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Abstract: We compute the elliptic genera of general two-dimensional N = (2, 2) and
N = (0, 2) gauge theories. We find that the elliptic genus is given by the sum of Jeffrey–
Kirwan residues of a meromorphic form, representing the one-loop determinant of fields,
on the moduli space of flat connections on T 2. We give several examples illustrating our
formula, with both Abelian and non-Abelian gauge groups, and discuss some dualities
for U (k) and SU (k) theories. This paper is a sequel to the authors’ previous paper
(Benini et al., Lett Math Phys 104:465–493, 2014).
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1. Introduction

Supersymmetric localization is a powerful technique that allows us to exactly compute
the partition function of a supersymmetric theory on a supersymmetric background and
the expectation values of certain operators. Our aim in this paper is to obtain a formula
for the elliptic genera, i.e., the partition functions on T 2 with supersymmetric boundary
conditions of N = (2, 2) and N = (0, 2) gauge theories in two dimensions.

Typically, the infinite-dimensional path integral of the field theory is reduced to
an integral of the one-loop determinant over the finite-dimensional moduli space of
supersymmetric (or BPS) configurations. For our gauge theory on T 2 with gauge group
G of rank r , the moduli space of BPS configurations is the moduli space M of flat
connections of G over T 2. It has real dimension 2r . Given a complex structure τ on T 2,
M inherits a natural complex structure making it an r -dimensional complex torus. The
one-loop factor Z1-loop is naturally a meromorphic (r, 0)-form on M, and therefore it is
natural to guess that the elliptic genus is given by a kind of residue operation formula

ZT 2 = 1

(2π i)r

∮
C

Z1-loop,

where C is an appropriate real r -dimensional cycle in M. The hard task is to find the
correct cycle C .

In a previous paper [1], the cycle C has been determined when the gauge theory has
rank one, i.e., r = 1. In that case, the poles of Z1-loop can be split into two groups, u ∈
M+

sing and u ∈ M−
sing, distinguished by the sign of the charges of the fields responsible

for the divergence. Then the formula is given by

ZT 2 = 1

|W |
∑

u+ ∈M+
sing

1

2π i

∮
u=u+

Z1-loop = − 1

|W |
∑

u− ∈M−
sing

1

2π i

∮
u=u−

Z1-loop, (1.1)

where |W | is the order of the Weyl group.1 This prescription was found by carefully
performing the localization procedure. As discussed in [1], the formula generalizes easily
to groups with disconnected components.2

1 In this paper, we adopt a slightly different normalization of Z1-loop than in [1] such that ZT 2 is given by
a residue of Z1-loop without any additional multiplicative factor.

2 In [2], an alternative prescription for N = (2, 2) theories of general rank was given. In all examples
studied, the two prescriptions lead to the same results. Note also that the formula up to the choice of cycle
C was already given in [3], where C was declared to be a cycle that reproduces the Euler number. Also, the
formula was derived mathematically in [4] for complete intersections in products of projective spaces.
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For theories whose gauge group has general rank, we will find the formula

ZT 2 = 1

|W |
∑

u∗ ∈M∗
sing

JK-Res
u=u∗

(
Q(u∗), η

)
Z1-loop, (1.2)

where JK-Res(Q(u∗), η) is a residue operation called the Jeffrey–Kirwan residue, formu-
lated mathematically in Jeffrey and Kirwan [5] and motivated by a physical discussion
by Witten [6]. Here, Q(u∗) is the set of charges of the fields responsible for the pole of
Z1-loop at u∗. In addition this residue operation depends, at each pole u∗, on a covector
η ∈ h∗ where h is the Cartan subalgebra of the gauge group G. Although each of the
terms in (1.2) depends on a choice of η, the sum does not. As we will see, this corre-
sponds to the fact that the elliptic genus is the same as computed in different phases of
a two-dimensional theory. The Eq. (1.2) reproduces the simpler Eq. (1.1) when G has
rank 1.

We will present various illustrative examples: Abelian theories that—in their geomet-
ric phase—realize Calabi–Yau manifolds as complete intersections in projective spaces,
non-Abelian theories that realize complete or incomplete intersections in Grassmanni-
ans, and determinantal varieties. We will also study the dualities involving U (k) and
SU (k) gauge theories, some of which are massive and some conformal. Many of these
examples were already considered in [2].

In the rest of the paper, we will describe and derive the Eq. (1.2) in more detail.
We start in Sect. 2 by setting up the notation, presenting the Eq. (1.2), and providing
an explanation of the Jeffrey–Kirwan residue operation. Then in Sect. 3, we derive the
formula by localizing the field theory path integral (this section is technical and could be
skipped at a first reading). In Sect. 4, we present a few illustrative examples, showing how
the formula can be actually used. Further details on our notations are in the appendices,
reproduced from [1] for self-containedness.

2. Elliptic Genera

We start by defining the objects of interest, i.e., the elliptic genera of two-dimensional
theories with N = (2, 2) and N = (0, 2) supersymmetry, and then give a residue
formula for them. We adopt the same notation as in [1], where the special case of
theories with rank-one gauge groups was studied.

2.1. Theories with N = (2, 2) supersymmetry. Consider a two-dimensional theory with
N = (2, 2) supersymmetry, a flavor symmetry group K (with Cartan generators Ka)
and a left-moving U (1) R-symmetry J (which is discrete if the theory is not conformal).
Its elliptic genus is defined as

ZT 2(τ, z, u) = TrRR (−1)F q HL q̄ HR y J
∏

a
x Ka

a . (2.1)

The trace is taken in the RR sector, i.e., we give the fermions periodic boundary condi-
tions. Then F is the fermion number, the parameter

q = e2π iτ (2.2)

specifies the complex structure of a torus w ∼ w + 1 ∼ w + τ , and we write τ =
τ1 + iτ2. HL and HR are the left- and right-moving Hamiltonians respectively, defined
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in Euclidean signature in terms of Hamiltonian and momentum as 2HL = H + i P ,
2HR = H −i P . Since q HL q̄ HR = exp(−2πτ2 H −2πτ1 P), the trace can be represented
by a path integral on a torus of complex structure τ . In a superconformal theory, the
operators HL , HR, J equal the zero-mode generators L0, L̄0, J0 of the superconformal
algebra.3 We also define the parameters

y = e2π i z, xa = e2π iua . (2.3)

For a charge vector ρa , we define

xρ =
∏

a
xa
ρa = e2π iρaua . (2.4)

We often write ρ(u) = ρaua , considering ρ ∈ k∗ and u ∈ k, where k is the Cartan
subalgebra of the flavor symmetry group K .

In the path integral formulation the effect of y J and x Ka
a is to turn on flat background

gauge fields AR and Aflavor on the torus, coupled to the R-symmetry and flavor symmetry
currents respectively, with

z =
∮

t
AR − τ

∮
s

AR, ua =
∮

t
Aath flavor − τ

∮
s

Aath flavor, (2.5)

where t, s are the temporal and spatial cycles.4 This is equivalent to specifying non-
trivial boundary conditions twisted by the R- and flavor charges, along both the spatial
and temporal cycles.5 When the R-symmetry is discrete, z is only allowed to take certain
discrete values.

The elliptic genus when ua �= 0 is sometimes called the equivariant elliptic genus.
Setting z = ua = 0, the elliptic genus reduces to the Witten index, and in particular
when the 2d theory has a low energy description as a non-linear sigma model (NLSM),
it gives the Euler number of the target manifold. The q → 0 limit of the elliptic genus
is called the χy genus.

Let us summarize some properties of the N = (2, 2) elliptic genus. Since the spec-
trum of the Ramond sector is invariant under change conjugation:

ZT 2(τ, z, ua) = ZT 2(τ,−z,−ua). (2.6)

When the R-symmetry is non-anomalous and the theory flows to an IR fixed point, the
modular transformations of the elliptic genus are:

Z
(aτ + b

cτ + d
,

z

cτ + d
,

ua

cτ + d

)
=exp

[ π ic

cτ + d

(
− 2Aa

Luaz+
cL

3
z2

)]
Z(τ, z, u) (2.7)

3 When not uniquely fixed, e.g. by the superpotential, the superconformal R-symmetries can be determined
through the c-extremization principle of [7,8].

4 Choosing a constant connection AR
μ, we have z = (−2iτ2) AR

w̄
and similarly for the flavor holonomies.

5 To be precise, in the Hamiltonian definition as written in (2.1), the fields are periodic along the spatial
cycle and twisted by complex parameters y, xa along the temporal cycle. Instead, we can also take the trace
in the sector where the fields are twisted along the spatial cycle by

∮
s A, and the chemical potential inside the

trace only comes from
∮

t A. This matches more directly with the path integral definition where the fields are

twisted along both the spatial and temporal cycle by phases e2π i
∮

s A , e2π i
∮

t A respectively. By holomorphy
of the result in z, ua , these quantities all coincide.
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with
(

a b
c d

) ∈ SL(2,Z). Here cL is the IR central charge, proportional to the ’t Hooft
anomaly of J , while Aa

L is the ’t Hooft anomaly between J and K a :

cL = −3
∑

fermions

γ3 J 2, Aa
L =

∑
fermions

γ3 J Ka . (2.8)

The sums are taken over all fermions in the theory, and γ3 is the chirality matrix that we
take positive (negative) on right (left) movers.

In this paper we study gauged linear sigma models (GLSMs), more precisely gauge
theories of vector multiplets with matter represented by chiral and twisted chiral multi-
plets, possibly with superpotential and twisted superpotential interactions. A description
of these theories is in [9], and we give our conventions in Appendix B.

We compute the elliptic genus with supersymmetric localization. The BPS configu-
rations relevant for the computation have all bosonic fields set to zero, except for a flat
gauge field along the Cartan subalgebra of the gauge and flavor group. Let us parame-
trize such flat connections by u, taking values in the complexified Cartan subalgebra
of the gauge and flavor group, as we did in (2.5) for the flavor group alone. We need
the one-loop determinants of quadratic fluctuations around these backgrounds for vec-
tor, chiral and twisted chiral multiplets. They have been computed in [1,2,10,11] in a
regularization scheme that matches the Hamiltonian computation.

The contribution of a chiral multiplet �with vector-like R-charge6 R and transform-
ing in a representation R of the gauge and flavor group is:

Z�,R(τ, z, u) =
∏
ρ ∈R

θ1(q, y R/2−1xρ)

θ1(q, y R/2xρ)
. (2.9)

The product is over the weights ρ of the representation R, and xρ ≡ e2π iρ(u). Here
and in the following we will use interchangeably τ, z, u and q, y, x using the relations
(2.2) and (2.3). The function θ1(q, y), which we also denote as θ1(τ |z), is a Jacobi theta
function and our convention is given in Appendix A. Notice that if we have two chiral
multiplets �1,2 in conjugate representations and with R-charges R1 + R2 = 2, then
Z�1,RZ

�2,R̄
= 1 as the two can be given a superpotential mass term and integrated out.

Similarly a neutral chiral � with R-charge R = 1 has Z� = −1.7

The contribution of a vector multiplet V with gauge group G consists of two parts—
the Cartan part with the zero-modes removed and the off-diagonal part (see footnote 1):

ZV,G(τ, z, u) =
(

2πη(q)3

θ1(q, y−1)

)rank G ∏
α ∈ G

θ1(q, xα)

θ1(q, y−1xα)

rank G∏
a=1

dua . (2.10)

The product is over the roots α of the gauge group. Then η(q) is the Dedekind eta
function, with 2πη(q)3 = θ ′

1(τ |0) where the derivative is with respect to z. Notice
that the off-diagonal components give the same contribution as that of twisted chiral
multiplets with axial R-charge 2 and vanishing vector-like R-charge.

6 The definition (2.1) contains the left-moving R-charge J . A chiral multiplet of vector-like R-charge R
(and assigning vanishing axial R-charge) has J = R

2 .
7 The minus sign simply follows from a choice of convention for the fermion number. One could choose

to include a minus sign in (2.9) instead.
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Finally, the contribution of a twisted chiral multiplet � with axial R-charge RA is

Z�(τ, z) = θ1(q, y−RA/2+1)

θ1(q, y−RA/2)
. (2.11)

Notice that all one-loop determinants are meromorphic functions of their arguments
and transform under modular transformations according to Eq. (2.7). In particular the
’t Hooft anomalies in (2.8) become

cL = −3 dim G − 3
∑

chiral i

(Ri − 1) dim Ri − 3
∑

twisted
chiral i

(RA,i − 1)

Aa
L =

∑
chiral i

Ka,i dim Ri

(2.12)

where Ka,i is the charge of �i under the flavor symmetry Cartan generator Ka .

2.2. Theories with N = (0, 2) supersymmetry. Consider a two-dimensional theory with
N = (0, 2) supersymmetry and a flavor symmetry group K . The equivariant elliptic
genus is defined as

ZT 2(τ, u) = TrR(−1)F q HL q̄ HR
∏

a
x Ka

a . (2.13)

Again, q = e2π iτ and xa = e2π iua . If the theory has a low-energy description as a
NLSM with target a holomorphic vector bundle over a compact complex manifold, as
in the models in [12], the elliptic genus encodes the Euler number of the vector bundle,
see e.g. [13].

Also in this class we study GLSMs, i.e. gauge theories of vector multiplets with
matter in chiral and Fermi multiplets; further interactions are described by potential
terms Ja(�) and Ea(�), holomorphic functions of the chiral multiplets and in number
equal to the Fermi multiplets (see again [9] and our Appendix B for a description of
these theories).

The contribution of a chiral multiplet � transforming in a representation R of the
gauge and flavor group is

Z�,R(τ, u) =
∏
ρ ∈R

i
η(q)

θ1(q, xρ)
. (2.14)

The contribution of a Fermi multiplet � in a representation R is

Z�,R(τ, u) =
∏
ρ ∈R

i
θ1(q, xρ)

η(q)
. (2.15)

Note that their q-expansion can start with a nontrivial power q E , where E is the Casimir
energy of the multiplet. Notice also that the product of the determinants of a chiral and a
Fermi multiplet in conjugate representations is 1, as they can be given a supersymmetric
mass and be integrated out. Moreover suppose we have symmetry group U (1)R ×G: the
product of the determinants of a chiral multiplet with charge R

2 , and of a Fermi multiplet
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with charge R
2 − 1, both in representation R, equals—up to a sign—the determinant

(2.9) of an N = (2, 2) chiral multiplet of R-charge R.
The contribution of a vector multiplet V with gauge group G (with the zero-modes

of the Cartan generators removed) is8

ZV,G(τ, u) =
(

2πη(q)2

i

)rank G ∏
α ∈ G

i
θ1(q, xα)

η(q)

rank G∏
a=1

dua . (2.16)

Notice that the determinant of an off-diagonal vector multiplet is exactly equal to that
of a Fermi multiplet, since in two dimensions the gauge field is non-dynamical and thus
the two contain the same degrees of freedom. Moreover, in the case with U (1)R × G
symmetry, the product of the determinants of a vector (or Fermi) multiplet of charge 0 and
of a chiral multiplet of charge −1, reproduces the determinant (2.10) of an N = (2, 2)
vector multiplet.

