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Abstract: We provide an Operator Algebraic approach to N = 2 chiral Conformal
Field Theory and set up the Noncommutative Geometric framework. Compared to the
N = 1 case, the structure here is much richer. There are naturally associated nets of
spectral triples and the JLO cocycles separate the Ramond sectors. We construct the
N = 2 superconformal nets of von Neumann algebras in general, classify them in
the discrete series c < 3, and we define and study an operator algebraic version of the
N = 2 spectral flow. We prove the coset identification for the N = 2 super-Virasoro nets
with c < 3, a key result whose equivalent in the vertex algebra context has seemingly
not been completely proved so far. Finally, the chiral ring is discussed in terms of net
representations.
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1. Introduction

Quantum Field Theory (QFT) describes a quantum system with infinitely many degrees
of freedom and, from a geometrical viewpoint, can be regarded as an infinite-dimensional
noncommutative manifold. It thus becomes a natural place for merging the classical
infinite-dimensional calculus with the noncommutative quantum calculus. As explained
in [49], a QFT index theorem should manifest itself in this setting and noncommutative
geometry should provide a natural framework.

Within this program, localized representations with finite Jones index should play a
role analogous to the one of elliptic operators in the classical framework. One example
of this structure was suggested in the black hole entropy context, the Hamiltonian was
regarded in analogy with the (infinite dimensional promotion of the) Laplacian, and
spectral analysis coefficients were indeed identified with index invariants for the net and
its representations [44]. According to Connes [17], the notion of spectral triple abstracts
and generalizes the notion of Dirac operator on a spin manifold to the noncommutative
context and this naturally leads to exploring the supersymmetric context where the
supercharge operator plays the role of the Dirac operator.

A particularly interesting context where to look for this setting is provided by chiral
Conformal Field Theory in two spacetime dimensions (CFT), a building block for general
2D CFT. There are several reasons why CFT is suitable for our purposes. On the one
hand, the Operator Algebraic approach to QFT has been particularly successful within
the CFT frame leading to a deep, model independent description and understanding
of the underlying structure. On the other hand, there are different, geometrically based
approaches to CFT suggesting a noncommutative geometric interpretation ought to exist,
and in which fields represent the noncommutative variables, see e.g. [31]. Since the
root of Connes’ noncommutative geometry is operator algebraic, one is naturally led
to explore its appearance within local conformal nets of von Neumann algebras. In
particular, this approach connects subfactor theory and noncommutative geometry.

A first step in this direction was taken in [14] with the construction and structure
analysis of the N = 1 superconformal nets of von Neumann algebras, the prime class of
nets combining conformal invariance and supersymmetry. Indeed according to the above
comments, the natural QFT models where spectral triples are found are the supersym-
metric ones where the supercharge operator is an odd square root of the Hamiltonian.

Indeed, nets of spectral triples have been later constructed in [12], associated with
Ramond representations of the N = 1 super-Virasoro net, the most elementary super-
conformal net of von Neumann algebras. In particular the irreducible, unitary positive
energy representation of the Ramond N = 1 super Virasoro algebra with central charge
c and minimal lowest weight h = c/24 is graded and gives rise to a net of even θ -
summable spectral triples with non-zero Fredholm index. More recently, three of us
started in [13] a more systematic analysis of the noncommutative geometric aspects of
the superselection structure of (N = 1) superconformal nets. In particular, they defined
spectral triples and corresponding entire cyclic cocycles associated to representations
of the underlying nets in various relevant N = 1 superconformal field theory models
and proved that the cohomology classes of these cocycles encode relevant information
about the corresponding sectors. On the other hand, a related K-theoretical analysis of
the representation theory of conformal nets has been initiated in [10,11].
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The N = 1 super-Virasoro algebras (Neveu–Schwarz or Ramond) are infinite-
dimensional Lie superalgebras generated by the Virasoro algebra and the Fourier modes
of one Fermi field of conformal dimension 3/2. There are higher level super-Virasoro
algebras: the N = 2 ones are generated by the Virasoro algebra and the Fourier modes
of two Fermi fields and a U (1)-current that generates rotations associated with the sym-
metry of the two Fermi fields. N = 2 superconformal nets will be extensions of a net
associated with the N = 2 super-Virasoro nets. One may continue the procedure even
to N = 4, where four Fermi fields are present, acted upon by SU (2)-currents [46]. The
various supersymmetries play crucial roles in several physical contexts, in particular in
phase transitions of solid state physics and on the worldsheets of string theory.

This paper is devoted to the construction and analysis of the N = 2 superconformal
nets. As is known, the passage from the N = 1 to the N = 2 case is not a matter of
generalizing and extending results because a new and more interesting structure does
appear by considering N = 2 superconformal models, although the definition of the
respective nets is similar.

After summing up basic general preliminaries, we begin our analysis in Sect. 3,
of course, constructing the N = 2 super-Virasoro nets of von Neumann algebras by
“integrating” the corresponding infinite-dimensional Lie superalgebra unitary (vacuum)
representations and proving the necessary local energy bounds. For any given value of
the central charge c corresponding to some unitary representation of the N = 2 super-
Virasoro algebras we can define the corresponding super-Virasoro net with central charge
c. Different values of c give rise to nonisomorphic nets. The representations of the net
will correspond to the representations of the N = 2 super-Virasoro algebras (Neveu–
Schwarz or Ramond) [5,18], where, in the Ramond case, the representations are actually
solitonic. This goes all in complete analogy to the N = 1 case [14].

At this point, however, there appears a remarkable new feature of the N = 2 super-
Virasoro algebra: the appearance of the spectral flow, a “homotopy” equivalence between
the Neveu–Schwarz and the Ramond algebra in the sense that there exists a deformation
of one into the other. In Sect. 4 we set up an operator algebraic version of the N = 2
spectral flow. We find that for any value of the flow parameter it gives rise to covariant
solitons of the N = 2 super-Virasoro nets. Moreover, it has a natural interpretation in
terms of α-induction [4,50]. As a consequence solitonic Ramond representations of the
nets are thus in correspondence with true (DHR) representations, an important fact of
later use to us.

Before proceeding further, Sect. 5 is devoted to clarifying a key point of our paper:
the identification for the even (Bose) subnet of the N = 2 super-Virasoro nets with
c < 3 as a coset for the inclusion AU(1)2n+4 ⊂ ASU(2)n ⊗ AU(1)4 . This identification is
equivalent to the corresponding coset identification at the Lie algebra (or vertex algebra)
level and it is moreover equivalent to the identification of the corresponding characters,
cf. [14,42] for the analogous statements in the N = 0, 1 cases. Accordingly, it is equiv-
alent to the correctness of the known N = 2 character formulae for the discrete series
representations, see e.g. [22,24].

The N = 2 character formulae for the unitary representations with c < 3 were
first derived (independently) by Dobrev [19], Kiritsis [47] and Matsuo [51]. Although
these formulae appear to be universally accepted, a closer look at the literature seems
to indicate that the mathematical validity of the proofs which have been proposed so far
and of related issues of the representation theory of the N = 2 superconformal algebras
is rather controversial, see [20–22,24,37] and [25,26,33,34]. For this reason, we think
that it is useful to give in this paper an independent complete mathematical proof of
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the N = 2 coset identification (and consequently of the N = 2 character formulae).
Our proof, which we believe in any case to be of independent interest, is obtained
largely through operator algebraic methods, a point that is certainly emblematic of the
effectiveness and power of operator algebras. Surprisingly, our operator algebraic version
of the N = 2 spectral flow plays a crucial role in the proof. As a consequence of the
coset identification the Bose subnets of the super-Virasoro nets with c < 3 turn out to
be completely rational in the sense of [45], and the fusion rules of the corresponding
sectors agree with the CFT ones. In particular, the irreducible representations of these
nets give rise to finite index subfactors.

We can then proceed with the classification of the N = 2 superconformal (chiral)
minimal models in Sect. 6, i.e., the irreducible graded-local extensions of the N = 2
super-Virasoro net. As in the local (N = 0) case [42], there are simple current series
(simple current extensions, i.e., to crossed products by cyclic groups) and exceptional
nets (mirror extensions [59]). The proof is again based on combinatorics, modular in-
variants, and subfactor methods. Compared to the cases N = 0 [42] and N = 1 [14],
however, a new phenomenon appears, namely, simple current extensions with cyclic
groups of arbitrary finite order.

The noncommutative geometric analysis starts in Sect. 7, where we construct the nets
of spectral triples associated with representations of the Ramond N = 2 super-Virasoro
algebra.

The main results in noncommutative geometry then are collected in Sect. 8, where
we consider the JLO cocycles [41], see also [35], for suitable “global” spectral triples
and pair them with K-theory. This pairing is nondegenerate and allows us to separate,
by means of certain characteristic projections, all Ramond sectors of the N = 2 super-
Virasoro nets. An essential point here is that, in contrast with the N = 1 case, all the
irreducible representations of the Ramond N = 2 super-Virasoro algebra are graded.
In the N = 1 case there was only one graded Ramond irreducible sector for every
value of the central charge, i.e., the one corresponding to the minimal lowest conformal
energy h = c/24, and the index pairing provides no insight there if one follows the
strategy that we take here for the N = 2 super-Virasoro nets. The situation changes if
one considers the different, but related, recent constructions in [13] which also allow us
to separate certain sectors of N = 1 superconformal nets. Hence, in this paper and in
[13], noncommutative geometry is used for the first time to separate representations of
conformal nets. In contrast to [13] however, the analysis given here is deeply related to
and crucially relies on the rich structure of the N = 2 superconformal context.

Our last Sect. 9 is dedicated to the study of the chiral ring (for the minimal models)
from an operator algebraic point of view. The chiral ring associated to the N = 2 super-
Virasoro net with central charge c (here we assume c < 3) is defined and generated
here by the chiral sectors, a certain subset of Neveu–Schwarz sectors, and the monoidal
product by means of truncated fusion rules, hence without direct reference to pointlike
localized fields. However, the algebraic structure of the chiral ring coincides with the one
provided by the operator product expansion of chiral primary fields. The spectral flow (at
a specific value) is known to connect the chiral sectors with the Ramond vacuum sectors,
i.e., those with h = c/24, and we illustrate and exploit this in our setting, including some
comments and hints for future work. Moreover, we show that if one restricts to the family
of Ramond vacuum sectors (always assuming c < 3) then the results in Sect. 8 can be
interpreted in terms of the noncommutative geometry of a finite-dimensional abelian
∗-algebra.
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2. Preliminaries on Graded-Local Conformal Nets

We provide here a brief summary on graded-local conformal nets, just as much as we
need to understand the general construction in the subsequent sections. The concept is a
generalization of the notion of local conformal nets and has been explicitly introduced
and worked out in [14, Sect. 2,3,4] under the name of Fermi conformal nets (in the case
of nontrivial grading); we refer to that paper for more details, cf. also [13].

Let S1 = {z ∈ C : |z| = 1} be the unit circle, let Diff(S1) be the infinite-dimensional
(real) Lie group of orientation-preserving smooth diffeomorphisms of S1 and denote
by Diff(S1)(n), n ∈ N ∪ {∞}, the corresponding n-cover. In particular Diff(S1)(∞)

is the universal covering group of Diff(S1). For g ∈ Diff(S1) and z ∈ S1 we will
often write gz instead of g(z). By identifying the group PSL(2,R) with the group of
Möbius transformations on S1 we can consider it as a three-dimensional Lie subgroup
of Diff(S1). We denote by PSL(2,R)(n) ⊂ Diff(S1)(n), n ∈ N∪{∞}, the corresponding
n-cover so that PSL(2,R)(∞) is the universal covering group of PSL(2,R). We denote
by ġ ∈ Diff(S1) the image of g ∈ Diff(S1)(∞) under the covering map. Since the latter
restricts to the covering map of PSL(2,R)(∞) onto PSL(2,R) we have ġ ∈ PSL(2,R)
for all g ∈ PSL(2,R)(∞).

Let I denote the set of nonempty and non-dense open intervals of S1. For any I ∈ I, I ′
denotes the interior of S1\I . Given I ∈ I, the subgroup Diff(S1)I of diffeomorphisms
localized in I is defined as the stabilizer of I ′ in Diff(S1) namely the subgroup of
Diff(S1) whose elements are the diffeomorphisms acting trivially on I ′. Then, for any
n ∈ N ∪ {∞}, Diff(S1)

(n)
I denotes the connected component of the identity of the pre-

image of Diff(S1)I in Diff(S1)(n) under the covering map. We denote by I(n) the set

of intervals in the n-cover S1(n) of S1 which map to an element in I under the covering
map. Moreover, we often identify R with S1\{−1} by means of the Cayley transform,
and we write IR (or ĪR) for the set of bounded open intervals (or bounded open intervals
and open half-lines, respectively) in R.

Definition 2.1. A graded-local conformal net A on S1 is a map I 	→ A(I ) from the set of
intervals I to the set of von Neumann algebras acting on a common infinite-dimensional
separable Hilbert space H which satisfy the following properties:

(A) Isotony. A(I1) ⊂ A(I2) if I1, I2 ∈ I and I1 ⊂ I2.
(B) Möbius covariance. There is a strongly continuous unitary representation U of

PSL(2,R)(∞) such that

U (g)A(I )U (g)∗ = A(ġ I ), g ∈ PSL(2,R)(∞), I ∈ I.

(C) Positive energy. The conformal Hamiltonian L0 (i.e., the selfadjoint generator of the
restriction of the U to the lift to PSL(2,R)(∞) of the one-parameter anti-clockwise
rotation subgroup of PSL(2,R)) is positive.

(D) Existence and uniqueness of the vacuum. There exists a U -invariant vector � ∈ H
which is unique up to a phase and cyclic for

∨
I∈I A(I ), the von Neumann algebra

generated by the algebras A(I ), I ∈ I.
(E) Graded locality. There exists a selfadjoint unitary � (the grading unitary) on H

satisfying �A(I )� = A(I ) for all I ∈ I and �� = � and such that

A(I ′) ⊂ ZA(I )′Z∗, I ∈ I,
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where

Z := 1 − i�

1 − i
.

(F) Diffeomorphism covariance. There is a strongly continuous projective unitary repre-
sentation of Diff(S1)(∞), denoted again by U , extending the unitary representation
of PSL(2,R)(∞) and such that

U (g)A(I )U (g)∗ = A(ġ I ), g ∈ Diff(S1)(∞), I ∈ I,
and

U (g)xU (g)∗ = x, x ∈ A(I ′), g ∈ Diff(S1)
(∞)
I , I ∈ I.

A local conformal net is a graded-local conformal net with trivial grading � = 1.
The even subnet of a graded-local conformal net A is defined as the fixed point subnet
Aγ , with grading gauge automorphism γ = Ad�. It can be shown that the projective
representation U of Diff(S1)∞ commutes with �, cf. [14, Lemma 10]. Accordingly the
restriction of Aγ to the even subspace of H is a local conformal net with respect to the
restriction to this subspace of the projective representation U of Diff(S1)∞.

Some of the consequences [14,15,30,39] of the preceding definition are:

(1) Reeh–Schlieder Property. � is cyclic and separating for every A(I ), I ∈ I.
(2) Bisognano–Wichmann Property. Let I ∈ I and let�I , JI be the modular operator

and the modular conjugation of (A(I ),�). Then we have

U (δI (−2π t)) = �i t
I , t ∈ R.

Moreover the unitary representation U : PSL(2,R)(∞) 	→ B(H) extends to an
(anti-) unitary representation of PSL(2,R)�Z/2 determined by

U (rI ) = Z JI

and acting covariantly on A. Here (δI (t))t∈R is (the lift to PSL(2,R)(∞) of) the
one-parameter dilation subgroup of PSL(2,R)with respect to I and rI the reflection
of the interval I onto the complement I ′.

(3) Graded Haag Duality. A(I ′) = ZA(I )′Z∗, for I ∈ I.
(4) Outer regularity.

A(I0) =
⋂

I∈I,I⊃ Ī0

A(I ), I0 ∈ I.

(5) Additivity. If I = ⋃
α Iα with I, Iα ∈ I, then A(I ) = ∨

α A(Iα).
(6) Factoriality. A(I ) is a type I I I1-factor, for I ∈ I.
(7) Irreducibility.

∨
I∈I A(I ) = B(H).

(8) Vacuum Spin-Statistics theorem. ei 2πL0 = �, in particular ei 2πL0 = 1 for local
nets, where L0 is the infinitesimal generator from above corresponding to rota-
tions. Hence the representation U of PSL(2,R)(∞) factors through a representa-
tion of PSL(2,R)(2) (PSL(2,R) in the local case) and consequently its extension
Diff(S1)(∞) factors through a projective representation of Diff(S1)(2) (Diff(S1) in
the local case).



N = 2 Superconformal Nets 1291

(9) Uniqueness of Covariance. For fixed �, the strongly continuous projective repre-
sentation U of Diff(S1)(∞) making the net covariant is unique.

