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Abstract: It has been understood that correlation functions of multi-trace operators in
N = 4 SYM can be neatly computed using the group algebra of symmetric groups or
walled Brauer algebras. On the other hand, such algebras have been known to construct
2D topological field theories (TFTs). After reviewing the construction of 2D TFTs based
on symmetric groups, we construct 2D TFTs based on walled Brauer algebras. In the
construction, the introduction of a dual basis manifests a similarity between the two
theories. We next construct a class of 2D field theories whose physical operators have
the same symmetry as multi-trace operators constructed from some matrices. Such field
theories correspond to non-commutative Frobenius algebras. A matrix structure arises as
a consequence of the noncommutativity. Correlation functions of the Gaussian complex
multi-matrix models can be translated into correlation functions of the two-dimensional
field theories.

1. Introduction

Motivated by the development of AdS/CFT correspondence [1], the study of N = 4
super Yang–Mills theory has attracted lots of interest for the past 15 years. The anom-
alous dimensions are of particular interest because they correspond to energies in the dual
string theory side. If we restrict our attention to the planar limit, the problem of obtain-
ing the spectrum of anomalous dimensions is replaced with the conventional problem
of diagonalising the Hamiltonian in an integrable system [2,3]. Compared to the enor-
mous development of the planar theory, we had only limited information on non-planar
corrections. The recent development of studying non-planar corrections, however, has
brought us to obtain some concrete results of non-planar corrections [4–23].

Consider multi-trace gauge invariant operators constructed from a single complex
matrix, relevant to the half-BPS sector in N = 4 super Yang–Mills theory. They are
classified by conjugacy classes of the symmetric group, and the two-point function can
be expressed, except the trivial space-time dependence, as
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〈O[τ ]O[σ ]〉 =
∑

ρ∈Sn

N nδn(�nτρσρ−1). (1)

The derivation will be given in Sect. 2. It is interesting to find that the right-hand side
is written completely in terms of symmetric group data, suggesting an effective role of
the symmetric group in the problem. Behind the fact that the symmetric group shows up
in the evaluation of the matrix integral, there is a mathematical structure that relates the
general linear group and the symmetric group known as Schur–Weyl duality. It indeed
plays a central role in our idea of employing group representation theory in the recent
development of non-planar physics. We will review it in Sect. 2, and some mathematical
notions regarding Schur–Weyl duality are given in Appendix A. By the way, it has been
known that symmetric groups give the description of coverings of two-dimensional
Riemann surfaces, which played a central role in the string theoretic interpretation of
the large N expansion of two-dimensional Yang–Mills [24–28]. This is an example that
symmetric groups are used to describe two-dimensional field theories. In fact, if we
ignore the � factor in the right-hand side of (1), the right-hand side is nothing but the
two-point function of a two-dimensional topological field theory. In Sect. 3, we give a
review of the construction of two-dimensional topological field theories associated with
symmetric groups. From these facts, it is expected to be fruitful to learn four-dimensional
theories from two-dimensional theories by means of symmetric groups [23].

Walled Brauer algebras [29–32] are another convenient tool to organise multi-trace
gauge invariant operators constructed from some matrices [10,15]. In Sect. 4, we will
explicitly construct two-dimensional topological field theories based on walled Brauer
algebras. The introduction of a dual basis manifests a similarity to the construction
of topological field theories by symmetric groups. We will also show that correlation
functions of the Brauer topological field theory can be decomposed into correlation
functions of the topological field theories obtained from symmetric groups.

The central part of this paper is, based on these connections, devoted to the study of
two-dimensional field theories that are closely related to the description of multi-trace
operators built from some scalar fields in N = 4 super Yang–Mills theory. As will be
reviewed in Sect. 2, when we organise gauge invariant operators that involve p kinds
of matrices in terms of symmetric groups or walled Brauer algebras, the conjugation
under some permutation belonging to the symmetric group Sn1 × · · · × Sn p is essen-
tially important [10–16,22]. In Sect. 5, we will construct two-dimensional field theories
whose physical operators are characterised by the same conjugation. The idea of the
construction is given in [23]. It has been understood that two-dimensional topological
quantum field theories are in one-to-one correspondence with commutative Frobenius
algebras. What we describe in Sects. 3 and 4 can be phrased mathematically, that com-
mutative Frobenius algebras are constructed from symmetric groups and walled Brauer
algebras. By contrast, algebras playing a role in the theories we consider in Sect. 5 are
non-commutative Frobenius algebras. These theories have some properties owned by
topological field theories, such as that the two-point function is a projector. We will see
that an effective matrix-like structure shows up as a consequence of the noncommuta-
tivity, where multiplicity indices on the restricted characters [7,8,10,13,15] behave like
matrix-indices. We will also discuss the connection between correlation functions of the
two-dimensional field theories and correlation functions of N = 4 super Yang–Mills
theory in Sect. 6, hoping to illuminate a new geometric correspondence between the two
theories. In Sect. 7, we discuss the counting problem of multi-traces from the point of
view of the two-dimensional field theories. Section 8 is devoted to discussions. In some
appendices we collect useful materials.
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2. Correlation Functions in Multi-Matrix Models

In this section, we will review the recent approach to compute exact finite N correlation
functions of multi-trace operators in N = 4 Super Yang–Mills theory. The mathematical
background behind the approach is supplemented in Appendix A.

We consider the free field theory of scalar fields, and we use the complex notation to
denote them by X, Y, Z or Xa (a = 1, 2, 3). The two-point function is determined by
conformal symmetry to take the following form

〈Oi (x)O j (y)〉SY M = ci j

(x − y)ni +n j
δni ,n j , (2)

where ni is the number of fields involved in the operator Oi . General gauge invariant
operators are given by a product of an arbitrary number of single trace operators built
from the fundamental fields Xa and X†

a . The non-trivial N -dependence of the correlator
is encoded in ci j , and it is obtained by solving the combinatorial problem of contractions
of the free field captured by the matrix integral with the Gaussian weight [33]

ci j = 〈Oi O j 〉 :=
∫ ∏

a

[d Xad X†
a]e−2tr(Xa X†

a)Oi O j , (3)

where the measure is normalised to give 〈(Xa)i j (X†
b)kl〉 = δilδ jkδab.

The evaluation of the matrix integral will be neatly performed if we introduce an
appropriate algebra as a tool to organise the multi-trace structure. Let us first consider
the half BPS chiral primary operators described by a single holomorphic matrix X [4,5].
Any multi-trace operators built from n copies of X are conveniently labelled by an
element of the symmetric group Sn as

trn(σ X⊗n) = X
iσ(1)

i1
X

iσ(2)

i2
· · · X

iσ(n)

in
(σ ∈ Sn). (4)

Here trn is a trace over the tensor space V ⊗n , where X is regarded as a linear map on
V . Because two elements that are conjugate each other give the same multi-trace

trn(σ X⊗n) = trn(ρσρ−1 X⊗n) (ρ ∈ Sn), (5)

the number of independent multi-traces is not equal to the number of elements in the
symmetric group Sn . Taking the equivalence relation into account, the multi-trace oper-
ators are correctly classified by conjugacy classes. The matrix integral of the two-point
function can be evaluated as

〈trn(τ X†⊗n)trn(σ X⊗n)〉 =
∑

ρ∈Sn

trn(τρσρ−1)

=
∑

ρ∈Sn

∑

R�n

tRχR(τρσρ−1)

=
∑

ρ∈Sn

N nδn(�nτρσρ−1), (6)

At the first equality the Wick-contractions are expressed by elements in Sn [4]. The
second and third step result from the Schur–Weyl duality, as is explained in (A.6)–(A.9).
The dimension of an irreducible representation R of the symmetric group is denoted
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by dR , while the dimension of an irreducible representation R of the SU (N ) group is
denoted by tR . The �n is a specific central element in the group algebra of the symmetric
group,

�n =
∑

σ∈Sn

σ N Cσ −n, (7)

where Cσ is the number of cycles in the permutation σ . The last equality of (6) is valid
for N that is larger than n. The two-point functions can be diagonalised by the basis
change of (A.4) as [4]

〈trn(pR X†⊗n)trn(pS X⊗n)〉 = n!dRtRδRS . (8)

The diagonal basis is labelled by a Young diagram with n boxes.
The idea to label multi-trace operators in terms of an element in the group algebra of

the symmetric group can be applied to operators described by some kinds of matrices
[6,11–13]. For a multi-trace constructed from m copies of X and n copies of Y , using
σ ∈ Sm+n we have

trm+n(σ X⊗m ⊗ Y ⊗n) = X
iσ(1)

i1
· · · X

iσ(m)

im
Y

iσ(m+1)

im+1
· · · Y

iσ(m+n)

im+n
. (9)

The difference from (4) is that equivalence classes for (9) are characterised by the
equivalence relation determined by the subgroup

trm+n(σ X⊗m ⊗ Y ⊗n) = trm+n(hσh−1 X⊗m ⊗ Y ⊗n) (h ∈ Sm × Sn). (10)

In this description the subgroup H = Sm × Sn plays a role. Two-point function can be
evaluated as

〈trm+n(τ X†⊗m ⊗ Y †⊗n)trm+n(σ X⊗m ⊗ Y ⊗n)〉 =
∑

h∈Sm×Sn

trm+n(τhσh−1)

=
∑

h∈Sm×Sn

N m+nδm+n(�m+nτhσh−1).

(11)

We emphasise that the free field Wick-contractions are expressed by elements of the
subgroup Sm × Sn . A diagonal two-point function can be obtained by a change of basis
in (A.15) [13],

〈trm+n(P R
A,μν X†⊗m ⊗ Y †⊗n)trm+n(P S

A′,μ′ν′ X⊗m ⊗ Y ⊗n)〉
= m!n!dAtRδRSδAA′δμν′δνμ′ . (12)

The diagonal operators are labelled by a set of three Young diagrams and two multiplicity
labels. Another diagonal basis is described in [11,12].

We have another way to label multi-traces constructed from some fields using walled
Brauer algebras [10,15]. Walled Brauer algebras can be introduced as a Schur–Weyl dual
to the GL(N ) groups [see (A.19)]. Mainly consider multi-trace operators constructed
from m copies of X and n copies of Y , and let BN (m, n) be the walled Brauer algebra
relevant for the description of such operators. The Brauer algebra contains the group
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algebra of Sm × Sn as a subalgebra. Gauge invariant operators are constructed by regard-
ing X⊗m ⊗ Y T ⊗n as operators acting on the space V ⊗m ⊗ V̄ ⊗n , followed by the action
of an element of the Brauer algebra and taking a trace:

trm,n(bX⊗m ⊗ Y T ⊗n) (b ∈ BN (m, n)). (13)

The equivalence relation is very similar to (10),

trm,n(bX⊗m ⊗ Y T ⊗n) = trm,n(hbh−1 X⊗m ⊗ Y T ⊗n) (h ∈ Sm × Sn). (14)

By expressing free field Wick-contractions in terms of elements in H , the two-point
function is computed to give

〈trm,n(bX†⊗m ⊗ Y T †⊗n)trm,n(cX⊗m ⊗ Y T ⊗n)〉 =
∑

h∈Sm×Sn

trm,n(bhch−1)

=
∑

h∈Sm×Sn

∑

γ

tγ χγ (bhch−1),

(15)

where b, c are elements of the walled Brauer algebra. The dimension of an irreducible
representation γ of the walled Brauer algebra is denoted by dγ , while the dimension of
an irreducible representation γ of the GL(N ) group is denoted by tγ . The last equality in
(15) is a consequence of the Schur–Weyl duality (A.19). By taking the linear combination
in (A.28), we will obtain diagonal two-point functions [10],

〈trm,n(Qγ

A,μν X†⊗m ⊗ Y T †⊗n)trm,n(Qγ ′
A′,μ′ν′ X⊗m ⊗ Y T ⊗n)〉

= m!n!dAtγ δγ γ ′δAA′δμν′δνμ′ . (16)

Walled Brauer algebras can also be used to describe multi-trace operators constructed
from more than two kinds of matrices [16,22].