All one-loop determinants are meromorphic functions, and have the following mod-
ular transformation properties:

Z
(aτ + b

cτ + d
,

ua

cτ + d

)
= ε(a, b, c, d)cR−cL exp

[
− π ic

cτ + d
Aabuaub

]
Z(τ, ua) (2.17)

with
(

a b
c d

) ∈ SL(2,Z). The multiplier system ε(a, b, c, d) is a phase, independent of
ua , universally defined by

η
( aτ+b

cτ+d

)
θ1

( aτ+b
cτ+d

∣∣ u
cτ+d )

= ε(a, b, c, d) e− iπc
cτ+d z2 η(τ)

θ1(τ |u) . (2.18)

It is through ε that the gravitational anomaly shows up. In the theories under considera-
tion, cR −cL equals three times the number of right-moving minus left-moving fermions,
i.e.

cR − cL = 3
∑

chiral i

dim Ri − 3
∑

Fermi i

dim Ri − 3 dim G. (2.19)

Finally Aab are the flavor ’t Hooft anomalies:

Aab =
∑

fermions

γ3 Ka Kb =
∑

chiral i

Ka,i Kb,i dim Ri −
∑

Fermi i

Ka,i Kb,i dim Ri . (2.20)

2.3. The formula. Let us now present our formula for the elliptic genus of a two-
dimensional gauge theory. First of all we construct the one-loop determinant Z1-loop
with zero-modes removed; such an object is naturally a meromorphic (r, 0)-form, where
r = rank(G). As described in Sect. 2.1, for an N = (2, 2) theory with gauge group G,
flavor group K , and chiral multiplets �s in representation Rs of G, with R-charge Rs
and weight Ks under the flavor group, from (2.9) and (2.10) we get

Z1-loop(τ, z, u, ξ)

=
(

2πη(q)3

θ1(q, y−1)

)r ∏
α ∈ G

θ1(q, xα)

θ1(q, y−1xα)

∏
s

∏
ρ∈Rs

θ1(q, y Rs/2−1xρe2π i Ks (ξ))

θ1(q, y Rs/2xρe2π i Ks (ξ))
du1 . . . dur .

(2.21)

8 It was noticed in [14] that the non-Abelian vector multiplet determinant serves as the natural measure for
the orthogonality of affine characters.
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Notice that the only difference between u and ξ is that u will be integrated over. We
will sometimes keep ξ implicit in the following formulæ. In the same way, the one-loop
determinant Z1-loop(τ, u, ξ) of an N = (0, 2) gauge theory with gauge group G, flavor
group K , and chiral and Fermi multiplets, is formed out of the blocks (2.14), (2.15) and
(2.16).

The meromorphic form Z1-loop has poles in u, along hyperplanes corresponding to
all chiral and off-diagonal vector multiplets in N = (2, 2), and to chiral multiplets in
N = (0, 2). For simplicity, we will assume that the non-Abelian part of G is connected
and simply-connected; non-simply-connected and disconnected groups can be treated
as well, as in [1], but they require more care. Let h be the Cartan subalgebra of G, then
the Cartan torus of G can be identified with h/Q∨ where Q∨ is the coroot lattice. We
define

M = hC/(Q
∨ + τQ∨), (2.22)

then the moduli space of flat G-connections on T 2 is M/W , where W is the Weyl group.
Each of the multiplets listed above introduces a singular hyperplane Hi ⊂ M. We will
use the index i for them, and call Qi ∈ h∗ the weight of the multiplet under the gauge
group. For the different types of multiplets we have:

vector(2,2) : Hi =
{

−z + Qi (u) = 0 (mod Z + τZ)
}

Qi = α,

chiral(2,2) : Hi =
{

Ri
2 z + Qi (u) + Ki (ξ) = 0 (mod Z + τZ)

}
Qi = ρ,

chiral(0,2) : Hi =
{

Qi (u) + Ki (ξ) = 0 (mod Z + τZ)
}

Qi = ρ

(2.23)

where Qi (u) is a pairing between h∗ and h. Note also that a single Hi can contain
multiple parallel disconnected hyperplanes. We denote by Q = {Qi } the set of all
charge covectors. Then we define

Msing =
⋃

i
Hi (2.24)

in M, and we denote by M∗
sing ⊂ Msing the set of isolated points in M where at least r

linearly independent hyperplanes meet:

M∗
sing = {

u∗ ∈ M
∣∣ at least r linearly independent H ′

i s meet at u∗
}
. (2.25)

Given u∗ ∈ M∗
sing, we denote by Q(u∗) the set of charges of the hyperplanes meeting

at u∗:
Q(u∗) = {Qi

∣∣ u∗ ∈ Hi }. (2.26)

For a technical reason, we will assume the following condition: For any u∗ ∈ M∗
sing,

the set Q(u∗) is contained in a half-space of h∗. A hyperplane arrangement with this
property at u∗ is called projective [15]. Notice that if the number of hyperplanes at u∗
is exactly r , the arrangement is automatically projective.9 If at every u∗ the number of
hyperplanes meeting at u∗ is exactly r , we call the situation non-degenerate.

Denote by Conesing(Q) ⊂ h∗ the union of the cones generated by all subsets of Q
with r − 1 elements. Then each connected component of h∗\Conesing(Q) is called a

9 When the condition is not met, as in the example of Sect. 4.3, one needs to relax the constraints on R-
and flavor charges coming from the superpotential, resolve u∗ into multiple singularities which are separately
projective, and eventually take a limit where the charges are the desired ones.
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chamber. Choose a generic non-zero η ∈ h∗, i.e. an η �∈ Conesing(Q): such η identifies
a chamber in h∗. Under the assumption, the elliptic genus is given by the formula:

ZT 2(τ, z, ξ) = 1

|W |
∑

u∗ ∈M∗
sing

JK-Res
u=u∗

(
Q(u∗), η

)
Z1-loop(τ, z, u, ξ) (2.27)

where |W | is the order of the Weyl group. Here JK-Res is the Jeffrey–Kirwan residue
operation, which is explained in detail below. JK-Res is locally constant as a function
of η, but it can jump as η crosses from one chamber to another. Nonetheless the sum on
the right hand side is independent of η.

Before proceeding, we note that η ∈ h∗ should not be confused with the Fayet–
Iliopoulos term ξ ∈ h∗. When dealing with examples in Sect. 4, we will see that η and
ξ have many similar properties; for instance as η is varied over the chambers, (2.27)
produces the elliptic genus in the various phases of the gauge theory. Nonetheless η and
ξ are different objects, e.g. because ξ is only allowed for the Abelian part of the gauge
group while we need to choose η even for non-Abelian gauge groups. Even for Abelian
gauge groups, we do not see any reason why we should take η = ξ .

2.4. The Jeffrey–Kirwan residue.

2.4.1. Defining properties. The Jeffrey–Kirwan residue operation has been introduced
in [5]; there are several equivalent formulations available in the literature, and we follow
[15]. We define the residue at u∗ = 0; for generic u∗ we just shift the coordinates.
Consider n hyperplanes meeting at u = 0 ∈ C

r :

Hi = {
u ∈ C

r
∣∣ Qi (u) = 0

}
(2.28)

for i = 1, . . . , n and with Qi ∈ (Rr )∗. Here we indicate the set of charges Q(u∗) = {Qi }
simply by Q∗: the charges define the hyperplanes Hi and give them an orientation. The set
Q∗ defines a hyperplane arrangement (for further details on hyperplane arrangements see
e.g. [16]). The coefficients defining the hyperplanes are all real, i.e. we are dealing with a
complexified central arrangement. A residue operation is a linear functional on the space
of meromorphic r -forms that are holomorphic on the complement of the arrangement,
such that it annihilates exterior derivatives of rational (r − 1)-forms.

Take a meromorphic r -form ω defined in a neighborhood U of u = 0, and holomor-
phic on the complement of

⋃
i Hi . When n = r , we can define the residue of ω at u = 0

by its integral over
∏r

i=1 Ci , where each Ci is a small circle around Hi (and the overall
sign depends on the order of the Hi ’s). This stems from the fact that the homology group
Hr

(
U\⋃r

i=1 Hi ,Z
) = Z, and therefore there is a natural generator defined up to a sign.

When n > r however, Hr
(
U\⋃n

i=1 Hi ,Z
) = Z

cn,r with cn,r > 1, and it is imperative
to specify the precise cycle to choose.

For a projective arrangement and given an η ∈ (Rr )∗, the Jeffrey–Kirwan residue is
the linear functional defined by the conditions:

JK-Res
u=0

(Q∗, η)
dQ j1(u)

Q j1(u)
∧ · · · ∧ dQ jr (u)

Q jr (u)

=
{

sign det(Q j1 . . . Q jr ) if η ∈ Cone(Q j1 . . . Q jr )

0 otherwise
(2.29)
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where Cone denotes the cone spanned by the vectors in the argument. We can rewrite it
as

JK-Res
u=0

(Q∗, η)
du1 ∧ · · · ∧ dur

Q j1(u) . . . Q jr (u)
=

⎧⎨
⎩

1

| det(Q j1 . . . Q jr )|
if η ∈ Cone(Q j1 . . . Q jr )

0 otherwise
(2.30)

after choosing coordinates ua on h. The definition (2.29)–(2.30) is in general vastly
over-determined since there are many relations between the forms

∧r
α=1 dQ jα /Q jα , but

it has been proven in [17] that (2.29) is consistent.10 In fact the JK residue is given by
an integral over an explicit cycle, as we will review below in Sect. 2.4.3.

2.4.2. The rank-1 case. Let us first consider the simplest case r = 1. Applying (2.30)
we find

JK-Res
u=0

({q}, η) du

u
=

{
sign(q) if ηq > 0,
0 if ηq < 0.

(2.31)

Substituting into (2.27), we find that the elliptic genus in the rank-1 case is given by

ZT 2 = 1

|W |
∑

u+ ∈M+
sing

1

2π i

∮
u=u+

Z1-loop = − 1

|W |
∑

u− ∈M−
sing

1

2π i

∮
u=u−

Z1-loop (2.32)

by choosing η = 1 and η = −1 respectively. This precisely reproduces the Eq. (1.1)
originally found in [1].

2.4.3. Constructive definition. A constructive definition of the JK residue has been given
in [15]:

JK-Res
u=0

(Q∗, η) =
∑

F ∈FL+(Q∗,η)
ν(F) Res

F
. (2.33)

To understand the formula we need some more definitions. First, let �Q∗ be the set of
elements of h∗ obtained by partial sums of elements of Q∗:

�Q∗ =
{∑

i∈π Qi

∣∣∣π ⊂ {1, . . . , n}
}
. (2.34)

We impose a stronger regularity condition η �∈ Conesing(�Q∗), i.e. that η does not
belong to any hyperplane generated by elements of �Q∗ (this implies the weaker η �∈
Conesing(Q∗)). In fact Conesing(�Q∗) divides each chamber into sub-chambers, but
(2.33) will jump only when η moves from one chamber to another.

Then let FL(Q∗) be the finite set of flags

F = [
F0 = {0} ⊂ F1 ⊂ · · · ⊂ Fr = h∗], dim Fj = j, (2.35)

such that Q∗ contains a basis of Fj for each j = 1, . . . , r . Let the basis of Fj be
given by the first j elements of the ordered set B(F) = {Q j1, . . . , Q jr }. To each
flag F ∈ FL(Q∗) we associate a linear functional ResF , called the iterated residue,

10 The definition of the JK residue in [17] depends on both a covector η ∈ h∗ and a vector δ ∈ h, and
does not require the arrangement to be projective. If, however, the arrangement is projective one can naturally
choose a vector δ that has positive pairing with all covectors in Q∗. Any such choice leads to the definition in
[15] and that we are using here, which only depends on a covector η.
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which is simply the residue computed in the basis B(F): let ũα = Q jα (u) and ω =
ω̃1...r dũ1 ∧ · · · ∧ dũr , then

Res
F
ω = Res

ũr = 0
. . . Res

ũ1 = 0
ω̃1...r (2.36)

where at each step the other variables are kept constant and generic. The iterated residue
only depends on the flag F , not on the basis used to compute it, and indeed it corresponds
to integrating ω on a specific cycle [15].

Third, for each flag F we also introduce the vectors κF
j that are sums of elements

of Q∗:
κF

j =
∑

Qi ∈ Fj
Qi for j = 1, . . . , r. (2.37)

The number ν(F) is
ν(F) = sign det(κF

1 . . . κ
F
r ), (2.38)

i.e. it equals 1 or −1 depending on whether the ordered basis (κF
1 , . . . , κ

F
r ) of h∗ is

positively or negatively oriented, and ν(F) = 0 if the set {κF
j } is linearly dependent.

Finally, consider the closed cone s+(F,Q∗) = ∑r
j=1 R≥0κ

F
j generated by the ele-

ments {κF
j }. We denote by FL+(Q∗, η) the set of flags F such that η ∈ s+(F,Q∗).

Notice that from the stronger regularity condition on η it follows that for every flag
F ∈ FL+(Q∗, η), ν(F) = ±1.

It is easy to check that when Q∗ is a set of r linearly independent covectors
{Q1, . . . , Qr }, (2.33) agrees with (2.29). If η �∈ Cone(Q1 . . . Qr ) then FL+(Q∗, η) is
empty. Otherwise, the chamber Cone(Q1 . . . Qr ) is cut by Conesing(�Q∗) into r ! sub-
chambers and η belongs to one of them. Let this be the cone generated by {κF

j } for the flag
generated by B(F) = {Qπ(1), . . . , Qπ(r)}, where π is a permutation of {1, . . . , n}. Such
a flag is the only one in FL+(Q∗, η), moreover ν(F) = sign(π) sign det(Q1 . . . Qr ).
Applying (2.33) to the form ω = dQ1(u)

Q1(u)
∧ · · · ∧ dQr (u)

Qr (u)
we get (2.29).

3. Derivation via Localization

The aim of this section is to derive the Eq. (2.27) by a localization computation. Those
who are more interested in how the formula is used, and those who trust the authors, can
proceed directly to Sect. 4 where many illustrative examples are discussed.

Before getting into the details, we would like to spend a few paragraphs to motivate
why our derivation is going to be rather delicate and subtle. A schematic way to explain
the supersymmetric localization often goes as follows. We consider an integral over a
supermanifold M, with an action of a fermionic symmetry Q, acting on bosonic and
fermionic coordinates x and η:

Z =
∫
M

dx dη e−S . (3.1)

We can add an exact term −e−2
(∑

ξ |Qξ |2 + fermionic
)

to the action—where ξ are
fermionic variables in the system—without changing the integral. Then we have

Z = Z(e) =
∫
M

dx dη e−S−e−2(
∑
ξ |Qξ |2+fermionic)

. (3.2)
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We take e → 0, thus localizing the integral on the BPS subspace

MBPS = {
x ∈ M ∣∣Qξ = 0 for all ξ

}
. (3.3)

We end up with the formula

Z =
∫
MBPS

ω (3.4)

where ω is the differential form resulting from the fermionic and bosonic Gaussian
integral around MBPS ⊂ M.

In our situation the naive localization Eq. (3.4) does not make sense, because ω is
generically zero on MBPS due to fermionic zero-modes coming from the gaugini, and
because the part without fermionic zero-modes diverges on a subset Msing ⊂ MBPS.
This signifies the break-down of the assumption that the contribution from an infinites-
imal neighborhood of MBPS within M is well under control even in the limit e → 0.
Eventually, in our particular case, we find a formula of the form

Z =
∫

C
ω̃ (3.5)

where C is a middle-dimensional cycle in MBPS, and ω̃ is what results from the Gaussian
integral around MBPS ⊂ M if we drop the fermionic zero-modes that make ω vanish.
In fact the combined one-loop factor Z1-loop—e.g. in (2.21)—appearing in our main
Eq. (2.27) is such ω̃, which differs from the full Gaussian integral over all modes. It
is relatively easy to obtain Z1-loop = ω̃, but this schematic derivation is too crude to
determine C . It is in fact too late if we reached the stage (3.4).

Rather, we need to take the limit e → 0 in (3.2) carefully, e.g. by estimating how big
a tubular neighborhood needs to be kept around each point of MBPS, so that the apparent
divergence inω does not affect the limiting procedure. Therefore to obtain (3.5) we need
to: (1) split MBPS into regions; (2) perform various estimates and take the limit e → 0
carefully in each region; (3) combine the contributions from the various regions. This is
what we are going to do in this section. Before proceeding, the reader is advised to go
through the analysis of the rank-one case (presented in section 3 of our previous paper
[1]) because it is much simpler and yet it contains the physical idea.