In the sequel, G stands for either one of the two groups PSL(2,R) or Diff(S1). From
time to time we shall need covering nets of a given (graded-)local conformal net. By

this we mean the following: a G-covariant net over S1(n) is a family (An(I ))I∈I(n) such
that

– An(I1) ⊂ An(I2) if I1, I2 ∈ I(n) and I1 ⊂ I2;
– there is a strongly continuous unitary representation U of G(∞) on H such that

U (g)An(I )U (g)
∗ = An(ġ I ), g ∈ PSL(2,R)(∞), I ∈ I(∞).

A representation of A is a family π = (πI )I∈I of representations πI : A(I ) →
B(Hπ ), I ∈ I, on a common Hilbert space Hπ which is compatible with isotony, i.e.,
such that πI2 |A(I1) = πI1 whenever I1 ⊂ I2. π is called locally normal if every πI is
normal. π is called G-covariant if there exists a projective unitary representation Uπ of
G∞ on Hπ satisfying

Uπ (g)πI (x)Uπ (g)
∗ = πġ I (U (g)xU (g)∗), g ∈ G∞, x ∈ A(I ), I ∈ I.

π has positive energy if it is G-covariant and the infinitesimal generator of the lift of the
rotation subgroup in Uπ (G(∞)) is positive. The unitary equivalence classes of irreducible
locally normal representations are called the sectors of A. The identity representation
π0 of A on H is called the vacuum representation, and it is automatically locally normal
and Diff(S1)(∞)-covariant.

The above notion of representation of a graded-local conformal net A agrees with
the usual one for local conformal nets. In the graded-local case however it turns out to
be very natural and useful to consider a larger class of (solitonic) representations.

Definition 2.2. (1) A G-covariant soliton of a graded-local conformal net A on S1 is
a family π = (πI )I∈ĪR

of normal representations πI : A(I ) → B(Hπ ), I ∈ ĪR,
on a common Hilbert space Hπ , which is compatible with isotony in the sense that
π Ĩ |A(I ) = πI if I ⊂ Ĩ , together with a projective unitary representation Uπ of
G(∞) on B(Hπ ) such that, for every I ∈ IR:

Uπ (g)πI (x)Uπ (g)
∗ = πġ I (U (g)xU (g)∗), g ∈ UI , x ∈ A(I ),

where UI is the connected component of the identity in G(∞) of the open set
{g ∈ G(∞) : ġ I ∈ IR}. If Uπ is a positive energy representation, namely the
selfadjoint generator Lπ0 corresponding to the one parameter group of rotations has
nonnegative spectrum, we say that π has positive energy.
If π is a G-covariant soliton and the family π = (πI )I∈ĪR

can be extended to I so
that the extension is still compatible with isotony and satisfies

Uπ (g)πI (x)Uπ (g)
∗ = πġ I (U (g)xU (g)∗), g ∈ G∞, x ∈ A(I ),

for all I ∈ I, then we say that π is a DHR representation of A.
(2) A G-covariant general soliton of A is a G-covariant soliton such that its restriction

to the even subnet Aγ is a DHR representation. In case G = Diff(S1), we shall
simply say general soliton.
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(3) We say that a G-covariant general soliton π of A is graded if there exists a selfad-
joint unitary �π ∈ B(H), commuting with the representation Uπ and such that

�ππI (x)�π = πI (γ (x)), x ∈ A(I ), I ∈ IR.

(4) A G-covariant graded general soliton π of a superconformal net A is supersym-
metric if Lπ0 − λ1 admits an odd square-root for some λ ∈ R.

Remark 2.3. It can be shown (using a straightforward reasoning based on covariance
relations) that a family (πI )I∈IR

of normal representations of A which is covariant
with respect to a given projective unitary representation of G(∞) extends automatically
from IR to ĪR, thus defines a G-covariant soliton. We shall make use of this (simpli-
fying) fact when considering explicit N = 2 super-Virasoro nets. Note also that the
G-covariant solitons of A which are DHR representations in the sense of the above defi-
nition corresponds to the G-covariant locally normal representations of A. In particular,
the restriction of a G-covariant general soliton π of A to the even subnet Aγ gives rise
to a locally normal G-covariant representation of the latter net on Hπ .

In various cases, as a consequence of the results in [55], the positive energy condition
is automatic for G-covariant general solitons, see [14, Prop. 12 & Prop. 21]. In particular
an irreducible G-covariant general soliton is always of positive energy.

For the more common case of a local net B over S1 (like the even subnet B = Aγ )
we recall the following associated “global algebras” [28,29,38], see also [11,13]:

Definition 2.4. The universal C*-algebra C∗(B) of B is determined by the following
properties:

– for every I ∈ I, there are unital embeddings ιI : B(I ) → C∗(B), such that ιI1|B(I2) =
ιI2 whenever I1 ⊂ I2, and all ιI (B(I )) together generate C∗(B) as a C*-algebra;

– for every representation π of B on some Hilbert space Hπ , there is a unique ∗-
representation π̃ : C∗(B) → B(Hπ ) such that

πI = π̃ ◦ ιI , I ∈ I.
It can be shown to be unique up to isomorphism. Let (π̃u,Hu) be the universal repre-
sentation of C∗(B): the direct sum of all GNS representations π̃ of C∗(B). Since it is
faithful, C∗(B) can be identified with π̃u(C∗(B)). We call the weak closure W ∗(B) =
π̃u(C∗(B))′′ the universal von Neumann algebra of B. We shall drop the ·̃ sign hence-
forth.

When no confusion can arise we will identify C∗(B) with π̃u(C∗(B)) ⊂ W ∗(B).
Moreover, we will write B(I ) instead of ιI (B(I )). With these conventions, for every
I ∈ I we have the inclusions B(I ) ⊂ C∗(B) ⊂ W ∗(B).

Coming back to the general case of graded-local nets, a fundamental first consequence
of Definition 2.2 is

Proposition 2.5 ([14, Sect. 4.3]). Let A be a graded-local conformal net and π an
irreducible G-covariant general soliton of A. Then the following three conditions are
equivalent:

– π is graded,
– π|Aγ is reducible,
– π|Aγ =: π+ ⊕ π− � π+ ⊕ π+ ◦ γ̂ ,
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with π+ and π− inequivalent irreducible DHR representations of Aγ on the eigenspaces
Hπ,± of �π corresponding to the eigenvalues ±1 and γ̂ a localized DHR automorphism
of Aγ dual to the grading. Moreover, if π̃ is another irreducible G-covariant general
soliton of A then π̃ is unitarily equivalent to π if and only if π̃+ is unitarily equivalent
to π+ or to π−.

Proof. We prove only the last statement. For the proof of the remaining statements we
refer the reader to [14, Prop. 22]. If π̃ is unitarily equivalent to π and u : Hπ → Hπ̃ is a
corresponding unitary intertwiner then u�πu∗ = ±�π̃ so that π̃+ is unitarily equivalent
to π±. Conversely, assume that π̃+ is unitarily equivalent to π±. Then π̃− � π+ ◦ γ̂ is
unitarily equivalent to π∓ � π± ◦ γ̂ and hence π+ ⊕ π− � π̃+ ⊕ π̃−. It follows that the
commutant of

⋃
I∈IR

((πI ⊕ π̃I )(Aγ (I ))) is an eight-dimensional algebra and hence
π cannot be inequivalent to π̃ , otherwise this commutant would be a four-dimensional
algebra. ��

It has been shown in [14, Prop. 22] that for irreducible graded π and under the
assumption of finite statistical dimension on π+, we have, up to unitary equivalence, the
two possibilities

ei 2πLπ0 = ei 2πLπ+
0 ⊕ ± ei 2πLπ+

0 ,

so, ei 4πLπ0 is a scalar, because, π+ being irreducible, ei 2πLπ+
0 is a scalar.

Here “ +” will correspond to (R) in the following theorem, “ −” to (N S). Thus every
irreducible general soliton of finite statistical dimension factorizes through a represen-

tation of a net over S1(2). Since the statistical dimension in general may be infinite we
shall assume this factorization property from the beginning in the definition of Neveu–
Schwarz and Ramond representations of a graded-local conformal net, cf. Theorem 2.7
here below.

Lemma 2.6. If a G-covariant soliton π on a graded-local conformal net A is such that
e2π i Lπ0 is either a scalar or implements the grading, then π|Aγ is a DHR representation,
i.e., π is a G-covariant general soliton of A.

Proof. Let Uπ be the covariance unitary representation of π . We can extend π to a

representation of the promotion A(∞) to the universal cover S1(∞)
by setting πgI :=

AdUπ (g) · πI for every I ∈ I(∞). As Uπ (4π) = e4π i Lπ0 commutes with the image
of π , π defines actually a G-covariant representation of the double cover net A(2) over

S1(2). By assumption, Uπ (2π) commutes with the image of the restriction of π to the
even subnet Aγ of A, so π is a DHR representation of Aγ , cf. [14, Prop. 19]. ��
Theorem 2.7 (cf. [14, Sect. 4.3]). Let A be a graded-local conformal net over S1 and
let π be an irreducible G-covariant general soliton of A such that ei 4πLπ0 is a scalar,
and denote π |Aγ =: π+ ⊕ π+γ̂ or π |Aγ =: π+ with an irreducible representation π+ of
Aγ (for graded or ungraded π , respectively). Then π is of either of the subsequent two
types:

(N S) π is actually a DHR representation of A; equivalently,
ei 2πLπ0 implements the grading.

(R) π is not a DHR representation but only a general soliton of A; equivalently,
ei 2πLπ0 is a scalar, hence does not implement the grading.
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In case (N S), π is called a Neveu–Schwarz representation of A, and in case (R), a
Ramond representation of A, the latter being however actually only a general soliton,

i.e., a representation of A(2) over S1(2), and not a proper representation of A. A direct
sum of irreducible Neveu–Schwarz (Ramond) representations is again called a Neveu–
Schwarz (Ramond) representation.

3. N = 2 Super-Virasoro Nets and Their Representations

Definition 3.1. For any t ∈ R, the N = 2 super-Virasoro algebra SVirN=2,t is the
infinite-dimensional Lie superalgebra generated by linearly independent even elements
Ln, Jn and odd elements G±

r , where n ∈ Z, r ∈ 1
2 ∓ t + Z, together with an even central

element ĉ and with (anti-) commutation relations

[Lm, Ln] = (m − n)Lm+n +
ĉ

12
(m3 − m)δm+n,0,

[Lm,G±
r ] =

(m

2
− r

)
G±

m+r ,

[G+
r ,G−

s ] = 2Lr+s + (r − s)Jr+s +
ĉ

3

(
r2 − 1

4

)
δr+s,0,

[G+
r ,G+

s ] = [G−
r ,G−

s ] = 0,

[Lm, Jn] = −n Jm+n,

[G±
r , Jn] = ∓G±

r+n,

[Jm, Jn] = ĉ

3
mδm+n,0.

The Neveu–Schwarz (NS) N = 2 super-Virasoro algebra is the super-Virasoro algebra
with t = 0, while the Ramond (R) N = 2 super-Virasoro algebra is the one with
t = 1/2. Sometimes we shall write simply SVirN=2 for the Neveu–Schwarz N = 2
super-Virasoro algebra SVirN=2,0.

For t ∈ 1
2 Z, we have 1

2 + t + Z = 1
2 − t + Z, hence, instead of G±

r , one can consider
the modes

G1
r := G+

r + G−
r√

2
, G2

r := − i
(G+

r − G−
r )√

2
,

and we shall use them frequently in the following.
Moreover for all t ∈ R, the Lie superalgebra SVirN=2,t is equipped with a natural

anti-linear involution (∗-structure), such that the adjoints of Ln , Jn , G±
r are respectively

L−n , J−n G∓−r , and ĉ is selfadjoint.
If t−s ∈ Z we have 1

2 ∓t+Z = 1
2 ∓s+Z and the Lie superalgebra SVirN=2,t is trivially

isomorphic (i.e. equal) to SVirN=2,s through the linear map defined by Ln 	→ Ln ,
Jn 	→ Jn , G±

r 	→ G±
r , n ∈ Z, r ∈ 1

2 ∓ t + Z. As we will see in Sect. 4, cf. Proposition
4.2, the algebras SVirN=2,t , t ∈ R, are all ismorphic trough the spectral flow although
the isomorphisms considered there η′

s ◦ ηt : SVirN=2,t → SVirN=2,s , t, s ∈ R, do not
preserve the generators unless t = s in contrast to the trivial isomorphism considered
above in the case t − s ∈ Z. It should be clear from the above discussion that the
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reason to consider all the isomorphic Lie superalgebras SVirN=2,t is not motivated by
the corresponding Lie superalgebra structure but by the special choice of the generators.

We are interested in linear vector space representations. We restrict here to the case t ∈
1
2 Z, i.e. to the NS and R case. These representations should satisfy the usual conditions
explained in [12, Sect. 4], in short, they should be unitary (i.e. ∗-preserving) with respect
to a suitable scalar product turning the vector space into a pre-Hilbert space, ĉ should
be represented by a real scalar c (the central charge), and L0 should be diagonalizable
with every eigenspace finite-dimensional and only nonnegative eigenvalues.

Note that in the NS case the positivity of L0 follows automatically from the commu-
tation relations 2L0 = [Gi

1/2,Gi−1/2], i = 1, 2. In the R case we have 2L0 − c
12 1 =

[G+
0,G−

0 ] ≥ 0 and hence L0 is bounded from below. It then follows by unitarity that
c ≥ 0 1 and L0 ≥ c

24 1 ≥ 0. Accordingly an irreducible unitary representation is com-
pletely determined by the corresponding irreducible unitary representation of the zero
modes on the lowest energy subspace (the subspace of highest weight vectors). In the
NS case the algebra of zero modes is abelian and irreducibility implies that the lowest
energy subspace is one-dimensional and spanned by a single vector �c,h,q of norm one
such that L0�c,h,q = h�c,h,q and J0�c,h,q = q�c,h,q . The real numbers c, h, q com-
pletely determine the representation (up to unitary equivalence). In the R case the algebra
of zero modes is non-abelian and there are two possibilities. If the lowest energy h is
equal to c/24, the lowest energy subspace must be one dimensional again, spanned by a
normalized common eigenvector �c,h,q of L0 and J0 with eigenvalues h and q, respec-
tively, and satisfying G+

0�c,h,q = G−
0 �c,h,q = 0. In contrast if h > c/24, the lowest

energy subspace must be two-dimensional. Then one can choose a common normalized
eigenvector �−

c,h,q for L0 and J0, with eigenvalues h and q respectively by imposing

the supplementary condition G+
0�

−
c,h,q = 0. The lowest energy subspace is spanned

by �−
c,h,q and �+

c,h,q−1 where �+
c,h,q−1 = (2h − c/12)− 1

2 G−
0 �

−
c,h,q is normalized and

satisfies L0�
+
c,h,q−1 = h�+

c,h,q−1 and J0�
+
c,h,q−1 = (q − 1)�+

c,h,q−1. With the above
convention the numbers c, h, q completely determine the representation up to unitary
equivalence also in the R case. Both in the NS and the R case we shall sometime use
the more explicit notation cπ , hπ , qπ instead of c, h, q for the numbers characterizing
the unitary representation π . As in the cases N = 0, 1, unitarity gives restrictions on the
possible values of c, h, q. The situation is described in

Theorem 3.2 ([5,18,40]). For any irreducible unitary representation of the Neveu–
Schwarz N = 2 super-Virasoro algebra SVirN=2,0 the corresponding values of c, h, q
satisfy one of the following conditions:

NS1 c ≥ 3 and 2h − 2nq + ( c
3 − 1)(n2 − 1

4 ) ≥ 0 for all n ∈ 1
2 + Z.

NS2 c ≥ 3 and 2h − 2nq + ( c
3 − 1)(n2 − 1

4 ) = 0,
2h − 2(n + sgn(n))q + ( c

3 − 1)
[
(n + sgn(n))2 − 1

4

]
< 0 for some n ∈ 1

2 + Z and
2( c

3 − 1)h − q2 + c
3 ≥ 0.

NS3 c = 3n
n+2 , h = l(l+2)−m2

4(n+2) , q = − m
n+2 , where n, l,m ∈ Z satisfy n ≥ 0, 0 ≤ l ≤ n,

l + m ∈ 2Z and |m| ≤ l.

For any irreducible unitary representation of the Ramond N = 2 super-Virasoro algebra

SVirN=2, 1
2 the corresponding values c, h, q satisfy one of the following conditions:

1 Ifψ is an eigenvector of L0 then 0 ≤ (L−nψ, L−nψ) = (ψ, [Ln , L−n ]ψ) = 2n(ψ, L0ψ)+ c
12 (n

3 −n)
for all sufficiently large positive integers n. Hence c must be a non-negative real number.
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R1 c ≥ 3 and 2h − 2n(q − 1
2 ) + ( c

3 − 1)(n2 − 1
4 )− 1

4 ≥ 0 for all n ∈ Z

R2 c ≥ 3 and 2h − 2n(q − 1
2 ) + ( c

3 − 1)(n2 − 1
4 )− 1

4 = 0,
2h −2(n + sgn(n − 1

2 ))(q − 1
2 )+ ( c

3 −1)
[
(n + sgn(n − 1

2 ))
2 − 1

4

]− 1
4 < 0 for some

n ∈ Z and 2( c
3 − 1)(h − c

24 )− (q − 1
2 )

2 + c
3 ≥ 0.