Before closing this section, we will introduce some symbols to denote the equiva-
lence classes characterising the multi-matrix structures. For a fixed element σ ∈ Sn the
following sum over a complete basis of Sn gives a central element

[σ ] = 1

n!
∑

ρ∈Sn

ρσρ−1 (σ ∈ Sn). (17)

In symmetric group Sm+n the sum over a complete basis of Sm × Sn gives an element
which commutes with any elements in Sm × Sn ,

[σ ]H = 1

m!n!
∑

h∈H

hσh−1 (σ ∈ Sm+n), (18)

where H = Sm × Sn . Similarly an element in the Brauer algebra BN (m, n) which
commutes with any elements in Sm × Sn can be constructed by

[b]H = 1

m!n!
∑

h∈H

hbh−1 (b ∈ BN (m, n)). (19)

The number of the equivalence classes coincides with the number of independent multi-
matrix operators at large N [see also (96), (121) and (148)]. If N is small compared
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to the number of fields involved in the multi-traces, multi-traces are in general linearly
dependent. Linearly independent multi-traces are given by the Young diagram basis
[4,10–13,34].

With these new notations, the two-point functions are rewritten as

〈trn([τ ]X†⊗n)trn([σ ]X⊗n)〉
= n!N nδn(�n[τ ][σ ])

〈trm+n([τ ]H X†⊗m ⊗ Y †⊗n)trm+n([σ ]H X⊗m ⊗ Y ⊗n)〉
= m!n!N m+nδm+n(�m+n[τ ]H [σ ]H )

〈trm,n([b]H X†⊗m ⊗ Y T †⊗n)trm,n([c]H X⊗m ⊗ Y T ⊗n)〉
= m!n!

∑

γ

tγ χγ ([b]H [c]H ).

(20)

We will reconsider the meaning of these equations in Sect. 8.

3. 2D Topological Field Theories and Semisimple Algebras

In the previous section we have reviewed that employing the group algebra of the sym-
metric group and the walled Brauer algebra is very effective for labelling multi-trace
gauge invariant operators in the multi-matrix models. On the other hand it has been
known that two-dimensional topological quantum field theories can be defined from
such algebras. This fact would bring up a new aspect on the role of the algebras, sug-
gesting a new connection with two-dimensional field theories. In this section we will
review the construction of two-dimensional topological quantum field theories. For our
purpose it is convenient to define them in terms of lattice [35–37], where it was shown
that semisimple algebras have a one-to-one correspondence with two-dimensional topo-
logical quantum field theories.

Consider the triangulation of a two-dimensional compact orientable surface. The
structure of the surface is encoded in the way of gluing the triangles. To each edge we
assign a colour index i , and to each triangle with edges labelled by i, j, k, we assign a
complex number Ci jk . We assume that Ci jk is invariant under cyclic permutations of the
colour indices

Ci jk = C jki = Cki j , (21)

but no relation is imposed between Ci jk and the orientation-reversed object Cik j . Two
adjacent edges are identified by introducing a gluing operator gi j , which is assumed to
be symmetric gi j = g ji and to have the inverse gi j . In the dual diagrams gi j and Cik j
correspond to the propagator and the three-point vertex respectively. The partition func-
tion of a triangulated surface is given by the product of complex numbers Ci jk assigned
to each triangle with each edge glued by the gluing operator gi j and the summation over
all possible triangulations.

Topological quantum field theories are characterised by the invariance under local
deformations of the background. In the lattice construction, topological models are
constructed by imposing the invariance of partition functions under any local change
of the triangulations. It is known that two basic moves are sufficient to generate all
topologically equivalent triangulations. We will use so called bubble move and 2-2
move (see Fig. 1). From the invariance of partition functions under the bubble moves,
we obtain
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Fig. 1. Left the 2-2 move, right the bubble move

Cik
lC jl

k = gi j , (22)

where

Ci j
k = Ci jl g

lk . (23)

We use the usual summation convention that repeated indices are summed. From the
invariance of partition functions under the 2-2 moves, we have

Ci j
pC pk

l = Cip
lC jk

p. (24)

These two conditions are solved by introducing a semisimple associative algebra [35,36].
Let a basis and the structure constant of the algebra be φi and Ci j

k , that is, φiφ j = Ci j
kφk .

It is easy to find that the condition (24) is derived from the associativity of the algebra;
(φiφ j )φk = φi (φ jφk). The condition (22) indicates that we can define a nondegenerate
metric gi j given in the equation. With these conditions, partition functions only depend
on the genus of the manifold.

In order to make the construction more concrete, we will consider the group algebra of
symmetric group Sn as an example of semisimple algebras [35]. Introducing the regular
representation, the structure constant is given by

Ci j
k = 1

n! tr (r)(σ−1
k σiσ j ), (25)

where tr (r) is the trace of the regular representation. Defining the delta function over
the group algebra of Sn by δn(σ ) = 1 if σ = 1 and 0 otherwise, the trace of the regular
representation can be expressed by

tr (r)(σ ) = n!δn(σ ). (26)

It is also convenient to consider the expansion in terms of the character of the symmetric
group as

tr (r)(σ ) =
∑

R�n

dRχR(σ ), (27)

where R � n means that R is a Young diagram with n boxes. From this formula we can
verify tr (r)(1) = ∑

R�n(dR)2, where dR is the dimension of an irreducible representation
R of Sn .
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Fig. 2. A triangulation of the cylinder with two boundaries i, j : the edges k and t and the edges s and l being
glued by the operator gi j as in (33)

From (22) and (23) we determine

gi j = tr (r)(σiσ j ) = n!δn(σiσ j )

Ci jk = tr (r)(σiσ jσk) = n!δn(σiσ jσk),
(28)

and

gi j = 1

(n!)2 tr (r)(σ−1
i σ−1

j ) = 1

n!δ(σ
−1
i σ−1

j ). (29)

Let us now introduce a dual basis defined by

σ i := gi jσ j = 1

n!σ
−1
i , (30)

which satisfies
∑

i

σ iσi = 1. (31)

If we use the dual basis, we do not have an extra factor arising from raising or lowering
indices

gi j = tr (r)(σ iσ j ) = n!δ(σ iσ j ),

Ci j
k = tr (r)(σiσ jσ

k) = n!δ(σiσ jσ
k).

(32)

We next construct the two-point function on a sphere. A simple triangulation shown
in Fig. 2 leads to

ηi j = CiksCl j t g
sl gkt = Cik

lCl j
k . (33)

We can show that

ηi j =
∑

R�n

χ R(σi )χ
R(σ j )

ηi j =
∑

R�n

χ R(σ i )χ R(σ j ) (34)

ηi
j =

∑

R�n

χ R(σi )χ
R(σ j ),
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Fig. 3. Three oriented cylinders, being drawn so that all arrows are turning to the right

or we have

ηi j =
∑

k

tr (r)(σiσkσ jσ
k) = tr (r)([σi ][σ j ])

ηi j =
∑

k

tr (r)(σ iσkσ
jσ k) = tr (r)([σ i ][σ j ]) (35)

ηi
j =

∑

k

tr (r)(σiσkσ
jσ k) = tr (r)([σi ][σ j ]).

One important property is that this is a projection operator, η2 = η. More explicitly, we
have

ηi jη
jk = ηi

k, ηi
jη j

k = ηi
k, ηi jη

j
k = ηik, (36)

and so on. The fact that a cylinder is a projection operator is a general property of
topological field theories [38]. Lower indices and upper indices correspond to different
orientations. The difference comes from the difference between the basis and the dual
basis. In order to distinguish them it is convenient to to call the two kinds of boundaries
in-boundaries and out-boundaries. We can draw three kinds of cylinders as in Fig. 3,
corresponding to ηi

j , ηi j and ηi j . The readers can find the diagrammatic meaning of the
relation (36) using the oriented cylinders in Fig. 3. In this theory, the difference is just
the factor of 1/n!,

χ R(σ i ) = 1

n!χ
R(σ−1

i ) = 1

n!χ
R(σi ), (37)

because σ−1 is conjugate to σ . The difference between different orientations will be
more important in theories we will consider in what follows.

The projection operator determines the space of physical operators [35]. It can be
shown that the η is the projection operator from the algebra onto the centre of the algebra,

ηi
jσ j =

∑

R�n

1

dR
χ R(σi )pR = [σi ], (38)

where pR is a central element given in (A.4), and [σ ] is defined in (17). In other words,
physical states are invariant under time translation,

ηi
j [σ j ] = [σi ]. (39)
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We thus have a one-to-one correspondence between central elements and physical states.
The number of the physical states is the number of conjugacy classes.

Because the cylinder is a projection operator onto the physical Hilbert space, the
torus, which is obtained by gluing two boundaries of the cylinder, gives the dimension
of the vector space [38,39],

ZG=1 = ηi
i =

∑

R�n

1. (40)

This counts the number of Young diagrams built from n boxes. It is equivalent to the
number of multi-matrices built from n copies of a matrix at large N .

The three-point function Ni jk is obtained from the structure constant of the operator
product of physical states,

[σi ][σ j ] = Ni j
k[σk]. (41)

From this we find

Ni jk = tr (r)([σi ][σ j ][σk]) =
∑

R�n

1

dR
χ R(σi )χ

R(σ j )χ
R(σk) (42)

and

Ni j
k = tr (r)([σi ][σ j ][σ k]) =

∑

R�n

1

dR
χ R(σi )χ

R(σ j )χ
R(σ k), (43)

where Ni jk = Nik
lηlk . Because this operator algebra is commutative

[σi ][σ j ] = [σ j ][σi ], (44)

we have Ni j
k = N ji

k . The associativity ([σi ][σ j ])[σk] = [σi ]([σ j ][σk]) gives

Ni j
k Nkl

n = Nik
n N jl

k . (45)

From [σi ] = ηi
pσp, we find that the cylinder and the three-holed sphere are also obtained

by acting with the projection operator on gi j and Ci jk as

ηk
iηl

j gi j = ηkl

ηl
iηm

jηn
kCi jk = Nlmn .