3.1. The quantity to compute. The part of the localization procedure sketched in this
subsection—to get the quantity of interest (3.6)–(3.7)—is essentially the same as in
sections 3.2.1 and 3.2.2 of [1], and we refer there for more details.

We will denote the gauge coupling by e, so that there is a factor 1/e2 in front of the
gauge kinetic terms. We also put a factor 1/g2 in front of the kinetic terms for chiral (and
possibly Fermi) multiplets. These terms are Q-exact, so we can perform the localization
by sending e and g to zero.

Naively the locus on which the path integral localizes is the space of flat connections
on T 2, parameterized by u ∈ M (2.22) up to the identifications by the Weyl group.
After properly taking care of the fermionic zero-modes of the left-moving gaugini—
as we do in (3.7)—the total one-loop factor Z1-loop around a given u still diverges at
the hyperplanes Hi (2.23) due to scalar zero-modes in chiral and N = (2, 2) vector
multiplets.

Let us denote the union of the singular hyperplanes by Msing = ⋃
i Hi . To cope with

the divergence, we first fix a very small but finite e. Then we remove an ε-neighborhood
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�εMsing of the dangerous region from the integration domain M, perform the integral,
and take ε → 0. Eventually we take the limit e → 0. Keeping e finite during the process
removes the divergences on Msing and guarantees the correctness of the ε → 0 limit.
Alternatively one can take a scaling limit e, ε → 0 with ε < e# for a large enough
power (see [1]). Either way, we will indicate such a limit by lime,ε→0. At this stage it
is convenient to reinstate the vector multiplet auxiliary field D ∈ h. The quantity to
compute is

ZT 2 = 1

|W | lim
e,ε→0

∫
h

dr D
∫
M\�ε

d2r u fe(u, D) exp
[

− 1

2e2 D2 − iξ(D)
]
, (3.6)

where fe(u, D) is the result of the path integral over all modes except for the flat
connection zero-mode u and D. We allowed a Fayet–Iliopoulos term ξ ∈ h∗.

The function fe(u, D) has a smooth limit as e → 0, so we can take the limit immedi-
ately (we cannot do the same with the exponential, as we explained). In the N = (2, 2)
case one finds

fe(u, D) −−→
e→0

∫ ∏
c

dλc,0dλ̄c,0

〈∏
a,b

∫
d2xλa

∑
i

Qa
i ψiφi

∫
d2x λ̄b

∑
j

Qb
j ψ̄ j φ̄ j

〉
free

= det
[
hab(τ, z, u, D)

]
g(τ, z, u, D). (3.7)

In the first line we took care of the fermionic zero-modes of the left-moving gaugini;
a, b, c are gauge indices for the Cartan part, while i, j run over chiral and off-diagonal
vector multiplets. Then

hab = c
∑

i

∑
m,n∈Z

Qa
i Qb

i(∣∣m + nτ + Ri
2 z + Qi (u)

∣∣2 + i Qi (D)
)(

m + nτ̄ + Ri
2 z̄ + Qi (ū)

)
(3.8)

and g(τ, z, u, D) is the one-loop factor evaluated at non-zero D, whose explicit form
was given in [1], sections 2.1 and 2.2. In particular g(τ, z, u, 0) = Z1-loop(τ, z, u). The
overall constant c can be fixed by comparing with a single example, as we will do at the
very end. In the N = (0, 2) case one finds essentially the same expression11 (there is
no left-moving R-symmetry and z, but there are still flavor symmetries and ξα that we
kept implicit here), with a sum over chiral multiplets only.

We remark that the function g(τ, z, u, D), that e.g. for an N = (2, 2) chiral multiplet
reads

Z�,Q(τ, z, u, D) =
∏
m,n

(
m + nτ + (1 − R

2 )z − Q(u)
)(

m + nτ̄ + R
2 z̄ + Q(ū)

)
∣∣m + nτ + R

2 z + Q(u)
∣∣2 + i Q(D)

, (3.9)

at generic non-zero D ∈ h does not have any divergence in u, so indeed keeping e finite
in (3.6) removes all singularities.

11 In fact, even in the N = (2, 2) case, we make a slight redefinition of the auxiliary fields of N = (2, 2) non-
Abelian vector multiplets compared to the normal conventions in the literature, so that they nicely decompose
into N = (0, 2) multiplets. More details can be found around (B.5) in Appendix B.
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3.2. Expressions in terms of differential forms. We can cast (3.6) with (3.7) in a more
compact form. The symmetric matrix function hab satisfies the following two properties:

∂hab

∂ ūc
= ∂hcb

∂ ūa
,

∂g

∂ ūa
= i

c
hab Dbg, (3.10)

as can be seen from an explicit calculation. Let us introduce the (0, 1)-forms νb on M
and the Dolbeault operator ∂̄:

νb ≡ dūa hab, ∂̄ = dūa
∂

∂ ūa
. (3.11)

Regarding (νa)a=1,...,r as a single h∗
C

-valued one-form ν on M, we can rewrite the
relations (3.10) succinctly as

∂̄ν = 0, ∂̄g = i

c
ν(D) g. (3.12)

The intermediate form (3.6) of the elliptic genus can then be written simply as

ZT 2(τ, z) = 1

|W | lim
e,ε→0

∫
h × (M\�ε)
μ (3.13)

where

μ ≡ g exp
[

− 1

2e2 D2 − iξ(D)
]

dr u ∧ (
ν(dD)

)∧r
. (3.14)

So far we have taken D to be valued in h. However it will prove convenient to analytically
continue the integrand to D ∈ hC and shift the integration contour of D to � = h + iδ,
where δ ∈ h is a constant element that we will choose below. We thus have

ZT 2(τ, z) = 1

|W | lim
e,ε→0

∫
� × (M\�ε)
μ . (3.15)

As is clear from (3.9), g(τ, z, u, D)has poles in the complex D-plane along the imaginary
axes for all fixed u ∈ M, and they approach D = 0 as u approaches Msing. On the other
hand these poles are safely at a distance at least of order ε from the real D-axes, as long
as we keep u ∈ M\�ε. Therefore the result of (3.15) is independent of δ as long as it is
sufficiently close to zero, because the integrand does not have any pole on hC ×(M\�ε)
as we stay sufficiently close to the real D-lines.

For reasons that will become clear later, we require that Qi (δ) �= 0 for all Qi ∈ Q.
We will impose more conditions in Sect. 3.8.

3.3. A helpful identity. Given a set of charge vectors {Q1, . . . , Qs} ⊂ h∗, define

μQ1,...,Qs ≡ (ic)s

(r − s)! g exp
[

− 1

2e2 D2 − iξ(D)
]

dr u ∧ (
ν(dD)

)∧(r−s) ∧ dQ1(D)

Q1(D)
∧ · · · ∧ dQs(D)

Qs(D)
. (3.16)
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This is an (r, r − s)-form in u-space, in particular ∂μQ1,...,Qs = 0, and an s-form in D-
space. Note that dQa(D) = Qa(dD), andμQ1,...,Qs vanishes if Q1, . . . , Qs are linearly
dependent. We find:

dμQ0,...,Qs =
s∑

i=0

(−1)s−i μQ0,...Q̂i ...,Qs
, (3.17)

wherêmeans omission.
To prove it, first define the (r − n)-forms

ωa1...an ≡ 1

(r − n)! ν
b1 . . . νbr−n εb1...br−na1...an , (3.18)

where ε is the antisymmetric symbol. They satisfy ∂̄ωa1...an = 0, and there are two
special cases: ω = ν1 . . . νr and ωa1...ar = εa1...ar . Then, using

εa1...ar−nb1...bn εa1...ar−nc1...cn = (r − n)! n! δb1[c1
. . . δ

bn
cn ], (3.19)

we get:

∂̄
(
g ωa1...an

) = i

c
(−1)r−ng n D[a1ωa2...an ] = i

c
(−1)r−ng

n∑
i=1

(−1)i−1 Daiωa1...̂ai ...an .

(3.20)
The same equations are valid if we multiply by the exponential in (3.16). The form
μQ1,...,Qs can be written as

μQ1,...,Qs =(ic)s g exp
[

− 1

2e2 D2 − iξ(D)
]

dr u ∧ωa1...as

Qa1
1 . . . Qas

s

Q1(D). . . Qs(D)
dr D.

(3.21)

Then we just compute dμQ0,...,Qs = ∂̄μQ0,...,Qs , thus obtaining (3.17).

3.4. Cell decomposition of M. The basic idea behind the remaining computation is to
apply the identities (3.17) repeatedly r times to (3.15), so that we end up with a residue
integral. To do that, we first need to construct a suitable cell decomposition of M.

Define the open ε-neighborhoods

�ε(Hi ) = {
u ∈ M

∣∣ |Qi (u) + · · · | < ε} (3.22)

of the singular hyperplanes Hi ⊂ M (for the i th field), where the dots stand for the
constant shifts as described in (2.23); we also define their union

�ε ≡
⋃

i
�ε(Hi ). (3.23)

We will study the integral over the closed set M\�ε. The boundary ∂�ε of the integration
domain can be separated into tube regions

Si ≡ ∂�ε ∩ ∂�ε(Hi ). (3.24)
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We give them the natural orientation. We have12

∂�ε =
⋃

i
Si . (3.25)

In fact we can show something stronger: the union is quasi-disjoint. Let us introduce

Si1...is ≡ Si1 ∩ · · · ∩ Sis (3.26)

with the natural orientation induced from the natural one on ∂�ε(Hi1)∩· · ·∩∂�ε(His ).
They are totally antisymmetric in i1, . . . , is and

∂Si1...is = −
⋃

j
Si1...is j . (3.27)

Indeed Si1...is is a closed set, then ∂Si1...is ⊂ Si1...is ; on the other hand the boundary is
where Si1...is meets the other�ε(Hj ), and the sign follows from the natural orientation.
Each manifold Si1...is has real dimension 2r − s, unless it is empty. Indeed on the one
hand the manifold

{|Qi1(u)+ · · · | = · · · = |Qis (u)+ · · · | = ε
}

has dimension ≥ 2r −s,
if not empty; on the other hand Si1...is is part of the boundary of Si1...is−1 and proceeding
by induction it has dimension ≤ 2r − s. We conclude that the decompositions in (3.25)
and (3.27) are almost disjoint—in the sense that every intersection has dimension lower
than the components—and the integral of the union is the sum of the integrals.

The rest of this subsection will be spent in constructing 2r -dimensional cycles Ci
and (2r − p + 1)-dimensional cycles C j1... jp , antisymmetric in j1, …, jp, such that the
relations

M\�ε =
⊔

i

Ci (3.28)

and
∂C j1... jp = −S j1... jp +

∑
i
C j1... jpi (3.29)

hold. Here the subscripts i , j1,...,p are the same ones that label the charge vectors Qi .
They are constructed as follows.

First, construct a cell decomposition of M\�ε which is as good as possible. We
call a cell decomposition good if a codimension-k cell is at the intersection of k + 1
codimension-(k−1) cells (i.e. a codimension-1 cell is at the intersection of two maximal-
dimensional cells, a codimension-2 cell is at the intersection of three codimension-1
cells, etc.). Since M\�ε is a manifold with boundary and corners, we cannot construct
a good decomposition of it, but we will take one as good as possible. We require the
following conditions (i)–(iii). (i) Each cell is such that its interior is either in the interior
of M\�ε, or in the interior of exactly one Si1...is . (ii) The cell decomposition is good in
the interior of M\�ε. To describe the final condition, we note that a neighborhood in
M\�ε of an interior point of a corner Si1...is is of the form R

s
+ × U with U ⊂ Si1...is ,

and we can think of U ⊂ R
2r−s . More explicitly, the neighborhood is a domain in

R
2r = {(xi1 , . . . , xis , ys+1, . . . , y2r )} defined by xi1 ≥ 0, . . . , xis ≥ 0 and �y ∈ U .

For { j1, . . . , jp} ⊂ {i1, . . . , is}, the corner S j1... jp includes Si1...is and a patch of it is
identified with the region x j1 = · · · = x jp = 0. We introduce a cell decomposition of

12 On the one hand
⋃

i Si ⊂ ∂�ε . On the other hand, using ∂(
⋃

i Ai ) ⊂ ⋃
i ∂Ai , we have

⋃
i Si = ∂�ε ∩ ⋃

i ∂�ε(Hi ) ⊃ ∂�ε ∩ ∂(⋃i �ε(Hi )
) = ∂�ε.
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R
s
+×U as follows. Given a good cell decomposition of U , for { j1, . . . , jp} ⊂ {i1, . . . , is}

(0 ≤ p ≤ s) and distinct we define the cells of type Ĉ (2r−k+1)
j1... jp

[i1, . . . , is,U ] (with
p ≤ k − 1 ≤ 2r − s + p) by the conditions

0 = x j∈{ j1,..., jp}, 0 ≤ x j �∈{ j1,..., jp}, �y ∈ (2r − k + 1 − s + p)-dimensional cell of U.
(3.30)

The notation is that the cell lives in the neighborhood of an interior point of Si1,...,is ,
patch U , it has dimension (2r − k + 1), and it is the product of a (2r − k + 1 − s + p)-
dimensional cell of U and of an (s − p)-dimensional quadrant in R

s
+. The orientation of

Ĉ (2r−p)
j1,..., jp

[i1, . . . , is,U ] is the one induced from Si1,...,i p and we can similarly assign a nat-
ural orientation to all the others. This gives antisymmetry in j1, . . . , jp. The boundary of

a cell of type Ĉ (2r−k+1)
j1... jp

[i1, . . . , is,U ] is the union of cells of type Ĉ (2r−k)
j1... jp

[i1, . . . , is,U ]
taking the boundary cells in U , and of

⋃
j∈{i1,...,is }\{ j1,..., jp} Ĉ (2r−k)

j1... jp j [i1, . . . , is,U ] tak-
ing the same cell in U . We can now describe the condition (iii): a cell touching the
interior of Si1...is , coincides with a cell of type Ĉ (2r−k+1)

j1... jp
[i1, . . . , is,U ].

The cells of type Ĉ (2r−k+1)
j1... jp

[i1, . . . , is,U ] introduced above refer to specific neigh-

borhoods R
s
+ × U of Si1,...,is . In addition we have the cells of type Ĉ (2r−k+1), not

touching any S..., from the decomposition of the interior of M\�ε. Now, to each
(2r − k + 1)-dimensional cell we assign a set of k (not necessarily distinct) charge
vectors Qi , assigned by a function C as follows. To the 2r -dimensional cells of type
Ĉ (2r) and of type Ĉ (2r)[i1, . . . , is,U ] we assign a charge vector Qi randomly, and write
{Qi } = C(C) where C is a 2r -dimensional cell. To a cell C of type Ĉ (2r−k+1) we assign
k charge vectors determined by the k 2r -dimensional cells of type Ĉ (2r) surround-
ing it (because the decomposition is good): {Qi1, . . . , Qik } = C(C). To a cell of type

Ĉ (2r−k+1)
j1... jp

[i1, . . . , is,U ] we assign the k− p charge vectors determined by the k− p cells

of type Ĉ (2r)
j1... jp

[i1, . . . , is,U ] surrounding it in the good decomposition of U , as well as
the vectors Q j1, . . . , Q jp . This concludes the construction of the cell decomposition.

Now, for j1, . . . , jk distinct, we define the (2r − k + 1)-dimensional domains

C j1... jk =
⋃{

cells of type Ĉ (2r−k+1) and Ĉ (2r−k+1)
j1... jp

[i1 . . . is,U ]
∣∣∣ C(cell)

= {Q j1, . . . , Q jk }
}

(3.31)

where the union is over all cells in the decomposition, including all i1, . . . , is and all U .
By construction, the domains C j1... jk satisfy the conditions (3.28) and (3.29).

3.5. Cycles in D-space. In the following we will also need various integration con-
tours in the complexified D-space hC, besides �. The motivation behind the following
definitions will become clear in Sect. 3.7.

