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Abstract: We prove an orbifold conjecture for conformal field theory with a solvable
automorphism group. Namely, we show that if V is a C2-cofinite simple vertex operator
algebra and G is a finite solvable automorphism group of V , then the fixed point ver-
tex operator subalgebra V G is also C2-cofinite, where C2-cofiniteness is equivalent to
the condition that V has only finitely many isomorphism classes of simple V -modules
(including weak modules) and all finitely generated V -modules have composition series.
This result offers a mathematically rigorous background to orbifold theories with solv-
able automorphism groups.

1. Introduction

In order to explain the moonshine phenomenon on the monster simple group and the
modular functions, Borcherds [1] has introduced a concept of vertex (operator) algebra
as an algebraic version of conformal field theory. It is a quadruple (V, Y, 1, ω) satisfy-
ing the several axioms, where V is a graded vector space V = ⊕∞

i=−K Vi , Y (v, z) =
∑

m∈Z
vm z−m−1 ∈ End(V )[[z, z−1]] denotes a vertex operator of v ∈ V on V which sat-

isfies Borcherds identity (2.1), 1 ∈ V0 and ω ∈ V2 are specified elements called the vac-
uum and the Virasoro element of V , respectively. We set Y (ω, z) = ∑

n∈Z
L(n)z−n−2.

One of the main targets in the research of vertex operator algebras (shortly VOA) is a
construction of VOAs of finite type, that is, all modules (including weak modules) have
a composition series consisting of only finitely many isomorphism classes of simple
modules. If V is a VOA and σ is a finite automorphism of order p, then a fixed point
subVOA V σ is called an orbifold model, (see [3,4]). So-called “orbifold conjecture”
says that if V is of finite type, then so is V σ . It is revealed that the above finiteness
condition is equivalent to the C2-cofiniteness by [2,8]. Here a V -module W is called to
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be C2-cofinite when C2(W ) = SpanC{v−2u | v ∈ V, u ∈ W, wt(v) > 0} has a finite
co-dimension in W . This condition was originally introduced by [13] as a technical
condition to prove the modular invariance property. It is very important and the most
general theorems require this condition. For example, the author in [9] mentioned that if
the orbifold model V σ is C2-cofinite, then we are able to get all the information of (weak)
V σ -modules from (twisted and ordinary) V -modules and every simple V σ -module is a
submodule of a (twisted or ordinary) V -module. Therefore, the C2-cofiniteness on V σ

offers a mathematically rigorous background to all orbifold theories.
For the orbifold conjecture, there are partial answers. For example, T. Abe has proved

it for a permutation automorphism of order p = 2. For lattice VOAs, Yamskulna [12]
has shown the case p = 2 and the author [10] has shown the case p = 3, which was
used to construct a new holomorphic VOA of central charge 24. In this paper, we will
prove all cases for any finite order p with the powerful help of the Borcherds identity
(2.1) and the skew-symmetry (4.1).

Main Theorem. Let V be a C2-cofinite simple VOA of CFT-type and σ ∈ Aut(V ) of
finite order p. Then a fixed point vertex operator subalgebra V σ is also C2-cofinite.

As corollaries, we have:

Theorem 1. Let V be a C2-cofinite simple VOA of CFT-type and G ≤ Aut(V ) finite
solvable. Then a fixed point vertex operator subalgebra V G is also C2-cofinite.

Corollary 2. Let V be a C2-cofinite VOA and a subVOA U is isomorphic to a lattice
VOA. Then the commutant E of U is C2-cofinite.

Corollary 3. If V is C2-cofinite and a subVOA U is isomorphic to a 2-dim. Ising model
L( 1

2 , 0) of central charge 1
2 , then the commutant E of U is C2-cofinite.

Here the commutant E of U is defined by {v ∈ V | umv = 0 for all u ∈ U, m ≥ 0}.
We note that it is a subVOA.

Remark 1. In this paper, we assume that V is of CFT-type. This is because of simplifying
the proof. From our proof, it is not difficult to see that we have the same conclusion
without the assumption of CFT-type.

We close this introduction by acknowledging with thanks a number of communi-
cations with Yu-ichi Tanaka and Shigeki Akiyama. The author thanks Toshiyuki Abe,
Hiroshi Yamauchi and Atsushi Matsuo for reviewing the manuscript and their sugges-
tions about the shorter proofs. He also thanks the organizers of the conference held at
Taitung University in March 2013 for their hospitality.

