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Abstract: We prove finite time extinction for stochastic sign fast diffusion equations
driven by linear multiplicative space-time noise, corresponding to the Bak–Tang–Wiesen-
feld model for self-organized criticality. This solves a problem posed and left open in
several works: (Barbu, Methods Appl Sci 36:1726–1733, 2013; Röckner and Wang,
J Lond Math Soc (2) 87:545–560, 2013; Barbu et al. J Math Anal Appl 389:147–164,
2012; Barbu and Röckner, Comm Math Phys 311:539–555, 2012; Barbu et al., Comm
Math Phys 285:901–923, 2009, C R Math Acad Sci Paris 347(1–2):81–84, 2009). The
highly singular-degenerate nature of the drift in interplay with the stochastic perturba-
tion causes the need for new methods in the analysis of mass diffusion, and several new
estimates and techniques are introduced.

1. Introduction

Self-organized criticality (SOC) is a model of complex behavior that has attracted much
attention in physics (cf. [BTW88,Zha89,BI92,Jen98,Tur99,CCGS90,DG94,GC98]
among many others). We recall from [BI92]: The term “criticality” refers to the power-
law behavior of the spatial and temporal distributions, characteristic of critical phe-
nomena. “Self-organized” refers to the fact that these systems naturally evolve into a
critical state without any tuning of the external parameters, i.e. the critical state is an
attractor of the dynamics. It is this robust tendency to evolve into a critical state that
distinguishes SOC from more classical models of criticality as for example observed in
phase-transitions.

Based on a cellular automaton algorithm, in [BI92] a continuum limit related to the
original sand pile model introduced by Bak–Tang–Wiesenfeld (BTW) in [BTW88] was
derived, leading to a highly singular-degenerate PDE of the type

∂t Zt ∈ �H(Zt − zc), on [0, T ] × O
0 ∈ H(Zt − zc), on ∂O, (1.1)
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where H is the Heaviside function, zc is the critical state and O ⊆ R
d is a bounded,

smooth domain. Rewriting (1.1) as an equation for Xt = Zt − zc leads to

∂t Xt ∈ �H(Xt ), on [0, T ] × O
0 ∈ H(Xt ), on ∂O. (1.2)

The effect of robust evolution/relaxation in finite time into a subcritical state can now
be recast as finite time extinction of (Xt )

+, i.e. Xt ≤ 0 after some finite time τ0. If we
restrict to the relaxation of purely supercritical states (i.e. Z0 ≥ zc resp. X0 ≥ 0) then
the relaxation into the critical state corresponds to the extinction of Xt in finite time, i.e.
Xt ≡ 0 after some finite time τ0.

As it has been pointed out in [DG94,GDG98,DG92] it is more realistic to include
stochastic perturbations in (1.1) modeling the energy randomly added to the system,
accounting for the removed microscopic degrees of freedom in the continuum limit and
reflecting model uncertainty. As pointed out above, the robustness of self-organization
in SOC is crucial. Based on this, the question arises whether this robustness with respect
to perturbations is actually satisfied by (1.1), again leading to the study of stochastically
perturbed versions of (1.1). Generally speaking, the resulting equations are stochastic
partial differential equations (SPDE) of the following type

d Xt ∈ �H(Xt )dt + B(Xt )dWt , on [0, T ] × O
0 ∈ H(Xt ), on ∂O,

where B are suitable diffusion coefficients. Particular attention (cf. e.g. [RW13,BDPR12,
BR12,BDPR09b] among others) has been paid to the case of linear multiplicative space-
time noise, i.e. to

d Xt ∈ �H(Xt )dt +
N∑

k=1

fk Xt dβ
k
t , on [0, T ] × O

0 ∈ H(Xt ), on ∂O,
(1.3)

where X0 ≥ 0, N ∈ N, f = ( fk)k=1,...,N ∈ C2(Ō; R
N ) and β = (βk)k=1,...,N is

a standard Brownian motion in R
N . Again, the key property of robust relaxation of

supercritical states (X0 ≥ 0) into subcritical ones can be (re-)stated as the problem of
finite time extinction: Let

τ0 = inf{t ≥ 0| Xt (ξ) = 0 for a.e. ξ ∈ O}.

Finite time extinction can then be stated as P[τ0 < ∞] = 1 for all nonnegative initial
values X0 = x ≥ 0.

Despite its fundamental nature, the question of finite time extinction for the stochastic
BTW model with linear multiplicative space-time noise (1.3) has remained an open
problem for several years. The mathematical difficulty of an analysis of the diffusion
of mass and finite time extinction for (1.3) stems from the highly singular-degenerate
nature of the drift �H and its interplay with the stochastic perturbation. For example,
the problem of finite time extinction for (1.3) has been posed and left as an open problem
in the works [Bar13,RW13,BDPR12,BR12,BDPR09b,BDPR09a]. The main purpose
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of the present paper is to resolve this issue by proving finite time extinction for (1.3),
without any restriction on the dimension d of the underlying domain O ⊆ R

d .
In order to develop a finer analysis of the diffusion of mass for (1.3) it turns out to

be crucial to work in a pathwise setting, i.e. we base our analysis on a transformation
of (1.3) into a random PDE which in turn may be analyzed for each fixed Brownian
path t �→ βt (ω). In the above mentioned works, weaker results proving finite time
extinction only with positive probability could be obtained. That is, it could be shown
that the measure of Brownian paths for which finite time extinction occurs is non-zero
(cf. Sect. 1.1 below). The pathwise approach pursued in this paper allows a detailed
understanding of the relation between the behavior of Brownian paths and finite time
extinction. This leads to a better understanding why so far only finite time extinction with
positive probability could be shown and finally leads to a proof of finite time extinction
P-almost surely.

1.1. Overview of known results. While finite time extinction for the stochastic BTW
model could not be proven so far, important progress concerning the (stochastic) Zhang
model, i.e. for

d Xt ∈ �(H(Xt )(1 + δXt ))dt + B(Xt )dWt , on [0, T ] × O
0 ∈ H(Xt ), on ∂O,

with δ > 0 and partial results for the BTW case have been obtained in recent years.
Before giving a short overview of these results we will point out a key mathematical
difference between the Zhang and the BTW model.

We (informally) compute

�φ(X) = div
(
φ′(X)∇ X

) = φ′(X)�X + φ′′(X)|∇ X |2,
where

φ(r) =

⎧
⎪⎨

⎪⎩

1 + δr, if r > 0
[0, 1], if r = 0
0, if r < 0

(1.4)

with δ = 0 in the BTW, δ > 0 in the Zhang model. Since we are dealing with nonlin-
earities being singular at zero (cf. (1.4)) the coercivity coefficient φ′(X) is singular at
zero thus causing fast diffusion of mass for small values of X . As we will see below,
this singularity is responsible for the effect of finite time extinction. On the other hand
φ′(X) may degenerate for large values of X making it difficult to control the diffusion
of mass when X is large. While for fast diffusion equations (FDE)

φ(r) = rmsgn(r), m ∈ [0, 1),

and the Zhang model the diffusion coefficient φ′(r) is non-degenerate at least locally
in r , the BTW model (φ′(r) = δ0) is highly degenerate making the analysis of mass
diffusion and thus the proof of finite time extinction much harder. On the other hand,
we note that the arguments presented in this paper depend on the simple structure of
the nonlinearity in the BTW model (φ = H ) and the methods do not seem to directly
extend to fast diffusion equations.
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We will now give a brief overview of the known results concerning finite time extinc-
tion for the stochastic BTW and Zhang model. Existence and uniqueness of solutions to
multivalued SPDE of the type1

d Xt ∈ �φ(Xt )dt +
N∑

k=1

fk Xt dβ
k
t , on [0, T ] × O

0 ∈ φ(Xt ), on ∂O,
(1.5)

with fk ∈ H1
0 (O) being sufficiently smooth and φ : R → 2R being a maximal

monotone, multivalued function satisfying a polynomial growth condition, has been
first shown in [BDPR09b] in dimension d ≤ 3. This includes FDE, the Zhang model
and the BTW model. As a further result, positivity preservation (i.e. Xt ≥ 0 if x0 ≥ 0)
has been proved in [BDPR09b].

We define

τ0(ω) := inf{t≥0|Xt (ω) = 0, a.e. in O}.
By a supermartingale argument it has been proved in [BDPR12] that Xt = 0, dξ -a.e.
for all t ≥ τ0, P-almost surely. This also follows from the results given in Sect. 5 below.
As concerning finite time extinction we distinguish the following concepts:

(F1): Extinction with positive probability for small initial conditions: P[τ0 < ∞] > 0,
for small X0 = x0.

(F2): Extinction with positive probability: P[τ0 < ∞] > 0, for all X0 = x0.
(F3): Finite time extinction: P[τ0 < ∞] = 1, for all X0 = x0.

While from a mathematical viewpoint also the (weaker) properties (F1), (F2) are inter-
esting, the robustness of the relaxation into subcritical states in SOC is fundamental in
physics and thus mainly (F3) is relevant from the SOC point of view.

In order to prove (F1), in [BDPR09b] some coercivity/non-degeneracy of the diffusion
had to be assumed, i.e. φ′ ≥ δ > 0. As applied to SOC this corresponds to restricting
to the Zhang model. Under this assumption and restricting to O = [0,π ], (F1) has been
shown in [BDPR09b]. In the subsequent work [BDPR09a], for FDE the restriction to
one space dimension was relaxed to d ∈ N as long as m ∈ [ d−2

d+2 , 1).
More recently, the BTW model was considered in [BR12] for d ≤ 3 where asymptotic

extinction was shown, i.e.
∫ ∞

0
|O \ Ot

0|dt < ∞, P-a.s.,

where | · | is the Lebesgue measure and Ot
0 = {ξ ∈ O|Xt (ξ) = 0}. Note that (F3)

implies asymptotic extinction. Moreover, assuming a non-degeneracy condition for the
noise (i.e.

∑N
k=1 f 2

k > 0) an exponential decay property of Xt was shown (cf. also
Sect. 5 below, where this result is improved).

The survey article [BDPR12] revisits the results obtained in [BDPR09b,BDPR09a,
BR12] and some technical assumptions are relaxed. In particular, the non-degeneracy
condition on φ required in [BDPR09b] is dropped, thus proving (F1) for the BTW model
for d = 1.

1 In fact, in [BDPR09b] the diffusion coefficients fk were supposed to be of the special form μkek with
μk ∈ R and ek being eigenvalues of −�. However, this does not seem to be crucial for the methods developed
in [BDPR09b].
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In [RW13] a general class of processes Xt is analyzed, merely satisfying a certain
energy inequality and extinction properties for such Xt are shown. Applied to equations
of type (1.5) this allows for several generalizations, e.g. replacing the Laplacian� by its
fractional powers −(−�)α with α ∈ (0, 1) as also studied in [dPQRV12]. Concerning
SOC, one of the main results obtained in [RW13] is (F3) for the Zhang model, while for
the BTW model still only (F1) for d = 1 could be shown.

Finite time extinction for the BTW model without noise has been proven for the first
time in [DD79]. In fact, more general equations of the type

∂t Xt ∈ �φ(Xt )

are treated in [DD79] and a sufficient (assuming φ to be maximal monotone) and neces-
sary (if φ is continuous) condition on φ for finite time extinction is proven. Very recently,
an alternative proof of finite time extinction for (1.2) has been given in [Bar13]. In one
spatial dimension a detailed analysis of the dynamics of the total variation flow and thus
the sign fast diffusion has been developed in [BF12]. As regarding finite time extinc-
tion for the (deterministic) fast diffusion equation a thorough analysis may be found
in [Váz06] and the references therein. Starting from this, several generalizations have
been obtained. For example, recently finite time extinction for fractional fast diffusion
equations of the type

∂t Xt = −(−�)σ/2(|Xt |m−1 Xt ),

with σ ∈ (0, 2), m ∈ (0, 1) has been shown in [dPQRV12]. In the case of (fractional)
fast diffusion equations energy inequalities for L p-norms, choosing p large enough,
may be used to prove finite time extinction. As we will point out in detail in Sect. 1.2.1
below, in the case of (1.2) this ceases to be true and one has to work with the L1-norm
instead, thus causing the situation of (1.2) to be quite different from [Váz06,dPQRV12].

