∂α − ∂αζ0∂β),Hζ0 ](I + Hζ0)z0k

+ (I − H)
(−a0∂βζ0 × (∂αKζ0z0k) + a0∂αζ0 × (∂βKζ0z0k) + a0(∂αλ0 × ∂βλ0)

)}
3

(5.4)

That such an a0 exists follows by a fixed point argument in Hs applied to the map

G( f ) = (I − Kζ0)
−1
{
[∂t ,Hζ0 ]v0 + [(1 + f )(∂βζ0∂α − ∂αζ0∂β),Hζ0 ](I + Hζ0)z0k

+ (I − H)
(
−(1 + f )∂βζ0 × (∂αKζ0z0k) + (1 + f )∂αζ0 × (∂βKζ0z0k)

+ (1 + f )(∂αλ0 × ∂βλ0)
)}

3

We now give another relation between the quantities v0 and λ̃t (0). Since ‖∇λ‖L∞ ≤ Cε

and the data is constructed to lie in Hs+1 × Hs+ 1
2 × Hs , we can apply Theorem 5.1 to

construct a solution � having all of the properties listed in the theorem on some time
interval [0, T0]. In particular we have ζt (0) = v0 and ζt t (0) = w0. Taking a derivative
of (2.10) with respect to t and using gives

λt − λ̃t = [∂t ,H − K](z − z̃)k + (I + H − K)(zt − z̃t )k

+
[
∂t ,
(
(H − K) − (H̃ − K̃)

)]
z̃k +

(
(H − K) − (H̃ − K̃)

)
z̃tk

+ ∂t

(
(I + H̃ − K̃)z̃k− λ̃

)

By our construction of v0, the term (I + H−K)(zt − z̃t )k vanishes for t = 0. The other
terms evaluated at t = 0 give us the estimate

‖v0 − λ̃t (0)‖
Hs+ 1

2
≤ Cε‖v0 − λ̃t (0)‖

Hs+ 1
2

+ Cε4 + Cε3

≤ Cε‖v0 − λ̃t (0)‖
Hs+ 1

2
+ Cε3

and by choosing ε0 > 0 we obtain the estimate

‖v0 − λ̃t (0)‖
Hs+ 1

2
≤ Cε3 (5.5)

We first use this to give a bound on the remainder of a0. Note that no second derivatives
in time appear in the formula (5.4). Therefore, since Ã(0) satisfies the approximate
version (3.33) of (5.4), we can decompose a0 − Ã(0) as in (4.13) and use (5.3) and (5.5)
to arrive at the estimate

‖a0 − Ã(0)‖Hs ≤ Cε3 (5.6)
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Next, we use these estimates to show that E(0) ≤ Cε3. The decompositions here are
similar to those in the proof of Proposition 4.2. First consider

ρ(0) = 1

2
(I − Hζ0)

(
(I − Hζ0)z0k− (I − Hζ̃ (0))z̃(0)k

)

Decomposing ζ0 = ζ̃ (0) + (ζ0 − ζ̃ (0)) and using (5.2) and (5.3) yields the estimates

‖ (|D| 1
2 ρ)(0)‖

Hs+ 1
2
≤ Cε3 and ‖ (|D|ρ)(0)‖Hs ≤ Cε3

By Proposition 4.2 and Corollary 5.1, we know that ‖σ(0) − (Dtρ)(0)‖
Hs+ 1

2
≤

Cε(E(0)
1
2 + ε2) and ‖(Dtσ)(0) − (D2

t ρ)(0)‖Hs ≤ Cε(E(0)
1
2 + ε2). Hence it suffices

to show ‖σ(0)‖
Hs+ 1

2
≤ Cε3 and ‖(D2

t ρ)(0)‖
Hs+ 1

2
≤ Cε3. Write σ as

σ = 1

2
(I − H)

(
[Dt ,H]zk− [D̃t ,Hζ̃ ]z̃k

)

+
1

2
(I − H)

(
(I − H)(Dt zk− D̃t z̃k) + (H − Hζ̃ )D̃t z̃k

)

and decompose into approximate plus remainder quantities. Then evaluating at t = 0
and using (5.3) and (5.5) yields the estimate ‖σ(0)‖

Hs+ 1
2
≤ Cε3. Since we do not have

adequate control over λt t (0) − λ̃t t (0), we cannot estimate D2
t ρ(0) as we did for σ(0).