2. Truncation Property

From the axiom of VOAs, for v ∈ Vr and u ∈ Vn , we have vmu ∈ Vr−m−1+n . Hence
there is an integer N such that vnu = 0 for any n > N . This is called a truncation
property. To simplify the notation, we will say that v is truncated on u.

Set V ∗ = Hom(V, C) and define a pairing 〈·, ·〉 by 〈v, ξ 〉 = ξ(v) for ξ ∈ V ∗ and
v ∈ V . For v ∈ V and m ∈ Z, actions vm on V ∗ are defined by

〈w, Y ∗(v, z)ξ 〉 = 〈Y (eL(1)z(−z−2)L(0)v, z−1)w, ξ 〉



C2-Cofiniteness of Cyclic-Orbifold Models 1281

for w ∈ V, ξ ∈ Hom(V, C), where Y ∗(v, z) = ∑
m∈Z

vm z−m−1 is called an adjoint
operator of v. An important fact is that (⊕∞

m=0Hom(Vm, C), Y ∗) becomes a V -module,
see [6] for the proof. This module is called a restricted dual of V which is denoted by
V ′. In particular, Y ∗(·, z) satisfy the Borcherds identity:

∞∑

i=0

(
m

i

)

(ur+iv)m+n−iξ =
∞∑

j=0

(−1) j
(

r

j

)

(ur+m− jvn+ jξ − (−1)rvr+n− j um+ jξ)

(2.1)

for any m, n, r ∈ Z, v, u ∈ V, ξ ∈ V ′. Since V ∗ = ∏
n Hom(Vn, C), we can

express ξ ∈ V ∗ by
∏

n ξ(n) with ξ(n) ∈ Hom(Vn, C). We call ξ ∈ V ∗ L(0)-free if
dim C[L(0)]ξ = ∞, that is, ξ(n) �= 0 for infinitely many n. We note that if V is C2-
cofinite, then any (weak) module does not contain L(0)-free elements.

The weight of the terms in (2.1) for ξ ∈ Hom(Vt , C) and that for ξ ∈ Hom(Vs, C)

are different when t �= s. We also have that the both sides of (2.1) are well-defined for
each ξ ∈ Hom(Vt , C). Therefore the Borcherds’ identity is also well-defined on V ∗, as
Haisheng Li has pointed out in [7]. However, V ∗ is not a V -module. The problem is a
failure of truncation properties.

Lemma 4. If u and v are truncated on ξ , then vmu is also truncated on ξ for any m.
In particular, if V is generated by � ⊆ V as a vertex algebra and all elements in � are
truncated on ξ , then all elements in V are truncated on ξ .

Proof. We may assume unξ = vnξ = unv = 0 for n ≥ N . We assert that for s ∈ N

and n ≥ 2N + s, we have (uN−sv)nξ = 0. Suppose false and let s be a minimal
counterexample. Substituting r = N − s, n = N + s + p, m = N + q in (2.1) with
p, q ≥ 0, the left side equals

LH =
∞∑

i=0

(
N + q

i

)

(uN−s+iv)2N+q+s+p−iξ =
s∑

i=0

(
N + q

i

)

(uN−(s−i)v)2N+s−i+p+qξ

= (uN−sv)2N+s+p+qξ

by the minimality of s. On the other hand, the right side is

RH =
∞∑

i=0

(−1)i
(

N −s

i

) (
u2N−s+q−ivN+s+p+iξ − (−1)N−sv2N−s+p−i uN+q+iξ

)
= 0,

which contradicts the choice of s. �

Since vnumξ = umvnξ +
∞∑

i=0

(
n

i

)

(vi u)n+m−iξ , Lemma 2 (see also Li [7]) implies:

Lemma 5. If v, u ∈ V are truncated on ξ ∈ V ∗, then v is truncated on umξ for any m.
In particular, if all elements of V are truncated on ξ , then SpanC{u1

m1
· · · uk

mk
ξ | ui ∈

V, mi ∈ Z} is a V -module.
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3. General Setting

Let (V, Y, 1, ω) be a C2-cofinite VOA and σ an automorphism of V of order p. Viewing
V as a < σ >-module, we decompose

V = V (0) ⊕ V (1) ⊕ · · · ⊕ V (p−1)

where V (m) = {v ∈ V | vσ = e2π
√−1m/pv}. If V (1) and V (p−1) are C2-cofinite, then so

is V (0) by the main theorem in [11]. Therefore we assume that V (1) is not C2-cofinite.
For A, B ⊆ V and m ∈ Z, A(m) B denotes a subspace SpanC{amb | a ∈ A, b ∈ B}.