(46)

These are also obtained by a simple triangulation [35].
An associative algebra with a non-degenerate inner product is called Frobenius alge-

bra.1 It has been understood that Frobenius algebras play a role in the algebraic and
axiomatic formulation of topological quantum field theories, and commutative Frobe-
nius algebras are in one-to-one correspondence with two-dimensional topological quan-
tum field theories [40,41]. In the example, the algebra of [σi ] with the metric ηi j is a

1 Important remarks are found in p. 98 of [41]. A Frobenius algebra is defined by providing with its
Frobenius structure (Frobenius pairing or Frobenius form). If we choose two different Frobenius structures in
an algebra, we will obtain two different Frobenius algebras. Being a Frobenius algebra is not a property of an
algebra, but it is a structure of the algebra.
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Fig. 4. Drawing of Ni j
kηk0 = ηi j

commutative Frobenius algebra. The ηi j is called Frobenius pairing. The pairing also
determines a linear map from the vector space to the ground field,

η0i =
∑

R�n

dRχR(σi ) = n!δ(σi ), (47)

where σ0 = 1. This is called Frobenius form. Formally it is the sphere with a hole. The
three objects, ηi j , Ni jk and ηi0 can be basic building blocks to build up all surfaces.
There is a relation among them, Ni j

kηk0 = ηi j (see Fig. 4).
All partition functions are built up from the building blocks ηi j and Ni jk . The partition

function of a Riemann surface of genus G is

ZG =
∑

R�n

1

(dR)2G−2 . (48)

The correlation function on the manifold of genus G with B1 in-boundaries and B2
out-boundaries is given by

ZG,B1,B2 =
∑

R�n

1

(dR)2G+B1+B2−2 χ R(σi1) · · · χ R(σiB1
)χ R(σ j1) · · · χ R(σ jB2 ). (49)

The repeated use of (B.3) and (B.4) helps us to find an equivalent form

ZG,B1,B2

=
∑

k,l

tr (r)
(
(ρk1τl1ρ

k1τ l1) · · · (ρkG τlG ρkG τ lG )[σi1] · · · [σiB1
][σ j1] · · · [σ jB2 ]

)
.

(50)

We note that
∑

k,l ρkτlρ
kτ l and [σ ] are central elements of the group algebra of the

symmetric group, so their positions inside the trace are irrelevant. The form shows that
the correlation functions are also obtained by representing the surface as a polygone
with edges properly identified [42].

It is possible to choose a diagonal basis so that the operator product is given by
Oα Oβ = δαβ Oα . This is realised by

pR = dR

n!
∑

σ∈Sn

χR(σ−1)[σ ] = dR

∑

i

χR(σ i )[σi ]. (51)

The role of pR is explained around (A.4). In this basis, ηR
S = δR

S .
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4. 2D Topological Field Theories Obtained from Walled Brauer Algebras

4.1. Construction of Brauer topological field theory. In this section we present the topo-
logical lattice field theory obtained from the walled Brauer algebra BN (m, n), following
the construction in the previous section. Walled Brauer algebras have a parameter N ,
which is identified with the matrix size N when we use them to organise the multi-trace
structure of N × N matrices. We will assume that N is large enough so that m + n < N
is satisfied. This large N condition secures the semisimplicity of the algebra, which we
need to construct a non-degenerate metric. In this construction we will use the idea pre-
sented in [43] that general semisimple algebras can be analogously introduced to finite
groups.

Let a basis of the algebra be bi . We first define a dual basis b∗
i with respect to the

bilinear form given by the trace trm,n over the mixed tensor space V ⊗m ⊗ V̄ ⊗n in (A.19),

trm,n(bi b
∗
j ) = δi

j . (52)

This dual basis was exploited in [10].
The trace of the regular representation is introduced by

tr (r)(b) =
∑

i

trm,n(b
∗
i bbi ) =

∑

γ

dγ χγ (b), (53)

where (A.20) and (B.10) are helpful to confirm the second equality, and γ are irreducible
representations of the walled Brauer algebra. An irreducible representation γ is labelled
by a bi-partition [see below Eq. (A.19)]. Here dγ is the dimension of an irreducible
representation γ of the walled Brauer algebra, while tγ will be that of the GL(N ) group.
The appearance of the GL(N ) group is a consequence of the Schur–Weyl duality. The
multiplication of the algebra, bi b j = Ci j

kbk , is determined by

Ci j
k = trm,n(b∗

k bi b j ). (54)

Using orthogonality relations in Appendix B we can derive

gi j = tr (r)(bi b j ), (55)

Ci jk = tr (r)(bi b j bk), (56)

and

gi j =
∑

γ

(tγ )2

dγ
χγ (b∗

i b∗
j ). (57)

Let us now introduce another dual basis by

bi = gi j b j , (58)

and we can confirm the following equation

∑

i

bi bi = 1. (59)
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The following equation is helpful to relate the first dual basis b∗
i and the second dual

basis bi ,

Dγ (bi ) = gi j Dγ (b j ) = tγ

dγ
Dγ (b∗

i ), (60)

where Dγ (b) is the representation matrix of b in γ . From this, we find that bi is a dual
basis with respect to the bilinear form determined by the trace of the regular represen-
tation,

tr (r)(bi b
j ) = δi

j . (61)

Defining a dual basis allows us to obtain the representation theory of general semisimple
algebras in a very similar way to finite groups [43]. In fact, we will find that almost all
formulae are very similar to the formulae used in the symmetric group. In terms of the
dual basis, we will obtain a handy expression for quantities with upper indices,

gi j = tr (r)(bi b j )

Ci j
k = tr (r)(bi b j b

k).
(62)

In what follows we will exploit the second dual basis bi .
The computation of the two-point function is the same as (33). We obtain

ηi j =
∑

γ

χγ (bi )χ
γ (b j )

ηi j =
∑

γ

χγ (bi )χγ (b j ) (63)

ηi
j =

∑

γ

χγ (bi )χ
γ (b j ).

If we use (B.21), we find another expression of the two-point function,

ηi j =
∑

k

tr (r)(bi bkb j b
k)

ηi j =
∑

k

tr (r)(bi bkb j bk) (64)

ηi
j =

∑

k

tr (r)(bi bkb j bk).

Because χγ (bi ) is not proportional to χγ (bi ), the difference between in-boundaries
(corresponding to lower indices) and out-boundaries (corresponding to upper indices)
is more important.∑

γ denotes the sum over all irreducible representations of the walled Brauer algebra.
An irreducible representation of BN (m, n) is labelled by a bi-partition (γ+, γ−), where
γ+ � (m − k) and γ− � (n − k), and k is an integer in the range 0 ≤ k ≤ min(m, n).
The sum will be performed by

∑

γ

=
min(m,n)∑

k=0

∑

γ+�(m−k)

∑

γ−�(n−k)

. (65)
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The Hilbert space of physical states is determined by the projection operator η. It is
the projection onto the centre of the algebra,

ηi
j b j =

∑

γ

χγ (bi )χ
γ (b j )b j =

∑

γ

1

dγ

χγ (bi )Pγ . (66)

where Pγ , which is given in (A.23), is a central element in the Brauer algebra. If we
define

[[b]] =
∑

i

bi bbi , (67)

then we can show that

ηi
j b j = [[bi ]]. (68)

Equivalently we have

ηi
j [[b j ]] = [[bi ]]. (69)

Physical operators are invariant under time evolution.
The three-point function is determined by the operator product of physical states.

From

[[bi ]][[b j ]] = Ni j
k[[bk]], (70)

we obtain

Ni jk = Ni j
lθlk = tr (r)([[bi ]][[b j ]][[bk]]) =

∑

γ

1

dγ
χγ (bi )χ

γ (b j )χ
γ (bk). (71)

We can also use (46) to derive this. The associativity ([[bi ]][[b j ]])[[bk]] = [[bi ]]
([[b j ]][[bk]]) is expressed by Ni j

k Nkl
n = Nik

n N jl
k . The diagonal operator product

is realised by switching to the representation basis Pγ , that is, Pγ Pγ ′ = δγ γ ′
Pγ . The

algebra of [[bi ]] with the bilinear form η is a commutative Frobenius algebra.
The partition function of a Riemann surface of genus G is

ZG =
∑

γ

1

(dγ )2G−2 , (72)

and this is equivalent to

ZG =
∑

i, j

tr (r)
(
(ci1 d j1 ci1 d j1) · · · (ciG d jG ciG d jG )

)
, (73)

where c, d are elements of the Brauer algebra. The partition function of G = 1 gives
the dimension of the vector space

ZG=1 =
∑

i

ηi
i =

∑

γ

1. (74)

This counts the number of all irreducible representations. Because a γ is given by the
bi-partition as in (65), we have
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ZG=1 =
min(m,n)∑

k

∑

γ+�m−k

1
∑

γ−�n−k

1 =
min(m,n)∑

k=0

p(m − k)p(n − k),

where p(n) is a partition of a number n.
Likewise for a Riemann manifold of genus G with B1 in-boundaries and B2 out-

boundaries the correlation function is

ZG,B1,B2 =
∑

γ

1

(dγ )2G+B1+B2−2 χγ (bi1) · · · χγ (biB1
)χγ (b j1) · · · χγ (b jB2 ). (75)

An equivalent form is

ZG,B1,B2

=
∑

k,l

tr (r)
(
(ck1 dl1 ck1 dl1) · · · (ckG dlG ckG dlG )[[bi1 ]] · · · [[biB1

]][[b j1]] · · · [[b jB2 ]]
)

.

(76)

Both
∑

k,l(ckdlckdl) and [[b]] are central elements of the Brauer algebra. The indices
are raised or lowered by η. For example we can use ηi j to convert an in-boundary into
an out-boundary, finding from

ηi jχγ (b j ) = χγ (bi ). (77)

There is a formal correspondence between the symmetric group Sm+n and the walled
Brauer algebra BN (m, n), clarified thanks to the introduction of the dual basis. The
correspondence is as follows

(R, A) ↔ (γ, A),

tR ↔ tγ ,

dR ↔ dγ ,

tr (r)(σ ) ↔ tr (r)(b),

σi ↔ bi ,

σ i ↔ bi .

(78)

The only difference between them is that in the symmetric group σiσ
i is proportional to

the unit element, while in the Brauer algebra bi bi is not proportional to the unit, where
the repeated index i is not summed in each case.

4.2. Brauer topological field theory as a collection of symmetric group topological field
theories. The partition functions obtained from the symmetric group in Sect. 3 can
be regarded as counting of n-fold coverings of a general Riemann manifold, and this
idea plays a crucial role in the string theoretic description of large N two-dimensional
Yang–Mills theory [24–28]. On the other hand, an interpretation in terms of coverings
is less clear for walled Brauer algebras, but it is naturally expected to give two kinds of
coverings because the walled Brauer algebra contains the group algebra of Sm × Sn as
a subalgebra. In fact, in [24–26] the coupled representations, which are irreducible rep-
resentations of the Brauer algebra corresponding to k = 0, were considered to describe
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non-holomorphic maps from worldsheets to the target space. In [44] the full expansion
of two-dimensional Yang–Mills is described in terms of only holomorphic maps from a
new formula for the couple representation of GL(N ) derived with the help of the walled
Brauer algebra.

In this subsection, we will show that the correlation functions of the Brauer topolog-
ical field theory can be expressed in terms of correlation functions obtained from the
symmetric group Sm−k × Sn−k , where k takes all integers in 1 ≤ k ≤ min(m, n).