R3 c = 3n
n+2 , h = l(l+2)−m2

4(n+2) + 1
8 , q = − m

n+2 + 1
2 , where n, l,m ∈ Z satisfy n ≥ 0,

0 ≤ l ≤ n, l + m + 1 ∈ 2Z and |m − 1| ≤ l.

Conditions NS1, NS3, R1, R3, are also sufficient, namely if values c, h, q satisfy one of
them then there exists a corresponding irreducible unitary representation. In particular
all the values in the discrete series of representations (conditions NS3 and R3) with
c = 3n/(n + 2) are realized by the coset construction for the inclusion U(1)2n+4 ⊂
SU(2)n ⊗ CAR⊗2 for every nonnegative integer n. Here CAR⊗2 denotes the theory
generated by two real chiral free Fermi fields.

For every allowed value of c, there is a corresponding unique representation of the
Neveu–Schwarz N = 2 super-Virasoro algebra SVirN=2,0 with h = q = 0, the vacuum
representation with central charge c. Actually it can be shown, e.g. using Theorem 3.2,
that, for an irreducible unitary representation of the Neveu–Schwarz N = 2 super-
Virasoro algebra, h = 0 implies q = 0 so that the vacuum representation with central
charge c is the unique irreducible unitary representation with lowest energy h = 0.

Moreover, for every allowed value of c there are irreducible representations of the
Ramond N = 2 super-Virasoro algebra with h = c/24 (and the corresponding allowed
values for q) and we call them Ramond vacuum representations with central charge
c. Notice from Definition 3.1 that in contrast to the case N = 1, every irreducible
representation π is automatically graded by �π := e− iπq eiπ Jπ0 as follows easily from
the N = 2 super-Virasoro algebra commutation relations. Moreover, as for N = 1 the
irreducible representations of the Neveu–Schwarz N = 2 super-Virasoro algebra are
graded by �π := e− i 2πh ei 2πLπ0 . In the following we shall use this standard choice so
that there is always an even lowest energy vector. Sometimes, however, we shall say that
eiπ Jπ0 , or ei 2πLπ0 , implements the grading. Note that the latter operators are not selfadjoint
and hence do not define grading operators in the precise sense of Definition 2.2.

Our next goal in this section is to define a net associated to the vacuum representation
with central charge c of the Neveu–Schwarz N = 2 super-Virasoro algebra for every
allowed value of c. This will be done in the standard way by using certain unbounded
field operators (in the vacuum representation). Moreover, we will give a description,
based on the results in [16], of the representation theory of these nets in terms of the uni-
tary representations with central charge c of the Neveu–Schwarz and Ramond Virasoro
algebras super-Virasoro algebra. For these reasons we will need to consider analogous
field operators in the latter representations.

Let π be an irreducible unitary (and hence positive energy) representation of the
Neveu–Schwarz or Ramond N = 2 super-Virasoro algebra as above with central charge
cπ = c. If Hπ denotes the Hilbert space completion of the corresponding representation
space, we shall freely say, with some abuse of language, that π is a representation on
Hπ . Then we denote the generators in that representation by Lπn ,Gi,π

r , Jπn , n ∈ Z,
r ∈ 1

2 + Z in the NS case or r ∈ Z in the R case. These generators can be considered
as densely defined operators on the separable Hilbert space Hπ which are closable as a
consequence of unitarity. We shall often denote their closure by the same symbols. In
particular we consider Lπ0 as a selfadjoint operator on Hπ . It has pure point spectrum and

in fact the dense subspace H f
π spanned by its eigenvectors coincides with the original
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representation space. Moreover, it follows from [5] that e−βL0 is a trace class operator
for all β > 0.

If π = π0 is the (NS) vacuum representation with central charge c, we shall drop the
superscript π .

We shall need the following estimates (energy bounds), cf. [7,12,14]. Let c be any
of the allowed values of the central charge for the irreducible unitary representations of

SVirN=2,0 (or equivalently of SVirN=2, 1
2 ). Then, there is a constant Mc > 0 such that,

for any irreducible unitary representation π with central charge c of the Neveu–Schwarz
(resp. Ramond) N = 2 super-Virasoro algebra we have

‖Lπmψ‖ ≤ Mc(1 + |m| 3
2 )‖(1 + Lπ0 )ψ‖,

‖Gi,π
r ψ‖ ≤ (2 +

c

3
r2)

1
2 ‖(1 + Lπ0 )

1
2ψ‖, (3.1)

‖Jπmψ‖ ≤ (1 + c|m|)1/2‖(1 + Lπ0 )
1
2ψ‖,

for all ψ ∈ H f
π , m ∈ Z, r ∈ 1

2 + Z (resp. r ∈ Z).
As a consequence of the above estimates, together with the commutation relations in

Definition 3, the subspace C∞(L0) of C∞ vectors of L0 is a common invariant core for
the closed operators Lπn ,Gi,π

r , Jπn , i = 1, 2, n ∈ Z, r ∈ 1
2 + Z (resp. r ∈ Z).

We denote by C∞(S1) := C∞(S1,C) the space of complex-valued smooth func-
tions on S1 and, for any open interval I ⊂ S1, we denote by C∞

c (I ) ⊂ C∞(S1) the
subspace of complex-valued functions with support contained in I . We will also denote
by C∞(S1,R) and by C∞

c (I,R) the corresponding real subspaces of real-valued func-
tions. Moreover, for f ∈ C∞(S1) and s ∈ R we write fs := 1

2π

∫ π
−π e− i sθ f (ei θ ) d θ .

We first assume that π is an irreducible unitary representation with central charge c
of the Ramond N = 2 super-Virasoro algebra.

For any function f ∈ C∞(S1) the Fourier coefficients fn , n ∈ Z, are rapidly de-
creasing, and by standard arguments based on the above energy bounds , the series

∑

n∈Z

fn Lπn ,
∑

r∈Z

fr Gi,π
r ,

∑

r∈Z

fr G±,π
r ,

∑

n∈Z

fn Jπn , i = 1, 2,

give rise to densely defined closable operators with common invariant core C∞(Lπ0 ).
We denote their closures, the so-called smeared fields, by Lπ ( f ), Gi,π ( f ), i = 1, 2,
G±,π ( f ) and Jπ ( f ) respectively. Moreover, as a further consequence of the energy
bounds it can be shown that

Lπ ( f )∗ = Lπ ( f ), Gi,π ( f )∗ = Gi,π ( f ), i = 1, 2, G+,π ( f )∗ = G−,π ( f ),

Jπ ( f )∗ = Jπ ( f ),

so that, if f ∈ C∞(S1,R) is real, then Lπ ( f ), Gi,π ( f ), i = 1, 2 and Jπ ( f ) are
essentially selfadjoint on C∞(Lπ0 ) (in fact on any core for Lπ0 ), cf. [7, Sect. 2], [9, Sect.
2], [15, Sect. 4] and [12, Sect. 4].

Now, if π is an irreducible unitary representation of the Neveu–Schwarz N = 2
super-Virasoro algebra, the smeared fields Lπ ( f ), Jπ ( f ), f ∈ C∞(S1) can be defined
in the same way and have the properties discussed in the Ramond case. In particular, for
f ∈ C∞(S1,R) they are essentially selfadjoint on any core for Lπ0 . We would also like
to define Gi,π ( f ), i = 1, 2 and G±,π ( f ) through the series
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∑

r∈ 1
2 +Z

fr Gi,π
r ,

∑

r∈ 1
2 +Z

fr G±,π
r , i = 1, 2,

but, for f ∈ C∞(S1), the Fourier coefficients fr , r ∈ 1
2 + Z are, in general, not rapidly

decreasing. This problem, however, can be overcome by restricting to functions f ∈
C∞

c (S
1\{−1}). Accordingly, for the latter functions, closed operators Gi,π ( f ), i = 1, 2

and G±,π ( f ) with the properties discussed in the Ramond case can also be defined in
the Neveu–Schwarz case. In particular, for any real function f ∈ C∞

c (I,R), the closed
operators Gi,π ( f ), i = 1, 2 are essentially selfadjoint on C∞(Lπ0 ).

In order to define the N = 2 super-Virasoro nets we consider the special case when
π = π0 is the (NS) vacuum representation with central charge c. As said before, in
this case we shall drop the superscript π . We can define, similarly to [14, Sect. 6.3], an
isotonous net of von Neumann algebras over R on the Hilbert space H = Hπ0 by

Ac(I ) = {ei J ( f ), ei L( f ), ei Gi ( f ) : f ∈ C∞
c (I,R), i = 1, 2}′′, I ∈ IR. (3.2)

The extension of the net Ac to S1, whose existence is guaranteed by the following
theorem, will be denoted again by Ac and called the N = 2 super-Virasoro net with
central charge c.

Theorem 3.3. The family (Ac(I ))I∈IR
extends to a graded-local conformal net Ac =

(Ac(I ))I∈I over S1.

Proof. The proof goes in complete analogy to the one of [14, Thm. 33] for the N = 1
super-Virasoro nets. Here, for the reader’s convenience, we only recall the main points
and discuss some of the adaptations which are needed in the N = 2 case. First of all,
graded locality is consequence of the fact that

[X ( f ), Y (g)] = 0, supp( f ) ∩ sup(g) = ∅,
for X and Y any of the fields L ,Gi , J and of the energy bounds (3.1) together with
the adaptation of the arguments in [7, Sect. 2] based on [23, Thm. 3.2]. Concerning
covariance, we first define a projective unitary representation of Diff(S1)(∞) (in fact of
Diff(S1)(2)) by integrating the projective representation of the corresponding Lie algebra
of smooth vector fields on S1 associated to the representation of the Virasoro algebra on
Hπ defined by the operators Ln , n ∈ Z, see [53] and [36]. Then we have to show that
all J,Gi , L transform covariantly with respect to the restriction of that representation
to PSL(2,R)(∞). In fact, going through all the steps in the proof of [14, Thm. 33], we
just have to notice that (in the notation used there)

−i
d

d t
(J (β1(exp (t f1)) f2)ψ0)|t=0 = [L( f1), J ( f2)]ψ0,

where ψ0 ∈ C∞(L0), f1, f2 ∈ C∞(S1,R),

(β1(g) fi ) (z) := fi (g
−1(z)), g ∈ PSL(2,R), z ∈ S1, i = 1, 2

and exp (t f1) is the one-parameter group of diffeomorphisms generated by the vector
field f1

d
d θ . Once this is done, we show cyclicity of the vacuum vector � for the net,

and finally extension of PSL(2,R) to diffeomorphism covariance, literally as in [14,
Thm. 33]. ��
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Now that the net Ac is defined, we would like to study its representations. We shall
use the following theorem from [16] (cf. also [13, Prop. 2.14]).

Theorem 3.4 ([16]). Let π = (πI )I∈ĪR
be an irreducible Neveu–Schwarz (resp. Ra-

mond) representation of Ac. Then, there is a unitary irreducible representation, also
denoted π , of the Neveu–Schwarz (resp. Ramond) N = 2 super-Virasoro algebra with
central charge c such that

πI (e
i L( f )) = ei Lπ ( f ), πI (e

i Gi ( f )) = ei Gi,π ( f ), πI (e
i J ( f )) = ei Jπ ( f ),

for f ∈ C∞
c (I,R), i = 1, 2, I ∈ IR. In particular every irreducible Ramond represen-

tation π of Ac is graded by �π := e−iπqπ eiπ J0 .

From the above theorem we see that to every irreducible Neveu–Schwarz (resp.
Ramond) representation of Ac there corresponds an irreducible representation of the
Neveu–Schwarz (resp. Ramond) N = 2 super-Virasoro algebra. The converse is not
known in general but it can be shown to hold e.g. when c < 3 as a consequence of the
coset construction, cf. Theorem 3.2 and Sect. 5. Cf. also [42, Sect. 6.4.] and [14, Sect. 3]
for related results in the N = 0, 1 cases. Actually, the analogue of this problem appears
to be still open for certain values of the central charge c and of the lowest conformal
energy h also in the case of Virasoro nets (N = 0 case), see [9, page 268] and similarly
for the N = 1 super-Virasoro nets.

We end this section with the definition of N = 2 superconformal net. This is the
analogue of the definition of (N = 1) superconformal net in [14, Sect. 7] and [13,
Sect. 2].

Definition 3.5. A N = 2 superconformal net is a graded-local conformal net A with
central charge c containing the N = 2 super-Virasoro net Ac as a covariant subnet and
such that the corresponding representations of Diff(S1)(∞) agree.

Note that, since the NS N = 2 super-Virasoro algebra contains copies of the NS
(N = 1) super-Virasoro algebra every N = 2 superconformal net A is also an (N = 1)
superconformal net in the sense of [13, Def. 2.11].

4. Spectral Flow for the N = 2 Super-Virasoro Nets

A remarkable property of the N = 2 super-Virasoro algebra is the “homotopic” equiv-
alence of the Neveu–Schwarz and the Ramond algebra in the sense that there exists a
deformation of one into the other, first discussed in [52]:

Definition 4.1. The spectral flow of the Lie algebra SVirN=2 is the family of linear maps
ηt : SVirN=2,t → SVirN=2,0, with t ∈ R, defined on the generators by

ηt (Ln) := Ln + t Jn +
ĉ

6
t2δn,0, n ∈ Z

ηt (Jn) := Jn +
ĉ

3
tδn,0, n ∈ Z

ηt (G
±
r ) := G±

r±t , r ∈ ∓t +
1

2
+ Z

ηt (ĉ) := ĉ.

In other words, the map ηt embeds SVirN=2,t into SVirN=2.
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Proposition 4.2. The linear maps ηt are Lie superalgebra isomorphisms, so the Lie
superalgebras SVirN=2,t , t ∈ R, are all isomorphic. In particular, the Neveu–Schwarz
N = 2 super-Virasoro algebra and the Ramond N = 2 super-Virasoro algebra are
isomorphic.

Proof. Define a linear map η′
t : SVirN=2,0 → SVirN=2,t , given on the generators by

η′
t (Ln) := Ln − t Jn +

ĉ

6
t2δn,0, n ∈ Z

η′
t (Jn) := Jn − ĉ

3
tδn,0, n ∈ Z

η′
t (G

±
r ) := G±

r∓t , r ∈ 1

2
+ Z

η′
t (ĉ) := ĉ.

It is straightforward to check that it is an inverse for ηt , so we have bijectivity. Moreover,
using Definition 3.1, one finds that ηt is a Lie algebra homomorphism, so we are done.

��
The main purpose of this section is to set up an operator algebraic version of the

N = 2 spectral flow. In order to treat the local algebras, we need to study the action of
the spectral flow on smeared fields.

Consider now SVirN=2,t and denote by π0 the vacuum representation with cen-
tral charge c of the Neveu–Schwarz N = 2 super-Virasoro algebra SVirN=2, i.e. the
unique irreducible unitary representation with central charge c and lowest energy h = 0
(and consequently q = 0). We denote by Lt

n := π0(ηt (Ln)), J t
n := π0(ηt (Jn)),

G±,t
r := π0(ηt (G±

r )), the generators in the unitary representation π0 ◦ ηt of SVirN=2,t

(we suppress the superscript ·t when t = 0). Similarly to the case t = 0 considered in
Sect. 3, for any t ∈ R we may consider the series

∑

n∈Z

fn J t
n,

∑

r∈∓t+ 1
2 +Z

fr G±,t
r ,

∑

n∈Z

fn Lt
n . (4.1)

For any f ∈ C∞
c (S

1\{−1}) the Fourier coefficients fr = 1
2π

∫ π
−π e− i rθ f (ei θ ) d θ , with

r ∈ ∓t + 1
2 + Z are rapidly decreasing for each fixed t ∈ R. Hence, as in Sect. 3, it

follows from the energy bounds in Eq. (3.1) that the series define closable operators on
C∞(L0), and we denote their closures by J t ( f ),G±,t ( f ), Lt ( f ). In the light of the
analogous definition with t = 0, we also define the selfadjoint fields

Gi,t ( f ) :=
(
(G+,t ( f )− (−1)i G−,t ( f ))|C∞(L0)

)−

√
2

, i = 1, 2. (4.2)

As in the case t = 0 it can be shown that J t ( f ), Lt ( f ),Gi,t ( f ), i = 1, 2 are selfadjoint
for all f ∈ C∞

c (S
1\{−1},R).

We shall see that the action of ηt on the even generators corresponds, through α-
induction, to a U(1)-automorphism ρq [6, Sect. 2] with charge q = tc/3 of the subnet
AU(1) ⊂ Ac generated by the current J (z) = ∑

n∈Z
Jnz−n−1.
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Theorem 4.3. For every t ∈ R, there is a PSL(2,R)-covariant soliton η̄t of Ac such
that t 	→ η̄t,I , I ∈ IR, is a one-parameter group of automorphisms of Ac(I ) satisfying

η̄t,I (e
i X ( f )) = ei Xt ( f ), f ∈ C∞

c (I,R), X = J, G1, G2, L .

η̄t is unitarily equivalent to the α±-induction of a localized U(1)-current automorphism
ρq with charge q = c

3 t . For t ∈ Z, η̄t is a Neveu–Schwarz representation of the graded-
local net Ac, while for t ∈ 1

2 + Z, η̄t it is a Ramond representation of Ac.