Lemma 6. (V (1))(−2)V (0) + (V (0))(−2)V (1) has a finite co-dimension in V (1).

Proof. Suppose false, i.e. V (1)
m /((V (1))(−2)V (0) + (V (0))(−2)V (1))m �= 0 for infinitely

many m. Then there is a L(0)-free element ξ ∈ (V (1))∗ such that 〈(V (1))(−2)V (0) +
(V (0))(−2)V (1), ξ 〉 = 0. In other words,

0 = 〈v−2−Nu, ξ 〉 = 〈u−2−Nv, ξ 〉
for any v ∈ V (1) and u ∈ V (0). Since V (1) is a direct summand of V , we may view
(V (1))∗ ⊆ V ∗. By taking adjoint operators, we have:

〈u, v2wt(v)+Nξ 〉 = 〈(−1)wt(v)
∞∑

s=0

1

s! (L(1)sv)−2−s−Nu, ξ 〉 = 0

〈v, u2wt(u)+Nξ 〉 = 〈(−1)wt(u)
∞∑

s=0

1

s! (L(1)su)−2−s−Nv, ξ 〉 = 0,

which imply that v ∈ V (1) and u ∈ V (0) truncate on ξ . However, since V is simple,
V (1) + V (0) generates a C2-cofinite VOA V by normal products, which contradicts that
ξ is L(0)-free. �

So, there is a finite dimensional subspace P of V (1) such that V (1) = (V (1))(−2)V (0)+
(V (0))(−2)V (1) + P . We may assume that P is a direct sum of homogeneous spaces.

Proposition 7. V (1) = (V (0))(−2)V (1) + C[L(−1)]P.

Proof. Suppose false and we choose 0 �= w ∈ V (1) − ((V (0))(−2)V (1) + C[L(−1)]P)

with minimal weight. Since V (1) = (V (1))(−2)V (0)+(V (0))(−2)V (1)+ P , we may assume
w ∈ (V (1))(−2)V (0). We may also assume w = a−2u with a ∈ V (1) and u ∈ V (0). Then
by the skew-symmetry (4.1), we have

w = −u−2a −
∞∑

j=1

(−1) j

j ! L(−1) j u−2+ j a.

Since wt(u−2+ j a) < wt(u−2a) = wt(w) for j ≥ 1, we have

w ∈ (V (0))(−2)V
(1) + C[L(−1)](V (0))(−2)V

(1) + C[L(−1)]P

⊆ (V (0))(−2)V
(1) + C[L(−1)]P

by the minimality of wt(w), which contradicts the choice of w. �
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4. The Coefficient Functions

Since L(−1)C2(V (1)) ⊆ C2(V (1)), V (1)/C2(V (1)) is a finitely generated C[L(−1)]-
module by Proposition 7 and so the L(−1)-torsion part has a finite dimension. Let T̃
be the inverse image in V (1) of the L(−1)-torsion submodule of V (1)/C2(V (1)). Since
dim V (1)/C2(V (1)) = ∞, there is a set of free generators {αi : i = 1, . . . , t} such that

V (1) =
(
⊕t

i=1C[L(−1)]αi
)

⊕ T̃ .

Set T̂ = (⊕t
i=2C[L(−1)]αi

) ⊕ T̃ and α = α1, then T̂ is C[L(−1)]-invariant and

V (1) = C[L(−1)]α ⊕ T̂ .

We may assume that α is a homogeneous element.
We also introduce an equivalent relation ≡ on V (1) by modulo T̂ . Under this setting,

for any n ∈ N and any homogeneous elements a ∈ V (k) and b ∈ V (p−k+1), there are
complex numbers f a,b(n) such that

a−n−wt(α)+wt(a)+wt(b)−1b ≡ f a,b(n)α−n−11 (mod T̂ ).

