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Abstract: We show that the new quantum extension of Rényi’s α-relative entropies,
introduced recently by Müller-Lennert et al. (J Math Phys 54:122203, 2013) and Wilde
et al. (Commun Math Phys 331(2):593–622, 2014), have an operational interpretation
in the strong converse problem of quantum hypothesis testing. Together with related
results for the direct part of quantum hypothesis testing, known as the quantum Hoeffding
bound, our result suggests that the operationally relevant definition of the quantum Rényi
relative entropies depends on the parameter α: for α < 1, the right choice seems to be the
traditional definition D(old)

α (ρ ‖ σ) := 1
α−1 log Tr ρασ 1−α , whereas for α > 1 the right

choice is the newly introduced version D(new)
α (ρ ‖ σ) := 1

α−1 log Tr
(
σ

1−α
2α ρσ

1−α
2α

)α
.

On the way to proving our main result, we show that the new Rényi α-relative en-
tropies are asymptotically attainable by measurements for α > 1. From this, we obtain
a new simple proof for their monotonicity under completely positive trace-preserving
maps.

1. Introduction

Rényi, in his seminal paper [45], introduced a generalization of the Kullback–Leibler
divergence (relative entropy). According to his definition, the α-divergence of two prob-
ability distributions (more generally, two positive functions) p and q on a finite set X
for a parameter α ∈ [0,+∞)\{1} is given by

Dα (p ‖ q)

:=
{

1
α−1 log

∑
x∈X p(x)αq(x)1−α − 1

α−1 log
∑

x∈X p(x), supp p⊆supp q or α∈[0, 1),

+∞, otherwise.

(1)
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The limit α→ 1 yields the standard relative entropy. These quantities turned out to play
a central role in information theory and statistics; indeed, the Rényi relative entropies and
derived quantities quantify the trade-off between the exponents of the relevant quantities
in many information-theoretic tasks, including hypothesis testing, source coding and
noisy channel coding; see, e.g. [10] for an overview of these results. It was also shown
in [10] that the Rényi relative entropies, and other related quantities, like the Rényi
entropies and the Rényi capacities, have direct operational interpretations as so-called
generalized cutoff rates in the corresponding information-theoretic tasks.

In quantum theory, the state of a system is described by a density operator instead
of a probability distribution, and the definition (1) can be extended for pairs of density
operators (more generally, positive operators) in various inequivalent ways, due to the
non-commutativity of operators. There are some basic requirements any such extension
should satisfy; most importantly, positivity and monotonicity under CPTP (completely
positive and trace-preserving) maps. That is, if Dα is an extension of (1) to pairs of
positive semidefinite operators, then it should satisfy

Dα (ρ ‖ σ) ≥ 0 and Dα (ρ ‖ σ) = 0 ⇐⇒ ρ = σ (positivity)

for any density operators ρ, σ and α > 0, and if F is a CPTP map then

Dα (F(ρ) ‖F(σ )) ≤ Dα (ρ ‖ σ) (monotonicity) (2)

should hold.
One formal extension has been known in the literature for a long time, defined as

D(old)
α (ρ ‖ σ) :=

{
1
α−1 log Tr ρασ 1−α − 1

α−1 log Tr ρ, supp ρ⊆supp σ or α∈[0, 1),
+∞, otherwise.

(3)
Hölder’s inequality ensures positivity of D(old)

α for every α > 0. Monotonicity has been
proved for α ∈ [0, 2]\{1}with various methods [29,40,48], but it doesn’t hold for α > 2
in general, as it was noted, e.g., in [34]. Monotonicity under measurements, however, is
still true for α > 2 [17]. In the limit α→ 1, these divergences yield Umegaki’s relative
entropy [49]

D1 (ρ ‖ σ) := lim
α→1

D(old)
α (ρ ‖ σ)

= D (ρ ‖ σ) :=
{

1
Tr ρ Tr ρ(log ρ − log σ), supp ρ ⊆ supp σ,

+∞, otherwise.
(4)

The quantum Stein’s lemma [22,39] gives an operational interpretation to Umegaki’s
relative entropy (which we will call simply relative entropy for the rest) in a state dis-
crimination problem, as the optimal decay rate of the type II error under the assumption
that the type I error goes to 0 (see Sect. 4.1 for details). This shows that Umegaki’s rela-
tive entropy is the right non-commutative extension of the Kullback–Leibler divergence
from an information-theoretic point of view.

It has been shown in [31] that, similarly to the classical case, the Rényi α-relative
entropies D(old)

α with α ∈ (0, 1) have a direct operational interpretation as generalized
cutoff rates in binary state discrimination. This in turn is based on the so-called quantum
Hoeffding bound theorem, which quantifies the trade-off between the optimal exponen-
tial decay rates of the two error probabilities in binary state discrimination [2,18,24,36].
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In more detail, it says that if the type II error is required to vanish asymptotically as
∼e−nr for some r > 0 (n is the number of the copies of the system, all prepared in state
ρ or all prepared in state σ ) then the optimal type I error goes to 0 exponentially fast
with the exponent given by the Hoeffding divergence

Hr (ρ‖σ) := sup
0<α<1

α − 1

α

[
r − D(old)

α (ρ ‖ σ)
]
, (5)

as long as r < D (ρ ‖ σ). The transformation rule defining Hr (ρ‖σ) from the α-relative
entropies can be inverted, and D(old)

α (ρ ‖ σ) can be expressed in terms of the Hoeffding
divergences for any α ∈ (0, 1). These results suggest that D(old)

α gives the right quantum
extension of the Rényi α-relative entropies for the parameter range α ∈ (0, 1).

Recently, a new quantum extension of the Rényi α-relative entropies has been pro-
posed in [34,50], defined as

D(new)
α (ρ ‖ σ) :=

⎧
⎨
⎩

1
α−1 log Tr

(
σ

1−α
2α ρσ

1−α
2α

)α− 1
α−1 log Tr ρ, supp ρ⊆supp σ or α∈[0, 1),

+∞, otherwise.

(6)

These new Rényi divergences also yield Umegaki’s relative entropy in the limit α→ 1.
Monotonicity for the range α ∈ (1, 2] has been shown in [34,50] and extended to
α ∈ (1,+∞) in [4] and, independently and with a different proof method, for the range
α ∈ [ 1

2 , 1)∪ (1,+∞) in [13]. It is claimed in [34] that these new Rényi relative entropies
are not monotone for α ∈ [0, 1

2 ). Positivity follows immediately from the monotonicity
for α ∈ [ 1

2 , 1) ∪ (1,+∞). The Araki–Lieb–Thirring inequality [1,30] (see also [6,
Theorem IX.2.10]) implies that

D(new)
α (ρ ‖ σ) ≤ D(old)

α (ρ ‖ σ) (7)

for every ρ, σ and α ∈ (0,+∞)\{1}. Moreover, the results of [23] yield that for non-
commuting operators the above inequality is strict for allα ∈ (0,+∞)\{1}. The converse
Araki–Lieb–Thirring inequality of [3] implies lower bounds on D(new)

α in terms of D(old)
α

[32].
In this paper we show that the new Rényi relative entropies with α > 1 play the same

role in the converse part of binary state discrimination as the old Rényi relative entropies
with α ∈ (0, 1) play in the direct part. Namely, we show (in Theorem 4.10) that if the
type II error is required to vanish asymptotically as ∼e−nr with some r > D (ρ ‖ σ)
then the optimal type I error goes to 1 exponentially fast, with the exponent given by the
converse Hoeffding divergence

H∗
r (ρ‖σ) := sup

1<α

α − 1

α

[
r − D(new)

α (ρ ‖ σ)
]
. (8)

From this, we derive (in Theorem 4.18) a representation of the new Rényi relative
entropies as generalized cutoff rates in the strong converse domain, thus providing a
direct operational interpretation of the new Rényi relative entropies for α > 1. These
results are direct quantum counterparts of the well-known classical results by Han and
Kobayashi [14] and Csiszár [10]. In the quantum case, Hayashi [17] obtained a limiting
formula for the strong converse exponent using the classical Rényi relative entropies;
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see Remarks 3.4 and 4.14. Our Eq. (8) can be seen as a single-letterization of Hayashi’s
exponent.

In the proof we only use the monotonicity of the new Rényi relative entropies under
pinching [34, Proposition 13], and show (in Theorem 3.7) that the new Rényi relative
entropies can be asymptotically attained by measurements, similarly to the relative en-
tropy [22]. Based on this, we provide a simple new proof for the monotonicity of D(new)

α

under CPTP maps for α > 1. We give an overview of the monotonicity and attainability
properties of the old and the new Rényi relative entropies in Appendix A.

Our results suggest that, somewhat surprisingly, the right formula to define the Rényi
α-relative entropies for quantum states depends on whether the parameter α is below or
above 1; it seems that for α < 1, one should use the old Rényi relative entropies, while
for α > 1, the new Rényi relative entropies are the right choice. Hence, we suggest
to define the Rényi relative entropies for quantum states (more generally, for positive
operators) ρ, σ as

Dα (ρ ‖ σ) :=

⎧⎪⎪⎨
⎪⎪⎩

1
α−1 log Tr ρασ 1−α− 1

α−1 log Tr ρ, α∈[0, 1),

1
α−1 log Tr

(
σ

1−α
2α ρσ

1−α
2α

)α− 1
α−1 log Tr ρ, α>1 and supp ρ⊆supp σ,

+∞, otherwise.

2. Preliminaries

For a finite-dimensional Hilbert space H, let L(H) denote the set of linear operators
on H, let L(H)+ denote the set of positive semidefinite operators, and S(H) be the set
of density operators (states) on H (i.e., positive semidefinite operators with trace 1). A
finite-valued POVM (positive operator valued measure) on H is a map M : I → L(H),
where I is some finite set, 0 ≤ Mi , i ∈ I, and

∑
i∈I Mi = I . We denote the set of

POVMs on H by M(H).
Any Hermitian operator A ∈ L(H) admits a spectral decomposition A = ∑

i ai Pi ,
where ai ∈ R and the Pi are orthogonal projections. We introduce the notation {A >

0} := ∑
i : ai>0 Pi for the spectral projection of A corresponding to the positive half-line

(0,+∞). The spectral projections {A ≥ 0}, {A < 0} and {A ≤ 0} are defined similarly.
The positive part of A is defined as

A+ := A{A > 0}, (9)

and it is easy to see that

Tr A+ = Tr A{A > 0} = max
0≤T≤I

Tr AT ≥ 0. (10)

In particular, if ρn and σn are self-adjoint operators then for any a ∈ R the application
of (10) to A = ρn − enaσn yields

Tr ρn{ρn − enaσn > 0} ≥ ena Tr σn{ρn − enaσn > 0}. (11)

If F is a positive trace-preserving map then

Tr F(A)+ = max
0≤T≤I

Tr F(A)T = max
0≤T≤I

Tr AF∗(T ) ≤ max
0≤S≤I

Tr AS = Tr A+.