The proof proceeds in several steps. First, let us define representations for each local
algebra. Let I ∈ IR and let φI ∈ C∞

c (S
1\{−1}) be a real valued function such that

φI |I = −i log, where log is determined by log(1) = 0. Set

η̄t,I (x) := Ad(ei t J (φI ))(x), x ∈ Ac(I ). (4.3)

Lemma 4.4. Let I ∈ IR. Then, for all t ∈ R and all f ∈ C∞
c (I,R) we have

ei t J (φI ) X ( f ) e− i t J (φI ) = Xt ( f ),

X = J, G1, G2, L. Moreover, η̄t,I (Ac(I )) = Ac(I ) and hence the map t 	→ η̄t,I is a
one-parameter group of automorphisms of the von Neumann algebra Ac(I ). If I1 ∈ IR

contains I then η̄t,I1 |Ac(I ) = η̄t,I .

Proof. Let I ∈ IR and let f ∈ C∞
c (I,R). Then by (“smearing”) the relations in

Definition 4.1, we have

J t ( f )ψ =
(

J ( f ) +
c

3
t
∫

S1
f

)

ψ,

Lt ( f )ψ =
(

L( f ) +

(

t
∫

S1
f

)

J ( f ) + (t
∫

S1
f )2

)

ψ,

and

Gt,±( f )ψ =
∑

r∈ 1
2 ∓t+Z

fr Gt,±
r ψ =

∑

r∈ 1
2 +Z

fr∓t G
±
r ψ = G±(e± i tφI f )ψ,

for all ψ ∈ C∞(L0).
Now, let H1 denote the Banach space obtained by endowing the domain of L0 with

the norm ‖ψ‖1 := ‖(L0 + 1)ψ‖. It contains C∞(L0) as a dense subspace.
As a consequence of the energy bounds in Eq. (3.1), the selfadjoint operators Xt ( f ),

X = J, G1, G2, L , give rise to bounded linear map BX (t) : H1 → H for all t ∈ R.
Moreover, from the energy bounds, the NS N = 2 super-Virasoro (anti-) commutation
relations and the equalities above it is straightforward to see that t 	→ BX (t) ∈ B(H1,H)
is norm-differentiable and that the derivative d

d t BX (t) satisfies
(

d

d t
BX (t)

)

ψ = i[J (φI ), Xt ( f )]ψ

for all ψ ∈ C∞(L0).
By [8, Lemma 4.6], cf. also (the proof of) [53, Prop. 2.1], we have ei t J (φI ) C∞(L0) =

C∞(L0) for all t ∈ R. Let ψ0 ∈ C∞(L0). Then ψ(t) := ei t J (φI ) ψ0 ∈ C∞(L0), for all
t ∈ R and it follows from the proof of [53, Cor. 2.2] (cf. also the proof of [8, Lemma
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4.6]) that the map R → H1 given by t 	→ ψ(t) is norm differentiable with derivative
d

d tψ(t) = i J (φI )ψ(t).
Now, let ψX (t) := Xt ( f ) ei t J (φI ) ψ0 = BX (t)ψ(t), t ∈ R. By the above discussion

we have ψX (t) ∈ C∞(L0) for all t ∈ R. Moreover, the map t 	→ ψX (t) ∈ H is norm
differentiable with derivative

d

d t
ψX (t) =

(
d

d t
BX (t)

)

ψ(t) + BX (t)
d

d t
ψ(t)

= i[J (φI ), Xt ( f )]ψ(t) + i Xt ( f )J (φI )ψ(t)

= i J (φI )X
t ( f )ψ(t)

= i J (φI )ψX (t).

The unique solution ψX (t) of the above abstract Schrödinger equation with initial
value ψX (0) = X ( f )ψ0 is given by ψX (t) = ei t J (φI ) X ( f )ψ0. Therefore, since ψ0 ∈
C∞(L0)was arbitrary we find Xt ( f ) ei t J (φI ) ψ = ei t J (φI ) X ( f )ψ for allψ ∈ C∞(L0)

and hence, recalling that ei t J (φI ) C∞(L0) = C∞(L0), we can conclude that Xt ( f )ψ =
ei t J (φI ) X ( f ) e− i t J (φI ) ψ for allψ ∈ C∞(L0). Then, the desired equality of selfadjoint
operators Xt ( f ) = ei t J (φI ) X ( f ) e− i t J (φI ) follows from the fact that C∞(L0) is a core
for X ( f ) and Xt ( f ).

As a consequence we have η̄t,I (ei X ( f )) = ei Xt ( f ), X = J, G1, G2, L , for all
f ∈ C∞

c (I,R). It follows that η̄t,I does not depend on the choice of φI . In particular
for any given interval Ĩ ∈ IR containing the closure of I we can choose φI with
support contained in Ĩ so that η̄t,I (Ac(I )) = ei t J (φI )Ac(I ) e− i t J (φI ) ⊂ Ac( Ĩ ) and
since Ĩ ⊃ Ī was arbitrary we can conclude that η̄t,I (Ac(I )) ⊂ Ac(I ) and hence that
η̄t,I (Ac(I )) = Ac(I ). Now, if I1 ∈ IR contains I then the equality η̄t,I1 |Ac(I ) = η̄t,I
easily follows from the definition and from graded-locality of the net Ac. ��
Lemma 4.5. The family (η̄t,I )I∈IR

forms a (locally normal) PSL(2,R)-covariant soli-
ton of the graded-local conformal net Ac.

Proof. The normality of η̄t,I , I ∈ IR, is obvious from the definition and the compati-
bility with isotony of the family (η̄t,I )I∈IR

follows from Lemma 4.4. Here we have to
establish the covariance. Let Uq be the unitary representation obtained by integrating
to PSL(2,R)(∞) the representation of the skew-adjoint part of the complex Lie algebra
generated by Lt−1, Lt

0, Lt
1. We have to show that, for all I ∈ IR, with q = c

3 t as before,

Uq(g)η̄t,I (x)Uq(g)
∗ = η̄t,ġ I (U (g)xU (g)∗), x ∈ Ac(I ), (4.4)

for g ∈ UI , where UI is the connected component of the identity in PSL(2,R)(∞) of the
open set {g ∈ PSL(2,R)(∞) : ġ I ∈ IR}.

Now, let I ∈ IR and let f ∈ C∞
c (I,R). Arguing then as in the proof of Theorem 3.3

we obtain

Uq(g)X
t ( f )Uq(g)

∗ = Xt (βd(X)(ġ) f ), g ∈ UI .

Here, for d ≥ 0 and g ∈ PSL(2,R), βd(g) f is the function on S1 defined by

(βd(g) f ) (ei θ ) :=
(

− i
d

d θ
log(g−1 ei θ )

)1−d

f (g−1 ei θ )
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and the subscript d(X) is determined by d(J ) = 1, d(Gi ) = 3/2, d(L) = 2.
Appealing to Lemma 4.4, we find

Uq(g)η̄t,I

(
ei X ( f )

)
Uq(g)

∗ = Uq(g)Ad(ei J (φt,I ))(ei X ( f )))Uq(g)
∗

= Uq(g) ei Xt ( f ) Uq(g)
∗

= ei(Xt (βd(X)(g). f )

= Ad(ei J (φt,ġ I ))(ei X (βd(X)(g). f )))

= η̄t,ġ I

(
ei X (βd(X)(g). f ))

)

= η̄t,ġ I

(
U (g) ei X ( f ) U (g)∗

)
, g ∈ UI .

Thus, since the unitaries ei X ( f ), with f ∈ C∞
c (I,R) generate Ac(I ), Eq. (4.4) now

follows from the normality of η̄t,ġ I for all g ∈ UI and since I ∈ IR was arbitrary, we
can conclude that η̄t is a PSL(2,R)-covariant soliton in the sense of Definition 2.2, cf.
Remark 2.3. ��
Lemma 4.6. Given t ∈ R, for every I0 ∈ IR, there is a unitary ut,I0 ∈ B(H) such that

η̄t,I = Ad(ut,I0) ◦ α+
ρ

I0
q ,I

= Ad(ei 2π t J0 ut,I0) ◦ α−
ρ

I0
q ,I

, I ∈ IR,

where ρ I0
q is an endomorphism of the U(1)-subnet of Ac, with charge q = c

3 t and
localized in I0.

Proof. The global endomorphism of ρq of the U(1)-subnet AU(1) ⊂ Ac is defined by

ρq(e
i J ( f )) = ei(J ( f )+q

∫
f ) .

Given I0 ∈ IR, fix a smooth 2π -periodic function hI0 : R → R which, restricted to
(−π, π), satisfies

hI0(θ) =
⎧
⎨

⎩

θ : θ < I0
arbitrary : θ ∈ I0
θ − 2π : θ > I0.

Then ρ I0
q := Ad(e−t i J (hI0 )) ◦ ρq is an endomorphism of AU(1) localized in I0 and

equivalent to ρq . Recall [50] that the α-induced sectors of ρ I0
q may be expressed as

α±
ρ

I0
q ,I

= Ad(z(ρ I0
q , g±)) = Ad(et i J (hg± I0−hI0 )),

where z(ρ I0
q , g) is the cocycle associated to he covariant representation ρ I0

q , see e.g.
[13,39], and g± ∈ G are such that g− I0 < I < g+ I0.

For x ∈ Ac(I ) we now obtain

Ad(et i J (hI0 )) ◦ α±
ρ

I0
q ,I

(x) = Ad(et i J (hI0 ) et i J (hg± I0−hI0 ))(x) = Ad(et i J (hg± I0 ))(x).



1304 S. Carpi, R. Hillier, Y. Kawahigashi, R. Longo, F. Xu

Since g− I0 < I < g+ I0, we see that hg+ I0 |I = ι|I , while hg− I0 |I = ι|I − 2π . Thus the
definition of φt,I and η̄t finally implies

Ad(et i J (hI0 )) ◦ α±
ρ

I0
q ,I

=
{
η̄t,I : “ + ”
Ad(e− i 2π t J0) ◦ η̄t,I : “ − ”,

so we are done, setting ut,I0 := Ad(et i J (hI0 )), independent of I . In particular, the α±-
induced solitons differ by the gauge automorphism Ad(ei 2π t J0) of the net Ac, which is
trivial if t ∈ Z. ��
Proof of Theorem 4.3. By Lemma 4.4, η̄t has the desired action on the generators of the
N = 2 super-Virasoro net Ac and acts locally as an automorphism group (a “flow”).
Lemma 4.5 tells us that η̄t is a PSL(2,R)-covariant soliton of Ac which, by Lemma 4.6,
is unitarily equivalent to the α±-induction of a localized U(1)-current automorphism ρq
with charge q = c

3 t .
For all r in the allowed set (depending on t and on the field X = J,G±, L) we have

[Lt
0, Xt

r ] = −r Xt
r on C∞(L0). It follows that

ei sLt
0 Xt

r e− i sLt
0 = e− i rs X t

r . (4.5)

For s = 2π and for Xt = J t , Lt , we have r ∈ Z, so the phase factor is e−2π i r = 1.
For Xt = Gt,± instead, we have r ∈ ∓t + 1

2 + Z, so e−2π i r = − e±2π i t . So e2π i Lt
0

implements the grading (is a scalar) precisely when t ∈ Z (t ∈ 1
2 + Z, resp.).

Thus Lemma 2.6 implies that η̄t is a PSL(2,R)-covariant general soliton iff t ∈ 1
2 Z,

and it is either a Ramond or a Neveu–Schwarz PSL(2,R)-covariant general soliton in
the sense of Definition 2.2 and Theorem 2.7, depending on whether t ∈ 1

2 + Z or t ∈ Z,
resp. ��

Now let π be an irreducible Neveu–Schwarz representation of Ac and let π denote
also the corresponding irreducible unitary representation of the Neveu–Schwarz N = 2
super-Virasoro algebra given by Theorem 3.4. Then, for t ∈ Z (resp. t ∈ 1

2 + Z), π ◦ ηt ,
is an irreducible unitary representation of the Neveu–Schwarz (resp. Ramond) N = 2
super-Virasoro algebra on Hπ . It follows from Theorems 3.4 and 4.3 and the Trotter
product formula that for all I ∈ IR we have

πI ◦ η̄t,I (e
i X ( f )) = ei Xπ◦ηt ( f ), f ∈ C∞

c (I,R), X = J, G1, G2, L .

It follows that the family π ◦ η̄t := (πI ◦ η̄t,I )I∈IR
defines an irreducible Neveu–

Schwarz (resp. Ramond) representation of Ac. If π is a Ramond representation we have
a similar situation. We record these facts in the following proposition.

Proposition 4.7. If π is an irreducible Neveu–Schwarz representation of Ac then π ◦ η̄t
is an irreducible Neveu–Schwarz (resp. Ramond) representation of Ac for all t ∈ Z

(resp. t ∈ 1
2 + Z). If π is an irreducible Ramond representation of Ac then π ◦ η̄t is

an irreducible Neveu–Schwarz (resp. Ramond) representation of Ac for all t ∈ 1
2 + Z

(resp. t ∈ Z). In particular η̄1/2 gives rise to a one-to one correspondence between the
irreducible Neveu–Schwarz and Ramond representations of Ac
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5. The Coset Identification for the N = 2 Super-Virasoro Nets with c < 3

In this section we prove a crucial result for our analysis (Theorem 5.10). As explained
in the Sect. 1, claims of this result have appeared in the literature in the vertex algebraic
context, but we could not find any satisfactory and complete proof. The proof is oper-
ator algebraic in nature but it can be shown that it covers the original vertex algebraic
statement as a consequence of the close relationship between the two approaches.

As usual, we denote by ASU(2)n the completely rational local conformal net associated
to the level n positive energy representations of the loop group L SU(2), cf. [30,54].
Similarly we denote by AU(1)2n the local conformal net corresponding to the positive
energy representations of the loop group L U(1) at level 2n. For every positive integer
n, AU(1)2n is completely rational with 2n sectors, all with statistical dimension one,
cf. [57,58]. In fact the nets AU(1)2n coincide with the local extensions of the c = 1
net AU(1) generated by a chiral U(1) current first classified in [6], cf. also [58]. The
inclusion U(1) ⊂ SU(2) gives rise to the diagonal inclusion U(1) ⊂ SU(2)×U(1)which
corresponds to the inclusions of local conformal nets AU(1)2n+4 ⊂ ASU(2)n ⊗AU(1)4 and
one can consider the corresponding coset nets, see e.g. [56,57]. We begin our analysis
of the N = 2 coset identification with the following theorem.

Theorem 5.1. The coset net corresponding to the inclusion AU(1)2n+4 ⊂ ASU(2)n ⊗
AU(1)4 is completely rational for every positive integer n. Its list of irreducible repre-
sentations is numbered by the following (l,m, s) satisfying l = 0, 1, 2, . . . , n, m =
0, 1, 2, . . . , 2n + 3 ∈ Z/(2n + 4)Z, s = 0, 1, 2, 3 ∈ Z/4Z with l − m + s ∈ 2Z with the
identification (l,m, s) = (n − l,m + n + 2, s + 2).

The fusion rules are given as follows, treating the three components l,m, s in the
label (l,m, s) separately: For the first component l, we use the usual SU(2)n fusion
rules. For the second component m, we use the group multiplication in Z/(2n + 4)Z. For
the third component s, we use the group multiplication in Z/4Z. All these products are
with the identification (l,m, s) = (n − l,m + n + 2, s + 2).

The univalence (statistics phase) ei 2πL0 and dimension of the irreducible DHR sector
(l,m, s) are given by

exp

((
l(l + 2)− m2

4(n + 2)
+

s2

8

)

2π i

)

, sin((l + 1)π/(n + 2))/ sin(π/(n + 2)).

Accordingly the statistical dimension is 1 (i.e. we have automorphisms) iff either l = 0
or l = n.

Proof. This coset net is a special case of coset net studied in [56]. In the notation of
[56], this coset net is A(G(1, 1, n)). By (1) of Theorem 2.4 in [56], A(G(1, 1, n)) is
completely rational. By Theorem 4.4 in [56], the Vacuum Pairs in this case is an order
two abelian group generated (n, n + 2, 2).

Note that this group acts without fixed points on the (l,m, s) as given above. By
Theorem 4.7 in [56], (l,m, s) are irreducible representations of A(G(1, 1, n)). The rest
of the statement in the theorem follows by the remark after Theorem 4.7 in [56]. ��

As already mentioned in Theorem 3.2 the unitary representations of the super-
Virasoro algebra with central charge cn = 3n/(n + 2) have been explicitly realized
by Di Vecchia, Petersen, Yu and Zheng, using the coset construction for the inclusion
U(1)2n+4 ⊂ SU(2)n ⊗ CAR⊗2 [18]. Now let AU(1)2n+4 ⊂ ASU(2)n ⊗ ACAR⊗2 be the
corresponding inclusion of conformal nets, where ACAR⊗2 is the net generated by two
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real chiral free Fermi fields (equivalently one complex chiral free Fermi field), see e.g.
[2,3], and let Cn be the corresponding coset net defined by

Cn(I ) = AU(1)2n+4(S
1)′ ∩ (ASU(2)n (I )⊗ ACAR⊗2(I )

)
, I ∈ I, (5.1)

where AU(1)2n+4(S
1) := ∨

I∈I AU(1)2n+4(I ).
Using the fact that the even part of the NS representation space of CAR⊗2 carries the

vacuum representation of U(1)4 (see e.g. [6, Sect. 5B]) one can conclude that the even
part Cγn of the Fermi conformal net Cn is given by the coset

Cγn (I ) = AU(1)2n+4(S
1)′ ∩ (ASU(2)n (I )⊗ AU(1)4(I )

)
, I ∈ I. (5.2)

In analogy with the cases N = 0 [42], and N = 1 [14] one can show that the results in
[18] imply that the N = 2 super Virasoro net Acn is a covariant irreducible subnet of
the coset net Cn . The aim of this section is to prove that these nets actually coincide, i.e.,
that Acn = Cn (the N = 2 coset identification).