We note L(−1)n

n! α = α−n−11 for n ∈ N. From now on, for a, b ∈ V , we always use M to
denote wt(a)+wt(b)−wt(α) for simplifying the notation. We view f a,b as a map from N

to C. We note that since wt(a−n+M−1b) < wt(α) for n ∈ Z<0, we have a−n+M−1b ∈ T
by the choice of α and so we may also consider f a,b(n) = 0 for n ∈ Z<0.

For k = 0, . . . , p − 1, we set

Fk = SpanC

{
f a,b | a ∈ V (k), b ∈ V (p−k+1)

}
.

For a map f : N → C, we define a map x f by (x f )(n) = n f (n).

Lemma 8. Fk are all C[x]-invariant.

Proof. Clearly, Fk is a vector space. Since

(L(−1)a)−n+M b = (n − M)a−n+M−1b ≡ (n − M) f a,b(n)α−n−11 (mod T̂ ),

we have x f a,b = f L(−1)a,b + M f a,b ∈ Fk . �
Lemma 9. For f ∈ F0, Q f = {n ∈ Z | f (n) �= 0} is a finite set. We will call such a
function finite type.

Proof. For a ∈ V (0), b ∈ V (1), we have a−n−1+M b ≡ f a,b(n)α−n−11 (mod T̂ ). There-
fore, a−n+M−1b ∈ C2(V (1)) and f a,b(n) = 0 for n ≥ M + 1. Since all elements in F0
are linear combinations of such elements, we have the desired result. �

For a map f : N → C, we introduce two operators S and T as follows:

S f (n) =
n∑

k=0

(
n

k

)

(−1)k f (k) for n ∈ N

T f (n) = (−1)n f (n) for n ∈ N.

Clearly, S2 = T 2 = id. We also have the following by induction.
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Lemma 10.

(ST )k f (n) =
n∑

j=0

(
n

j

)

k j f (n − j) for k = 1, . . .

The following is a key result.

Lemma 11. For k = 1, 2, . . . , p − 1, we have:

F1+p−k = S(Fk) and Fp−k = T (Fk).

Proof. The operator S comes from the skew-symmetry. In fact, for a ∈ V (k), b ∈
V (p−k+1) and a−n+M−1b ≡ f a,b(n)α−n−11 for x ∈ N, then

b−n+M−1a ≡ (−1)n+M
∞∑

k=0

L(−1)k

k! (−1)ka−(n−k)+M−1b

≡ (−1)n+M
n∑

k=0

L(−1)k

k! (−1)k f a,b(n − k)α−n+k−11

since L(−1)ka−n+k+M−1b ∈ T̂ for k > n,

≡ (−1)n+M
n∑

k=0

(
n

k

)

(−1)k f a,b(n − k)α−n−11

≡ (−1)M
n∑

k=0

(
n

k

)

(−1)k f a,b(n)α−n−11 ≡ (−1)M S f a,b(n)α−n−11. (4.1)

Therefore, f b,a(n) = (−1)M S f a,b(n) and F1+p−k = S(Fk).
For any m ∈ Z and h ∈ N, by substituting n = −m − 2 − h and r = −x + N + h in

the Borcherds’ identity (2.1), we have

0 ≡
∞∑

i=0

(
m

i

)

(u−n+N+h+iv)−2−h−iξ

=
∞∑

j=0

(−n + N + h

j

)

(−1) j u−n+N+h+m− jv−m−2−h+ jξ

− (−1)−n
−m+wt(u)+wt(ξ)∑

j=0

(−n + N + h

j

)

(−1) j+N+hv−n+N−m−2− j um+ jξ

for u ∈ V (k), v ∈ V (p−k), ξ ∈ V (1), where N = wt(ξ) + wt(u) + wt(v). We note
um+ jξ = 0 for j ≥ Q = wt(u) + wt(ξ) − m. Since we will treat only v−n+N−m−2umξ

later, we may assume umξ �= 0 and so Q ≥ 1. Let us consider a Q × Q-matrix

A := ((−1)h− j+N
(−x + h + N

j

)

)h, j=0,...,Q−1

consisting of coefficients of (−1)xv−x−2+N− j−m(um+ jξ), where we view n as a vari-
able x . It is easy to see det A = ±1 since

(s+1
j

) − (s
j

) = ( s
j−1

)
. Therefore, there are
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polynomials λm
h (x) ∈ C[x] for 0 ≤ h < Q such that

(−1)xv−x−2+N−mumξ

≡
Q−1∑

h=0

λm
h (x)

⎛

⎝
N+h+m+2∑

j=0

(−x + h + N

j

)

(−1) j u−x+h+m+N− j (v−2−m−h+ jξ)

⎞

⎠.