In particular, we have the following lemma.
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Lemma 2.1. Letρn andσn be self-adjoint operators andF be a positive trace-preserving
map. Then for any a ∈ R,

Tr(ρn − enaσn)+ ≥ Tr(F(ρn)− enaF(σn))+. (12)

Let A be a Hermitian operator on H with spectral decomposition A = ∑
i ai Ei . The

pinching operation EA corresponding to A is defined as

EA(B) :=
∑

i

Ei B Ei , B ∈ L(H). (13)

It is also denoted by EE (B) in terms of the PVM (projection-valued measure) E = {Ei }i .
Note that EA(B) is the unique operator in the commutant {A}′ of {A} satisfying

∀C ∈ {A}′, Tr BC = Tr EA(B)C. (14)

The following lemma is from [16,17]:

Lemma 2.2 (Pinching inequality). Let A be self-adjoint and B be a positive semidefinite
operator on H. Then

B ≤ v(A)EA(B),

where v(A) denotes the number of different eigenvalues of A.

All through the paper, ρ and σ will denote positive semidefinite operators on some
finite-dimensional Hilbert space H, and we use the notation

ρn := ρ⊗n, σn := σ⊗n, ρ̂n := Eσn (ρn), vn := v(σn), (15)

where Eσn is the pinching operation corresponding to σn , and vn denotes the number of
different eigenvalues of σn . Note that vn ≤ (n + 1)dim H, and Lemma 2.2 yields

ρn ≤ vn ρ̂n ≤ (n + 1)dim Hρ̂n . (16)

The power of the pinching inequality for asymptotic analysis comes from the fact that

lim
n→+∞

1

n
log vn = 0,

which we will use repeatedly and without further explanation in the paper.
We will use the convention that powers of a positive semidefinite operator are only

taken on its support and defined to be 0 on the orthocomplement of its support. That
is, if a1, . . . , ar are the eigenvalues of A ≥ 0, with corresponding eigenprojections
P1, . . . , Pr , then Ap := ∑

i : ai>0 a p
i Pi for any p ∈ R. In particular, A0 is the projection

onto the support of A.
We will also use the convention log 0 := −∞.
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3. Properties of the New Rényi Relative Entropies

For positive semidefinite operators ρ and σ , and α ∈ R, let

Fα(ρ‖σ) := log Tr
(
σ

1−α
2α ρσ

1−α
2α

)α
. (17)

For a POVM M = {Mx }x , we can consider the corresponding classical quantity as

F M
α (ρ‖σ) := log

(∑
x

{Tr ρMx }α{Tr σMx }1−α
)
. (18)

Note that for states ρ and σ such that supp ρ ⊆ supp σ , 1
α−1 Fα(ρ‖σ) is the new Rényi

α-relative entropy defined in (6), and 1
α−1 F M

α (ρ‖σ) is the post-measurement Rényi
α-relative entropy.

In this section we show that for every α > 1, the new Rényi α-relative entropies are
asymptotically attainable by measurements in the limit of infinitely many copies of ρ
and σ ; for this we only use that the new Rényi α-relative entropies are monotonic under
pinching by the reference state, which is very simple to show. From this we derive a new
simple proof for the monotonicity of the new Rényi α-relative entropies.

Monotonicity in the classical case is well-known and easy to prove; we state it ex-
plicitly here for completeness:

Lemma 3.1 (Classical monotonicity). Let ρ, σ ∈ B(H)+ be commuting operators such
that supp ρ ⊆ supp σ , and let F : B(H)→ B(K) be a positive trace-preserving map
such that F(ρ) commutes with F(σ ). For every α > 1, Fα(F(ρ)‖F(σ )) ≤ Fα(ρ‖σ).
Proof. The proof is an elementary argument based on the convexity of the function
x �→ xα on [0,+∞) for α > 1; details can bee found e.g. in [25, Proposition A.3]. ��

The following has been shown in [34, Proposition 13]. We reproduce the proof here
for readers’ convenience.

Lemma 3.2 (Monotonicity under pinching). Let ρ, σ ∈ L(H)+ and α ≥ 1. Then

Fα(Eσ (ρ)‖σ) ≤ Fα(ρ‖σ). (19)

Proof. It is easy to see that σ
1−α
2α Eσ (ρ)σ 1−α

2α = Eσ
(
σ

1−α
2α ρσ

1−α
2α

)
, and Problem II.5.5

with Theorem II.3.1 in [6], applied to the convex function f (t) = tα , yields the
assertion. ��

Using the above two lemmas, we can prove monotonicity under measurements.

Lemma 3.3 (Monotonicity under measurements). Letρ, σ ∈ L(H)+ be such that supp ρ
⊆ supp σ . For any POVM M = {Mx }x ∈ M(H), we have

F M
α (ρ‖σ) ≤ Fα(ρ‖σ), α ≥ 1. (20)



Quantum Hypothesis Testing 1623

Proof. For any POVM Mn = {Mn(x)}x on H⊗n and any α ≥ 1,
∑

x

(Tr ρn Mn(x))
α (Tr σn Mn(x))

1−α ≤ vαn
∑

x

(Tr ρ̂n Mn(x))
α (Tr σn Mn(x))

1−α

(21)

≤ vαn Tr ρ̂αn σ
1−α
n (22)

≤ vαn Tr

(
σ

1−α
2α

n ρnσ
1−α
2α

n

)α
, (23)

where the first inequality is due to (16), the second inequality follows from Lemma 3.1,
and the third one from Lemma 3.2.

Now let M = {Mx }x∈X ∈ M(H) be a POVM on a single copy, and Mn be its nth
i.i.d. extension, i.e.,

Mn(x) := Mx1 ⊗ · · · ⊗ Mxn , x ∈ X n . (24)

Then we obtain
(∑

x

(Tr ρMx )
α (Tr σMx )

1−α
)n

=
∑

x

(
Tr ρn Mn(x)

)α (
Tr σn Mn(x)

)1−α

≤ vαn Tr

(
σ

1−α
2α

n ρnσ
1−α
2α

n

)α

= vαn

(
Tr

(
σ

1−α
2α ρσ

1−α
2α

)α)n
. (25)

Taking the logarithm and dividing by n yields

F M
α (ρ‖σ) ≤ Fα(ρ‖σ) +

α

n
log vn, (26)

which proves the lemma by taking the limit n →∞. ��
Remark 3.4. The technique used in the proof of the above lemma is essentially due to
[17] (see around page 88), where the inequalities (21) and (22) have been shown.

Remark 3.5. Note that the assumption supp ρ ⊆ supp σ was necessary to apply clas-
sical monotonicity in (22). In fact, the statement of Lemma 3.3 need not hold with-
out this assumption. Indeed, in the extreme case where ρ and σ have orthogonal sup-
ports, we have Fα(ρ‖σ) = −∞, and the trivial POVM M = {I } yields F M

α (ρ‖σ) =
log(Tr ρ)α(Tr σ)1−α , which is a finite number unless ρ or σ is equal to 0.

The following lemma is standard:

Lemma 3.6. Let A and B be Hermitian operators on H with their spectrum in some
interval I , and let f : I → R be a monotone increasing function. If A ≤ B then
Tr f (A) ≤ Tr f (B). In particular,

0 ≤ A ≤ B �⇒ Tr Aα ≤ Tr Bα α > 0.

Proof. Let {λ↓i (A)}dim H
i=1 denote the sequence of decreasingly ordered eigenvalues of

A. By the Courant–Fischer–Weyl minimax principle [6, Corollary III.1.2], λ↓i (A) ≤
λ
↓
i (B), 1 ≤ i ≤ dim H, from which the assertion follows. ��



1624 M. Mosonyi, T. Ogawa

Theorem 3.7 (Asymptotic attainability). Let ρ, σ ∈ L(H)+ be such that supp ρ ⊆
supp σ . For any α ≥ 1, we have

Fα(ρ‖σ) = lim
n→∞

1

n
Fα(ρ̂n‖σn)

= lim
n→∞

1

n
max

Mn∈M(H⊗n)
F Mn
α (ρn‖σn), (27)

where the maximization in the second line is over all POVMs on H⊗n.

Proof. Since σn and ρ̂n commute, they have a common eigenbasis {en(i)}dn
i=1, dn =

(dim H)n . Let En = {En(i) = |en(i)〉〈en(i)|}dn
i=1 be the corresponding projection-

valued measure. Then

1

n
Fα(ρ̂n‖σn) = 1

n
F En
α (ρn‖σn) ≤ 1

n
max

Mn
F Mn
α (ρn‖σn) ≤ 1

n
Fα(ρn‖σn) = Fα(ρ‖σ),

(28)

where the last inequality is due to Lemma 3.3. By Lemma 2.2,

0 ≤ σ
1−α
2α

n ρnσ
1−α
2α

n ≤ vnσ
1−α
2α

n ρ̂nσ
1−α
2α

n = vn

dn∑
i=1

(Tr ρn En(i)) (Tr σn En(i))
1−α
α En(i),

(29)

and Lemma 3.6 yields

Tr

(
σ

1−α
2α

n ρnσ
1−α
2α

n

)α
≤vαn Tr

(
σ

1−α
2α

n ρ̂nσ
1−α
2α

n

)α
=vαn

dn∑
i=1

(Tr ρn En(i))
α (Tr σn En(i))

1−α.