If we do not insist on nonnegativity of solutions it makes sense to consider random
perturbations of additive type, i.e.

d Xt ∈ �φ(Xt )dt + dWt , on [0, T ] × O
0 ∈ φ(Xt ), on ∂O, (1.6)

where Wt is an appropriate Wiener process. In fact, this additive type of noise has
been suggested in the physics literature (cf. e.g. [DG94,GDG98]). SPDE of the form
(1.6) (actually also allowing more general, multiplicative noise B(Xt )dWt ) have been
considered in [GT13] where the existence and uniqueness of solutions (for all d ∈ N) as
well as ergodicity (for d = 1 and additive noise) has been shown. Based on the results
developed in [Ges13a] one may expect that this implies the existence of a random
attractor consisting of a single random point, which we expect to prove in subsequent
work.

At last we should mention the very recent work [BR13] on the related stochastic total
variation flow, where (F1) has been shown in dimensions d ≤ 3.

In conclusion, despite the large amount of works addressing finite time extinction
for the stochastic BTW model, it has remained an open question up to now whether this
happens with probability one. In this paper we solve this problem by proving (F3) for
the stochastic BTW model with underlying bounded domain O ⊆ R

d for all d ≥ 1.
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1.2. Main result and outline of the proof. We will now state our main result in more
detail and give a brief, informal overview of our approach. In the following let O ⊆ R

d

be an open domain with smooth boundary ∂O, f = ( fk)k=1,...,N ∈ C2(Ō; R
N ) and

β = (βk)k=1,...,N be a standard Brownian motion in R
N . As above, we restrict to

nonnegative initial conditions (and thus to nonnegative solutions) so that the stochastic
BTW model may equivalently be written as

d Xt ∈ �sgn(Xt )dt +
N∑

k=1

fk Xt dβ
k
t , on [0, T ] × O

0 ∈ sgn(Xt ), on ∂O,
(1.7)

with X0 = x0, where sgn denotes the maximal monotone extension of the sign function.
We set μt := − f · βt = −∑N

k=1 fkβ
k
t , μ̃ := 1

2 | f |2 = 1
2

∑N
k=1 f 2

k and we consider
the transformation Yt := eμt Xt . An informal calculation shows

∂t Yt ∈ eμt�sgn(Yt )− μ̃Yt . (1.8)

The analysis of (1.7) presented in this paper will be essentially based on an analysis of
(1.8). A rigorous justification of this transformation will be given in Sect. 3 below.

As we will see in Sect. 4, a mild condition on the decay of the mass of the level sets
of μ̃ (e.g. |{ξ ∈ O|0 < μ̃(ξ) < ε}| � εδ for all ε > 0 small enough and some δ > 0)
implies

(H) : For all p ≥ 1 there is a t0 = t0(p, ω) such that

∫

O
ep(−μt −μ̃t)dξ =

∫

O
ep

∑N
k=1 fk (ξ)β

k
t − 1

2 f 2
k (ξ)t dξ ≤ C(p, ω) < ∞,

for P-a.a ω ∈ � and all t ≥ t0.

Note that, in particular, the cases of vanishing noise (μ̃ ≡ 0) and full noise (μ̃ > 0) are
trivially covered by the above condition.

Roughly speaking, our main result is

Main Result (cf. Theorem 4.5 below). Assume that (H) is satisfied. Let x0 ∈ L∞(O),
X be the corresponding solution to (1.7) and set

τ0(ω) = inf{t ≥ 0|Xt (ω) = 0, for a.e. ξ ∈ O}.

Then finite time extinction holds, i.e.

P[τ0 < ∞] = 1.

Remark 1.1. In the statement of the main result we restrict to essentially bounded initial
conditions for simplicity. In fact, as we will see in Sect. 4 the extinction time τ0 can be
bounded in terms of appropriate L p(O) norms of x0 (with p depending on the dimension
d). Due to continuity of Xt in the initial condition this is easily seen to imply finite time
extinction for x0 ∈ L p(O) as well.
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Remark 1.2 (Spatially homogeneous noise). Assume that the functions fk are constant.
Then define F(t) = ∫ t

0 eμr +μ̃r dr , G(t) = F−1(t). An informal computation suggests
that ut := YG(t) solves

∂t u ∈ �sgn(u),

i.e. the case of spatially homogeneous noise may entirely be reduced to the deterministic
situation, for which finite time extinction has been first proven in [DD79] (cf. also [Bar13]
for a more recent approach). The informal computation introduced above may be made
rigorous by first considering non-degenerate, non-singular, smooth approximations (as
we will do below, cf. Sect. 2.2 below) for which the transformation follows from the
classical chain-rule.

The same remark applies to (1.7) if the stochastic part is given in Stratonovich form
by choosing F(t) = ∫ t

0 eμr dr .

1.2.1. Outline of the proof. As laid out above, our analysis is based on the transformed
Eq. (1.8). The proof consists of two main ingredients:

(i) A uniform control on ‖Xt‖p for all p ≥ 1.
(ii) An energy inequality for a weighted L1 norm of Yt .

While on an intuitive level the arguments used in this paper to prove finite time extinction
become quite clear by considering an approximation of the sgn function by r [m] :=
|r |m−1r (m ↓ 0) it is necessary to choose a more complicated, non-singular, non-
degenerate approximation in the rigorous proof. Therefore, we start by giving an informal
outline of the proof based on r [m] → sgn.

Step 1: A uniform control on ‖Xt‖p for all p ≥ 1
Let Yt be the solution to

∂Yt ∈ eμt�Y [m]
t − μ̃Yt ,

for some m > 0. Then we may informally compute

∂t

∫

O
epμ̃t |Yt |pdξ = p

∫

O
epμ̃t Yt

[p−1]eμt�Yt
[m]dξ

= −p
∫

O
eμt +pμ̃t∇Y [p−1]∇Y [m]

t dξ− p
∫

O
Y [p−1]

t ∇eμt +pμ̃t∇Y [m]
t dξ

= −(p − 1)mp
∫

O
eμt +pμ̃t |Yt |p−2+m−1|∇Yt |2dξ

−pm
∫

O
Yt

[p−1+m−1]∇eμt +pμ̃t∇Yt dξ

= − 4(p − 1)mp

(p + m − 1)2

∫

O
eμt +pμ̃t

(
∇|Yt |

p+m−1
2

)2

dξ

− pm

p + m − 1

∫

O
∇|Yt |p+m−1∇eμt +pμ̃t dξ

= − 4(p − 1)mp

(p + m − 1)2

∫

O
eμt +pμ̃t

(
∇|Yt |

p+m−1
2

)2

dξ

+
pm

p + m − 1

∫

O
|Yt |p+m−1�eμt +pμ̃t dξ, (1.9)
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for all p ≥ 1. Taking p > 1 and then m → 0 we may “deduce” from this

∂t

∫

O
epμ̃t |Yt |pdξ ≤ 0.

Note that for fix m > 0 this does not follow, since the second term in (1.9) does not
vanish. This is the reason why our analysis applies to the BTW model only and not to
general fast diffusion equations with m > 0. In order to turn the above bound on Y into a
bound on X we need to control the amount of energy added to the system by the random
perturbation. Assuming a mild decay condition on the level sets of μ̃ (cf. Remark 4.2
below) we obtain that condition (H) is satisfied. This implies

∫

O
|Xt |pdξ =

∫

O
ep(−μt −μ̃t)epμ̃t |Yt |pdξ

≤ C1

(∫

O
e(p+τ)μ̃t |Yt |(p+τ)dξ

) p
p+τ

≤ C1

(∫

O
|x0|(p+τ)dξ

) p
p+τ

, (1.10)

i.e.

‖Xt‖p ≤ C1‖x0‖p+τ ,

for all p ≥ 1, τ > 0, t ≥ t0 = t0(p, τ, ω), with C1 = C1(p, τ, ω).

Remark 1.3. (i) While we obtain a uniform bound on each L p-norm of Xt for large
times t ≥ t0, we do not obtain such a uniform bound on the L∞-norm of Xt since
the geometric Brownian motions t �→ e−μt (ξ)−μ̃(ξ)t are not necessarily pathwise
uniformly bounded in ξ ∈ O. As compared to the deterministic case, this leads to
additional difficulties in the proof of finite time extinction.

(ii) In the derivation of the L p bound of Xt presented above, we use that the noise is given
in Itô form. It is due to the Itô correction term μ̃ in (1.8) that we may uniformly
control

∫
O epμ̃t |Yt |pdξ (and not only

∫
O |Yt |pdξ ), which in turn is essential in

(1.10).
In fact, the estimate relies purely on the noise part, since by taking p > 1 and then

m → 0 the parts in (1.9) that are due to the diffusive term vanish.

Step 2: An energy inequality for a weighted L1 norm of Yt .
We now develop the crucial energy estimate to prove finite time extinction. Let ϕ be

the classical solution to

�ϕ = −1, on O
ϕ = 1, on ∂O.

Note 1 ≤ ϕ ≤ ‖ϕ‖∞ =: Cϕ . As in (1.9) we informally compute

∂t

∫

O
e−μsϕ|Yt |pdξ = − 4(p − 1)mp

(p + m − 1)2

∫

O
eμt −μsϕ

(
∇|Yt | p+m−1

2

)2
dξ

+
pm

p + m − 1

∫

O
|Yt |p+m−1�eμt −μsϕdξ. (1.11)
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In order to prove finite time extinction the first term on the right hand side will be crucial
and we aim to let m → 0, p → 1 simultaneously in such a way that the constant 4(p−1)mp

(p+m−1)2

does not vanish (in contrast to step one). For example, we may choose p = m + 1 and
obtain

∂t

∫

O
e−μsϕ|Yt |m+1dξ = −(m + 1)

∫

O
eμt −μsϕ

(∇|Yt |m
)2

dξ

+
(m + 1)

2

∫

O
|Yt |2m�eμt −μsϕdξ.

In the limit m → 0 we may then expect

∂t

∫

O
e−μsϕ|Yt |dξ = − ∫

O eμt −μsϕ (∇η)2 dξ + 1
2

∫
O η

2�eμt −μsϕdξ, (1.12)

where η is a selection from sgn(Y ), i.e. ηt (ξ) ∈ sgn(Yt (ξ)) for a.e. (t, ξ) ∈ [0, T ] × O.
The crucial point is that if we choose m → 0, p → 1 such that the first term in (1.11)
does not vanish, then also the second one is preserved in the limit. This makes the
proof of finite time extinction more intriguing than in the deterministic case where the
perturbative second term is not present.

Step 3: Deducing finite time extinction
The principal idea is that

�eμt −μsϕ = eμt −μs (−1 + 2∇ϕ · ∇(μt − μs) + ϕ(|∇(μt − μs)|2 +�(μt − μs))

is non-positive if ‖μt −μs‖C2(Ō) is sufficiently small and hence we may drop the last term
in (1.12) on such intervals [s, t]. For the sake of simplicity of this introductory overview
let us restrict to d = 1. In higher dimensions d ≥ 2 the control given by the dissipative
term

∫
O eμt −μsϕ (∇η)2 dξ in (1.12) is much weaker and the argument leading to finite

time extinction is more subtle. For d = 1 we have H1
0 ↪→ L∞ . Restricting to intervals

[s, t] such that

sup
r∈[s,t]

�eμr −μsϕ ≤ 0 (1.13)

we obtain from (1.12):
∫

O
e−μsϕ|Yt |dξ ≤

∫

O
e−μsϕ|Ys |dξ −

∫ t

s

(
inf
ξ∈O

eμr −μs

)
‖ηr‖∞dr.

By step one we observe
∫

O
e−μsϕ|Ys | =

∫

O
e−μs−μ̃sϕeμ̃s |Ys |dξ

≤ C1Cϕ‖x0‖1+τ ,

for all τ > 0, s ≥ t0 = t0(τ, ω) and with C1 = C1(τ, ω). Moreover, since ‖ηt‖∞ = 0
implies Yt ≡ 0 we may deduce

∫

O
e−μsϕ|Yt |dξ ≤ C1Cϕ‖x0‖1+τ −

∫ t

s

(
inf
ξ∈O

eμr −μs

)
dr ∨ 0, (1.14)
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for all intervals [s, t] such that (1.13) is satisfied and s ≥ t0. Since

‖μt − μs‖C2(Ō) ≤
(

N∑

k=1

‖ fk‖C2(Ō)

)
|βt − βs |

for (1.13) to be satisfied we have to restrict to intervals [s, t] where |βt − βs | remains
small. Due to properties of Brownian motion (cf. Lemma B.2 below) we may find such
intervals [s, t] of arbitrary length and hence (1.14) implies finite time extinction (with
extinction time τ0 depending on x0 only via its L1+τ -norm).