The partition functions of a surface of genus G are easily expressed in terms of the
symmetric group data, if we use the formula (A.22), as

Z BN (m,n)
G =

∑

γ

1

(dγ )2G−2

=
min(m,n)∑

k=0

∑

γ+�(m−k)

∑

γ−�(n−k)

(
(m − k)!(n − k)!k!

m!n!
)2−2G 1

(dγ+)2G−2

1

(dγ−)2G−2

=
min(m,n)∑

k=0

(
(m − k)!(n − k)!k!

m!n!
)2−2G

Z Sm−k
G Z Sn−k

G , (79)

where Z Sm−k
G is the partition function (48) corresponding to Sm−k ,

Z Sm−k
G =

∑

R�(m−k)

1

(dR)2G−2 . (80)

Because the right-hand side in (79) has a clear interpretation in terms of coverings of
the Riemann surface of genus G, the partition function of the Brauer topological field
theory can have a meaning in terms of (m − k)-coverings and (n − k)-coverings of the
Riemann surface. It is interesting that a smaller number of sheets than m, n also come
in the game.

We next consider correlation functions. For the purpose we will use a character
formula of the walled Brauer algebra. The character of a general element b in the walled
Brauer algebra can be expressed in terms of the character of an element of the form
C⊗h ⊗ b+ ⊗ b− as

χγ (b) = N z(b)−hχγ (C⊗h ⊗ b+ ⊗ b−), (81)

where b+ and b− are elements in Sm−h and Sn−h respectively. C⊗h denotes h factors of
the contraction, C ⊗· · ·⊗C . The z(b) is a quantity that is read from the element b. This
formula is more explained in (C.1). Then the two-point function can be

ηBN (m,n)(b, b̃) =
∑

γ

χγ (b)χγ (b̃)

= N z(b)+z(b̃)−h−h̃ηBN (m,n)(C⊗h ⊗ b+ ⊗ b−, C⊗h̃ ⊗ b̃+ ⊗ b̃−). (82)

We will next use

χγ (C⊗h ⊗ b+ ⊗ b−)

= N h

(m − k)!(n − k)!
∑

σ2∈Sm−k ,τ2∈Sn−k

�(b+, b−; σ2, τ2)χγ+(σ
−1
2 )χγ−(τ−1

2 ), (83)
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Fig. 5. Pictorial drawing of (84)

where

�(b+, b−; σ2, τ2)

= 1

(k − h)!2
∑

σ1,τ1∈Sk−h

ηSm−h (b+, σ1 ◦ σ2)η
Sn−h (b−, τ1 ◦ τ2)η

Sk−h (σ−1
1 , τ−1

1 ). (84)

This will be derived in (C.6). The � is composed of three two-point functions defined
in the topological field theory of the symmetric group (see Fig. 5).

The formula enables us to compute

ηBN (m,n)(b, b̃)

= N z(b)+z(b̃)−h−h̃ηBN (m,n)(C⊗h ⊗ b+ ⊗ b−, C⊗h̃ ⊗ b̃+ ⊗ b̃−)

= N z(b)+z(b̃)−h−h̃
∑

γ

χγ (C⊗h ⊗ b+ ⊗ b−)χγ (C⊗h̃ ⊗ b̃+ ⊗ b̃−)

= N z(b)+z(b̃)

min(m,n)∑

k=max(h,h̃)

∑

γ+�(m−k)

∑

γ−�(n−k)

× 1

(m − k)!(n − k)!
∑

σ2∈Sm−k

∑

τ2∈Sn−k

�(b+, b−; σ2, τ2)χγ+(σ
−1
2 )χγ−(τ−1

2 )

× 1

(m − k)!(n − k)!
∑

σ̃2∈Sm−k

∑

τ̃2∈Sn−k

�(b̃+, b̃−; σ̃2, τ̃2)χγ+(σ̃
−1
2 )χγ−(τ̃−1

2 )

= N z(b)+z(b̃)

min(m,n)∑

k=max(h,h̃)

∑

σ2,σ̃2∈Sm−k

∑

τ2,τ̃2∈Sn−k

�(b+, b−; σ2, τ2)�(b̃+, b̃−; σ̃2, τ̃2)

× ηSm−k×Sn−k (σ−1
2 ⊗ τ−1

2 , σ̃−1
2 ⊗ τ̃−1

2 ), (85)

where η is the two-point function (34) corresponding to Sm−k × Sn−k ,

ηSm−k×Sn−k (σ−1
2 ⊗ τ−1

2 , σ̃−1
2 ⊗ τ̃−1

2 ) = ηSm−k (σ−1
2 , σ̃−1

2 )ηSn−k (τ−1
2 , τ̃−1

2 ), (86)
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and

ηSm−k (σ−1
2 , σ̃−1

2 ) = 1

((m − k)!)2

∑

γ+�(m−k)

χγ+(σ
−1
2 )χγ+(σ̃

−1
2 ). (87)

We have shown that the two-point function of the Brauer topological field theory can
be expressed in terms of the two-point function of the topological field theory obtained
from the group algebra of Sm−k × Sn−k , where k takes all integers in max(h, h̃) ≤ k ≤
min(m, n).

It is straightforward to extend this to any correlation functions. For example the
three-holed sphere (71) is as follows:

Z BN (m,n)
G=0,B=3(b

1, b2, b3)

= N z(b1)+z(b2)+z(b3)−h1−h2−h3 Z BN (m,n)
G=0,B=3

× (C⊗h1 ⊗ b1
+ ⊗ b1−, C⊗h2 ⊗ b2

+ ⊗ b2−, C⊗h3 ⊗ b3
+ ⊗ b3−, )

= N z(b1)+z(b2)+z(b3)

min(m,n)∑

k=max(h1,h2,h3)

∑

σ1,σ2,σ3∈Sm−k

∑

τ1,τ2,τ3∈Sn−k

×�(b1
+, b1−; σ1, τ1)�(b2

+, b2−; σ2, τ2)�(b3
+, b3−; σ3, τ3)

×k!(m − k)!(n − k)!
m!n! Z Sm−k×Sn−k

G=0,B=3 (σ−1
1 ⊗ τ−1

1 , σ−1
2 ⊗ τ−1

2 , σ−1
3 ⊗ τ−1

3 ), (88)

where Z Sm−k×Sn−k
G=0,B=3 (σ−1

1 ⊗ τ−1
1 , σ−1

2 ⊗ τ−1
2 , σ−1

3 ⊗ τ−1
3 ) is the three-holed sphere given

in (42) associated with Sm−k × Sn−k . Thus we can express any correlation functions
obtained from the Brauer algebra as a set of correlation functions obtained from the
symmetric group Sm−k × Sn−k .

5. 2D Field Theories with the Restricted Structure

As we have reviewed in Sect. 2, gauge invariant operators in N = 4 super Yang–Mills
built from p complex matrices can be labelled by an element of the form [σi ]H or [bi ]H ,
where H = Sn1 × · · · × Sn p . With the motivation to associate the description of the
matrix models with two-dimensional field theories, we will construct a class of two-
dimensional field theories whose physical states are given by [σi ]H or [bi ]H . The idea
of such theories is given in [23]. For simplicity in what follows we will consider the case
H = Sm × Sn , but the generalisation to Sn1 × · · · × Sn p is straightforward.

We will first consider the symmetric group Sm+n . As we have seen in the last two
sections, physical operators are determined by the two-point function, because it is
a projection operator onto the Hilbert space of physical operators. In order to obtain
physical operators labelled by [σi ]H , we will consider the two-point function drawn in
Fig. 6 in stead of the cylinder (33). On the double line in the figure we restrict the sum to
the subgroup H [23], and triangulations should be done consistently with the restriction.
A simple triangulation of such a cylinder is shown in the RHS of Fig. 6:

θi j =
∑

k

∑

a

CikbCajlh
abgkl , (89)
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Fig. 6. LHS a cylinder with the restriction on the double line, RHS a simple triangulation

where a runs over a complete set of the subgroup H . The gi j and Ci jk are defined in
(28) and (29). The h is the metric defined in H as

hab = m!n!δm,n(σaσb)

hab = m!n!δm,n(σ
aσ b),

(90)

where σ a is the dual basis of σa , which is defined by σ a = 1
m!n!σ

−1
a . The delta function

defiend over the group algebra of H is denoted by δm,n(σ ).
We can show that

θi j =
∑

a

tr (r)(haσi h
aσ j ) = tr (r)([σi ]H [σ j ]H )

θ i j =
∑

a

tr (r)(haσ i haσ j ) = tr (r)([σ i ]H [σ j ]H ) (91)

θi
j =

∑

a

tr (r)(haσi h
aσ j ) = tr (r)([σi ]H [σ j ]H ),

and the projector relation θ2 = θ can be checked explicitly. The use of (B.9) leads to
another expression:

θi j =
∑

R,A,μ,ν

d R

dA
χ R

A,μν(σi )χ
R
A,νμ(σ j )

θ i j =
∑

R,A,μ,ν

d R

dA
χ R

A,μν(σ
i )χ R

A,νμ(σ j ) (92)

θi
j =

∑

R,A,μ,ν

d R

dA
χ R

A,μν(σi )χ
R
A,νμ(σ j ),

where dR is the dimension of an irreducible representation R of the symmetric group
Sm+n , while dA is the dimension of an irreducible representation A of the symmetric
group Sm × Sn . The χ R

A,μν(σ ) is the restricted character [see around (A.15)]. The indices

μ, ν run over 1, . . . , M R
A , where M R

A counts the number of times the representation A
appears in the R. This projector (93) was obtained in [23] from the invariance (10),
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which leads to θi
j trm+n(σ j X⊗m ⊗ Y ⊗n) = trm+n(σi X⊗m ⊗ Y ⊗n). We have another

expression [23] which is closely related to [11,12], instead of (93).
From the cyclic property of the restricted character

χ R
A,μν(hσ) = χ R

A,μν(σh) (h ∈ Sm × Sn)

χ R
A,μν(ρσ) �= χ R

A,μν(σρ) (ρ ∈ Sm+n/Sm × Sn),
(93)

we find that boundary operators are more sensitive to the orientations corresponding to
upper and lower indices because σi is not conjugate by some permutation in the subgroup
Sm × Sn to the dual element σ i .

Physical operators are determined by the projection operator

θi
jσ j =

∑

R,A,μ,ν

1

dR
χ R

A,μν(σi )P R
A,μν = [σi ]H , (94)

where [σi ]H is defined in (18), and P R
A,μν is a basis of elements commuting with any

elements in H = Sm × Sn [13]. See (A.15). The Eq. (94) also means that physical states
are invariant under time evolution,

θi
j [σ j ]H = [σi ]H . (95)

Because θi
j is a projector, we expect to obtain the the dimension of the vector space by

taking a trace in the same way as the topological field theories in Sects. 3 and 4,

ZG=1 =
∑

i

θi
i =

∑

R,A

(M R
A )2, (96)

which comes from (B.6). This is the partition function of a torus. The dimension of
the vector space gives the expected result of the counting of the number of multi-traces
constructed from m copies of X and n copies of Y via the method of using the basis (9), as
shown in [13,45]. The counting of multi-traces is associated with ZG=1 by considering
the counting of orbits of the group actions via Burnside’s lemma in [23,46].

The three-point function (three-holed sphere) �i jk can be obtained as the structure
constant of the algebra spanned by [σi ]H . From

[σi ]H [σ j ]H = �i j
k[σk]H , (97)

we find that

�i j
k = tr (r)([σi ]H [σ j ]H [σ k]H ),

�i jk = tr (r)([σi ]H [σ j ]H [σk]H ) = �i j
lθlk .