(30)

Taking the logarithm, we obtain

Fα(ρ‖σ) ≤ 1

n
Fα(ρ̂n‖σn) +

α

n
log vn = 1

n
F En
α (ρn‖σn) +

α

n
log vn

≤ 1

n
max

Mn
F Mn
α (ρn‖σn) +

α

n
log vn . (31)

Combining this with (28), and taking the limit n → +∞, the assertion follows. ��
Theorem 3.7 implies the asymptotic attainability for the Rényi relative entropies:

Corollary 3.8. For any ρ, σ ∈ L(H)+ and α > 1, we have

D(new)
α (ρ‖σ) = lim

n→∞
1

n
D(new)
α (ρ̂n‖σn)

= lim
n→∞

1

n
max

Mn∈M(H⊗n)
D(new)
α ({Tr ρn Mn(x)}x∈X ‖{Tr σn Mn(x)}x∈X ) ,

(32)

where the maximization in the second line is over all POVMs on H⊗n.
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Proof. The case where supp ρ ⊆ supp σ is immediate from Theorem 3.7. On the other
hand, if supp ρ � supp σ then also supp ρ̂n � supp σn , and hence, by the defini-

tion (6), D(new)
α (ρ‖σ) = D(new)

α (ρ̂n‖σn) = maxMn∈M(H⊗n) D(new)
α ({Tr ρn Mn(x)}x∈X

‖{Tr σn Mn(x)}x∈X ) = +∞ for every n ∈ N, making the assertion trivial. ��
Remark 3.9. The same statement for the relative entropy has been shown in [22].

Remark 3.10. The maximum over all measurements in (32) can be replaced by a concrete
binary POVM given by a Neyman–Pearson test; see Corollary 4.6.

Theorem 3.7 has a number of important further corollaries:

Corollary 3.11 (Convexity). For any fixed ρ, σ ∈ L(H)+ such that supp ρ ⊆ supp σ ,
Fα(ρ‖σ) is a convex function of α for α ≥ 1.

Proof. It is easy to see (by computing its second derivative) that Fα(ρ̂n‖σn) is a convex
function of α. Thus by Theorem 3.7, Fα(ρ‖σ) is a pointwise limit of convex functions,
and hence it is convex. ��
Corollary 3.12. For any fixed ρ, σ ∈ L(H)+, the function α �→ D(new)

α (ρ ‖ σ) is
monotone increasing for α > 1.

Proof. We can assume that supp ρ ⊆ supp σ , since otherwise D(new)
α (ρ ‖ σ) = +∞ for

every α > 1, and the assertion holds trivially. Note that supp ρ ⊆ supp σ implies that
F1(ρ‖σ) = log Tr ρ, and hence D(new)

α (ρ ‖ σ) = Fα(ρ‖σ)−F1(ρ‖σ)
α−1 . The assertion then

follows from Corollary 3.11. ��
Corollary 3.13 (Monotonicity). Let ρ, σ ∈ L(H)+ be such that supp ρ ⊆ supp σ , and
let F : L(H)→ L(K) be a CPTP map. Then

Fα(F(ρ)‖F(σ )) ≤ Fα(ρ‖σ), α > 1.

Proof. By complete positivity, Fn := F⊗n is positive for every n ∈ N. Let F∗
n :

L(K⊗n)→ L(H⊗n) be the dual (adjoint) of Fn , defined by

∀ω ∈ S(H⊗n), ∀A ∈ L(K⊗n), Tr Fn(ω)A = Tr ωF∗
n (A). (33)

Then F∗
n is a unital positive map. Thus, if {M(x)}x∈X ∈ M(K⊗n) is a POVM on K⊗n

then F∗
n (M) := {F∗

n (M(x))}x∈X is a POVM on H⊗n . Hence,

max
M∈M(K⊗n)

F M
α (Fn(ρn)‖Fn(σn)) = max

M∈M(K⊗n)
F

F∗
n (M)

α (ρn‖σn)

≤ max
M∈M(H⊗n)

F M
α (ρn‖σn) (34)

for any n. Now (34) and Theorem 3.7 yield the assertion. ��
Corollary 3.13 immediately implies the following:

Corollary 3.14. The new Rényi relative entropies are monotone under CPTP maps for
α > 1. That is, if ρ, σ ∈ L(H)+ and F : L(H)→ L(K) is a CPTP map then

Dα(F(ρ)‖F(σ )) ≤ Dα(ρ‖σ), α > 1, (35)

and the limit α ↘ 1 yields the same monotonicity property for the relative entropy.
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For ρ, σ ∈ L(H)+, let

Q(new)
α (ρ‖σ) := Tr

(
σ

1−α
2α ρσ

1−α
2α

)α
, α ∈ R+.

This is an analogy of the quasi-entropy [40] (or quantum f -divergence [25]) corre-
sponding to the function x �→ xα . However, Q(new)

α cannot be written in the form of
an f -divergence [25, Corollary 2.10]. Corollary 3.13 is equivalent to the monotonicity
of Q:

Corollary 3.15 (Monotonicity of Q). Let ρ, σ ∈ L(H)+ be such that supp ρ ⊆ supp σ ,
and let F : L(H)→ L(K) be a CPTP map. Then

Q(new)
α (F(ρ)‖F(σ )) ≤ Q(new)

α (ρ‖σ), α > 1.

Following the argument of [40], we immediately obtain the joint convexity of Q:

Corollary 3.16 (Joint convexity). Letρi , σi ∈ L(H)+ be such that supp ρi ⊆ supp σi , i =
1, . . . , r , and let p1, . . . , pr be a probability distribution. Then

Q(new)
α

(
r∑

i=1

piρi

∥∥∥
r∑

i=1

piσi

)
≤

r∑
i=1

pi Q(new)
α (ρi‖σi ).

Proof. Let δ1, . . . , δr be orthogonal rank 1 projections on K := C
r , and define ρ :=∑r

i=1 piδi ⊗ ρi , σ := ∑r
i=1 piδi ⊗ σi . Taking F := TrK to be the partial trace over K

in Corollary 3.15, the assertion follows. ��
Remark 3.17. In Corollary 3.16, we obtained the joint convexity from the monotonicity
of Q(new)

α . In [13] (and also in [34,50] for α ∈ (1, 2]) the authors followed the opposite
approach: they first established joint convexity of Q(new)

α , and from that they obtained
its monotonicity under CPTP maps by a standard argument using the Stinespring repre-
sentation and decomposing the trace as a convex combination of unitary conjugations.

Remark 3.18. Note that the monotonicity properties in Corollaries 3.13, 3.14 and 3.15
hold for any trace-preserving linear map F such that F⊗n is positive for every n ∈ N.
This is a weaker condition than complete positivity.

We give an overview of the various monotonicity and attainability properties of the
old and the new Rényi relative entropies in Appendix A.

4. Strong Converse Exponent in Quantum Hypothesis Testing

4.1. Simple quantum hypothesis testing. We study the simple hypothesis testing problem
for the null hypothesis H0: ρn versus the alternative hypothesis H1: σn , where ρn = ρ⊗n

and σn = σ⊗n are the n-fold tensor products of arbitrarily given density operators ρ and
σ in S(H). The problem is to decide which hypothesis is true based on the outcome drawn
from a quantum measurement, which is described by a POVM on Hn = H⊗n . In the
hypothesis testing problem, it is sufficient to treat a two-valued POVM {Tn(0), Tn(1)} ∈
M(H⊗n), where 0 and 1 indicate the acceptance of H0 and H1, respectively. Since
Tn(1) = I − Tn(0), the POVM is uniquely determined by Tn = Tn(0), and the only
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constraint on Tn is that 0 ≤ Tn ≤ In . We will call such operators tests. For a test Tn , the
error probabilities of the first and the second kind are, respectively, defined by

αn(Tn) := Tr ρn(In − Tn), (36)

βn(Tn) := Tr σnTn . (37)

In general there is a trade-off between these error probabilities, and we can not make
these probabilities unconditionally small, as described below. First, we consider the
optimal value for βn(Tn) under the constant constraint on αn(Tn), that is,

β∗n (ε) := min{βn(Tn)|Tn : test, αn(Tn) ≤ ε}. (38)

The quantum Stein’s lemma [22,39] states that for all ε ∈ (0, 1),

lim
n→∞

1

n
logβ∗n (ε) = −D(ρ‖σ), (39)

where D(ρ‖σ) is the quantum relative entropy given in (4).
For the study of the trade-off between the error probabilities, it is natural to ask what

happens if we require the type II error probabilities to vanish with an exponent below
or above the relative entropy, i.e., we want to study the asymptotic behavior of αn(Tn)

under the exponential constraint βn(Tn) ≤ e−nr , r > 0. Specifically, let us define

Be(r) := sup

{
− lim sup

n→∞
1

n
logαn(Tn)

∣∣∣ lim sup
n→∞

1

n
logβn(Tn) ≤ −r

}

= sup
{

R
∣∣∣ ∃{Tn}∞n=1, 0 ≤ Tn ≤ In, s.t.

lim sup
n→∞

1

n
logβn(Tn) ≤ −r, lim sup

n→∞
1

n
logαn(Tn) ≤ −R

}
, (40)

where the supremum in the first line is taken over all sequences of tests {Tn}n∈N satisfying
the condition. It was shown in [18,36] that

Be(r) = sup
0≤s<1

−sr − log Tr ρ1−sσ s

1 − s
= sup

0<α<1

α − 1

α

[
r − D(old)

α (ρ ‖ σ)
]
= Hr (ρ‖σ),

(41)

where D(old)
α is the traditional definition of the quantum Rényi relative entropy, given in

(3), and Hr (ρ‖σ) is the Hoeffding divergence defined in (5). [Note that the roles of the
type I and the type II errors are reversed here as compared to some previous work on
the Hoeffding bound, and hence our Hr (ρ‖σ) corresponds to Hr (σ‖ρ) in those works.]
It can be shown that Be(r) > 0 when 0 < r < D(ρ‖σ), and αn(Tn) goes to zero
exponentially with the rate Be(r) for an optimal sequence of tests {Tn}∞n=1.