Remark 1.4. We note that the methods leading to finite time extinction introduced above
do not rely on the presence of noise. In fact, if μ ≡ 0, then (1.14) reduces to the
corresponding estimate from the deterministic case. In particular, no non-degeneracy
condition (as e.g. assuming μ̃ ≥ δ > 0 on O as for the result on exponential decay
proven in [BR12]) has to be supposed.

1.3. Notation. In the following let O ⊆ R
d be a bounded, open set with smooth bound-

ary ∂O. For s ≤ t, s, t ∈ R we let O[s,t] := [s, t]×O and OT := O[0,T ]. For p ≥ 1 we
let L p(O) be the usual Lebesgue spaces with norm ‖ · ‖p := ‖ · ‖L p(O). For ϕ ∈ L∞(O)
we define the weighted Lebesgue space L p

ϕ(O) to be the space of equivalence classes
of measurable functions f such that

‖ f ‖L p
ϕ (O) :=

(∫

O
| f (ξ)|pϕ(ξ)dξ

) 1
p

< ∞.

For notational convenience we set ‖·‖ϕ := ‖ f ‖L1
ϕ(O). The spaces Cm,n(OT ) are defined

to be spaces of functions on OT with m continuous derivatives in time and n continuous
derivatives in space. We let H1

0 (O) be the first order Sobolev space with zero Dirichlet
boundary conditions endowed with the norm

‖ f ‖H1
0 (O) :=

∫

O
|∇ f (ξ)|2dξ

and let H−1 be its dual. We let sgn denote the maximal monotone extension of the sign
function. We write a � b if there is a constant C such that a ≤ Cb. The constants
C,C1,C2 will denote generic constants that may change value from line to line. For
every p ∈ [1,∞] we let p∗ ∈ [1,∞] denote the dual exponent, i.e. 1

p + 1
p∗ = 1

(with the convention 1
∞ = 0). We further define β = (βk)k=1,...,N to be an R

N -valued
standard Brownian motion, without loss of generality given by its canonical realization on
C0(R+; R

N ). We let (Ft )t∈R+ be the canonical filtration generated by β with completion
(F̄t )t∈R+ .

1.4. Overview of the contents. In Sect. 2 we will prove the existence of solutions to (1.8)
and some key energy estimates. In the following Sect. 3 the transformation of (1.7) into
(1.8) will be justified by proving that for the solution Y to (1.8) constructed in Sect. 2
setting Xt := e−μt Yt yields a solution to (1.7). The proof of finite time extinction will
then be given in Sect. 4. In the final Sect. 5 we prove a pointwise estimate on Xt implying
exponential convergence to zero on sets K ⊆ O for which infξ∈K μ̃(ξ) > 0.
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2. Existence of Solutions

In this section we will construct solutions to the transformed Eq. (1.8). In this construc-
tion we will work with a fixed realization of the Brownian motion, i.e. we consider
μt := ∑N

k=1 fkβ
k
t (ω) for an arbitrary, fixed ω ∈ �. In fact, the precise structure of

μ does not matter for the construction and we consider (1.8) for an arbitrary functions
μ ∈ C0,2(ŌT ) and μ̃ ∈ C2(Ō) nonnegative. In particular, we may replace β by any con-
tinuous stochastic process, e.g. fractional Brownian motion. We note, however, that we
will use special properties of the Brownian motion in the proof of finite time extinction
in Sect. 4 below.

Let us define what we mean by a solution to

∂t Yt ∈ eμt�φ(Yt )− μ̃Yt , on OT

0 ∈ φ(Yt ), on ∂O, (2.1)

with Y0 = y0 and φ being a possibly multi-valued map satisfying 0 ∈ φ(0).
Definition 2.1. Let y0 ∈ L∞(O). A tuple (Y, η)with Y ∈ L2(OT )∩W 1,2([0, T ]; H−1)

and η ∈ L2([0, T ]; H1
0 (O)) is said to be a solution to (2.1) if

d

dt
Yt = eμt�ηt − μ̃Yt , in H−1 for a.e. t ∈ [0, T ]
Y0 = y0

and ηt (ξ) ∈ φ(Yt (ξ)) for a.e. (t, ξ) ∈ OT .

Remark 2.2. Let y0 ∈ L∞(O), Y ∈ L2(OT ) ∩ W 1,2([0, T ]; H−1) and η ∈ L2([0, T ];
H1

0 (O)). Then (Y, η) is a solution to (2.1) in the sense of Definition 2.1 iff

∫

O
Ytϕdξ =

∫

O
y0ϕdξ −

∫ t

0

∫

O
∇ηr · ∇eμrϕdξdr −

∫ t

0

∫

O
μ̃Yrϕdξdr,

for a.e. t ≥ 0,

for all ϕ ∈ H1
0 (O) and ηt (ξ) ∈ φ(Yt (ξ)) for a.e. (t, ξ) ∈ OT .

Proposition 2.3. Suppose φ is a monotone, Lipschitz continuous function. Let y(i)0 ∈
L∞(O) and (Y (i), η(i)) be solutions to (2.1) in the sense of Definition 2.1, i = 1, 2.
Then there is a C > 0 such that

‖Y (1)t − Y (2)t ‖2
H−1 ≤ eCt‖y(1)0 − y(2)0 ‖2

H−1 , ∀t ∈ [0, T ].

In particular, solutions to (2.1) are unique.

Proof. By the chain-rule

d

dt
‖Y (1)t − Y (2)t ‖2

H−1 = 2(eμt�(η
(1)
t − η

(2)
t ), Y (1)t − Y (2)t )H−1

−2(μ̃(Y (1)t − Y (2)t ), Y (1)t − Y (2)t )H−1 .
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Since eμt� f = �eμt f − 2∇eμt · ∇ f − f�eμt for all f ∈ H1
0 (O) we obtain

(eμt�(η
(1)
t − η

(2)
t ), Y (1)t − Y (2)t )H−1

= −(eμt (η
(1)
t − η

(2)
t ), Y (1)t − Y (2)t )2

−2(∇eμt ∇(η(1)t − η
(2)
t ), Y (1)t − Y (2)t )H−1

−((η(1)t − η
(2)
t )�eμt ,Y (1)t − Y (2)t )H−1 . (2.2)

Since φ is Lipschitz and monotone:

−(eμt (η
(1)
t − η

(2)
t ), Y (1)t − Y (2)t )2

= −
∫

O
eμt (φ(Y (1)t )− φ(Y (2)t ))(Y (1)t − Y (2)t )dξ

≤ − 1

‖φ‖Lip

∫

O
eμt |η(1)t − η

(2)
t |2dξ.

Moreover,

−2(∇eμt ∇(η(1)t −η(2)t ), Y (1)t −Y (2)t )H−1

≤ ε‖∇(η(1)t −η(2)t )‖2
H−1 +Cε‖Y (1)t −Y (2)t ‖2

H−1

≤ ε‖η(1)t − η
(2)
t ‖2

2 + Cε‖Y (1)t − Y (2)t ‖2
H−1

and the third term in (2.2) may be estimated similarly. Choosing ε > 0 small enough
yields

(
eμt�(η

(1)
t − η

(2)
t ), Y (1)t − Y (2)t

)

H−1
� ‖Y (1)t − Y (2)t ‖2

H−1 ,

which implies the claim. ��
We aim to construct solutions to

∂t Yt ∈ eμt�sgn(Yt )− μ̃Yt (2.3)

via a smooth, non-degenerate, non-singular approximation of the right-hand side. In
order to prove convergence of the approximating solutions it is convenient to employ a
three step argument. First, we will consider a Lipschitz (non-singular) approximation of
the nonlinearity, i.e.

∂t Y
(ε)
t ∈ eμt�φ(ε)(Y (ε)t )− μ̃Y (ε)t , ε > 0,

whereφ(ε) is the Yosida approximation of sgn, then a vanishing viscosity (non-degenerate)
approximation, i.e.

∂t Y
(ε,δ)
t = eμt�φ(ε)(Y (ε,δ)t ) + δeμt�Y (ε,δ)t − μ̃Y (ε,δ)t , ε, δ > 0 (2.4)

and in the last step we consider smooth approximations φ(τ,ε), μ(τ), μ̃(τ ) :

∂t Y
(τ,ε,δ)
t = eμ

(τ)
t �φ(τ,ε)(Y (τ,ε,δ)t ) + δeμ

(τ)
t �Y (τ,ε,δ)t − μ̃(τ )Y (τ,ε,δ)t , (2.5)

with τ, ε, δ > 0. The advantage of keeping δ > 0 in the first step lies in the resulting
continuity of t �→ Y (ε,δ)t in L2(O), which will be needed to obtain the key energy bound
proving finite time extinction (cf. Lemma 4.3 below).

In order to justify the limiting procedures τ, ε, δ → 0 we require uniform a-priori
estimates on Y (τ,ε,δ) that will be obtained in the following section.
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2.1. Approximate equation, a-priori bounds. In this section, we consider PDE of the
type

∂t Yt = eμt�φ(Yt ) + δeμt�Yt − μ̃Yt , on OT

Yt = 0, on ∂O, (2.6)

with Y0 = y0, δ > 0, μ, μ̃, y0 and φ being smooth functions, μ̃ ≥ 0, φ monotone,
φ(0) = 0 and y0 being compactly supported in O. Let ψ : R → R be such that ψ̇ = φ

andψ(0) = 0. Existence of classical solutions Y ∈ C0(ŌT )∩C1,2(OT ) to (2.6) follows
from [LSU67].

Lemma 2.4. For all p ≥ 1 and all t ≥ s ≥ 0

∫

O
epμ̃t |Yt |pdξ ≤

∫

O
epμ̃s |Ys |pdξ +

∫ t

s

∫

O
ζ(Yr )�eμr +pμ̃r dξdr

+ δ
∫ t

s

∫

O
|Yr |p�eμr +pμ̃r dξdr, (2.7)

where ζ(t) := ∫ t
0 r [p−1]φ̇(r)dr. Moreover, for all t ≥ s ≥ 0

∫

O
e2μ̃t |Yt |2dξ + 2δ

∫ t

s

∫

O
eμr +2μ̃r |∇Yr |2dξdr

≤
∫

O
e2μ̃s |Ys |2dξ +

∫ t

s

∫

O
ζ(Yr )�eμr +2μ̃r dξdr

+ δ
∫ t

s

∫

O
|Yr |2�eμr +2μ̃r dξdr, (2.8)

where ζ(t) := ∫ t
0 r φ̇(r)dr.

Proof. For now letψ(ε)(t) := (t2+ε)
p
2 −ε p

2 ,φ(ε) = ψ̇(ε) and noteψ(ε)(0)=φ(ε)(0)=0.
We compute

∂t

∫

O
epμ̃tψ(ε)(Yt )dξ

=
∫

O
φ(ε)(Yt )e

μt +pμ̃t�φ(Yt )dξ + δ
∫

O
φ(ε)(Yt )e

μt +pμ̃t�Yt dξ

−
∫

O
epμ̃t μ̃φ(ε)(Yt )Yt dξ + p

∫

O
epμ̃t μ̃ψ(ε)(Yt )dξ

= −
∫

O
φ̇(ε)(Yt )e

μt +pμ̃t φ̇(Yt )|∇Yt |2dξ −
∫

O
φ(ε)(Yt )φ̇(Yt )∇eμt +pμ̃t∇Yt dξ

−δ
∫

O
φ̇(ε)(Yt )e

μt +pμ̃t |∇Yt |2dξ − δ

∫

O
φ(ε)(Yt )∇eμt +pμ̃t · ∇Yt dξ

−
∫

O
epμ̃t μ̃φ(ε)(Yt )Yt dξ + p

∫

O
epμ̃t μ̃ψ(ε)(Yt )dξ. (2.9)
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Setting ζ (ε)(t) = ∫ t
0 φ

(ε)(r)φ̇(r)dr we obtain (note ζ (ε)(0) = 0)

∂t

∫

O
epμ̃tψ(ε)(Yt )dξ

= −
∫

O
φ̇(ε)(Yt )e

μt +pμ̃t φ̇(Yt )|∇Yt |2dξ +
∫

O
ζ (ε)(Yt )�eμt +pμ̃t dξ

−δ
∫

O
φ̇(ε)(Yt )e

μt +pμ̃t |∇Yt |2dξ + δ
∫

O
ψ(ε)(Yt )�eμt +pμ̃t dξ

−
∫

O
epμ̃t μ̃φ(ε)(Yt )Yt dξ + p

∫

O
epμ̃t μ̃ψ(ε)(Yt )dξ.