We already defined the contour � for the D-integral in (3.15):

� = {
D ∈ hC

∣∣ Im D = δ
}
. (3.32)

It has the topology of R
r and an imaginary shift by a chosen vector δ.
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Next we introduce the contours �i1...i p : they have the topology of R
r−p × T p, circle

around
⋂p

k=1

{
Qik (D) = 0

}
and have an imaginary shift by chosen vectors δi1...i p . For

consistency such vectors must satisfy

0 = Qi1(δi1...i p ) = · · · = Qi p (δi1...i p ). (3.33)

To define the contours, we first construct the loops �i1...i p � T p in hC which circle
around

⋂p
k=1

{
Qik (D) = 0

}
and stay sufficiently close to the origin. Then

�i1...i p = {
D ∈ hC

∣∣ Im D = δi1...i p , Qi1(D) = · · · = Qi p (D) = 0
}

+�i1...i p . (3.34)

Finally we introduce the contours �i1...i p/j1.../jq
: they are defined in the same way as

�i1...i p , but instead of shifting the imaginary part by δi1...i p we shift it by another vector
δ′ with the further constraint Q j (δ

′) < 0 for j ∈ { j1, . . . , jq}. There is always such a δ′
if Qi1 , . . . , Qi p , Q j1 , . . . Q jq are linearly independent. We will not need to give a name
to δ′. The orientation is the natural one so that we have, for example,

� = �i + �/i (3.35)

in homology.

3.6. Application of Stokes’ theorem. At this point we can use the identity (3.17) and the
cell decomposition of the integration domain M\�ε to simplify the integral

∫
�×(M\�ε) μ

somewhat. We use μ = dμQi (3.17) in each Ci . Then we have
∫
� × M\�ε

μ =
∑

i

∫
�×Ci

dμQi =
∑

i

∫
�×∂Ci

μQi

= −
∑

i

∫
�×Si

μQi +
∑

i

∑
j ( �=i)

∫
�×Ci j

μQi (3.36)

where we used (3.28) and (3.29). The second term in the last expression can be further
simplified using (3.17) and the antisymmetry of Ci1...i p :

∑
i

∑
j ( �=i)

∫
�×Ci j

μQi =
∑
i< j

∫
�×Ci j

(
μQi − μQ j

) =
∑
i< j

∫
�×Ci j

dμQi ,Q j

=
∑
i< j

∫
�×∂Ci j

μQi ,Q j . (3.37)

Plugging it back into (3.36) and using (3.29) again, we find∫
� × M\�ε

μ = −
∑

i

∫
�×Si

μQi −
∑
i< j

∫
�×Si j

μQi ,Q j +
∑
i< j

∑
k ( �=i, j)

∫
�×Ci jk

μQi ,Q j . (3.38)

The procedure can be repeated, stopping when we reach the middle-dimensional coho-
mology in M, because μQi1 ,...,Qi p

= 0 when p > r . We obtain:
∫
� × (M\�ε)
μ = −

∑
i

∫
� × Si

μQi −
∑
i< j

∫
� × Si j

μQi ,Q j + · · · −
∑

i1<···<ir

∫
� × Si1 ...ir

μQi1 ,...,Qir
. (3.39)
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Next we show that a similar formula holds when integrating D over the other contours
�i1...i p of Sect. 3.5: for instance

∫
�i × Si

μQi = −
∑

j

∫
�i × Si j

μQi ,Q j −
∑
j<k

∫
�i × Si jk

μQi ,Q j ,Qk +· · ·−
∑

j1<···< jr−1

∫
�i × Si j1 ... jr−1

μQi ,Q j1 ,...,Q jr−1

(3.40)
and more generally

∫
�i1 ...i p × Si1 ...i p

μQi1 ,...,Qi p
= −

r∑
m=p+1

[ ∑
i p+1<···<ir

∫
�i1 ...i p × Si1 ...im

μQi1 ,...,Qim

]
. (3.41)

The relation (3.39) can be thought of as the case p = 0 of the formula above. Consider
for instance the integral over �i × Si in (3.40). If Q j1, . . . , Q js are linearly independent
of Qi , the form μQ j1 ,...,Q js

has no poles in the region surrounded by �i and hence it
vanishes when integrated over �i × Si . The identity (3.17) then reduces to

dμQi ,Q j1 ,...,Q js
�

s∑
k=1

(−1)s−kμQi ,Q j1 ,...Q̂ jk ...,Q js
(3.42)

when integrated over �i × Si . If instead the vectors are linearly dependent, the formula
is trivially true.

Recall that Si is a manifold with boundary and corners consisting of Si j1... js ’s. Then
we can take its cell decomposition which is almost good in the same sense as above,
i.e. obeying the conditions (i)–(iii) in one dimension lower. Proceeding as above we find
(3.40), and with a similar argument we find (3.41).

3.7. Shifting the D-contours. All terms in (3.39)–(3.41) can be massaged further, by
shifting the contour of integration in D. First consider terms like

∫
�×Si1...i p

μQi1 ,...,Qi p
.

We assume that Qi1 , . . . , Qi p are linearly independent, otherwise the integrand just
vanishes. Recall that after (3.15) we chose δ such that Qi (δ) �= 0 ∀ i . If the set of indices
{i1, . . . , i p} contains an index i such that Qi (δ) < 0, the integration domain Si1...i p can
be shrunk around Hi keeping the integrand finite: comparing with (3.9), the real part of
the denominator remains ≥ |δ| without developing divergences. In this case the integral
vanishes in the lime,ε→0. Thus in all summations we can restrict to the indices i such
that Qi (δ) > 0. In this case we do have divergences, and we cannot take the limit yet.

Then we would like to continuously deform the contour� in such a way to modify the
imaginary shift from δ to a new one with Qi=i1,...,i p (Im �′) < 0. In general the imaginary
shift can be continuously deformed (since the integrand is meromorphic in D), unless
we hit poles. In our case μQi1 ,...,Qi p

has poles along Qi (D) = 0 for i ∈ {i1, . . . , i p}.
We deform the contour and along the way we pick various residues around Qi (D) = 0
for i ∈ {i1, . . . , i p}:

� = �/i1.../i p
+ �i1/i2.../i p

+ · · · + �/i1i2...i p + �i1...i p (3.43)
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(in homology) where we have a sum of 2p terms in which each index appears either
slashed or not. The contours �i1...i p/j1.../jq

have been defined in Sect. 3.5 and contain
some arbitrariness. For the last term it will be important to choose δi1...i p such that
Q j (δi1...i p ) �= 0 for all j �∈ {i1 . . . i p}, as we did for δ.

If the hyperplane arrangement is projective—as we imposed before (2.27)—the con-
tours�...with some slashed indices make the contour in the integral

∫
�...×Si1...i p

μQi1 ,...,Qi p

shrinkable. A possible danger is that, as Si1...i p approaches another hyperplane Hj , it
might happen that Qj (Im �...) > 0. The integrand μQi1 ,...,Qi p

has poles only along
Qi (D) = 0 for i ∈ {i1, . . . , i p}, so we can freely change the imaginary shift in the
other directions of h. Such a shift does not have to be constant,13 therefore if the charges
Qi1, . . . , Qi p , Qj involved at the intersection Si1...i pj lie on a common half of h∗, we
can arrange that close to Hj we have Qj (Im �...) < 0. We conclude that

lim
e,ε→0

∫
� × Si1 ...i p

μQi1 ,...,Qi p
=

[ ∏
i∈{i1,...,i p}

�
(
Qi (δ)

)]
lim

e,ε→0

∫
�i1 ...i p × Si1 ...i p

μQi1 ,...,Qi p
. (3.44)

We used the step function �(x), equal to x if x ≥ 0 and zero otherwise,
Next consider terms like

∫
�i1 ...i p ×Si1 ...i p j1 ... jq

μQi1 ,...,Qi p ,Q j1 ,...,Q jq
,

that might come from (3.40)–(3.41) (the previous case was p = 0). They can be
processed in a similar way as above. First we can restrict to the terms with Q j (δi1...i p ) > 0
for all j ∈ { j1 . . . jq}, otherwise the contour Si1...i p j1... jq is shrinkable. Then we can mod-
ify the contour �i1...i p to a new contour such that Q j (Im �...) < 0 for j ∈ { j1, . . . , jq},
but as we do that we pick up various residue terms:

�i1...i p = �i1...i p/j1.../jq
+ �i1...i p j1/j2.../jq

+ · · · + �i1...i p/j1 j2... jq + �i1...i p j1... jq (3.45)

where the sum is over 2q terms. The only term that gives non-vanishing contribution in
the limit is the last one:

lim
e,ε→0

∫
�i1 ...i p × Si1 ...i p j1 ... jq

μQi1 ,...,Qi p ,Q j1 ,...,Q jq

=
[ ∏

j∈{ j1,..., jq }
�
(
Q j (δi1...i p )

)]
lim

e,ε→0

∫
�i1 ...i p j1 ... jq × Si1 ...i p j1 ... jq

μQi1 ,...,Qi p ,Q j1 ,...,Q jq
. (3.46)

13 One may think that the very same trick can be used at the beginning, getting ZT 2 = 0. This is not true. We
started with ZT 2 = ∫

�×(M\�ε) μ. At that point � can be arbitrarily shifted, even as a function of u. However
to proceed we wrote μ = dμQi for some i , and in order to apply Stokes’ theorem we need dμQi to be regular
on �× (M\�ε). This forces us to choose Im � such that it does not cross any hyperplane Qi (D) = 0 at any
point of M\�ε : in particular Im � must be constant, or at least confined within a single chamber in D-space.
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3.8. The final formula. Combining the formulæ (3.39)–(3.41) describing the application
of Stokes’ theorem, with (3.44) and (3.46) from the shift of the D-contours, we can obtain
the final formula.

Before that, however, let us discuss the choice of the vectors δ and δi1...i p character-
izing the imaginary shifts. So far we have let these choices be quite arbitrary, except for
some constraints like (3.33). We will now narrow the arbitrariness. Pick a covector

η ∈ h∗, (3.47)

generic enough so that η �∈ Conesing(Q). Then we will choose the vectors δ, δi1...i p such
that they satisfy the following conditions:

1. They are small enough that the integrand μ remains non-singular over � × M\�ε,
and the formsμQi1 ,...,Qi p

remain non-singular over �i1...i p × Si1...i p , as the imaginary
shifts in hC are turned on.

2. They satisfy the defining condition

Qi1(δi1...i p ) = · · · = Qi p (δi1...i p ) = 0, (3.48)

but are generic enough so that Q j (δi1...i p ) �= 0 for all j �∈ {i1, . . . , i p}, including the
case p = 0.

3. They satisfy the positivity condition

η(δ) > 0, η(δi1...i p ) > 0. (3.49)

The newly introduced constraint 3. will be used repeatedly inside the inductive arguments
below. We still have a huge arbitrariness in the choice of the vectors, but we will see that
the final formula will only depend on η and not on the vectors δi1...i p themselves.

Now, let us introduce the notation

Pi1...i p ≡ lim
e,ε→0

∫
�i1 ...i p × Si1 ...i p

μQi1 ,...,Qi p
, (3.50)

including P = lim
∫
�×(M\�ε) μ for p = 0. Notice that ZT 2 = 1

|W | P is our goal.
Combining the Eq. (3.39) from Stokes’ theorem with (3.44) for the shift of D-contours,
we get the compact expression

P =
r∑

m=1

[
−

∑
i1<···<im

�
(
Qi1(δ)

) · · ·�(
Qim (δ)

)
Pi1...im

]
. (3.51)

Each of the integrals Pi1...in can be further massaged, combining (3.41) with (3.46):

Pi1...in =
r∑

m=n+1

[
−

∑
in+1<···<im

�
(
Qin+1(δi1...in )

) · · ·�(
Qim (δi1...in )

)
Pi1...im

]
(3.52)

for n = 0, . . . , r − 1. In fact the expression in (3.51) is just the special case n = 0. By
successive substitutions of (3.52) into (3.51) one finds the final expression, which is a
sum of the form

P =
∑

i1<···<ir

ci1...ir Pi1...ir (3.53)
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in terms of coefficients ci1...ir that we would like to determine.
It will prove convenient to prove a more general formula than (3.53), namely:

Pi1...in = (−1)r−n
∑

in+1<···<ir

[ ∏
j ∈ {in+1,...,ir }

�
(
Q j (δi1...ĵ ...ir )

)]
Pi1...ir . (3.54)

We will prove it by induction in r − n, from n = r − 1 to n = 0; then n = 0 is the
desired result.

The first step of the induction is at n = r −1: the Eq. (3.54) for Pi1...ir−1 just coincides
with the expression (3.52) from the application of Stokes’s theorem. Then we proceed
by induction. Take the expression (3.52) of Pi1...in , substitute (3.54) for all terms Pi1...im

with m > n, then subtract the expression (3.54) to be proven. We get:

Pi1...in

∣∣∣
(3.52)

− Pi1...in

∣∣∣
(3.54)

=
r∑

m=n

(−1)r−m+1
∑

in+1<···<im

�
(
Qin+1(δi1...in )

) · · ·�(
Qim (δi1...in )

)

×
∑

im+1<···<ir

�
(
Qim+1(δi1...̂im+1...ir

)
) · · ·�(

Qir (δi1...ir−1)
)

Pi1...ir . (3.55)

Notice that −Pi1...in

∣∣
(3.54) provides the term m = n. Recalling that Pi1...ir vanishes if

two indices are equal, if we expand the summations we find that each monomial has
degree r − n in �, it contains all Qi ’s with i ∈ {in+1 . . . ir }, and m − n (running from
0 to r − n) of them have argument δi1...in while the other r − m have argument δi1...ĵ ...ir
with j ∈ {im+1, . . . , ir }. In fact the expression on the right-hand side equals

−
∑

in+1<···<ir

{ ∏
j ∈ {in+1,...,ir }

[
�
(
Q j (δi1...in )

) −�(
Q j (δi1...ĵ ...ir )

)]}
Pi1...ir . (3.56)

Consider a single summand Ti1...ir = ∏
j∈{in+1,...,ir }

[
�(Q j (δi1...in ))−�(Q j (δi1...ĵ ...ir ))

]
Pi1...ir in (3.56), for fixed P = {i1, . . . , ir }. Clearly Ti1...ir vanishes unless the covectors
{Q j } j∈P are linearly independent, because of Pi1...ir . Then assume that {Q j } j∈P is a
basis and decompose

η =
∑

j∈P
b j
P Q j . (3.57)

The subscript reminds us that the vector b j
P depends on P. The positivity condition

(3.49) together with (3.48) gives η(δi1...ĵ ...ir ) = b j
P Q j (δi1...ĵ ...ir ) > 0 for all j ∈ P, and

η(δi1...in ) =
∑

j ∈P\{i1...in}
b j
P Q j (δi1...in ) > 0 (3.58)

which implies that at least for one value of j , the corresponding term in the summation
is positive. For such a j , we conclude that �(Q j (δi1...in )) − �(Q j (δi1...ĵ ...ir )) = 0. In
turn, this implies that Ti1...ir = 0 and (3.56) vanishes completing the proof of (3.54).