On the other hand, if supp ρ ⊆ supp σ and βn(Tn) ≤ e−nr with r > D(ρ‖σ) then
αn(Tn) inevitably goes to 1 exponentially fast [39]; this is called the strong converse
property. In this case, we are interested in determining the exponent with which the
success probabilities 1 − αn(Tn) = Tr ρnTn go to zero. The optimal such exponent is
the strong converse exponent B∗

e (r); formally,
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B∗
e (r) := inf

{
− lim inf

n→+∞
1

n
log Tr ρnTn

∣∣∣ lim sup
n→∞

1

n
log Tr σnTn ≤ −r

}
, (42)

where the infimum is taken over all possible sequences of tests {Tn}n∈N satisfying the
condition. Note that one’s aim is to make the success probabilities decay as slow as
possible, and hence optimality means taking the smallest possible exponent along all
sequences of tests with a fixed decay rate of the type II errors. It is easy to see that B∗

e (r)
can be alternatively written as

B∗
e (r) = sup

{
R

∣∣∣ ∀{Tn}∞n=1, 0 ≤ Tn ≤ In,

lim sup
n→∞

1

n
log Tr σnTn ≤ −r ⇒ lim inf

n→∞
1

n
log Tr ρnTn ≤ −R

}

= inf
{

R
∣∣∣ ∃{Tn}∞n=1, 0 ≤ Tn ≤ In,

lim sup
n→∞

1

n
log Tr σnTn ≤ −r, lim inf

n→∞
1

n
log Tr ρnTn ≥ −R

}
. (43)

The main result of Sect. 4 is Theorem 4.10, where we show that, in complete analogy
with (41),

B∗
e (r) = sup

1<α

α − 1

α

[
r − D(new)

α (ρ ‖ σ)
]
= H∗

r (ρ‖σ), (44)

where H∗
r (ρ‖σ) is the converse Hoeffding divergence (8). The inequality B∗

e (r) ≥
H∗

r (ρ‖σ) follows easily from the monotonicity of the Rényi divergences, as we show
in Lemma 4.7. We show that this is in fact an equality by determining the asymptotics
of the error probabilities for the Neyman–Pearson tests. This is interesting in itself, as
these quantities play a central role in the information spectrum method [15,37]. We start
with this problem in Sect. 4.2.

Remark 4.1. Note that if supp ρ ⊆ supp σ is not satisfied then the strong converse
property doesn’t hold; indeed, the choice Tn := I − σ 0

n , n ∈ N, yields a sequence of
tests for which βn(Tn) = 0 ≤ e−nr , r > 0, and αn(Tn) = (Tr ρσ 0)n, n ∈ N, which
converges to zero exponentially fast with an exponent − log Tr ρσ 0 > 0. Hence, for the
rest we will assume that supp ρ ⊆ supp σ .

4.2. Exponents for the Neyman–Pearson tests. Let ρ and σ be quantum states such that

supp ρ ⊆ supp σ, (45)

and let ρn, σn , etc. be defined as in (15). To exclude a trivial case, we assume that ρ �= σ .
Let us define the quantum Neyman–Pearson tests by

Sn(a) := {ρn − enaσn > 0}, (46)

where a ∈ R is a trade-off parameter. Our goal in this section is to determine the
asymptotics of the corresponding type I success probabilities Tr ρn Sn,a and the type II
error probabilities Tr σn Sn,a . Note that

Sn(a) = 0 ⇐⇒ a ≥ Dmax (ρ ‖ σ) := inf{γ : ρ ≤ eγ σ }. (47)
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Here Dmax (ρ ‖ σ) is the max-relative entropy [11,44], and it was shown in [34, Theorem
4] that

D(new)
+∞ (ρ‖σ) := lim

α→+∞ D(new)
α (ρ ‖ σ) = Dmax (ρ ‖ σ) .

Thus,

Tr ρn Sn,a = Tr σn Sn,a = 0, a ≥ Dmax (ρ ‖ σ) ,
and, with the convention log 0 := −∞,

lim
n→+∞

1

n
log Tr ρn Sn,a = lim

n→+∞
1

n
log Tr σn Sn,a = −∞, a ≥ Dmax (ρ ‖ σ) .

Hence, for the rest we can restrict our attention to a < Dmax (ρ ‖ σ).
For every s ∈ R, let

ψ(s) := Fs+1(ρ‖σ) = log Tr
(
σ

−s
2(s+1) ρσ

−s
2(s+1)

)s+1
, (48)

and

φ(a) := sup
s≥0

{as − ψ(s)} (49)

be its Legendre–Fenchel transform on the interval [0,+∞).
Lemma 4.2. We have

ψ(0) = 0, (50)

ψ ′(0) = D (ρ ‖ σ) , (51)

lim
s→+∞ψ

′(s) = Dmax (ρ ‖ σ) , (52)

and

φ(a)

⎧⎪⎨
⎪⎩

= 0, a ≤ D (ρ ‖ σ)
> 0, D (ρ ‖ σ) < a ≤ Dmax (ρ ‖ σ) ,
= +∞, Dmax (ρ ‖ σ) < a.

(53)

Proof. The identity in (50) is immediate from the definition of ψ . ψ(0) = 0 yields
ψ ′(0) = lims→0

1
sψ(s) = limα→1 Dα (ρ ‖ σ) = D (ρ ‖ σ), where the last identity

is due to [34, Theorem 4]. Using again [34, Theorem 4] and the L’Hospital rule,
lims→+∞ ψ ′(s) = lims→+∞ 1

sψ(s) = limα→+∞ Dα (ρ ‖ σ) = Dmax (ρ ‖ σ). By Corol-
lary 3.11, s �→ ψ(s) is convex, and hence (53) follows immediately from
(50)–(52). ��
Lemma 4.3. For any a ∈ R and n ∈ N, we have

1

n
log Tr ρn Sn(a) ≤ −φ(a), (54)

1

n
log Tr σn Sn(a) ≤ −{a + φ(a)}. (55)
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Proof. For any a ∈ R and s ≥ 0, we have

Tr ρn Sn(a) = {Tr ρn Sn(a)}s+1 {Tr ρn Sn(a)}−s

≤ e−nas {Tr ρn Sn(a)}s+1 {Tr σn Sn(a)}−s

≤ e−nas
[
{Tr ρn Sn(a)}s+1 {Tr σn Sn(a)}−s

+ {Tr ρn(In − Sn(a))}s+1 {Tr σn(In − Sn(a))}−s
]

≤ e−nas Tr

(
σ

−s
2(s+1)

n ρnσ
−s

2(s+1)
n

)s+1

= e−nasenψ(s), (56)

where in the first inequality we used (11), the second inequality is trivial, and the last
inequality follows from Lemma 3.3. Taking the logarithm and the infimum in s yields
the inequality in (54).

Using (11) and (56), we get

Tr σn Sn(a) ≤ e−na Tr ρn Sn(a) ≤ e−na(s+1)enψ(s), (57)

which yields (55). ��
Note that the bounds in (54) and (55) are trivial for a ≥ Dmax (ρ ‖ σ), due to (47).

For a ≤ D (ρ ‖ σ) we have φ(a) = 0 [cf. (53)], and hence the upper bound in (54) is
trivial in this range. More detailed information about the values of Tr σn Sn(a) in this
range is given in the setting of the Hoeffding bound; Corollary 4.5 in [24] states that

lim
n→∞

1

n
log Tr σn Sn(a) = − sup

0≤t≤1
{at − log Tr ρtσ 1−t } ≤ −a = −{φ(a) + a}

for every a < D (ρ ‖ σ). Theorems 4.4 and 4.5 below show that the inequalities in
(54) and (55) hold asymptotically as equalities in the non-trivial range D (ρ ‖ σ) < a <
Dmax (ρ ‖ σ).
Theorem 4.4. For any a ∈ (D(ρ‖σ), Dmax (ρ ‖ σ)), we have

lim
n→∞

1

n
log Tr ρn Sn(a) = lim

n→∞
1

n
log Tr(ρn − enaσn)+ = −φ(a). (58)

Proof. For a fixed m ∈ N, let ρ̂m := Eσm (ρm), and define

Ŝm,k(a) := {ρ̂⊗k
m − ekmaσ⊗k

m > 0}. (59)

Write n ∈ N in the form n = km + r , k, r ∈ N, 0 ≤ r < m. For any a, b ∈ R, we have

Tr ρn Sn(a) = Tr(ρn − enaσn)Sn(a) + ena Tr σn Sn(a)

≥ Tr(ρn − enaσn)+

≥ Tr(ρ̂⊗k
m − enaσ⊗k

m )+ (60)

≥ Tr(ρ̂⊗k
m − enaσ⊗k

m )Ŝm,k(b) (61)

≥ Tr ρ̂⊗k
m Ŝm,k(b)− enae−kmb Tr ρ̂⊗k

m Ŝm,k(b) (62)

= {1 − erae−km(b−a)}Tr ρ̂⊗k
m Ŝm,k(b), (63)
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where (60) follows from Lemma 2.1 (with the choice F := E⊗k
σm

⊗ Tr[km+1,r ]), (61)
follows from (10), and we used (11) in (62). Hence, by choosing b > a, we get

−φ(a) ≥ lim sup
n→+∞

1

n
log Tr ρn Sn(a) ≥ lim inf

n→+∞
1

n
log Tr ρn Sn(a)

≥ lim inf
n→∞

1

n
log Tr(ρn − enaσn)+ ≥ 1

m
lim inf
k→∞

1

k
Tr ρ̂⊗k

m Ŝm,k(b), (64)

where the first inequality is due to (54).
Note that ρ̂m and σm are commuting density operators, and hence they can be repre-

sented as probability density functions on some finite set X , which is the interpretation
we will be using in the following. Then Y := log ρ̂m

σm
is a random variable on X , and its

logarithmic moment generating function w.r.t. ρ̂m is

mψm(s) := �m(s) := log Eρ̂m es log ρ̂m
σm = log Tr ρ̂mes log ρ̂m

σm = log Tr ρ̂1+s
m σ−s

m . (65)

Note that log ρ̂⊗k
m

σ⊗k
m

can naturally be identified with Y1 + · · · + Yk , where Yi is the i th

translate of Y on ×+∞
j=1X . Obviously, these translates form a sequence of i.i.d. random

variables under the product law ρ̂⊗∞m , and hence, by Cramér’s theorem [12, Theorem
2.1.24], we have

lim inf
k→∞

1

k
log Tr ρ̂⊗k

m Ŝm,k(b) = lim inf
k→∞

1

k
log Tr ρ̂⊗k

m

{
1

k
log

ρ̂⊗k
m

σ⊗k
m

> mb

}

≥ − inf
κ>mb

sup
s∈R

{κs −�m(s)} .