Instead, we use (4.4) to write

D2
t ρ = A(ζβρα − ζαρβ) + Gρ

We note that no second derivatives in time appear in either the null-form term or the cubic
term Gρ ; similarly the formulas for a0 also do not depend on second time derivatives of
�. We can then obtain the estimate by decomposing into approximate plus remainder
quantities, evaluating at t = 0, and applying (5.3), (5.5) and (5.6); we omit the details.

��

5.3. Long-time existence of wave packet-like solutions. It is now only a matter of com-
bining Theorem 5.1, Proposition 5.2 and Proposition 5.1 in a bootstrapping argument to
give the

Proof of Theorem 1.1. We begin by choosing initial data A0 ∈ Hs+13 ∩ H3(δ) of the
HNLS equation (3.18) for some δ > 0, and moreover choose B(0) = 0. By Proposition
3.3, there is a time T > 0, a solution A to (3.18) in C([0,T ], Hs+13 ∩ H3(δ)), and a
solution B to the Eq. (3.24) in C([0,T ], Hs+10∩L2(δ)) with B(0) = 0. This guarantees
the existence of the formal approximation ζ̃ constructed in Sect. 3.

This approximation is used to construct the initial data given in Proposition 5.2.
We have by the estimates of that proposition that ‖∇(ζ0 − P)‖L∞ ≤ Cε, and so for
sufficiently small ε0 the chord arc condition and |∂αζ0 × ∂βζ0|−1 ≤ N0 hold for some
ν0, N0. Thus we are guaranteed the existence of a solution � to the water wave problem
having all of the properties listed in Theorem 5.1 on some interval of time T0 > 0.

We first turn to constructing the change of variables κ . We can construct κ through
(2.6); we know that this κ can be written as

κ(α, β, t) − P =
∫ t

0
b(κ(α, β, τ ), τ ) dτ
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where by changing variables in (3.13) we know that

(I − H)(b ◦ κ) = −[∂t ,H](I + H)zk− (I − H)[∂t ,K]zk− (I − H)Kztk

Hence, we can bound ‖∇(κ−P)‖L∞ by C‖zt‖W 1,∞ , and so we can choose T0 sufficiently
small so that κ is a diffeomorphism. Then, we can therefore construct ζ = � ◦ κ−1 on
[0, T0], and all of the formulas and equations in Sect. 2 are now valid there.

We begin a continuity argument. Let T ∗
0 be the largest time for which � exists as in

Theorem 5.1, and for which κ is a diffeomorphism. As in Proposition 5.1, let T ′′ denote
either T ′ in the case where ι = 0 or T in the case where ι > 0. If T ∗

0 ≥ T ′′ε−2 then
we are done. If not, then by the estimates on the initial data given in Proposition 5.2,
the a priori bound of Proposition 5.1 holds, and so the estimates of Sect. 4 are valid. In
particular, Proposition 4.3 now guarantees the control ‖∇(κ − P)‖L∞ ≤ Cε, where C
is independent of T ∗

0 . Therefore � = ζ ◦ κ,�t = (Dtζ ) ◦ κ and �t t = (D2
t ζ ) ◦ κ must

agree with the original Lagrangian quantities by uniqueness, and moreover must satisfy
the estimates

‖�t‖W �s/2 +3,∞ + ‖�t t‖W �s/2 +3,∞ ≤ C(‖Dtζ‖W �s/2 +3,∞ + ‖D2
t ζ‖W �s/2 +3,∞)

≤ C(‖D̃t ζ̃‖W �s/2 +3,∞ +‖D̃2
t ζ̃‖W �s/2 +3,∞)+C(E

1
2 +ε2)

≤ Cε + Cε2

≤ Cε

as well as
1

|�α × �β | − 1 ≤ 1

1 − C‖∇(� − P)‖L∞
− 1 ≤ 1

1 − C‖∇(ζ − κ−1)‖L∞
− 1 ≤ Cε

and

sup
(α,β) �=(α′,β ′)

|�(α, β) − �(α′, β ′)|
|(α, β) − (α′, β ′)| −1≤C‖∇(� − P)‖L∞ ≤ C‖∇(ζ−κ−1)‖L∞ ≤ Cε

with C independent of T ∗
0 throughout. But then by the blow-up alternative of Theorem

5.1, we can continue the solution � to a larger interval [0, T ∗
1 ] with T ∗

0 < T ∗
1 . By

choosing T ∗
1 smaller but still strictly greater than T ∗

0 we can also guarantee that κ is
a diffeomorphism on [0, T ∗

1 ]. But this contradicts the maximality of T ∗
0 . Therefore �

exists on the time interval [0,T ′′ε−2] and ζ also exists on [0,T ′′ε−2] and satisfies the
bounds of Proposition 5.1 there. ��

Finally we give the

Proof of Theorem 1.2. The conclusion follows immediately from the conclusion of The-
orem 1.1 and Corollary 1.1 along with the definitions of h, τ, h̃, τ̃ . Equally straight-
forward is showing that the initial data constructed in Proposition 5.2 also generates
appropriate initial data for Theorem 1.2. We need only show that the initial data η0, v0
given by the hypothesis can be used to generate initial data in the sense of Proposition
5.2.