Now consider (3.54) with n = 0: P = ∑
P={i1<···<ir }�P,η Pi1...ir where

�P,η =
{∏

j∈P�
(
Q j (δi1...ĵ ...ir )

)
if {Q j } j∈P are linearly independent

0 otherwise.
(3.59)
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This is equivalent to (3.54) because if {Q j } j∈P are linearly dependent then Pi1...ir =
0. Note that �P,η depends on η through the vectors δi1...ĵ ...ir , while Pi1...ir does not
depend on it because δi1...ir = 0 in the linearly independent case. For any fixed linearly
independent P, as in (3.57) let us decompose η in the basis {Q j } j∈P. The positivity

condition η(δi1...ĵ ...ir ) > 0 implies that �
(
Q j (δi1...ĵ ...ir )

) = �(b j
P). Therefore we can

rewrite �P,η = ∏
j∈P�(b

j
P) which is equivalent to

�P,η =
{

1 if η ∈ Cone(Qi1 . . . Qir )

0 otherwise.
(3.60)

This is precisely the factor appearing in the JK residue. Next let us analyze Pi1...ir .
Assuming that {Q j } j∈P are linearly independent, �i1...ir � T r is a middle-dimensional
torus encircling D = 0. Moreover μQi1 ,...,Qir

presents, close enough to D = 0, only
poles along the r singular hyperplanes Q j∈P(D) = 0, and

∫
�i1 ...ir

computes the residue

at D = 0. We conclude that

Pi1...ir = (−2πc)r lim
e,ε→0

∫
Si1 ...ir

g
∣∣∣

D=0
dr u = (−2πc)r lim

e,ε→0

∫
Si1 ...ir

Z1-loop. (3.61)

To proceed further, let us first assume that the hyperplane arrangement Msing ⊂ M is
non-degenerate, in other words that at all points u∗ ∈ M∗

sing the number of intersecting
hyperplanes is exactly r , and never larger. Then Si1...ir is a collection of tori T r , each
encircling one point u∗ ∈ M∗

sing at the intersection of {Hj } j∈P, and Pi1...ir computes
the residue of Z1-loop at those u∗. At this stage the limit e, ε → 0 is trivially taken since
there is no dependence any longer on them. We get

P = (−2πc)r
∑

P={i1,...,ir }
�P,η

∫
Si1 ...ir

Z1-loop

= (−4π2ic)r
∑

u∗∈M∗
sing

JK-Res
u=u∗

(
Q(u∗), η

)
Z1-loop. (3.62)

The constant c can be fixed to i/4π2 by comparing with a single rank-1 example. We
thus reproduce (2.27).

The general case of a degenerate arrangement, in which at some point u∗ ∈ M∗
sing

more than r hyperplanes intersect, is more delicate. The main difference is that, in
general, Si1...ir does not have the topology of T r (it is not even a closed manifold) and
therefore

∫
Si1 ...ir

is not an iterated residue. What happens is that only linear combinations

of the Si1...ir ’s, dictated by �P,η, are closed integration cycles. Instead of proving this
directly, we notice that I = limε→0

∑
P�P,η

∫
Si1 ...ir

is a linear functional, therefore

it suffices to check that it behaves as the JK residue on a basis of rational forms, in
particular that (2.29) holds. Suppose we apply I to a meromorphic form that does not
really have singularities along the hyperplanes {Hı }. Then we can take the ε → 0 limit
by shrinking the neighborhoods �ε(Hı ) first, and then the other ones. When we take
the first limit, the integrals over all Si1...ir ’s containing some of the indices ı vanish; if
the remaining hyperplanes form a non-degenerated arrangement, the remaining Si1...ir ’s
becomes closed tori after the first limit. This shows that I matches with the JK residue
on the basic forms in (2.29).
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We conclude by noticing that despite we have used the arbitrary covector η ∈ h∗ in
our manipulations, the final result (2.27) does not depend on η by construction. In the
integral (3.6) we started with, D is integrated over h, there are no imaginary shifts δi1...i p

nor η. In that expression we can freely shift the D-contour in hC without affecting the
result, because there are no poles around D = 0 at this stage. Those poles in the D-space
are introduced by the application of Stokes’ theorem.

4. Examples

To illustrate how to use the Eq. (2.27), we present here various examples of increasing
complexity.

4.1. K3. Let us begin with the example of an Abelian theory with non-degenerate sin-
gularities in M (i.e. more than r hyperplanes never meet at one point in M of complex
dimension r ).

Consider an N = (2, 2) model with gauge group U (1)2, six chiral multiplets
P, X1,2,Y1,2,3 with charges

P X1 X2 Y1 Y2 Y3 FI
U (1)1 −2 1 1 0 0 0 ξ1
U (1)2 −3 0 0 1 1 1 ξ2

R 2 0 0 0 0 0

and superpotential W = P f (X,Y ), where f is a homogeneous polynomial of degree
(2, 3) in (X,Y ). In the geometric phase ξ1,2 > 0 the low-energy theory is a conformal
NLSM on an elliptically fibered K3 defined by the curve f (X,Y ) = 0 in CP

1 × CP
2.

The one-loop determinant is

Z1-loop(τ, z, u1, u2)

=
[

2πη(q)3

θ1(q, y−1)

]2 θ1(q, x−2
1 x−3

2 )

θ1(q, yx−2
1 x−3

2 )

[
θ1(q, y−1x1)

θ1(q, x1)

]2[
θ1(q, y−1x2)

θ1(q, x2)

]3

du1 ∧ du2 .

(4.1)

The singularities in M, parametrized by (u1, u2), are along the hyperplanes

HP = {z − 2u1 − 3u2 = 0}, HX = {u1 = 0}, HY = {u2 = 0}, (4.2)

where the identifications in M are understood. In Fig. 1 left we draw the charge covectors
Qi ∈ h∗ with the phases of the model; on the right we draw a real slice of the hyperplanes
in M. In particular all intersections are non-degenerate, thus for any choice of η ∈ h∗
the cycle to use in the JK residue is simply the one of the iterated residue.

For each phase of the Abelian model, that is for each chamber in h∗, we get a different
representation of the elliptic genus. In the geometric phase we get contribution from the
intersection of HX and HY , i.e. u1 = u2 = 0. The elliptic genus is

ZT 2(q, y)

=
[

η(q)3

i θ1(q, y−1)

]2 ∮
u1 = u2 = 0

du1 du2
θ1(q, x−2

1 x−3
2 )

θ1(q, yx−2
1 x−3

2 )

[
θ1(q, y−1x1)

θ1(q, x1)

]2[
θ1(q, y−1x2)

θ1(q, x2)

]3

.

(4.3)
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ξ2

ξ1QX

QY

QP

geometric

hybrid II

hybrid I

HY

HX

HP

• HX : 0 = u1

• HY : 0 = u2

• HP : 0 = z − 2u1 − 3u2

Fig. 1. Elliptically fibered K3. Left charge covectors in h∗, with the three phases indicated. Right a real slice
of the singular hyperplanes in M

In the q → 0 limit we get

ZT 2(q, y) = (
2y−1 + 20 + 2y

)
+ O(q). (4.4)

The χy genus of a d-dimensional complex manifold is χy = ∑d
p=0 y p−d/2

∑d
q=0(−1)p+q h p,q , so we reproduce the χy genus of K3. Similarly, we can compute

the elliptic genus in the hybrid phases. For instance, consider the hybrid phase I (Fig. 1)
where HY ∩ HP contributes. Since from (2.29) in this phase we have

JK-Res
du1 ∧ du2

u2(−2u1 − 3u2)
= 1

2
= − 1

(2π i)2

∮
u2=0

∮
u1=−3u2/2

du1du2

u2(−2u1 − 3u2)
,

we get

ZT 2 = −
∑

a,b=0,1

1

(2π i)2

∮
u2=0

∮
u1= z−3u2+a+bτ

2

Z1-loop

= η(q)3

2i θ1(q, y−1)

∑
a,b=0,1

y−b
∮

u2=0
du2

(
θ1

(
τ
∣∣−z−3u2+a+bτ

2

)
θ1

(
τ
∣∣ z−3u2+a+bτ

2

)
)2(

θ1(τ | − z + u2)

θ1(τ |u2)

)3

.

(4.5)

The other hybrid phase leads to a similar expression.
Notice that another model for K3 is a quartic hypersurface in CP

3. It can be real-
ized by an N = (2, 2) Abelian rank-1 theory, with chiral multiplets (P, X1,2,3,4) with
gauge charges (−4, 1) respectively, and a superpotential W = P f (X) where f is a
homogeneous polynomial of degree 4. If we sum over the positive poles, we obtain

ZT 2 = η(q)3

i θ1(q, y−1)

∮
u=0

du
θ1(q, x−4)

θ1(q, yx−4)

(
θ1(q, y−1x)

θ1(q, x)

)4

(4.6)

which is the expression of the elliptic genus in the geometric phase, and if we sum over
the negative poles, we find

ZT 2 = 1

4

3∑
a,b=0

y−b
(
θ1

(
τ
∣∣−3z+a+bτ

4

)
θ1

(
τ
∣∣ z+a+bτ

4

)
)4

(4.7)
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ξ2

ξ1QP

QX

QY

QZ

geometric

orbifoldLG

hybrid

HX

HY

HP

HZ

• HP : 0 = z − 4u1

• HX : 0 = u2

• HY : 0 = u1

• HZ : 0 = u1 − 2u2

Fig. 2. The resolved WP
4
1,1,2,2,2 [8] model. Left charge covectors in h∗, with the four phases indicated. Right

a real slice of the singular hyperplanes in M

which is the expression of the elliptic genus as the Landau–Ginzburg orbifold.
In fact the elliptic genus of K3 in standard form is [18]

ZT 2(q, y) = 8

[(
θ1(τ |z + 1

2 )

θ1(τ | 1
2 )

)2

+

(
y1/2 θ1(τ |z + 1+τ

2 )

θ1(τ | 1+τ
2 )

)2

+

(
y1/2 θ1(τ |z + τ

2 )

θ1(τ | τ2 )
)2]

.

(4.8)
All expressions in (4.3), (4.5), (4.6) and (4.7) exactly coincide with this.

4.2. The resolved WP
4
1,1,2,2,2 [8]. This is a two-parameter model analyzed in [19,20].

The model has two U (1) gauge fields and seven chiral multiplets P, X1,2,Y1,2,3, Z with
gauge and R-symmetry charges

P X1,2 Y1,2,3 Z FI
U (1)1 −4 0 1 1 ξ1
U (1)2 0 1 0 −2 ξ2

R 2 0 0 0
2U (1)1 + U (1)2 −8 1 2 0 2ξ1 + ξ2

(4.9)

and a superpotential W = P f (X,Y, Z) where f is a weighted homogeneous poly-
nomial. The model has four phases as the FI parameters ξ1,2 are varied, as shown in
Fig. 2 left. In the geometric phase the model describes a hypersurface f (X,Y, Z) = 0
in a compact toric manifold with homogeneous coordinates X,Y, Z , which is a smooth
CY3 with h1,1 = 2, h2,1 = 86, χ = −168.

This CY3 is the resolution of a weighted degree 8 hypersurface in a four-dimensional
weighed projective space: WP

4
1,1,2,2,2 [8]. The degree 8 hypersurface in WP

4
1,1,2,2,2,

birationally equivalent to the resolution, can be described by a one-parameter model we
already discussed in [1]14: the charges are as in the last row in (4.9) and Z is missing.
The hypersurface has χ = −162 and a genus 3 curve of Z2 orbifold singularities which
contributes the missing �χ = −6.

14 The resolution 2-cycle is blown down in the orbifold and Landau–Ginzburg phases of the two-parameter
model: the reader can check that the expressions of the elliptic genus in those two phases mimic the geometric
and Landau–Ginzburg representations, respectively, in the one-parameter model [1].
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The one-loop determinant is

Z1-loop =
[

2πη(q)3

θ1(q, y−1)

]2 θ1(q, x−4
1 )

θ1(q, yx−4
1 )

[
θ1(q, y−1x2)

θ1(q, x2)

]2

×
[
θ1(q, y−1x1)

θ1(q, x1)

]3 θ1(q, y−1x1x−2
2 )

θ1(q, x1x−2
2 )

du1du2. (4.10)

The singular manifold Msing inside M comprises the hyperplanes

HP = {z − 4u1 = 0}, HX = {u2 = 0}, HY = {u1 = 0}, HZ = {u1 − 2u2 = 0}
(4.11)

where the identifications in M are understood. A real slice of M is depicted in Fig. 2
right. For each chamber in h∗ (Fig. 2 left), i.e. for each phase of the GLSM, a choice of
η ∈ h∗ in that chamber leads to a different representation of the elliptic genus. Let us
consider the four representations in turn.

4.2.1. The Landau–Ginzburg phase. For such η, the JK residue is non-vanishing at the
intersection of HP and HZ , which is composed of the 64 non-degenerate intersection
points

u1 = 1
4 (z + c + dτ), u2 = 1

2 (u1 + a + bτ), a, b = 0, 1, c, d = 0, . . . , 3

with a simple pole. The JK residue is 1
(2π i)2

∮
. We get

ZT 2(q, y) = 1

8

1∑
a,b=0

3∑
c,d=0

y−b−d θ1
(
τ
∣∣−7z+(4a+c)+(4b+d)τ

8

)2

θ1
(
τ
∣∣ z+(4a+c)+(4b+d)τ

8

)2

θ1
(
τ
∣∣−3z+c+dτ

4

)3

θ1
(
τ
∣∣ z+c+dτ

4

)3 . (4.12)

To compute the χy genus we use the τ → i∞ (i.e. q → 0) limits

lim
τ→i∞

θ1
(
τ
∣∣−7z+(4a+c)+(4b+d)τ

8

)
θ1

(
τ
∣∣ z+(4a+c)+(4b+d)τ

8

) =
⎧⎨
⎩

y1/2 1 − y−7/8e2π i(4a+c)/8

1 − y1/8e2π i(4a+c)/8
for b, d = 0

y1/2 for 4b + d �= 0
(4.13)

and

lim
τ→i∞

θ1
(
τ
∣∣−3z+c+dτ

4

)
θ1

(
τ
∣∣ z+c+dτ

4

) =
⎧⎨
⎩

y1/2 1 − y−3/4e2π ic/4

1 − y1/4e2π ic/4 for d = 0

y1/2 for d �= 0.
(4.14)

We get
lim
q→0

ZT 2(q, y) = −84 (y1/2 + y−1/2). (4.15)

4.2.2. The hybrid phase. In this case we get contribution from the intersection of HP
and HX , which comprises 16 non-degenerate intersection points with non-simple poles.
The JK residue is − 1

(2π i)2
∮

. We get

ZT 2 = η(q)3

4i θ1(q, y−1)

3∑
a,b=0

y−b
[
θ1

(
τ
∣∣−3z+a+bτ

4

)
θ1

(
τ
∣∣ z+a+bτ

4

)
]3

×
∮

u2=0
du2

[
θ1(q, y−1x2)

θ1(q, x2)

]2 θ1
(
τ
∣∣−3z+a+bτ−8u2

4

)
θ1

(
τ
∣∣ z+a+bτ−8u2

4

) . (4.16)
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4.2.3. The geometric phase. In this phase the JK residue gets contribution from HX ∩HY
and HX ∩ HZ , which is the single point u1 = u2 = 0 with a degenerate intersection of
hyperplanes, and we need to apply (2.33). Let us spell out in some details how it works.

At u∗ = (0, 0) the set of relevant charges is Q∗ = {Q X , QY , Q Z }. The set of flags
with the respective vectors κF

j is

F1 = {Q X ,R
2} κF1 = {Q X , Q X + QY + Q Z } ν(F1) = −1

F2 = {QY ,R
2} κF2 = {QY , Q X + QY + Q Z } ν(F2) = −1

F3 = {Q Z ,R
2} κF3 = {Q Z , Q X + QY + Q Z } ν(F3) = 1.

(4.17)

For η ∈ Cone(Q X , QY ), the only flag in FL+(Q∗, η) is F1. Choosing a basis B(F1) =
{Q X , QY } for the flag, the iterated residue is ResF1 ω = Resu1=0 Resu2=0 ω21 where the
latter is the du2 ∧ du1 component of ω. We thus obtain

ZT 2(q, y) = Res
u1=0

Res
u2=0

Z1-loop(τ, z, u1, u2) (4.18)

where, with a little abuse of notation, we have used Z1-loop for the du1 ∧du2 component
of the 2-form. Let us stress that the order in the iterated residue is crucial.

For a small number of hyperplanes, such as in this case, a faster way to get to the
result is the following. Consider the 2-form

ω =
( a

u1u2
+

b

u1(u1 − 2u2)
+

c

u2(u1 − 2u2)

)
du1 ∧ du2.