Assume now that D (ρ ‖ σ) < a < b < Dmax (ρ ‖ σ). Then we have

mb > m D(ρ‖σ) = D (ρm ‖ σm) ≥ D(ρ̂m‖σm) = Eρ̂m log
ρ̂m

σm
= � ′

m(0),

where the second inequality is due to the monotonicity of the quantum relative entropy.
Since �m is convex, it follows that

inf
κ>mb

sup
s∈R

{κs −�m(s)} = sup
s∈R

{mbs −�m(s)} = sup
s≥0

{mbs −�m(s)}
= m sup

s≥0
{bs − ψm(s)} .

Let δm := log vm
m . From (31), we obtain

ψ(s) ≤ ψm(s) + (1 + s)δm, (66)

and hence,

sup
s≥0

{bs − ψm(s)} ≤ sup
s≥0

{bs − ψ(s) + (1 + s)δm}
= sup

s≥0
{(b + δm) s − ψ(s)} + δm

= φ(b + δm) + δm .
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Putting it all together, we get

1

m
lim inf
k→∞

1

k
log Tr ρ̂⊗k

m Ŝm,k(b) ≥ −{φ(b + δm) + δm} . (67)

Substituting it back to (64), taking the limit m → +∞ and using that limm→+∞ δm = 0,
and that φ is continuous on (D (ρ ‖ σ) , Dmax (ρ ‖ σ)), we obtain the assertion. ��
Theorem 4.5. For any a ∈ (D(ρ‖σ), Dmax (ρ ‖ σ)), we have

lim
n→∞

1

n
log Tr σn Sn(a) = −{φ(a) + a}. (68)

Proof. By (10), we have

Tr(ρn − enbσn)+ ≥ Tr(ρn − enbσn)Sn(a) (69)

for any b ∈ R, and hence,

Tr(ρn − enbσn)+ + enb Tr σn Sn(a) ≥ Tr ρn Sn(a). (70)

Assume now that D (ρ ‖ σ) < a < b < Dmax (ρ ‖ σ). Applying Theorem 4.4 to (70),
we get

−φ(a) = lim inf
n→∞

1

n
log Tr ρn Sn(a) ≤ max

{
−φ(b), b + lim inf

n→∞
1

n
log Tr σn Sn(a)

}
.

Note that D (ρ ‖ σ) < a < b < Dmax (ρ ‖ σ) implies φ(a) < φ(b), and hence we have

−φ(a) ≤ b + lim inf
n→∞

1

n
log Tr σn Sn(a). (71)

Taking b ↘ a, we obtain

−{φ(a) + a} ≤ lim inf
n→∞

1

n
log Tr σn Sn(a). (72)

Now combining (55) and (72) yields the assertion. ��
Theorems 4.4 and 4.5 yield the following refinement of Corollary 3.8. Note that φ(a)

can also be written as φ(a) = supα>1{a(α− 1)− Fα(ρ‖σ)}, where Fα(ρ‖σ) is defined
in (17). For simplicity, we will use the notation F(α) := Fα(ρ‖σ). By Corollary 3.11,
α �→ F(α) is convex on (1,+∞), and Lemma 4.2 yields that for every α ∈ (1,+∞)
there exists an aα ∈ (D(ρ‖σ), Dmax (ρ ‖ σ)) such that

φ(aα) = aα(α − 1)− F(α). (73)

Corollary 4.6. For every α > 1, let aα be as above, and let pn,α := {Tr ρn Sn(aα),Tr ρn
(In − Sn(aα))}, qn,α := {Tr σn Sn(aα),Tr σn(In − Sn(aα))} be the post-measurement
states corresponding to the Neyman–Pearson test Sn(aα). Then

lim
n→+∞

1

n
Dα

(
pn,α ‖ qn,α

) = D(new)
α (ρ ‖ σ) .

Proof. Omitting a standard ε − δ argument, we can write Theorems 4.4 and 4.5 as
Tr ρn Sn(aα) ∼ e−nφ(aα) and Tr σn Sn(aα) ∼ e−n(φ(aα)+aα), which then yields

(Tr ρn Sn(aα))α (Tr σn Sn(aα))1−α ∼ exp (−n [αφ(aα) + (1 − α)(φ(aα) + aα)])

= exp(nF(α)),
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where the last identity is due to (73). Note that F(α) > 0 for α > 1, and limn→+∞ Tr ρn

(In − Sn(aα)) = limn→+∞ Tr σn(In − Sn(aα)) = 1. Hence, Q(new)
α (pn,α‖qn,α) ∼

exp(nF(α)), from which the assertion follows. ��

4.3. The strong converse exponent. Consider the hypothesis testing problem from Sect.
4.1. Our aim here is to prove the identity (44), i.e., that the strong converse exponent
B∗

e (r), defined in (42), is equal to the converse Hoeffding bound H∗
r (ρ‖σ) defined in

(8). We will assume that ρ �= σ to avoid a trivial case, and that supp ρ ⊆ supp σ so that
we actually have a strong converse (cf. Remark 4.1).

We start with the following lemma, which is a direct analogue of Nagaoka’s proof
of the strong converse to the quantum Stein’s lemma [35], except that we use the new
Rényi divergences instead of the old ones.

Lemma 4.7. For any r ≥ 0, we have

B∗
e (r) ≥ H∗

r (ρ‖σ). (74)

Proof. Let Tn ∈ L(Hn) be a test and let pn := (Tr ρnTn,Tr ρn(I − Tn)) and qn :=
(Tr σnTn,Tr σn(I − Tn)) be the post-measurement states. By the monotonicity of the
Rényi relative entropies under measurements (Lemma 3.3), we have, for any α > 1,

D(new)
α (ρn ‖ σn) ≥ D(new)

α (pn ‖ qn) ≥ 1

α − 1
log

[
(Tr ρnTn)

α(Tr σnTn)
1−α]

= α

α − 1
log(1 − αn(Tn))− logβn(Tn),

or equivalently,

1

n
log(1 − αn(Tn)) ≤ α − 1

α

[
D(new)
α (ρ ‖ σ) +

1

n
logβn(Tn)

]
. (75)

If lim supn→∞ 1
n log Tr σnTn ≤ −r then

lim sup
n→∞

1

n
log(1 − αn(Tn)) ≤ α − 1

α

[
D(new)
α (ρ ‖ σ)− r

]
, α > 1.

Taking the infimum in α > 1, the statement follows. ��

Remark 4.8. Using that the old Rényi relative entropies are also monotonic under mea-
surements [17], exactly the same argument as above yields that

B∗
e (r) ≥ sup

1<α

α − 1

α

[
r − D(old)

α (ρ ‖ σ)
]
. (76)

This was already pointed out in [39] with a restricted optimization over α ∈ (1, 2], and
later extended by Hayashi to the above form [17].
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Our goal in the rest of the section is to show that (74) holds as an equality. To start
with, we give some alternative expressions for H∗

r (ρ‖σ). Let

amax := Dmax (ρ ‖ σ) , and rmax := φ(amax) + amax. (77)

Note that

H∗
r (ρ‖σ) = sup

s≥0

rs − ψ(s)
s + 1

= sup
0≤u<1

{ur − ψ̃(u)}, (78)

where

ψ̃(u) := (1 − u)ψ

(
u

1 − u

)
, u ∈ [0, 1).

It is easy to see that ψ̃ ′(u) = −ψ(s) + (1 + s)ψ ′(s) with the notational convention
u = s/(s + 1), and hence

ψ̃(0) = ψ(0) = 0, ψ̃ ′(0) = ψ ′(0) = D (ρ ‖ σ) , (79)

and

lim
u↗1

ψ̃ ′(u) = lim
s→+∞

(
sψ ′(s)− ψ(s)) + lim

s→+∞ψ
′(s)

= lim
s→+∞φ

(
ψ ′(s)

)
+ Dmax (ρ ‖ σ) = φ(amax) + amax

= rmax.

It is also easy to see, by computing the second derivative, that ψ̃ is convex for commuting
ρ and σ ; convexity in the general case then follows the same way as in Corollary 3.11.
Convexity and (79) yield

H∗
r (ρ‖σ) = 0, r ≤ D (ρ ‖ σ) . (80)

Lemma 4.9. For any r ≥ 0, we have

H∗
r (ρ‖σ) =

{
r − ar = φ(ar ), r < φ(amax) + amax,

r − Dmax (ρ ‖ σ) , r ≥ φ(amax) + amax,
(81)

where amax and rmax are defined in (77), and ar is the unique solution of r−ar = φ(ar ).

Proof. First, we consider the case 0 ≤ r < rmax. Note that a �→ φ(a) + a is strictly
increasing and continuous on (−∞, amax), and hence for every r < rmax there exists a
unique ar such that r = φ(ar ) + ar By definition,

φ(ar ) ≥ ar s − ψ(s) = s(r − φ(ar ))− ψ(s), s ≥ 0,

and equality holds in the above inequality for some sr ∈ [0,+∞). Rearranging, we get

φ(ar ) ≥ sr − ψ(s)
1 + s

, s ≥ 0,

with equality for sr , and hence

φ(ar ) = max
s≥0

sr − ψ(s)
1 + s

.
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Taking into account (78), this proves the assertion.
Next, assume that r ≥ rmax. Note that

lim
s→+∞

rs − ψ(s)
s + 1

= r − lim
s→+∞

ψ(s)

s + 1
= r − Dmax (ρ ‖ σ) , (82)

due to [34, Theorem 4]. Hence it is enough to show that

rs − ψ(s)
s + 1

≤ r − Dmax (ρ ‖ σ) (83)

for every s ≥ 0. Note that r ≥ rmax = φ(amax) + amax implies

r − amax ≥ φ(amax) ≥ amaxs − ψ(s) (84)

for every s ≥ 0, from which we obtain

r + ψ(s)

s + 1
≥ amax. (85)

Thus we have

r − amax ≥ r − r + ψ(s)

s + 1
= rs − ψ(s)

s + 1
, (86)

and hence H∗
r (ρ‖σ) = r − Dmax (ρ ‖ σ), as required. ��

Now we are ready to prove the identity (44) for the strong converse exponent.