In particular,

∂t

∫

O
epμ̃tψ(ε)(Yt )dξ ≤

∫

O
ζ (ε)(Yt )�eμt +pμ̃t dξ + δ

∫

O
ψ(ε)(Yt )�eμt +pμ̃t dξ

−
∫

O
epμ̃t μ̃φ(ε)(Yt )Yt dξ + p

∫

O
epμ̃t μ̃ψ(ε)(Yt )dξ.

Letting ε → 0 then yields (2.7). Arguing as in (2.9) but with ψ(ε)(r) replaced by r2 and
p = 2 yields (2.8). ��
Lemma 2.5. For all t ≥ s ≥ 0 and all nonnegative � ∈ C2(Ō)

∂t

∫

O
ψ(Yt )�dξ ≤ −

∫

O
�eμt |∇φ(Yt )|2dξ +

1

2

∫

O
φ(Yt )

2��eμt dξ

+ δ
∫

O
ψ(Yt )��eμt dξ.

Proof. We compute

∂t

∫

O
ψ(Yt )�dξ

=
∫

O
φ(Yt )�eμt�φ(Yt )dξ + δ

∫

O
φ(Yt )�eμt�Yt dξ −

∫

O
φ(Yt )�μ̃Yt dξ

≤ −
∫

O
�eμt |∇φ(Yt )|2dξ −

∫

O
φ(Yt )∇�eμt ∇φ(Yt )dξ − δ

∫

O
φ(Yt )∇�eμt ∇Yt dξ

= −
∫

O
�eμt |∇φ(Yt )|2dξ − 1

2

∫

O
∇�eμt ∇φ(Yt )

2dξ − δ

∫

O
∇ψ(Yt )∇�eμt dξ

= −
∫

O
�eμt |∇φ(Yt )|2dξ +

1

2

∫

O
φ(Yt )

2��eμt dξ + δ
∫

O
ψ(Yt )��eμt dξ.

��

2.2. Construction of a solution and energy bounds. We need to specify the chosen
approximation φ(τ,ε), φ(ε) : R → R of the sign function in (2.4), (2.5). Let ψ(r) := |r |
and note φ := sgn = ∂ψ . We let Jε(r) := (1 + εsgn)−1 be the resolvent of sgn and ψ(ε)

its Moreau-Yosida approximation, i.e.
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ψ(ε)(r) := inf
s∈R

1

2ε
|r − s|2 + |s| =

{
r2

2ε , |r | ≤ ε

|r | − ε
2 , |r | > ε.

Then ψ(ε) ∈ W 2,∞(R) with

φ(ε)(r) := ψ̇(ε)(r) =
{

r
ε
, |r | ≤ ε

r
|r | , |r | > ε.

We note that φ(ε) is the Yosida-approximation of φ, i.e.

φ(ε)(r) = 1

ε
(r − Jεr) ∈ φ(Jεr), ∀r ∈ R (2.10)

and we have

φ̇(ε) = ψ̈(ε)(r) =
{

1
ε
, |r | ≤ ε

0, |r | > ε.

Moreover, we note

|ψ(r)− ψ(ε)(r)| = ψ(r)− ψ(ε)(r) ≤ 2ε (2.11)

and φ(ε)(r) ≤ 1. We further let μ(τ) and μ̃(τ ) ≥ 0 be smooth approximations of μ, μ̃
such that ‖μ(τ)−μ‖C0,2(ŌT )

, ‖μ̃(τ )− μ̃‖C2(Ō) ≤ τ , y(τ )0 a smooth approximation of y0

with ‖y(τ )0 − y0‖1 ≤ τ and ‖y(τ )0 ‖∞ ≤ ‖y0‖∞,

ψ(τ,ε)(·) := ψ(ε) ∗ ϕ(τ)(·)− ψ(ε) ∗ ϕ(τ)(0) ∈ C∞(R)
φ(τ,ε) := ψ̇(τ,ε)

where ϕ(τ) is a standard Dirac sequence. Note ψ(τ,ε)(0) = φ(τ,ε)(0) = 0. We then
consider the three-step approximation

∂t Y
(ε)
t ∈ eμt�φ(ε)(Y (ε)t )− μ̃Y (ε)t , on OT

Y (ε)0 = y0, on O (2.12)

then

∂t Y
(ε,δ)
t = eμt�φ(ε)(Y (ε,δ)t ) + δeμt�Y (ε,δ)t − μ̃Y (ε,δ)t , on OT

Y (ε,δ)0 = y0, on O, (2.13)

and

∂t Y
(τ,ε,δ)
t = eμ

(τ)
t �φ(τ,ε)(Y (τ,ε,δ)t ) + δeμ

(τ)
t �Y (τ,ε,δ)t − μ̃(τ )Y (τ,ε,δ)t , on OT

Y (ε,δ)0 = y(τ )0 , on O, (2.14)

with zero Dirichlet boundary conditions. By [LSU67] there is a unique, classical solution
Y (τ,ε,δ) to (2.14). We aim to first let τ → 0 then δ → 0 and then ε → 0. As outlined
above, the advantage of first keeping the approximate viscosity lies in the fact that
t �→ Y (ε,δ)t is continuous in L2(O) which will be needed to establish the key energy
estimate.
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Remark 2.6. In the following we will prove that for all sequences (τn,εn, δn) → 0 we
may find subsequences (τnk ,εnl , δnm ) → 0 such that

Y (τnk ,εnl ,δnm )
k→∞−−−→ Y (εnl ,δnm )

m→∞−−−−→ Y (εnl )
l→∞−−−→ Y

in a weak sense, where Y is a solution to (2.3). Since we have uniqueness for (2.13)
and (2.14) in fact the whole corresponding sequences converge. In order to prove F̄t -
adaptedness of Y in Sect. 3 we will choose a particular sequence εn → 0 along which
the solution Y will be constructed.

Lemma 2.7. Let y0 ∈ L∞(O), ε, δ > 0. Then there exists a unique solution Y (ε,δ) to
(2.13) in the sense of Definition 2.1 satisfying Y (ε,δ) ∈ C([0, T ]; L2(O)) and

∫

O
epμ̃t |Y (ε,δ)t |pdξ ≤

∫

O
epμ̃s |Y (ε,δ)s |pdξ + ε p−1

∫ t

s

∫

O
|�eμr +pμ̃r |dξdr

+ δ
∫ t

s

∫

O
|Y (ε,δ)r |p�eμr +pμ̃r dξdr, (2.15)

for all [s, t] ⊆ R+, p ≥ 1. Moreover, for all [s, t] ⊆ R+ and all nonnegative � ∈ C2(Ō)
we have

∫

O
ψ(ε)(Y (ε,δ)t )�dξ +

∫ t

s

∫

O
�eμr |∇φ(ε)(Y (ε,δ)r )|2dξdr

≤
∫

O
ψ(ε)(Y (ε,δ)s )�dξ +

1

2

∫ t

s

∫

O
φ(ε)(Y (ε,δ)r )2��eμr dξdr

+ δ
∫ t

s

∫

O
ψ(ε)(Y (ε,δ)r )��eμr dξdr. (2.16)

Proof. Uniqueness follows from Proposition 2.3. The construction of solutions to (2.13)
starts from (2.14). Since ε, δ > 0 are fixed, for simplicity we will suppress them in the
notation of Y (τ,ε,δ),Y (ε,δ) in the following.

Step 1: A-priori bounds
From Lemma 2.4 we have

∫

O
e2μ̃(τ )t |Y (τ )t |2dξ + 2δ

∫ t

s

∫

O
eμ

(τ)
r +2μ̃(τ )r |∇Y (τ )r |2dξdr

≤
∫

O
e2μ̃(τ )s |Y (τ )s |2dξ +

∫ t

s

∫

O
ζ (τ,ε)(Y (τ )r )�eμ

(τ)
r +2μ̃(τ )r dξdr

+ δ
∫ t

s

∫

O
|Y (τ )r |2�eμ

(τ)
r +2μ̃(τ )r dξdr,

with ζ (τ,ε)(t) = ∫ t
0 r φ̇(τ,ε)(r)dr and

∫

O
epμ̃(τ )t |Y (τ )t |pdξ ≤

∫

O
epμ̃(τ )s |Y (τ )s |pdξ +

∫ t

s

∫

O
ζ (τ,ε)(Y (τ )r )�eμ

(τ)
r +pμ̃(τ )r dξdr

+ δ
∫ t

s

∫

O
|Y (τ )r |p�eμ

(τ)
r +pμ̃(τ )r dξdr, (2.17)
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for all p ≥ 1, where ζ (τ,ε)(t) = ∫ t
0 r [p−1]φ̇(τ,ε)(r)dr . For p ≥ 1 we note

ζ (τ,ε)(t) =
∫ t

0
r [p−1]φ̇(τ,ε)(r)dr

≤ ε p−1

p

∣∣∣∣
t

ε
∧ ε + τ

ε

∣∣∣∣
p

≤ ε p−1

p

∣∣∣
ε + τ

ε

∣∣∣
p
, ∀t ∈ R. (2.18)

Hence,

ζ (τ,ε) ≤ C < ∞,

uniformly in τ > 0 (small enough). Using Gronwall’s inequality this yields

sup
t∈[0,T ]

∫

O
epμ̃(τ )t |Y (τ )t |pdξ ≤ C < ∞,

for all p ≥ 1 and

δ

∫ T

0

∫

O
eμ

(τ)
r +2μ̃(τ )r |∇Y (τ )r |2dξdr ≤ C < ∞,

uniformly in τ (and in ε, δ).

Step 2: Extraction and identification of a limit
From step one we conclude that Y (τ ) is uniformly bounded in L∞([0, T ]; L p(O))

for all p ≥ 1 and in L2([0, T ]; H1
0 (O)). Hence, φ(τ,ε)(Y (τ )) is uniformly bounded

in L2([0, T ]; H1
0 (O)) and d

dt Y (τ ) is uniformly bounded in L2([0, T ]; H−1). Since
H1

0 (O) ↪→ L2(O) is compact, we may use Aubin-Lions compactness (cf. e.g. [Sho97,
Proposition III.1.3]) to extract subsequences2 satisfying

Y (τ ) ⇀∗ Y, in L∞([0, T ]; L p(O)) and in L2([0, T ]; H1
0 (O)), ∀p ≥ 1,

Y (τ ) → Y, in L2([0, T ]; L2(O)) and dt⊗dξ -a.e., for τ → 0.
(2.19)

As a consequence (using φ(τ,ε) → φ(ε) uniformly), we also have

Y (τ ) → Y, in L p(OT ) for all p ≥ 1,

Y (τ )t → Yt , for a.e. t ∈ [0, T ] in L p(O) for all p ≥ 1,

φ(τ,ε)(Y (τ )) ⇀ φ(ε)(Y ), in L2([0, T ]; H1
0 (O)), for τ → 0.

Since Y (τ ) is a classical solution to (2.13) we have, in particular,

−
∫ T

0
(Y (τ )t , ϕ′(t))H−1dt = (y(τ )0 , ϕ(0))H−1 +

∫ T

0
(eμ

(τ)
t �φ(τ,ε)(Y (τ )t ) + δeμ

(τ)
t �Y (τ )t

− μ̃(τ )Y (τ )t , ϕ(t))H−1 dt,

2 More precisely, for each sequence τn → 0 we may extract a subsequence τnk such that the claimed
convergences hold [cf. Remark (2.6)].
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for all ϕ ∈ C1([0, T ]; H−1) with ϕ(T ) = 0. Taking the limit τ → 0 implies

−
∫ T

0
(Yt , ϕ

′(t))H−1dt = (y0, ϕ(0))H−1 +
∫ T

0
(eμt�φ(ε)(Yt )

+ δeμt�Yt − μ̃Yt , ϕ(t))H−1 dt, (2.20)

for all ϕ ∈ C1([0, T ]; H−1) with ϕ(T ) = 0. In particular, t �→ Yt is weakly differen-
tiable in H−1 with weak derivative given by

Y ′
t = eμt�φ(ε)(Yt ) + δeμt�Yt − μ̃Yt .