Since Resu1=0 Resu2=0 ω12 = a + c, this satisfies the conditions (2.30) in the geometric
phase.

4.2.4. The orbifold phase. In this phase HX ∩ HZ and HY ∩ HZ contribute, i.e. the
four points u1 = 0, u2 = (u1 + a + bτ)/2 with a, b = 0, 1. The pole for a = b = 0
sits at a degenerate intersection of three hyperplanes. The Eq. (2.33) produces two
equivalent expressions depending on which sub-chamber of the orbifold phase η sits in.
If η ∈ Cone(QY , Q X + QY + Q Z ) then FL+(Q∗, η) comprises the two flags F1 and F2
in (4.17). Using B(F1) as before and B(F2) = {QY , Q X } we arrive at

JK-Res
u∗=(0,0)

(Q∗, η) Z1-loop =
(

Res
u1=0

Res
u2=0

− Res
u2=0

Res
u1=0

)
Z1-loop. (4.19)

Alternatively, if η ∈ Cone(Q Z , Q X + QY + Q Z ) then the only flag in FL+(Q∗, η) is
F3. Choosing a basis B(F3) = {Q Z , Q X } we get

JK-Res
u∗=(0,0)

(Q∗, η) Z1-loop = Res
u2=0

Res
u1=2u2

Z1-loop (4.20)

which is equivalent to the previous expression. In any case, the q → 0 limit is −81(y
1
2 +

y− 1
2 ).
At the other three poles for (a, b) �= (0, 0) we have JK-Res = − 1

2π i

∮
that gives

η(q)3

2i θ1(q, y−1)

∑
a,b

y−b
∮

u1=0
du1

θ1(q, x−4
1 )

θ1(q, yx−4
1 )

[
θ1

(
τ
∣∣ u1+a+bτ−2z

2

)
θ1

(
τ
∣∣ u1+a+bτ

2

)
]2 [

θ1(q, y−1x1)

θ1(q, x1)

]3

.

The q → 0 limit of each of the three terms is −(y 1
2 + y− 1

2 ).
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All the expressions we have obtained above coincide with the standard elliptic genus
of a Calabi–Yau threefold with Euler number χ [21]:

ZT 2(q, y) = χ

2
(y

1
2 + y− 1

2 )

∞∏
n=1

(1 − y2qn)(1 − y−2q−n)

(1 − yqn)(1 − y−1q−n)
= χ

2

θ1(q, y2)

θ1(q, y)
. (4.21)

4.3. Rødland model. The next example is a non-Abelian theory, which presents degen-
erate and non-projective singularities in M. Consider an N = (2, 2) model with U (2)
gauge group, seven fundamental chiral multiplets Xi and a further seven chiral multiplets
P j transforming in the det−1 representation. They are coupled through the superpotential

W =
7∑

i, j,k=1

Ai j
k Pk(X1

i X2
j − X2

i X1
j ), (4.22)

where in Xa
i , a is the gauge index, and Ai j

k are generic coefficients antisymmetric in the
upper indices. This model was first studied in [22,23], then in [24], to give a physical
proof of a conjecture of Rødland [25] that an incomplete intersection in CP

6 and a com-
plete intersection in the Grassmannian Gr(2, 7) are Calabi–Yau threefolds sitting on the
same complexified Kähler moduli space, although they are not birationally equivalent.
At large positive FI term (ξ � 0) the low-energy theory is a NLSM on the complete
intersection Ai j

k [Xi X j ] of seven hyperplanes in the Grassmannian Gr(2, 7); for ξ � 0
instead one gets an incomplete intersection in CP

6 parameterized by homogeneous coor-
dinates Pk , with the condition that the antisymmetric matrix Ai j (P) has rank 4 instead
of the generic rank 6. This latter variety is called the Pfaffian Calabi–Yau. In [26] the
Gromov–Witten invariants of the two geometries have been extracted from the sphere
partition function of [27,28].

The charges are

P j Xi FI
U (2) 1−2 �1 ξ

R 2 0
(4.23)

The 1-loop determinant is

Z1-loop = 1

2

[
2πη(q)3

θ1(q, y−1)

]2 θ1(q, x1x−1
2 ) θ1(q, x−1

1 x2)

θ1(q, y−1x1x−1
2 ) θ1(q, y−1x−1

1 x2)[
θ1(q, y−1x1)

θ1(q, x1)

]7[
θ1(q, y−1x2)

θ1(q, x2)

]7[ θ1(q, x−1
1 x−1

2 )

θ1(q, yx−1
1 x−1

2 )

]7

du1 ∧ du2.

(4.24)

The singular hyperplanes are

HX1 = {u1 = 0}, HX2 = {u2 = 0}, HP = {u1 +u2 = z}, Hσ± = {u1−u2 = ±z}.
(4.25)

They are represented in Fig. 3 together with the charge covectors in h∗.
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u∗
1

u∗
2

QX2

QX1

QP
Qσ+

Qσ− Gr

HX1

HX2

HP

HP

Hσ+

Hσ+ Hσ−

Hσ−

• HX1 : u1 = 0
• HX2 : u2 = 0
• HP : u1 + u2 = z
• Hσ+ : u1 − u2 = z
• Hσ− : u2 − u1 = z

Fig. 3. The Rødland model. Left charge covectors in h∗ (Grassmannian phase indicated). Right a real slice of
the singular hyperplanes in M

The easiest way to perform the computation is in the Grassmannian phase, i.e. in the
chamber selected by the covector η = (1, 1). There are three intersections contributing:
HX1 ∩ HX2 , Hσ− ∩ HX1 and Hσ+ ∩ HX2 . Consider Hσ− ∩ HX1 first: this is a point where
three linearly dependent hyperplanes meet. Unfortunately the hyperplane arrangement
is not projective, and we cannot apply the JK residue directly: we need to resolve the
singularity into projective ones first. We can give P an R-charge R = 2 + ε and take the
limit ε → 0 eventually. It is easy to check that the residue at u1 = 0, u2 = z vanishes.
A similar thing happens at Hσ+ ∩ HX2 . Hence we obtain

ZT 2 = 1

(2π i)2

∮
u1 = u2 = 0

Z1-loop = −49
(
y

1
2 + y− 1

2
)

+ O(q). (4.26)

In fact the expression matches with (4.21) with χ = −98, which is the Euler number of
both Calabi–Yau threefolds [29].

4.4. Gulliksen–Negård model. This model is an N = (2, 2)U (2)×U (1) gauge theory
with chiral multiplets �a=1,...,8 : (10, 1), Xi=1,...,4 : (�−1, 0) and Pi=1,...,4 : (�1,−1),
where we have indicated the gauge charges, and superpotential

W = Tr(Pi Aa
i j�a X j ) (4.27)

where Aa
i j are coefficients. At low energy it flows to a NLSM on a CY3 which is the

locus in CP
7, parametrized by the homogeneous coordinates�a , where the 4×4 matrix

Aa
i j�a has rank ≤ 2. The model has been studied in [24], and the Gromov–Witten

invariants of the CY3 have been first computed in [26] from the sphere partition function
of [27,28]. The charges under the Cartan subgroup are

�a X1
i X2

i P1
i P2

i FI
U (1)1 0 −1 0 1 0 ξ1
U (1)2 0 0 −1 0 1 ξ1
U (1)3 1 0 0 −1 −1 ξ2

R 0 0 0 2 2

(4.28)

where U (1)1 × U (1)2 is the maximal torus of U (2). In Fig. 4 we draw the charge
covectors.
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u∗
1

u∗
3

u∗
2

Φ

X1

X2

P 1

P 2

σ+

σ−

Fig. 4. Charge covectors of the Gulliksen-Negård model in h∗

The one-loop determinant is

Z1-loop = 1

2

[
2πη(q)3

θ1(q, y−1)

]3 θ1(q, x1x−1
2 ) θ1(q, x−1

1 x2)

θ1(q, y−1x1x−1
2 ) θ1(q, y−1x−1

1 x2)

θ1(q, y−1x3)

θ1(q, x3)[
θ1(q, y−1x−1

1 )

θ1(q, x−1
1 )

]4[θ1(q, y−1x−1
2 )

θ1(q, x−1
2 )

]4[ θ1(q, x1x−1
3 )

θ1(q, yx1x−1
3 )

]4

[
θ1(q, x2x−1

3 )

θ1(q, yx2x−1
3 )

]4

du1du2du3. (4.29)

The easiest way to do the computation is choosing the covector η = (−1,−1, 1).
Then the JK residue gets contribution only from H� ∩ HX1 ∩ HX2 , which is the single
point u1 = u2 = u3 = 0. We have JK-Res = 1

(2π i)3
∮

, therefore

ZT 2 = 1

(2π i)3

∮
u1 = u2 = u3 = 0

Z1-loop = −32
(
y

1
2 + y− 1

2
)

+ O(q). (4.30)

This matches with the known Euler number of the CY3: χ = −64 (as h1,1 = 2 and
h2,1 = 34). The whole expression coincides with (4.21).

4.5. General comparison to the mathematical formula. In the appendix A of [1], we
reviewed the mathematical computation of the elliptic genus of a variety X when X is
a complete intersection in a Kähler quotient M = V//G, where G is a compact group
and V is a representation of G. In this section, we show that the elliptic genus obtained
mathematically always agrees with our path integral computation, when G = U (1)r .
See also [4,30–32]

Let us recall the mathematical computation first. A generalized genus in the sense of
Hirzebruch of an almost complex manifold X is

ϕ(X) =
∫

X
ϕ(TC X), (4.31)
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where a characteristic class ϕ(V ) of a vector bundle V is defined in terms of its Chern
roots xi by

ϕ(V ) =
∏

i

xi

f (xi )
. (4.32)

Here f (x) is a formal power series in x , such that f (0) = 0 and f ′(0) is nonzero. The
elliptic genus is obtained by choosing

fq,y(x) = θ1
(
τ
∣∣ x

2π i

)
θ1

(
τ
∣∣ x

2π i − z
) . (4.33)

Note that in other places in this paper x stands for an exponentiated chemical potential,
but in this section x is a non-exponentiated chemical potential. This is to respect a
standard convention in mathematics to denote the Chern roots by x .

We apply this definition to a variety X constructed as follows. We start from a choice
of G = U (1)r and its representation V , and consider the toric quotient M = V//G. We
denote by ξ the Fayet–Iliopoulos parameter used here. Given any representation R of
G, we can construct a vector bundle [R] on M = V//G whose fiber at a point is R. We
take X to be given by the common zeros of sections of a vector bundle [E] in M , where
E is a representation of G.

We can use the adjunction formula TCM |X = TC X ⊕ [E]|X to write

ϕ(X) =
∫

X

ϕ(TCM)

ϕ([E]) =
∫

M
ϕ(TCM)

e([E])
ϕ([E]) (4.34)

where e(· · · ) is the Euler class. We note that TCM ⊕[g] = [V ], where g is a complexified
Lie algebra of G. Therefore

ϕ(X) =
∫

M

ϕ([V ])
ϕ([g])

e([E])
ϕ([E]) . (4.35)

The residue formula of Jeffrey and Kirwan [5]—which originated from a conjecture
by Witten [6]—can be stated as follows in the case of a toric quotient of a vector space
[15,17]: ∫

V//G
c([R]) =

∮ rank G∏
i=1

JK-Res
u=0

({v}, ξ)
∏
w∈R

(
1 + w(u)

)
∏
v∈V v(u)

(4.36)

where c(. . . ) is the total Chern class, u ∈ h∗
C

, v and w run over the weight vectors of
the representations V and R respectively. Applying this formula to (4.35) we find

ϕ(X) = f ′(0)rank G JK-Res
u=0

({v}, ξ)
∏
w∈E f

(
w(u)

)
∏
v∈V f

(
v(u)

) du1 . . . dur (4.37)

and v and w run over weights of V and E , respectively.
Let us compare this formula to the one of the elliptic genus obtained from gauge

theory. In order to translate the geometric construction above, we introduce a vector
multiplet in G = U (1)r , ambient-space-producing chiral multiplets � of R-charge 0 in
the representation V , and equation-imposing chiral multiplets P of R-charge 2 in the
representation E . Then the integrand in (4.37) is the same as the integrand in the gauge
theory Eq. (2.27).
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Usually, in order to have a smooth ambient space V//G, there is a basis of charges
such that the fields � have positive charges, and ξ is contained in a cone generated by
the charge vectors of �. Then the fields P have negative charges. Letting η = ξ , there
is only one u∗ ∈ M∗

sing which is u∗ = 0, and our gauge theory Eq. (2.27) reproduces
the mathematical Eq. (4.37).

4.6. Grassmannians and dualities. The Grassmannian Gr(k, N ) of complex k-planes
in C

N is realized by a U (k) gauge theory with N flavors transforming in the fundamental.
It has SU (N ) flavor symmetry, where the flavors are in the anti-fundamental. This model
is massive, therefore we should be careful that the R-symmetry is discrete.

The one-loop determinant is

Z1-loop = 1

k!
(

2πη(q)3

θ1(q, y−1)

)k( k∏
i �= j

θ1(τ |ui − u j )

θ1(τ |ui − u j − z)

) k∏
i=1

N∏
α=1

θ1(τ |ui − ξα − z)

θ1(τ |ui − ξα) dku

(4.38)
where we have introduced flavor holonomies e2π iξα forα = 1, . . . , N and with

∑
α ξα =

0. We will assume the ξα’s to be generic. The one-loop determinant has monodromies
on M:

Z1-loop(τ, z, u1 + a + bτ, u2, . . . , uk) = ybN Z1-loop(τ, z, u1, . . . , uk) (4.39)

for a, b ∈ Z. Single-valuedness requires yN = 1, i.e. z ∈ Z/N .
There are two classes of singular hyperplanes:

Hg
i j = {ui − u j = z}, H f

iα = {ui = ξα}, (4.40)

coming from W-bosons and fundamentals respectively. For generic values of z, singular
points which might lead to a non-vanishing residue are at the intersection of k linearly
independent planes (at no point more than k planes intersect); in fact at least one of
the planes must be from H f, otherwise either there is no intersection or the planes are
linearly dependent. Also notice that all poles are simple.

If we choose, for instance, η = (−1, . . . ,−1) we do not find any contribution
at all, therefore ZT 2(τ, z, ξ) = 0. This computation however is not valid at z = 0
because Z1-loop is ill-defined. It is also not valid if gcd(k, N ) > 1 and y = e2π i j/N

with j a multiple of n/ gcd(k, N ): in this case there is a non-degenerate intersection of
hyperplanes coming from the W-bosons whose set of charges Q(u∗) is not projective.15

We proceed as in section 4.3 of [1]: we introduce an extra chiral multiplet P transforming
in the det−N representation to cancel the R-symmetry anomaly so that we can compute
at generic z, but we give P an R-charge 1 so that it does not affect the genus (up to a sign
that we neglect) as we switch the flavor holonomies off. Therefore we compute ZT 2 for
generic values of z, and eventually we take a limit to the allowed values yN = 1.

We choose η = (1, . . . , 1). We will show that the JK residue gets contributions only
from intersections of planes purely from H f. For every ordered sequence (ᾱ1, . . . , ᾱk)

we have the intersection
u1 = ξᾱ1 , . . . , uk = ξᾱk (4.41)

15 For instance, take k = 2, N = 4. For y = −1, the hyperplanes u1 − u2 − z = 0 and u2 − u1 − z = 0
coincide because z = 1

2 � − 1
2 .
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of k planes in H f. All of these contribute to the JK residue. If two of the ᾱi are equal,
then Z1-loop has a double zero in the numerator from the gauge sector and the residue
vanishes; we can thus restrict to ordered sequences of unequal ᾱ’s. Given an unordered
sequence, for each choice of ordering we get the same residue and such a multiplicity
cancels against k! in Z1-loop.