Let us denote by πm , m ∈ Z/(2n + 4)Z the irreducible representations of the net
AU(1)2n+4 by πl , l = 0, 1, . . . , n the irreducible representations of ASU(2)n and by πN S
the vacuum (Neveu–Schwarz) representation of ACAR⊗2 . Then the inclusion AU(1)2n+4 ⊗Cn ⊂ ASU(2)n ⊗ ACAR⊗2 gives decompositions

πl ⊗ πN S|AU(1)2n+4⊗ Cn =
⊕

m∈Z/(2n+4)Z

πm ⊗ π(l,m), (5.3)

where π(l,m) is the (possibly zero) NS representation of Cn on the multiplicity space of
πm . The corresponding Hilbert spaces Hl,m carries unitary representations of the NS
N = 2 super-Virasoro algebra with central charge cn . Now let

χ(l,m)(t) = trH(l,m) t L
π(l,m)
0 (5.4)

be the character of π(l,m) (branching function). Although not explicitly stated there the
following proposition follows directly from the construction in [18].

Proposition 5.2. If |m| ≤ l and l+m ∈ 2Z then the unitary representation of the NS N =
2 super-Virasoro algebra on Hl,m with central charge cn contains a subrepresentation

with h = hl,m := l(l+2)−m2

4(n+2) and q = qn,m := − m
n+2 . Moreover, χ(l,m)(t) = thl,m +

o(thl,m ) as t → 0+, namely hl,m is the lowest conformal energy eigenvalue on Hl,m and
the corresponding multiplicity is one.

The following lemma will play a crucial role in the proof of the N = 2 coset identi-
fication.

Lemma 5.3. If n is even (resp. odd) then the restriction of π(n,0) (resp. π(n,±1)) to Acn

is irreducible.

Proof. Let n be even. By Proposition 5.2 the Hilbert space H(n,0) is a direct sum K1⊕K2
where K1 carries an irreducible representation of the NS N = 2 super-Virasoro algebra
SVirN=2 with central charge cn and lowest energy h(n,0) = n/4 and K2 is either zero or
carries a unitary representation of SVirN=2,0 with central charge cn and lowest energy
h > n/4. But n/4 is the maximal possible value for the lowest energy and hence K2 = 0.
The case n odd is similar. ��
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We are interested in the (NS) DHR sectors of Cn . They are labeled with (l,m) satis-
fying l = 0, 1, 2, . . . , n, m = 0, 1, 2, . . . , 2n + 3 ∈ Z/(2n + 4)Z, with l − m ∈ 2Z with
the identification (l,m) = (n − l,m + n + 2). The restriction of (l,m) to Cγn is given by
(l,m, 0)⊕ (l,m, 2). Moreover (l,m) = α(l,m,0) where α(l,m,0) denotes the α-induction
of (l,m, 0) from Cγn to Cn . In view of Theorem 5.1 then we have the following fermionic
fusion rules:

(l1,m1)(l2,m2) =
⊕

|l1 − l2| ≤ l ≤ min{l1 + l2, 2n − l1 − l2}
l + l1 + l2 ∈ 2Z

(l,m1 + m2). (5.5)

Automorphisms correspond to l = 0, n. It follows from Theorem 5.1 and its proof
that [π(l,m)] = (l,m) for l − m ∈ 2Z. In particular [π(n,0)] = (n, 0) for n even and
[π(n,±1)] = (n,±1) for n odd where π(n,0) and π(n,±1) are the representations in Lemma
5.3. Accordingly, for n even, (n, 0) remains irreducible when restricted to Acn and
similarly, for n odd, (n,±1) remain irreducible when restricted to Acn .

Now let Ac be the N = 2 super-Virasoro net with central charge c (not necessarily c <
3) and let J (z) = ∑

n∈Z
Jnz−n−1 be the corresponding current with Fourier coefficients

satisfying the commutation relations

[Jn, Jm] = c

3
nδn+m,0. (5.6)

The current J (z) generates a subnet AU(1) ⊂ Ac isomorphic to the U(1) net in [6]. We
can label the sectors of AU(1) by (q), q ∈ R, corresponding to J (z) 	→ J (z) + qz−1.
They satisfy the DHR fusions (q1)(q2) = (q1 + q2) see [6] and [58]. Fix an interval
I0 ∈ IR. For every q ∈ R we choose an endomorphism ρq of AU(1), localized in I0 and
such that [ρq ] = (q). Now let B be a diffeomorphism covariant graded local extension
of Ac. Following [50] we shall denote by π0 the vacuum representation of B, by π0
the vacuum representation of Acn and by π = (π0)rest the restriction of π0 to Acn .
Now, having the inclusions AU(1) ⊂ Ac ⊂ B we can consider the α-inductions (say

α+) αAc
ρq and αB

ρq
of ρq to Ac and B resp. Note that the restriction to Ac of π0 ◦ αB

ρq

is π ◦ αAc
ρq . Note also that by Theorem 4.3 αAc

ρ c
3 t

is unitarily equivalent to our operator

algebraic version η̄t of the N = 2 spectral flow. Accordingly αB
ρ c

3 t
is a natural candidate

to represent the unitary equivalence class of a possible extension of the spectral flow
on B.

Now let HB be the vacuum Hilbert space of B and HAc be the vacuum Hilbert space
of Ac. Since eiπ J0 is the grading unitary on HAc , we have ei2π J0 = 1 on HAc and
accordingly the spectrum of J0 on HAc is contained in Z. In fact it is not hard to see that
this spectrum is exactly Z. However the spectrum of J0 on HB can be in general larger
than Z even when B is an irreducible extension of Ac. This is however not the case if
e.g. eiπ J0 is still the grading unitary on B, a condition which may be seen as a regularity
condition on the extension B.

Theorem 5.4. Assume that the spectrum of J0 on HB is Z. Then, for any t ∈ Z,π0◦αB
ρ c

3 t

is a NS representation of B. In particular it restricts to a DHR representation of the even
subnet Bγ of B.
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Proof. Let � be the grading unitary on HB. We have the spin statistic relation � =
ei2πL0 . Moreover � commutes with the α-induction, namely, for any I ∈ IR,

�π0 ◦ αB
ρ c

3 t
(b)� = π0 ◦ αB

ρ c
3 t
(�b�)

for all b ∈ B(I ). To see this let us recall that if Ĩ ∈ IR is sufficiently large then there
is a unitary u ∈ AU(1)( Ĩ ) such that ubu∗ = αB

ρ c
3 t
(b), for all b ∈ B(I ). and the claim

follows from the fact that u commutes with �. Now let D be the covariant subnet of B
defined by

D(I ) = AU(1)(S
1)′ ∩ B(I ), I ∈ I.

Note that D is trivial iff the central charge of the net B is 1. Then we have the inclusion
AU(1) ⊗ D ⊂ B. Moreover the subnet AU(1) ⊗ D contains the Virasoro subnet of B.
The fact that the spectrum of J0 on HB is Z implies that the restriction of π0 to AU(1)
is unitarily equivalent to a direct sum of representations ρq with q ∈ Z. Hence the
restriction of π0 to AU(1) ⊗ D can be written as a direct sum

⊕

q∈Z

ρq ⊗ σq

where σq is the representation of D on the (possibly zero) multiplicity space of ρq .
Accordingly the conformal vacuum Hamiltonian L0 has the following decomposition

L0 =
⊕

q∈Z

(
L
ρq
0 ⊗ 1 + 1 ⊗ L

σq
0

)
.

Now let us denote π0 ◦ αB
ρ c

3 t
by λt . Since ρ c

3 t is Möbius covariant, λt is a Möbius

covariant soliton of B. Moreover the restriction of λt to AU(1) ⊗ D is
⊕

q∈Z

ρq+ c
3 t ⊗ σq

and we have

Lλt
0 =

⊕

q∈Z

(
L
ρq+ c

3 t

0 ⊗ 1 + 1 ⊗ L
σq
0

)
.

We want to compute the univalence operator ei 2πLλt
0 . Recall that the lowest energy in

the representation space of ρq is given by 3
c

q2

2 , see e.g. [6] (the factor 3
c is due to the

factor c
3 in the commutation relations in (5.6)). It follows that

ei 2πLλt
0 =

⊕

q∈Z

ei 2π 3
2c (q+ c

3 t)2 ⊗ ei 2πL
σq
0 =

⊕

q∈Z

ei 2π 3
2c (q+ c

3 t)2 ⊗ ei 2πL
σq
0

= ei 2π c
6 t2

⎛

⎝
⊕

q∈Z

ei 2π 3
2c q2

ei 2πqt ⊗ ei 2πL
σq
0

⎞

⎠

= ei 2π c
6 t2

⎛

⎝
⊕

q∈Z

ei 2πL
ρq
0 ei 2πqt ⊗ ei 2πL

σq
0

⎞

⎠ .
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If t ∈ Z then ei 2πqt = 1 for all q ∈ Z. Hence

ei 2πLλt
0 = ei 2π c

6 t2

⎛

⎝
⊕

q∈Z

ei 2πL
ρq
0 ⊗ ei 2πL

σq
0

⎞

⎠

= ei 2π c
6 t2

ei 2πL0 = ei 2π c
6 t2
�

for all t ∈ Z. It follows that, for any t ∈ Z, any I ∈ IR and b ∈ B(I ), we have

ei 2πLλt
0 λt (b) e−i2πLλt

0 = λt (�b�)

and the conclusion follows from Lemma 2.6. ��
As pointed out before the spectrum of J0 on HB is in general larger than Z for an

arbitrary extension B of Ac. Hence, in particular, the unitary eiπ J0 does not in general
implement the grading of B. However as a consequence of the following proposition it
always implements a gauge automorphism of B.

Proposition 5.5. For any t ∈ R the operator ei t J0 is a gauge unitary of B namely
ei t J0 � = � and ei t J0 B(I ) e−i t J0 = B(I ) for all I ∈ I.

Proof. Obviously we have ei t J0 � = �. Now let I ∈ I be fixed and let Ĩ ∈ I be such that
the closure of I is contained in Ĩ . Choose two real smooth functions f1, f2 ∈ C∞(S1,R)

such that supp f1 ⊂ Ĩ , supp f2 ⊂ I ′ and f1 + f2 = 1. Then J0 = J ( f1) + J ( f2) on a
common core. Hence by locality and the Weyl relations we find

ei t J0 B(I ) e−i t J0 = ei t J ( f1) B(I ) e−i t J ( f1) ⊂ B( Ĩ )
and, since Ĩ was an arbitrary interval containing the closure of I , we can infer that

ei t J0 B(I ) e−i t J0 ⊂ B(I ), t ∈ R,

and the conclusion follows. ��
Now recall from Sect. 4 that for every t ∈ R there is a Möbius covariant general

soliton η̄t of Ac corresponding, in the sense of Theorem 4.3 (cf. also Theorem 3.4),
to the representation of SVirN=2,t obtained on the vacuum Hilbert space HAc by the
composition of the vacuum representation of the Neveu–Schwarz N = 2 super-Virasoro
algebra SVirN=2 generating the net Ac with spectral flow ηt . For t ∈ Z, SVirN=2,t

coincides with SVirN=2 and, by Theorem 4.3, η̄t is a NS representation of Ac on HAc .

Proposition 5.6. The representation η̄1 of Ac corresponds to the unitary irreducible
representation of SVirN=2 with central charge c and (h, q) = ( c

6 ,
c
3 ).

Proof. It is enough to show that the composition of the vacuum representation with
central charge c of SVirN=2 with η1 is the irreducible representation of SVirN=2 with
central charge c and (h, q) = ( c

6 ,
c
3 ) on HAc . First of all note that the irreducibility of

this representation follows from that of the vacuum representation and the invertibility
of the spectral flow. Now let � ∈ HAc be the vacuum vector. Then

η1(Lm)� = Lm� +
1

2
Jm� = 0

η1(Jm)� = Jm� = 0,
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for every positive integer m. Moreover,

η1(G
+
r )� = G+

r+1� = 0

η1(G
−
r )� = G−

r−1� = 0,

for every positive r ∈ 1
2 +Z, where in the second equation we used the fact that G−

− 1
2
� =

0. It follows that � is a lowest energy vector also for the representation defined by η1
and consequently

h� = η1(L0)� = c

6
�, q� = η1(J0)� = c

3
�.

��
We now come back to the inclusion Acn ⊂ Cn .

Lemma 5.7. eiπ J0 = ei 2πL0 = � on the vacuum Hilbert space HCn of Cn.

Proof. By Lemma 5.3 there is a NS representation π̃ whose restriction to Acn is irre-
ducible. Let J̃ (z) = ∑

k∈Z
J̃k z−k−1 be the corresponding current on Hπ̃ . Then

eiπ J̃0 e−i2πL π̃0 π̃I (x) ei 2πL π̃0 e−iπ J̃0 = π̃I

(
eiπ J0 e−i2πL0 x e−i2πL0 e−iπ J0

)

for all I ∈ I and all x ∈ Cn(I ). In particular,

eiπ J̃0 e−i2πL π̃0 π̃I (x) ei 2πL π̃0 e−iπ J̃0 = π̃I (x),

for all I ∈ I and all x ∈ Acn (I ) and hence, by irreducibility, eiπ J̃0 e−i2πL π̃0 must be a
multiple of the identity. It follows that

π̃I

(
eiπ J0 e−i2πL0 x ei 2πL0 e−iπ J0

)
= π̃I (x),

for all I ∈ I and all x ∈ Cn(I ). Accordingly eiπ J0 e−i2πL0 is also a multiple of the
identity and the conclusion follows because eiπ J0 e−i2πL0 � = �. ��

It follows from Lemma 5.7 that we can apply Theorem 5.4 to the inclusion Acn ⊂ Cn

for any positive integer n. In particular we can conclude that the α-induction αCn
ρ cn

3
of the

U(1) automorphism ρ cn
3

is a NS representation of Cn .

Lemma 5.8. [αCn
ρ cn

3
] = (n,−n) for every positive integer n.

Proof. αCn
ρ cn

3
is a NS automorphism of the netCn and hence [αCn

ρ cn
3
] = (n,m) for some m ∈

Z such that |m| ≤ n and n+m ∈ 2Z. The restriction of αCn
ρ cn

3
to Acn is a NS representation

of the latter net containing the localized automorphism α
Acn
ρ cn

3
as a subrepresentation. But

the latter is equivalent to η1 which by Proposition 5.6 corresponds to the representation
of SVirN=2 with (h, q) = ( n

2(n+2) ,
n

n+2 ). It follows that − m
n+2 ∈ n

n+2 + Z and hence that
2−m
n+2 ∈ Z. Hence, recalling that |m| ≤ n, we see that either m = −n or m = 2. If n is odd,

m = 2 is forbidden. Now let n be even and greater than 2. It follows from Proposition 5.2
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that the character in the representation (n, 2) satisfies χ(n,m)(t) = t
n(n+2)−4

4(n+2) + o(t
n(n+2)−4

4(n+2) )

and the equality [αCn
ρ cn

3
] = (n, 2) would be in contradiction with the fact that in the

representation space of αCn there must be a nonzero vector with conformal energy
n

2(n+2) <
n(n+2)−4

4(n+2) . Finally, if n = 2, the equality [αCn
ρ cn

3
] = (n, 2) would imply that

the representation of SVirN=2 corresponding to the restriction to Acn of αCn
ρ cn

3
contains

the irreducible subrepresentations with (h, q) = ( 1
4 ,− 1

2 ) and with (h, q) = ( 1
4 ,

1
2 ), in

contradiction with χ(2,2)(t) = t
1
4 + o(t

1
4 ). ��

Lemma 5.9. For any positive integer k the following hold

– If n = 4k then [αCn
ρ
(2k+1) cn

3
] = (n, 0).

– If n = 4k − 2 then [αCn
ρ2k cn

3
] = (n, 0).

– If n = 4k − 1 then [αCn
ρ2k cn

3
] = (n,−1).

– If n = 4k − 3 then [αCn
ρ2k cn

3
] = (n, 1).

Proof. We use Lemma 5.8 and the fusion rules in Eq. (5.5). If n = 4k then

[αCn
ρ
(2k+1) cn

3

] = (n,−n)2k+1 = (n,−(2k + 1)n) = (n,−k(2n + 4) + 4k − n)

= (n, 0).

