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Abstract: The analysis of the Z
3
2 Laplace-Dunkl equation on the 2-sphere is cast in

the framework of the Racah problem for the Hopf algebra sl−1(2). The related Dunkl-
Laplace operator is shown to correspond to a quadratic expression in the total Casimir
operator of the tensor product of three irreducible sl−1(2)-modules. The operators com-
muting with the Dunkl Laplacian are seen to coincide with the intermediate Casimir
operators and to realize a central extension of the Bannai–Ito (BI) algebra. Functions on
S2 spanning irreducible modules of the BI algebra are constructed and given explicitly
in terms of Jacobi polynomials. The BI polynomials occur as expansion coefficients be-
tween two such bases composed of functions separated in different coordinate systems.

1. Introduction

The purpose of this paper is to establish a relation between Dunkl harmonic analysis on
the 2-sphere and the representation theory of sl−1(2), an algebra obtained as a q → −1
limit of the quantum algebra Uq(sl2). The Dunkl-Laplace operator on S2 associated to the
Abelian reflection group Z

3
2

∼= Z2 ×Z2 ×Z2 will be expressed as a quadratic polynomial
in the total Casimir operator of the tensor product of three irreducible sl−1(2)-modules.
The operators commuting with the Dunkl Laplacian will be identified with the inter-
mediate Casimir operators arising in the three-fold tensor product. On eigensubspaces
of the Dunkl Laplacian, these intermediate Casimir operators will be shown to gener-
ate the Bannai–Ito algebra, which is the algebraic structure behind the Racah problem
of sl−1(2). Functions on the 2-sphere providing bases for irreducible modules of the
Bannai–Ito algebra will be constructed. It will be shown that the Bannai–Ito polynomi-
als arise here as expansion coefficients between elements of such bases associated to the
separation of variables in different spherical coordinate systems.

We first provide background on the entities involved here: the Z
3
2 Dunkl Laplacian

and its restriction to the 2-sphere, the sl−1(2) algebra and its Hopf algebra structure and
the Bannai–Ito algebra and the associated Bannai–Ito polynomials.
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1.1. The Z
3
2 Dunkl-Laplacian on S2. The Dunkl operators and Laplacian were intro-

duced by Dunkl in [4,5], where a framework for multivariate analysis based on finite
reflection groups was developed. These operators have since found a vast number of ap-
plications in diverse fields including harmonic analysis and integral transforms [3,13,15],
orthogonal polynomials and special functions [6], stochastic processes [11] and quantum
integrable/superintegrable systems [7,19]. In the case of the Abelian reflection group
Z

3
2, the Dunkl operators Di , i = 1, 2, 3, associated to each copy of the reflection group

Z2 are defined by

Di = ∂xi +
μi

xi
(1 − Ri ), (1.1)

with μi > −1/2 a real parameter, ∂xi the partial derivative with respect to the variable
xi and Ri the reflection operator in the xi = 0 plane, i.e., Ri f (xi ) = f (−xi ). The Dunkl
Laplacian associated to the Z

3
2 group is defined by

� = D2
1 + D2

2 + D2
3, (1.2)

and has the following expression:

� =
3∑

i=1

∂2
xi

+
2μi

xi
∂xi − μi

x2
i

(1 − Ri ).

Since the reflections Ri , i = 1, 2, 3, are special rotations in O(3), the Dunkl Laplacian
(1.2), like the standard Laplace operator in three variables, separates in the usual spherical
coordinates

x1 = r sin θ cosφ, x2 = r sin θ sin φ, x3 = r cos θ, (1.3)

with 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π . The operator � can thus be restricted to functions
defined on the unit sphere. Let�S2 denote the angular part of the Dunkl Laplacian (1.2);
one has

�S2 = Lθ +
1

sin2 θ
Mφ, (1.4)

where

Lθ = 1

sin θ
∂θ (sin θ ∂θ ) + 2

(μ1 + μ2

tan θ
− μ3 tan θ

)
∂θ − μ3

cos2 θ
(1 − R3),

and

Mφ = ∂2
φ + 2

(
μ2

tan φ
− μ1 tan φ

)
∂φ − μ1

cos2 φ
(1 − R1)− μ2

sin2 φ
(1 − R2),

as can be directly checked by expanding (1.2) in spherical coordinates.

1.2. The Hopf algebra sl−1(2). The sl−1(2) algebra was introduced in [16] as the q →
−1 limit of the quantum algebra Uq(sl2) [20]. It is defined as the associative algebra
(over C) with generators A±, A0 and P satisfying the relations

[A0, A±] = ±A±, [A0, P] = 0, {A+, A−} = 2A0, {A±, P} = 0, P2 = 1, (1.5)
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where [x, y] = xy − yx stands for the commutator. This algebra admits the following
Casimir operator, which commutes with all generators:

C = A+ A− P − A0 P + P/2. (1.6)

The sl−1(2) algebra can be endowed with the structure of a Hopf algebra. One introduces
the comultiplication� : sl−1(2) → sl−1(2)⊗ sl−1(2), the counit ε : sl−1(2) → C and
the coinverse (antipode) σ : sl−1(2) → sl−1(2) defined by the formulas

�(A0) = A0 ⊗ 1 + 1 ⊗ A0, �(A±) = A± ⊗ P + 1 ⊗ A±, �(P) = P ⊗ P,

ε(1) = ε(P) = 1, ε(A±) = ε(A0) = 0, (1.7)

σ(1) = 1, σ (P) = P, σ (A0) = −A0, σ (A±) = P A±.

It is verified that the Definitions (1.7) comply with the conditions required for a Hopf
algebra [18]. It is worth pointing out that the operators A±, A0 also satisfy the defining
relations of the parabosonic algebra for a single paraboson (see [2]).