There are no other contributions to ZT 2 . Consider a point at the intersection of k
planes, taken in part from H f and Hg. The JK residue picks a contribution only if η lies
inside the cone generated by the charge covectors, and this happens only if all indices
1, . . . , k appear either in H f

iα or at the first position in Hg
i j . Without loss of generality

suppose we picked Hg
ı̄ j̄ and H f

j̄ ᾱ for some ı̄, j̄ . The zero at uı̄ − u j̄ − z = 0 in the
denominator of the gauge sector is then canceled by the zero at uı̄ − ξᾱ − z = 0 in the
numerator of the flavor sector, because we also have u j̄ = ξᾱ , and therefore the residue
is zero.

After a further cancelation between the W-boson determinants and the fundamentals
with α in the sequence, we get:

ZT 2(q, y, e2π iξα ) =
∑

I ∈ C(k,N )

∏
α ∈I

∏
β �∈I

θ1(τ |ξα − ξβ − z)

θ1(τ |ξα − ξβ) . (4.42)

The notation is that C(k, N ) are combinations of k elements out of the first N integers,
and I is one such unordered sequence. Notice that, as it should, ZT 2 is invariant under
a common shift of all ξα’s. Taking the z → 0 limit we simply get the Euler number of
the complex Grassmannian:

ZT 2(q, 1) =
N∑

ᾱ1<···<ᾱk

1 =
(

N

k

)
= χGr(k,N ). (4.43)

Instead using the limit

θ1(τ |a)
θ1(τ |b) −−−→

q→0

eiπa − e−iπa

eiπb − e−iπb

(
1 + O(q)), (4.44)

in the q → 0 limit we get the χy genus:

ZT 2(0, y) =
(

N

k

)
y
. (4.45)

In fact, although not manifest in (4.42), for yN = 1 all higher terms in q cancel out in
ZT 2 and we have

ZT 2(q, y, e2π iξα )

∣∣∣
yN =1

=
(

N

k

)
y
. (4.46)

The dependence on the equivariant parameters ξα drops out because the harmonic forms
representing the cohomology classes are invariant under the isometry. We expressed the
result in terms of the q-binomial

(
N

k

)
y

= [N ]y !
[k]y ![N − k]y ! =

(
y

N
2 − y− N

2
)(

y
N−1

2 − y− N−1
2

)
. . .

(
y

N−k+1
2 − y− N−k+1

2
)

(
y

1
2 − y− 1

2
)(

y − y−1
)
. . .

(
y

k
2 − y− k

2
) ,

(4.47)
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defined through the q-number

[n]q = q
n
2 − q− n

2

q
1
2 − q− 1

2

= q− n−1
2 + q− n−3

2 + · · · + q
n−3

2 + q
n−1

2 (4.48)

and the q-factorial [n]q ! = [1]q [2]q . . . [n]q .
As is well-known, there is a duality between U (k)with N fundamentals and U (N −k)

with N fundamentals. Indeed, given the isomorphism between C(k, N ) and C(N−k, N ),
the elliptic genus in (4.42) can be rewritten as

ZT 2(q, y, e2π iξα ) =
∑

Ĩ ∈ C(N−k,N )

∏
β ∈ Ĩ

∏
α �∈ Ĩ

θ1(τ | − ξβ + ξα − z)

θ1(τ | − ξβ + ξα)
(4.49)

which is the elliptic genus of U (N − k) with N fundamentals, transforming in the
fundamental of the flavor group SU (N ).

4.6.1. Adding anti-fundamentals. There are various generalizations that are very easy
to compute. First, let us consider a theory with N f fundamentals Q and Na anti-
fundamentals Q̃. The theory has SU (N f )× SU (Na)× U (1)A flavor symmetry group,
and the charges are

U (k) SU (N f ) SU (Na) U (1)A U (1)R

Q � � 1 1 0
Q̃ � 1 � 1 0

(4.50)

In Fig. 5 we draw the charge covectors for the case of U (2). Unless N f = Na , the
R-symmetry is anomalous and we should restrict to yNa−N f = 1. We choose η =
(1, . . . , 1): then the anti-fundamentals do not provide poles relevant to the JK residue.
However we have to be careful about the extra chiral field P . If N f > Na , then P does
not contribute either. If N f = Na the theory has a fixed point and we don’t need P at
all. If N f < Na then P would contribute non-trivially: in this case we perform charge
conjugation and reduce to the previous case.

u∗
1

u∗
2

Q2

Q1

Q̃2

Q̃1

Ps σ+

σ− η

Fig. 5. Charge covectors of U (k) with fundamentals Q and anti-fundamental Q̃, for k = 2. We included the
fields Ps considered in Sect. 4.6.2, and our choice of covector η
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So, let us assume N f ≥ Na . Then we have the same poles as before, and the anti-
fundamentals only contribute to the one-loop determinant. We immediately get:

ZT 2(q, y, e2π iξα , e2π iηγ )

=
∑

I ∈ C(k,N f )

∏
α ∈I

∏
β �∈I

θ1(τ |ξα − ξβ − z)

θ1(τ |ξα − ξβ)
Na∏
γ=1

θ1(τ | − ξα+ηγ − z)

θ1(τ | − ξα+ηγ )
(4.51)

where ηγ are fugacities for SU (Na). Recall that we should impose
∑
α ξα +

∑
γ ηγ = 0

because the flavor symmetry is S
[
U (N f ) × U (Na)

]
. When evaluated at the allowed

values yNa−N f = 1 (for N f > Na) it simply reduces to

ZT 2(τ, z, ξα, ηγ )
∣∣∣
yNa−N f =1

= y−k Na/2
(

N

k

)
y
. (4.52)

By simple manipulations the expression in (4.51) can be rewritten as

ZT 2 =
∑

Ĩ ∈ C(N f −k,N f )

∏
α ∈ Ĩ

∏
β �∈ Ĩ

θ1(τ | − ξα + ξβ − z)

θ1(τ | − ξα + ξβ)

Na∏
γ=1

θ1(τ |ξα − ηγ )
θ1(τ |ξα − ηγ + z)

×
Na∏

i=1

N f∏
j=1

θ1(τ |ηi − ξ j − z)

θ1(τ |ηi − ξ j )
. (4.53)

This is the elliptic genus of a theory with gauge group U (N f − k), N f fundamentals q,
Na anti-fundamentals q̃ , one extra singlet M transforming in the bi-fundamental of the
flavor group, and with superpotential W = q̃ Mq. The charges are

U (N f − k) SU (N f ) SU (Na) U (1)A U (1)R
q � � 1 −1 1
q̃ � 1 � −1 1
M 1 � � 2 0

(4.54)

This duality, reminiscent of four-dimensional Seiberg duality [33], has been proposed in
[27] and it is very similar to the three-dimensional duality discussed in [34]: as opposed
to four dimensions, it applies to theories with different number of fundamentals and
anti-fundamentals.

4.6.2. Theories with conformal fixed points. The theories we considered before in this
section are massive (unless N f = Na). We can change them into theories with a fixed
point by adding fields Ps in the representations det−qs with

∑
s qs = N f − Na , and

we will consider qs > 0 (we assume N f ≥ Na). There is then no constraint on z. The
elliptic genus of some of these theories has already been computed in [2]. We assign
R-charge 0 to all fields but include all flavor holonomies, so that generic R-charges are
recovered by a shift of the flavor holonomies. The one-loop determinant is
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Z1-loop = s
1

k!
(

2πη(q)3

θ1(q, y−1)

)k( k∏
i �= j

θ1(τ |ui − u j )

θ1(τ |ui − u j − z)

)

×
(∏

s

θ1(τ | − qs
∑

ui + λs − z)

θ1(τ | − qs
∑

ui + λs)

)

×
k∏

i=1

N f∏
α=1

θ1(τ |ui − ξα + χ − z)

θ1(τ |ui − ξα + χ)

Na∏
γ=1

θ1(τ | − ui + ηγ + χ − z)

θ1(τ | − ui + ηγ + χ)
dku.

(4.55)

The charges are

U (k) SU (N f ) SU (Na) U (1)A U (1)s U (1)R

Q � � 1 1 0 0
Q̃ � 1 � 1 0 0
Ps det−qs 1 1 0 1 0

(4.56)

and are represented in Fig. 5 for k = 2. We introduced flavor holonomies ξα , ηγ , χ , λs
(with

∑
ξα = ∑

ηγ = 0) for SU (N f )× SU (Na)× U (1)A × U (1)s respectively [this
notation is slightly different than before, to make U (1)A more explicit].

We find

ZT 2(τ, z, ξα, ηγ , χ, λs)

=
∑

I∈C(k,N f )

( ∏
α ∈I

∏
β �∈I

θ1(τ |ξα − ξβ − z)

θ1(τ |ξα − ξβ)
Na∏
γ=1

θ1(τ |ηγ − ξα + 2χ − z)

θ1(τ |ηγ − ξα + 2χ)

)

×
∏

s

θ1(−qs
∑
α∈I ξα + qskχ + λs − z)

θ1(−qs
∑
α∈I ξα + qskχ + λs)

. (4.57)

Proceeding as before, ZT 2 can be rewritten as

ZT 2 =
∑

Ĩ∈C(N f −k,N f )

( ∏
α ∈ Ĩ

∏
β �∈ Ĩ

θ1(τ | − ξα + ξβ − z)

θ1(τ | − ξα + ξβ)

Na∏
γ=1

θ1(τ |ξα − ηγ − 2χ)

θ1(τ |ξα−ηγ − 2χ + z)

)

×
( Na∏

i=1

N f∏
j=1

θ1(τ |ηi − ξ j + 2χ − z)

θ1(τ |ηi−ξ j +2χ)

)∏
s

θ1(qs
∑
α∈Ĩ ξα+qskχ + λs − z)

θ1(qs
∑
α∈Ĩ ξα + qskχ + λs)

.

(4.58)

This is the elliptic genus of a theory with gauge group U (N f −k), N f fundamentals q, Na
antifundamentals q̃ , a singlet M in the bifundamental of the flavor group, superpotential
W = q̃ Mq, and fields ps transforming as det−qs :

U (N f − k) SU (N f ) SU (Na) U (1)A U (1)s U (1)R
q � � 1 −1 0 1
q̃ � 1 � −1 0 1
M 1 � � 2 0 0
ps det−qs 1 1 qs N f 1 −qs(N f − k)

(4.59)
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4.6.3. Adding one adjoint. We can also consider a theory with gauge group U (k), N f
fundamentals, Na anti-fundamentals and one adjoint. The one-loop determinant is

Z1-loop = 1

k!
(

2πη(q)3

θ1(q, y−1)

)k( k∏
i �= j

θ1(τ |ui − u j )

θ1(τ |ui − u j − z)

)( k∏
i, j=1

θ1(τ |ui − u j + λ− z)

θ1(τ |ui − u j + λ)

)

×
k∏

i=1

N f∏
α=1

θ1(τ |ui − ξα + χ − z)

θ1(τ |ui − ξα + χ)

Na∏
γ=1

θ1(τ | − ui + ηγ + χ − z)

θ1(τ | − ui + ηγ + χ)
dku. (4.60)

We have introduced flavor holonomies ξα , ηγ , χ , λ (with
∑
ξα = ∑

ηγ = 0) for
SU (N f )× SU (Na)× U (1)A × U (1)�.

For simplicity, let us consider first the case of N = (4, 4) or N = (2, 2)∗. In this
case N f = Na ≡ N and there is a superpotential term W = Q�Q̃ which imposes the
constraints

2χ + λ = z, ξα = ηα ∀α (4.61)

from the breaking of the flavor group to SU (N ) × U (1)A. In this case it is easy to see
that the only poles contributing are the same ones as before. Suppose we want to use
a pole at ui − u j + λ = 0 from the denominator of the adjoint: such a pole cancels
with a zero at ui − ξα − χ + z = 0 from the numerator of the anti-fundamentals, using
u j = ξα − χ . We thus get, after various cancelations:

ZT 2(τ, z, λ, ξα) =
∑

I ∈ C(k,N )

∏
α ∈I

∏
β �∈I

θ1(τ |ξα − ξβ − z)

θ1(τ |ξα − ξβ)
θ1(τ |ξα − ξβ + λ)

θ1(τ |ξα − ξβ + λ− z)
.

(4.62)
This is the N = (4, 4) version of (4.42). At q → 0, in the λ → ∞ limit we recover
U (k) with N fundamentals.

By rewriting the sum over I ∈ C(k, N ) as a sum over Ĩ ∈ C(N − k, N ), we can
rewrite the elliptic genus for N = (4, 4) U (k) with N hypermultiplets in (4.62) as the
genus of U (N − k) with N hypermultiplets: the precise map of parameters is

ZN=(4,4)
U (k), N (τ, z, ξα, λ) = ZN=(4,4)

U (N−k), N (τ, z,−ξα, λ). (4.63)

In the geometric phase both theories flow to the NLSM on T ∗Gr(k, N ), the cotangent
bundle to the Grassmannian.

Finally, let us relax the superpotential and the constraints (4.61), but still keeping
N f = Na ≡ N . Now we no longer have cancelations between the adjoint and the anti-
fundamentals, therefore more poles contribute. Choosing η = (1, . . . , 1) as before, we
get contributions to the JK residue from intersections of the hyperplanes

H�
i j = {ui − u j + λ = 0} H f

iα = {ui − ξα + χ = 0}. (4.64)

More precisely, we have to pick collections of hyperplanes such that all indices i =
{1, . . . , k} appear either in H f

iα or at the first position in H�
i j . We can think of one

such collection as defining a (possibly disconnected) graph: each H f
iα is the root of a

component, and each H�
i j adds a segment to an existing component. If the graph has

cycles then the charge covectors are linearly dependent; if a component branches in two
because we used H�

ıj and H�

kj
for some ı, j , k̄, then we also get a zero from the numerator

of the gauge sector, uı − uk̄ = 0. The only contributing graphs are then disconnected
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chains. Hence, the set of poles is parametrized by ordered sequences �n = (n1, . . . , nN )

with nα ≥ 0 and
∑
α nα = k. For every such sequence we have

{ui } =

⎧⎪⎪⎨
⎪⎪⎩

ξ1 , ξ1 − χ, . . . , ξ1 − (n1 − 1)χ ,

...

ξN , ξN − χ, . . . , ξN − (nN − 1)χ

(4.65)

where each row exists only for nα > 0. Taking into account the k! permutations of
{ui } leading to the same residue, we cancel the Weyl group dimension |W |. More com-
pactly we can replace

∏k
i=1 → ∏N

α=1
∏nα−1

mα=0 and ui = ξα − χ − mαλ. After many

cancelations16 we get

ZT 2 =
∑
�n s.t.
|�n|=k

N∏
α,β=1

nα−1∏
mα=0

θ1
(
τ
∣∣ξα − ξβ + (nβ − mα)λ− z

)
θ1

(
τ
∣∣ξα − ξβ + (nβ − mα)λ

)

×θ1(τ | − ξα + ηβ + mαλ + 2χ − z)

θ1(τ |−ξα+ηβ+mαλ + 2χ)
(4.66)

where |�n| ≡ ∑
α nα . This expression has also been found in [2]. As a check, if we set

the N = (4, 4) constraints (4.61) then only sequences �n with nα ∈ {0, 1} contribute to
the sum and we reproduce (4.62).

4.7. SU (k)with N fundamentals. Let us use our analysis ofU (k) theories in the previous
section to obtain the elliptic genus of an SU (k) theory with N fundamentals.