(98)

Note that the two-point function and the three-point function are also obtained by acting
with the projection operator on gi j and Ci jk

θi
kθ j

l gkl = θi j

θi
pθ j

qθk
r C pqr = �i jk,

(99)

which is analogous to (46). It is also convenient to rewrite the expression in terms of the
restricted characters:

�i j
k =

∑

R,A,μ,ν,λ

d R

(dA)2 χ R
A,μν(σi )χ

R
A,νλ(σ j )χ

R
A,λμ(σ k). (100)
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The associativity of the algebra, ([σi ]H [σ j ]H )[σk]H = [σi ]H ([σ j ]H [σk]H ), is trans-
lated into

�i j
k�kl

n = �ik
n� jl

k . (101)

The vector space whose elements are [σ ]H , equipped with the bilinear form θi j , is a
Frobenius algebra. The Frobenius form is θi0. One can check

�i j
kθk0 = θi j . (102)

A big difference from the Frobenius algebras in Sects. 3 and 4 is that the Frobenius
algebra in this section is noncommutative, that is,

�i j
k �= � j i

k (103)

as a consequence of the non-commutative operator algebra

[σi ]H [σ j ]H �= [σ j ]H [σi ]H . (104)

By a change of basis, we will obtain the following (almost diagonal) operator product

P R
A,μν P R′

A′,μ′ν′ = δR R′
δAA′δνμ′ P R

A,μν′ . (105)

The existence of the μ, ν indices reflects the noncommutativity, and we also find the
μ, ν indices indeed behave like matrix-indices. (See also orthogonality relations for
restricted characters in Appendix B.) Due to the non-commutativity, this field theory is
not topological.

The partition functions can be computed from the building blocks θi j , �i jk . The
partition function of a Riemann surface of genus G can be computed as

∑

R,A

1

(d RdA)G−1 (M R
A )G+1. (106)

Equations in Appendix B will be helpful to derive this. The partition function depends
only on G. If we set M R

A = 1 and dA = dR , we reproduce the result (48) as expected.
The partition function has another form,

ZG =
∑

a, j

tr (r)
(
(ha1σ j1 ha1σ j1) · · · (haG σ jG haG σ jG )

)
, (107)

where ha is a basis of the subgroup Sm × Sn and ha is the dual basis. The indices
a1, . . . , aG run over a complete set of Sm × Sn .

The next interest will be a Riemann surface with boundaries. This should be paid
more attention because the Frobenius algebra is noncommutative. Correlation functions
depend on the way of gluing the building blocks. As a simple example consider the
case of G = 1 and B = 2. We have two possible ways, �i jk�

jkl and �i jk�
k jl , giving

different answers. The first one is computed to give

�i jk�
jkl =

∑

R,A,μ,ν

1

(dA)2 χ R
A,μμ(σi )χ

R
A,νν(σ

l), (108)
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while the second one is

�i jk�
k jl =

∑

R,A,μ,ν

1

(dA)2 M R
A χ R

A,μν(σi )χ
R
A,νμ(σ l). (109)

The second one is the same as �i
l
k�p

pk . If we set σi = 1 and σ l = 1, both reduce
to the case G = 1 in (106). The difference between the two correlation functions is
how multiplicity indices μ, ν are contracted. Introducing M R

A × M R
A matrices Mi , the

structure of tr(M1)tr(M2) arises effectively from the first one, while tr1tr(M1 M2) from
the second one. The first one can also be written as

�i jk�
jkl =

∑

a,p

tr (r)(haσp[σi ]H haσ p[σ l ]H ), (110)

while the second can be

�i jk�
k jl =

∑

a,p

tr (r)(haσphaσ p[σi ]H [σ l ]H ). (111)

Note that

[σi ]H h = h[σi ]H (h ∈ Sm × Sn), (112)

but

[σi ]H τ �= τ [σi ]H (τ ∈ Sm+n/Sm × Sn). (113)

As we have seen in the example, the correlation functions are not uniquely determined
when we specify G and B, and they are sensitive to the positions of boundaries. Reflecting
the matrix structure, they have cyclic symmetries acting on the boundary positions. For
example the following correlation function, which is one of correlation functions of a
surface of genus G with B boundaries,

∑

R,A

1

(d R)G−1(dA)G+B−1 (M R
A )G

∑

μ,ν,τ

χ R
A,μν(σi1)χ

R
A,νλ(σi2) · · · χ R

A,τμ(σiB ) (114)

is invariant under cyclic permutations acting on the indices i1, . . . , iB . One may read
the single trace structure tr(M1 · · · MB) from this. The restricted characters were first
introduced to describe open strings on giant gravitons [6–8]. It is interesting to study
if the origin of of the noncommutativity can be explained in terms of D-branes in the
context of two-dimensional theories.

So far we have considered a new kind of two-dimensional field theories based on
the symmetric group, and the same construction can be applied to the walled Brauer
algebra. The formal replacement (78) with

H ↔ [bi ]H ,

M R
A ↔ Mγ

A,
(115)

where Mγ

A is the number of times A appears in γ , will work to obtain the new two-
dimensional field theory based on the walled Brauer algebra. We will show some of
them explicitly for convenience. The two-point function is given by
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θi j = tr (r)([bi ]H [b j ]H ) =
∑

γ,A,μ,ν

dγ

dA
χ

γ

A,μν(bi )χ
γ

A,νμ(b j )

θ i j = tr (r)([bi ]H [b j ]H ) =
∑

γ,A,μ,ν

dγ

dA
χ

γ

A,μν(b
i )χ

γ

A,νμ(b j ) (116)

θi
j = tr (r)([bi ]H [b j ]H ) =

∑

γ,A,μ,ν

dγ

dA
χ

γ

A,μν(bi )χ
γ

A,νμ(b j ),

and this determines the Hilbert space of physical operators,

θi
j b j =

∑

γ,A,μ,ν

1

dA
χ

γ

A,μν(bi )Qγ

A,μν = [bi ]H . (117)

Changing to the basis (A.28), the almost diagonal operator product is obtained [10,15]

Qγ

A,μν Qγ ′
A′,μ′ν′ = δγ γ ′

δAA′δνμ′ Qγ

A,μν′ , (118)

where μ, ν are multiplicity labels running over 1, . . . , Mγ

A . The three-point function is
the structure constant (i.e. [bi ]H [b j ]H = �i j

k[bk]H ),

�i jk = tr (r)([bi ]H [b j ]H [bk]H ) =
∑

γ,A,μ,ν,λ

dγ

(dA)2 χ
γ

A,μν(bi )χ
γ

A,νλ(b j )χ
γ

A,λμ(bk).

(119)

The partition function of a Riemann surface of genus G is given by

ZG =
∑

a, j

tr (r)
(
(ha1b j1 ha1b j1) · · · (haG b jG haG b jG )

)

=
∑

γ,A

1

(dγ dA)G−1 (Mγ

A)G+1. (120)

Furnished with the bilinear form (117), the algebra formed by [bi ]H is a noncommutative
Frobenius algebra. The partition function of G = 1 gives the dimension of the vector
space

ZG=1 =
∑

i

θi
i =

∑

γ,A

(Mγ

A)2. (121)

This is equivalent to the counting of the number of multi-traces built from m copies of
X and n copies of Y via the method of using the basis (13), as shown in [10,47].

6. 2D Theoretic Interpretation of the Multi-Matrix Models

In this section we will study a relation between correlators of the Gaussian matrix models
and correlation functions of the two-dimensional field theories.
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First consider the method of using symmetric group elements to describe multi-trace
operators. Recall (11),

Sσi ,σ j = 〈trm+n(σi X†⊗m ⊗ Y †⊗n)trm+n(σ j X⊗m ⊗ Y ⊗n)〉
=

∑

h∈H

trm+n(hσi h
−1σ j )

= N m+n

(m + n)!
∑

h∈H

tr (r)(�m+nhσi h
−1σ j ), (122)

where σi , σ j ∈ Sm+n and H = Sm × Sn . With the notation (20), one may write it as

S[σi ]H ,[σ j ]H = N m+n m!n!
(m + n)! tr (r)(�m+n[σi ]H [σ j ]H ). (123)

Comparing to the three-point function (98), we find that the Sσi ,σ j can be interpreted to
be the three-point function with the Omega factor put at one of the boundaries (see also
[23]). More explicitly, we have

Sσi ,σ j = N m+n m!n!
(m + n)!

∑

k

�i jk N Cσk −(m+n). (124)

Because �m+n is a central element in the group algebra of Sm+n , the ordering of the three
objects is not important.

Next consider the way of labelling multi-traces in terms of Brauer elements. Recall
the two-point function (15):

Bbi ,b j = 〈trm,n(bi X⊗m ⊗ Y T ⊗n)trm,n(b j X†⊗m ⊗ Y ∗⊗n)〉
=

∑

h∈Sm×Sn

trm,n(hbi h
−1b j )

=
∑

γ

∑

h∈Sm×Sn

tγ χγ (hbi h
−1b j ). (125)

We can also write it as

B[bi ]H ,[b j ]H = 1

m!n!
∑

γ

tγ χγ ([bi ]H [b j ]H ). (126)

The sum is over all Young diagrams γ = (γ+, γ−) by means of (65), where γ+ and γ−
are partitions of m − k and n − k respectively. We now use the fact that the dimension
of an irreducible representation γ of the GL(N ) group can be expressed in terms of
elements in Sm−k × Sn−k as

tγ = N m+n−2k

(m − k)!(n − k)!χ(γ+,γ−)(�m−k,n−k). (127)

The character of Sm−k × Sn−k is denoted by χ(γ+,γ−), and �m−k,n−k is a central element
in the group algebra of Sm−k × Sn−k which is called coupled Omega factor [24–26].
We do not use an explicit form of �m−k,n−k , but we should keep in mind that the N -
dependence of tγ is encoded in it, and it is not just the product �m−k ×�n−k . In order to
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combine tγ and χγ (hbi h−1b j ), we will express χγ (hbi h−1b j ) in terms of characters
in Sm−k × Sn−k by using the formulae (81) and (83).

Let us first consider the simplest case that both bi and b j are elements in the group
algebra of Sm ×Sn as an exercise before going to the general case. Suppose bi = b+

i ⊗b−
i ,

b j = b+
j ⊗ b−

j , where b+
i and b+

j are elements in Sm and b−
i and b−

j are elements in Sn .
For h = σ ⊗ τ ∈ Sm × Sn ,

hbi h
−1b j = (σb+

i σ−1b+
j ) ⊗ (τb−

i τ−1b−
j ) ∈ Sm × Sn . (128)

Applying the formula (83) to χγ (hbi h−1b j ), we obtain

χγ (hbi h
−1b j ) = 1

(m − k)!(n − k)!
∑

σ2∈Sm−k ,τ2∈Sn−k

�(σb+
i σ−1b+

j , τb−
i τ−1b−

j ; σ2, τ2)

×χ(γ+,γ−)(σ
−1
2 ⊗ τ−1

2 ), (129)

where

χ(γ+,γ−)(σ
−1
2 ⊗ τ−1

2 ) = χγ+(σ
−1
2 )χγ−(τ−1

2 ). (130)

Then the two-point function can be written as

Bbi ,b j

=
∑

γ

∑

h∈Sm×Sn

tγ χγ (hbi h
−1b j )

=
min(m,n)∑

k=0

∑

γ+�(m−k),γ−�(n−k)

∑

σ∈Sm ,τ∈Sn

N m+n−2k

(m − k)!(n − k)!χ(γ+,γ−)(�m−k,n−k)

× 1

(m − k)!(n − k)!
∑

σ2∈Sm−k ,τ2∈Sn−k

�(σb+
i σ−1b+

j , τb−
i τ−1b−

j ; σ2, τ2)

×χ(γ+,γ−)(σ
−1
2 ⊗ τ−1

2 )

=
min(m,n)∑

k=0

∑

σ∈Sm ,τ∈Sn

N m+n−2k 1

(m − k)!(n − k)!
×

∑

σ2∈Sm−k ,τ2∈Sn−k

�(σb+
i σ−1b+

j , τb−
i τ−1b−

j ; σ2, τ2)

× δm−k,n−k(�m−k,n−kσ
−1
2 ⊗ τ−1

2 ), (131)

where δm−k,n−k(σ ⊗ τ) is the delta function defined over the group algebra of Sm−k ×
Sn−k .