Theorem 4.10. For any r ≥ 0, we have

B∗
e (r) = H∗

r (ρ‖σ). (87)

Proof. Since we have already shown B∗
e (r) ≥ H∗

r (ρ‖σ) in Lemma 4.7, we only have to
show the converse inequality B∗

e (r) ≤ H∗
r (ρ‖σ). Due to the definition (43) of B∗

e (r) as
an infimum of rates, this is equivalent to showing that for any rate R > H∗

r (ρ‖σ) there
exists a sequence of tests {Tn}∞n=1 satisfying

lim sup
n→∞

1

n
log Tr σnTn ≤ −r and lim inf

n→∞
1

n
log Tr ρnTn ≥ −R. (88)

We prove the claim by considering three different regions of r .

(i) In the case D(ρ‖σ)<r<rmax, there exists a unique ar ∈(D (ρ ‖ σ) , Dmax (ρ ‖ σ))
satisfying r − ar = φ(ar ), and Theorems 4.4 and 4.5 yield

lim
n→∞

1

n
log Tr σn Sn(ar ) = −(φ(ar ) + ar ) = −r,

lim
n→∞

1

n
log Tr ρn Sn(ar ) = −φ(ar ) = −H∗

r (ρ‖σ),

where the last identity is due to Lemma 4.9.



1636 M. Mosonyi, T. Ogawa

(ii) In the case 0 ≤ r ≤ D(ρ‖σ), we have H∗
r (ρ‖σ) = 0, according to (80). For any

R > 0, we can find an a ∈ (D (ρ ‖ σ) , Dmax (ρ ‖ σ)) such that 0 < φ(a) < R.
Note that φ(a) + a > D(ρ‖σ) ≥ r , and Theorems 4.4 and 4.5 yield

lim
n→∞

1

n
log Tr σn Sn(a) = −(φ(a) + a) < −r,

lim
n→∞

1

n
log Tr ρn Sn(a) = −φ(a) > −R.

(iii) In the case r ≥ rmax, we use a modification of the Neyman–Pearson tests, following
the method of the proof of Theorem 4 in [37]. For every a, r ∈ R, let

Tn(r, a) := e−n{r−a−φ(a)}Sn(a).

Note that for r ≥ rmax we have H∗
r (ρ‖σ) = r − Dmax (ρ ‖ σ) due to Lemma 4.9.

Assume now that a ∈ (D (ρ ‖ σ) , Dmax (ρ ‖ σ)). Then r > φ(a) + a, and hence
0 ≤ Tn(r, a) ≤ I , i.e., Tn(r, a) is a test, and

lim
n→∞

1

n
log Tr σnTn(r, a) = −r + a + φ(a)− (a + φ(a)) = −r,

lim
n→∞

1

n
log Tr ρnTn(r, a) = −r + a + φ(a)− φ(a) = −(r − a),

by Theorems 4.4 and 4.5. Now for a given R > H∗
r (ρ‖σ) = r − Dmax (ρ ‖ σ), we

can find an a ∈ (D (ρ ‖ σ) , Dmax (ρ ‖ σ)) such that r−Dmax (ρ ‖ σ) < r−a < R,
and the assertion follows. ��

Remark 4.11. It is easy to see, by applying a standard diagonal argument, that there
exists a sequence of tests {Tn}n∈N such that (88) holds with H∗

r (ρ‖σ) in place of R, and
the proof of Theorem 4.10 yields that for this sequence, we actually have

lim sup
n→∞

1

n
log Tr σnTn ≤ −r and lim inf

n→∞
1

n
log Tr ρnTn = −H∗

r (ρ‖σ).

Moreover, it is also possible to have lim supn→∞ 1
n log Tr σnTn = −r above; this is

obvious in cases (i) and (iii) in the proof of Theorem 4.10, and in case (ii) this follows
from the Hoeffding bound theorem [18,36].

Remark 4.12. The direct region (0 ≤ r < D(ρ‖σ)) and the strong converse region
(r > D(ρ‖σ)) in quantum hypothesis testing are considered to be dual, and the theory
of both regions can be developed logically independently of the other, which is the
approach that we followed here.

Following a different approach, one could prove B∗
e (r) ≤ H∗

r (ρ‖σ) in the case
0 ≤ r < D(ρ‖σ) [case (ii) of the above proof] based on Stein’s lemma rather than our
argument. Indeed, the Stein’s lemma (39) implies the existence of a sequence of tests
{Tn}n∈N such that

lim
n→∞

1

n
logβn(Tn) = −D(ρ‖σ) < −r and lim

n→∞αn(Tn) = 0.

By the latter,

lim
n→+∞

1

n
log Tr ρnTn = 0 = H∗

r (ρ‖σ).
This proves (88) for every R > 0.
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Remark 4.13. By Theorem 4.10 and (78), we have

B∗
e (r) = H∗

r (ρ‖σ) = sup
0≤u<1

{ru − ψ̃(u)},

where ψ̃(u) is a continuous convex function on [0, 1). Hence, B∗
e (r) is the Legendre–

Fenchel transform (polar function) of ψ̃ , and the bipolar theorem says that

sup
r≥0

{ur − B∗
e (r)} = ψ̃(u) = α − 1

α
D(new)
α (ρ ‖ σ) , α > 1, (89)

where in the last formula we set α := 1/(1 − u) and used the definition (48) of ψ .
That is, the new Rényi relative entropies can be expressed essentially as the Legendre–
Fenchel transform of the operational quantities B∗

e (r), r ≥ 0. A more direct operational
interpretation is provided in the next section.

Remark 4.14. A proof for the following representation of the strong converse exponent:

B∗
e (r) = max

s≥0

rs − limm→∞ ψm(s)

s + 1
, (90)

where ψm is defined in (65), has been outlined in Hayashi’s book [17]. More precisely,
he proves that the RHS of (90) is a lower bound on B∗

e (r) (optimality); the achievability
can be proved by applying the corresponding classical result to the commuting states
ρ̂m and σm for every m [19], at least in the region r < rmax. Apart from identifying the
limit limm→∞ ψm(s) as s D(new)

1+s (ρ ‖ σ), our approach here differs from Hayashi’s also
in that we prove the achievability part by computing explicitly the asymptotic error rates
of the Neyman–Pearson tests, providing yet another operational interpretation for the
new Rényi divergences.

We note that Theorem 4.10 yields an operational proof of the Lieb–Thirring inequal-
ity. Indeed, combining (76) with (89), we get that

D(old)
α (ρ ‖ σ) ≥ D(new)

α (ρ ‖ σ) , α > 1,

or equivalently,

Tr ρασ 1−α ≥ Tr
(
ρ

1
2 σ

1−α
α ρ

1
2

)α
, α > 1.

Introducing A := ρ
1
2 and B := σ

1−α
α , the above can be rewritten as

Tr AαBαAα ≥ Tr (AB A)α , α > 1. (91)

Since we were interested in hypothesis testing, we only derived Theorem 4.10 for density
operators; however, it is easy to see that it also holds, with obvious modifications, for
arbitrary positive semidefinite operators. Hence we arrive at the following:

Corollary 4.15 (Lieb–Thirring inequality). For any positive semidefinite operators A
and B, (91) holds.
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To close the section, we give one more representation of H∗
r (ρ‖σ). This is closely

related to the information spectrum approach [37], and although we didn’t need it in our
proof for the strong converse exponent, an alternative proof could be given based on this
representation.

Lemma 4.16. For any r ≥ 0, we have

H∗
r (ρ‖σ) = inf

a∈R

max{φ(a), r − a} (92)

= inf{max{φ(a), r − a}|D (ρ ‖ σ) < a < Dmax (ρ ‖ σ)}. (93)

Proof. Let amax and rmax be as in (77). First, we consider the case 0 ≤ r < rmax. Let ar
be the unique solution of r = φ(ar ) + ar , as in the proof of Lemma 4.9. Then

max{φ(ar ), r − ar } = φ(ar ) = r − ar .

Now if a < ar then r−a > r−ar andφ(a) ≤ φ(ar ), which implies max{φ(a), r−a} =
r − a > r − ar . On the other hand, if a > ar then r − a < r − ar , while φ(a) ≥ φ(ar ),
and hence max{φ(a), r − a} = φ(a) ≥ φ(ar ). Thus

R(r) := inf
a∈R

max{φ(a), r − a} = max{φ(ar ), r − ar } = φ(ar ) = r − ar , (94)

and (92) follows by taking into account (81).
Note that when D (ρ ‖ σ) < r < rmax then D (ρ ‖ σ) < ar < Dmax (ρ ‖ σ), and

(93) is immediate from (94). In the case 0 ≤ r ≤ D(ρ‖σ), we have r = ar and
R(r) = φ(ar ) = r−ar = 0. On the other hand, for every D (ρ ‖ σ) < a < Dmax (ρ ‖ σ)
we have φ(a) > 0 > r − a, and thus

inf{max{φ(a), r − a}|D (ρ ‖ σ) < a < Dmax (ρ ‖ σ)}
= inf{φ(a)|D (ρ ‖ σ) < a < Dmax (ρ ‖ σ)}
= 0 = R(r),

proving (93).
Next, assume that r ≥ rmax. Then r ≥ φ(a) + a, or equivalently, r − a ≥ φ(a) for

every a ≤ amax, and hence max{φ(a), r − a} = r − a for a ≤ amax, while for a > amax
we have max{φ(a), r − a} = φ(a) = +∞. Hence,

R(r) = inf
a∈R

max{φ(a), r − a} = inf{max{φ(a), r − a}|D (ρ ‖ σ) < a < Dmax (ρ ‖ σ)}
= inf

a≤amax
{r − a} = r − amax = r − Dmax (ρ ‖ σ) .