Since also Y ∈ L2([0, T ]; H1
0 (O)) we have Y ∈ W 1

2 ([0, T ]; H1
0 (O), L2(O)) (where

we follow the notation of [Zei90]). From [Sho97, Proposition III.1.2] we obtain Y ∈
C([0, T ]; L2(O)). Boundedness in L∞([0, T ]; L p(O)) for each p ≥ 1 then implies
Y ∈ C([0, T ]; L p(O)) for all p ≥ 1. With (2.20) this implies weak absolute continuity
of t �→ Yt and using [Sho97, Proposition III.1.1] we conclude Y ∈ W 1,2([0, T ]; H−1).

Step 3: Proof of (2.15), (2.16)
The inequality (2.15) follows from (2.17) and (2.18) by taking τ → 0 and using

Y ∈ C([0, T ]; L p(O)) for all p ≥ 1. Similarly, (2.16) follows from Lemma 2.5 and the
locally uniform convergence ψ(τ,ε) → ψ(ε). ��
Proposition 2.8. Let y0 ∈ L∞(O), ε > 0. Then there exists a unique solution Y (ε) to
(2.12) in the sense of Definition 2.1 satisfying Y (ε) ∈ C([0, T ]; H−1),

∫

O
epμ̃t |Y (ε)t |pdξ ≤

∫

O
|y0|pdξ+Cε p−1

∫ t

0

∫

O
�eμr +pμ̃r dξdr, ∀t ∈ [0, T ], (2.21)

for all p ≥ 1. Moreover,

∫

O
|Y (ε)t |dξ +

∫ t

0

∫

O
eμr |∇φ(ε)(Y (ε))|2dξdr

≤
∫

O
|y0|dξ +

1

2

∫ t

0

∫

O
|�eμr |dξ + Cε. (2.22)

In addition, t �→ Y (ε)t is weakly continuous in L p(O) for all p ≥ 1.

Proof. Uniqueness follows from Proposition 2.3. The construction of solutions to (2.12)
starts from (2.13) and Lemma 2.7.

Step 1: A-priori bounds
From (2.16) (with � ≡ 1) we have

∫

O
ψ(ε)(Y (ε,δ)t )dξ +

∫ t

s

∫

O
eμr |∇φ(ε)(Y (ε,δ)r )|2dξdr

≤
∫

O
ψ(ε)(Y (ε,δ)s )dξ +

1

2

∫ t

s

∫

O
|�eμr |dξdr

+ δ
∫ t

s

∫

O
ψ(ε)(Y (ε,δ)r )�eμr dξdr. (2.23)
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Step 2: Extraction and identification of a limit
Due to (2.15) and (2.23) we may argue as in Lemma 2.7 to extract subsequences

satisfying

Y (ε,δ) ⇀∗ Y (ε), in L∞([0, T ]; L p(O)), ∀p ≥ 1,

Y (ε,δ) → Y (ε), in L2([0, T ]; H−1),

φ(ε)(Y (ε,δ)) ⇀ η(ε), in L2([0, T ]; H1
0 (O)), for δ → 0.

Note that due to the lack of a uniform L2([0, T ]; H1
0 (O)) bound on Y (ε,δ) for δ → 0

we may only deduce strong convergence in L2([0, T ]; H−1) as compared to strong
convergence in L2([0, T ]; L2(O)) in Lemma 2.7. Since Y (ε,δ) is a solution to (2.13) we
have

−
∫ T

0
(Y (ε,δ)t , ϕ′(t))H−1 dt = (y0, ϕ(0))H−1 +

∫ T

0
(eμt�φ(ε)(Y (ε,δ)t ), ϕ(t))H−1 dt

+ δ
∫ T

0
(eμr�Y (ε,δ)t , ϕ(t))H−1 dt−

∫ T

0
(μ̃Y (ε,δ)t , ϕ(t))H−1 dt,

for all ϕ ∈ C1([0, T ]; H−1) with ϕ(T ) = 0. Taking the limit δ → 0 yields

−
∫ T

0
(Y (ε)t , ϕ′(t))H−1dt = (y0, ϕ(0))H−1 +

∫ T

0
(eμt�η(ε), ϕ(t))H−1 dt

−
∫ T

0
(μ̃Y (ε)t , ϕ(t))H−1 dt,

for all ϕ ∈ C1([0, T ]; H−1) ∩ C0([0, T ]; C2(Ō)) with ϕ(T ) = 0. As in the proof of
Lemma 2.7 we conclude

d

dt
Y (ε)t = eμt�η(ε) − μ̃Y (ε)t , in H−1 for a.e. t ∈ [0, T ]

and Y (ε) ∈ W 1,2([0, T ]; H−1) ⊆ C0([0, T ]; H−1). Continuity of t �→ Y (ε)t in H−1 and
uniform boundedness in L p(O) then imply weak continuity of t �→ Y (ε)t in L p(O) for
all p ≥ 1.

It remains to identify η(ε). For this we consider the convex, lower semicontinuous
functional

�(ε)(x) :=
∫ T

0

∫

O
ψ(ε)(xt (ξ))dξdt, x ∈ L2([0, T ] × O).

Then ∂�(ε) : L2([0, T ] × O) → L2([0, T ] × O) with

∂�(ε)(x) = {η(ε) = φ(ε)(x)}
being a maximal monotone operator. By monotonicity of φ(ε) we have

∫ T

0

∫

O
(φ(ε)(Y (ε,δ))− φ(ε)(z))(Y (ε,δ) − z)dξdt ≥ 0,
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for all z ∈ L2([0, T ] × O). Taking the limit δ → 0 we obtain

∫ T

0

∫

O
(η(ε) − φ(ε)(z))(Y (ε) − z)dξdt ≥ 0,

for all z ∈ L2([0, T ]×O). By maximal monotonicity this gives η(ε) ∈ ∂�(ε)(Y (ε)) and
thus η(ε) = φ(ε)(Y (ε)). In conclusion, Y (ε) is a solution to (2.12).

Step 3: Proof of (2.21), (2.22)
Equation (2.21) follows from (2.15). From (2.23) and (2.11) we have

∫

O
ψ(Y (ε,δ)t )dξ +

∫ t

0

∫

O
eμr |∇φ(ε)(Y (ε,δ)r )|2dξdr

≤
∫

O
ψ(y0)dξ + Cε +

1

2

∫ t

0

∫

O
|�eμr |dξdr

+ δ
∫ t

0

∫

O
ψ(ε)(Y (ε,δ)r )�eμr dξdr.

Integration against a nonnegative testfunction η ∈ L∞([0, T ])with ‖η‖1 = 1 and taking
the limit δ → 0 yields

∫ T

0
ηt

∫

O
ψ(Y (ε)t )dξdt +

∫ T

0
ηt

∫ t

0

∫

O
eμr |∇φ(ε)(Y (ε)r )|2dξdrdt

≤
∫

O
ψ(y0)dξ + Cε +

1

2

∫ T

0
ηt

∫ t

0

∫

O
|�eμr |dξdrdt.

Since t �→ Y (ε)t is weakly continuous in L p(O) for each p ≥ 1 this implies (2.22). ��
Theorem 2.9. Let y0 ∈ L∞(O). Then there exists a solution (Y, η) to (2.1) in the sense
of Definition 2.1 satisfying

∫

O
epμ̃t |Yt |pdξ ≤

∫

O
|y0|pdξ. (2.24)

In addition, t �→ Yt is weakly continuous in L p(O) for all p ≥ 1.
The solution (Y, η) can be obtained as a strong-weak limit in L2([0, T ]; H−1) ×

L2([0, T ]; H1
0 (O)) of solutions (Y (ε), η(ε) = φ(ε)(Y (ε))) constructed in Proposition

2.8.

Proof. Let (Y (ε), η(ε)) be solutions to (2.12) as constructed in Proposition 2.8. By (2.21),
(2.22) and Aubin-Lions compactness we may extract subsequences such that

Y (ε) ⇀∗ Y, in L∞([0, T ]; L p(O)), ∀p ≥ 1,

Y (ε) → Y, in L2([0, T ]; H−1),

φ(ε)(Y (ε)) ⇀ η, in L2([0, T ]; H1
0 (O)), for δ → 0.

We may then argue as in Proposition 2.8 to obtain

d

dt
Yt = eμt�ηt − μ̃Yt , in H−1
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for a.e. t ∈ [0, T ] and Y ∈ W 1,2([0, T ]; H−1). In particular, Y ∈ C([0, T ]; H−1)

which implies weak continuity of t �→ Yt in L p(O) due to the L∞([0, T ]; L p(O))
boundedness.

In order to characterize the limit η we may argue similar to Proposition 2.8. For this
we consider the convex, lower semicontinuous functionals

�(x) :=
∫ T

0

∫

O
ψ(xt (ξ))dξdt,

�(ε)(x) :=
∫ T

0

∫

O
ψ(ε)(xt (ξ))dξdt, x ∈ L2([0, T ] × O).

Then ∂�, ∂�(ε) : L2([0, T ] × O) → L2([0, T ] × O) with

∂�(x) = {η ∈ L2([0, T ] × O)|ηt (ξ) ∈ φ(xt (ξ)), a.e. (t, ξ) ∈ [0, T ] × O}
∂�(ε)(x) = {η(ε) = φ(ε)(x)}

being maximal monotone operators. Due to (2.11) we have

|�(ε)(x)−�(x)| ≤
∫

OT

|ψ(ε)(xt (ξ))− ψ(xt (ξ))|dξ ⊗ dt ≤ |OT |ε, ∀x ∈ L2(OT ).

Hence, �(ε) → � in Mosco sense, and thus ∂�(ε) → ∂� in strong graph sense (cf.
[Att84, Theorem 3.66]), i.e. for all (z̃, η̃) ∈ ∂� there are (z̃(ε), η̃(ε) = φ(ε)(z̃(ε))) ∈ ∂�(ε)
such that z̃(ε) → z̃, η̃(ε) → η̃ in L2([0, T ] × O). By monotonicity of φ(ε) we have

∫ T

0

∫

O
(φ(ε)(Y (ε))− φ(ε)(z̃(ε)))(Y (ε) − z̃(ε))dξdt ≥ 0.

Taking the limit ε → 0 we obtain

∫ T

0

∫

O
(η − η̃)(Y − z̃)dξdt ≥ 0,

for all (z̃, η̃) ∈ ∂�. By maximal monotonicity this gives η ∈ ∂�(Y ) which implies
ηt (ξ) ∈ φ(Yt (ξ)) for a.e. (t, ξ) ∈ OT . In conclusion, (Y, η) is a solution to (2.3).

As in the proof of (2.22), taking ε → 0 in (2.21) yields (2.24) for almost all t ≥ 0.
Then using weak lower-semicontinuity of x �→ ∫

O epμ̃t |x |pdξ on L p(O) and weak
continuity of t �→ Yt in L p(O) we obtain (2.24) for all t ≥ 0. ��

3. Transformation

In this section we will give a rigorous justification of the transformation Yt := eμt Xt
leading to the transformed Eq. (1.8), i.e. to

∂t Yt ∈ eμt�sgn(Yt )− μ̃Yt , on OT

0 ∈ sgn(Yt ), on ∂O. (3.1)
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Since we aim to eventually deduce statements for X from Y we only require the “back-
transformation”, i.e. we aim to show that if Y is a solution to (3.1) constructed in Sect. 2
along an appropriate sequence εn → 0 then Xt := e−μt Yt is a solution to (1.7), i.e. to

d Xt ∈ �sgn(Xt )dt +
N∑

k=1

fk Xt dβ
k
t , on OT

0 ∈ sgn(Xt ), on ∂O.
(3.2)

In the following, let f = ( fk)k=1,...,N ∈ C2(Ō; R
N ) and β = (βk)k=1,...,N be a

standard R
N -valued Brownian motion. As before we set μt = −∑N

k=1 fkβ
k
t and μ̃ =

1
2

∑N
k=1 f 2

k . Let S = L2(O) and consider the Gelfand triple

S ⊆ H−1 ⊆ S∗.