We start from a U (k) theory with N fundamental chiral multiplets [in the anti-
fundamental of the SU (N ) flavor group], together with N chiral multiplets in the rep-
resentation det−1. Let us call this theory U . We denote the flavor holonomies of the
SU (N ) flavor symmetry by ξα , α = 1, . . . , N with

∑
α ξα = 0, and of the N chirals

in det−1 by λs , s = 1, . . . , N . The elliptic genus ZU (τ, z, ξα, λs) of this model U has
already been obtained in Sect. 4.6.2. In this case it is given by

ZU (τ, z, ξα, λs)

=
∑

I ∈ C(k,N )

( ∏
α ∈I

∏
β �∈I

θ1(τ |ξα − ξβ − z)

θ1(τ |ξα − ξβ)
) N∏

s=1

θ1(τ | − ∑
α∈I ξα + λs − z)

θ1(τ | − ∑
α∈I ξα + λs)

.

(4.67)

Consider instead the SU (k)gauge theory with N fundamentals, with flavor holonomies
(ξα, u) for the flavor symmetry SU (N )× U (1). The U (1) part is normalized such that
the baryons have charge 1, i.e. the fundamentals have holonomies −ξα + u/k. Let us
call this model S, and our objective is to compute its elliptic genus ZS(τ, z, ξα, u).

16 The second fraction in (4.66) straightforwardly comes from the anti-fundamentals. Between W-bosons,
the adjoint and the fundamentals there are many cancelations. Let us parametrize i by (α,mα). Given all
terms (α,mα), (β, lβ) from W-bosons—with (α,mα) �= (β, lβ)—those with lβ ≥ 1 cancel against terms
(α,mα), (β, lβ − 1) from�, while those with lβ = 0 cancel against terms from the fundamentals. One is left
with the first fraction in (4.66).
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In the model U , when the coupling of the SU (k) part is far stronger than the U (1)
part, the SU (k) part becomes non-perturbative first. Then, we can describe the theory
as a U (1) gauge theory, coupled to the U (1) flavor symmetry of the theory S, together
with N additional charge −1 fields Ps with flavor holonomies λs . In this description,
the elliptic genus of the model U is given by

ZU (τ, z, ξα, λs)=
∑
u∗

JK-Res
u∗

2πη(q)3

θ1(q, y−1)
ZS(τ, z, ξα, u)

N∏
s=1

θ1(τ | − u + λs−z)

θ1(τ | − u + λs)
du.

(4.68)
As ZS has only positive poles, if we compute the residue by summing over negative
poles we only pick the poles from the P’s (and recall a minus sign from JK-Res):

ZU (τ, z, ξα, λs) =
N∑

s=1

ZS(τ, z, ξα, λs)

N∏
a ( �=s)

θ1(τ | − λs + λa − z)

θ1(τ | − λs + λa)
. (4.69)

To extract the function ZS(τ, z, ξα, u), we just take a specific set of holonomies:

λs = u − (s − 1) z. (4.70)

After a small computation we have

ZU
(
τ, z, ξα, λs = u − (s − 1)z

) = ZS(τ, z, ξα, u)
θ1(τ |N z)

θ1(τ |z) . (4.71)

Plugging in (4.67), we find the desired expression:

ZSU (k), N (τ, z, ξα, u)

= θ1(τ |z)
θ1(τ |N z)

∑
I ∈ C(k,N )

( ∏
α ∈I

∏
β �∈I

θ1(τ |ξα − ξβ − z)

θ1(τ |ξα − ξβ)
)
θ1

(
τ
∣∣−∑

α∈I ξα+u−N z
)

θ1
(
τ
∣∣−∑

α∈I ξα + u
) .

(4.72)

In the limit z → 0, this yields

ZSU (k), N (τ, z, ξα, u)
z→0−→ 1

N

(
N

k

)
. (4.73)

This agrees with the result in [22], for choices of N and k such that there is no non-
compact Coulomb branch.

The expression in (4.72) can be easily rewritten as a sum over Ĩ ∈ C(N − k, N ),
as we did for U (k) theories in Sect. 4.6. We thus find equality of the elliptic genus
of SU (k) with N fundamentals and SU (N − k) with N fundamentals, confirming the
duality proposed in [22]. The precise map of parameters is

ZSU (k), N (τ, z, ξα, u) = ZSU (N−k), N (τ, z,−ξα, u), (4.74)

and we remark that on both sides the baryons have charge 1. Equality of the S2-partition
function for the two theories, with the same map of parameters, was shown in [27].
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As a simple check, the elliptic genus of SU (k)with N = k +1 can be further rewritten
as

ZSU (k), k+1(τ, z, ξα, u) =
k+1∏
α=1

θ1(τ |ξα + u − z)

θ1(τ |ξα + u)
(4.75)

using identities of theta functions. This is easier to check at the level of χy genus:

ZSU (k), k+1(τ, z, ξα, u)
q→0−→ y− k+1

2

k+1∏
α=1

y − e2π i(ξα+u)

1 − e2π i(ξα+u)
. (4.76)

The ones above are the elliptic and χy genus of a chiral multiplet transforming in the
fundamental of SU (N ), and with baryon U (1) charge 1. This agrees with the result in
[22] that SU (k) gauge theory with N = k + 1 fundamentals becomes a theory of N free
baryons in the infrared.

We notice that the trick we employed to extract the genus of the “ungauged” theory—
here SU (k)—from the genus of the “gauged” one—here U (k)—only works if the matter
of the ungauged theory provides only positive poles. This is consistent with the fact that
a similar duality does not hold for SU (k)with both fundamentals and anti-fundamentals,
at least in this simple form.
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A. Eta and Theta Functions

The Dedekind eta function is

η(τ) = q1/24
∞∏

n=1

(1 − qn) (A.1)

where q = e2π iτ and Im τ > 0. We will also write η(q). Its modular properties are

η(τ + 1) = eiπ/12 η(τ), η
(

− 1

τ

)
= √−iτ η(τ) (A.2)

and η(τ)24 is a modular form of weight 12. The Jacobi theta function we use is

θ1(τ |z) = −iq1/8 y1/2
∞∏

k=1

(1 − qk)(1 − yqk)(1 − y−1qk−1)

= −i
∑
n∈Z

(−1)ne
2π i z

(
n+ 1

2

)
e
π iτ

(
n+ 1

2

)2

(A.3)

where q is as before and y = e2π i z . We will also use the notation θ1(q, y).
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Under shifts of z the Jacobi theta function transforms as

θ1(τ |z + a + bτ) = (−1)a+b e−2π ibz−iπb2τ θ1(τ |z) (A.4)

for a, b ∈ Z. Moreover
θ1(τ | − z) = −θ1(τ |z). (A.5)

The function θ1(τ |z) has simple zeros in z at z = Z + τZ and no poles. To compute
residues it is useful to note that

θ ′
1(τ |0) = 2π η(q)3 (A.6)

where the derivative is taken with respect to z. Combined with (A.4) it gives the residue:

1

2π i

∮
u = a+bτ

du
1

θ1(τ |u) = (−1)a+beiπb2τ

2πη(q)3
. (A.7)

The modular properties are:

θ1(τ + 1|z) = eπ i/4 θ(τ |z), θ1

(
− 1

τ

∣∣∣ z

τ

)
= −i

√−iτ eπ i z2/τ θ1(τ |z). (A.8)

B. Supersymmetry and Actions

Our conventions for the supersymmetry variations and the actions in Euclidean signature
and the same as in [1,27]. The multiplication for anticommuting Dirac spinors is

εψ = ψε ≡ εTCψ = εαCαβψ
β (B.1)

where C is the charge conjugation matrix. We take C = γ2 (the Pauli matrix) so that
C2 = 1 and CT = −C , in particular εγ μψ = −ψγμε. The chirality matrix is γ3 =
−iγ1γ2. In components

εψ = ε+ψ+ + ε−ψ− = −iε+ψ− + iε−ψ+, (B.2)

hence we see how to raise and lower indices. Finally the Fierz identity for anticommuting
fermions is

(ε̄λ1)λ2 = − 1
2

[
λ1(ε̄λ2) + γ3λ1(ε̄γ3λ2) + γμλ1(ε̄γ

μλ2)
]
. (B.3)

To go to Euclidean signature we set x0 = i x2, therefore F01 = i F12. Since the flux pairs
up holomorphically with the D-term in Lorentzian signature DL , we define F01 + i DL =
i(F12 + i D) hence DL = i D.

With N = (2, 2) supersymmetry, first we have a vector multiplet V(2,2) = (Aμ, λ, λ̄,
σ, σ̄ , D) with variations:

δAμ = − i

2

(
ε̄γμλ + λ̄γμε

)

δσ = ε̄P−λ + λ̄P−ε
δσ̄ = ε̄P+λ + λ̄P+ε

δλ = +iγ3ε F12 − ε D − i P−ε [σ, σ̄ ] + iγ μP+ε Dμσ + iγ μP−ε Dμσ̄

δλ̄ = −iγ3ε̄ F12 − ε̄ D − i P−ε̄ [σ, σ̄ ] + iγ μP−ε̄ Dμσ + iγ μP+ε̄ Dμσ̄

δD = − i

2
ε̄γ μDμλ +

i

2
Dμλ̄γ

με + i[ε̄P+λ, σ ] − i[λ̄P−ε, σ̄ ],

(B.4)
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where

P± = 1 ± γ3

2
. (B.5)

With respect to the standard conventions, for instance of [9], we shifted D → D+ i
2 [σ, σ̄ ]

so that the N = (2, 2) vector multiplet decomposes into N = (0, 2) multiplets more
nicely.

Second we have a chiral multiplet �(2,2) = (φ, φ̄, ψ, ψ̄, F, F̄) with variations:

δφ = ε̄ψ δψ = iγ με Dμφ + i P+ε σφ + i P−ε σ̄φ + ε̄ F

δφ̄ = ψ̄ε δψ̄ = iγ με̄ Dμφ̄ + i P−ε̄ φ̄σ + i P+ε̄ φ̄σ̄ + ε F̄

δF = ε
(
iγ μDμψ − i P−σψ − i P+σ̄ψ − iλφ

)
δ F̄ = ε̄

(
iγ μDμψ̄ − i P+ψ̄σ − i P−ψ̄σ̄ − i φ̄λ̄

)
.

(B.6)

The Yang–Mills Lagrangian is

LYM = Tr
[

F2
12 + D2 + Dμσ̄Dμσ + i D[σ, σ̄ ]− i λ̄γ μDμλ− i λ̄P+[σ, λ]− i λ̄P−[σ̄ , λ]

]
,

(B.7)
while the kinetic Lagrangian for the chiral multiplet is

Lmat = Dμφ̄Dμφ+φ̄
(
σ̄ σ +i D

)
φ+ F̄ F−iψ̄γ μDμψ+iψ̄

(
P−σ + P+σ̄

)
ψ+iψ̄λφ+i φ̄λ̄ψ.

(B.8)
To reduce toN = (0, 2) supersymmetry, we can take chiral parameters P−ε = P−ε̄ = 0.

We define complex coordinates w = x1 + i x2, w̄ = x1 − i x2, so that γ wε = γ wε̄ = 0.
Notice that F12 = −2i Fww̄. Tt will be convenient to write spinors in components,
in particular the SUSY parameters are ε+, ε̄+. First we have a chiral multiplet � =
(φ, φ̄, ψ−, ψ̄−) with variations

δφ = −i ε̄+ψ− δψ− = 2i ε+ Dw̄φ

δφ̄ = −iε+ψ̄− δψ̄− = 2i ε̄+ Dw̄φ̄.
(B.9)

Second we have a Fermi multiplet � = (ψ+, ψ̄+,G, Ḡ) with variations

δψ+ = ε̄+G + iε+ E δG = 2 ε+ Dw̄ψ
+ − ε+ψ−

E

δψ̄+ = ε+Ḡ + i ε̄+ Ē δḠ = 2 ε̄+ Dw̄ψ̄
+ − ε̄+ψ̄−

E .
(B.10)

Here E(�i ) = (E, Ē, ψ−
E , ψ̄

−
E ) is a chiral multiplet, holomorphic function of the fun-

damental chiral multiplets in the theory, and it is part of the definition of�. Notice that
E = E(φi ) and its fermionic partner is ψ−

E = ∑
i ψ

−
i ∂E/∂φi . Third we have a vector

multiplet V = (Aμ, λ+, λ̄+, D) with variations

δAw = 1
2

(
ε+λ̄+ − ε̄+λ+) δλ̄+ = ε̄+(−D − i F12) δ(−D − i F12) = 2 ε+ Dw̄λ̄

+

δAw̄ = 0 δλ+ = ε+(−D + i F12) δ(−D + i F12) = 2 ε̄+ Dw̄λ
+.

(B.11)
Comparing with (B.10), notice that the fields in the second and third column form a
Fermi multiplet ϒ = (λ̄+, λ+,−D − i F12,−D + i F12) with E = 0.

The supersymmetric action for chiral multiplets comes from the Lagrangian

L� = Dμφ̄Dμφ + i φ̄Dφ + 2 ψ̄−Dwψ
− − ψ̄−λ+φ + φ̄λ̄+ψ−

= −4φ̄DwDw̄φ+φ̄(F12 + i D)φ+2 ψ̄− Dwψ
− − ψ̄−λ+φ+φ̄λ̄+ψ−, (B.12)
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where the second equality is up to total derivatives. For Fermi multiplets we have

L� = −2 ψ̄+ Dw̄ψ
+ + Ē E + ḠG + ψ̄+ψ−

E − ψ̄−
E ψ

+ (B.13)

and for vector multiplets we have

Lϒ = Tr
[

F2
12 + D2 − 2 λ̄+ Dw̄λ

+
]
. (B.14)

Up to total derivatives, this equals the Lagrangian for the Fermi multipletϒ with E = 0.
Interactions are specified by holomorphic functions J a(φ) of the chiral multiplets [and
anti-holomorphic functions J̄ a(φ̄) of their partners], where a parametrizes the Fermi
multiplets in the theory:

LJ =
∑

a

(
Ga J a + iψ+

aψ
−a
J

)
, L J̄ =

∑
a

(
Ḡa J̄ a + iψ̄+

a ψ̄
−a
J

)
. (B.15)

Their variation is a total derivative as long as
∑

a
Ea(φ)J

a(φ) = 0. (B.16)

All these actions are actually Q-exact. Let us define the anticommuting supercharge
Q by using commuting spinor parameters and choosing them ε+ = ε̄+ = 1. The action
of Q is then immediately read off from (B.9), (B.10) and (B.11). We then find, up to
total derivatives:

L� = Q(
2i φ̄Dwψ

− − i φ̄λ+φ
)
, L� = Q(

ψ̄+G − i Ēψ+)
LJ = Q(∑

aψ
+
a J a), Lϒ = −Q Tr

(
λ+(D + i F12)

)
.

(B.17)

In the reduction from (2, 2) to (0, 2) supersymmetry, the chiral multiplet �(2,2)
splits into a chiral multiplet � = (φ, φ̄, P−ψ, P−ψ̄) and a Fermi multiplet � =
(P+ψ, P+ψ̄, F, F̄). The vector multiplet V(2,2) splits into a vector multiplet V , with
corresponding Fermi multiplet ϒ = (P+λ̄, P+λ,−D − F12,−D + i F12), and an adjoint
chiral multiplet � = (σ, σ̄ , P−λ, P−λ̄). If�(2,2) is charged under V(2,2), then its Fermi
component� has related chiral multiplet E = �� (where� acts in the correct represen-
tation). It is easy to check that Lϒ + L� (where� is taken in the adjoint representation)
equals LYM, and L� + L� (where the Fermi multiplet has E = ��) equals Lmat.
Superpotential interactions W (�(2,2)) become interactions J a(φ) = ∂W/∂φa .

Similarly, a (2, 2) twisted chiral multiplet Y(2,2) (which must be neutral) splits into
a chiral and a Fermi multiplet. In particular the twisted chiral multiplet �(2,2) con-
structed out of V(2,2) splits into ϒ (with E = 0) and the chiral multiplet �. A twisted
superpotential W̃ (�(2,2)) becomes an interaction Jϒ(σ) = ∂W̃/∂σ , and a complexified
Fayet–Iliopoulos term is simply a constant Jϒ = θ

2π + iζ .
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