1.3. The Bannai–Ito algebra and polynomials. The Bannai–Ito algebra was introduced
in [17] as the algebraic structure encoding the bispectrality property of the Bannai–Ito
polynomials. It is defined as the associative algebra (over C) generated by K1, K2 and
K3 satisfying the relations

{K1, K2} = K3 + α3, {K2, K3} = K1 + α1, {K3, K1} = K2 + α2, (1.8)

where {x, y} = xy + yx stands for the anticommutator and where αi , i = 1, 2, 3, are
real structure constants. In [17], the algebra was introduced with the structure constants
expressed as follows in terms of four real parameters ρ1, ρ2, r1, r2:

α1 = 4(ρ1ρ2 + r1r2), α2 = 2(ρ2
1 + ρ2 − r2

1 − r2
2 ), α3 = 4(ρ1ρ2 − r1r2),

and the generators had the form

K1 = 2L + (g + 1/2), K2 = y,

with g = ρ1 + ρ2 − r1 − r2 and L the difference operator

L = (y − ρ1)(y − ρ2)

2y
(1 − Ry) +

(y − r1 + 1/2)(y − r2 + 1/2)

2y + 1
(T +

y Ry − 1),

where Ry f (y) = f (−y), T +
y f (y) = f (y + 1). The operator L is the most general

self-adjoint first order difference operator with reflections that stabilizes the space of
polynomials of a given degree. As shown in [17], the operator L admits as eigenfunctions
the Bannai–Ito polynomials Bn(y), which were introduced in a combinatorial context
by Bannai and Ito in [1]. Their three-term recurrence relation was derived in [17] using
the BI algebra (1.8) and reads

x Bn(y) = Bn+1(y) + (ρ1 − An − Cn)Bn(y) + An−1Cn Bn−1(y), (1.9)

where the initial conditions B−1(x) = 0, B0(x) = 1 hold and where the recurrence
coefficients An,Cn are given by
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An =
⎧
⎨

⎩

(n+2ρ1−2r1+1)(n+2ρ1−2r2+1)
4(n+ρ1+ρ2−r1−r2+1) , n is even,

(n+2ρ1+2ρ2−2r1−2r2+1)(n+2ρ1+2ρ2+1)
4(n+ρ1+ρ2−r1−r2+1) , n is odd,

(1.10a)

Cn =
⎧
⎨

⎩

− n(n−2r1−2r2)
4(n+ρ1+ρ2−r1−r2)

, n is even,

− (n+2ρ2−2r2)(n+2ρ2−2r1)
4(n+ρ1+ρ2−r1−r2)

, n is odd.
(1.10b)

The polynomials Bn(y) defined by (1.9) are q → −1 limits of either the Askey-Wilson
[17] or the q-Racah polynomials [1]. They obey a discrete and finite orthogonality
relation of the form

N∑

s=0

ws Bn(ys)Bm(ys) = hnδnm,

where the expressions for the grid points ys , the measure ws and the normalization
constant hn depend on a set of relations between the parameters. For the complete
picture, one may consult the references [8,17].

1.4. Outline. Here is an outline of the paper.

• Section II: Irreducible sl−1(2)-modules (positive-discrete series), Realization with
Dunkl operators, Racah problem, Intermediate Casimir operators, Relation between
the total Casimir and �S2 , Spectra of the total and intermediate Casimir operators

• Section III: Commutant of �S2 , Bannai–Ito algebra, Finite-dimensional irreducible
representations of the BI algebra

• Section IV: Dunkl spherical harmonics for Z
3
2, S2 basis functions for irreducible mod-

ules of the BI algebra, BI polynomials as expansion coefficients between basis func-
tions

2. Racah Problem of sl−1(2) and �S2

In this section, irreducible sl−1(2)-modules of the positive-discrete series and their
realizations in terms of the Dunkl operators (1.1) are given. The Racah problem is
presented and the intermediate and total Casimir operators are defined. The main result
on the relation between the total Casimir operator and the Dunkl Laplacian on S2 is
presented. Moreover, the spectrum of the Dunkl Laplacian is recovered algebraically
using this relation.

2.1. Representations of the positive-discrete series and their realization in terms of
Dunkl operators. Let ε and ν be real parameters such that ε2 = 1 and ν > −1/2
and denote by V (ε,ν) the infinite-dimensional vector space spanned by the orthonormal
basis vectors e(ε,ν)n with n a non-negative integer. An irreducible sl−1(2)-module of the
positive-discrete series is obtained by endowing V (ε,ν) with the actions [16]:

A0 e(ε,ν)n = (n + ν + 1/2) e(ε,ν)n , P e(ε,ν)n = ε(−1)n e(ε,ν)n , (2.1a)

A+ e(ε,ν)n = √[n + 1]ν e(ε,ν)n+1 , A− e(ε,ν)n = √[n]ν e(ε,ν)n−1 , (2.1b)
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where [n]ν is defined by

[n]ν = n + ν(1 − (−1)n).

It is directly seen that for ν > −1/2, V (ε,μ) is an irreducible module. Furthermore, it
is observed that on this module the spectrum of A0 is strictly positive and the operators
A± are adjoint one of the other. As expected from Schur’s lemma, the Casimir operator
(1.6) of sl−1(2) acts a multiple of the identity on V (ε,ν):

C e(ε,ν)n = −ε ν e(ε,ν)n . (2.2)

The sl−1(2)-module V (ε,ν) can be realized using Dunkl operators. Indeed, for each
variable xi , i = 1, 2, 3, one can check that the operators

A(i)0 = −1

2
D2

i +
1

2
x2

i , A(i)± = 1√
2
(xi ∓ Di ), P(i) = Ri , (2.3)

where Di and Ri are as in (1.1), satisfy the defining relations (1.5) of sl−1(2). The
Casimir operator C (i) becomes

C (i) = A(i)+ A(i)− P(i) − A(i)0 P(i) + P(i)/2 = −μi , (2.4)

and hence the operators (2.3) for i = 1, 2, 3 realize the irreducible module V (ε,ν) with
ε = εi = 1 and ν = μi . The orthonormal basis vectors e(εi ,νi )

n (xi ) in this realization
are expressed in terms of the generalized Hermite polynomials (see for example [7,14])
and the space V (εi ,νi ) with εi = 1 and νi = μi is the L2 space of square integrable
functions of argument xi with respect to the orthogonality measure of the generalized
Hermite polynomials [14]; we shall denote it by L2

μi
.