Multivalued stochastic evolution inclusions of the type (3.2) have been studied in [GT13].
In order to also cover approximations to (3.2) we will recall the setting introduced in
[GT13, Section 7.1] for the more general SPDE of the type

d Xt ∈ �φ(eμt Xt )dt +
N∑

k=1

fk Xt dβ
k
t , on OT

0 ∈ φ(eμt Xt ), on ∂O,
(3.3)

where φ = ∂ψ : R → 2R is the subgradient of an even, convex, continuous function ψ
with ψ(0) = 0, and for all η ∈ φ(r):

|η| ≤ C(|r | + 1), ∀r ∈ R. (3.4)

We then define ϕ(t, u) := ∫
O ψ(e

μt u)dξ for u ∈ S, t ∈ [0, T ] and let A(t) := ∂ϕ(t, ·) :
S → 2S∗

. We note

A(t, u) = {�v ∈ S∗|v(ξ) ∈ φ(eμt u(ξ)), a.e. ξ ∈ O}
and the growth condition (3.4) implies

‖ηt‖S∗ ≤ C(1 + ‖e−μt ‖∞‖u‖S), ∀ηt ∈ A(t, u), t ∈ [0, T ]. (3.5)

For �v ∈ A(t, u) we have

S∗〈�v,w〉S = −
∫

O
v(ξ)w(ξ)dξ.

Definition 3.1. A continuous F̄t -adapted process X : [0, T ] ×� → H−1 is a solution
to (3.3) if X ∈ L2([0, T ] × �; S) and there is an η ∈ L2([0, T ] × �; S) such that X
solves the following integral equation (in S∗)

Xt = x0 +
∫ t

0
�ηr dr +

N∑

k=1

∫ t

0
fk Xr dβk

r , (3.6)

P-a.s. for each t ∈ [0, T ] and �ηt ∈ A(t, Xt ), dt ⊗ P-almost everywhere.
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Note that since (3.6) is satisfied in S∗, implicitly the Riesz map ι = (−�)−1 : H−1 →
H1

0 (O) is applied to X . Hence, (3.6) reads

(−�)−1 Xt = (−�)−1x0 +
∫ t

0
�ηr dr + (−�)−1

N∑

k=1

∫ t

0
fk Xr dβk

r ,

again as an equation in S∗. As applied to −�� ∈ S this yields

∫

O
Xt�dξ =

∫

O
x0�dξ +

∫ t

0

∫

O
ηr��dr +

N∑

k=1

∫ t

0

∫

O
fk Xr�dξdβk

r ,

for all � ∈ H2(O) ∩ H1
0 (O) and a.e. t ∈ [0, T ]. Hence, we obtain

Remark 3.2. Let X, η as in Definition 3.1. Then X is a solution to (3.3) iff

(Xt , �)2 = (x0, �)2 +
∫ t

0
(ηr ,��)2dr +

N∑

k=1

∫ t

0
( fk Xr , �)2dβk

r , for a.e. t ∈ [0, T ]

P-a.s., for all � ∈ H2(O) ∩ H1
0 (O).

Using Itô’s formula for Gelfand triples (cf. [PR07, Theorem 4.2.5]) and monotonicity
of the operator �φ : S → 2S∗

yields

Lemma 3.3. Solutions to (3.3) are unique.

From [GT13, Example 7.3] we have

Proposition 3.4. Let x0 ∈ L2(O). Then there is a unique solution X to (3.2) in the sense
of Definition 3.1.

We now proceed to the justification of the transformation Xt := e−μt Yt . In different
contexts analogous transformations have been used e.g. in [BDPR09b,BR13,Ges13b].
In the present situation the proof is more involved, since no uniqueness result for (3.1)
is known.

Theorem 3.5. Let x0 ∈ L∞(O). Then there is an F̄t -adapted solution Y to (3.1) con-
structed as in Sect. 2. Moreover, Xt := e−μt Yt is the unique solution to (3.2) in the sense
of Definition 3.1.

The proof of Theorem 3.5 proceeds in several steps. The main difficulty is the proof
of F̄t -adaptedness of Y , which does not simply follow from the approximation via Y (εn)

due to the lack of a uniqueness result for (3.1). Note that the subsequence εnm along
which Y (εnm ) converges to Y may depend on ω ∈ � and thus adaptedness of Y does not
(yet) follow from the adaptedness of Y (εnm ). The main idea in this section is to prove
convergence (not only along some subsequence) of Y (εn) by proving convergence on the
level of the “back-transformation” X (εn) := e−μY (εn).

Proposition 3.6. Let x0 ∈ L∞(O) and for all ω ∈ � let (Y (ω), η(ω)) be a solution to

∂t Yt ∈ eμt (ω)�φ(Yt )− μ̃Yt , on OT

0 ∈ φ(Yt ), on ∂O,
with Y0 = x0 in the sense of Definition 2.1. Assume that Y ∈ L2+τ ([0, T ] ×�× O) for
some τ > 0 and that t �→ Yt is F̄t -adapted in H−1. Then (X := e−μY, η) is a solution
to (3.3).
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Proof The proof follows from arguments similar to those of [BDPR09b, claim p. 916].
��

In order to apply Proposition 3.6 we need to prove that Y constructed in Theorem
2.9 may be chosen to be F̄t -adapted in H−1. As outlined above, for this we will prove
convergence on the level of the “back-transformations” X (ε) := e−μY (ε).

Lemma 3.7. Let x ∈ L2(O). For all ε > 0 let (X (ε), η(ε)) be a solution to (3.3) with
φ ≡ φ(ε) and φ(ε) as in Sect. 2.2. Assume supε≥0 ‖X (ε)‖L2([0,T ]×�;S) ≤ C. Then

X (ε) → X for ε → 0 in L2(�; C([0, T ]; H−1)),

where X is a solution to (3.3) with φ = ∂sgn.

Proof. The key point leading to the strong convergence X (ε) → X is the choice of φ(ε).
Due to (2.10) one has

(φ(ε1)(a)− φ(ε2)(b)) · (a − b) ≥ −2(ε1 + ε2) ∀a, b ∈ R.

Using Itô’s formula and the Burkholder–Davis–Gundy inequality this yields the required
strong convergence

X (ε) → X in L2(�; C([0, T ]; H−1)).

For details we refer to [BDPR09b, proof of Theorem 2.2] where similar arguments have
been employed. It then remains to identify X as a solution to (3.3). This can be shown
by the same methods as used in the proof of Theorem 2.9. ��
Proof of Theorem 3.5. In order to prove F̄t -adaptedness of Y (ε,δ) we note that in the
construction we may choose the approximation μ(τ) of μ in an F̄t -adapted way (e.g. by
first shifting the time variable by τ , then mollifying with a standard Dirac sequence).
Continuity of the solution to (2.14) with respect to μ(τ) is classical. This implies F̄t -
adaptedness of Y (τ,ε,δ). From Lemma 2.7 and by uniqueness of Y (ε,δ) we have weak
convergence along the full sequence, i.e.

Y (τ,ε,δ) ⇀ Y (ε,δ), in L2([0, T ]; H−1).

Hence, Y (ε,δ) is F̄t -adapted. Analogous reasoning yields F̄t -adaptedness of Y (ε).
From (2.21) we have

sup
t∈[0,T ]

E

∫

O
|Y (ε)t |pdξ ≤

∫

O
|y0|pdξ + Cε p−1

E

∫ T

0

∫

O
|�eμr +pμ̃r |dξdr

and the right hand side is finite due to Fernique’s Theorem. Hence, Y (ε) is uniformly
bounded in L p([0, T ] × � × O) for all p ≥ 1. Proposition 3.6 implies that X (ε) :=
e−μY (ε) is a solution to (3.3) with φ = φ(ε). Again employing Fernique’s Theorem we
note that X (ε) is uniformly bounded in L2([0, T ] × �; S). Since ψ(ε) is the Moreau-
Yosida approximation of ψ , Lemma 3.7 implies X (ε) → X in L2([0, T ] × �; H−1).

Thus, there is a sequence εn → 0 such that

X (εn) → X P-a.s. in L2([0, T ]; H−1).

Since also Y (εnl ) ⇀ Y in L2([0, T ]; H−1) along some subsequence nl , we obtain

eμX = Y , P-a.s.,

which implies that Y is F̄t -adapted, if constructed along this specific sequence εn .
Proposition 3.6 then finishes the proof. ��



Finite Time Extinction for Stochastic Sign Fast Diffusion 333

4. Finite Time Extinction

In this section we will prove finite time extinction via energy methods as outlined in the
introduction. We will first prove an energy inequality for the approximating solutions
Y (ε,δ) constructed in Lemma 2.7. By a limiting argument this will imply finite time
extinction for Y .

In order to control the amount of energy added to the system by the random pertur-
bation we need to require

Hypothesis 4.1. Assume that f = ( fk)k=1,...,N ∈ C2(Ō; R
N ) is such that for all p ≥ 1

and a.a. ω ∈ � there is a t0 = t0(p, ω) such that
∫

O
e−p

∑N
k=1 fk (ξ)β

k
t (ω)− 1

2 f 2
k (ξ)t dξ =

∫

O
e−pμt (ξ,ω)−pμ̃(ξ)t dξ ≤ C(p, ω) < ∞,

for all t ≥ t0.

Based on the law of iterated logarithm, it is not difficult to see that as long as μ̃ is
strictly positive Hypothesis 4.1 is satisfied. Trivially, Hypothesis 4.1 is satisfied when
no noise is present (i.e. μ, μ̃ ≡ 0). More generally, a mild decay condition on the size
of the level sets of μ̃ is sufficient to guarantee Hypothesis 4.1:

Remark 4.2. Assume that for each p ≥ 1 there are ε0, c > 0 such that
∣∣∣∣∣

{
ξ ∈ O

∣∣∣0 <
N∑

k=1

f 2
k (ξ) ≤ ε

}∣∣∣∣∣ = |{0 < μ̃ ≤ ε}| ≤ c| log(ε)|−p, ∀ε ≤ ε0.

Then Hypothesis 4.1 is satisfied. In particular, Hypothesis 4.1 is satisfied whenever the
mass of the sublevel sets of μ̃ decays polynomially, i.e. if |{0 < μ̃ ≤ ε}| � εδ for all
ε ≤ ε0 and some δ > 0.

Proof. For each τ > 1, by the law of iterated logarithm we have

|βt (ω)| ≤ τ
√

2t log2(t), for all t ≥ t0(τ, ω),

for P-a.a. ω ∈ �. For p ≥ 1, we estimate
∫

O
e−pμt (ξ)−pμ̃(ξ)t dξ ≤

∫

O
ep| f ||βt |−pμ̃t dξ

≤
∫

O
ep| f |(|βt |− | f |

2 t)dξ

=
∫

O
e

p| f |√t
(
τ
√

2 log2(t)− | f |
2

√
t
)

dξ

=
∫

{| f |≤ 2τ
√

2 log2(t)√
t

}
e

p| f |√t
(
τ
√

2 log2(t)− | f |
2

√
t
)

dξ

+
∫

{| f |> 2τ
√

2 log2(t)√
t

}
e

p| f |√t
(
τ
√

2 log2(t)− | f |
2

√
t
)

dξ

≤
∫

{| f |≤ 2τ
√

2 log2(t)√
t

}
ep| f |√tτ

√
2 log2(t)dξ + |O|

≤ e4pτ 2 log2(t)

∣∣∣∣∣

{
| f | ≤ 2τ

√
2 log2(t)√

t

}∣∣∣∣∣ + |O|,
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for all t ≥ t0(τ, ω). Since
2τ

√
2 log2(t)√

t
→ 0 for t → ∞ we can use the assumption to

conclude
∫

O
e−μt (ξ)−μ̃(ξ)t dξ � | log(t)|4pτ 2 | log(t−

1
4 )|−(4p+1) + |O|

� | log(t)|4pτ 2−(4p+1) + |O|,
for all t ≥ t0(τ, p, ω). Choosing τ > 0 small enough implies the claim. ��

We will now proceed to prove the key energy estimate in an approximate form for
Y (ε,δ). In the following let ϕ ∈ C2(Ō) be the classical solution to

�ϕ = −1, on O
ϕ = 1, on ∂O.