If n = 4k − 2 then

[αCn
ρ2k cn

3

] = (n,−n)2k = (0,−2kn) = (0,−k(2n + 4) + n + 2)

= (n, 2n + 4) = (n, 0).

If n = 4k − 1 then

[αCn
ρ2k cn

3

] = (n,−n)2k = (0,−2kn) = (0,−k(2n + 4) + n + 1)

= (n, 2n + 3) = (n,−1).

If n = 4k − 3 then

[αCn
ρ2k cn

3

] = (n,−n)2k = (0,−2kn) = (0,−k(2n + 4) + n + 3)

= (n, 2n + 5) = (n, 1).

��
We are now ready to prove the main result of this section:

Theorem 5.10. Acn = Cn for every positive integer n.

Proof. If n is a positive integer then, by Lemmas 5.3 and 5.9, there is a j ∈ Z such that
the restriction to Acn of the representation αCn

ρ j cn
3

of Cn is irreducible. Now let π0 and π0

be the vacuum representations of Cn and of Acn , resp., and let π be the restriction of π0

to Acn . The restriction of αCn
ρ j cn

3
to Acn is π ◦αAcn

ρ j cn
3

and since α
Acn
ρ j cn

3
is an automorphism

we can conclude that π is irreducible. Hence π = π0 and the conclusion follows. ��
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6. Classification of N = 2 Superconformal Nets with c < 3

We first look at the bosonic part Aγ
c of the N = 2 super-Virasoro net Ac, with c =

3n/(n + 2) and fixed n ∈ N, realized as the coset of SU(2)n ⊗U(1)2/U(1)n+2 according
to Sect. 5. We use the notation, labelling, and classification and dimension results for
the coset net from Theorem 5.1.

The fermionic extension arises from the irreducible DHR sector (n, n + 2, 0), which
has dimension 1, order 2 and univalence (statistics phase) −1.

The modular invariants have been classified by Gannon in [32, Theorem 4]. We are
interested in the local extensions of the bosonic part, since its fermionic extension gives
an extension of the original fermionic net, so we need to consider only the so-called type
I modular invariants. Many of the modular invariants of Gannon’s list are not of type I,
so we do not have to consider them here. Also, if (Zλμ) is a type I modular invariant,
what we need to check whether

⊕
λ Zλμλ is realized as a dual canonical endomorphism,

and if yes, then whether the realization is unique or not. (See [42, Section 4].)
First we deal with the exceptional cases related to the Dynkin diagrams E6 and E8.

Consider the case related to E6, From Gannon’s list of modular invariants, we see that
we consider the following three cases for n = 10.

(1) The endomorphism (0, 0, 0) ⊕ (6, 0, 0). This is a dual canonical endomorphism
because it arises from a conformal embedding SU(2)10 ⊂ SO(5)1 as in [42, Section
4], which is a special case of a mirror extension studied in [59]. For the same reason as
in [42, Section 4] (based on [43]), this realization as a dual canonical endomorphism
is unique. (That is, the Q-system is unique up to unitary equivalence.)

(2) The endomorphism (0, 0, 0) ⊕ (0, 12, 0). This is a dual canonical endomorphism
because it arises from a conformal embedding U(1)12 ⊂ U(1)3. The irreducible
DHR sector (0, 12, 0) has dimension 1 and statistics phase 1, so it is realized as a
crossed product by Z/2Z, and hence unique.

(3) The endomorphism (0, 0, 0)⊕(6, 0, 0)⊕(0, 12, 0)⊕(6, 12, 0). This is a combination
of the above two extensions. That is, we first consider an extension in (1) and make
another extension as a crossed product by Z/2Z. For the two above reasons in (1),
(2), we conclude that this realization of a dual canonical endomorphism is again
unique.
The next exceptional case we have to deal with is the case related to the Dynkin
diagram E8, so we now have n = 28.
We have only one modular invariant here and it gives the following.

(4) The endomorphism (0, 0, 0)⊕ (10, 0, 0)⊕ (18, 0, 0)⊕ (28, 0, 0). This arises from
a conformal embedding SU(2)28 ⊂ (G2)1, and the realization is unique as in (1).

We now deal with the remaining cases of the modular invariants. From the list of
Gannon [32, Theorem 4], we see that when we consider the endomorphisms

⊕
λ Zλμλ

arising from modular invariants (Zλμ), all the endomorphisms λ appearing in this sum
have dimensions 1. If all the irreducible DHR sectors of a dual canonical endomorphism
have dimension 1, then the extension is a crossed product by a (finite abelian) group and
all these irreducible DHR sectors have statistics phase 1. Hence it is enough to consider
only irreducible DHR sectors of statistics phase 1 and check whether we can construct
an extension using them as a crossed product or not. We divide the cases depending
on n.

We start a general consideration. We first look at the irreducible DHR sectors with
dimension 1. This condition is equivalent to l = 0, n. Then m can be arbitrary in
{0, 1, . . . , 2n + 3}, and s ∈ {0, 1} is uniquely determined by the parity of l + m, so there
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are (4n + 8) such irreducible DHR sectors. They give an abelian group of order 4n + 8,
and we have a simple current extension for each subgroup of this group consisting of
irreducible DHR sectors with statistics phase 1, so we need to identify such a subgroup.
This subgroup is clearly a subset of all the irreducible DHR sectors with statistics phase
1, but this subset is not a group in general.

If n ≡ 2 mod 4, then the irreducible DHR sectors with dimension 1 give the group
(Z/(2n + 4)Z) × (Z/2Z), which is generated by σ = (0, 1, 1) of order 2n + 4 and
τ = (n, 0, 0) of order 2.

If n = 0 mod 4, then the irreducible DHR sectors with dimension 1 give the group
(Z/(2n + 4)Z) × (Z/2Z), which is generated by σ = (0, 1, 1) of order 2n + 4 and
τ = (0, n + 2, 0) of order 2.

If n is odd, the irreducible DHR sectors with dimension 1 give the group Z/(4n +8)Z,
which is is generated by σ = (0, 1, 1) of order 4n + 8.

The subgroup used for a simple current extension must be a subgroup of these groups.
If n is odd, it is clearly a cyclic group. If n is even, it must be a cyclic group or a cyclic
group times the cyclic group of order 2. If the latter happens, the subgroup must be of
the form

G × (Z/2Z) ⊂ (Z/(2n + 4)Z)× (Z/2Z),

where G is a subgroup of Z/(2n + 4)Z. This means that the generator for the second
component Z/2Z must have statistics phase equal to 1, but we see that this is not the case
for n = 0, 2 mod 4. (In both cases, the statistics phase of the generator for the second
component Z/2Z, which is τ in the above notation, is −1.) So also for the case of even
n, the subgroup used for a simple current extension must be cyclic.

We next note that if the statistics phase of (l,m, s) is 1 with s = 1, then n must be
a multiple of 16 for the following reason. Suppose the irreducible DHR sector (l,m, 1)
has dimension 1 and statistics phase 1. We have l = 0, n, and first suppose l = 0. Then
we have −2m2 + (n + 2) ∈ 8(n + 2)Z and m is odd. Then we first see n is even, so we set
n = 2a. Then we have −m2 + a + 1 ∈ 8(a + 1)Z. Since m is odd, we know −m2 + 1 = 0
mod 8. This implies a is a multiple of 8, hence n is a multiple of 16. Similarly, we
now consider the case l = n. Then we have 2n(n + 2) − 2m2 + (n + 2) ∈ 8(n + 2)Z
and m + n is odd. This first gives n is even, so we again set n = 2a. Then we have
4a(a + 1) − m2 + a + 1 ∈ 8(a + 1)Z and m is odd. We again have −m2 + 1 = 0 mod
8, so we have that a is a multiple of 8. That is, if n is not a multiple of 16, we need to
consider only the irreducible DHR sectors (l,m, 0).

We use the above notations σ, τ for the irreducible DHR sectors of dimensions 1, and
find the maximal cyclic subgroup which gives a simple current extension. In general, its
any (cyclic) subgroup also works.

We now consider the following four cases one by one.
[A] Case n �= 0 mod 2.
We need to consider only the irreducible DHR sectors (l,m, 0) with l + m = 0 mod

2. This shows that we need to consider only the even powers of σ = (0, 1, 1). Note that
σ 2 = (n, n + 4, 0) has the statistics phase exp(2πni/(2n + 4)). Then the statistics phase
of σ 2a is exp(2πa2ni/(2n + 4)). Consider the set G consisting of σ 2a with statistics
phase 1. We show that this set G is a group. Suppose σ 2a and σ 2b are G, Then we have
a2n/(2n + 4) and b2n/(2n + 4) are integers, and we need to show (a + b)2n/(2n + 4) is
also an integer. It is enough to show that 2abn/(2n + 4) is an integer. Let j1, j2, j3, j4 be
the numbers of the prime factor 2 in a, b, n, (n +2), resp. . We then have 2 j1 + j3 ≥ 1+ j4,
2 j2 + j3 ≥ 1 + j4 and these imply j1 + j2 + j3 ≥ 1 + j4. For an add prime factor p,
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we apply a similar argument, and we conclude that 2abn/(2n + 4) is an integer. Since
this set G is a subset of a finite group, this also shows that G is closed under the inverse
operation, so it is a subgroup of the cyclic group generated by σ 2.

We summarize these arguments as follows. We look for the smallest positive integer
k with the statistics phase of σ k equal to 1. (Such k is automatically even.) Then the
maximal cyclic subgroup giving a simple current extension is {1, σ k , σ 2k, . . . , σ 4n+8−k}.

[B] Case n = 2 mod 4.
We need to consider only (l,m, 0) with l = 0, n and m = 0, 2, 4, . . . , 2m + 2. If

l = 0, then the irreducible DHR sector (l,m, 0) has a statistics phase 1 if and only
if m2/4(n + 2) is an integer. If l = n, then the irreducible DHR sector (l,m, 0) has
a statistics phase 1 if and only if m2/4(n + 2) + 1/2 is an integer. Consider the set G
consisting of (0, 2m, 0) with statistics phase 1. As in the argument in case [A], this G is
a subgroup of the cyclic group generated by (0, 2, 0). If (n,m, 0) has a statistics phase
1, then (0,m, 0) has a statistics phase −1 and thus (0, 2m, 0) has a statistics phase 1, so
this is in G. It means now that we need to consider only the odd powers of the irreducible
DHR sector (n, k/2, 0), where k be the smallest even integer with (0, k, 0) having the
statistics phase 1. The statistics phase of (0, k/2, 0) must be one of −1, i,− i, since the
statistics phase of (0, k, 0) is 1. If it is ± i, then all the odd powers of (0, k/2, 0) have
statistics phase ± i. If it is −1, all the odd powers of (0, k/2, 0) have statistics phase −1.
Since the statistics phase of (n, 0, 0) is −1, in the former case, the maximal cyclic group
giving a simple current extension is {(0, 0, 0), (0, k, 0), (0, 2k, 0), . . . , (0, 2n+4−k, 0)},
and in the latter case, the maximal cyclic group giving a simple current extension is

{(0, 0, 0), (n, k/2, 0), (0, k, 0), (n, 3k/2, 0), . . . , (n, 2n + 4 − k/2, 0)}.
[C] Case n = 4, 8, 12 mod 16.
First note that both irreducible DHR sectors (0, 0, 0) and (n, 0, 0) have statistics

phase 1.
As in [A], the set G of the irreducible DHR sectors (0,m, 0) having a statistics phase

1 is a subgroup of the cyclic group Z/(2n+4)Z. Let k be the smallest positive integer such
that k2/(4n+8) is an integer. Then the group G is given by {(0, 0, 0), (0, k, 0), (0, 2k, 0), . . . ,
(0, 2n + 4 − k, 0)}. Then the maximal group giving a simple current extension

{(0, 0, 0), (n, 0, 0), (0, k, 0), (n, k, 0), . . . , (0, 2n + 4 − k, 0), (n, 2n + 4 − k, 0)}.
Note that this group is isomorphic to Z/((2n + 4)/k)Z×Z/2Z, but by a general remark
above, this also must be a cyclic group. This shows that (2n + 4)/k is always odd.

[D] Case n = 0 mod 16.
First note that the statistics phase of σ = (0, 1, 1) is exp(πni/(4n + 8). The set

G consisting of powers of σ with statistics phase 1 is again a group as in [A]. Let
k be the smallest positive integer such that σ k has a statistics phase 1. Then G is
{1, σ k, σ 2k, . . . , σ 2n+4−k}, where 1 stands for the identity sector (0, 0, 0). We first
show that this k is odd. Indeed, the condition that the statistics phase is 1 implies that
nk2/(8(n + 2)) is an integer. Now n/16 is an integer, and n and n/2 + 1 are relatively
prime, so k2/(n/2 + 1) is also an integer. Since n/2 + 1 is odd and k is the smallest such
positive integer, we know that k is odd.

If σ tτ has a statistics phase 1, then 2t must be in the set {0, k, 2k, . . . , 2n + 4 − k}.
Since k is odd, we have t ∈ {0, k, 2k, . . . , 2n + 4 − k}. The statistics phase of σ kτ is

exp

(

2π i

(−(k + n + 2)2

4(n + 2)
+

k2

8

))

= 1,
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since k is odd, n = 0 mod 16 and nk2/(8n +16) ∈ Z. All its powers also have a statistics
phase 1. We also compute that the statistics phase of σ 2akτ is equal to

exp

(

2π i

(−(2ak + n + 2)2

4(n + 2)
+

4a2k2

8

))

= −1,

since n = 0 mod 16 and nk2/(8n + 16) ∈ Z. All these together show that the set of the
irreducible DHR sectors having statistics phase 1 is

{1, σ k, σ 2k, . . . , σ 2n+4−k} ∪ {σ kτ, σ 3τ, . . . , σ 2n+4−kτ }.

Note that this set is not a group. The maximal subgroup giving a simple current extension
is {1, σ k, σ 2k, . . . , σ 2n+4−k} or {1, σ kτ, σ 2k, σ 3kτ, . . . , σ 2n+4−kτ }.

We have a few remarks concerning some of the above cases. First we note that if n
is odd and the statistics phase for (l,m, s) is 1, we have l = s = 0. This shows that all
extensions are mirror extensions arising from extensions of U(1)n+2.

Second, n = 4, 8, 12 mod 16, then all the extensions come from the cosets of the
index 2 extensions of SU(2)n , the mirror extensions arising from extensions of U(1)n+2
and the combinations of the two.

Finally, if n = 2 mod 4, then all the extensions come from the mirror extensions
arising from extensions of U(1)n+2 and their combinations with (n, 0, 0) which has
statistics phase −1. For example, if n = 6, the irreducible DHR sector (6, 4, 0) has
dimension 1 and statistics phase 1, and it generates the cyclic group of order 4. These
four irreducible DHR sectors are all that have statistics phase 1. This is the second case
of [B]. Note that the irreducible DHR sectors (6, 0, 0) and (0, 4, 0) both have statistics
phase −1, so they do not give a coset construction or a mirror extension, but their
combination (6, 4, 0) gives a statistics phase 1. The case n = 10 gives the first case of
[B].

As an example, consider the case n = 32. The smallest k with statistics phase of
σ k equal to 1 is 17. The statistics phase of σ 17τ is also 1, so we have two maximal
subgroups of order 4, {1, σ 17, σ 34, σ 51} and {1, σ 17τ, σ 34, σ 51τ }. The union of the two
subgroups give a subset of six elements, and this set gives all the irreducible DHR sectors
of dimension 1 and statistics phase 1.

Theorem 6.1. The complete list of N = 2 superconformal nets with c < 3 in the discrete
series is given as follows:

• A simple current extension arising from a subgroup of the maximal cyclic subgroup
appearing in the above [A], [B], [C] and [D].

• The exceptionals related to E6 and E8 as in the above (1), (2), (3) and (4).

We finally remark that a cyclic group of an arbitrary order appears in the above
classification.

Suppose an arbitrary positive integer j is given. We show that the cyclic group of order
j appears in the above [A], [B], [C] and [D]. (This group is not necessarily maximal.)

We may assume j �= 1. Set n = j2 − 2. We are in Case [A] or [B], if j is odd
or even, resp. . The irreducible DHR sector (0, 2 j, 0) has a statistics phase 1, and the
cyclic group {(0, 0, 0), (0, 2 j, 0), (0, 4 j, 0), . . . (0, 2n + 4 − 2 j)} gives a simple current
extension. The order of this group is (2n + 4)/2 j = j .
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7. Nets of Spectral Triples

Next we study the supersymmetry properties of the N = 2 super-Virasoro net Ac for
any of the allowed values of the central charge c. Since we would like to construct
spectral triples, we may treat this point in a similar way as in [12, Sect. 4] for the N = 1
super-Virasoro algebra.