Since the coefficients of the right side at α−x−11 are all in Fk by Lemma 8, the above
equation implies that a function defined by v−x−2+N−mumξ is in T (Fk) for any v ∈
V (p−k), u ∈ V (k), ξ ∈ V (1) and m ∈ Z. Since V (1+k) is a simple V (0)-module, V (1+k)

is spanned by elements with the form umξ with u ∈ V (k), ξ ∈ V (1) and m ∈ Z and so
we have T (Fp−k) ⊆ Fk for any k. Since T 2 = 1, we have the equality T (Fk) = Fp−k .

�
Now we are able to complete the proof of Main Theorem. As we have shown, every

elements in F0 is of finite type. In particular, since 1−x−1α = δ0,xα, we have δ0,x ∈ F0.
On the other hand, by Lemma 11, we have

F0 F1 F2 · · · Fp−1 F0
↓ T ↗ S ↓ T ↗ S ↓ T ↗ S · · · ↗ S ↓ T ↗ S
F0 Fp−1 Fp−2 · · · F1

where p is the order of σ . In particular, we have (ST )p(F0) = F0. However, since
(ST )p(δ0,x )(n) = pn is not of finite type. We have a contradiction.

This completes the proof of Main Theorem. �
As last, we will prove corollaries of Main Theorem.

Proof of Theorem 1. Let V be a C2-cofinite simple VOA and G a finite solvable sub-
group of Aut(V ). We will prove Theorem 1 by the induction on |G|. Since G is solvable,
G has a normal abelian subgroup A �= 1. We first assume that G = A and let 1 �= σ ∈ G
be an element of prime order. Then V σ is C2-cofinite by Main Theorem. Furthermore,
V σ is simple by [5]. Therefore, V G = (V σ )G/<σ> is also C2-cofinite by the induction,
which proves the assertion of Theorem 1. So, we have A < G. By the minimality of
|G|, V A is C2-cofinite and it is also simple by [5]. Therefore, by the minimality of
|G|, V G = (V A)G/A is also C2-cofinite.

Proof of Corollary 1. Assume U ∼= VL for some lattice L and set L∗ = {a ∈ QL |
〈a, L〉 ⊆ Z}. We view V as a VL -module. Since VL is rational and the category of
VL -modules have a L∗/L-module structure, the actions of G = Hom(L∗/L , C

×) on
V are induced from this structure. Then V G ∼= U ⊗ E , where E is a commutant of U
in V . By Theorem 1, U ⊗ E is C2-cofinite. If E is not C2-cofinite, then E has a weak
module B containing L(0)-free element by [8] and so U ⊗ E has a weak module U ⊗ B
containing L(0)-free elements, which contradicts the C2-cofiniteness on U ⊗ E .

Proof of Corollary 2. Let U ∼= L( 1
2 , 0) and we view V as a U -module. Since L( 1

2 , 0)

is rational, V is a direct sum of simple U -modules. Then τ defined by Id on L( 1
2 , 0) and

L( 1
2 , 1

2 ) and −Id on L( 1
2 , 1

16 ) as U -modules, respectively, becomes an automorphism of
V by the fusion rules of L( 1

2 , 0)-modules. Then V τ is C2-cofinite by Main Theorem and
simple by [5]. We then view it as a U -module, whose compositions are isomorphic to
L( 1

2 , 0) or L( 1
2 , 1

2 ) as U -modules. Then σ defined by Id on L( 1
2 , 0) and −Id on L( 1

2 , 1
2 )
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as U -modules, respectively, is again an automorphism of V τ . Then (V τ )σ = U ⊗ E ,
where E is a commutant of U in V . By Main Theorem, U ⊗ E is C2-cofinite and so is
E by the same argument as above.
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