By the maximum principle we have 1 ≤ ϕ ≤ ‖ϕ‖∞ =: Cϕ .

Lemma 4.3. Assume that Hypothesis 4.1 is satisfied. Let y0 ∈ L∞(O), ε, δ > 0, Y (ε,δ)

be the associated solution to (2.13), τ > 0 and p > d
2 ∨ 1. Further, let [s, t] ⊆ R+ such

that

sup
r∈[s,t]

�ϕeμr −μs ≤ 0

and s ≥ t0 = t0(p, τ, ω), with t0 as in Hypothesis 4.1 (applied with p replaced by
p(p+τ)
τ

). Then,

∫

O
ψ(ε)(Y (ε,δ)t )ϕe−μs dξ

≤
((

h2(s, 1, τ, δ, ε, ‖x0‖1+τ
1+τ )− K ε

)(1−α)−(1 − α)

∫ t

s
g(ε,δ)(r)dr ∨ 0

) 1
1−α

+ K ε,

where

h2(r, p, τ, δ, ε, x) := C1C p
ϕ

(
eδ

∫ r
0 h1(s,p+τ)ds x

+Cε p+τ−1
∫ r

0
eδ

∫ t
s h1(w,p+τ)dwh1(s, p + τ)ds

) p
p+τ

h1(r, p) := sup
ξ∈O

|�eμr +pμ̃r |

K (ε) := Cϕ‖e−μs ‖∞
ε

2

and C1 = C1(p, τ, ω), α = 2p∗
q < 1,

g(ε,δ)(r) =

⎧
⎪⎨

⎪⎩

(
infξ∈O eμr −μs

) ‖φ(ε)(Y (ε,δ)r )‖∞, for d = 1

infξ∈O eμr −μs

h2(r,p,τ,δ,ε,‖x0‖p+τ
p+τ )

2p∗
pq
, for d ≥ 2,
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and

q = ∞ if d = 1,

q ∈ (2,∞) arbitrary if d = 2,

q = 2d

d − 2
if d ≥ 3. (4.1)

Proof From (2.16) with � = ϕe−μs we have

∫

O
ψ(ε)(Y (ε,δ)v )ϕe−μs dξ +

∫ v

u

∫

O
ϕeμr −μs |∇φ(ε)(Y (ε,δ)r )|2dξdr

≤
∫

O
ψ(ε)(Y (ε,δ)u )ϕe−μs dξ,

for all [u, v] ⊆ [s, t] (where [s, t] is as in the statement). We now use the Sobolev
embedding H1

0 (O) ↪→ Lq(O) with q > 2 as in (4.1). The simpler case d = 1 has
already been outlined in the introduction. Hence, we shall restrict to the case d ≥ 2 in
the following. We obtain

∫

O
ψ(ε)(Y (ε,δ)v )ϕe−μs dξ +

∫ v

u
inf
ξ∈O

eμr −μs

(∫

O
|φ(ε)(Y (ε,δ)r )|qdξ

) 2
q

dr

≤
∫

O
ψ(ε)(Y (ε,δ)u )ϕe−μs dξ.

We have
∫

O
|φ(ε)(Y (ε,δ)r )|qdξ =

∫

|Y (ε,δ)r |≤ε
|φ(ε)(Y (ε,δ)r )|qdξ +

∫

|Y (ε,δ)r |>ε
|φ(ε)(Y (ε,δ)r )|qdξ

≥ |{|Y (ε,δ)r | > ε}|.
This implies

∫

O
ψ(ε)(Y (ε,δ)v )ϕe−μs dξ +

∫ v

u
inf
ξ∈O

eμr −μs |{|Y (ε,δ)r | > ε}| 2
q dr

≤
∫

O
ψ(ε)(Y (ε,δ)u )ϕe−μs dξ. (4.2)

We note
∫

O
ψ(ε)(Y (ε,δ)v )ϕe−μs dξ

=
∫

|Y (ε,δ)v |≤ε
ψ(ε)(Y (ε,δ)v )ϕe−μs dξ +

∫

|Y (ε,δ)v |>ε
ψ(ε)(Y (ε,δ)v )ϕe−μs dξ

≤ Cϕ‖e−μs ‖∞
ε

2
+

∫

|Y (ε,δ)v |>ε
|Y (ε,δ)v |ϕe−μs dξ

≤ Cϕ‖e−μs ‖∞
ε

2
+ ‖e−μsϕY (ε,δ)v ‖p|{|Y (ε,δ)v | > ε}| 1

p∗ , ∀p > 1. (4.3)
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From (2.15) we obtain

∫

O
epμ̃t |Y (ε,δ)t |pdξ ≤ eδ

∫ t
0 h1(r,p)dr

∫

O
|y0|pdξ + Cε p−1

∫ t

0
eδ

∫ t
r h1(τ,p)dτh1(r, p)dr,

with h1(r, p) := supξ∈O |�eμr +pμ̃r |. Thus, by Hypothesis 4.1:

∫

O
|e−μsϕY (ε,δ)r |p =

∫

O
ep(−μs−μ̃s)e−pμ̃(r−s)ϕ pepμ̃r |Y (ε,δ)r |pdξ

≤ C1C p
ϕ

(∫

O
e(p+τ)μ̃r |Y (ε,δ)r |p+τdξ

) p
p+τ

≤ C1C p
ϕ

(
eδ

∫ r
0 h1(s,p+τ)ds

∫

O
|x0|p+τdξ

+ Cε p+τ−1
∫ r

0
eδ

∫ t
s h1(w,p+τ)dwh1(s, p + τ)ds

) p
p+τ

=: h2(r, p, τ, δ, ε, ‖x0‖p+τ
p+τ ), (4.4)

for all p ≥ 1 and r ≥ s∨t0, where C1 = C1(p, τ, ω), t0 = t0(p, τ, ω) is as in Hypothesis
4.1. From (4.3) and (4.4) we conclude

|{|Y (ε,δ)v | > ε}|

≥ 1

‖e−μsϕY (ε,δ)v ‖p∗
p

(∫

O
ψ(ε)(Y (ε,δ)v )ϕe−μs dξ − Cϕ‖e−μs ‖∞

ε

2

)p∗

≥ 1

h2(v, p, τ, δ, ε, ‖x0‖p+τ
p+τ )

p∗
p

(∫

O
ψ(ε)(Y (ε,δ)v )ϕe−μs dξ − Cϕ‖e−μs ‖∞

ε

2

)p∗

.

Using this in (4.2) yields

∫

O
ψ(ε)(Y (ε,δ)v )ϕe−μs dξ +

∫ v

u
g(ε,δ)(r)

(∫

O
ψ(ε)(Y (ε,δ)r )ϕe−μs dξ − K (ε)

) 2p∗
q

dr

≤
∫

O
ψ(ε)(Y (ε,δ)u )ϕe−μs dξ,

for all [u, v] ⊆ [s, t] with

g(ε,δ)(r) := infξ∈O eμr −μs

h2(r, p, τ, δ, ε, ‖x0‖p+τ
p+τ )

2p∗
pq

K (ε) := Cϕ‖e−μs ‖∞
ε

2
.

We will require α := 2p∗
q < 1 which is equivalent to choosing p >

q
q−2 . Note that

q
q−2 = d

2 for d ≥ 3 and q
q−2 can be chosen arbitrarily close to 1 for d = 2. Hence, let

p > d
2 arbitrary, fixed.
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With f (u) := ∫
O ψ

(ε)(Y (ε,δ)u )ϕe−μs dξ =: ‖Y (ε,δ)u ‖ϕe−μs we obtain

f (v) +
∫ v

u
g(ε,δ)(r)

(
f (r)− K (ε)

)
dr ≤ f (u), for all [u, v] ⊆ [s, t].

Note that f is continuous since Y (ε,δ) ∈ C([0, T ]; L2(O)). Hence, from Lemma A.1
we obtain

‖Y (ε,δ)t ‖ϕe−μs ≤
((

‖Y (δ)s ‖ϕe−μs − K ε
)(1−α) − (1 − α)

∫ t

s
g(ε,δ)(r)dr ∨ 0

) 1
1−α

+ K ε.

From (4.4) (with p = 1 we conclude)

‖Y (ε,δ)t ‖ϕe−μs

≤
((

h2(s, 1, τ, δ, ε, ‖x0‖1+τ
1+τ )− K ε

)(1−α) − (1 − α)

∫ t

s
g(ε,δ)(r)dr ∨ 0

) 1
1−α

+ K ε.

��
We may now derive the key energy estimate for Y from Lemma 4.3 by taking the

limits δ → 0 then ε → 0. We obtain

Lemma 4.4. Assume that Hypothesis 4.1 is satisfied. Let y0 ∈ L∞(O) and Y be a
solution to (2.3) constructed in Theorem 2.9. Let τ > 0, p > d

2 ∨ 1 and [s, t] ⊆ R+
such that

sup
r∈[s,t]

�ϕeμr −μs ≤ 0

and s ≥ t0 = t0(p, τ, ω) with t0 as in Hypothesis 4.1 (applied with p replaced by
p(p+τ)
τ

). Then,

∫

O
ψ(Yt )ϕe−μs dξ ≤

((
C1Cϕ‖x0‖1+τ

)(1−α) − (1 − α)

∫ t

s
g(r)dr ∨ 0

) 1
1−α

,

where C1 = C1(p, τ, ω), α = 2p∗
q < 1,

g(r) =

⎧
⎪⎨

⎪⎩

(
infξ∈O eμr −μs

) ‖ηr‖∞, for d = 1

infξ∈O eμr −μs

(C1Cϕ‖x0‖p+τ )
2p∗

q
, for d ≥ 2,

and

q = ∞ if d = 1,

q ∈ (2,∞) arbitrary if d = 2,

q = 2d

d − 2
if d ≥ 3.
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Proof We first recall that the weak convergences Y (ε,δ) ⇀ Y (ε) and Y (ε) ⇀ Y hold as
weak limits in L p(OT ) for all p > 1. Integrating the main estimate from Lemma 4.3
against a nonnegative testfunction η ∈ C1([s, t]) with ‖η‖L1([s,t]) = 1 and using weak

lower semicontinuity of v �→ ∫ t
s ηr

∫
O ψ

(ε)(vr )ϕe−μs dξdr on L p(OT ) we obtain by
taking δ → 0:

∫ t

s
ηr

∫

O
ψ(ε)(Y (ε)r )ϕe−μs dξdr ≤

∫ t

s
ηr

((
h2(s, 1, τ, ε, ‖x0‖1+τ

1+τ )− K ε
)(1−α)

−(1 − α)

∫ r

s
g(ε)(τ )dτ ∨ 0

) 1
1−α

dr + K ε.

Since t �→ Y (ε)t is weakly continuous on L p(O) this implies
∫

O
ψ(ε)(Y (ε)r )ϕe−μs dξ ≤

((
h2(s, 1, τ, ε, ‖x0‖1+τ

1+τ )− K ε
)(1−α)

−(1 − α)

∫ r

s
g(ε)(τ )dτ ∨ 0

) 1
1−α

+ K ε,

for all r ∈ [s, t]. Due to (2.11) this implies
∫

O
ψ(Y (ε)r )ϕe−μs dξ ≤

((
h2(s, 1, τ, ε, ‖x0‖1+τ

1+τ )− K ε
)(1−α)

−(1 − α)

∫ r

s
g(ε)(τ )dτ ∨ 0

) 1
1−α

+ K ε + Cε,

for all r ∈ [s, t]. Using the same reasoning as for δ → 0 allows to take the limit ε → 0,
which yields

∫

O
ψ(Yt )ϕe−μs dξ ≤

((
h2(1, τ, ‖x0‖1+τ

1+τ )
)(1−α) − (1 − α)

∫ t

s
g(τ )dτ ∨ 0

) 1
1−α

,

where

h2(p, τ, x) = lim
ε→0

lim
δ→0

h2(s, p, τ, δ, ε, x) := C1C p
ϕ x

p
p+τ

and

g(r) = lim
ε→0

lim
δ→0

g(ε,δ)(r) =

⎧
⎪⎨

⎪⎩

(
infξ∈O eμr −μs

) ‖ηr‖∞, for d = 1

infξ∈O eμr −μs

C1C p
ϕ (

∫
O |x0|p+τ dξ)

2p∗
q(p+τ )

, for d ≥ 2.