Taking into account (81), we get (92) and (93). ��

4.4. Representation as cutoff rates. In the setting of Sect. 4.1, let

αn,r := αe−nr (ρ⊗n‖σ⊗n) := min{Tr ρn(I − T ) : 0 ≤ T ≤ I, Tr σnT ≤ e−nr }.
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Following [10], we define the generalized κ-cutoff rate Cκ(ρ‖σ) for any κ > 0 as
the smallest r0 such that

lim sup
n→∞

1

n
log(1 − αn,r ) ≤ −κ(r − r0), r > 0. (95)

As before, we assume that supp ρ ⊆ supp σ and ρ �= σ .

Lemma 4.17. For every r > 0,

lim
n→+∞

1

n
log(1 − αn,r ) = −H∗

r (ρ‖σ).

Proof. Consider the inequality (75). Taking the supremum over all test Tn such that
Tr σnTn ≤ e−nr , we get

1

n
log(1 − αn,r ) ≤ α − 1

α

[
D(new)
α (ρ ‖ σ)− r

]
.

Taking now the limsup in n and the infimum in α, we obtain

lim sup
n→+∞

1

n
log(1 − αn,r ) ≤ −H∗

r (ρ‖σ). (96)

According to Remark 4.11, for every r ′ > 0, there exists a sequence of tests Tn,r ′ ,
n ≥ 1, such that

lim sup
n→+∞

1

n
log Tr σnTn,r ′ ≤ −r ′ and lim inf

n→+∞
1

n
log Tr ρnTn,r ′ ≥ −Hr ′(ρ‖σ). (97)

Hence, for any r ′ > r , there exists an Nr ′ such that for all n > Nr ′ , Tr σnTn,r ′ ≤ e−nr ,
and thus Tr ρnTn,r ′ ≤ 1 − αn,r . By the second inequality in (97),

lim inf
n→+∞

1

n
log(1 − αn,r ) ≥ lim inf

n→+∞
1

n
log Tr ρnTn,r ′ ≥ −Hr ′(ρ‖σ). (98)

From the definition (8) of the converse Hoeffding divergence, it is clear that r �→
H∗

r (ρ‖σ) is a monotone increasing convex function on (0,+∞). Moreover, Lemma 4.9
implies that H∗

r (ρ‖σ) is finite for every r > 0. Thus, r �→ H∗
r (ρ‖σ) is continuous on

(0,+∞), and (98) yields

lim inf
n→+∞

1

n
log(1 − αn,r ) ≥ sup

r ′>r
−Hr ′(ρ‖σ) = −Hr (ρ‖σ). (99)

Finally, (96) and (99) yield the assertion. ��
Theorem 4.18. For every κ ∈ (0, 1),

Cκ(ρ‖σ) = D(new)
1

1−κ
(ρ ‖ σ) .
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Proof. By Lemma 4.17 and (78), we have

lim
n→∞

1

n
log(1 − αn,r ) = −H∗

r (ρ‖σ) = − sup
0≤u<1

{ru − ψ̃(u)}.

By definition, we have

H∗
r (ρ‖σ) ≥ rκ − ψ̃(κ) = κ

(
r − 1

κ
ψ̃(κ)

)
,

and the above inequality holds with equality for rκ := ψ̃ ′(κ), and hence

1

κ
ψ̃(κ) = 1

κ
(1 − κ)ψ

(
κ

1 − κ
)
= D(new)

1
1−κ

(ρ ‖ σ)

is the smallest r0 for which (95) holds. ��
The above theorem immediately yields the following operational interpretation of

the new Rényi relative entropies:

Corollary 4.19. For every α > 1,

D(new)
α (ρ ‖ σ) = C α−1

α
(ρ‖σ).

The above operational interpretation yields as an immediate consequence an alter-
native proof for the monotonicity of the new Rényi divergences, Corollary 3.14 and
Remark 3.18:

Corollary 4.20. Let ρ, σ ∈ B(H)+ and F : B(H) → B(K) be a trace-preserving
linear map such that F⊗n is positive for every n ∈ N. Then

D(new)
α (F(ρ)‖F(σ )) ≤ D(new)

α (ρ‖σ), α > 1.

In particular, D(new)
α is monotone non-increasing under CPTP maps for every α > 1.

Proof. By assumption, the Hilbert–Schmidt dual (F⊗n)∗ is positive and unital for every
n ∈ N, and hence

αe−nr (F(ρ)⊗n‖F(σ )⊗n)

= min{Tr F⊗n(ρ⊗n)(I − T ): 0 ≤ T ≤ I, Tr F⊗n(σ⊗n)T ≤ e−nr }
= min{Tr ρ⊗n(I − (F⊗n)∗(T )): 0 ≤ T ≤ I, Tr σ⊗n(F⊗n)∗(T ) ≤ e−nr }
≥ min{Tr ρ⊗n(I − T ): 0 ≤ T ≤ I, Tr σ⊗nT ≤ e−nr }
= αe−nr (ρ⊗n‖σ⊗n).

Thus for every κ ∈ (0, 1), and every r > 0,

lim sup
n→+∞

1

n
log(1 − αe−nr (F(ρ)⊗n‖F(σ )⊗n))

≤ lim sup
n→+∞

1

n
log(1 − αe−nr (ρ⊗n‖σ⊗n)) ≤ −κr + κD(new)

1
1−κ

(ρ ‖ σ) ,

where in the last inequality we used Theorem 4.18. By the definition of the κ-cutoff rate
and Theorem 4.18, we get
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D(new)
1

1−κ
(F(ρ) ‖F(σ )) = Cκ(F(ρ)‖F(σ )) ≤ D(new)

1
1−κ

(ρ ‖ σ) ,

proving the assertion. ��

5. Conclusion

In this paper we have determined the exact strong converse exponent for binary quantum
hypothesis testing, and showed that it can be expressed in terms of the recently introduced
version of quantum Rényi α-relative entropies D(new)

α [34,50] with parameters α > 1.
Following then Csiszár’s approach, we gave a direct operational interpretation of these
Rényi relative entropies as generalized cutoff rates. Our results show that, at least in
the context of hypothesis testing, the operationally relevant quantum generalization
of Rényi’s α-relative entropies for α > 1 are given by D(new)

α . On the other hand,
previous results [2,18,31,36] show that for α < 1, the operationally relevant quantum
generalization is the traditional notion D(old)

α .
Our proof for the optimality of the converse Hoeffding divergence for the strong

converse rate follows immediately from the monotonicity of D(new)
α , α > 1, under mea-

surements; this proof technique goes back to Nagaoka’s proof for the strong converse
[35]. We proved the achievability of the converse Hoeffding divergence for the strong
converse rate by showing that the quantum Neyman–Pearson tests (or suitable modifi-
cations for large r ) achieve it for a suitably chosen trade-off parameter. The proof uses
the pinching technique developed by Hayashi [16,17], classical large deviation theory,
and, for (66), the asymptotic attainability of the new Rényi relative entropies by pinch-
ing. An alternative proof for the achievability of the converse Hoeffding divergence can
be obtained by combining the pinching technique with the Gärtner–Ellis theorem; this
approach can be used also for the hypothesis testing problem of various non-i.i.d. states
[33].
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Appendix A: Monotonicity and Attainability Properties of the Rényi Divergences

For a general quantum divergence D (i.e., a function on pairs of density operators),
one can consider various monotonicity and attainability properties. By a monotonicity
property we mean that for every ρ, σ ∈ B(H)+ and every F : B(H)→ B(K) belonging
to a certain class of maps,

D(F(ρ)‖F(σ )) ≤ D(ρ‖σ). (A1)

Here we will consider the monotonicity properties MON, SMON, EPPMON, MMON
and PMON, where in each case, the map F in (A1) is a trace-preserving positive linear
map, with the following additional properties:
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MON F is completely positive.
SMON F is a stochastic map in the sense of [25], i.e., it is the convex combination

of two trace-preserving maps F1 and F2, such that the adjoint (w.r.t. the
Hilbert–Schmidt inner product) of F1 is a Schwarz map, and the adjoint of
F2 is a Schwarz map composed with the transposition in some basis.

EPPMON F is such that every tensor power F⊗n is positive, n ∈ N.
MMON F is a measurement, i.e., all operators in F(B(H)) commute with each

other.
PMON F is the pinching with respect to the reference state σ .

The following implications are obvious:

SMON
⇓

MON �⇒ MMON �⇒ PMON.
⇑

EPPMON

By an asymptotic attainability property we mean that for every ρ, σ ∈ B(H)+, there
exists a sequence of maps Fn : B(H⊗n)→ B(Kn), n ∈ N, with each Fn belonging to
some class further specified below, such that

D(ρ‖σ) = lim
n→+∞

1

n
D(Fn(ρ

⊗n)‖Fn(σ
⊗n)).

Here we will consider

AAM (asymptotic attainability by measurements) Every Fn is a measurement.
AAP (asymptotic attainability by pinching) Every Fn is the pinching with re-

spect to the reference state σ⊗n .

The following implication is obvious:

AAP �⇒ AAM. (A2)

Furthermore, we say that D satisfies AAMmax if

D(ρ‖σ) = lim
n→+∞

1

n
max

Fnmeasurement
D(Fn(ρ

⊗n)‖Fn(σ
⊗n)).

We have

MMON + AAM �⇒ AAMmax �⇒ EPPMON, (A3)

where the first implication is straightforward to verify, and the second one follows the
same way as in Corollary 3.13.

The following table summarizes the monotonicity and attainability properties of the
old and the new Rényi relative entropies (NK stands for “Not Known”):
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(0, 1/2) [1/2, 1) (1, 2] (2,+∞)
SMON D(old)

α YES1 NO2

D(new)
α NO3 NK

EPPMON D(old)
α YES1 NK NO2

D(new)
α NO3 YES4

MON D(old)
α YES1 NO2

D(new)
α NO3 YES4

MMON D(old)
α YES1

D(new)
α NK YES4

PMON D(old)
α YES1

D(new)
α YES4

AAP D(old)
α NO5

D(new)
α YES4

AAM D(old)
α NK NO5

D(new)
α YES4

1 Monotonicity of D(old)
α for α ∈ [0, 2] under 2-positive maps has been proved in [40],

and has been extended to stochastic maps in [25]. MMON and PMON for α ∈ [0, 2] are
immediate consequences, and for α > 2 they have been proved by a different method
in [17, Section 3.7]. EPPMON follows from the operational interpretation of D(old)

α for
α ∈ (0, 1) in the context of the Hoeffding bound; see, e.g., [36].