2.2. The Racah problem, Casimir operators and�S2 . The Racah problem for sl−1(2)-
modules of the positive-discrete series arises when the decomposition in irreducible
components of the module V = V (ε1,ν1) ⊗ V (ε2,ν2) ⊗ V (ε3,ν3) is considered. The action
of the sl−1(2) generators on V is prescribed by the coproduct structure (1.7) and one
has for v ∈ V

A0v = (1 ⊗�)�(A0)v, Pv = (1 ⊗�)�(P)v, A±v = (1 ⊗�)�(A±)v. (2.5)

Note that (1 ⊗ �)� = (� ⊗ 1)� since � is coassociative. In the realization (2.3),
the module V (with εi = 1 and νi = μi ) involves functions of the three independent
variables x1, x2, x3. The operators satisfying the sl−1(2) relations and acting on functions
f (x1, x2, x3) in L2

μ1
⊗ L2

μ2
⊗ L2

μ3
are obtained from (2.3) and (2.5):

Ã0 = A(1)0 + A(2)0 + A(3)0 , P̃ = P(1)P(2)P(3),

Ã± = A(1)± P(2)P(3) + A(2)± P(3) + A(3)± .
(2.6)

In combining the modules V (εi ,νi ), i = 1, 2, 3, three types of Casimir operators can be
distinguished. The three initial Casimir operators are those attached to each components
V (εi ,μi ) of V and act as multiplication by −εiνi as per (2.2). In the realization (2.3),
these are the C (i) given in (2.4). The two intermediate Casimir operators are associated
to the two equivalent factorizations
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V = (V (ε1,ν1) ⊗ V (ε2,ν2))⊗ V (ε3,ν3) = V (ε1,ν1) ⊗ (V (ε2,ν2) ⊗ V (ε3,ν3)), (2.7)

and correspond to the operators

�(C)⊗ 1 and 1 ⊗�(C), (2.8)

where �(C) is obtained from (1.6) and (1.7). In the realization (2.3), these shall be
denoted C (i j) with (i j) = (12), (23) and are given by

C (i j) = (A(i)+ P(i) + A( j)
+ P( j))(A(i)− P(i) + A( j)

− P( j))

− (A(i)0 + A( j)
0 )P(i)P( j) + P(i)P( j). (2.9)

The total Casimir operator is connected to the whole module V and is of the form
(1 ⊗�)�(C). In the realization (2.3), the total Casimir is denoted C̃ and reads

C̃ = Ã+ Ã− P̃ − Ã0 P̃ + P̃/2. (2.10)

with Ã0, Ã± and P̃ given by (2.6). Note that C̃ does not act as a multiple of the identity
on V since in general V is not irreducible.

Remark 1. By construction, the total Casimir operator C̃ commutes with both the initial
and intermediate Casimir operators. Moreover, it is obvious that the two intermediate
Casimir operators commute with the initial Casimir operators, but do not commute
amongst themselves.

We now relate the total Casimir operator C̃ to the Dunkl Laplacian operator�S2 on the
2-sphere.

Proposition 1. Let  be the following element:

 = C̃ P̃, (2.11)

where C̃ and P̃ are respectively given by (2.6) and (2.10) in the realization (2.3). One
has

−�S2 = 2 +− (μ1 + μ2 + μ3)(μ1 + μ2 + μ3 + 1). (2.12)

Proof. The relation is obtained by expanding the total Casimir operator (2.10) using
(2.3) and by writing the resulting operator in the coordinates (1.3). 	


The fact that is a purely angular operator can be understood algebraically as follows.
Consider the element X̃ defined by

X̃ = 1√
2

(
Ã+ + Ã−

)
.

It is directly checked that X̃ anticommutes with, that is {, X̃} = 0. It thus follows that
X̃2 commutes with. Using the expressions (2.6) for the operators Ã± in the realization
(2.3), it is easily seen that

X̃2 = x2
1 + x2

2 + x2
3 .

Hence  commutes with the “radius” operator, which means that it can only be an
angular operator.
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2.3. Spectrum of �S2 from the Racah problem. The relation (2.12) can be exploited
to algebraically derive the spectrum of �S2 from that of  using the eigenvalues of
the intermediate Casimir operators. In view of (2.8), these eigenvalues can be found
from those of �(C) on V (εi ,νi ) ⊗ V (ε j ,ν j ) (see also [9,10,16] where this problem was
considered). Upon examining the action of �(A0) on the direct product basis, one
obtains using (2.1) the following direct sum decomposition of V (εi ,νi ) ⊗ V (ε j ,ν j ) as a
vector space:

V (εi ,νi ) ⊗ V (ε j ,ν j ) =
∞⊕

n=0

Un,

where Un are the (n+1)-dimensional eigenspaces of�(A0)with eigenvalue n+νi +ν j +1.
Since �(C) commutes with �(A0), the action of �(C) stabilizes Un .

Lemma 1. The eigenvalues λI of �(C) on Un are given by

λI (k) = (−1)k+1εiε j (k + νi + ν j + 1/2), k = 0, . . . n.

Proof. By induction on n. The n = 0 case is verified by acting with�(C) on the single

basis vector e(εi ,νi )
0 ⊗ e

(ε j ,ν j )

0 of U0. Suppose that the result holds at level n − 1. Using
the fact that�(C) and�(A+) commute and the induction hypothesis, one obtains from
the action of �(A+) on Un−1 eigenvectors of �(C) in Un with eigenvalues λI (k) for
k = 0, . . . , n − 1. Let v ∈ Un be such that�(A−)v = 0. Such a vector can explicitly be
constructed in the direct product basis by solving the corresponding two-term recurrence
relation. It is verified that v is an eigenvector of �(P) with eigenvalue (−1)nεiε j and
of �(C) with eigenvalue λI (n). 	