Let π be an irreducible general soliton of Ac with ei 4πLπ0 a scalar. It follows from
Theorem 3.4 (cf. also [13, Prop. 2.14]) that a supercharge, i.e., an odd selfadjoint square-
root Qπ of Lπ0 − const, exists iff π is a Ramond representation though it need not be
unique. Then

Qπ,s := cos(s)G1,π
0 + sin(s)G2,π

0 , s ∈ R,

are, in fact, possible choices satisfying Q2
π,s = Lπ0 − c/24, as can be checked easily by

means of Definition 3.1. Moreover, Jπ0 acts by rotating this supercharge:

ei s Jπ0 Qπ,0 e− i s Jπ0 = Qπ,s, s ∈ R. (7.1)

We let therefore π be an irreducible Ramond representation, which is automatically
graded according to the discussion after Theorem 3.2. Moreover, we fix s = 0 and
Qπ := Qπ,0 = G1,π

0 .
Associated to Qπ , we have in a natural manner a superderivation (δπ , dom(δπ )) on

B(Hπ ) as in [12, Sect. 2], namely

dom(δπ ) := {x ∈ B(Hπ ) : (∃y ∈ B(Hπ )) γ (x)Q ⊂ Qx − y},
in which case we set δπ (x) = y. In general, it is difficult to decide whether the local
domains dom(δπ ) ∩ πI (Ac(I )) are nontrivial. In [12, Sect. 4] we discussed this point
for the N = 1 super-Virasoro net, and we shall perform a similar procedure here for the
N = 2 super-Virasoro net Ac.

Theorem 7.1. Let π be an irreducible Ramond representation of Ac. Then for every
I ∈ IR, the ∗-subalgebra π−1

I (dom(δπ )) ⊂ Ac(I ) is weakly dense. It contains in
particular the elements

(L( f ) + λ)−1, J ( f )(L( f ) + λ)−1, Gi ( f )(L( f ) + λ)−1,

if f ∈ C∞
c (I,R) and I0 ∈ IR are such that supp f = Ī0, f (z) > 0 for z ∈ I0 and

f ′(z) �= 0 for z ∈ I0 close to the boundary of I0, and λ ∈ C with |�λ| sufficiently large.

The proof is quite lengthy and will be subdivided into several lemmata. However,
since it borrows many ideas from [12, Sect. 4], we can shorten it a bit. We will use the
smeared fields associated to the Ramond representation π given by Theorem 3.4. We
write “Q” instead of “Qπ” and “δ” instead of “δπ”.

Lemma 7.2. For every f ∈ C∞(S1,R) and for λ ∈ C with |�λ| sufficiently large, we
have

(Lπ ( f ) + λ)−1C∞(Lπ0 ) ⊂ dom((Lπ0 )
2).

This is a special case of [12, Prop. 4.3].
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Lemma 7.3. Let f ∈ C∞(S1,R) such that supp f = Ī , f (z) > 0 for z ∈ I , and
f ′(z) �= 0 for z ∈ I close to the boundary of I , for some I ∈ I. Then there is C > 0
such that f ′2 ≤ C f .

The proof is given in [12, Lemma 4.7].

Lemma 7.4. Let f ∈ C∞(S1,R). Then, for i = 1, 2 and λ ∈ C with |�λ| sufficiently
large, we have

Gi,π ( f )(Lπ ( f ) + λ)−1 ∈ B(Hπ ).

Furthermore, if f satisfies the condition in the preceding Lemma 7.3, then

Gi,π ( f ′)(Lπ ( f ) + λ)−1 ∈ B(Hπ ).

This is an immediate consequence of [12, Prop. 4.6 & Lemma 4.7].

Lemma 7.5. Let f ∈ C∞(S1,R) satisfy the conditions in Lemma 7.3 and assume λ ∈ C

with |�λ| sufficiently large. Then (Lπ ( f ) + λ)−1 ∈ dom(δ), and

δ
(
(Lπ ( f ) + λ)−1) = − i

2
(Lπ ( f ) + λ)−1G1,π ( f ′)(Lπ ( f ) + λ)−1,

The proof goes as in [12, Thm. 4.8].

Lemma 7.6. Let f ∈ C∞(S1,R) satisfy the condition in Lemma 7.3, and λ ∈ C with
imaginary part sufficiently large. Then

Gi,π ( f )(Lπ ( f ) + λ)−1, i = 1, 2,

are in dom(δ), and

δ
(
G1,π ( f )(Lπ ( f ) + λ)−1) =

(

2Lπ ( f )− c

24π

∫

S1
f

)

(Lπ ( f ) + λ)−1

+
i

2
G1,π ( f )(Lπ ( f ) + λ)−1G1,π ( f ′)(Lπ ( f ) + λ)−1,

δ
(
G2,π ( f )(Lπ ( f ) + λ)−1) = − Jπ ( f ′)(Lπ ( f ) + λ)−1

+
i

2
G2,π ( f )(Lπ ( f ) + λ)−1G1,π ( f ′)(Lπ ( f ) + λ)−1.

For the proof we shall need local energy bounds [16]: instead of bounding Jπ ( f ),
for f ∈ C∞(S1,R), by a multiple of 1 + Lπ0 as in (3.1), it may be bounded by smeared
fields, namely there are scalars C1,C2 > 0 depending on f such that

Jπ ( f )2 ≤ C11 + C2Lπ ( f 2). (7.2)

Proof. The fact that (Lπ ( f )+λ)−1 preserves dom((Lπ0 )
2) has been obtained in Lemma

7.2, so Gi,π ( f )(Lπ ( f ) + λ)−1 and Jπ ( f ′)(Lπ ( f ) + λ)−1 map C∞(Lπ0 ) into dom(Lπ0 )
by a standard application of the linear energy bounds (3.1).
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The case i = 1 corresponds to [12, Thm. 4.11] because of our choice Q = G1,π
0

here. Concerning the case i = 2, the commutation relations in Definition 3.1 imply, for
ψ ∈ C∞(Lπ0 ):

QG2,π ( f )(Lπ ( f )+λ)−1ψ = −G2,π ( f )Q(Lπ ( f )+λ)−1ψ − Jπ ( f ′)(Lπ ( f ) + λ)−1ψ

= −G2,π ( f )(Lπ ( f ) + λ)−1 Qψ

+
i

2
G2,π ( f )(Lπ ( f ) + λ)−1G1,π ( f ′)(Lπ ( f ) + λ)−1ψ

− Jπ ( f ′)(Lπ ( f ) + λ)−1ψ.

We know from the assumptions of this lemma and Lemma 7.4 that both Gi,π ( f )(Lπ ( f )+
λ)−1 and Gi,π ( f ′)(Lπ ( f )+λ)−1 are bounded. This shows that the operator in the second
term on the right-hand side extends to a bounded operator on Hπ .

By making use of local energy bounds (7.2) for currents, we obtain C1,C2 > 0 such
that

Jπ ( f ′)2 ≤ C11 + C2Lπ ( f ′2) ≤ C ′
11 + C ′

2Lπ ( f ).

The second inequality is obtained from the fact that f ′2 ≤ C f for some C > 0 by
assumption, whence Lπ (C f − f ′2) is bounded from below [27, Thm. 4.1], say by
−C ′1. Then we may choose C ′

2 := C2C and C ′
1 := C1 + C2C ′. Consequently, for every

ψ ∈ C∞(Lπ0 ), we have

‖Jπ ( f ′)(Lπ ( f ) + λ)−1ψ‖2 = 〈ψ, (Lπ ( f ) + λ̄)−1 Jπ ( f ′)2(Lπ ( f ) + λ)−1ψ〉
≤ C ′

1‖(Lπ ( f ) + λ)−1ψ‖2 + C ′
2‖Lπ ( f )(Lπ ( f ) + λ)−1ψ‖ · ‖(Lπ ( f ) + λ)−1ψ‖,

so Jπ ( f ′)(Lπ ( f ) + λ)−1 is bounded. ��
Lemma 7.7. Let f ∈ C∞(S1,R) satisfy the condition in Lemma 7.3, and let λ ∈ C with
imaginary part sufficiently large. Then Jπ ( f )(Lπ ( f ) + λ)−1 ∈ dom(δ), and

δ
(
Jπ ( f )(Lπ ( f ) + λ)−1) = − i G2,π ( f )(Lπ ( f ) + λ)−1

+ Jπ ( f )(Lπ ( f ) + λ)−1 i

2
G1,π ( f ′)(Lπ ( f ) + λ)−1.

Proof. The fact that Jπ ( f )(Lπ ( f ) + λ)−1 maps C∞(Lπ0 ) into dom(Lπ0 ) for |�λ| suffi-
ciently large has been obtained in Lemma 7.2. Let us show the boundedness.

Notice first that there is C such that f 2 ≤ C f . Using then the local energy bounds
in (7.2) as in the proof of Lemma 7.6, we find constants C ′

1,C ′
2 > 0 such that

Jπ ( f 2) ≤ C ′
11 + C ′

2Lπ ( f ),

and analogously, we obtain, for ψ ∈ C∞(Lπ0 ):

‖Jπ ( f )(Lπ ( f ) + λ)−1ψ‖2

≤ C ′
1‖(Lπ ( f ) + λ)−1ψ‖2 + C ′

2‖Lπ ( f )(Lπ ( f ) + λ)−1ψ‖ · ‖(Lπ ( f ) + λ̄)−1ψ‖,
hence the boundedness of Jπ ( f )(Lπ ( f ) + λ)−1.
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We already know from Lemma 7.4 that under the present assumptions on f , the
operators Gi,π ( f ′)(Lπ ( f ) + λ)−1 are bounded and map C∞(Lπ0 ) into dom(Lπ0 ). Thus,
using Definition 3.1, we compute:

Q Jπ ( f )(Lπ ( f ) + λ)−1ψ = Jπ ( f )Q(Lπ ( f ) + λ)−1ψ − i G2,π ( f ′)(Lπ ( f ) + λ)−1ψ

= Jπ ( f )(Lπ ( f ) + λ)−1 Qψ − i G2,π ( f ′)(Lπ ( f ) + λ)−1ψ

+ Jπ ( f )(Lπ ( f ) + λ)−1 i

2
G1,π ( f ′)(Lπ ( f ) + λ)−1ψ.

This completes the proof using Lemma 7.4. ��
Proof of Theorem 7.1. Thanks to Theorem 3.4 and the local normality of π , the proof
goes now almost precisely as in [12, Lemma 4.12], but for the sake of completeness
and because of its importance we present it here again. Let I ∈ IR. Then π−1

I (dom(δ))
is a unital ∗-subalgebra of Ac(I ) wherefore, by the von Neumann density theorem, it
suffices to show that

π−1
I (dom(δ))′ ⊂ Ac(I )

′.
To this end let f be an arbitrary real smooth function with support in I . Recalling that
I must be open it is easy to see that there is an interval I0 ∈ I such that I0 ⊂ I and
supp f ⊂ I0 and a smooth function g on S1 such that supp g ⊂ I0, g(z) > 0 for all
z ∈ I0, g′(z) �= 0 for all z ∈ I0 sufficiently close to the boundary and g(z) = 1 for all
z ∈ supp f . Accordingly, there is a real number s > 0 such that f (z) + sg(z) > 0 for
all z ∈ I0. Now let f1 = f + sg and f2 = sg. Then f = f1 − f2. Hence it follows from
the above lemmata and the definition of Ac(I ) that, for |�λ| sufficiently large, all the
operators

(Lπ ( f j ) + λ)−1, Jπ ( f j )(L
π ( f j ) + λ)−1, Gi,π ( f j )(L

π ( f j ) + λ)−1, j = 1, 2,

belong to dom(δ). Thus according to Theorem 3.4, all the operators

(L( f j ) + λ)−1, J ( f j )(L( f j ) + λ)−1, Gi ( f j )(L( f j ) + λ)−1, j = 1, 2,

belong to π−1
I (dom(δ)). So if a ∈ π−1

I (dom(δ))′, then a commutes with L( f j ), J ( f j ),
and Gi ( f j ), j = 1, 2. Therefore, if ψ1, ψ2 ∈ C∞(L0) then,

(aψ1, L( f )ψ2) = (aψ1, L( f1)ψ2)− (aψ1, L( f2)ψ2)

= (aL( f1)ψ1, ψ2)− (aL( f2)ψ1, ψ2)

= (aL( f )ψ1, ψ2)

and, since C∞(L0) is a core for L( f ), it follows that a commutes with L( f ) and hence
with ei L( f ). Similarly a commutes with ei Gi ( f ) and ei J ( f ). Hence a ∈ Ac(I )′ and the
statement follows. ��

To conclude this section then, recall from [12, Def. 3.9]:

Definition 7.8. A net of graded spectral triples (A(I ), (πI ,H), Qπ )I∈IR
over S1\{−1} �

R consists of a graded Hilbert space H, a selfadjoint operator Qπ , and a net A of unital
∗-algebras on IR acting on H via the graded general soliton π , i.e., a map from IR into
the family of unital ∗-algebras represented on B(H)which satisfies the isotony property

A(I1) ⊂ A(I2) if I1 ⊂ I2,

and such that (A(I ), (πI ,H), Qπ ) is a graded spectral triple for all I ∈ IR.
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Corollary 7.9. Let π be an irreducible Ramond representation of Ac. Then, setting
A(I ) := π−1

I (dom(δπ )), the family

(A(I ), (π,Hπ ), Qπ )I∈IR

forms a nontrivial net of even θ -summable graded spectral triples over S1\{−1}.

8. JLO Cocycles, Index Pairings, and Ramond Sectors for the N = 2
Super-Virasoro Nets

In the preceding section, in particular in Corollary 7.9, we constructed in a canonical
manner a nontrivial net of spectral triples for a given Ramond representation of any
N = 2 super-Virasoro net. These spectral triples give rise to local JLO cocycles and
thus define an index pairing as constructed in [13]. In this section, in order to capture the
global aspects of superselection theory, we will define for any N = 2 super-Virasoro net
Ac an appropriate global locally convex algebra Ac such that every irreducible Ramond
representation of the net Ac gives rise to a spectral triple (K-cycle) for Ac. The nets of
spectral triples in the previous section arise by restriction to the local subalgebras of Ac.
Moreover we will show that for inequivalent Ramond representations the corresponding
JLO cocycles belong to different entire cyclic cohomology classes. Although there are
some important differences, the strategy adopted here is similar to the one recently used
in [13]. In particular, as in [13, Sect. 5], we will use the “characteristic projections” in
order to distinguish different cohomology classes through the pairing with K-theory. For
unexplained notions of noncommutative geometry we refer to Connes’ book [17]. All
notions of noncommutative geometry needed in this section can also be found in the
brief overview given in [13, Sect. 3].

Let Ac be the N = 2 super-Virasoro net with central charge c and let W ∗(Aγ
c ) be the

universal von Neumann algebra from Definition 2.4. Then every representation π of Aγ
c

can be identified with a normal representation of W ∗(Aγ
c ) which will also be denoted

by π and vice versa. In particular, every general PSL(2,R)-covariant soliton π of the
graded-local conformal net Ac gives rise by restriction to a representation of Aγ

c and
hence to a normal representation of W ∗(Aγ

c ) which, when no confusion can arise, we
will denote again by π .

Definition 8.1. Let �c
R be a maximal family of mutually inequivalent irreducible Ra-

mond representations of Ac. The differentiable global algebra associated with the local
conformal net Aγ

c is the unital ∗-algebra defined as

Ac := {a ∈ W ∗(Aγ
c ) : (∀π ∈ �c

R) π(a) ∈ dom(δπ )}.

The corresponding local subalgebras are defined by Ac(I ) := Ac ∩ Aγ (I ). Endowed
with the family of norms

‖ · ‖π := ‖ · ‖W ∗(Aγ
c )

+ ‖δπ (π(·))‖B(Hπ ), π ∈ �c
R,

Ac becomes a locally convex algebra. Here, as in Sect. 7 δπ denotes the superderivation
induced by the supercharge operator Qπ := G1,π

0 .
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Remark 8.2. It is straightforward to see that neither the algebra nor the corresponding
family of norms (and hence the corresponding locally convex topology) depend on the
choice of �c

R . In fact each norm ‖ · ‖π only depends on the unitary equivalence class
[π ] of π . As a consequence we have π(Ac) ⊂ dom(δπ ) for every irreducible Ramond
representation of Ac. Moreover, Ac is nontrivial and in fact by Theorem 7.1 (and its
proof) Ac(I ) is weakly dense in Aγ

c (I ) for all I ∈ I. If c < 3 then, �c
R is finite and the

locally convex topology on Ac can be induced by the norm ‖ · ‖R := ∑
π∈�c

R
‖ · ‖π .

Now, recall that every irreducible Ramond representation π of Ac is graded by
�π = e−iπqπ eiπ J0 , that Q2

π = Lπ0 − c/24,that e−βLπ0 is a trace class operator for
every β > 0 and that we can consider π as a representation of W ∗(Aγ

c ) and hence,
by restriction, as a representation of Ac. Moreover, by definition of the locally convex
algebra Ac, the map π : Ac → dom δπ is continuous when the latter is endowed with
the Banach algebra norm ‖ · ‖1 := ‖ ·‖B(Hπ ) +‖δπ (·)‖B(Hπ ). Moreover if π1 is unitarily
equivalent to π and the unitary equivalence is realized through a unitary intertwiner
u : Hπ → Hπ1 then u�πu∗ = �π1 and uQπu∗ = Qπ1 . As a consequence we have the
following (cf. [13, Theorem 4.10]):

Proposition 8.3. For every irreducible Ramond representation π of the net Ac, the
data (Ac, (π,Hπ , �π), Qπ ) is a nontrivial θ -summable even spectral triple such that
π : Ac → dom(δπ ) is continuous. Accordingly the associated JLO cocycle τπ is a
well-defined even entire cyclic cocycle of the locally convex algebra Ac. If π1 � π then
τπ1 = τπ .