By the way in this case we know that the second line in (125) is factorised to give
∑

h∈Sm×Sn

trm,n(hbi h
−1b j )

=
∑

σ∈Sm ,τ∈Sn

trm(σb+
i σ−1b+

j )trn(σb−
i σ−1b−

j )

=
∑

σ∈Sm ,τ∈Sn

N m+nδm(�mσb+
i σ−1b+

j )δn(�nσb−
i σ−1b−

j ). (132)
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Comparing (131) with (132) gives an identity

δm,n(�mσ ⊗ �nτ) =
∑

k

N−2k 1

(m − k)!(n − k)!
×

∑

σ2∈Sm−k ,τ2∈Sn−k

�(σ, τ ; σ2, τ2)δm−k,n−k(�m−k,n−kσ
−1
2 ⊗ τ−1

2 ), (133)

where σ and τ are elements in Sm and Sn respectively.
Let us next study a general situation, where bi and b j are general elements in the

Brauer algebra. We define bα
i j := αbiα

−1b j . (We will use α for elements in Sm × Sn in
stead of h not to get an extra confusion with the number of contractions h.) Using the
formula (81),

∑

α∈Sm×Sn

χγ (αbiα
−1b j ) =

∑

α∈Sm×Sn

N z(bα
i j )−hαχγ (C⊗hα ⊗ bα+

i j ⊗ bα+
i j ), (134)

where bα+
i j ⊗ bα+

i j is an element in the group algebra of Sm−hα × Sn−hα , and z(bα
i j ) is the

number of zero-cycles in bα
i j , and hα , bα+

i j , bα−
i j are defined by this equation. We have

added the subscript α to mean that they depend on α.
We will get an expression for Bbi ,b j ,

Bbi ,b j =
∑

γ

∑

α∈Sm×Sn

tγ χγ (αbiα
−1b j )

=
∑

γ

∑

α∈Sm×Sn

tγ N z(bα
i j )−hαχγ (C⊗hα ⊗ bα+

i j ⊗ bα−
i j )

=
∑

α∈Sm×Sn

min(m,n)∑

k=hα

N m+n−2k N z(bα
i j )

1

(m − k)!(n − k)!
×

∑

σ2∈Sm−k ,τ2∈Sn−k

�(bα+
i j , bα−

i j ; σ2, τ2)δm−k,n−k(�m−k,n−kσ
−1
2 ⊗ τ−1

2 ).

(135)

In this case we do not have a factorisation like (132). We can also write it as

Bbi ,b j =
∑

α∈Sm×Sn

min(m,n)∑

k=hα

N m+n−2k N z(bα
i j )

× 1

((k − hα)!(m − k)!(n − k)!)2

∑

σ2∈Sm−k ,τ2∈Sn−k

×
∑

σ1,τ1∈Sk−hα

ηSm−hα (bα+
i j , σ1 ◦ σ2)η

Sn−hα (bα−
i j , τ1 ◦ τ2)η

Sk−hα (σ−1
1 , τ−1

1 )

× ηSm−k×Sn−k (�m−k,n−k, σ
−1
2 ⊗ τ−1

2 ). (136)

A pictorial drawing is presented in Fig. 7. Each piece in the above equation has an inter-
pretation as a correlation function of the topological field theory based on the symmetric
group. What we have done is almost the same as what we have done in Sect. 4.2. Correla-
tion functions expressed in terms of elements in the Brauer algebra have an interpretation
as an assemblage of correlation functions in terms of symmetric group elements.
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Fig. 7. Drawing of (136): the cross represents the insertion of �m−k,n−k

7. Some Relations Among the 2D Quantum Field Theories

In this section we will explore some relations among the field theories we have shown,
by exploiting a map � between elements of the Brauer algebra and elements of the
symmetric group,2 which was exploited in [10,13,44].

Under the map, elements of the Brauer algebra BN (m, n) are related to elements of
the symmetric group Sm+n . Suppose that a basis in BN (m, n) is related to a basis in Sm+n
by

σi = �(bi ), (137)

and the inverse map is denoted by

bi = �−1(σi ). (138)

When two bases are related by the map in the above way, we can show

tr (r)(bi b
j ) = tr (r)(σiσ

j ). (139)

Note that b j is the dual basis obtained from a basis bi and σ j is the dual basis obtained
from a basis σi , and the two dual bases are not related by the map, i.e. σ i �= �(bi ). In
fact we find that the both sides are equal to δi

j , which come from the definition of the
dual bases. Here we will give a proof of the equality (139) using the property of �,

2 Elements of the symmetric group Sm+n are expressed diagrammatically by m + n vertical edges between
two horizontal lines where each horizontal line has m+n points. Similarly elements of the walled Brauer algebra
BN (m, n) are expressed by m + n lines between the two horizontal lines with a vertical barrier separating the
m points from the n points. Vertical edges do not cross the wall, and horizontal edges start and end on opposite
sides of the wall. The map � reflects the upper right segment and the lower right segment into each other. For
more details see section 3.3 in [10].
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tr (r)(bi b
j ) = trm,n(bi b

∗
j )

= trm+n(�(bi )�(b∗
j ))

= trm+n(�(bi )(�(b j ))
−1�(1∗))

= trm+n(�(bi )(�(b j ))
−1�−1

m+n)
1

N m+n

= δm+n(�(bi )(�(b j ))
−1)

= tr (r)(σiσ
j ), (140)

where we have used the following equations found in [10],

�(b∗) = �(1∗)(�(b))−1

�(1∗) = 1

N m+n
�−1

m+n .
(141)

Note that neither tr (r)(bi b j ) = tr (r)(σiσ j ) nor tr (r)(bi b j ) = tr (r)(σ iσ j ) is satisfied.
The relation (139) can be generalised to

tr (r)(�−1(τ )b j ) = tr (r)(τσ j ) (142)

for any element τ in the group algebra of Sm+n .
We will consider the two-point function of the topological field theories obtained

from the symmetric group Sm+n and the Brauer algebra BN (m, n). The two correlation
functions are related if boundary elements belong to the group algebra of Sm × Sn , as
we will show below. For h1 = h+

1 ⊗ h−
1 ,h2 = h+

2 ⊗ h−
2 ∈ Sm × Sn , using (142),

ηSm+n (h1, h2) =
∑

i

tr (r)(h1σi h2σ
i )

=
∑

i

tr (r)(�−1(h1σi h2)b
i )

=
∑

i

tr (r)((h+
1 ◦ (h−

2 )−1)�−1(σi )(h
+
2 ◦ (h−

1 )−1)bi )

=
∑

i

tr (r)((h+
1 ◦ (h−

2 )−1)bi (h
+
2 ◦ (h−

1 )−1)bi )

= ηBN (m,n)(h+
1 ◦ (h−

2 )−1, h+
2 ◦ (h−

1 )−1), (143)

where we have used the following equation

�−1(h1σh2) = (h+
1 ◦ (h−

2 )−1)�−1(σ )(h+
2 ◦ (h−

1 )−1), (144)

which come from the definition of �. Note that we have used the same symbol for the
regular representation of Sm+n and that of BN (m, n).

Gluing two boundaries of the cylinders, we have
∑

h∈Sm×Sn

ηSm+n (h, h−1) =
∑

h+∈Sm ,h−∈Sn

ηBN (m,n)(h+ ◦ h−, (h+)−1 ◦ (h−)−1)

=
∑

h∈Sm×Sn

ηBN (m,n)(h, h−1). (145)
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One find that gluing two ends of the cylinder with boundary elements restricted to Sm ×Sn
gives the torus given in Sect. 5,

∑

h∈Sm×Sn

ηSm+n (h, h−1) = θ Sm+n
i
i

∑

h∈Sm×Sn

ηBN (m,n)(h, h−1) = θ BN (m,n)
i
i .

(146)

Therefore (145) means

θ Sm+n
i
i = θ BN (m,n)

i
i . (147)

Taking into account that the partition function of a torus gives the dimension of the
vector space, this equation states that the vector space of [σi ]H and the vector space of
[bi ]H have the same dimension.

In fact the result itself has been known from the counting of gauge invariant operators
at large N . Let the number of gauge invariant operators built from m copies of X and n
copies of Y be N (m, n). There are several ways to obtain this. If we use the restricted
Schur basis (12), we obtain N (m, n) = ∑

R,A(M R
A )2 [13,45], which is equal to θ Sm+n i

i .
If we use the Brauer basis (15), we have N (m, n) = ∑

γ,A(Mγ

A)2 [10,47], which is

equal to θ BN (m,n)
i
i . Thus (147) indeed is an expected equation from the counting of

multi-trace operators at large N . It is interesting that
∑

R,A

(M R
A )2 =

∑

γ,A

(Mγ

A)2 (148)

has been derived as a consequence of the relation (143) between two topological field
theories.

8. Discussions

Having studied two-dimensional (almost topological) field theories related to the multi-
matrix models, it is now good to get back to the equations in (20). Let us first see
the left-hand side. It is given in the U (N ) gauge theory language, and gauge invariant
quantities are integrated. Multi-trace operators are characterised by the invariance under
the gauge transformation,

X → gXg−1, Y → gY g−1. (149)

(Enhanced symmetries at the free theory of N = 4 SYM were discussed in [15].) On the
other hand, the equations on the right-hand side are completely expressed in terms of the
symmetric group or the walled Brauer algebra. The quantities inside the trace, [σ ], [σ ]H
and [b]H , are characterised by the invariance under the following gauge transformation,

σ → hσh−1, b → hbh−1 (h ∈ Sm × Sn). (150)

One might regard the equations in (20) as an analogue of the GKPW relation [48,49].
Mathematical manipulations behind the equality can be understood from the Schur–
Weyl duality. Frobenius algebras are algebras of these gauge invariant quantities, and
the bilinear forms (the Frobenius forms) are projection operators onto gauge invariant
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quantities. These Frobenius algebras are noncommutative except for the case of the
one-complex matrix model. The noncommutativity is related to the existence of the
multiplicity indices μ, ν on the restricted characters, which are originally introduced
to describe open strings on giant gravitons [6–8]. Noncommutative Frobenius algebras
would play a role in the description of two-dimensional field theories with a certain
structure relevant for the noncommutativity. It would be interesting to use axiomatic
notions of noncommutative Frobenius algebras to understand what kind of field theories
are described reflecting the noncommutative nature. For example see [50–53] for refer-
ences of the direction. Even apart from the connection to N = 4 SYM, noncommutative
Frobenius algebras themselves seem to be an interesting subject to learn.