As a direct corollary one has the following decomposition of the tensor product
module in irreducible components:

V (εi ,νi ) ⊗ V (ε j ,ν j ) =
⊕

k

V (εi j (k),νi j (k)), (2.13)

with

εi j (k) = (−1)kεiε j , νi j (k) = k + νi + ν j + 1/2, k ∈ N. (2.14)

The eigenvalues of the total Casimir operator (1 ⊗�)�(C) on V are obtained by using
twice the decomposition (2.13) and Lemma 1 on (2.7). It is readily seen performing
these decompositions on the LHS of (2.7) that the eigenvalues λT of the total Casimir
operator are given by

λT = (−1)k+1ε12(�)ε3(k + ν12(�) + ν3 + 1/2), k, � ∈ N. (2.15)

A similar formula involving ε23 and ν23 is obtained by considering instead the RHS of
(2.7). Upon using (2.14), the eigenvalues λT can be cast in the form

λT (N ) = −ε(N )ν(N ), (2.16)

with N a non-negative integer and

ε(N ) = (−1)N ε1ε2ε3, ν(N ) = (N + ν1 + ν2 + ν3 + 1). (2.17)
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The formula (2.16) and (2.17) indicate which irreducible modules appear in the decom-
position of V . The multiplicity of V (ε(N ),ν(N )) in this decomposition is N + 1 since for
a given value of N there are N + 1 possible eigenvalues of the intermediate Casimir
operators; the decomposition formula for V is thus

V =
∞⊕

N=0

m N V (ε(N ),ν(N )), (2.18)

where m N = N + 1 and where ε(N ), ν(N ) are given by (2.17).
Returning to the realization (2.6) of the module V with εi = 1 and νi = μi , the

eigenvalues of = C̃ P̃ are readily obtained. Recalling (2.2), it follows from (2.16) and
(2.17) that the eigenvalues ωN of  are

ωN = −(N + μ1 + μ2 + μ3 + 1), (2.19)

where N is a non-negative integer. The relation (2.12) then leads to the following.

Proposition 2. The eigenvalues δ of the Dunkl Laplacian �S2 on the 2-sphere are in-
dexed by the non-negative integer N and have the expression

δN = −N (N + 2μ1 + 2μ2 + 2μ3 + 1). (2.20)

Proof. By proposition 1 and the above considerations. 	

The eigenvalues of proposition 2 are in accordance with those obtained in [6]. It is

seen that upon specializing (2.20) to μ1 = μ2 = μ3 = 0, one recovers the spectrum of
the standard Laplacian on the 2-sphere. It is worth mentioning that the formula (2.20)
does not provide information on the degeneracy of the eigenvalues. This question will
be discussed in the following.

3. Commutant of �S2 and the Bannai–Ito Algebra

In this section, the operators commuting with the Dunkl Laplacian on the 2-sphere are
exhibited and are shown to generate a central extension of the Bannai–Ito algebra. The
eigensubspaces corresponding to the simultaneous diagonalization of �S2 and  are
seen to support finite-dimensional irreducible representations of the BI algebra and the
matrix elements of these representations are constructed.

3.1. Commutant of �S2 and symmetry algebra. The operators that commute with the
Dunkl Laplacian �S2 on the 2-sphere, referred to as the symmetries of �S2 , can be
obtained from the relation (2.12) and the framework provided by the Racah problem of
sl−1(2). By construction, the intermediate Casimir operators (2.9) commute with the
total Casimir (2.10) and with the involution P̃ . As a consequence of (2.12), one thus has

[�S2 ,C (12)] = [�S2 ,C (23)] = 0.

Let K1, K3 be the following operators:

K1 = −C (23), K3 = −C (12), (3.1)
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which obviously commute with the Dunkl Laplacian on S2. Upon using (2.3) and (2.9),
the symmetries K1, K3 are seen to have the expressions

K1 = (x2D3 − x3D2)R2 + μ2 R3 + μ3 R2 + (1/2)R2 R3, (3.2a)

K3 = (x1D2 − x2D1)R1 + μ1 R2 + μ2 R1 + (1/2)R1 R2, (3.2b)

where Di and Ri are given by (1.1). Consider the operator K2 defined by

K2 = (x1D3 − x3D1)R1 R2 + μ1 R3 + μ3 R1 + (1/2)R1 R3. (3.2c)

It is verified by an explicit calculation that K2 is also a symmetry of the Dunkl-Laplacian
�S2 , i.e. [�S2 , K2] = 0.

Remark 2. Note that K2 does not correspond to an intermediate Casimir operator since
it has a non-trivial action on all three variables x1, x2, x3.

The three operators Ki , i = 1, 2, 3, and the operator given by (2.11) are not indepen-
dent from one another. As a matter of fact, one has

 = −K1 R2 R3 − K2 R1 R3 − K3 R1 R2 + μ1 R1 + μ2 R2 + μ3 R3 + 1/2.

We now give the symmetry algebra generated by the operators commuting with the
Dunkl-Laplace operator �S2 on the 2-sphere.

Proposition 3. Let �S2 be the Dunkl Laplacian (1.4) on the 2-sphere and let C̃ and
Ki , i = 1, 2, 3 be given by (2.10) and (3.2), respectively. One has

[�S2 , Ki ] = [�S2 , C̃] = 0.

and the symmetry algebra of �S2 is

{K1, K2} = K3 − 2μ3C̃ + 2μ1μ2, (3.3a)

{K2, K3} = K1 − 2μ1C̃ + 2μ2μ3, (3.3b)

{K3, K1} = K2 − 2μ2C̃ + 2μ1μ3. (3.3c)

Proof. By an explicit calculation using (1.4) and (3.2). 	