2 Failure of MON for α > 2 was pointed out in [34, page 7]. One can easily see that
MON is equivalent to joint convexity for the core quantities of the old Rényi divergences,
Qα(ρ‖σ) := Tr ρασ 1−α; see, e.g., [40]. An easy argument [20], omitted in [34], shows
that even convexity of Qα in its first argument implies the operator convexity of the power
function R+  x �→ xα . Since the latter is not true for α > 2 (see, e.g., [6, Exercise
V.2.11]), MON cannot hold for D(old)

α , α > 2, from which the failure of SMON and
EPPMON for the same range of α are obvious.

3 MON for D(new)
α is also equivalent to joint convexity, the failure of which for α < 1/2

has been confirmed by numerical examples according to [34]. Failure of MON obviously
yields failure of SMON and EPPMON.

4 MON for D(new)
α have been proved by various methods, applicable to different pa-

rameter ranges, in [4,13,34,50]. These approaches either prove monotonicity directly,
or through joint convexity, and rely on techniques from matrix analysis or functional
analysis.

In this paper we followed a different approach, starting from PMON, that has been
proved for all parameter values α ≥ 0 in [34]. We then proved, for α > 1, MMON
in Lemma 3.3 and AAP in Theorem 3.7, which in turn yield AAM and the stronger
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monotonicity property EPPMON, according to (A2) and (A3); see also Corollary 3.14
and Remark 3.18.

AAP for α ∈ [0, 1) has been proved very recently in [21]. It is not clear whether
MMON and thus EEPMON for α ∈ [1/2, 1) can be obtained from it the same way as
for α > 1 in the present paper. However, when combined with MON for α ∈ [1/2, 1),
derived by other methods as mentioned above, it implies AAM and thus EPPMON for
α ∈ [1/2, 1), according to (A2) and (A3).

5 For commuting states the old and the new Rényi relative entropies coincide, whereas
for non-commuting states the inequality in (7) is strict according to [23]. Thus, AAP for
D(new)
α implies that AAP cannot hold for D(old)

α , for any fixed value α ∈ (0,+∞)\{1}.
For α ≥ 1/2, AAM+MMON yields AAMmax according to (A3), and hence

lim
n→+∞

1

n
max

Fnmeasurement
D(old)
α (Fn(ρ

⊗n)‖Fn(σ
⊗n)) = D(new)

α < D(old)
α

whenever ρ and σ don’t commute, showing that AAM fails for D(old)
α , α ≥ 1/2.

Remark A.1. In Corollary 4.20 we presented an approach to obtain EPPMON from the
operational representation in Corollary 4.19. However, to obtain Corollary 4.19, we used
MMON (to prove Lemma 4.7) and AAP [for (66)], from which properties EEPMON is
immediate, as we have seen above. It is an interesting open question whether the cutoff
rate representation, or Theorem 4.10, can be obtained without the use of monotonicity
and achievability properties, thus providing a fully operational proof for the monotonicity
of the new Rényi divergences for α > 1. We remark that such a fully operational proof
for D(old)

α , α ∈ (0, 1), follows from the Hoeffding bound theorem, as it was pointed out
in [36].

Remark A.2. For α = 1, the old and the new Rényi relative entropies yield the same limit
D1, Umegaki’s relative entropy. SMON and EPPMON for D(old)

α yield immediately the
same properties for D1 by taking the limit α→ 1. AAP has been shown in [22], and it
was the key technical tool to prove the direct part of the quantum Stein’s lemma [22],
and various generalizations of it [7–9]. From these, the rest of the properties, MON,
MMON, PMON, AAM and AMMmax, follow immediately, as we have seen before.

The above properties show that the new Rényi relative entropies provide the smallest
possible quantum extension of the classical Rényi relative entropies, under very mild
conditions.

Proposition A.3. For a fixed α ≥ 0, let D̂α be a function on pairs of quantum states on
the same Hilbert space, with the following properties:

1. D̂α coincides with the classical Rényi relative entropy Dα on commuting states;
2. D̂α is additive, i.e., for every ρ, σ and every n ∈ N, D̂α(ρ⊗n‖σ⊗n) = nD̂α(ρ‖σ);
3. D̂α satisfies PMON.

Then D(new)
α ≤ D̂α . In particular, D(new)

α ≤ D(old)
α for every α ∈ [0,+∞]\{1}.

Proof. Let ρ and σ be fixed. By assumption, we have

Dα(Eσ⊗n (ρ⊗n)‖σ⊗n) = D̂α(Eσ⊗n (ρ⊗n)‖σ⊗n) ≤ D̂α(ρ
⊗n‖σ⊗n) = nD̂α(ρ‖σ).
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Using that D(new)
α satisfies AAP, we get

D(new)
α (ρ‖σ) = lim

n→+∞
1

n
Dα(Eσ⊗n (ρ⊗n)‖σ⊗n) ≤ D̂α(ρ‖σ).

��
Sufficiency and single-shot attainability

Instead of the asymptotic attainability properties studied above, one can also consider
single-shot attainability. Here we will be interested in attainability by measurements
(AM), which is satisfied by a quantum divergence D if for every pair of states ρ, σ ,
there exists a measurement F such that D(F(ρ)‖F(σ )) = D(ρ‖σ). It is easy to see
that

AM + MMON �⇒ monotonicity under trace-preserving positive maps, (A4)

a very strong monotonicity property. It is clear that D(old)
α cannot satisfy AM for any

α ∈ (0,+∞)\{1}, due to the strict inequality in (7) for non-commuting states. It is an
open question whether AAM for D(new)

α can be strengthened to AM in general. However,
we have the following special cases:

Lemma A.4. D(new)
1/2 and D(new)

+∞ = Dmax satisfy AM.

Proof. Note that D(new)
1/2 = −2 log F , where F is Uhlmann’s fidelity [47]. Since the

fidelity is known to be attainable by measurements (see, e.g., [38, Chapter 9]), the
assertion follows for D(new)

1/2 .
If ρ, σ ∈ B(H)+ are such that supp ρ ≤ supp σ then one can use the duality of linear

programming to write the max-relative entropy of ρ and σ as [5,46,51]

Dmax(ρ‖σ) = max{log Tr Mρ: 0 ≤ M, Tr Mσ = 1}
= max

{
log

Tr Mρ

Tr Mσ
: 0 ≤ M ≤ I

}

= max

{
max
x∈X

{
log

Tr Mxρ

Tr Mxσ

}
: {Mx }x∈X POVM

}

= max {Dmax({Tr ρMx }x∈X ‖{Tr σMx }x∈X ): {Mx }x∈X POVM} .
The equality between the first and the last expression above holds trivially when supp ρ ≤
supp σ is not satisfied. ��

It is well-known that the fidelity is monotone non-decreasing, or equivalently, D(new)
1/2

is monotone non-increasing, under CPTP maps. Combining this with Lemma A.4, we
get the following stronger monotonicity property:

Corollary A.5. The fidelity is monotone non-decreasing, or equivalently, D(new)
1/2 is monotone

non-increasing, under trace-preserving positive maps.

Proof. Monotonicity under CPTP maps implies MMON, and thus the assertion is im-
mediate from Lemma A.4 and (A4). ��



1646 M. Mosonyi, T. Ogawa

Remark A.6. Monotonicity of Dmax under trace-preserving positive maps is trivial from
its definition (47).

Remark A.7. It is easy to see that for fixed states, the classical Rényi relative entropies
are monotone increasing in the parameter α. Lemma A.4 thus yields that

Dmax(ρ‖σ) = max
α∈[0,+∞]max {Dα ({Tr Miρ}‖{Tr Miσ }) : {Mi } POVM} ,

i.e., the max-relative entropy of ρ and σ is the largest Rényi α-relative entropy of the
classical distributions that can be obtained fromρ andσ after performing a measurement.

We say that a quantum divergence D satisfies the sufficiency property (S) if the
following holds: for every states ρ, σ ∈ S(H), and CPTP map F : B(H)→ B(K),

D(F(ρ)‖F(σ )) = D(ρ‖σ) (A5)

implies the existence of a CPTP map F ′: B(K)→ B(H) such that

F ′(F(ρ)) = ρ and F ′(F(σ )) = σ. (A6)

Obviously, if D is monotone under CPTP maps then (A6) implies (A5). Thus, for a
monotone divergence, sufficiency means that the monotonicity inequality is strict in the
sense that it can only be saturated in a trivial way.

The old Rényi relative entropies D(old)
α satisfy MON for every α ∈ [0, 2], and they

are known to have the sufficiency property for every parameter value in this interval,
except for its endpoints 0 and 2; see [25–27,41,42]. Failure of (S) for α = 0 is trivial
to see, and for α = 2 it follows from a counterexample given in [28, Example 2.2] and
[25, Section 5].

Sufficiency for the new Rényi relative entropies is an open question for every para-
meter value, except at the endpoints of the monotonicity interval [1/2,+∞]. Below we
show that, similarly to the case of the old Rényi relative entropies, sufficiency fails at
these points.

The following lemma is due to Petz [43, Lemma 4.1].

Lemma A.8. Let ρ, σ be states and {Mx }x∈X be a measurement such that

D(old)
1/2 ({Tr ρMx }x∈X ‖{Tr σMx }x∈X ) = D(old)

1/2 (ρ‖σ). (A7)

Then ρ and σ commute.

Corollary A.9. No quantum divergence can satisfy (A)+(S). In particular, D(new)
1/2 and

D(new)∞ do not satisfy (S).

Proof. Assume that D satisfies (A) and (S), and let ρ, σ be non-commuting states. By
(A), there exists a POVM {Mx }x∈X such that D(ρ‖σ) = D ({Tr ρMx }x∈X ‖{Tr σMx }x∈X ).
By (S), there exists a CPTP map� such that�({Tr ρMx }x∈X ) = ρ and�({Tr σMx }x∈X )
= σ . By the monotonicity of D(old)

1/2 , we have (A7), and by Lemma A.8,ρ andσ commute,
which is a contradiction.

The assertion about D(new)
1/2 and D(new)∞ follows as a special case, due to

Lemma A.4. ��
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