In Sects. 4.2 and 6, we have decomposed correlation functions of two-dimensional
quantum field theories obtained from walled Brauer algebras into correlation functions of
two-dimensional quantum field theories obtained from symmetric groups, with exploit-
ing the property that the character of the walled Brauer algebra can be expressed in
terms of the character of the symmetric group Sm−k × Sn−k . From the link between
permutations and coverings, walled Brauer algebras can also be interesting mathemat-
ical tools incorporate two kinds of maps, i.e., a holomorphic map from m worldsheets
to the target and an anti-holomorphic map from n worldsheets. The complete large N
expansion of two-dimensional Yang–Mills is a well-known example [24–28]. A non-
holomorphic extension of [54,55] exploiting walled Brauer algebras might be a possible
future direction.

Throughout this paper, we have assumed that N is large compared to the number of
fields involved in multi-traces (i.e. n < N for the one-matrix model, and m + n < N for
the two-matrix model—we call this large N ). If the number of fields exceed the bound N
(i.e. n > N or m + n > N—we call this small N ), it is good to use the diagonal operator
basis, 〈OR OS〉 = N ntr (r)(�n pR pS) instead of (20). In the AdS/CFT correspondence,
gauge invariant operators are considered to be dual to D-branes (called giant gravitons)
or geometries if the number of fields are comparable to N or N 2, and considering repre-
sentation bases clarifies the correspondence between gauge theory operators and string
states. It would be interesting to study a two-dimensional interpretation of representation
bases, focusing on the role of Frobenius algebras.

Acknowledgements. I would like to thank Sanjaye Ramgoolam for valuable discussions. E-mail conversations
with him motivated me to initiate this work.

A. Symmetric Groups, Brauer Algebras and Schur–Weyl Duality

In this section we will make a brief introduction of symmetric groups and walled Brauer
algebras, focusing on the role of Schur–Weyl duality in the description of multi-traces.

Let V be an N -dimensional vector space over C on which an N × N matrix X is
supposed to act.

The tensor product X⊗n = X ⊗ · · · ⊗ X can be viewed as an operator acting on the
tensor space V ⊗n . We define an action of the symmetric group Sn as permuting n vector
spaces,

σ(v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n). (A.1)

In addition to this the GL(N ) group acts in the standard way on it by the simultaneous
matrix multiplication,

g(v1 ⊗ · · · ⊗ vn) = gv1 ⊗ · · · ⊗ gvn . (A.2)
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These two actions can be shown to commute, and the Schur–Weyl duality says that the
tensor space is decomposed into the direct sum of irreducible representations for these
groups as

V ⊗n =
⊕

R�n

V GL(N )
R ⊗ V Sn

R . (A.3)

The sum is taken for all Young diagrams with n boxes satisfying c1(R) ≤ N , where c1(R)

is the number of rows in R. The projection operator pR of an irreducible representation
R can be introduced as an element in the group algebra of Sn ,

pR = dR

n!
∑

σ∈Sn

χR(σ−1)σ, (A.4)

which acts on the tensor space as

pR V ⊗n = V GL(N )
R ⊗ V Sn

R . (A.5)

We have denoted by dR the dimension of an irreducible representation R of the symmetric
group, and let tR be the dimension of an irreducible representation R of the GL(N ) group.

Let trn be a trace over the tensor space V ⊗n . From the Schur–Weyl duality (A.3), we
have

trn(σ ) =
∑

R

tRχR(σ ) (A.6)

for an element σ in the symmetric group. If we introduce Cσ , the number of cycles in
the permutation σ , we have trn(σ ) = N Cσ . The orthogonality relation of the characters
leads to

tR = N n

n! χR(�n), (A.7)

where �n is a central element in the group algebra of Sn called Omega factor

�n =
∑

σ∈Sn

σ N Cσ −n . (A.8)

By substituting (A.7) back to (A.6), the trace of an element τ in the group algebra of Sn
can be written as

trn(τ ) = N n

n!
∑

R�n

χR(�n)χR(τ )

= N n

n!
∑

R�n

dRχR(�nτ)

= N nδn(�nτ), (A.9)

where we have introduced the delta function defined over the group algebra of Sn by
δn(σ ) = 1 if σ = 1 and 0 otherwise,

δn(σ ) = 1

n!
∑

R�n

dRχR(σ ). (A.10)
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In order to derive (A.9), we have assumed N > n. When this is not satisfied, only
irreducible representations satisfying the constraint c1(R) ≤ N are summed in the first
line and the second line of (A.9). On the other hand all Young diagrams with n boxes
are summed in (A.10).

We next consider the vector space that are relevant for the description of multi-trace
operators made from two matrices X and Y . When m copies of X and n copies of Y are
considered, the tensor space we will consider is V ⊗(m+n), and the Schur–Weyl duality
claims

V ⊗(m+n) =
⊕

R�(m+n)

V GL(N )
R ⊗ V Sm+n

R . (A.11)

We now consider the decomposition of the irreducible representation R of Sm+n into
irreducible representations of the subgroup Sm × Sn ,

V Sm+n
R =

⊕

A

M R
A V Sm×Sn

A . (A.12)

On restricting to the subgroup, some copies of A appear. The number of times A appears
in R is denoted by M R

A , which is given by the Littlewood-Richardson coefficient

M R
A = g(α, β; R) (A.13)

where we have expressed A with two Young diagrams α � m and β � n. We now
define an operator P R

A,μν playing a role under the decomposition. Here μ, ν run over

1, . . . , M R
A , labelling which copy of A we are using. If the multiplicity is trivial, P R

A is the
projection operator onto the irreducible representation A inside the R. If the multiplicity
is non-trivial, P R

A,μν is an intertwiner mapping the ν-th copy of the representations A to
the μ-th copy of the representations A. It satisfies

P R
A,μν P R′

A′,μ′ν′ = δR R′
δAA′δνμ′ P R

A,μν′ . (A.14)

In terms of elements in the symmetric group Sm+n , the operator P R
A,μν can be explicitly

written as

P R
A,μν = dR

(m + n)!
∑

σ∈Sm+n

χ R
A,νμ(σ )σ−1, (A.15)

where χ R
A,νμ(σ ) is a quantity called restricted character [6–8,13]. This can be computed

by the trace of the matrix σ in the representation R, but the trace is only over the subspace
A appearing in the (μ, ν) component of the M R

A × M R
A matrix.

The sum of the diagonal copies of all possible irreducible representations in Sm × Sn
inside the representation R gives rise to the usual character χ R(σ ) = ∑

A,μ χ R
A,μμ(σ ),

and the projector of an irreducible representation R is given by

P R =
∑

A,μ

P R
A,μμ. (A.16)

The intertwiner operator has the symmetry,

h P R
A,μν = P R

A,μνh (h ∈ Sm × Sn). (A.17)
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But elements in Sm+n/Sm × Sn do not commute with it. Due to this, the cyclicity of the
restricted character works for elements in the subalgebra,

χ R
A,μν(hσ) = χ R

A,μν(σh) (h ∈ Sm × Sn). (A.18)

Let us next consider the mixed tensor space V ⊗m ⊗ V̄ ⊗n by including the complex
conjugate space V̄ . This is relevant for the description of multi-trace operators made
out of X and X†, or X and Y T . Similar to the previous cases, we can consider two
commuting actions on this space, resulting in the following Schur–Weyl duality,

V ⊗m ⊗ V̄ ⊗n =
⊕

γ

V GL(N )
γ ⊗ V BN (m,n)

γ . (A.19)

Here BN (m, n) is the walled Brauer algebra [29–32]. (This algebra is sensitive to N ,
which is a big difference from the group algebra of the symmetric group.) The γ is a set
of two Young diagrams (γ+, γ−), where γ+ is a Young diagram with m − k boxes and
γ− is a Young diagram with n − k boxes. The k is an integer in 0 ≤ k ≤ min(m, n).
The sum over γ in (A.19) is constrained by c1(γ+) + c1(γ−) ≤ N .

From the Schur–Weyl duality, we have

trm,n(b) =
∑

γ

tγ χγ (b) (b ∈ BN (m, n)) (A.20)

where tγ is the dimension of an irreducible representation γ of the GL(N ) group, and
χγ (b) is the character of an irreducible representation γ of the Brauer algebra. The trm,n
denotes a trace over the mixed tensor space. Let dγ be the dimension of γ in the Brauer
algebra. We have a formula of tγ using elements in Sm × Sn ,

tγ = N m+n−2k

(m − k)!(n − k)!χ(γ+,γ−)(�m−k,n−k), (A.21)

where χ(γ+,γ−)(σ ⊗τ) is the character of Sm−k ×Sn−k , and �m−k,n−k is a central element
in the group algebra of Sm−k × Sn−k called coupled Omega factor [24–26]. A formula
to express �−1

m,n in terms of �−1
m+n is given in [44]. We have the following formula for

dγ ,

dγ = m!n!
(m − k)!(n − k)!k!dγ+ dγ− , (A.22)

where dγ+ and dγ− are the dimensions of Sm−k and Sn−k respectively.
We can construct the projection operator Pγ as3

Pγ = dγ
∑

i

χγ (bi )bi , (A.23)

where bi is the dual basis in (30). The Schur–Weyl duality asserts

Pγ V ⊗m ⊗ V̄ ⊗n = V GL(N )
γ ⊗ V BN (m,n)

γ . (A.24)

3 The expression is valid for m + n ≤ N .
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Because the walled Brauer algebra BN (m, n) contains the group algebra of Sm × Sn ,
which we denote by C(Sm × Sn), we have a decomposition similar to (A.12)

V BN (m,n)
γ =

⊕

A

Mγ

A V C(Sm×Sn)
A , (A.25)

Here the multiplicity associated with the decomposition is given by

Mγ

A =
∑

δ�k

g(γ+, δ;α)g(γ−, δ;β), A = (α, β). (A.26)

We can introduce an operator Qγ

A,μν as an element in the Brauer algebra [10,15] that
satisfies

Qγ

A,μν Qγ ′
A′,μ′ν′ = δγ γ ′

δAA′δνμ′ Qγ

A,μν′ . (A.27)

The role of the operator Qγ

A,μν is completely the same as P R
A,μν . Introducing the restricted

character of the walled Brauer algebra, we have

Qγ

A,μν = dγ
∑

i

χ
γ

A,νμ(bi )bi . (A.28)

The relation between Pγ and Qγ

A,μν is

Pγ =
∑

A,μ

Qγ

A,μμ. (A.29)

The intertwiner and the restricted character have the symmetry

hQγ

A,μνh−1 = Qγ

A,μν,

χ
γ

A,μν(hbh−1) = χ
γ

A,μν(b) (h ∈ Sm × Sn).
(A.30)

There is another way of using the Schur–Weyl duality in the description of multi-
traces [11,12,16].

B. Orthogonality Relations

In this section we summarise orthogonality relations of representations and characters
of the symmetric group and the walled Brauer algebra.