The algebra (3.3) corresponds to a central extension of the Bannai–Ito algebra (1.8)

by the total Casimir operator C̃ . Since C̃ (and ) commutes with �S2 , there is a basis
in which they are both diagonal. From (2.17) and (2.19), it follows that the eigenvalues
of C̃ are of the form −ε μ with

ε = (−1)N , μ = (N + μ1 + μ2 + μ3 + 1). (3.4)

For a given N , the �S2 -eigenspaces arising under the joint diagonalization of �S2 and
C̃ (or) are (N + 1)-dimensional as per the decomposition (2.18) of the tensor product
module V in irreducible components. Hence the eigenvalues δN of�S2 given by (2.20)
are at least (N + 1)-fold degenerate. It can be seen that this degeneracy is in fact higher.
Indeed, �S2 commutes with every reflection operator Ri , but C̃ (and ) only commute
with their product R1 R2 R3. Consequently one can obtain eigenfunctions of �S2 with
eigenvalue δN that are not eigenfunctions of C̃ by applying any reflection Ri on a given
eigenfunction of C̃ . It is known [6] that the eigenspaces corresponding to the eigenvalue
δN are in fact (2N + 1)-fold degenerate, as shall be seen in Section 4.
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Notwithstanding the degeneracy question, it follows from Proposition 3 and (3.4) that
the eigensubspaces of the Laplace-Dunkl operator corresponding to the simultaneous
diagonalization of�S2 and C̃ support an (N + 1)-dimensional module of the Bannai–Ito
algebra (1.8) with structure constants taking the values

α1 = 2(μ1μ + μ2μ3), α2 = 2(μ1μ3 + μ2μ), α3 = 2(μ1μ2 + μ3μ), (3.5)

where μ = (−1)N (N + μ1 + μ2 + μ3 + 1). The Casimir operator K2 = K 2
1 + K 2

2 + K 2
3

of the Bannai–Ito algebra can be expressed in terms of C̃ as follows:

K2 = C̃2 + μ2
1 + μ2

2 + μ2
3 − 1/4,

and hence using (3.4) one has

K2 = μ2
1 + μ2

2 + μ2
3 + μ2 − 1/4. (3.6)

The realization (3.5), (3.6) of the Bannai–Ito algebra corresponds to the one arising in
the Racah problem for sl−1(2) studied in [10]. We shall now obtain the matrix elements
of the generators in this realization.

3.2. Irreducible modules of the Bannai–Ito algebra. We begin by examining the repre-
sentations of (1.8) with structure constants (3.5) in the eigenbasis {ψk}N

k=0 of K3. Using
the result of Lemma 1 and (3.1), it follows that

K3ψk = ωkψk, ωk = (−1)k(k + μ1 + μ2 + 1/2), (3.7)

We define the action of K1 by

K1ψk =
∑

s

Zs,kψs . (3.8)

From the second relation of (1.8) one finds
∑

s

Zs,k

[
(ωk + ωs)

2 − 1
]
ψs = [α1 + 2ωkα2]ψk .

When s = k, one immediately obtains

Zk,k ≡ Vk = α1 + 2ωkα2

4ω2
k − 1

. (3.9)

When s = k, one of the following conditions must hold

(ωk + ωs)
2 − 1 = 0, or Zs,k = 0.

In view of the formula (3.7) for the eigenvaluesωk , it is directly seen that only Zk+1,k, Zk,k
and Zk−1,k can be non-vanishing. Thus one can take

K1ψk = Uk+1ψk+1 + Vkψk + Ukψk−1, (3.10)

where Vk is given by (3.9) and where Uk remains to be determined. It follows from (1.8)
and (3.10) that K2 has the action

K2ψk = (−1)k+1Uk+1 + Wkψk + (−1)kUkψk−1, (3.11)



A Laplace-Dunkl Equation on S2 and the Bannai–Ito Algebra 253

where Wk = 2ωk Vk − α2. Upon using the actions (3.10), (3.11) in the first relation of
(1.8) and comparing the terms in ψk , one obtains the recurrence relation for U 2

k

2
{
(−1)k+1U 2

k+1 + Wk Vk + (−1)kU 2
k

}
= ωk + α3. (3.12)

Acting on ψk with (3.6) and using the actions (3.10), (3.11), one finds
{
ω2

k + W 2
k + V 2

k + 2U 2
k + 2U 2

k+1

}
= μ2

1 + μ2
2 + μ2

3 + μ2 − 1/4. (3.13)

The equations (3.12), (3.13) can be used to solve for U 2
k by eliminating U 2

k+1. Straight-
forward calculations then lead to the following result.

Proposition 4. Let W be the (N + 1)-dimensional vector space spanned by the basis
vectors ψk, k = 0, . . . , N, and let

μ = (−1)N (N + 1 + μ1 + μ2 + μ3). (3.14)

An irreducible module for the Bannai–Ito algebra (1.8) with structure constants (3.5) is
obtained by endowing W with the actions

K3ψk = ωkψk, (3.15a)

K2ψk = (−1)k+1Uk+1ψk+1 + (2ωk Vk − α2)ψk + (−1)kUkψk−1, (3.15b)

K1ψk = Uk+1ψk+1 + Vkψk + Ukψk−1, (3.15c)

where ωk = (−1)k(k + μ1 + μ2 + 1/2), Vk = μ2 + μ3 + 1/2 − Bk − Dk and where
Uk = √

Bk−1 Dk with

Bk =
⎧
⎨

⎩

(k+2μ2+1)(k+μ1+μ2+μ3−μ+1)
2(k+μ1+μ2+1) , k is even,

(k+2μ1+2μ2+1)(k+μ1+μ2+μ3+μ+1)
2(k+μ1+μ2+1) , k is odd,

Dk =
⎧
⎨

⎩

−k(k+μ1+μ2−μ3−μ)
2(k+μ1+μ2)

, k is even,

−(k+2μ1)(k+μ1+μ2−μ3+μ)
2(k+μ1+μ2)

, k is odd.

Proof. One verifies directly that with (3.15) the defining relations (1.8), (3.5) are satis-
fied. The irreducibility follows from the fact that Uk = 0 for μi > −1/2. 	