Following the proof of that proposition, we use a contraction mapping argument to
construct λ0 ∈ Hs+1 satisfying

λ0 = (I + Hζ0 − Kζ0)(h0 ◦ τ̃ )k

Taking the k-component of this relation implies that z0 = h0 ◦ τ̃ , and so by Proposition
2.5 we have �(λ0) = 0. Since z̃ = h̃ ◦ τ̃ , we have that
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λ0 − λ̃(0) =
(
(Hζ0 − Kζ0) − (H̃ − K̃)

)
(h0 ◦ τ̃ ) + (I + H̃ − K̃)Uτ̃ (h0 − h̃)

which by hypothesis yields ‖ |D| 1
2 (λ0 − λ̃(0))‖

Hs+ 1
2
≤ Cε2+η.

Similarly, let N0 = ∂αζ0 × ∂βζ0 and n0 = N0/|N0| be the outward unit normal to
�(t); choose

v0 = (I + Hζ0)
(

n0(I + {n0 − k}3 + {Hζ0 n0}3)
−1(v0 ◦ τ̃ )

)

We again have (I − Hζ0)v0 = 0, {v0}3 = v0 ◦ τ̃ , and �(v0) = 0 by the definition of
the Hilbert transform. One defines the initial data w0, a0 by compatibility through λ0
and v0 as in Proposition 5.2. This allows us to assume local well-posedness of � and
hence derive the bound ‖v0 − λ̃t‖

Hs+ 1
2

as in Proposition 5.2; the term that was designed

to vanish in that estimate is instead bounded by Cε2+η by hypothesis. One follows the

proof of this proposition to similarly bound the initial energy by E(0)
1
2 ≤ Cε2+η. ��

Appendix A: Formal Expansion of the Hilbert Transform

We give a detailed derivation of expressions for the expansion of the Hilbert transform
H in terms of only the flat Hilbert transform and its commutators with approximate
quantities as defined in Sect. 3. Our starting point is the power series expansions (3.6)–
(3.7) allowing us to expand H into a series of operators homogeneous in λ:

H =
∞∑

n=0

Hn

A.1. Contributions from H1. We read off that

H1 f = 1

2π2

∫∫
λ − λ′

|P − P ′|3k f ′d P ′

1

2π2

∫∫
P − P ′

|P − P ′|3 (λ′
α × j + i× λ′

β) f ′d P ′

1

2π2

∫∫
−3

P − P ′

|P − P ′|3
(P − P ′) · (λ − λ′)

|P − P ′|2 k f ′d P ′

:= I1 + I2 + I3

At this point we can write both I1 and I2 in terms of Riesz potentials and Riesz transforms:

I1 = [λk,−|D|] f

I2 = H0(−k(λα × j + i× λβ) f ) = H0
{
(xα + yβ) f + (kDz) f

}

We write I3 in the same form by writing it a commutator of x with k f and of y with k f
by the convolution operators

I3 = 1

2π2

∫∫ (
−3

P − P ′

|P − P ′|5
) (

(α − α′)(x − x′) + (β − β ′)(y − y′)
)
k f ′d P ′

= [x, T α
3 ]k f + [y, T β

3 ]k f,

where we can rewrite these operators T α
3 and T β

3 by a computation on the Fourier side,
giving
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T α
3 = p.v.(−3)

1

2π2

Pα

|P|5 � = i|D| − H0k∂α

T β
3 = p.v.(−3)

1

2π2

Pβ

|P|5 � = j|D| − H0k∂β

and so using the formula |D| = H0kD we simplify to find that

H1 f = −[λ, |D|]k f

+ [x, i|D| − H0k∂α]k f

+ [y, j|D| − H0k∂β ]k f

+ H0
{
(xα + yβ) f + (kDz) f

}

= −[λ, |D|]k f + [xi, |D|]k f ] + [yj, |D|]k f

+ H0 {(kDz) f }
+ [x,H0∂α] f + [y,H0∂β ] f + H0

{
(xα + yβ) f

}

= [z, |D|] f + H0 {(kDz) f }
+ [x,H0]∂α f + [y,H0]∂β f

and so

H1 = [x,H0]∂α + [y,H0]∂β + [z,H0]kD
= [(x + jz),H0]∂α + 2zkR2∂α

+ [(y − iz),H0]∂β − 2zkR1∂β

= [(x + jz),H0]∂α + [(y − iz),H0]∂β

Introducing the quantities p1 = x + jz and p2 = y− iz along with ∂α = ∂1 and ∂β = ∂2,
we can express this formula compactly as follows:

H1 f =
2∑

i=1

[pi ,H0]∂i f (A.1)

A.2. Contributions from H2. We again read off the expansion in terms of Riesz poten-
tials:

H2 = 1

2π2

∫∫
λ − λ′

|P − P ′|3 (−3)
(P − P ′) · (λ − λ′)

|P − P ′|2 k f ′d P ′

+
1

2π2

∫∫
P − P ′

|P − P ′|3
(
−3

2

) |λ − λ′|2
|P − P ′|2 k f ′d P ′

+
1

2π2

∫∫
P − P ′

|P − P ′|3
(

15

2

)
((P − P ′) · (λ − λ′))2

|P − P ′|4 k f ′d P ′

+
1

2π2

∫∫
λ − λ′

|P − P ′|3 (λ′
α × j + i× λ′

β) f ′d P ′

+
1

2π2

∫∫
P − P ′

|P − P ′|3 (−3)
(P − P ′) · (λ − λ′)

|P − P ′|2 (λ′
α × j + i× λ′

β) f ′d P ′
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+
1

2π2

∫∫
P − P ′

|P − P ′|3 (λ′
α × λ′

β) f ′d P ′

= I1 + I2 + I3 + I4 + I5 − H0(k(λα × λβ))

Many of the same operators appearing in our calculation of H1 appear here. We have
immediately that

I4 = −[λ, |D|] {(xα + yβ)k f − (Dz) f
}

As in the calculation of H1, we have

I5 =
(
[x, i|D| − H0k∂α] + [y, j|D| − H0k∂β ]

) {
(xα + yβ)k f − (Dz) f

}

We cast I1 as the sum of two double commutators by the convolution operators

T α
1 = p.v.(−3)

1

2π2

α

|P|5 � = −∂α|D|

T β
1 = p.v.(−3)

1

2π2

β

|P|5 � = −∂β |D|

and so

I1 = −
[
λ, [x, ∂α|D|] + [y, ∂β |D|]

]
k f

Next, writing |λ−λ′|2 = (x−x′)2 +(y−y′)2 +(z−z′)2 leads to the following expression
of I2 as a sum of double commutators:

I2 = −1

2

[
x, [x, |D|D]

]
k f

−1

2

[
y, [y, |D|D]

]
k f

−1

2

[
z, [z, |D|D]

]
k f

Finally, using the following expression for the convolution operator in the term I3:

T α,α
3 = i|D|∂α +

1

2
D|D| − 1

2
H0k∂2

α

T α,β
3 = (i∂β + j∂α)|D| − H0k∂α∂β

T β,β
3 = j|D|∂β +

1

2
D|D| − 1

2
H0k∂2

β

in which we have taken pains to write these operators as differential operators with a
Hilbert transform, we have the following expression for I3:

I3 =
[
x, [x, i|D|∂α +

1

2
D|D| − 1

2
H0k∂2

α]
]
k f

+
[
y, [x, (i∂β + j∂α)|D| − H0k∂α∂β ]

]
k f

+
[
y, [y, j|D|∂β +

1

2
D|D| − 1

2
H0k∂2

β ]
]
k f
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We now collect like terms from I1 + · · · + I5 as follows:

[
−λ + ix + jy,

(
[x, |D|∂α] + [y, |D|∂β ]

)]
k f

+ [−λ + xi + yj, |D|] {(xα + yβ)k f − (Dz) f
}

− 1

2
[z, [z, |D|D]]k f

− 1

2
[x, [x,H0k∂2

α]]k f − 1

2
[y, [y,H0k∂2

β ]]k f

−
(
[x,H0k∂α] + [y,H0k∂β ]

) {
(xα + yβ)k f − (Dz) f

}

− [y, [x,H0k∂α∂β ]]k f

=
[
−zk,

(
[x, |D|∂α] + [y, |D|∂β ]