Orthogonality relations of the symmetric group Sn are

1

n!
∑

σ∈Sn

DR(σ )i j DS(σ−1)kl = 1

dR
δilδ jkδRS, (B.1)

1

n!
∑

σ∈Sn

χR(σ )χS(σ−1) = δRS, (B.2)

1

n!
∑

σ∈Sn

χR(σ )χS(σ−1τ) = 1

dR
χR(τ )δRS, (B.3)

1

dR
χR(σ )χR(τ ) = 1

n!
∑

ρ∈Sn

χR(ρσρ−1τ), (B.4)

∑

R�n

χR(σ )χR(τ ) =
∑

ρ∈Sn

δn(ρσρ−1τ). (B.5)
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We have similar formulae for the restricted characters. For the symmetric group Sm+n
with the restriction to Sm × Sn considered, we have

1

(m + n)!
∑

σ∈Sm+n

χ R
A,μν(σ )χ R′

A′,μ′ν′(σ−1) = dA

dR
δR R′δAA′δμν′δνμ′ , (B.6)

This formula is consistent with (B.2) due to dR = ∑
A dA M R

A . We also have

1

(m + n)!
∑

σ∈Sm+n

χ R
A,μν(σ )χ R′

A′,μ′ν′(σ−1τ) = 1

dR
χ R

Aμν′(τ )δR R′δAA′δμ′ν, (B.7)

1

(m + n)!
∑

σ∈Sm+n

χ R
A,μν(σ )χ R′

A′,μ′ν′(τσ−1) = 1

dR
χ R

Aμ′ν(τ )δR R′δAA′δμν′ , (B.8)

∑

A,μ,ν

1

dA
χ R

A,μν(σ1)χ
R
A,νμ(σ2) = 1

m!n!
∑

h∈Sm×Sn

χ R(hσ1h−1σ2). (B.9)

If we introduce the dual basis σ i = 1
n!σ

−1
i , factorials disappear from these formulae.

For the walled Brauer algebra BN (m, n), we have

∑

b∈BN (m,n)

Dγ (b)i j Dγ ′
(b∗)kl = 1

tγ
δilδ jkδ

γ γ ′
, (B.10)

∑

b∈BN (m,n)

χγ (b)χγ ′
(b∗) = dγ

tγ
δγ γ ′

, (B.11)

∑

b∈BN (m,n)

χγ (b)χγ ′
(b∗c) = 1

tγ
δγ γ ′

χγ (c), (B.12)

∑

γ

χγ (b)χγ (c) =
∑

d∈BN (m,n)

tγ χγ (dbd∗c), (B.13)

∑

b∈BN (m,n)

χ
γ

A,μν(b)χ
γ ′
A′,μ′ν′(b∗) = dA

tγ
δγ γ ′δAA′δμν′δμ′ν, (B.14)

∑

b∈BN (m,n)

χ
γ

A,μν(b)χ
γ ′
A′,μ′ν′(b∗c) = 1

tγ
δγ γ ′δAA′χγ

A,μν′(c)δμ′ν, (B.15)

∑

b∈BN (m,n)

χ
γ

A,μν(b)χ
γ ′
A′,μ′ν′(cb∗) = 1

tγ
δγ γ ′δAA′χγ

A,μ′ν(c)δμν′ , (B.16)

∑

A,μ,ν

1

dA
χ

γ

A,μν(b1)χ
γ

A,νμ(b2) = 1

m!n!
∑

h∈Sm×Sn

χγ (hb1h−1b2). (B.17)

The orthogonality relations in terms of the dual basis bi = gi j b j are as follows:

∑

i

Dγ (bi )i j Dγ ′
(bi )kl = 1

dγ
δilδ jkδ

γ γ ′
, (B.18)

∑

i

χγ (bi )χ
γ ′

(bi ) = δγ γ ′
, (B.19)
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∑

i

χγ (bi )χ
γ ′

(bi c) = 1

dγ
δγ γ ′

χγ (c), (B.20)

∑

γ

χγ (b)χγ (c) =
∑

i

dγ χγ (bi bbi c), (B.21)

∑

i

χ
γ

A,μν(bi )χ
γ ′
A′,μ′ν′(bi ) = dA

dγ
δγ γ ′δAA′δμν′δμ′ν, (B.22)

∑

i

χ
γ

A,μν(bi )χ
γ ′
A′,μ′ν′(bi c) = 1

dγ
δγ γ ′δAA′χγ

A,μν′(c)δμ′ν, (B.23)

∑

i

χ
γ

A,μν(bi )χ
γ ′
A′,μ′ν′(cbi ) = 1

dγ
δγ γ ′δAA′χγ

A,μ′ν(c)δμν′ . (B.24)

The rewriting of orthogonality relations of the symmetric group using the dual basis
σ i = 1

n!σ
−1
i allows us to find the perfect similarity between the symmetric group and

the Brauer algebra (see also [43]).

C. A Character Formula of the Walled Brauer Algebra

In this section we will derive (83).
The character of an element b in the walled Brauer algebra BN (m, n) is related to

the character of an element of the form C⊗h ⊗ b+ ⊗ b− as

χγ (b) = N z(b)−hχγ (C⊗h ⊗ b+ ⊗ b−), (C.1)

where b+ is an element in Sm−h and b− is an element in Sn−h , and C⊗h = C ⊗· · ·⊗C is
h disjoint contractions. (See section 3 of [10] for a brief explanation of the contraction.)
The z(b) denotes the number of zero cycles4 involved in b. This formula is proved in
theorem 3.1 of [56] and in theorem 5.13 of [57]. Note that h is the number of contractions
in C⊗h ⊗ b+ ⊗ b−, not the number of contractions in b.

The formula can be derived using some basic properties of the algebra. Here instead of
giving a proof, we will derive the formula for some cases in BN (3, 3). Elements C11̄C22̄
and C22̄(13)(1̄3̄) are already of the form Ch⊗b+⊗b−, where Ci j̄ is the contraction acting

on the i-th vector space of V ⊗m and the j-th vector space of V̄ ⊗n . On the other hand,
C11̄C22̄(23) and C22̄(123)(1̄3̄) are not of the form, which have z = 1, 0 respectively.
Using C2 = NC and the cyclicity of the character, we can show

χγ (C11̄C22̄(23)) = 1

N 2 χγ (C11̄C22̄(23)C22̄C11̄) = 1

N
χγ (C11̄C22̄),

χγ (C22̄(123)(1̄3̄)) = 1

N
χγ (C22̄(123)(1̄3̄)C22̄) = 1

N
χγ (C22̄(13)(1̄3̄)),

(C.2)

which have reproduced the formula (C.1). The diagrammatic computation explained in
section 3.2 in [10] is convenient to derive the last equalities.

4 When we write the conventional diagram of a cycle of an element b in the walled Brauer algebra (for
example see [56,57]), if the number of vertical edges on the left side of the wall minus the number of vertical
edges on the right side of the wall is zero, we say that the cycle type of the cycle is zero, or it is a zero-cycle.
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For an element which is conjugate by some permutation in Sm × Sn to the form
C⊗h ⊗ b+ ⊗ b−, the character of the element can be expanded in terms of the character
in Sm−h × Sn−h as

χγ (C⊗h ⊗ b+ ⊗ b−)

= N h
∑

λ�(m−h)

∑

π�(n−h)

∑

δ�(k−h)

g(δ, γ+; λ)g(δ, γ−;π)χλ(b+)χπ (b−), (C.3)

where γ = (γ+, γ−), γ+ � (m − k), γ− � (n − k). Note that the character vanishes if
k − h < 0. This formula is found in theorem 7.20 of [57]. If we set h = 0, it becomes a
familiar formula

χγ (σ ⊗ τ) =
∑

R�m

∑

S�n

∑

δ�k

g(δ, γ+; λ)g(δ, γ−;π)χR(σ )χS(τ )

=
∑

λ�m

∑

π�n

Mγ

(R,S)χR(σ )χS(τ ), (C.4)

where Mγ

(R,S) is the multiplicity of the representation (R, S) inside the representation
γ .

In order to rewrite (C.3) further, we will use a formula of Littlewood-Richardson
coefficients,

g(R, S; T ) = 1

n1!n2!
∑

σ1∈Sn1

∑

σ2∈Sn2

χR(σ−1
1 )χS(σ−1

2 )χT (σ1 ◦ σ2), (C.5)

where R � n1, S � n2 and T � (n1 + n2). Substituting this into (C.3), we obtain

χγ (C⊗h ⊗ b+ ⊗ b−)

= N h
∑

λ�(m−h),π�(n−h)

∑

δ�(k−h)

× 1

(k − h)!(m − k)!
∑

σ1∈Sk−h ,σ2∈Sm−k

χδ(σ
−1
1 )χγ+(σ

−1
2 )χλ(σ1 ◦ σ2)

× 1

(k − h)!(n − k)!
∑

τ1∈Sk−h ,τ2∈Sn−k

χδ(τ
−1
1 )χγ−(τ−1

2 )χπ(τ1 ◦ τ2)

×χλ(b+)χπ(b−)

= N h (m − h)!(n − h)!
(k − h)!(m − k)!(n − k)!

∑

σi ,τi

δm−h(b+[σ1 ◦ σ2])

× δn−h(b−[τ1 ◦ τ2])δk−h([σ−1
1 ]τ−1

1 )

×χγ+(σ
−1
2 )χγ−(τ−1

2 )

= N h 1

(m − k)!(n − k)!
∑

σ2∈Sm−k ,τ2∈Sn−k

�(b+, b−; σ2, τ2)χγ+(σ
−1
2 )χγ−(τ−1

2 ), (C.6)
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where we have defined

�(b+, b−; σ2, τ2)

= (m − h)!(n − h)!
(k − h)!

∑

σ1,τ1∈Sk−h

δm−h(b+[σ1 ◦ σ2])δn−h(b−[τ1 ◦ τ2])δk−h([σ−1
1 ]τ−1

1 )

= 1

((k − h)!)2

∑

σ1,τ1∈Sk−h

tr (r)
m−h(b+[σ1 ◦ σ2])tr (r)

n−h(b−[τ1 ◦ τ2])tr (r)
k−h([σ−1

1 ]τ−1
1 ).

(C.7)

Note again that b+ ∈ Sm−h and b− ∈ Sn−h , while σ2 ∈ Sm−k and τ2 ∈ Sn−k . δl(σ ) is
the delta function defined over the group algebra of Sl . To obtain the second equality in
(C.6) we have used the formula (B.5), and [σ ] is defined in (17). We have introduced
the trace of the regular representation of Sn as

tr (r)
n (σ ) = n!δn(σ ) (σ ∈ Sn). (C.8)

If we use the two-point function of the topological field theory given in Sect. 3, we have

�(b+, b−; σ2, τ2)

= 1

(k − h)!2
∑

σ1,τ1∈Sk−h

ηSm−h (b+, σ1 ◦ σ2)η
Sn−h (b−, τ1 ◦ τ2)η

Sk−h (σ−1
1 , τ−1

1 ).

(C.9)

It is convenient to keep in our mind that σ−1 ∈ Sn always appears with 1/n!. Using the
dual basis σ i = 1

n!σ
−1
i , we get tidy expressions without factorials;

χγ (C⊗h ⊗ b+ ⊗ b−) = N h
∑

i∈Sm−k , j∈Sn−k

�(b+, b−; σi , τ j )χγ+(σ
i )χγ−(τ j ),

(C.10)

and

�(b+, b−; σi , τ j ) =
∑

k,l∈Sk−h

ηSm−h (b+, σk ◦ σi )η
Sn−h (b−, τl ◦ τ j )η

Sk−h (σ k, τ l).

(C.11)

These look like pleasant but having too many indices, which might confuse the readers,
so we do not use (C.10) and (C.11) in the main text.
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