In view of Proposition 4, it is natural to wonder what the representation matrix
elements look like in other bases, say the eigenbases of either K1 or K2. These elements
are easily obtained from the Z3 symmetry of the realization (3.5), (3.6). Indeed, it is
verified that the algebra (1.8) with (3.5), (3.6) is left invariant by any cyclic transformation
of both {K1, K2, K3} and {μ1, μ2, μ3}. As a consequence, the representation matrix
elements in the K1 or K2 eigenbasis can be obtained directly from Proposition 4 by
applying the permutation π = (123) or π = (123)2 on the generators Ki and the
parameters μi .

4. S2 Basis Functions for Irreducible Bannai–Ito Modules

In this section, a family of orthonormal functions on S2 that realize bases for the Bannai–
Ito modules of Proposition 4 are constructed. It is shown that the Bannai–Ito polynomials
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arise as the overlap coefficients between two such bases separated in different spherical
coordinates.

4.1. Harmonics for�S2 . It is useful to give here the Dunkl spherical harmonics YN (θ, φ)

which are the regular solutions to the eigenvalue equation

�S2 YN (θ, φ) = δN YN (θ, φ), δN = −N (N + 2μ1 + 2μ2 + 2μ3 + 1), (4.1)

where�S2 is given by (1.4). The solutions to (4.1) are well known and are given explicitly
in [6] in terms of the generalized Gegenbauer polynomials. We give their expressions
here in terms of Jacobi polynomials. In spherical coordinates (1.3), the solutions to (4.1)
read

Y (e1,e2,e3)
n;N (θ, φ) = η

(e1,e2,e3)
n;N cose3 θ sinn θ cose1 φ sine2 φ

×P(n+μ1+μ2,μ3+e3−1/2)
(N−n−e3)/2

(cos 2θ) P(μ2+e2−1/2,μ1+e1−1/2)
(n−e1−e2)/2

(cos 2φ),

(4.2)

where ei ∈ {0, 1}, n is a non-negative integer, η(e1,e2,e3)
N ,n is a normalization factor and

P(α,β)n (x) are the standard Jacobi polynomials [12]. The harmonics (4.2) satisfy

Ri Y (e1,e2,e3)
n;N (θ, φ) = (1 − 2ei )Y

(e1,e2,e3)
n;N (θ, φ).

In (4.2), it is understood that half-integer (or negative) indices in P(α,β)n (x) do not provide
admissible solutions. Recording the admissible values of n and ei for a given N , one
finds that there are 2N + 1 solutions and

R1 R2 R3Y (e1,e2,e3)
n;N (θ, φ) = (−1)N Y (e1,e2,e3)

n;N (θ, φ).

The normalization factor η(e1,e2,e3)
n;N is given by

η
(e1,e2,e3)
n;N =

[
( n−e1−e1

2 )!(n + μ1 + μ2)�(
n+e1+e2

2 + μ1 + μ2)

2 �( n+e1−e2
2 + μ1 + 1/2)�( n+e2−e1

2 + μ2 + 1/2)

]1/2

×
[
(N + μ1 + μ2 + μ3 + 1/2)( N−n−e3

2 )!�( N+n+e3
2 + μ1 + μ2 + μ3 + 1/2)

�( N+n−e3
2 + μ1 + μ2 + 1)�( N−n+e3

2 + μ3 + 1/2)

]1/2

,

where �(x) stands for the Gamma function and ensures that

∫ 2π

0

∫ π

0
Y (e1,e2,e3)

n;N Y
(e′

1,e
′
2,e

′
3)

n′;N ′ h(θ, φ) sin θ dθdφ = δnn′δN N ′δe1e′
1
δe2e′

2
δe3e′

3
,

where the Z
3
2-invariant weight function h(θ, φ) is [6]

h(θ, φ) = | cos θ |2μ3 | sin θ |2μ1 | sin θ |2μ2 | cosφ|2μ1 | sin φ|2μ2 . (4.3)
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4.2. S2 basis functions for BI representations. Let Y N
K (θ, φ), K = 0, . . . , N be the

functions on S2 satisfying

Y N
K (θ, φ) = −(N + μ1 + μ2 + μ3 + 1)Y N

K (θ, φ), (4.4a)

R1 R2 R3 Y N
K (θ, φ) = (−1)N Y N

K (θ, φ), (4.4b)

K3 Y N
K (θ, φ) = (−1)K (K + μ1 + μ2 + 1/2)Y N

K (θ, φ). (4.4c)

where  is given by (2.11) and where K3 is given by (3.1). In spherical coordinates
(1.3), the operator K3 has the expression

K3 = ∂φR1 + μ1 tan φ(1 − R1) +
μ2

tan φ
(R1 − R1 R2) + μ1 R2 + μ2 R1 +

1

2
R1 R2.

Since K3 acts only on φ, the functions Y N
K (θ, φ) can be separated.

The solutions for the azimuthal part are readily obtained from (4.4c) by considering
separately the eigenvalue sectors of R1 R2, which commutes with K3. For the positive
eigenvalue sector, one finds for K = 2k + p

F (+)
K (φ) = ζ

(+)
K

{[
k + 1

k + μ1 + μ2 + 1

]p/2

P(μ2−1/2,μ1−1/2)
k+p (cos 2φ)

−(−1)p
[

k + μ1 + μ2 + 1

k + 1

]p/2

cosφ sin φ P(μ2+1/2,μ1+1/2)
k+p−1 (cos 2φ)

}
,

(4.5a)

where p = 0, 1. For the negative eigenvalue sector, the result for K = 2k + p is

F (−)
K (φ) = ζ

(−)
K

{ [
k + μ1 + 1/2

k + μ2 + 1/2

]p/2

sin φ P(μ2+1/2,μ1−1/2)
k (cos 2φ)

+(−1)p
[

k + μ2 + 1/2

k + μ1 + 1/2

]p/2

cosφ P(μ2−1/2,μ1+1/2)
k (cos 2φ)