��
Theorem 4.5. Assume that Hypothesis 4.1 is satisfied 3. Let x0 ∈ L∞(O), X be the
unique solution to (1.7) and let

τ0(ω) := inf{t ≥ 0|Xt (ω) = 0, for a.e. ξ ∈ O}.
3 In fact, we only need Hypothesis 4.1 to hold for certain p ∈ R+ depending on the integrability of the

initial condition x0 and the dimension d.
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Then finite time extinction holds, i.e.

P[τ0 < ∞] = 1.

The extinction time τ0(ω) may be chosen uniformly for x0 bounded in L p(O), for any

p >

{
1, if d = 1
d
2 , if d ≥ 2.

Proof Let Y be a solution to (3.1) as constructed in Theorem 3.5. Let p > d
2 (p > 1 in

case d = 1) and set p̃ := p+ d
2

2 , τ := p − p̃. From Lemma 4.4 we recall: For all intervals
[s, t] with s ≥ t0 = t0( p̃, τ, ω) = t0(p, d, ω) such that supr∈[s,t]�ϕeμr −μs ≤ 0 we
have

∫

O
|Yt |ϕe−μs dξ ≤

((
C1Cϕ‖x0‖1+τ

)1−α − (1 − α)

∫ t

s
g(r)dr ∨ 0

) 1
1−α

≤
((

C1Cϕ‖x0‖p
)1−α − (1 − α)

∫ t

s
g(r)dr ∨ 0

) 1
1−α

(4.5)

with

g(r) =

⎧
⎪⎨

⎪⎩

(
infξ∈O eμr −μs

) ‖ηr‖∞, for d = 1

infξ∈O eμr −μs

(C1Cϕ‖x0‖p)
2 p̃∗

q
, for d ≥ 2,

and the same constants as in Lemma 4.4. Note that p̃ > d
2 and thus α = 2 p̃∗

q < 1. We
will now restrict to the more difficult case d ≥ 2, while d = 1 follows similarly.

By Lemma B.2 there is a set�0 ⊂ � of full P-measure, such that for all ε > 0, ω ∈ �
we may find arbitrarily large intervals [s, t] with s ≥ t0 such that supr∈[s,t] |βr (ω) −
βs(ω)| ≤ ε for all ω ∈ �0. Also note

�ϕeμr −μs = eμr −μs
(
−1 + 2∇(μr − μs) · ∇ϕ + ϕ(|∇(μr − μs)|2 +�(μr − μs))

)

→ −1,

for ‖μ· − μs‖C0,2([s,t]×Ō) → 0. Thus, for ε small enough we have

sup
r∈[s,t]

�ϕeμr −μs ≤ 0,

whenever supr∈[s,t] |βr (ω)−βs(ω)| ≤ ε. In conclusion, we may choose arbitrarily large
intervals [s, t] such that supr∈[s,t]�ϕeμr −μs ≤ 0 and

g(r) ≥
(

1

2(1 ∨ C1Cϕ‖x0‖p)

) 2 p̃∗
q

.
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On such intervals we have from (4.5):
∫

O
|Yt |ϕe−μs dξ

≤
⎛

⎝(C1Cϕ‖x0‖p)
1−α − |t − s|(1 − α)

(
1

2(1 ∨ C1Cϕ‖x0‖p)

) 2 p̃∗
q ∨ 0

⎞

⎠

1
1−α

.

Since we may choose |t − s| arbitrary large this implies that for all ω ∈ �0 there is a
τ0(ω) such that

Yτ0 = 0, a.e. in O.
The claim now follows from Theorem 3.5. ��

5. Decay Due to (Itô-)Noise

Using similar ideas as in the proof of Theorem 4.5 we may (partially) sharpen a result
obtained in [BR12, Theorem 2.3]. More precisely, assuming μ̃ = 1

2

∑N
k=1 f 2

k > 0 it has
been shown in [BR12] that

∫

K
Xt dξ ≤ ‖x0‖2|K | 1

2 e
supK μ̃

1
2
(∑N

k=1(β
k
t )

2
) 1

2

e− t
2 inf K ′ μ̃,

for every compact set K ⊆ O and every compact neighborhood K ′ ⊇ K . In contrast, for
the result presented here we do not assume any non-degeneracy condition on the noise.
Moreover, the exponential rate of decay is more explicit and its relation to the decay of
geometric Brownian motion becomes evident.

Proposition 5.1. Let x0 ∈ L∞(O) and let X be the corresponding unique solution to
(1.7). Then, P-a.s. and for all t ≥ 0

Xt ≤ e−μt −μ̃t‖x0‖∞, for a.e. ξ ∈ O. (5.1)

Proof In the following we will restrict to the case x0 �≡ 0. For x0 ≡ 0 we may proceed
similarly. We consider the approximants Y (τ,ε,δ) solving (2.14). Let M := ‖x0‖∞ and

K (τ )(t, ξ) := e−μ̃(τ )(ξ)t M + νt,

with ν > 0 arbitrary, fixed. Then

∂t K (τ ) = −μ̃(τ )e−μ̃(τ )t M + ν ≥ −μ̃(τ )K (τ ) + ν

and

eμ
(τ)
t �φ(τ,ε)(K (τ )

t ) = eμ
(τ)
t

(
φ̈(τ,ε)(K (τ )

t )|∇K (τ )
t |2 + φ̇(τ,ε)(K (τ )

t )�K (τ )
t

)
.

Since μ̃(τ ) is uniformly bounded we have K (τ ) ≥ c > 0 for some c > 0. We note that
φ(ε)(r) = sgn(r) for |r | > ε. Hence, also φ(τ,ε)(r) = sgn(r) for |r | > ε + τ and for
ε, τ > 0 sufficiently small we get

φ̈(τ,ε)(K (τ )), φ̇(τ,ε)(K (τ )) = 0.
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Thus,

eμ
(τ)
t �φ(τ,ε)(K (τ )

t ) = 0

for all ε, τ small enough. Moreover, we note

δeμ
(τ)
t �K (τ )

t = δt
(

eμ
(τ)
t −μ̃(τ )t�μ̃(τ) + teμ

(τ)
t −μ̃(τ )t |∇μ̃(τ )|2

)
≤ ν,

for all tδ small enough. Hence,

eμ
(τ)
t �φ(τ,ε)(K (τ )

t ) + δeμ
(τ)
t �K (τ )

t − μ̃(τ )K (τ )
t ≤ ν − μ̃(τ )K (τ )

t ≤ ∂t K (τ ).

and K (τ ) is a supersolution to (2.14) for each (τ, ε, δ) small enough on a time-interval
[0, T0(δ)], where T0(δ) ↑ ∞ for δ → 0. Consequently,

Y (τ,ε,δ)t (ξ) ≤ K (τ )
t (ξ), ∀(t, ξ) ∈ [0, T0(δ)] × O.

In other words, K (τ )
t −Y (τ,ε,δ)t is a nonnegative distribution in H−1 for all t ∈ [0, T0(δ)].

Since all the limits τ, ε, δ → 0 in the construction of Y hold for all t ∈ [0, T ] weakly
in H−1 and the convex cone of nonnegative distributions in H−1 is weakly closed this
implies

Kt − Yt ≥ 0 in H−1 for all t ≥ 0,

(using T0(δ) ↑ ∞ for δ → 0), where

K (t, ξ) := e−μ̃(ξ)t M + νt.

Since also Kt − Yt ∈ L2(O) for all t ∈ [0, T ] this implies

Yt ≤ Kt , for all t ∈ [0, T ], a.e. ξ ∈ O.

Now letting ν → 0 implies the claim. ��
Remark 5.2. On an informal level the proof of Proposition 5.1 relies on choosing

K (t, ξ) = e−μ̃(ξ)t‖x0‖∞

as a supersolution to (2.3). Since K ≥ c > 0 for some c > 0 we have (informally)

�sgn(K ) ≡ 0.

Hence, the observed decay neglects the diffusive effect and is purely due to the noise
and its Itô form. This explains the geometric Brownian motion type of decay in (5.1)
and is in sharp contrast to our main result Theorem 4.5 which is stable under vanishing
noise (i.e. if μ̃ ↓ 0).

Acknowledgements. The author would like to thank Michael Röckner for valuable discussion and comments.
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Appendix A. Finite Time Extinction for ODE

Lema A.1. Let f, g : R+ → R+, f lower semicontinuous and g ∈ L1
loc(R+) such that

there is a K > 0 so that

f (t) ≤ f (s)−
∫ t

s
g(r)( f (r)− K )αdr, ∀0 ≤ s ≤ t, (A.1)

for some α ∈ (0, 1). Then

f (t) ≤
(
( f (0)− K )1−α − (1 − α)

∫ t

0
g(r)dr ∨ 0

) 1
1−α

+ K , ∀t ∈ R+.

Proof. We first note that by subtracting K from (A.1) and replacing f by f − K we
may suppose K = 0.

If f (0) = 0 then f (t) = 0 for all t ∈ [0, T ] and nothing needs to be shown. Hence,
assume f (0) = q > 0 and let

h(t) :=
(

q1−α − (1 − α)

∫ t

0
g(r)dr ∨ 0

) 1
1−α

, for t ∈ R+.

Let

τ1 = inf{t ≥ 0| f (t) = 0}
τ2 = inf{t ≥ 0|h(t) = 0}.

Since f is lower semicontinuous and h is continuous we have τ1, τ2 > 0 and f , h are
strictly positive on [0, τ1 − ε] ([0, τ2 − ε] resp.) for all ε > 0. Thus, h is the unique
solution to

ḣ = −ghα

h(0) = q,
(A.2)

on [0, τ2 − ε], while f is a subsolution to the same equation. Since f, h are strictly
positive on [0, (τ1 ∧ τ2)− ε] comparison holds for (A.2) and thus

f (t) ≤ h(t), ∀t ∈ [0, (τ1 ∧ τ2)− ε].

By lower semicontinuity of f we conclude f ≤ h on [0, τ1 ∧ τ2]. In particular, τ1 ≤ τ2
and

f (t) ≤ h(t), ∀t ∈ [0, τ1],

which proves the claim. ��
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Appendix B. Some Properties of Brownian Motion

Lemma B.1. Let β be an R
N -valued Brownian motion, ε > 0. Then

P[ sup
r∈[0,t]

|βr | < ε] > 0.

Proof Let β1, β2 be independent R
N -valued Brownian motions over the interval [0, t],

then β := (β1−β2)√
2

is also an R
N -valued Brownian motion. There exists at least one

ball Bε(x) ⊆ C([0, t]) such that L(β1)(Bε(x)) = P[β1 ∈ Bε(x)] = q > 0. By
independence,

P[β1 ∈ Bε(x) ∩ β2 ∈ Bε(x)] = P[β1 ∈ Bε(x)]P[β2 ∈ Bε(x)] = q2 > 0.

Hence,

P[β ∈ Bε(0)] ≥ P[β1 ∈ Bε(x) ∩ β2 ∈ Bε(x)] ≥ q2 > 0.

��
Lemma B.2. Let β be an R

N -valued Brownian motion. Then, there is a set �0 ⊆ �

of full P-measure such that for all m, n ∈ N, ε > 0, ω ∈ �0 there is an interval
[s, t] ⊆ [m,∞) of length |t − s| = n such that

sup
r∈[s,t]

|βr (ω)− βs(ω)| < ε.

Proof Let m, n ∈ N, ε > 0. We first note that by replacing β by βm
t := βt+m − βm we

may assume m = 0. For each k ∈ N we consider the interval [kn, (k + 1)n] and note that
βk

t (ω) := βt+kn(ω)− βkn(ω) = βt (θknω) are independent Brownian motions on [0, n].
Hence,

P[ sup
r∈[0,n]

|βk
r | < ε] =: q > 0,

for all k. We conclude

P[ sup
r∈[kn,k(n+1)]

|βr − βkn| ≥ ε, ∀k] = P[ sup
r∈[0,n]

|βk
r | ≥ ε, ∀k]

=
∏

k

P[ sup
r∈[0,n]

|βk
r | ≥ ε]

=
∏

k

(1 − q) = 0.

Since it is sufficient to consider ε ∈ Q+ the claim follows. ��
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