)]
k f

+ [−zk, |D|] {(xα + yβ)k f − (Dz) f
}− 1

2
[z, [z, |D|D]]k f

− 1

2
[x, [x,H0k∂α]]k fα − 1

2
[y, [y,H0k∂β ]]k fβ

− [x,H0k∂α]
{
yβk f − (Dz) f

}

− [y,H0k∂β ] {xαk f − (Dz) f }
− [y, [x,H0k∂α∂β ]]k f

In simplifying so as to reduce the degree of the operators in the above commutators, the
components of the quantity λα × λβ occur naturally. Denote the i th component of this
quantity by (λα × λβ)i . Then we continue to simplify:

= [z, [x, |D|]] fα − [x, |D|](zα f ) + [x,H0k∂α]((Dz) f )

+ [z, [y, |D|]] fβ − [y, |D|](zβ f ) + [y,H0k∂β ]((Dz) f )

+ [x, [y,H0]] fαβ − [y,H0](xβ fα) − [x,H0](yα fβ) − H0{(λα × λβ)3 f }
− 1

2
[x, [x,H0k∂α]]k fα − 1

2
[y, [y,H0k∂β ]]k fβ − 1

2
[z, [z, |D|]]Dk f

= [z, [x,H0k]]D fα − [z,H0k](Dx) fα − [x,H0k](zα(D f )) − H0{i(λα × λβ)2 f }
+ [z, [y,H0k]]D fβ − [z,H0k](Dy) fβ − [y,H0k](zβ(D f )) + H0{j(λα × λβ)1 f }
+ [x, [y,H0]] fαβ − [y,H0](xβ fα) − [x,H0](yα fβ) − H0{(λα × λβ)3 f }
+

1

2
[x, [x,H0∂α]] fα +

1

2
[y, [y,H0∂β ]] fβ − 1

2
[z, [z, |D|]]Dk f

By further rewriting the above so that all commutators contain only the Hilbert transform
H0, we can collect the above terms into a compact formula after introducing some
notation. Denoting λ = λ1i+ λ2j+ λ3k as well as ∂1 = ∂α, ∂2 = ∂β, ∂3 = kD, we have
the formula

H2 f = −
3∑

i, j=1

[λi ,H0]
(
(∂iλ j )(∂ j f )

)
+

1

2

3∑
i, j=1

[λi , [λ j ,H0]]∂i∂ j f (A.2)
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As we did with the operator H1, we rewrite this large sum into a smaller sum involving
the quantities p1 = x + jz and p2 = y − iz as follows:

H2 f =
( 2∑

i, j=1

−[pi ,H0](∂i p j )(∂ j f ) +
2∑

i, j=1

(−1)i 2zkR3−i ((∂i p j )(∂ j f ))

)

+

( 2∑
i, j=1

1

2
[pi , [p j ,H0]]∂i∂ j f

+
2∑

i, j=1

(−1) j+12zλ jkR3−i∂i∂ j f +
2∑

i, j=1

(−1)i 2zkR3−i (p j∂i∂ j f )

)

=
2∑

i, j=1

(
−[pi ,H0](∂i p j )(∂ j f ) +

1

2
[pi , [p j ,H0]]∂i∂ j f

)

+
2∑

i, j=1

(
(−1) j+12zλ jkR3−i∂i∂ j f + (−1)i 2zkR3−i∂i (p j∂ j f )

)

The second sum above vanishes because of the identity
∑2

i=1(−1)iR3−i∂i = R1∂β −
R2∂α = 0. Therefore we have the formula

H2 f =
2∑

i, j=1

(
−[pi ,H0](∂i p j )(∂ j f ) +

1

2
[pi , [p j ,H0]]∂i∂ j f

)
(A.3)

A.3. Contributions from H3. We record the kernel of H3 here. For brevity, we have
further abbreviated � f := f − f ′:
(
−35

2

�P(�P · �λ)3

|�P|9 +
15

2

�P(�P ·�λ)|�λ|2
|�P|7 +

15

2

�λ(�P ·�λ)2

|�P|7 − 3

2

�λ|�λ|2
|�P|5

)
k

+

(
−3

�λ(�P · �λ)

|�P|5 − 3

2

�P|�λ|2
|�P|5 +

15

2

�P(�P · �λ)2

|�P|7
)

(λ′
α × j + i× λ′

β)

+

(
�λ

|�P|3 − 3
�P

|�P|3
�P · �λ

|�P|2
)

(λα × λβ)

It suffices for our purposes to recognize that, as was the case for H1 and H2 above,
H3 can be written as above involving commutators of the surface coordinates λ j , spatial
derivatives ∂i and the flat Riesz transforms Rk .
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