}
. (4.5b)

The normalization factors are

ζ
(+)
K =

√
(k + p)!�(k + μ1 + μ2 + 1 + p)

2�(k + μ1 + 1/2 + p)�(k + μ2 + 1/2 + p)
,

ζ
(−)
K =

√
k!�(k + μ1 + μ2 + 1)

2�(k + μ1 + 1/2)�(k + μ2 + 1/2)
,

Using (4.5) the remaining equations (4.4a), (4.4b) can be solved. When N = 2n and
K = 2k + p, one finds

Y N
K (θ, φ) =

√
(n − k − p)!�(n + k + μ1 + μ2 + μ3 + 3/2)

�(n + k + μ1 + μ2 + 1)�(n − k + μ3 + 1/2 − p)
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×
{[

n − k + μ3 − 1/2

n + k + μ1 + μ2 + 1

]p/2

sin2k+2p θ P(2k+2p+μ1+μ2,μ3−1/2)
n−k−p (cos 2θ)F (+)

K (φ)

+

[
n+k+μ1+μ2 +1

n−k+μ3−1/2

]p/2

cos θ sin2k+1 θ P(2k+1+μ1+μ2,μ3+1/2)
n−k−1 (cos 2θ)F (−)

K (φ)

}
.

(4.7a)

When N = 2n + 1 and K = 2k + p, the result is

Y N
K (θ, φ) = (−1)K

√
(n − k)!�(n + k + μ1 + μ2 + μ3 + 3/2 + p)

�(n − k + μ3 + 1/2)�(n + k + μ1 + μ2 + 1 + p)

×
{[

n+k+μ1+μ2 +1

n−k+μ3+1/2

](1−p)/2

cos θ sin2k+2p θ P(2k+2p+μ1+μ2,μ3+1/2)
n−k−p (cos 2θ)F (+)

K (φ)

−
[

n − k + μ3 + 1/2

n + k + μ1 + μ2 + 1

](1−p)/2

sin2k+1 θ P(2k+1+μ1+μ2,μ3−1/2)
n−k (cos 2θ)F (−)

K (φ)

}
.

(4.7b)

The solutions to (4.4) can be expressed as linear combinations of the Dunkl spherical
harmonics (4.2). For N = 2n, straightforward calculations lead to the expressions

Y N
2k(θ, φ) =

√
n + k + μ1 + μ2 + μ3 + 1/2

2n + μ1 + μ2 + μ3 + 1/2

{√
k + μ1 + μ2

2k + μ1 + μ2
Y (0,0,0)2k;N (θ, φ)

−
√

k

2k + μ1 + μ2
Y (1,1,0)2k;N (θ, φ)

}
+

√
n − k

2n + μ1 + μ2 + μ3 + 1/2

×
{√

k+μ2+1/2

2k+μ1+μ2 +1
Y (0,1,1)2k+1;N (θ, φ)+

√
k+μ1+1/2

2k+μ1+μ2 +1
Y (1,0,1)2k+1;N (θ, φ)

}
,

Y N
2k+1(θ, φ) =

√
n − k + μ3 − 1/2

2n + μ1 + μ2 + μ3 + 1/2

{√
k + 1

2k + μ1 + μ2 + 2
Y (0,0,0)2k+2;N (θ, φ)

+

√
k + μ1 + μ2 + 1

2k + μ1 + μ2 + 2
Y (0,1,1)2k+2;N (θ, φ)

}
+

√
n + k + μ1 + μ2 + 1

2n + μ1 + μ2 + μ3 + 1/2

×
{√

k+μ1+1/2

2k+μ1+μ2 +1
Y (0,1,1)2k+1;N (θ, φ)−

√
k+μ2 +1/2

2k+μ1+μ2 +1
Y (1,0,1)2k+1;N (θ, φ)

}
,

For N = 2n + 1, one finds

Y N
2k(θ, φ) =

√
k + n + μ1 + μ2 + 1

2n + μ1 + μ2 + μ3 + 3/2

{√
k + μ1 + μ2

2k + μ1 + μ2
Y (0,0,1)2k;N (θ, φ)

−
√

k

2k + μ1 + μ2
Y (1,1,1)2k;N (θ, φ)

}
−

√
n − k + μ3 + 1/2

2n + μ1 + μ2 + μ3 + 3/2
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×
{√

k+μ2+1/2

2k+μ1+μ2 +1
Y (0,1,0)2k+1;N (θ, φ)+

√
k+μ1+1/2

2k+μ1+μ2 +1
Y (1,0,0)2k+1;N (θ, φ)

}
,

Y N
2k+1(θ, φ) =

√
n + k + μ1 + μ2 + μ3 + 3/2

2n + μ1 + μ2 + μ3 + 3/2

{√
k + μ1 + 1/2

2k + μ1 + μ2 + 1
Y (0,1,0)2k+1;N (θ, φ)

−
√

k + μ2 + 1/2

2k + μ1 + μ2 + 1
Y (1,0,0)2k+1;N (θ, φ)

}
−

√
n − k

2n + μ1 + μ2 + μ3 + 3/2

×
{√

k+1

2k+μ1+μ2 +2
Y (0,0,1)2k+2;N (θ, φ)+

√
k+μ1+μ2 +1

2k+μ1+μ2 +2
Y (1,1,1)2k+2;N (θ, φ)

}
.

It follows from the orthogonality relation for the Jacobi polynomials [12] that

∫ π

0

∫ 2π

0
Y N

K (θ, φ)Y N ′
K ′ (θ, φ) h(θ, φ) sin θ dφ dθ = δK K ′δN N ′ , (4.8)

where h(θ, φ) is given by (4.3).

Proposition 5. The functions Y N
K (θ, φ) defined by (4.5), (4.7) realize the Bannai–Ito

modules of Proposition 4. That is, if one takes ψK = Y N
K (θ, φ), the generators (3.1)

expressed in spherical coordinates have the actions (3.15).