For every irreducible Ramond representation π of Ac we have the direct sum de-
composition Hπ = Hπ,+ ⊕ Hπ,−, where Hπ,± is the eigenspace of �π corresponding
to the eigenvalue ±1 and the corresponding decomposition of π |Aγ

c
into a direct sum of

irreducible representations π+ ⊕π−, cf. Proposition 2.5. Since Qπ is an odd operator, its
domain dom(Qπ ) is preserved by the action of �π and hence it decomposes as a direct
sum dom(Qπ ) = dom(Qπ )+ ⊕ dom(Qπ )−, with dom(Qπ )± dense in Hπ,± and there-
fore there are operators Qπ,± from Hπ,± into Hπ,∓ with dense domains dom(Qπ )± ⊂
Hπ,± satisfying Qπ (ψ+ ⊕ ψ−) = Qπ,−ψ− ⊕ Qπ,+ψ+ for ψ± ∈ dom(Qπ )±, and
Q∗
π,± = Qπ,∓. Now, recall from [17] (see also [13, Sect. 3]) that for every projection

p ∈ Ac the operator π−(p)Qπ,+π+(p) : π+(p)Hπ,+ → π−(p)Hπ,− is a Fredholm
operator and that the integer τπ (p) := ind

(
π−(p)Qπ,+π+(p)

)
(index pairing) only de-

pends on the entire cyclic cohomology class of τπ and on the class of p in the K-theory
group K0(Ac). We want to use this fact to show that the JLO cocycles τπ give rise to
distinct entire cyclic cohomology classes for inequivalent irreducible Ramond represen-
tations π . To this end we need to consider appropriate projections in Ac for which the
index computations are easy enough and give the desired result. A similar strategy has
been used in [13, Sect. 5].

We first note that if π−(p) = 0 then we have τπ (p) = dim(π+(p)Hπ,+). Now, given
a representation π of C∗(Aγ

c ) which is quasi-equivalent to a subrepresentation of the
universal representation π̃u , denote by s(π) ∈ Z(W ∗(Aγ

c )) the central support of the
projection onto this subrepresentation so that, in particular π(s(π)) = 1. If π is an
irreducible Ramond representation of Ac we will write s(π) instead of s(π |Aγ

c
). With

this convention we have s(π) = s(π+) + s(π−). Note that the unique normal extension
of π to W ∗(Aγ

c ) gives rise to an isomorphism of W ∗(Aγ
c )s(π) onto π(C∗(Aγ

c ))
′′.
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Definition 8.4. Given a graded irreducible Ramond representation π of Ac, let s(π+) ∈
Z(W ∗(Aγ

c )) be the central projection corresponding to the irreducible subrepresenta-
tion π+ of π |Aγ

c
on the subrepresentation π . Moreover, write phπ ,+ ∈ B(Hπ ) for the

projection onto the (finite-dimensional) lowest energy subspace of Hπ,+. Then there is
a unique projection pπ ∈ W ∗(Aγ

c )s(π) such that π(pπ ) = phπ ,+ and we call it the
characteristic projection of π .

Lemma 8.5. Let π1 and π2 be two irreducible Ramond representations of Ac. Then
s(π1) = s(π2) and pπ1 = pπ2 if π1 and π2 are unitarily equivalent, while s(π1)s(π2) =
0 and pπ1 pπ2 = 0 otherwise.

Proof. Ifπ1 and π2 are unitarily equivalent we clearly have s(π1) = s(π2). If the unitary
equivalence is realized by a unitary intertwiner u : Hπ1 → Hπ2 then u�π1u∗ = �π2 and
hence u : Hπ1,+ → Hπ2,+ so that π1,+ and π2,+ are unitarily equivalent and therefore
the central supports s(π1,+) and s(π2,+) are equal. Moreover, uLπ1

0 u∗ = Lπ2
0 and hence

uphπ1 ,+
u∗ = phπ2 ,+

. Accordingly π2(pπ1) = uπ1(pπ1)u
∗ = uphπ1 ,+

u∗ = phπ2 ,+
and hence pπ1 = pπ2 . On the other hand, if π1 and π2 are inequivalent, then, by
Proposition 2.5, π1,+ ⊕ π1,− is disjoint from π2,+ ⊕ π2,−. Accordingly s(π1)s(π2) = 0
and pπ1 pπ2 = pπ1 s(π1)s(π2)pπ2 = 0. ��
Proposition 8.6. Let π be an irreducible Ramond representation of Ac. Then, for every
irreducible Ramond representation π̃ of Ac, we have

π̃(pπ ) =
{

phπ̃ ,+ if π̃ � π

0 if π̃ �� π

and

π̃(s(π)) =
{

1 if π̃ � π

0 if π̃ �� π.

Moreover, pπ and s(π) belong to Ac.

Proof. If π̃ � π then, by Lemma 8.5 we have s(π̃) = s(π) and pπ̃ = pπ and hence
π̃(s(π)) = π̃(s(π̃)) = 1 and π̃(pπ ) = π̃(pπ̃ ) = phπ̃ ,+. If π̃ �� π then, again by Lemma
8.5, s(π̃)s(π) = 0 and hence π̃(s(π)) = 0 and π̃(pπ ) = π̃(s(π)pπ ) = 0. Now, 1 and 0
clearly belong to the domain of the superderivation δπ̃ . Accordingly π̃ (s(π)) ∈ dom(δπ̃ ),
for every irreducible Ramond representation π̃ of Ac, and hence s(π) ∈ Ac. Moreover,
since Q2

π̃
= L π̃0 − c

24 1 and since phπ̃ ,+ commutes with L π̃0 and has finite-dimensional
range, we see that Qπ̃ phπ̃ ,+ is everywhere defined and bounded and hence phπ̃ ,+ Qπ̃ is
bounded on the domain of Qπ̃ . It follows that phπ̃ ,+ ∈ dom(δπ̃ ). Therefore, for every
irreducible Ramond representation π̃ of Ac, we have π̃(pπ ) ∈ dom(δπ̃ ), so pπ ∈ Ac
and we are done. ��

With all these ingredients at hand, one can now easily prove the main result of this
section, cf. also [13].

Theorem 8.7. Let π1 , π2 be irreducible Ramond representations of Ac. Then the index
pairing between JLO cocycle τπ1 and the projection pπ2 ∈ Ac gives

τπ1(pπ2) =
{

1 if π1 � π2
0 if π1 �� π2.
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Hence, the map π → [τπ ], where [τπ ] denotes the entire cyclic cohomology class of
the JLO cocycle τπ associated to the irreducible Ramond representation π of Ac, gives
a complete noncommutative geometric invariant for the class of irreducible Ramond
representations of the N = 2 super-Virasoro net Ac, namely [τπ1] = [τπ2 ] if and only if
π1 � π2.

9. Ramond Vacuum Representations and Chiral Rings

Let π be an irreducible Ramond representation of the N = 2 super-Virasoro net Ac.
Then we say that π is a Ramond vacuum representation if the corresponding irreducible
representation of the N = 2 Ramond super-Virasoro algebra is a Ramond vacuum
representation as defined in Sect. 3, namely if the corresponding lowest energy hπ
satisfies hπ = c/24. We denote by �c

Rvac the set of equivalence classes of Ramond
vacuum representations of Ac. For c < 3 the set �c

Rvac is finite. The following lemma
shows that the Ramond vacuum representations can be characterized in terms of the
associated JLO cocycles and the corresponding index pairing.

Lemma 9.1. Let π be an irreducible Ramond representation of the N = 2 super-
Virasoro net Ac. Then we have τπ (s(π)) = 1 if π is a Ramond vacuum representation,
and τπ (s(π)) = 0 otherwise.

Proof. Recall that for every irreducible Ramond representation ofAc we haveπ(s(π)) =
1 and hence τπ (s(π)) = τπ (1). It follows that

τπ (s(π)) = ind
(
Qπ,+

) = dim(ker(Qπ,+))− dim(ker(Qπ,−))
= dim(ker(Qπ,−Qπ,+))− dim(ker(Qπ,+ Qπ,−))

= dim
(

ker
(
(Lπ0 − c

24
1)|Hπ,+

))
− dim

(
ker

(
(Lπ0 − c

24
1)|Hπ,−

))
.

Now, if π is not a Ramond vacuum representation, we have dim
(
ker

(
Lπ0 − c

24 1
)) = 0

and hence τπ (s(π)) = 0. On the other hand, if π is a Ramond vacuum representation,
we see from the discussion before Theorem 3.2 that dim

(
ker

(
(Lπ0 − c

24 1)|Hπ,+

)) = 1
and dim

(
ker

(
(Lπ0 − c

24 1)|Hπ,−
)) = 0, so τπ (s(π)) = 1. ��

It follows from the previous lemma that, in order to separate the entire cyclic coho-
mology classes of the JLO cocycles associated to Ramond vacuum representations, we
can consider the central support projections s(π) instead of the characteristic projections
pπ used in the previous section. Note that these generate a ∗-subalgebra Ac,�c

Rvac
of the

center Z(Ac) = Ac ∩ Z(W ∗(Ac)). If c < 3 then �c
Rvac is finite and the above commu-

tative subalgebra is finite-dimensional and isomorphic to C
�c

Rvac . We record these facts
in the following:

Proposition 9.2. If c < 3 the central support projections associated to the Ramond
vacuum representations of Ac generate a finite-dimensional ∗-subalgebra Ac,�c

Rvac
of

Z(Ac) isomorphic to the abelian ∗-algebra C
�c

Rvac . The restriction of the JLO cocycle
τπ associated to the Ramond vacuum representation π of Ac to this finite-dimensional
subalgebra gives rise to an entire cyclic cocycle whose entire cyclic cohomology class
is a complete noncommutative geometric invariant for the class of Ramond vacuum
representations of the N = 2 super-Virasoro net Ac.



1324 S. Carpi, R. Hillier, Y. Kawahigashi, R. Longo, F. Xu

In the rational case c < 3, this lets the Ramond vacuum representation theory of
the N = 2 super-Virasoro net Ac appear in still another form of noncommutative
geometry, namely in terms of the entire cyclic cohomology of the finite-dimensional
algebra Ac,�c

Rvac
� C

�c
Rvac . This fact should also have interesting relations with the K-

theoretical analysis of the representation theory of completely rational conformal nets
given in [10,11].

In the standard approach to N = 2 superconformal field theory, the Ramond vacuum
representations are related trough the spectral flow to the so called chiral (resp. antichiral)
primary fields and the corresponding chiral ring, cf. [48] and [1, Sect. 5.3]. We now want
to give a (partial) description of these concepts in our operator algebraic framework.
The idea is that the so called primary fields correspond to representations of N = 2
superconformal nets and hence we have to define the concept of chiral (resp. antichiral)
representation. As before we will restrict to the case of N = 2 super-Virasoro nets.

Definition 9.3. We say that an irreducible Neveu–Schwarz representation π of the N =
2 super-Virasoro net Ac is a chiral (resp. antichiral) representation if for the unique (up
to a phase) unit lowest energy vector �π ∈ Hπ we have

G+,π
−1/2�π = 0 (resp. G−,π

−1/2�π = 0).

We denote the set of equivalence classes of chiral representations by �c
chir.

It easily follows from the N = 2 NS super-Virasoro algebra (anti-) commutation
relations that a Neveu–Schwarz representation π is chiral (antichiral) iff hπ = qπ/2
(hπ = −qπ/2, resp.), cf. e.g. [1, Sect. 5.3]. In any case, the terminology is not to be
confused with the usual notion of chiral symmetry for fields where holomorphic and
anti-holomorphic components decouple.

We now restrict ourselves to the rational case c < 3. In this case the equivalence
classes of chiral representations ofAc form an additive subgroup Z�c

chir of the fusion ring
generated by the equivalence classes of irreducible NS representations of Ac together
with the fusion product in (5.5). It is in general not invariant under the products of NS
representations, but truncating, i.e. putting equal to zero all the non chiral irreducible
equivalence classes arising from the fusion product, the actual fermionic fusion rules in
(5.5), which are represented by the fusion coefficients N k

i j ∈ N0, with i, j, k running
in the set of equivalence classes of irreducible Neveu–Schwarz representations of Ac

adjusts this point. The corresponding truncated fusion coefficients are given by N̂ k
i j =

N k
i j , i, j, k ∈ �c

chir. We denote by “∗” the corresponding product operation on Z�c
chir.

Proposition 9.4. Let c < 3 be an allowed value for the central charge in the N = 2
discrete series representations. The product ∗ defined by the�c

chir-truncated fusion rules
on Z�c

chir is commutative and associative. We call the corresponding ring the chiral ring
of the N = 2 super-Virasoro net Ac.

Proof. The equivalence classes of irreducible Neveu–Schwarz representations of Ac
are labelled by (l,m) like the corresponding irreducible unitary representations with
central charge c of the N = 2 Neveu–Schwarz super-Virasoro algebra, cf. Sect. 5.
The equivalence classes of chiral representations are then selected by the condition
2h(l,m) = q(l,m). In light of Theorem 3.2(NS3), this means m = −l. Truncating then
the fusion rules (5.5) according to this condition, at most one term remains in the sum
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(5.5), namely

(l1,−l1) ∗ (l2,−l2) =
{
(l1 + l2,−l1 − l2) : l1 + l2 ≤ n
0 : otherwise.

}

= (l2,−l2) ∗ (l1,−l1),

for all l1, l2 = 0, . . . , n. In particular, this proves commutativity of ∗. Similarly, we
check associativity:

(
(l1,−l1) ∗ (l2,−l2)

)
∗ (l3,−l3) =

{
(l1 + l2,−l1 − l2) ∗ (l3,−l3) : l1 + l2 ≤ n
0 : otherwise.

=
{
(l1 + l2 + l3,−l1 − l2 − l3) : l1 + l2 + l3 ≤ n
0 : otherwise.

= (l1,−l1) ∗
(
(l2,−l2) ∗ (l3,−l3)

)
.

��
Remark 9.5. As mentioned in part above, in the literature the “chiral ring” stands for the
ring defined by the OPE at coinciding points of the so-called chiral primary fields, cf.
[48] and [1, Sect. 5.3]. For the N = 2 minimal model considered here this gives the same
result that we obtained by means of the chiral representations and their truncated fusion
rules, see the example at the end of Sect. 5.5 in [1]. This is of course not surprising if
one recalls that in the formulation of the approaches to CFT based on pointlike localized
fields the fusion rules are defined in terms of the OPE of primary fields.

One can define in a similar way the rings corresponding to antichiral representations
or antichiral primary fields. Note that the models we are considering are generated by
fields depending on one light-ray coordinate only. In the general 2D case one has a richer
structure of chiral/antichiral rings: (c, c), (a, a), (c, a), (a, c), cf. [48, pp. 433, 437].

Note also that from the OPE point of view the associativity of the ring product has a
natural explanation, while it is not a priori evident from the point of view of truncated
fusion rules.

We now come to the relation between the chiral representations and the Ramond
vacuum representations of the N = 2 super-Virasoro nets Ac with c < 3. Recall from
Proposition 4.7 that composition of an irreducible Neveu–Schwarz representation π of
Ac with the spectral flow automorphism η̄−1/2 gives an irreducible Ramond representa-
tion π ◦ η̄−1/2. If π denotes the irreducible representation of the N = 2 Neveu–Schwarz
super-Virasoro algebra corresponding to the Neveu–Schwarz representation π of Ac
then the representation of the N = 2 Ramond super-Virasoro algebra corresponding to
π ◦ η−1/2 is π ◦ η̄−1/2. The following argument is standard, see e.g. [1, Sect. 5.4]. Let
�π be the unique (up to a phase) lowest energy unit vector for the irreducible Neveu–
Schwarz representation π of Ac. Then, using the explicit expressions for the Ramond
super-Virasoro algebra generators in the representation π ◦η−1/2 in terms of the Neveu–
Schwarz super-Virasoro algebra generators in the representation π , it is straightforward
to see that�π is a lowest energy vector also for the representation π ◦ η−1/2 which fur-

thermore satisfies G
−,π◦η−1/2
0 �π = 0. Moreover we have G

+,π◦η−1/2
0 �π = G+,π

−1/2�π
and it follows that π is a chiral representation of Ac if and only if π ◦ η̄−1/2 is a Ramond
vacuum representation. Now, if π is an irreducible Ramond representation of Ac then,
again by Proposition 4.7, π ◦ η̄1/2 is an irreducible Neveu–Schwarz representation of
Ac. Hence, π ◦ η̄1/2 is a chiral representation if and only if π = π ◦ η̄1/2 ◦ η̄−1/2 is a
Ramond vacuum representation of Ac. Accordingly we have the following:
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Proposition 9.6. The spectral flow automorphism η̄1/2 of Ac gives rise to a one-to-
one correspondence between �c

Rvac and �c
chir. As a consequence the noncommutative

geometric invariants for�c
Rvac in Proposition 9.2 give rise to noncommutative geometric

invariants for the chiral ring Z�c
chir.
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