Proof. The result follows from the fact that the Y N
K (θ, φ) are solutions to (4.4). One needs

only to check for possible phase factors. A check on the highest order term occurring in
K1Y N

K (θ, φ) confirms the phase factors in (4.7). 	


4.3. Bannai–Ito polynomials as overlap coefficients. As is seen from (4.4), the simulta-
neous diagonalization of, R1 R2 R3 and K3 is associated to the separation of variables
of the basis functions Y N

K (θ, φ) in the usual spherical coordinates

x1 = sin θ cosφ, x2 = sin θ sin φ, x3 = cos θ. (4.9)

Consider the basis functions ZN
S (ϑ, ϕ), S = 0, . . . , N , associated to the simultaneous

diagonalization of , R1 R2 R3 and K1. The relations (4.4a), (4.4b) hold and one has

K1ZN
S (ϑ, ϕ) = (−1)S(S + μ2 + μ3 + 1/2)ZN

S (ϑ, ϕ). (4.10)

The functions ZN
S (ϑ, ϕ) separate in the alternative spherical coordinates

x1 = cosϑ, x2 = sin ϑ cosϕ, x3 = sin ϑ sin ϕ, (4.11)

as can be seen from the expression of K1 obtained using (4.11). Writing in the coordi-
nates (4.11) and comparing the expression with the one obtained using the coordinates
(4.9), it is seen that the basis functions ZN

S (ϑ, ϕ) have the expression

ZN
S (ϑ, ϕ) =

{
πY N

S (π − ϑ, ϕ), N is even,

πY N
S (ϑ, ϕ), N is odd,
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where π = (123) is the permutation applied to the parameters (μ1, μ2, μ3). Since
{Y N

K (θ, φ)}N
K=0 and {ZN

S (ϑ, ϕ)}N
S=0 form orthonormal bases for the same space, they

are related (at a given point) by a unitary transformation. One hence writes

ZN
S (ϑ, ϕ) =

N∑

K=0

Rμ1,μ2,μ3
S,K ;N Y N

K (θ, φ). (4.12)

Since the coefficients Rμ1,μ2,μ3
S,K ;N are real, their unitarity implies

N∑

S=0

Rμ1μ2μ3
S,K ;N Rμ1μ2μ3

S,K ′;N = δK K ′ ,
N∑

K=0

Rμ1μ2μ3
S,K ;N Rμ1μ2μ3

S′,K ;N = δSS′ , (4.13)

These transition coefficients can be expressed in terms of the Bannai–Ito polynomials
(1.9) as follows. Acting with K1 on both sides of (4.12), using (4.10) and Proposition
5 and furthermore defining Rμ1,μ2,μ3

S,K ;N = 2K [wS;N ]1/2 BK (xS) such that B0(xS) = 1,
it seen that BK (xS) satisfy the three-term recurrence relation (1.9) of the Bannai–Ito
polynomials BK (xS; ρ1, ρ2, r1, r2) with parameters

ρ1 = μ2 + μ3

2
, ρ2 = μ1 + μ

2
, r1 = μ3 − μ2

2
, r2 = μ− μ1

2
. (4.14)

with μ given by (3.14) and where the variable xS is given by

xS = 1

2

[
(−1)S(S + μ2 + μ3 + 1/2)− 1/2

]
. (4.15)

The coefficients Rμ1μ2μ3
S,K ;N coincide with the Racah coefficients of sl−1(2) [10]. Combin-

ing (4.13) with the orthogonality relation of the BI polynomial [17], one finds

Rμ1μ2μ3
S,K ;N =

√
wS;N

u1u2 · · · uK
BK (xS; ρ1, ρ2, r1, r2). (4.16)

with (4.14), (4.15), where un = An−1Cn with An,Cn as in (1.10), and where wS;N is
of the form

wS;N = 1

hN

(−1)ν(ρ1 − r1 + 1/2; ρ1 − r2 + 1/2)�+ν(ρ1 + ρ2 + 1; 2ρ1 + 1)�
(ρ1 + r1 + 1/2; ρ1 + r2 + 1/2)�+ν(1; ρ1 − ρ2 + 1)�

,

with S = 2� + ν, ν = {0, 1} and

(a1; a2; . . . ; ak)n = (a1)n(a2)n · · · (ak)n, (4.17)

where (a)n = a(a + 1) · · · (a + n − 1). The normalization factor hN is given by

hN =

⎧
⎪⎨

⎪⎩

(2ρ1+1;r1−ρ2+1/2)N/2
(ρ1−ρ2+1;ρ1+r1+1/2)N/2

, N even,

(2ρ1+1;r1+r2)(N+1)/2
(ρ1+r1+1/2;ρ1+r2+1/2)(N+1)/2

, N odd.

Using the orthogonality relation (4.8) satisfied by the basis functions Y N
K (θ, φ) on the

decomposition formula (4.12), one finds that

Rμ1μ2μ3
S,K ;N =

∫ π

0

∫ 2π

0
Y N

K (θ, φ)ZN
S (ϑ, ϕ) h(θ, φ) sin θ dφ dθ,

which in light of (4.16) gives an integral formula for the Bannai–Ito polynomials.
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5. Conclusion

We have established in this paper the algebraic basis for the harmonic analysis on S2

associated to a Z
3
2 Dunkl Laplacian �2

S . The commutant of �S2 was determined in the
framework of the Racah problem for sl−1(2) and identified with a central extension
of the Bannai–Ito algebra. Two bases for the unitary irreducible representations of this
algebra on L2(S2)were explicitly constructed in terms of the Dunkl spherical harmonics
with the Bannai–Ito orthogonal polynomials arising in their overlaps.

Since the Dunkl operators and Laplacian can be defined for an arbitrary number of
variables, it would be natural to look for the extension of the results presented here to
spheres in higher dimensions. It would also be of interest to examine the situation on
hyperboloids. We plan to pursue the study of these questions in the future.
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